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Preface

In this paper, we study asymptotic behaviors of quasi-maximum likelihood estimators and Bayes type estimators
for parameterized diffusion processes and diffusion processes with jumps.
Let a d-dimensional stochastic process X = {X;}o<i<oo satisfy a stochastic differential equation :

dX; = /,L(Xt, 9)dt + b(Xt, O')th, t e [O, OO), (1)

where {W,;}o<i<r is a multi-dimensional standard Wiener process, p is a vector-valued function and b is a
matrix-valued function. Then we consider the problem of estimating true values 6, and o, of parameter 6§ and
o, respectively. We may consider two sampling schemes of X : continuous time observations and discrete time
observations. From a practical viewpoint, discrete time observations are realistic because it is difficult to observe
a continuous path of X. The asymptotic theory of statistical estimation have been well developed for discretely
observed diffusion processes.

Suppose that X is ergodic and discrete samples {Xxp, }7_, are observed for some h, > 0. Then it is
well-known that the quasi-maximum likelihood estimators 6, and &, generated by the Euler-Maruyama type
quasi-log-likelihood function have consistency :

(G, 0,) =P (04,6,), (2)

asymptotic normality :
(Vn(6n — 0.), V1l (0, — 6.)) =% ¢, (3)
and moment convergence :

E[f(v(6n — 04), v/nhn (8 — 6.))] = E[f(¢)] (4)

as n — 00, h, — 0,nh, — oo for any continuous function f of at most polynomial growth, where ¢ is a multi-
dimensional normal random variable. Similar results as (2)-(4) hold when one replaces 6,, and &,, with Bayes
type estimators 6,, and Op, respectively.

Though the above results are obtained under the assumption 7" = nh,, — oo, there are also asymptotic
results when the end time T is fixed. We denote the observations of X by { X7 /n}zzo, then the quasi-maximum
likelihood estimator &, based on the quasi-likelihood function has consistency :

Gn =P 04,y (5)
asymptotic mixed normality :
VG, — o) =L TN, (6)
moment convergence :
El[f(vn(6, — 0.))] = E[f(Tg /> Np)) (7)

for any continuous function f of at most polynomial growth, where —5% denotes stable convergence, I'y is
a symmetric positive definite random matrix, Ay is a multi-dimensional standard normal random variable
independent of I'y. Similar results also hold true for Bayes type estimators &,,.

In this paper, we extend these results for regularly sampled diffusion processes to nonsynchronously observed
diffusion processes and regularly sampled diffusion processes with jumps.



In Chapter 1, we consider a two-dimensional stochastic process Y = {(V}!, Y;?) }o<t<7 satisfying a stochastic
integral equation :

t t
Yt:Yo+/ usds—i—/ b(Xs,0)dW,, € [0,T], (8)
0 0

where {W,}o<i<r is a two-dimensional standard Wiener process, {u:}to<i<r and X = {X;}o<i<r are two-
dimensional and ns-dimensional stochastic processes, respectively, and b is a 2 X 2 matrix-valued function. As
an example, Y becomes a diffusion process if py = p(t,Y;) and X; = (¢,Y;).

We investigate asymptotic behaviors of a quasi-maximum likelihood estimator and a Bayes type estima-
tor when the end time 7" > 0 is fixed, observation times {S'};, {T7}; and {7/}; of {Y;'},{Y;?} and {X}},
respectively, are random and nonsynchronous and max; j 5 (|S* — S*!| Vv [T7 — T9= v [T7 — T/ 71]) =P 0.

The problem of nonsynchronous observations appears when one estimates covariation of two security log-
prices by high-frequency financial data. Security log-prices are observed when transactions occur. Then obser-
vations are inevitably nonsynchronous because transactions for different securities occur at different time points.
Linear interpolation or ’previous tick’ is a natural method to solve this problem. However, it is known that
these simple methods of ’synchronization’ cause serious bias of the estimator. Recently, there are large numbers
of studies about various covariance estimators solving this problem.

However, previous works about estimation problems of nonsynchronous observations are mainly focused on
nonparametric methods. In this paper, we consider Y given by (8) and prove similar results to (5)-(7), that is, a
quasi-maximum likelihood estimator and a Bayes type estimator have consistency, asymptotic mixed normality
and convergence of moments.

Theory of the random field of likelihood ratio enables us to reduce the asymptotic behavior of estimators to
more tractable asymptotic properties of the quasi-likelihood function H,. To specify the asymptotic behavior
of H,, we assume that certain functions of observation times converge in probability. Asymptotic variance
of estimation error described by these limit function. See [A3] in Section 1.3 for details. Thus the effects of
nonsynchronous observations appear in asymptotic variance of estimators.

In the two previous settings of synchronously observed diffusion processes, quasi-maximum likelihood es-
timators and Bayes type estimators are asymptotically efficient, that is, they attains the minimal asymptotic
variance. Asymptotic efficiency of the quasi-maximum likelihood estimators and the Bayes type estimators
is unknown for nonsynchronously observed diffusion processes. However, Example 1.1 shows that the quasi-
maximum likelihood estimator has lower estimation error than that of a nonparametric estimator of quadratic
covariation (Y1, Y?2)r. Thus performance of our estimator is preferable as a parametric estimator.

In Chapter 2, we consider a d-dimensional stochastic process X = {X;}o<i<oo satisfying

dX: = a(X—,0)dt + b( Xy, 0)dW; +/ e(Xi—, z,0)p(dt,dz), te€][0,00), (9)
B

where {W;}o<t<oo is a d-dimensional standard Wiener process, p is a Poisson random measure, a,b and ¢ are
Borel functions and E = R%\ {0}, o € II and § € © are parameters and Il and © are bounded open sets
in Buclidean spaces. We assume that X is ergodic and discrete samples { Xy, }7_, are observed for some
hy, > 0. We study asymptotic behaviors of a quasi-maximum likelihood estimator and a Bayes type estimator
as n — 0o, h, = 0,nh,, — oco.

Shimizu and Yoshida [46] proposed a method using a threshold detecting whether jumps occur in an interval
((k = 1)hy, khy] by the value |Xgpn, — X(x—1)n,|- They constructed a quasi-log-likelihood function by using
this threshold and proved consistency and asymptotic normality of the quasi-maximum likelihood estimators.
In Chapter 2, we use an improved quasi-log-likelihood function H,(c,6) and prove consistency, asymptotic
normality and moment convergence of the quasi-maximum likelihood estimators and the Bayes type estimators.
In particular, results of the asymptotic behavior of Bayes type estimators for diffusion processes with jumps are
new to the best of my knowledge. Moment convergence of estimators plays important roles in developments
of theory of information criteria and asymptotic expansion. Shimizu and Yoshida [46] assumed that the Lévy
measure [ satisfies |f(z)| < Clz|” for some C' > 0 and v > 3 near the origin. We weaken the assumption and
our assumption is satisfied by many distributions whose density function f is bounded near the origin.

To discuss the asymptotic properties of estimators, we prove polynomial type large deviation inequalities :



For any L > 0 there exists C, > 0 such that

U1 _r cy,
P sup exp{Hn o* + ,0 —Hn(a*,e)} >e 2} < ==,
[(ul,e)evg(r)x@ ( vn ) oL
~ U9 . =z CL
P Hy 60, 07 — Hy,(60,0%) ¢ > < —= 10
LE?(T)QXP{ (000" + o)~ Hul6 >} ¢ } s (10)

for any r > 0, where ¢* and 6* are true values of o and 6, respectively, ,, is the quasi-maximum likelihood
estimator for the parameter o, and

an(r) = {Ul; of + n71/2u1 e 1II, |u1| > 7“}, Vn2(’l“) = {u2; 0" + (nhn)fl/Qm € 0, |u2‘ > ’I“}.
The inequalities (10) yield

Pl|Vn(6, — 0.)| > 7] < L Pl|y/nhy (0 = 60.)] = 7] < %

r

for quasi-maximum likelihood estimators &,, and én, and so give moment estimates of estimators. These esti-
mates play an important role in the proof of consistency and asymptotic normality of Bayes type estimators
and moment convergence of estimators.

Results in Chapters 1 and 2 are published in [35] and [34], respectively.
I am very grateful to Professor Nakahiro Yoshida who was my supervisor for his valuable instructions and

advices. I learned many things about statistical and mathematical theories from him. I would also like to thank
Professor Masayuki Uchida for giving useful comments and encouraging me.
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Chapter 1

Quasi-Likelihood Analysis for
Nonsynchronously Observed Diffusion
Processes

1.1 Introduction

Given a probability space (€2, F, P) with a right-continuous filtration F = {F; };c[0,7], we consider a stochastic
regression model specified by the following equation :

t t
Y=Y, +/ usder/ b(Xs,0)dWs, te€[0,T], (1.1)
0 0

where Y = {Yi}o<i<r = {(V}},Y?)}o<i<r is a two-dimensional F-adapted process, {W;}o<i<r is a two-
dimensional standard F-Wiener process, b = (b"/)1<; j<2 : R" x A — R? ® R? is a Borel function, y = {y;} and
X = {X;} are F-progressively measurable processes with values in R? and R™2, respectively, o € A, and A is a
bounded open subset of R™*. For example, if pu; = p(t,Y;) and X; = (¢,Y;), then {Y;} is a time-inhomogeneous
diffusion process.

Our purpose is to estimate the true value o, of parameter 0 € A by nonsynchronous observations {Ysli}i7
{Y2}, and {X%J }j.k, where {S%};, {T7}; and {7/}, x are observation times of Y, Y2 and X, respectively. In
our setting, p is completely unobservable and unknown.

The problem of nonsynchronous observations appears in the analysis of high-frequency financial data. Re-
cently, as availability of intraday security prices gets increase, the analysis of high-frequency data becomes more
significant. In particular, the realized volatility has been studied actively as an estimator of security returns’
volatility.

In the study of portfolio risk management of financial assets, the quadratic covariation of two security log-
prices is also a significant risk measure. Therefore estimation of quadratic covariation with high-frequency data
has also been studied by many authors. One problem of estimation is nonsynchronous trading. The observation
times of two different security prices do not necessarily coincide with each other.

If Y = {V'}o<i<r and Y2 = {V;*}o<i<r are synchronously observed at some stopping times {S%}, then the
realized covariance between Y! and Y2 converges to (Y1, Y?)r in probability as max; |S* — S*"1| -7 0. When
observation times of Y'! and Y2 are nonsynchronous, to calculate the realized covariance, we need to synchronize
the data by some method. However, the realized covariance has serious bias if we use a simple synchronizing
method such as previous-tick interpolation or linear interpolation. Epps [13] first indicated this phenomenon by
U.S. stock data analysis, and this phenomenon is called the Epps Effect.

To solve this problem, Malliavin and Mancino [29] proposed a Fourier analytic method, and Hayashi and
Yoshida [17] proposed an estimator based on overlapping of observation intervals. In sequent papers [18,19],
Hayashi and Yoshida studied the asymptotic distribution of estimation error of their estimator and proved
asymptotic mixed normality. There also exist some works about estimation of the quadratic covariation with
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nonsynchronous data contaminated by market microstructure noise. We refer the reader to Barndorff-Nielsen et
al. [4] for a kernel based method, Christensen, Kinnebrock and Podolskij [9] for a pre-averaged Hayashi-Yoshida
estimator, Ait-Sahalia, Fan and Xiu [3] for a method with the maximum likelihood estimator of a model with
deterministic diffusion coefficients, and Bibinger [5,6] for a multiscale estimator.

With respect to the problem of nonsynchronous observations, nonparametric approaches have been studied
mainly. In this work, we use a quasi-likelihood function, that approximates the likelihood function in diffusion
cases and construct a quasi-maximum likelihood estimator and a Bayes type estimator for a parametric stochastic
regression model with nonsynchronous observations. The asymptotic behavior of estimators will be investigated
when the end time 7 is fixed and max; j j  |S? — SV |TV =TI~ v |’Tle - 773/_1| — 0 in probability. Hence
our method can be applied not only to estimating the quadratic covariation but also to identifying nonlinear
structure of the process Y.

There exist many studies about asymptotic theory of parametric estimation for stochastic differential equa-
tions with high-frequency data. Among many studies in a long history, we refer the reader to Prakasa Rao [36,37],
Yoshida [52-54], Kessler [24] under ergodicity, Shimizu and Yoshida [46], Ogihara and Yoshida [34] for jump
diffusion processes, Masuda [33] for Ornstein-Uhlenbeck processes driven by heavy-tailed symmetric Lévy pro-
cesses, Sgrensen and Uchida [47], Uchida [48,49] for perturbed diffusions, Dohnal [11], Genon-Catalot and
Jacod [14,15], Gobet [16], Uchida and Yoshida [50,51] for the fixed interval case.

One of the most useful approaches to study asymptotic behaviors of quasi-maximum likelihood estima-
tors and Bayes type estimators is the theory of random field of likelihood ratios initiated by Ibragimov and
Has'minskii [20-22]. Their theory enabled to reduce the problem of asymptotic behaviors of estimators to
more tractable properties of the random field of likelihood ratios. In [22], they applied their theory to inde-
pendent observations and white Gaussian noise models. Kutoyants [25-28] developed Ibragimov-Has minskii’s
theory for diffusion processes and point processes. Yoshida [54] investigated polynomial type large deviation
inequalities to apply Ibragimov-Has’minskii’s theory and discussed consistency and asymptotic normality of
quasi-maximum likelihood estimators and Bayes type estimators for ergodic diffusion processes. This scheme
was also applied to jump diffusion processes in Ogihara and Yoshida [34], Ornstein-Ohlenbeck processes driven
by heavy-tailed symmetric Lévy processes in Masuda [33], and diffusion processes in the fixed interval in Uchida
and Yoshida [50,51].

In this work, we construct a quasi-log-likelihood function for the stochastic regression model (1.1) with
nonsynchronous observations. Then we will show consistency, asymptotic mixed normality and the convergence
of moments of the quasi-maximum likelihood estimator and the Bayes type estimator with the aid of polynomial
type large deviation inequalities. The advantage of our approach is to obtain asymptotic mixed normality,
exact representation of asymptotic variance and convergence of moments of the estimators. The convergence of
moments of the estimators is important, e.g., when we investigate the asymptotic expansion and the theory of
information criteria. Moreover, our method does not require any synchronization methods.

When the sampling scheme is synchronous and equi-spaced : S* = T = T /n, Gobet [16] showed local
asymptotic mixed normality of the likelihood function of observations and obtained the asymptotic minimax
bound for the variance of estimators. In the case of nonsynchronous observations, we expect that local asymp-
totic mixed normality of the likelihood function holds and our estimators attain the asymptotic minimax bound
since our quasi-likelihood function seems to be asymptotically equivalent with the true likelihood function and
our quasi-likelihood ratio has a limit distribution of LAMN type. However, these problems are not proved in
this paper and left as future work.

This chapter is organized as follows. In Section 1.2, we construct a quasi-log-likelihood function H, and
discuss its non-degeneracy. Section 1.3 gives the asymptotic behavior of H,. Section 1.3.1 deals with two
equivalent conditions of the asymptotic behavior of observation times {S?} and {77} to control the asymptotic
behavior of H,. In Section 1.3.2, we specify the limit of H,, and estimate the rate of convergence. Section 1.4
studies the degree of separation of the limit of H,, which is necessary to prove asymptotic properties of the
quasi-maximum likelihood estimator and the Bayes type estimator. We also introduce sufficient conditions for
the condition of separation. In Section 1.5, our main results about asymptotic properties for estimators are
stated. Section 1.6 introduces easily tractable sufficient conditions for assumptions about the observation times
in the main theorems. Proofs are collected in Section 1.7.
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1.2 Construction of a quasi-likelihood function

In this section, we define a quasi-log-likelihood function H,, to construct a quasi-maximum likelihood estimator
and a Bayes type estimator.

First, we define some notations. For a real number a, [a] denote the maximum integer which is not greater
than a. For a matrix A, A* denotes transpose of A and || A || represents the norm of A as a linear map. We
often regard a p-dimensional vector v as a p X 1 matrix. &, denotes unit matrix of size p. We set sup ) = —o0,
inf() = +00 and 2N = {2k;k € N}. For M € N and K C RM | K denotes the closure of K. For a set K C (,
K¢ denotes the complementary set of K. For an interval K C [0,7] and a stochastic process {Z;}o<i<T, We
denote L(K) = inf K, R(K) = sup K, Z(K) = Zp(x) — Zr(k), Kt = KN [0,t) and |K| = R(K) — L(K). Let

bi(z,0) = (b (z,0),b%(z,0))* (i =1,2). For a vector k = (k1,--- ,kpr), we denote OF = (ﬁ)%mik:r
iq ig )

We denote |.’L‘|2 = Zil,--- Vi |xi1,"' 7iM|2 for z = {xih'” ViM }7:17"' Mt
Let A satisfy Sobolev’s inequality, that is, for any p > nq, there exists C' > 0 such that

sup [u(z)] < € >l oku@) I

k=0,1

for u € C(A). Tt is the case if A has Lipschitz boundary. See Adams [1], Adams and Fournier [2] for more
details.

We recall the definition of stable convergence. Given an extension (€, F, P) of (Q,F, P), let {Z,}nen and
Z be random variables on (Q,]} , P) with values in a metric space E. Then we say that Z,, stably converges
in law to Z, and write Z,, =% Z, if E[Yf(Z,)] — E[Yf(Z)] as n — oo for any bounded continuous function
f: E — R and any bounded variable Y on (£2, F). See Jacod [23] for more details.

For 1 < k < nao, let observation times {S%};, {T9}; and {7/}, be strictly increasing with respect to i or
j almost surely and satisfy S =70 = 7Y =0, S" = inf{t > O; N} > i} AT, T9 = inf{t > 0; N > j} AT,
and T = inf{t > 0; N/*? > j1 AT for 4,j > 1, where {N}'}; are simple point processes, that is, {NF'} is
a cadlag Z,-valued stochastic process whose jumps are equal to 1 and Ny K= (1 <K < ng+2). These
observations and point processes depend on a positive integer n € N. Let I =10, = ((S)s, (T9);, (T{)ix),
ly=N}_+1,m, =N2_+1,mE=NEt2 11 for 1 <k < ny, then I, m,,, {mE}72, are observation counts. We
also assume {I1,, } ,en are independent of Fr. Denote I' = [Si=1 %) (1 <i <1,), J7 = [T771,T7) (1 < j <my,),

rp = max(|I'|V [J7])V max max [T —T77',
0] 1<k<ng 1<]<mk

and T{(K) = max{T/;j € Z,,T} < L(K)} for 1 < k < ng and an interval K C [0,7]. Let {by}nen be a
sequence of positive numbers such that b, > 1 (n € N) and b, — 00 as n — oo. {b,} represents order of
observation counts. Conditions for {b,} are given in [A2-q, d], [A3'-q, 7], [Ad-q, 0] later.

For a function g : R™ x A = R, let g; = 9(Xy,0), 9t = 9(Xy,04), g0 = 9({X%{(K)/\t}kv‘7) and gk = gk, T
for interval K C [0,7T]. We use the symbol C for a generic positive constant which is independent of n and p,
and is varying from line to line.

We assume the following conditions.

[A1]

1. The mapping b: R"? x A — R?®R? has the continuous derivative 20 b and 92b can be continuously
extended to R™2 x A for 0 < j <3 and 0 <14 < 4. Moreover,

sup [030;b(x,0)] < C(1 +|a|)®
oceA

for0<j<3,0<¢<4 and z € R"2.
2. There exists € > 0 such that det bb*(z,0) > € for (z,0) € R™2 x A.
3. |b(z,0) —b(y,0)| < Clz —y| for z,y € R™ and ¢ € A.
4. Yy € Ng>oL(Q).
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5. There exists v € (0,1) such that

E — 1gl?
sup Ef|u]?] < oo and sup Ellpe = psl"] < oo
0<t<T o<s<t<T |t — 8|77
for any ¢ > 0.

6. There exists n3 € Z4 such that X can be decomposed as

t t t
Xt:Xo+/ b;ds+/ bgdWs+/ bW,
0 0 0

where

t t t

b :bg+/ bfjds+/ bfdes—&—/ b3dW,, (i =2,3)

0 0 0
{bi}oci<r (1 < i < 3) and {b7 }ocyer (2 < i < 3,1 < j < 3) are F-progressively measurable
processes, {W;}o<i<r is an ns-dimensional standard F-Wiener process independent of {W,} and
E[supOStST(UA)ﬂ V [bi| V | X0])P] < oo for any 4,5 and p > 0. We ignore the terms b, fot b3dW, and
fg bi3dW, when ng = 0.

Our setting contains the case where X or Y; depends on ¢ and main results hold in this case. However, if

X or Yy depends on o, our estimator 6,, may not be the quasi-maximum likelihood estimator since we need to
consider the density of observations {X ;“,J} or Yp. Nevertheless, we use the terms “quasi-maximum likelihood
k

estimator” and “Bayes type estimator” in this case. If X; = (¢,Y;) and Y, does not depend on o, we can see &,
is the maximum likelihood type estimator.
Under [A1] 2, there exists € > 0 such that

det(beby) = (B PIZE(1 — 2) > ¢ (12)
for p(z,0) = bt - b2|b| 71|62~ (x, o). Therefore

p= sup |p| <1 a.s. (1.3)
te(0,T],c€A

by [A1] 1.
Let us denote
. diag({|b7|°}1) {b}bﬁﬁ%}
S(o) = IJ
pl . p2 _I0J] di p2 |2
{ T J\m\/m o iag({]| J| }a)

and define a quasi-log-likelihood function H,, = Hy, (o) of (Y'(I)/+\/II])}, (Y*(J)/\/|J])}) by

L(YHI)\" [Y? * YHI)\" [Y? 1
me = () (U ) )s (G, (), ) s
2 1] /1 1/ 1| /1 1/ 2
when det S > 0. If X; =t and p =0, S is the covariance matrix for the Euler-Maruyama type approximation
(YY), (Y2(T))s) of (Y'(I))r, (Y2(J))s) defined by Y1(I) = b'(L(1)) - W(I), Y*(J) = b*(L(J])) - W(J]).
Though H,, is the quasi-log-likelihood function for 1 = 0, we can see that the effect of drift term p in a
quasi-likelihood function can be ignored asymptotically. So H,, is applicable for general cases.

Remark 1.1. Though the quasi-likelihood function H,, is defined as functions on (Q,F, P), we often regard it
as a function on the state space. We adopt the same thing to the quasi-maximum likelihood estimator and the
Bayes type estimator.
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When the sampling scheme is synchronous, we have uniform non-degeneracy of S by the condition [A1] 2
However, in the case of nonsynchronous observations, the problem becomes more complicated since the observa-
tion times of diffusion coefficients are not the same for Y'! and Y2. However, the following proposition ensures
that H,, is well-defined under [A1] 2

Proposition 1.1. Assume [Al] 2. Then det S(o) > 0 almost surely for any o € A.

Proof. Fix w € Q. Tt is sufficient to show that S is positive definite. Let ((ur)r, (vs)s) be a real vector satisfying

((ur)r, (v5)5)S((ur)r, (vs)s)* = 0.

We assume that ((ur)z, (vs)s) has a non-zero element and show this leads to a contradiction.
Let {W;} be a two-dimensional standard Wiener process on some probability space, and {M;}o<i<7 be a
stochastic process on the same probability space, satisfying

ur 1 ~ vy 2 ~
M, = —=b; - W(I) + —==b5 - W (Jy).
2 2
Then {M,;} is a martingale satisfying

INnJ)
b2 | I | + b 27, +2 uIva b2|(7.
Since

(M)r = ((ur)r, (vs))S((ur)r, (vs)s)* =0,

it follows that (M); =0for 0 <t <T.

We may assume some [ satisfies L(I) = min{L(I);uy # 0} Amin{L(J);v; # 0} without loss of generality.
We fix this I below.

First, we consider the case that L(I) < min{L(J);v; # 0}. Then

(M) 1(1)+s = [b7[PuFs/|I| =0

for sufficiently small 6 > 0. Therefore we have |[b}| = 0, which contradicts [A1] 2
In the case that L(I) = L(J) for some J with vy # 0, we obtain

u ’U urvy
(M) ()45 = b1 0 + |51 =50 + 2

o VT

for sufficiently small § > 0. Since L(I) = L(J), we obtain b% = b%. Therefore

bl -b%5 =0 (1.4)

(\/|7 m)bfb7<ﬁ m)

by (1.4). This contradicts the fact that byb} is positive definite by [A1] 2. O
Let
_ b}.t ) b%t ~ _
pr=sup |ps|, proe= i ()= sup  |pru Vo,
0<s<t 107,01167,.| 0,1, ;TN A0

To discuss asymptotic behavior of the quasi-likelihood, we need a more precise estimate for non-degeneracy
of S. To this end, we will estimate 1 — p,(¢) from below. Assuming [A1] and r, =P 0 (n — o), we have
sup, |pe — pn(t)| =P 0 (n — 00) by uniform continuity of b and b? with respect to ¢t and o for fixed w. Therefore
lim;, o0 P[sup, prn(t) > 1] = 0 by (1.3).

We need a stronger estimate for p,,. For stochastic processes {s,(t)}to<i<7nen, we consider the following
condition:
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[S] There exists M € N, stochastic processes {5, (t,x)} and a o(Il,, )-measurable R™-valued random variable X
such that s, (t) = 5,(t; X), 8,(t, z) is continuous with respect to (¢, ) a.s., §,(0,2) < 1—|pol, t — 5,(t, )
is non-increasing and {5, (t, ) }o<i<r is a [0, 1]-valued F-adapted process for n € N and x € RM.

Let
To = 7(sn) = 0f{t € [0,T]: pn(t) 2 1 = su()} AT

We consider the following condition for ¢ > 0 and & > 0.
[S-q, €] {8n(t)}e.n satisfies [S], P[r(sn) < T] = O(b,¢) and sup,, E[(s,(T))" 9] < co.

Define S = S(U; $p) and H, = f[n(ag Sy) similarly to S and H,, respectively, substituting b},‘rn for b} and
bg’m for b2 in the definition of S. Under [S-g,&], it is easy to see that sup, |H, — H,| =" 0 as n — oo. To

investigate asymptotic properties of estimators, it is convenient to use fln
If sup, pn(t) < ¢ almost surely for some 0 < ¢ < 1, we can set s, = 1 — ¢. However, in general, we need the
following conditions to obtain {s,} for ¢ > 0 and § € (0, 1).

[A2] r,, =P 0 as n — 0.
[42-¢,0] E[r] = O(b;°9).
The following lemma gives examples of {s,,} in general cases.

Lemma 1.1. Let P> 1,¢' >0,0<d <1 and s,(t) = (1 — p)/P. Assume [Al],[A2-¢',0]. Then {s,} satisfies
[S-q,&] for any ¢ >0 and 0 < £ < dq’.

Proof. Tt is clear that {s,} satisfies [S]. Since 1/(1—|p¢|) < 2|b|?|b7|? /€ by (1.2), we obtain sup,, E[(s,(T))™9] <
oo for any ¢ > 0 by [Al].
Moreover, let n = (6 — £/q')/9 and gy > £/n, then by [A1] and the mean value theorem, we obtain

sup |pn(t) — | < Csup(1+|X:))9 x  sup  |Xy — X,
0<t<T t [t—s|<rn
For t € (0,T), we have
~ 1 —pn (t) 1 1 ﬁn(t> — Pt
1= pn(t) < splt —F———— <5s=>1-5< ———
Pn(t) < sn(t) =7 =P P 17

= 1—-p:<b,7 or b
From this relation, we see that
P[There exists t € [0,T) s.t. 1 — jp(t) < sp(t)]
by ®E[1/(1 = pr)®] + Plb,"(1 = 1/P) < b2'r)/]

|Xt_XS|
[t —s|1/3 2 bl

Plr, <T]

IN

+P|Csup(l + | X,)¢ Vsup
t s#t

Then by [A1], [A2-¢’, §] and Kolmogorov criterion( [39] Chapter I, Theorem (2.1)), we obtain

Plr, <T] < E[®)"(1—1/P)"'r)/*)*" ]+ 0(b,) = O(b,%).

From now on, we fix {s,} which satisfy [S-g,{] for some ¢ > 0 and £ > 0 unless otherwise indicated.
Next, we expand H,,. We denote

. 1In.J|

diag({[b} .. [}1. (P2r. 1), Lz{pf,J,Tn 7
a ” VI 1.

L= (30 ) = (rom), (s )
0 ) o v/ e Vi)

D
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Since S = D(&, ym, + L)D,
A 1 1
H, = _§Z*MZ —logdet D + 3 log det M

for M = (&, ym, + L)~'. Moreover, for G = {|I 0 .J|/\/|I||J|} 1, we obtain

I L=\l {p1.0.0. G} rs P VI {pr,0m Grotar IP< (1= s (D) G 12V [ G* |1?).

Lemma 1.2. For anyn € N and w € Q, all the eigenvalues of the symmetric matrices GG*,G*G are in [0, 1].
In particular, | G || V || G* [|< 1.

Proof. Fix w € Q. We denote by {\;}\~, the eigenvalues of GG*. Obviously, 0 < \; (1 <7 < 1,,). Let {W;}; be
a one-dimensional standard Wiener process on some probability space and

& G E -G
El:(é: & )7 22:((1:; £ )7

then ¥ is the covariance matrix of (W (I)/\/|1])1, (W (J)/+/]J])s) and

" &, —-GG* 0
222122 — ( ln 0 5 ) .

Since ¥; is non-negative definite, &, — GG* is also non-negative definite, and hence 1 — X; > 0 (1 < i < ,).
Therefore we conclude 0 < \; <1 (1 <i<1,).
In particular, we have | G* ||?=|| GG* ||= max; \; < 1. The same conclusion can be drawn for G*G and

Gl 0

Since || L ||< 1—s,(T) by Lemma 1.2, Z;:io(—l)pf/’ exists almost surely and this gives M = Z;O:O(—l)pf/p,
under [S-q, £]. Moreover, we obtain

=[| L||<1—sp(T
L k| = L [|[< 1= sn(T),

where {nk}Z"jlm" are the eigenvalues of L. Hence

ln+m ln+m, oo [e%s)
- n n n n —1)p+1pP —1)p+1 -
log det (€, 4m, + L) = > log(1+mi) = 3 [/ 3 Ltr(m)
k=1 k=1 p=1 p p=1 p
almost surely. Therefore
5 1 > . L (1P -
H, = —z*|Y (-1rL» Z—logdetD—i—fZ( ) tr(LP)
2 =0 2 = p
1N~ (L) —(LL*)PL Lo (CDP 7y
= —§Z ZO( C(LFLYLr (DAL Z —logdet D + 521 ) tr(LP) (1.5)
p= p=

almost surely.

1.3 The limit of H, and observation times

In this section, we investigate the asymptotic behavior of H,, and H, to apply Ibragimov-Has’minskii’s theory.
To obtain these estimates, we need some convergence conditions ([A3], [A3'] and [A3'-¢, ] given in Section 1.3.1)
for the observation times. Proposition 1.3 in Section 1.3.2 will give asymptotic properties of H,, and H,,.
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1.3.1 Convergence conditions of functions of the observation times

Since M is a functional of {pri si ;, }ij, we can write

MY {prigsn, ) M2(pre iz, })
M= ( (M2({pre i, ) M2{pregsn, }) )

Let A,, be defined as
A, (Ch,c?,c3.ch = tr(Mll(C4)Cl) + 2tr((M12(C4))*C3) + t1r(1\422(C4)62)7

where C',C2%,C3,C* are complex matrices of size I,, X L, m, X my,l, x m, and I, X m,, respectively, and the
absolute value of each element of C* is less than 1. Then we see Z* M Z can be rewritten as

Z*MZ = An({ZiZi ¥y A Zis1, Zirs, Y01 A Zi Zi g1, i P10 7 Ying)-

Let 1 denote an I,, X m,, matrix with all elements equal 1, {Vﬁ’i}neN,p€Z+,i:1’2 be random measures on [0,7)
which satisfy

vh([0,8) = b, Z((GG*)”)Hl{L(I)e[o,t)}a vE2([0,1) = b, Z((G*G)p)JJl{Lu)e[o,t)}7
I J
and
ENE) = {6ii L pinpozoy =y, E2(1) = {85 1isimp.201 5 =1

where § denotes the Kronecker delta function. Moreover, forpe Zy and i = 1,2, let

Wri(f,g) = W(f,g) / £(s)vri(ds) / £(s

for R-valued functions f, g on [0, 7] such that f is cAdlag and g is Lebesgue integrable. Note that b, 14,,(£1(¢),0,0,21) =
3200 0 22PUB ([0, 1)), by L AR(0,E2(1),0,21) = 0% ) 22PuB2([0,1)), U0 (Ljg4), 9) = byt 27 Lin(nyeiony—Jo 9(5)ds
and W°2(1y9.4),9) = b, ' 3 Lin(neo.nr — fo s)ds for z € C, |z| < 1 and t € (0, T}

To obtain convergence of H,,, we consider the following condition.

[A3] There exist o ({11, },)-measurable left-continuous processes ag(t) and co(t) such that fOT ap(t)dtv fo co(t)dt <
oo almost surely and
TN (10,4, a0) V82 (1047, c0) =P 0 as n — oo (1.6)

for any ¢ € (0,7]. Moreover, at least one of the following conditions holds true.

1. Thereexist € (0,1) and a o({II,, },)-measurable process a(z, t) such that a is continuous with respect
to z and left-continuous with respect to t, fOT a(z,t)dt < oo and b, 1A, (E1(t),0,0,21) —P fo z,8)ds
asn — oo for z € C, |z| <nand t € (0,T].

2. There exist € (0,1) and a o({II, },)-measurable process ¢(z, t) such that ¢ is continuous with respect
to z and left-continuous with respect to ¢, fOT c(z,t)dt < oo and b, 1 A,,(0,E%(¢),0, 21) —P fo z,8)ds
asm — oo for 2 € C,|z| <nand t € (0,T].

In particular, {l,,/b,}n and {m, /b, }n are tight under (1.6).

A, (EY(T),0,0,21) and A,(0,E%(T),0,21) appear in an asymptotically equivalent representation of H,,
when b(x, o) does not depend on x and ; = 0. Therefore convergence conditions for observation times like [A3]
1 and 2 are natural conditions to specify the limit of H,.

[A3'] There exist o ({IL, },,)-measurable left-continuous processes ag(t) and cy(t) such that fOT ag(t)dtV fo co(t)dt <
oo almost surely and (1.6) holds for any ¢ € (0,T]. Moreover, at least one of the following COHdlthIlS holds
true.

1. For any p € N, there exists a o ({I,, },,)-measurable left-continuous process a,(t) such that fo ap(t)dt <
oo a.s. and for any t € (0,77, \I/p’l(l[ojt), ap) =P 0 as n — oo.
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2. For any p € N, there exists a o({Il,, } , )-measurable left-continuous process ¢, (t) such that fo cp(t)dt <
0o a.s. and for any ¢ € (0,T], ¥P%(1)9 ), cp) —F 0 as n — oco.

As we will show later in Proposition 1.2, [A3] and [A3'] are equivalent under [A2].
Let ¢ > 2 and n € (0,1). For a € (0,1/2) and f : [0,7] — R, a—Holder continuous, we denote wq(f) =
SUPyzs | fr — fol /[t — 8|
[A3’-q,n] There exist ng € N, a € (0,1/2 — 1/q) and o({II, },)-measurable left-continuous processes {ao(t)},
{co(t)}, {ap(t)}pen such that fOT(co Voap)(t)dt € L) for p € Zy, E[(l, +my)?) < co for n € N and

sup E[(b7 T (f,a0)])?] v E[(b7 2% (f, co) )]

n>ngo

IN

c (sgp £l +wa(f)q> ,

max sup sup E[(0][07(f,a,)[)7/(1+ p)©
=12 peN n>ng

IN

c (sgp et wa(f)q)

for any a-Holder continuous function f on [0, 77].
For ¢ > 2 and n € (0,1), it can be shown that [A3'-¢, 7] implies [A3'].
The following lemma is easy to check.
Lemma 1.3. Let {ay}pen C C with 3772 | |ap| < 00 and {§] }n pen and {F,}nen be random variables satisfying
& =P 0 (n—o00) forp €N, {F,}nen are tight, and [§;]| < Fy,, (n,p € N). Then Z;O:l ap§, —P 0 asn — oco.
The equivalence of [43] 1 and [A43] 2 is established by our next lemma.

Lemma 1.4. Assume [A2] and that there exist stochastic processes ag(t) and co(t) such that fo ag(t)dt Vv

fo co(t)dt < oo a.s. and (1.6) holds for t € (0,T]). Then vP1([0,t)) — v22([0,)) =P 0 as n — oo for
t €0, T] p>1and

1A, (EY(1),0,0,21) — b, ' A,(0,£%(1),0,21) — /0 (ap — co)(s)ds

asn— oo forz € C,|z| <1 andte0,T].
In particular, [A3] 1 <= [A3] 2, [A3] 1 <= [A3'] 2 and a, = ¢, dt X P-a.e. (t,w) for p > 1 under the
assumptions above.
Proof. Since || G | V || G* ||< 1 by Lemma 1.2, we have |((GG*)?)rp| <1, |Grj| < 1forany I,I',J and p € Z.
Then since G%; # 0 implies I N J # (), we obtain
it (0,6) — v 2([0,0)] = by?

n

> ZZ (GG )P )10 Gr Gy

L;L(I)e[o,t) I’

- Z ZZG NirGry

JiL(D)eloe) I I

26! > 170

t—r, <L(I)<t+r,

IN

as n — oo for p > 1 by [A2] and (1.6).
Since [v21([0,t)) — v22([0,1))| < b, (I, + my), the desired conclusions are given by tightness of {b,1(l,, +
My ) }n and Lemma 1.3. O

Proposition 1.2. [A3] and [A3'] are equivalent under [A2]. Moreover, under [A2] and [A3], a(p,t) = > ap(t)p*",
c(pst) = 3020 cp(t)p® and

t
bt AL (22 E (1), y2E2 (L), myp. £ (1) G, p1) —P / Az, y, p, px, s)ds
0
asn — oo for v,y € R p,p. € (—1,1),t € (0,T], where

A(LE, Yy Py P t) = xZa(pa t) + y2C(p, t) - 2:By(a(p, t) - ao(t))p*/pl{piO}
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The convergent sequence which appears in Proposition 1.2 is asymptotically equivalent representation of
b, Z*MZ if iy = 0 and b(x, o) does not depend on x. Therefore, the convergence result in Proposition 1.2 is
the convergence result of b, ' Z* M Z with ignoring the structure of diffusion coefficients (b, b7).

1.3.2 The limit of H,

We discuss the asymptotic behavior of H,, under [A3], [A3'-¢, 7).
First, we assume one more condition. Let Z be a set of intervals defined by

T = {1 UL O[T T i1 <k <mp, 1 < j <mb}.
Let O = I* for 1 < k <, 0o = J!In for I, < k <1, + m,, and
ep,k = U{Kgp;Kl,“' ,KQP el, K, ﬂ907k 75 (Z),Kj ﬂKj_l 7é 0 (1 <j< 2p)}

for p € Nand 1 < k <1, +m,. Moreover, let ®,; = >, |0px|", Pp,p, = >k ko |Op1 s N Opy iy | for i € {1,2}
and p,p1,p2 € Zy. For ¢ > 2 and § > 1, we consider the following conditions.

[A4] There exists ' > 1 such that

_ = (@ )2 1 o Doy 432p+3
p=1 v p2 ( 2p+2,1 i }V {b 1 p1+/ ,2p2+ L ry
CREDN -4 N D S et

p=0 p1,p2=0
as n — o0o.
[A4'q56]
1.
. g = (Dopta 1)‘1]
lim E|(b,2 V1] ——= | =0.
i )2 1y
2. .
) e Doy 1+3.2p0+3 2
lim E|(b;" P1+3,2p = 0.
n—yoo K Y (p1 +1)%(p2 +1)°

p1,p2=0

We can see that [A4-q, ¢] implies [A4] for any ¢ > 2 and § > 1 by Jensen’s inequality. Moreover, we can use the
following condition instead of [A4].

[A4"] There exist positive constants 01, d2,d3 such that (391 + 2d3) V (01 + J2) < 1 and the following two
conditions hold:

1. lim, 00 P[r, > b 101 = 0.

2.
Siz _ G
lim bfl sup P{ln > j1V jo and g < bnl‘s?’} = 0,
MO 1 j2 €N, |1 —jz | 2652 72 = 1l
TJ2 — T
lim b7, sup P|:mn > j1V j2 and ! < bnl‘se’} = 0.
MO €N, |1 —ja >3 2 = i

Lemma 1.5. Assume [A4'] and that {(l, + my)/bp }nen is tight. Then [A4] holds.

Proof. Let ¢(k) denote minimal k¥’ > [,, which satisfy I* N JF =l £ for 1 < k <y,

L |52 =51 _ 15 \C s 772 =T _ 15"
up 5, = {ln > Jj1Vj2 and Tl <b, % ﬂ mp > j1V j2 and =l <b, 7%
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for 71,72 € N and
Yy —14+6 n
Un = {10 < by " F 00 G en lamii 2082 Ui g
Then on U, for k1 < Iy, I, < ko < l,+m, and p1, ps € Z, which satisfy |¢(k1)—ko| > b2 and Opy ky NOpy ey # 0,
we have
[G(k1) = kalby, 7% < T8 — TH2| < (21 + 2ps + 2)r < (2p1 + 2p2 + 2)b, 00
Therefore |p(k1) — ka|b;;217% < 2(py + 1)(pa2 + 1).
Then by using the relation |0, x, N Op, &, | < {(4p1 + 1) A (4p2 + 1)}y, we obtain
i Z |9P1,k1 n 0p2,’$2|
(p1+1)°(p2 +1)°

P1,p2=0 k1 <lpn,k2>1n

C Z Z Z {(4p1 + 1) A (4po + 1)}b; 1H0 . 652b1+51}
(p1 + 1)3(pa + 1)3|p(k1) — ko |2by 201 —2% n On

IN

FLStn ™ ko>l | (k) —ka | 202 P12

< Cp e 7 ( 2 WH)
1) — h2

Risln: ® ky> 1, ¢ (k1) —ka|>by2
< Clnb;1+(361+263)v(61+62)

on U,. Similar arguments for other combinations of k1 and ko yield

oo

(i)?p1+3 2p2+3 —14(3814+26 81406 Y
E . < C(l, +mp)b,, T(B0H+20)V(01+02) o U,.
(p1 +1)%(p2 +1)° ( )

p1,p2=0

On the other hand, for any e > 0 there exists a positive constant K such that P[(l,, +m,)/b, > K] < ¢ for any
n € N by tightness of {(l,, + my)/bn}n. Then we obtain limsup,,_, . PUS] < e by [A4'] and the inequality
PUC) < Plrp > b1 + P[(L, +myp) /by > K] + > PlUL ;,) ]
L<j1 g2 <[Kbn].|j2 =1 | 2b;2

Since € > 0 is arbitrary, we have
o0

_ (i)Q —+3,2p2+3
bnl P1t3,2p2 P Q.
o Tt e 1T

It is easier to prove the convergence about ®g,. 5 1. O

Let Bi(z,0) = |bi(z, 0.)|/|b (2, 0)| (i = 1,2),

O(,D, t) _ Z aP(t)pr _ Z CP(t)pr’
p=1

= p

and
1 1
hi®(o) = _§A(BtlaBt27pt7pt,*7t) — aglog |by| — colog |b7 | + 5C (e, 1) (1.7)
fort € 0,7],p € (-1,1).
Proposition 1.3. 1. Let 0 <wv < 3. Assume [Al] — [A3]. Then

sup

T
b0V Hy (o) — / 6§hf°(a)dt‘ By
gEN 0

as n — Q.

2. Let0<v<3,qg€2N,¢g>2Vny,d>1,£>0,n€(0,1) and {sn}nen be stochastic processes. Assume
[A1], [A2], [A3'-q, ], [A4-(2q), 0], [S-((2v + 2[0] + 12)q), €] for {s,}, and that sup,, E[b;%4(1, +m,,)?] < co.

Then
(sup bzl
gEA

T q
sup E b;lagf[n(o;sn)—/ ('“)},’hfo(a)dtD ] < 00
n 0

for' <n A (1/2) A (§/(29)).



20 CHAPTER 1. QLA FOR NONSYNCHRONOUSLY OBSERVED DIFFUSION PROCESSES

1.4 Separation of the limit of H,

We deal with Condition [H] about separation of the limit of H,, which is necessary to apply Ibragimov-
Has’'minskii’s theory. When the sampling scheme is synchronous and equi-spaced : S* = T% = [b,] 4T (0 <
i < [bn]), Uchida and Yoshida [51] discussed tractable sufficient conditions for Condition [HO0] of separation. In
this section, we will confirm that [H0] implies [H| under certain conditions.

Under [A1] — [A3], we define V,,(0;0.) = b, (H,(0) — Hy(0.)), and Y(0;0.) denotes the probability limit
of Y, (0;04). By Proposition 1.3, we obtain Y(c;0,) = fOT(htoo(a) — h$°(0y))dt.

Moreover, the equation (1.7) can be rewritten as

1 1 *
We0) = 5B a0+ Alpe) — (B2 (o + Alpo) + BB Al)
PtA
—a010g|b%|fcolog|bf|+/0 g))dﬂa (1.8)

where A(p) = A(p,t) = alp,t) — ap(t) = c(p,t) — co(t) and we regard A(p)/p = 0 when p = 0. Since
B, =B, =1,

1 1
h*(o.) = —=ap— sco —agloglb; .| — colog|b; |+
0

A,
2 2 P '

Therefore for y,(0) = h{°(0) — h{°(0y), it follows that

1 1
yi(o) = —5(33)2(% +A) — 5(33)2(00 +A) + B; B} A

Pro G0 Co
T2 0

Pt A
+aplog B} + colog B + / —dp
Pt *

1 Pt A
- _§(a0+A)(B§—B§)2+a0+aologB;B§+/ “dp
Pt,*
Co — o 212 212 102
+ (U= (BD)? + log(B})?) + BB (Apr/pe — A~ ao)

1 Pe A
= —§(CO+A)(Bt1 — B}? 4+ ¢o + colog B} B? +/ —dp
Pt,*

ap — Co
2

Let F(z) =1—x+logz (z > 0).

+ (1= (By)? +1og(B;)?) + By By (Ape./pt — A = co). (1.9)

Lemma 1.6. Let e; € (0,e7 Y], g > 1. Then

—log(1/e1)(z —1)* < F(z) < —(z — 1)*/4e3,
for x € [e1,1 + eq].
Proof. For 0 < x <1+ €3, since —1/e5 < (z — 1)/ea < 1, it follows that

F(z) < —((z —1)>A1)/4 < —(z — 1)*/4é3.

On the other hand, for x > €1, let f(x) = F(z) +1log(1/e1)(x —1)? then since f'(z) = (x —1)(2log(1/€1) — 1/x),

we have f(z) > f(1) A f(e1) > 0. O
Let
p
[tz p,p) = a0+a010g33+/ A(p")/p'dp’ + 2(Aps/p — A — ao),
I
p
faltiapps) = ateologat [ AWy + (Ao fp— A=),

P
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R = max max max sup <|8§:8;bp|\/
0<i<40<7<31<p=<25¢cp 1, €[0,T] (1<k<nz)

1 s
aﬁazw\axa k_l,cf))

V max sup |bi|V  max sup [by],
1<i<34¢(0,7) 25is3,1<7<3 ¢efo, 1)

and C; = (1 — p%)?/(12R®). Then R > 1 and E[RY] < oo for any ¢ > 0 under [A1l].
Lemma 1.7. Assume [Al] — [A3]. Then

(frV )t B{BY, prs pr,s) < —Ci {ar(t)(pe — pr,)? + (a0 A co) (8)(B{ BY — 1)*}
for dt x P-a.e. (t,w) € [0,T] x Q.

We write )y for )V defined by using the same processes X,Y and the synchronous, equi-spaced sampling
St=T" =T} = [b,) YT (0 <i<[b,),1 <k <ny). Let

Moreover, we consider the following conditions.
[H] For every L > 0, there exists ¢z, > 0 such that for all » > 0, P[x < r~!] <cp/rl.
[HO] For every L > 0, there exists ¢z, > 0 such that for all r > 0, P[xo < r~ 1] <cp/rk.
[H'] x > 0 almost surely.
Obviously, [H] implies [H'].
Lemma 1.8. Assume [Al]. Then there exists a positive random variable R’ which does not depend on o, 0.,

such that E[(R')?] < oo for any ¢ > 0 and

T
Yo(oi00) > —R' / (B}~ B2 + (BIB? — 1) + (py — pr.)? ) dt
0

for any 0,0, € A.

The following proposition ensures that to prove [H], it is enough to prove [H0] which is the condition of
separation for synchronous, equi-spaced observations.

Proposition 1.4. Assume [Al] — [A3]. Then there exists a positive random variable R which do not depend
on 0,0, such that E[R™9] < oo for any g > 1 and

Y(oi04) < —R/O {(ao N eo){(By — BY)? + (B Bf —1)*} + a1(py — pr.+)* } dt

for 0,0, € A. In particular, if E[(essinf,cpo rjai(t))™9] < oo for any q >0, [HO] implies [H].

Proof. In the equation (1.9), by using the second representation if ay < ¢y and using the third representation if
ag > cp, we obtain

1
yi(0) < =5 (a0 Aco+ A)(B; = BY)? + (f1V f2)(t: Bi BY, pr, pr.e).
By Lemma 1.7, we have
1
yi(o) < —5(% A co)(Bf — B})? = Crai(pi — pre)? — Cilag Aco) (B Bf —1)°

for dt x P-a.e. (t,w), where C; = (1 — p%)?/(12R8). Therefore by integrating with respect to t,

T
Y(oi0.) < —R / (a0 A co){(BY — B2)? + (BLB2 — 1%} + as(py — pu.)?) d,
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where R = C;. In particular, let FJ(ess mftG 0,ra1(t ) 1] < oo for any ¢ > 0 and [HO] holds. We can see
ag A cg > ay for dt x P-ae. (t,w) since v+¢([0,t)) < v%([0,¢)) for any ¢t € (0,7] and i = 1,2. Therefore by
Lemma 1.8 we have

T
V(o;0.) < —’Ressinftal(t)/ ((Bt1 — B)? 4+ (B{B} —1)* + (p;: — pt,*)Q) dt
0
< R(R) lessinfiai(t)Vo(o;0.)

almost surely, where R’ is defined in Lemma 1.8. Hence x > R(R’) lessinf;ai(t)xo a.s. and for any L > 0,
there exists a constant ¢y, > 0 such that

Plx <r7' < Plxo <r Y2+ P[R(R') essinf;a;(t) < r_1/2]
coro 1 1 . _1\2L
< I +T—LE {(R’R (essinfyaq(t)) ™) } < T—L,
where ¢, o denotes the coefficient of 7—2L in [H0]. This gives [H]. O

Remark 1.2. In the case of nonsynchronous observations, under [Al] and [A3], we can prove an inequality

T
Y(oi0.) > —R' /O ((ao V co){(Bi — Bf)?> + (B{ B} = 1)’} + a1(pt — pr.+)?) dt,

which corresponds to Lemma 1.8.

Remark 1.3. By Proposition 1.4, it follows that
T
Yoloion) < <R [ {(BE= B+ (BLBE ~ 1P+ (o1 = pr)?.
0

On the other hand, we can see that there exists a positive random variable R such that E[’Iéq] < 0o for any
q >0 and 5
|(B0")¢ — (00" )¢+ |* < R{(B{ — BY)* + (B, B = 1)* + (pr — pr,+)*}
<

for any t € [0,T),0,0. € A by using the inequality (x — 1)*> + (y — 1)? < (z — y)? + 2(xy — 1)? (z,y > 0).

Therefore [HO] holds if there exists a constant € > 0 such that
|(0b%) (2, 01) = (%) (=, 02)| = €|or — o2

for any x € R™, 01,09 € A. Weaker sufficient conditions for [HO] can be found in Uchida and Yoshida [51].

1.5 Asymptotic properties of the quasi-maximum-likelihood estima-
tor and the Bayes type estimator

In this section, we investigate consistency and asymptotic mixed normality of the quasi-maximum-likelihood
estimator and the Bayes type estimator as main results.

Let the quasi-maximum likelihood estimator &, of the parameter o, be ¢ € A which maximizes H,. If
maximizing points are not unique, we select so that &,, is measurable.

Theorem 1.1. Assume [Al] — [A3],[H']. Then &, = 0. asn — oo.

Proof. By Proposition 1.3, we have sup, |V, (0;0.) — Y(0;04)] =P 0 as n — co. On the other hand, by [H'],
for any €, > 0, there exists n > 0 such that P[xy < n] <e. Since V,,(6,;04) > 0, it follows that

Pll6n — 0u| > 8] < Px < 1] + P[Y(5n;0.) < —1d%] < € + Plsup |V (o3 0.) — V(0;0.)| > nd?).

Therefore there exists ng € N such that P[|6,, — 0.] > §] < 2¢ if n > nyg. O
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Let {s,}nen be stochastic processes which satisfy [S],
T
r— - / O2ho° (o),
0

Un(0y) = {u € R0, +bn 2u € A}, Viu(r,00) = {Ju| > r}nUn(0,), and 2, (u, o) = exp(Hn (02 b0 u; 50) —

H,(04; 8p)) for u € Uy,(0).

Proposition 1.5. (polynomial type large deviation inequalities) Let L > 0 and § € (0,1/2). Assume for any
q > 0 there exists ¢’ € 2N,q' > q and §’ > 1 such that [Al], [A2], [A3'-¢',¢], [Ad-¢', 0], [H] and [S-¢',2q'6] hold
for {sn}. Then there exists Cr, > 0 such that

C
P sup  Z,(u,0.) > e "2 < —f
UEV, (r,o4) r
for anyn € N and r > 0.

Let N be an nj-dimensional standard normal random variable which is defined on an extension of (2, F, P)
and independent of F. We use the same notation F for expectations on the extension of (Q, F, P).

Theorem 1.2. 1. Assume [Al] — [A4],[H']. Then b,l/Q(&n —0,) =»5ET7Y2N asn — 0.

2. Let § € (0,1/2). Assume for any q > 0, there exists ¢ € 2N,q' > q and &' > 1 such that [Al], [A2-¢', ],
[A3'-¢, ], [Ad-¢',d"], [H] hold. Then E[Y’f(b,l/Q(&n —0.))] = E[Yf(T-Y2N)] as n — oo for any
continuous function f of at most polynomial growth and any bounded random variable Y’ on (Q, F).

We also consider the Bayes type estimator &,, for a prior density 7 : A — R, defined as

Gn = ( /A exp(Hn(J))w(a)da>1 /A o exp(Hy (0))m(0)do. (1.10)

Theorem 1.3. Let 6 € (0,1/2). Assume for any q > 0 there exists ¢ € 2N,¢' > ¢q and ¢’ > 1 such

that [Al], [A2-¢',0], [A3'-¢,08], [Ad-¢',8'], [H] hold, and that the prior density m is continuous and 0 <

inf, (o) <sup, m(c) < co. Then bi/g(&n —0,) =L T7V2N asn — co. Moreover, E[Y’f(b%m(&n —0.))] =

E[Y'f(T"Y2N)] as n — oo for any continuous function f of at most polynomial growth and any bounded random
variable Y' on (Q, F).

1.6 Sufficient conditions for the conditions about the observation
times

In this section, we will introduce tractable sufficient conditions for [A2-q, 6], [43'-¢,n], [A4-¢, 0], and the estimate
with respect to essinf;a; in Proposition 1.4.

e L

observations.

[B1-g] There exists ng € N such that

sup  max sup FE [( -1 — Np)T| < oo
n>ng 18122y -1 "

[B2-g] There exists ng € N such that

limsup sup max sup  u?P[N/ 1 — N{=0]<oo.
u—00 n>no 1SISNa42 oy oyt o
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For example, let X = Y, {b,} be a positive integer valued sequence, {N}!}, {N2} be two independent
homogeneous Poisson processes with positive intensities A1, A2 respectively, and stochastic processes { N} }, {N?}
satisfy N} = Ng +» (i =1,2). Then [Bl-g] obviously holds for any ¢ > 0. Moreover, [B2-¢g| holds for any ¢ > 0
since

=N/ =0] = lim ule~MM2)u — g,

lim u? sup su su P
p sup p [Ny o Jim.

U0 =12 neNg<t<T—uby?

We will investigate sufficient conditions of [A3'-¢,n]. First, we denote t;, = Tk/[b,] (0 < k < [by]), GTy =
o(Nj = Nist; <s<t<tyi=12) (0<j<k<[b]),af =1/4and

ap =0V sup sup sup |P(AnB)— P(A)P(B)| (1.11)
1<j1,52<[bn]—1,j2—j1 >k AEGE ;, BGg};T[bn]

for k € N.
Let (P" be measures which satisfy ¢2([s,t)) = E[vE([s,t))]. Moreover, for ng € N, ¢ > 0, a Lebesgue
integrable function ¢ : [0,7] — R, and a continuous function f : [0,7] — R, we define

/fth’dt /ftgtdt‘

Proposition 1.6. Let g € 2N, ¢ > 2, ¢ € (0,1), 6 > 0 and g € (0,1/2 —1/q). Assume that [B1-(q(1 + 9))],
[B2-(ge)] hold, E[(N} + N2)9] < co for n € N and there exists ng € N such that

TP (fig) = sup b

no,€
’ n>ng

o0

S = sup Z(k+ )72 @=D/ogn < o0, (1.12)
n2no p—g

Moreover, assume that there exist €’ > 0, C' > 0, and left-continuous deterministic functions ao(t), co(t), ap(t) (p €
N) such that fo apy(t)dt < oo (p € Zy), fo co(t)dt < oo and

no ¢ (f’ ao) no 2 (.fa CO) V max sup M

=12 ,en  (p+1)C < C(Sltlp |fel +ws(f)) (1.13)

for any B-Holder continuous function f :[0,T] — R. Then [A3'-q,n] holds for n = ¢ A B A (de/(2(1 + § — de)))
with o in [A3'-q,n] equal to f5.

For example, let {N]};>0 be a point process where the distribution of (N, fity Ntiﬂk 1)k , does not depend
ont>0fori=1,2, M eNand 0 <ty <t; <---<tp. Moreover, let {N}}; satisfy N} = N[b Jt for t € [0,T7,
i =1,2 and n € N. Then the relation (1.13) holds if [B1-2] and [B2-¢] hold for some ¢ € (0,2]. In this case,
we obtain a, = T~ ! lim,, e EW21([0,T))], co = T~ limy, 00 E[22([0,T))], and € = (¢/4) A B. In particular,
{ap}pez. ,co are constants.

For general {N;}, the following propositions are sufficient conditions for [A4-q, §],[A2-¢, ] and the estimate
of essinfia (¢) in Proposition 1.4.

Proposition 1.7. Let ¢ € 2N, ¢ > 2, pi,ph > 1, 1/p} +1/p5 = 1. Assume [B1-(p}q)] and [B2-(p5(g + 2))].

1. Then there exists ng € N such that sup,,s,, E[(®p1)?] < C(p+ 1)**" for any p € Zy. In particular,
[A4-¢', (1 + 3/4¢")] 1 holds for any ¢’ € [2,q).

2. Then there exists ng € N such that

sup E[((i)m,m)%] <C(p1+ 1)%+1(p2 + 1)%+1

n>ngo
for p1,p2 € Z. In particular, [A4-q, 3] 2 holds.

Proposition 1.8. Let g € N and we assume [B2-(q+1)]. Then there exists ng € N such that sup,, ., E [bd~1ri] <
00.
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Proposition 1.9. Assume there exists ny € N and g > 0 such that [A3'] and [B2-q] hold, a1(t) does not depend
ont, {N, t+ (]~ 1T — N{Yo<t<T—[bp] -1 Tn>na,i=1,2 8 tight and a-mizing coefficients {j! }1, defined by (1.11) satisfy
SUD,,>p, Y oreq kall < co. Then there exists a constant & > 0 such that a; > & almost surely.

Finally, we state a corollary of main theorems.

We assume {N;};>¢ is an exponential a-mixing point process where E[(N{ + N?)9] < oo for ¢ > 0 and the
distribution of (N}, —N{,, 1),c 1 does not dependont > 0fori=1,2, M € Nand 0 <tg <t; <--- <ty for
1 <i < 2. Let {N/}} satisfy N} an]t for t € [0,T], i =1,2 and n € N, &, be the quasi-maximum-likelihood
estimator defined by H,, 7 : A — R, be a continuous function and &,, be defined by (1.10).

Corollary 1.1. Assume [Al],[HO], [Bl-q|, [B2-q] for any q > 2.
1. Then 6, =P o, b * (60 — 02) 55 T=YV2N and E[Y'f(b/* (6 — 04))] = E[Y'f(T~Y2N)] as n — oo for

any continuous function f of at most polynomial growth and any bounded random variable Y' on (Q, F).
2. Assume that 0 < inf, w(0) < sup,7(o) < oo. Then &, —F o, b}/z(&n —0,) =L T7Y2N and

E[Y'f(by ba/? (65 — 04))] — E[Y'f(TY2N)] as n — oo for any continuous function f of at most polynomial
growth and any bounded random variable Y' on (Q, F).

Example 1.1. We consider a simple model with deterministic diffusion coefficients:

dv;! — o dW}
dY;Q = Ugthl + O'Qde
(Yo, Y$) = (0,0)

where e >0, R' > ¢ and 0 = (01,09,03) € A = (e, ') x (¢, ") x (~R', R'). Let {N}},{N2} be two independent
homogeneous Poisson processes with positive intensities A1, Ay Tespectively and point processes {N!},{N?} which
generate observations satisfy N, = N, (i = 1,2).

Then we can easily check [Al],[B1-q|, [B2-q] hold for any q > 2. Since (z +y)? > 22/2 —y? for x,y € R, we
have

. L ) €2 o 4 )
bb* (o) — bb*(5)[> > (0 —61)° + ()2 (0103 — 5153)° + W(Ug +03 — 055 —53)°
_ €2 5% (05 — 03)> _
> 462(01 - 01)2 + (R/)z{ 1( 2 _032)(01 _01)2}
e (a% _55)2 2 212 e’ 2
_ — & > log—&
+16(R/)4{ 2 (03 03) } — 8(R/)4|U O"

for 0,6 € A. Then by Remark 1.3, we obtain [HO].
H,, can be written as

Hy(o) = _1 YYD\ (YE() 0103G -
n\7) = awz |J] 0'10'3G* (03 +03)Em,
YH(I?) Y2(J)\* o3& o103G
- 71 det [ 71t N :
X (( /|Iz| )l ( /|JJ| )J) 08 ( 0103G* (O’% +0’§)€mn )

By calculating o which mazimizes H,,, we obtain the quasi-mazimum likelihood estimator &, = (61,n, 2.1, 03,n)-
By Corollary 1.1, we have 6, —P 0., \/n(6, — i) =% N(0,I' 1) as n — oo, where 0, = (01 .4,02.4,03.) is the

true value. In this case, p = py(0.) can be written as p = 03../1/03 , + 03 ., {ap}o2o, {cp}p2o in [A3] become
constants and a,c in [A3] can be written as a(p') —ag = c(p') —co = A(p') = 2202, ap x (p')*P for p' € (=1,1).
If p#0,T and T~ can be calculated by using Proposition 1.10 later as

a0+a 0 __ A
of . 01,503, %
r—r| o 2c(1—p*)2+0, Ap(1=p*)*  2¢p>(1—p°) =0, Ap(1—p*)?
- U;* 02,403 % )
A 2cp®(1—p*) =9, Ap(1—p*)®  —A42cp* +0, Ap(1—p*)?

01,03, % 02, %03 x 03*
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Table 1.1: Sample means of estimators for 10,000 independent simulated sample paths. T =1, (A1, A2) = (1,1).
The left table represents the result for (o1,02,03) = (1,1,0.5) and the right table represents the result for
(01,02,03) = (0.5,2,1). Sample standard deviations are given in parentheses.

n 50 100 500 n 50 100 500
true value true value
G1,n 1 0.994 0.998 0.999 G1,n 0.5 0.497 0.499 0.499
(0.102) | (0.070) | (0.031) (0.050) | (0.035) | (0.015)
Fan 1 0.968 0.983 0.996 Gan 2 1.936 1.968 1.995
(0.129) | (0.091) | (0.040) (0.259) | (0.181) | (0.079)
G3.n 0.5 0.499 0.502 0.5 F3.n 1 0.986 0.996 0.997
(0.224) | (0.154) | (0.067) (0.449) | (0.307) | (0.135)
51,0030 T 0.5 0.5 0.503 0.5 51,0030 T 0.5 0.495 0.499 0.498
(0.238) | (0.165) | (0.071) (0.239) | (0.164) | (0.072)
HY, 0.5 0.501 0.504 0.5 HY, 0.5 0.498 0.499 0.498
(0.336) | (0.236) | (0.106) (0.335) | (0.237) | (0.108)
Vv/n 0.228 0.161 0.072 Vv/n 0.228 0.161 0.072
Vvo/n 0.339 0.239 0.107 Vvo/n 0.339 0.239 0.107
= L diag({o1,«, 02,4, 03« })Pdiag({01,«, 02,4, 03,4 }),
T{4acA+ 20, Ap(apc + coa)} ’ ’ ’ R
where
L2
—2cA+ (co + )9, Ap  A{—FL5 +0,Ap} A(2¢ + 9,Ap)
_ 2¢p? —2aA+(ao+a){2cp*+09,Ap(1—p°)> 2¢p?
P = A{_ 1?:;2 + apAp} aA+(ao a)({l_ZZZ)z pAp(1=p7) } (ao + a){_ 13’;2 + 3pAp}
A(2¢+ 0,.Ap) (ao + a){— 123’;2 + 0,Ap} (ag + a)(2¢ + 9,Ap)

and p' = p is substituted for a,c, A, 0,A.
We can see the estimator 61,,03,T for the cross variation (YLY2)p = 01,+03: 1" also has consistency and

V(61063,T — (Y1, Y2)7) =4 N(0,v)
as n — oo by using the delta method, where

5 2a(p)c(p) + 0pA(p)plalp) + c(p))
> —2a(p)e(p)A(p) + 0,A(p)plaoc(p) + coalp))’

v = Toi*a

By using the result in Hayashi and Yoshida [18], we can calculate the asymptotic variance of estimation
error of the Hayashi- Yoshida estimator HY ,,. In the settings in this example, we obtain

VA(HY, — (Y1 Y?)7) =% N(0,v)
as n — 0o, where
2 2 2
w=Too2 (14 <+> }
’ e {( ) A1 A2 AL+ A2
We also simulate 6y,,61,,03,T,HY,, for some values of parameters. Table 1.1 represents the results. We
can see that each estimators work well and sample standard deviation of 61,63 T is about two-thirds of that of

HY,,. The lowest two rows represent numerical calculation results of asymptotic standard deviation of estimators
and we can find these values are close to sample standard deviation of estimators.

1.7 Proofs

1.7.1 Proof of Proposition 1.2

Proof of Proposition 1.2.
[A3'] = [A3]:
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Since v21([0,1)) < b, {b; 0 bnen is tight, fo ap(s)ds < fo ao(s)ds and v21([0,t)) converges to fo ap(s)ds
in probability by [A3'] for p € Z, we have } 72 | 2°P fo ap(s)ds < oo and

bt A, (E1(1),0,0,21) ZZ2PVP1 ([0,¢)) —>P2z2p/

for any ¢t € (0,7] and z € C,|z| < 1 by Lemma 1.3.

[A3] = [A3]:
Fix ¢t € (0,T). Let {f.} be functions on {z € C;|z| < 1} satisfying

fu(2) =0, A, (E1(t),0,0, 21) Zzzpup’ [0,8))

Then since v?1([0,t)) < b,'l,, the power series in the right-hand side converges absolutely on {|z| < 1}.
Consequently, f, is a holomorphic function. Then we have

1 fn(2)
v2L([0 dz. 1.14
©O0=5 [ &A (1.14)

2

Let f(z fo z,s8)ds. Since

L, 1 91,
[ (2)] <

<3 1= @32 b 119

on {|z| < 2/3}, {sup,, <23 |fn(2)|} are tight. Moreover, since f,(2) —P f(z) (n — o) for z € C,|z| < 7,

Sup|, <2 | f(2)] < (9/5) fo ao(t)dt < oo, almost surely. Therefore {supy, <, 2 |fn(2) — f(2)[} are also tight.
Let I' : |z| = 2/3. For any z1,22 € {\z| < 1/2}, the Cauchy integral formula gives

S5 )= e

2
< e —2o] 2w 2 6% sup |fn(z)|§Cb,jlln|z1—zz|.
3 |21<2/3

2r|fu(z1) = fu(22)] =

By the convergence f,,(z) =P f(z) (n — o) for z € C,|z| < 1, we obtain

T
|f(21) = f(z2)] < C\z1—22|/0 ap(s)ds a.s.

for 21,22 € {2;]2] <n/2}. Then for any € > 0, tightness of {b,,'l,} gives

Jim sup P sup [(fn = F)(z1) = (fa = [)(22)| > €| = 0.

n z1,22€{]2|<n/2},|z1 — 22| <0’

Then by the tightness of {sup|. <, /2 [ fn(2) = f(2)|}» and tightness criterion in C' space in Billingsley [8] which can
be extended to the one in C({|z| < n/2}), {fn — f}n is tight in C({|z| < n/2}). Therefore, since f,,(z) =P f(z)
as n — 0o, we see that {f, — f} converge in probability to 0 in C'({|z| < n/2}). Therefore by (1.14), we have

ppl 0,t p L /(z) dz
P1((0,1) /|

270 |z j=p 3 2201

as n — oo for p > 1.
By the equation f(z fo z,s)ds and Fubini’s theorem, there exists a,(s) such that fo ap(s)ds < oo and
vPL([0,t)) =P fo ap(s )ds as n — oo. We thus get [A3].
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Moreover, under [A2] and [A3], the above proof gives the relations between a,c and {a,},{c,} in the
statement. The rest of the proof is easy since

byt An(2?E (1), y?E2 (1), 7yp.E' (1) G, p1)

Zp%{x v21([0,6)) + y2rB2([0,1)) — 2wyp. (0, 8))).

1.7.2 Proof of Proposition 1.3

To prove Proposition 1.3, we use some Lemmas.

Lemma 1.9. Let g € N, M € NU{oo}, (Y, F', P’) be a probability space, {Fj}jl‘/il be random variables, and G
be a sub o-field of F'.

1. Then E'[| Z;Vil F|6] < (Zj\il E’[|Fj|q|g]%)q, where E' denotes expectation with respect to P'.
2. We assume q € 2N and {Z?Zl F;Yo<k<m ts martingale with respect to some filtration. Then there exists
a constant Cy > 0 which depends only q, such that E'[| Z;Vil | < C’q(Zj]Vil E’[|Fj|q]§)%.

Proof. We expand the summation and use Holder’s inequality.

M M M
1 1
Y B16 < X FlE.Fld< > EIF6) . E(F, |6
Jj=1 Jiseejq=1 Jiseejq=1
M 1\ 9
< (X EIEMat)
j=1
For 2., we use the Burkholder-Davis-Gundy inequality and apply 1. for G = {0, Q'}. O

Lemma 1.10. Let {G,},ecz, be a sequence of positive numbers, a € N,b,r,s € Z, and p € [0,1). Then there
exists a constant C' > 0 which depends only on a,b,r,s such that

[e'¢] o) 1
a(p— b\/O _ (s+'+1) :
+1)°G, < C(1 .

D (p+1)° ( (Z TFG )

p=0 p=0

Proof. By the Cauchy-Schwarz inequality, we have

l %) G2 %
a(p—b)Vv0 1 G < 2a(p—b)VO0 1 2s+r> ( > )
Zp (p+1)° <ZP (p+1) Z p+1)

p=0 p=0 p=

Then the conclusion follows since

(2s +1)!

0o (&9}
2a(p—b)V0 2s+r 2a. 2str
2L IS CH Y P+ DM S O O e

p=0 p=0

Lemma 1.11. Let (', F', P’) be probability space and {Gp }neny C F' be sub o-fields.
1. Let {X|}nen C LY (). Assume E'[|X]]|Gn] =P 0 (n — 00). Then X!, —P 0 (n — o).

2. Let dy,do €N, p>dy, N CR% be a bounded open set and X!, : ' — CY(A';R%) be random variables
(n € N). Assume that A’ satisfies Sobolev’s inequality, {sup ¢, | X, (0)P V 05X, (0)|P nen C LY(Q') and
Sup, cqiinar B (|06 X, (0)[P V |X], (0)|P|Gn] =P 0 as n — co. Then sup,cps |X;,(0)] =P 0 as n — oco.
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Proof. 1. For any €,0 > 0, there exists N € N such that P'[E'[|X]||Gn] > €§/2] < €/2 for n > N. Therefore,
for n > N, we have

P[|XL|>68] < P[E[XL|G.] > e6/2] + P'[|X0| > 6, E'[| XL]|Gn] < €5/2]
1
< 5+ EIXLEIXG] < <5/
1
= S BFIXIG), EIXIG] < /2] < c

2. First, by Sobolev’s inequality, we have

p
| i)
geN’

Moreover, for v = 0,1 and A € G, it follows that

gn] < CE’[ 0, X/, |Pdo
A/

gn] + CE' [/ | X/ |Pdo
A/

gn] .

EU |8§X,’L|pda7A] :/ BB X P|G,], Aldo

A A

< [ 2| s plogxrelall<E| s 26
! oceQd1nA’ occQ41nA/

where |A’| denotes volume of A’. Since A € G, is arbitrary, we have

E{ / 02X [Pdo| Gy
A/
E'[<sup|xg)

as n — o0o. Then the proof is completed by 1. O

]s sup  EJ0sXPIG.) - N as.
ocQd1nA’

Therefore we obtain

gn] < O|A’|Z sup  E'[|0°X][P|G,] —P 0

v=0 0 E€EQUNA’

Lemma 1.12. Let (', F', P") be a probability space, T' > 0, q € 2N, {F} }o<i<1 be a filtration, M € N, { K} M,
be a deterministic partition of [0,T'] where L(K') < L(K7) fori < j. Let (W}, Fl)o<i<1 be standard Brownian
motions (I = 1,2,3), and Fj ;1 be F} L(KO)AL(K ALK “Measurable random variables. Assume (WP, WP2) are
deterministic for 1 < p; < py < 3. Then for AW} = WH(K?), Fly=Fi;;,F?; = Fjj and F?; = F} ;;, there
exists a constant Cq > 0 which depends only on q such that

- - - q ) , 2\ 2
E/[ > AWIAWZAWLE, } = Cq(ZIKzIIKJIK’“IE’[Fz-,j,qu]Q>
1,5,k i,5,k
1 2 g
+C, <ZK’ (Z|KJ|ZE [|F! ) >
YE) =1

Proof. In this proof, general constants denoted by C' depend only on gq.
Let us denote R ~ .
Hijo = AWAWRAWEF, ji,  Hij = Higg +Hjig + Higa,
Mk = Higk + Higg + Mk + Mk + Hiig + Hgis
then it follows that

D Mk =D it DD (M +H)+D DD e

1,5,k i g<i i j<i k<j



30 CHAPTER 1. QLA FOR NONSYNCHRONOUSLY OBSERVED DIFFUSION PROCESSES

Since (W”l, Wp2> is deterministic for 1 < p; < pg < 3, Itd’s formula yields
E' il Frien] = E' M j| Frcn) = E'THS ;1| Fren] =0

for k < j < i. Therefore by Lemma 1.9 we have

E’{Zm,j,k q} < C{ZE’[|7—[1-M| +ZE’{

QN

]

S (HE + M, — BT | Fr )

i,k j<i
q 5 q
+2Ef[ Y, } bror|| ST | 0
J<i k<j i j<i
We will estimate each term of the right-hand side of (1.16). First,
SoElHl = > EF | E (AW AWRAWE)|F ] géCZ\KzlgE'Hle Ji. (1.17)
Let
2,2 = x
Wi = AWPAWPE, ;5. MPP = AWJAWPF;,;;, HP = AW/ AW?PE; ;.
Since
20\’ E 2,1 2,1 2 2,1 1?2
p(Tl) | o pieet- prim )]t + o B E IR0
j<i j<i j<i
for each 7,] by Lemma 1.9, we obtain
n?
S |( S0t - p g R ) |
1<t
2 3 q 2
. OZ|Ki|E/[Z (s ) } cox ey (Yo
' =1 “Nj<i i I=1 N j<i
2 . 3 . 1 2
< ORI P ZE’ 1RSSR )
j<i i I=1 N j<i
+CZ|K’| > K| ZE’ )9)i. (1.18)
g<i
Moreover, let
H?:jl,k: = AWJ'QAW]?FLj,k + AWIEAW]:SFZ,]C,]’
M2 = AWJAWPF i+ AWLAWSF,, 5,
Myl = AWJAWRF, ki + AW AW Fy i,

then by Lemma 1.9 we have

se(zrm)] < cowizel(srmen)] commssel(gun)]
< ORI IO K (Bl(F0)" + B [(Firy))’

HE[(Fyi) s + E'[(Fini)? e + E'[(Foi )7 + E’[(Fmi)q]%). (1.19)



1.7. PROOEFS 31

Furthermore, let gi (K%) = (W2, W3)(K?), go(K?) = (W, W3)(K?), g3(K?) = (W', W?2)(K"), then we obtain
q 3 g
E’{ SO EHFL ko) } E’{ ZZZgl (K')AW[F}, ] gquE’[ Z <Zg (K')F} )AW; }
=1 j

i j<i i j<il=1 ©>J
Hence Lemma 1.9 yields

(SIS

q 3 a7 2
5| 7| | < e (Swie|(Tawn) )
i j<i = J i>j
E 2\ ¢
< <Z|KJ (Zu«ZE’ > ) : (1.20)
1>7
By (1.16)-(1.20), we obtain the conclusion. O
For p > 0, we denote
- 0 L, -
L, = {pL(elp/mJUG[p/z],an)MnGIHJJ'}i,jv L,= ( Ly ) Z pr
N, :<(GG*)p (GG*PG ) P Jip U5 dWs /(g -, [V/T7]) (k <ln)
(@@ (GG ) T [ b2,.4W, /(|ka - |\/\J’f—ln|) (k> 1)

and D; = diag({[b} .. [} 1nj0.0)20, {107+, |} snj0,0+0)- Though {Z1.1}+ is not necessarily a local martingale, we
denote by (Z); the quadratic variation of Z regarding II as deterministic functions, that is, (Z); be an (I, +
My) X (I, +my,) symmetric matrix with

o b5 2 Pdson i /(107 1P11%)) (kK <ly)
UZ) ) hw = ka In |bs*|2ds<5k k//(|b,k o 21T E]) (k, k' > 1)

fItkﬂth’*ln bl, 57 ds/(|b \Tn ||ka’ In “Tn | V |Ik||Jk/_ln| (k S ln7kl > ln)

Moreover we define

_ 1. ~ 4 1 &

Hit) = HL, (to)= —5 25 MZ.; —logdet Dy + 5 Z Z LP) e k{00 1 [0,6) %0}
p=1 k

72 2 . 771 YL det D 100 (=1)P ir

Ho(t) = H,,,(0)=—5tr(M(Z)) — logdet t+227p D LBk k(o f0.6)20}
p=1 k

flg(t):ﬁg (t;0) = by ZZ/ Di(s AT(sn), ;08" (ds),

p=0i=1
Zy, = Zyr, and H = H.(T) (1 < i < 3), where
b,
.( ) 2\b7 |2 —log |bZ| (p=0)
D: (s, t;0) = 1 3—i
p\T T Iby . |* L7 [ R L0 I L 2p—1 pr
—aEhs ( e O |b§i|> PPt Gy (p21)

for ¢ = 1,2. Then we have 801512’5” (t;0.) =0o0n {7(s,) =T}.
Let g € 2N, v € (0,1) be defined in [A1] 5., ©, = supg<,<7 E[|1e?], ©F = supo< i< Ellpe — ps[P] /|t — 577,
and {5, (t) }o<t<Tnen be stochastic processes which satisfies [S]. Moreover, we define @q({z,}) = (3720 2p)? V

(> 0$12)q/(2q Dya=1/2 for {zp}p2o C Ry and ¢ € 2N.
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Lemma 1.13. Assume [Al]. Let r € N,r > 2. Then there exists a constant C' > 0 which depends only on
q,7,n2 and nz such that
B0y Hn(0350) — Do H, . (T;0)|[1]

[
C(T%9V 1)(BE[RC] + ©L)E[RC s, (T)~ v +2r+a11]2

<

TV 4+ (D (1, ma) BV D{(OL)F + (02,)4)
Vo +m0)Papi22 V Popion = Bopy+32pa43 )\

wa({ b+ 1y }>+(Z_ pesy) e

and
E[|0yH2,,, (T;0) — 0LHS , (T;0)|7|11)
C _ el (I)2p+2 1 = (I)2p1+2 2pa+2 %
< enro-mrof{ (S oEh) < (X gy |

P2
for0<v <4 ando € A.

Proof. In this proof, general constants denoted by C depend only on ¢, 7, no, ns.
We first prove (1.21). Let

iy = S mids /(b [V/1TF]) (k <1,)
Sk 13ds/(1V3 0, W]TE=]) (k> 1)

for 1 <k <l,+m,. Then f[n(a; $p) — HY (T o) can be decomposed as

n,Sn

Hy(0;5,) — Hy , (T 0) = —%zw - NZ -z + ) + % y- (U

We will estimate each term of the right-hand side of this equation.
First, we assume that II is deterministic. Let W, = (W;, W;), then we can write

(D)* — (L)*P ) e — (L2p)®® — (Lops1) P ™) = /

O2p12,k

W, + / e de,
O2p 12,k

by It6’s formula, where

|8v p,t < 2.2. 4v+1(2p + 1)v+1 . n2R2v+3(1 _ Sn(T))(Qp—v—l)VO(Mp)kk/102p+2,k (t),
1 ~
O] € 42 ARy 1) R (1) DO i, (),

Moreover, let 5’“’ be the one constructed by f t ¥ Substituting L(02p2, k) A7(sy) for all times of X, b* and

b3, then we can write 5 ZK o I 1K( ) for some random variables {fp,K } i, where {K} denotes the set of
intervals obtained by umfylng partitions {S%},{T7} and {7;}. Furthermore, let
’ ~ ’ t ~ ’ t ’
wog = [ay ov [i¥as (1.22)

then we have

056K < 2-4.4vT (2p+ 1)U 4(2p+ 2) - n3RTO(L — 5, (7)) PP IVO (M )i 1oy, 40, (5),
1 o -
LAkt < 2.8 4v T (2p+ 1)Ut 542(213 +2)% iR (1 — 5, (T)) PP~V (M) ki Ly (5)-
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Therefore we can write
1 Y 15N kK k.
_52*(M - 5 gzk (/ gpt th /npt dt) Zka/
= _722/51135 thZk ;DZk’,;D ZZ/ ¥ - AWy 2y 2y

p=0 k,k’ pOkk/
_,Zz/g;;f AW Zk 2 — Znp sy ——ZZ/nptdtZka,
p=0 k,k’ p=0 k,k’

= X+ Ry+ Ry + Rs,

where

1 . i\ N In 2 . i\
(Zy, p)gg‘"'lmn _ (< bL(92p+2,i)’* W) > (bL(92p+2,j+ln)7* W) ) )
o |b1L(92p+2,i)ATn| V| |bL(92p+2 JHin )/\Tnl VIF/ j=1

Let k'(K) denotes k < l,, which satisfies K C I*, k?(K) denotes k > l,, which satisfies K C J¥~» and

/ k
ka — L(92p+2 k) /(| L(92p+2 k)/\Tw| |I (k <! )
, L(92p+2 k) y* /(| L(02p42, k)/\7-n|\/|(]T (ln <k <lp+mn).

Then X can be rewritten as

1 o .
X = _5 Z Zgﬁ:ﬁ// . W(K”)Zkﬂka/’p
p=0k,k' K"
2 [e%e]
1 ~ j . -
-T2 > 26 P W(K")Byi(x) p - W(EK) B (i), - W (K).

Let

i, 1 v R ()R (K'Y | 0z 5 v
FRlgwn = 5 > vllvglv3| Z 105 &p, K 1105° B (50),p105° Bri (51 |

v1,v2,v32>0,v1 +v2+v3=0

for 1 <i,j <2, then F2Y, .., = F&° ., Hence for general II and any g € 2N, we have
»J ; K,K', K K/, K,K g y 4

Eflogx|111]
: 4
< C) {( > KKK |\E[(Fi )" |mq)
i,7=1 K,K' K"
2\ ¢
H( SIS IwIeE o + Bl o) )
K K’
< 2

o)
]

o ¥ |K"|E[(ijC<p S - snm)@p5>V°<Mp>k,k/1e2,,+2,k(K"))q

kK K p=0

}

1
3 w1 (L= sa (1) 277210 Il

EK RC(p+ 1) +1 oo 192p+2’k0901k,¢@ 11
p=0 ’

[N

by Lemma 1.12.
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Moreover, by Lemma 1.10, we have

r M kk ]_9 (K 4
E (9gX U1l < CE RCS, [ —(v+252)q II {< E K// 2 : 2p+2,k
H |‘ ] [ L( ) | ] kk"K”| =0 p+12T
2

(S (A @))))
(mm(EE )

p=0
Since (-, en ap) /1 <3 pEN ozp/ for a, > 0 (p € N) and ¢’ > 1, we have

Nl= »ﬁ

E[|l0X|[l] < CE[R s, (T)~C+*3)a1] { (Z Z p)k.k [O2pt2, k|>

k‘k’po p+12'r

(Z Z \/W\/WOT o +k1’)€/ E]]ij_)i)lj«é)

k kK, p—O

(Z |0 | Z Z 02p1+2,k3meo,k¢®102p2+2’kl2 ﬁao‘wﬁ@)g
N (pr+1)"(p2 + 1)

k% ,k, p1,p2=0

(SIS

Therefore, E[|0YX|7|T1] is less than the right-hand side of (1.21) since || M, ||< 2,

E 1005120, 150 0062010, 15 s 00,4720 < [B2py43,81 1 O2pt3 k|5
k

- - 1
Z(Mp)k,k’|€2p+27k| <|l M, | (In + mn) <I)2 p+2, 9 < 2(1n, + mn) (1)22p+2,2a
k,k’

S5 100513100 05 (VL g (VT )i, <11 N, Ty, || [80,i] < ST
k

k kK,

and

We will estimate E[|Rz|?|II] in the next step. Since
B0 (ZZi = Zip 2 ) *[U)%5 < C(TV (B[R] + O8)(02pr241* + 02pr200]%),

Lemma 1.9 and the Cauchy-Schwarz inequality yield

1 > v! o, % 3
sl < (XY X ooe|( [ agaom) o
k,k’ p=0v1,v2>0,v14+va=v 1:v2: O2p12,%
32\ ¢
E[(agz(zkzk’ — Zk.,ka/,p))%’H} >
= C<ZZ(1’+1)U+1|92p+2,k|éE[Rc(1—Sn(T))Qq(Zp SIVO|LT) 27 (N, )i e

k,k" p=0

q
<(BIRC] + OL)(TV 1)(fapsas]? + 92p+z,kf|2>) .
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Hence by the Holder inequality, we have

E[|0°R,|9TT] < C(TV 1)(E[RC] + OL)E[RC s,,(T)~ v +2r+3)a|11]
% (i (Z (M) it (0242, | + |92p+2,k|1/2|92p+2,k’|1/2)> qu)q2
=\ (p+1)r
< (T V1)(E[R®] + OL)E[RC s, (T)~2v+2r+3)a 1] 3

m\»—A

D e

p=0

Then E[|R2|?|1] is less than the right-hand side of (1.21).
Furthermore, by Lemma 1.9 and the Cauchy-Schwarz inequality, we have

a 13\ 4
Elloy Rl < ( [ (/Z thZka/) H} )
k!
e} , , 2 q 2—1(1 q
< C(BIRY) + 1Ol (z > ol [(Sewet -gt)) o o] ") oz
k,k" 0<v1 < p=0
Since IT is independent of {(X¢, (bi);)}+, we can choose conditional expectation for which t — E (o0 05 (& ky’f =

§§,f ))24|11] is Lebesgue integrable almost surely for 0 < v; < v. Therefore, by (1.23) and similar argument to
the proof of Lemma 1.9, we have

> s\ 17\ 2\
plosmlin < c(elre+ Tk (S 5 ( [E|(Teret -g) m]'a) ). a2
k,k’ 0<v;<v p=0

By Lemma 1.10, (1.24), (1.22) and the estimates after that, we have
E[|9; R |*|11]
< cr el (X ( o] e oere
k,k’ p=0
5 L 2q) 75 \2\¢
X (1= 5, (T))BP~DVO (M ) g 2(T2v1)192p+2,k/(t)) H] dt) )
< C(B[RC] +T9(04,))(T# V1)E[RCs,,(T) v+ +Dajy)s ( §° f: (M) Y
= 8q n p_|_1)2r

k,k’ ~p=0

1 q : 3 ¢ ’
S C(E[RC} n Tq(®§q)1)(T5 vV 1)E[RCSH(T)—(21)+27+7)Q|H]5 (Z (p2i+f;“> .
p=0

Then E[|0YR:|?|11] is less than the right-hand side of (1.21). Similarly, we can see

1 1 l " q)
E[|02R3|%] < CE[R s, (T)~ v +2 94|11 2 (E[RC] + T9(04,) %) (Z V(o + 10) P2pa, 2) .

(p+1)"

Hence E[|0Y(Z*(M — M)Z/2)||M] is less than the right-hand side of (1.21).

Similaly, we can see
ol (355 1

is less than the right-hand side of (1.21).

q

) - u(ip) )
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Moreover,

H] < CE[(R s, (T)~"TD9)2|11]2 (27)9(0},) *

Blosae stz < ox (3 |5”1u|> (S voe )

v1=0 vo=0

since Y7, o || 902 M [|< CR? Y202 ((2p)° Vv 1) ™Y < O R s, (T) (04D,

We will estimate E[|02(a*MZ)|9|T] at last. Let Lppp = ((Lop)?? — (Lops1)® ). @*MZ can be
decomposed as

oo o0
I ZEEED 9 S FTURY VD 5) SYE S ML AR
k,k' p=0

k,k’ p=0

where

iop= | P10V Loy o, | (B S 1)
, 'LLL(Herl,k)\/W/lbL(eerl,k)/\Tn| (k > ln)

Then by the Burkholder-Davis-Gundy inequality, we obtain

[SIIS)

d

E[|05E: |7 [11]

IN

c > E[(Z<Zi03;1(ﬁm,kfﬁp,k))2(5?1221«)2)

v1+v2=v k! L p—=0
3 “
= ( |:< Zag’l(’cp,k,k’ﬂp,k)> (8§22k/)q ]___[:| )
v1+v2=v p=0
[e%s} 9 %
< oBR! 3 <Z( 2_ Bl nk’,@,,}p’k))zqmrq) >
v1=0 Lk’ k p=0
Since
El(02 (L p i i) (T2 < C(2p + 1)” EIRC p12P=5)|[1]35 (M) 5 1 (O},) 37 \/M
we obtain

Blov=,|91] < CE[RY)3( @M(ZZ Z E[RC p1Cn1=9) 113 (p; 4 1)" (p2 + 1)

" ki,k2 p1,p2=0

x B[RC pt1®P2=9) [T1) 3 (M, )y o (M, )1, wA\/ 100,k: [/ 100, )

CTY?E[RY)3 (0}, 1<ZERC pAa(2p=5) |TT) s (p 4 1)" ) .

p=0

IA

Then E[|02Z1]7|1]] is less than the right-hand side of (1.21) since

> 1 1q 0 1—4—1q
> BIRCplaCr=om)5a (p +1)° < <ZERC—4€( 20-5) 1] (p + 1)9(40+3 ) (Z g>

p=0 p=0 p=0

< CE[RCs, (T)~14v+5)|m)t/4e,
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On the other hand, Lemma 1.9 yields

E[|05 2| (1]

gcﬁgg;%@%%@mm+wmmw(§y@@wwmw(;ywzyrnry
< RC {ZZ Vi E RC 2q(2p v)v0(2p+1)2qv|1—[]2i
p=0 k,k’
< (BIRV 0l  sal + BLR 5[0 O, (0 v 1) 1] ) |
< CE[RCUT? v 1)((64,)% + (03,)%) (ZE [RC p2a(r=VO|[T] (p - 1)(2+0)1 )
p=0
{i@(z(ﬂm N CESRATCIS AL

< CE[RCIE (T30 v 1) (1, + ma) ((OL,)F + (02,)% ) B[RC s, (T) =+ D9|mm] 3

where we use the fact 7 \/Té~ =T (r, T )'VT2(r, T 1)z < (VTV1)r), M This complete the proof of (1.21).
We next estimate E[|0YH; . (T;0) — OVHS  (T;0)|9]. Let J(k) =1 (1<k<l,), Jk) =21, <k<

n,Sn

l, +my) and Bk = |bL(90 o) *|/\bL(90 nm | for 1<k <ly+my,i=1,2 Forp€Zy and 1 <k, k' <1y +my,
we define {5 } {n } as if follows.
1. the case k = k":

T By + (BT, (L)
—(log |b00 pir| —log |b L(6o, k)ArnDl{p:O} + @(((Ezp)%)’“’“ - pQLIEGO,k)Am(Mp)k7k)1{p21}
:/ﬁme+/ﬁ%t
2. the case (k <l, and k¥’ > 1,) or (k> 1, and k' <1,):
—%{(B;B,ﬁ + By )il L) BJ(k)Piﬁolk,)MnPL(ao o))
X0y (o + 5 (B4 e (D) = [ €58 aws [t ae
Lk, K

3. other case : We set §pt =0and 7, =0.

Then by It6’s formula, we obtain

v ck,k’ v+1 =(2p—v—1)VO ~ )
N oueht | < CRC(p+ 1) R YOS My kg + (M1 ki oy (1),

k,k’ k
v ok, k’ v4+2 =(2p—v—2)VO0 ~ ~
N okl < CRC(p+ 1) 28 YOS (M ik + (Mt e oay . (1).
k,k’ k

Moreover, we have
oz, (Tyo)— HS , (T;0) /225 th*/ZZ Pt
k,k’ p=0 k,k’ p=0

Therefore we obtain the conclusion by Lemma 1.10. O
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Lemma 1.14. 1. Assume that [A1],[A2] hold and {b; (I, + my,)}n is tight. Then

n,8n

sup b, oL H, (o) — O°H2 , (T;0)] =P 0

asn — 00 for 0 < v < 3, where s, =/ ** A (1~ |po])/2).

2. Let 0 <wv<3,qg€2N,qg>ny, 0 >1, and {8, }nen be stochastic processes which satisfy [S]. Assume that
[A1], [A2], [A4-(2q), 8] hold,

lim sup E[s,, (T)~2v+20+12)9) < oo and  limsup E[b;,29(l,, + m,,)?7] < oc. (1.25)

n—roo n—roo

Then there exists ng € N such that

q
sup E [(supb;1/2|8§ﬁn(a; Sp) — 8gH,31’Sn(T;0)|) } < 00.

n>ng

Proof. We first prove 2. Since {r,}, is bounded and r,, —? 0 as n — oo, we have lim,_, E[r;{] = 0 for any
¢’ > 0. Then by [A1],[A4-(2q), d], (1.25), Lemma 1.13 with r = [§] + 2, Cauchy-Schwarz inequalities, Jensen’s
inequality and the estimate ®op409 < 75 (8p + 9)®opi2.1, We have lim,,_,o sup, E[b, /200 (H,, — H!)|9] = 0 for
0 < v < 4. Hence lim, E[b,:q/2 sup,, |02 (H,, — H})|7] = 0 for 0 < v < 3 by Sobolev’s inequality. Similarly,
we have lim, E[l);q/2 sup, |0Y(H2 — H3)|1 =0 for 0 < v < 3.

We estimate H,, — H? in the next step. Let 0 < v < 4 and II be deterministic. By Itd’s formula and
symmetry of M, we have

- - 1 - A . . N t N
Ha(t) = (1) = =5 > My { ZiiZi s — (D) )kp } ==Y Miw / Zy,sd 2y .
Kk’ k, k' 0

Therefore, {92(HL(t) — H2(t))}o<i<T is the martingale. By the Burkholder-Davis-Gundy inequality, we obtain
B05(H, — H)|") < CE[(@;(H, ~ H))3®) (0<v<4).
Moreover,
~ ~ ~ . A . ~ 2
oyttt - e < cr ) (0 108271 | 0E b | )
0<j1+j2<v
where |(03 2)* > = Y2 sup, |03 Zy.|*. Since E[|(952)**] < CE[R™)(Ly+mn)?, || Mo ||< 2 and || {|05 My e ||
CR¥(1— pr)~7~" for 0 < j < 4, we have
b * E[03 (AL = H2)|7] < CE[REIE[(by (In +my)) /2 B[R (1 — )2+ Da)1/2
for general II. Then by Sobolev’s inequality, there exists ny € N such that
q
sup F [(supbgéag(H; - H§)|) ] < 00
n>ng o

for 0 < v < 3. This completes the proof of 2.
Finally, we prove 1. Since |®op12.:| < C(p+1)'rf (I, +my) and [Pop, +3 2p,+3] < C(p1+1)(p2+1)(ln+my)*ry
for p1,pe € Z4 and i = 1,2, by Lemma 1.13 with r = 3, we have
sup B0 (Ho(0s50) — H o (T50) 0] < O+ D)L+ i7" (1 4 )t + 1 (1 + ma)?)
oceQrinA
for ¢ € 2N, ¢ > ny and 0 < v < 4. Therefore, by Lemma 1.11 2., the assumptions and the inequality
T =3, |I| < rply,, we obtain {b,'r, 1}, is tight and

sup b;1|8§(ﬁn(0;sn) — fI}LS (T;0)) =P 0
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as m — oo for 0 < v < 3. Similarly, we obtain sup, b;1|8};(ﬁ275n (T;0) — f[gs (T;0)] =P 0 as n — oo for
0<v<3.
Moreover, similarly to the proof of 2., we have

E(|b, 05 (H,, — H)||1] < CE[R]b, (b, (I +ma)) > B[R (1 — pr) =]

for ¢ > ny and 0 < v < 4. Hence by Lemma 1.11 2., we have b, ' sup, [0%(H}: — H2)| —? 0 as n — oo for
0<v<3.

Moreover, since P[r(s,) < T] — 0 as n — oo, by, sup, [02(H, (o) — H,(055,))| =P 0 as n — oo, which
completes the proof. O

Lemma 1.15. Assume [A3']. Then

sup|\Ilp’1(f(-,U),ap)| —P 0 and sup|\I/p’ (f(,0),¢p)] =P 0
ocEN gEAN

asn — oo forp € Zy and f(t,o) : random variable defined on [0,T] x A such that f is continuous with respect
to (t,o).
Proof. Let {f*}x be step functions such that sup, , |f(t,0) — f*(t,0)] = 0 as k — oco. By [A3], we obtain

sup,, | fo R, o)vpl(dt) f TE(t, 0)a,(t)dt| =P 0 as n — oo for any k € N.
Since {¥21([0, T))}n is tight, for any €,0 > 0, there exists K € N such that

T
P[sup (f — fk)ap(t)dt‘ > 6} <e(k>K,neN).
o 0

(f - P (d >\vsgp

Then there exists N € N such that P[sup, |[V?!(f(-,0),a,)] > 36] < 2¢ for n > N. Similarly, we have
sup, |UP2(f(-,0),cp)| =P 0 as n — cc. O

Proof of Proposition 1.3.

We first prove 1. By Lemma 1.14, it is sufficient to show sup, |b, 102 H3(T; o) — fOT OYh°(o)dt] =P 0 as
n — oo for 0 < v < 3, where s, = 7“,1/42 A (1= 1pol)/2).

Since P[7(sp) <T] — 0 as n — oo,

[e’e) 2
> suwp
p=0i=1 ¢

as n — oo for 0 <v < 3.
Moreover, by Lemma 1.15, sup,, |¥?-! (8”1?1( ,50),ap) =P 0asn —ooforpeZy and 0 <wv < 3.
Then by Lemma 1.3, the tightness of {1/ 1([0,7))}n, and the estimates v21([0,7T)) < v%1([0,7)) and

02D (t,t,0)| < CR®p (2p U)vo(p +1)¥, we have

T
/0 (05D (t AT (sn), t;0) — 07D, (¢, t;0))vy " (dt)| =P 0

Zsup\w“ D(-,50),a,)| =" 0
as n — oo for 0 < v < 3. Similarly, we obtain

Zsup [UP2(0YDa(-,10),¢p)| =P 0

p=0 7

as n — oo for 0 < v < 3. Since h{®(o) = Z;o:O(DIl,(t,t; o)ay(t) + D2(t, t;0)cy(t)), we obtain 1.
We next prove 2. First, [S-((2v0+2[8]+12)q), £] and the estimate v2:¢([0,T)) < v%([0,T)) < b, 1 (1,,+m.,) (p €
Z+) yleld

b2q ZZ/ {OUDL(t A T(sp), t;0) — U} (t,t;0) fvbr (dt)

p=0 i=1

supE{sup } < 00
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for 0 <wv < 3.
Then by Lemma 1.14, it is sufficient to show that there exists ng € N such that

q
}<oo.

sup F {sup

n>ng o

bz Z {\ij’l(agpé('v ) 0)7 al)) + \ij,Z(agzDi(.’ B 0’)7 Cp)}
p=0

By [A3'-q,n] and independence of {11, }, and X, we have

oo

q
sup E|[|b! PO DL(-, - 0),a }
s [Z (DL 10).a,)
1
< C ———— sup E[(b"(p+ 1)1 (9UDL(-, - 0),a,)])?
p;o (p+ 1)2 nZTIL)O [( (p ) | ( p( ) P)D ]
< Y+ 1 [suplOy DYt 50) + (05D o)
t
p=0
(1.26)
for 0 < v <4, « in [A3'-q,7n] and ng which is renewed if necessary.
By It0’s formula, we obtain
El|0y Dy (t.t;0) — 05Dy (s,5:0)|%] < CE[((p+ 1) 572 RO) |t — s/
for s < t.
Hence by Kolmogorov’s criterion( [39] Theorem (2.1)) and its proof, we have
Elwa(03Dy(10))"] < CE[((p+1)" 27" R)1). (1.27)

(1.26),(1.27) yield sup, sup,s,, E[|by 3074 WP (0D, (-, 0),ap)|?] < oo. Then by Sobolev’s inequality, we
have sup,,s.,,, Elsup, b 322 OP1 (95D, (-, 5 0), ap)|9] < oo for 0 < v < 3. Similarly, there exists n; € N such
that

Sup,,>,, Elsup, |b}} Z;O:O \I/P’Z(agpg(-, 50),¢p)]9] < o0 for 0 < v < 3. O

1.7.3 Proof of Lemmas 1.7 and 1.8

Proof of Lemma 1.7.

Let Gis) = {Grs}to),L(nelsy) for 0 < s <t < T, {\ 5:1 be the eigenvalues of G[&t)GEe,t) and fl(s)(t) =
f1(t, BIB2, ps, ps..). Since |b;1tr((G[57t)GE‘S’t))”) — vPY([s,t))| =P 0 as n — oo by a similar argument to the
proof of Lemma 1.4, we have

y

t
/ ap(u)du = P-lim b, ! Z()\;)p,

n—oo £
=1

where P-1lim denotes the limit in probability. Moreover, similarly to the proof of Lemma 1.2, we have sup; |A;| <
1.

Let g; = gi(ps) = /1 — X.p2, gix = gi(ps,«). Then since

P

P Ap l<a
/E),)dp’ = 52 L)

p* > p* e oo
Alp)= = Alp) —ao = > app™ ( - 1) —ag =Y ap1p? T p. = app™,
p=1 p=0 p=0
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for p, px € (—1,1), we have

/ 5

1 2 2
P-lim b, Z{1+log(BB)+BB > (A
i=1 p=0
l/
P-lim b, 12{1—!—3 32gZ (Nipsps s« —

n—o00
=1

4

+1 2 +1
ZD pép

n—o00
=1

by Lemma 1.3. Since

P-lim b, > " {BIB2g; *(Npsps« — 1) + BiBlging; ' + F(BiBlgi.g; ')}

41

— (A)Pp2P) +

N |

(e
—

< |2
=
<
w

el

W

*
S—

~—

1) +log(BiB2gi«g; )}

97 (Nopspss — 1) + giwgi

(1.28)
- (A;',pSpS,* - 1)2 - 912,*912 _ )‘;(pG - ps,*)Q
91'2(1 - Aépsps,* + gi,*gi) gi2(1 - A;Psps,* + gi,*gi)
< =Xilps — ,Ds,*)2/3 (1.29)

and B!B2g; .g;' —1 < R*/\/1 — pZ, it follows that

/ £ ()

from (1.28),(1.29) and Lemma 1.6.
Moreover, since

du < thbnlz 3 “(ps

n—oo

v { BLB2)

(BiB2ging; ' —1)* > (BiB2gi. —9i)® > g7.(BiB2 —
= g;.(BiBZ—1)*/2— (X)*(ps
> (1- A)BIBE - 12/2— X(ps -

we obtain

/ 19w

- ps,*)2 -

1)2/2 — (9 —
- PS,*)2(ps + Ps,*)g/(gi + gi,*)2

BiB? 5% ¢
_B; (p3 p )/al(u)du_

BBy 1 > [* (1-7%)?
() [ 5

—01/ {a1(u)

Since s < t is arbitrary, we obtain

IN

— pss)? +ao(u)(BLB? — 1)} du.
t t
/ £1(, BAB2. py pu ) < —C / (a1 (w)(pu

Then we have

J1(t, B{BY, pt, pr.v) < —Ci{as(t)(pr —

1—pp (1= p7)(BsBE —1)°
ARS 2

- pu,*)2

— p%

s (BeBlgi-g; ! 1)2}

gi7*)2

ps)?/(1 = p7),

/St ag(u)du — w /St al(u)du}
(B!B? - 1)2/: ao(u)du
+ ao(u)(By B2 — 1)* }du.

pre)? +ao(t)(BfBf —1)*}  dt x P- ae. (t,w).

Similar argument using the eigenvalues of Grs,t)G[Syt) instead of that of G[s-,t)Gfs,t) yields

fQ(tv BtlBt27 Pt Pt,*) < 701{@1(15)([)25

— pe)? +Feo(t)(BEBE —1)%}  dt x P- ae. (t,w).

O
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Proof of Lemma 1.8.

For the case that observation intervals {I},{J} are synchronous and equi-spaced : |I| = [J| = T/[b,], we
obtain ag = ¢y = a1 = 1, A(p) = p?/(1—p?). Let us denote y; by y¢ for the synchronous, equi-spaced sampling
case, then by (1.9) we have

(B — B})? 12, 1 1—pi, 12 PtPrx — 1

= —————=—+1+logB;B =1 : B; By —————

Yt,0 21— p2) + 1+ log 5y t+20g1—pf + By by 12
B} — B?)? 1—pf, L —1 1—p7,
R T e ) e Y
2(1 - pf) L= p; L= p; L —=p;

Since B BE,/1—p?./\/1—p} > R~*\/1— p7., by Lemma 1.6 and similar argument to (1.29), it follows that

2

Bl _ BQ 2 4 1— 2* _ . 2
Yo = *7( : 75) — logiR = V1 B} B? pt’Q -1 —R47(pt [jg l .
2(1-p7) V1—-pp 1—pi (1-p7)

Since

2(B{ B} — 1) +2(1/1 = pi. — V1 —p})°
1—p%
2(B/Bf —1)* | (ptx — pi)*(prx + pi)*
i AT

(BIB}1— s /\J1— st — 1)

IN

there exists a positive random variable R’ which does not depend on o,0,,t such that E[(R')?] < oo for any
q > 0 and

Yyeo > —R' {(B} — B)? + (BLB? = 1)? + (ps — pis)?} -

By integrating with respect to t, we have the desired conclusion. O

1.7.4 Proof of Proposition 1.5 and Theorem 1.2

Proof of Proposition 1.5.
We use Theorem 2 in Yoshida [54].
Let 81 =0,02=1/2—-5,0< ph < 5,0 <a<1A(ps/2),B=a/(1—a)and 0 < p) <1ABA(261/(1—a)).
Let
5}71(0”7*) = bT_Ll(Hn(U) - ﬁn(g*))7 fn(a) = —b;lagﬁn(a),

then it is sufficient to prove the following five conditions for any L > 0.

1. There exists ¢, > 0 such that for any r > 0, we have Py < r~(»2=20)] < ¢/ /rE and P[{r—r1|ul? <
uw*Tu/4 for any u € R }¢] < cp /rl.

2. For My = L(1 — p,)~L, sup,, E[(bn /|05 Ha(00)]) 1] < .

3. For My = L(1 — 28> — py) ™%,
) A Mo
supEKsupb{‘{_ﬁng(U;U*)y(UEU*)|> } < 0.

4. For My = L(B — p})~ ", sup,, E[(b; ' sup, |82 H,(c)|)™?] < oc.

5. For My = L(231/(1 — a) — p})~ 1, sup, E[(bglmn(cr*) — )M < 0.
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By using Taylor’s formula for hi®(o) — h{°(0.), we obtain x < inf,egni\foy w*Tu/(2]ul?). Then [H]
yields 1. Moreover, 3. and 5. obviously hold by Proposition 1.3 2. By Proposition 1.3 and the estimate
E[(sup, | fOT 02h3°(o)dt]|)M3] < oo, 4. also holds. Finally, Lemma 1.14, [S-¢’,2¢'6] for some sufficiently large ¢’
and the estimate 9, H3(T;0,) = 0 on {7(s,) = T} show 2. O

Proposition 1.10. Assume [Al] — [A4]. Then (V,(w1),--+ , Va(ug)) =55 (V(u1), -+, V(ux)) as n — oo for
kEeN, up, - ,ur € R", where V,(u) = by 20, H, (0*)u+b Wwro2H, (0)u/2, V(u) = wTY2N —uw*Tu/2 and
N s defined before the statement of Theorem 1.2. Moreover,

az:r * 2 aa' * 2
P2he(0.) = Alpe) (p” —9,B!. - agB?,*) - apA<pt,*>(ppt”

—2(ao(t) + A(pe,+)) (05 B )% — 2(co(t) + Alpe,+)) (05 BE ).
Proof. By (1.8) we have

S (B0, (Alp) — 9, B2 B3 (eo + Alps)) — 2 (B)0s(Alpy)

2
0, B} 0sB?  A(pt)
Btl + ¢ Bt2 + pt 30/%

Oshi® = —0,B, B} (a0 + Alpr)) —

+(8,B} B? + B}'d, B2)Ap;* + B! B?p,; .0, (A(pt)) + ag

Pt

* * ]-
= 9,B Alp:) (Bf p;’ - Bé) + 0, B Alp:) (B%”;’ - B?) + ao0, B} ( - Bé)
t

Bl

t t

ol B2 (= — B2) + 0, (Alp)) ( B B2 — (B)? _(BOPN | g0 (| _ prpepes
OUtBt2 ¢ ’ P ttpt 2 2 Pt tt/)t'

Since Bt{* = Bﬁ* = 1 and each term of the right-hand side of the previous equation has a factor which equals
0 if we substitute o = o, it follows that

aa *
G~ (02) = (OsBL05 B+ 05 B0 BL)A = ((00BL) + (05 B2.)°)As = (0B, +0, B ) A =222
t,*
aa * 2 aa * 6(7 *
~2a0(9, BL,)? — 2¢0(9, B2, )? —apA(pt,*)( p”t’ ) + A, p""* ( pptv ~9,B}, _aUBg*>
t,* t,* t,*

. aopt * 1 2 ? (aapt,*)z 142 2 \2
= A P —0oB;, —0oB;, | — apA(Pt,*)pi —2(ao + A) (0B )" — 2(co + A*)(aoBt,*) )
T, t,*
where A, = A(p«).
On the other hand, for u € R™ | let s,(¢t) = (1 — p¢)/2, T1 = b51/2(8,,H(0*) — 8, H, (U*,Sn))
b2 (00 Ho (005 80)+ 0 (~1)/0, HE , (T;04))u, Ty = by w92 Hy (0. )u/24+w Tu/2, T4 = by /%0, ,?;S,L(T; a*)

and X, = X, (u) = b, (0, HL , (t;0.) — 0, HZ ,, (t;0.))u. Then

4
~ 1
Vn(u) = Xpp (u) — iu*Fu + Z T,

j=1

As n — oo, since P[1(s,) < T] — 0, we have Ty —P 0. By [Al] — [44] and Lemmas 1.11 and 1.13 with
q = 2, we have T9 —P 0. Furthermore, we obtain Y3 —P 0 by Proposition 1.3. Moreover, T4 —P 0 since
Plr(sp) <T] — 0 and 9,H: , (T;0.) =0 on {r(s,) = T}

Then it is sufficient to show

k

1
§ Uz XT n uz *Fuz sk E Uz uz
i=1

as n — oo for any vy, - ,vr € R and uy,--- ,up € R™.
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Let F| = Nyse{Fe V o({Il,},)} for t € [0,7) and Ff = Fr\/ o({Il,},). Then {W;, F{ }o<i<r is also a
Wiener process and {X;(u), Fj }; is a martingale for u € R™. By Theorem 2-1 of Jacod [23], it is sufficient to
show that

(X)) =P wTou, (X, (u), W) =P 0, (X ,(u), N'); =P 0

as n — oo for any ¢ € [0,T], u € R™ and N’ € My(W1), where I'y = — [T 92h3°(0.)ds and M,(W) is the
class of all bounded ]—"f -martingales which are orthogonal to W.
By Ito’s formula and symmetry of M, we obtain

_1 . b .
_bn2 Z aa{Mkl,kg/ Zkl,stkg,s}
0

k1,k2

u.

o=0

Hence it is obvious that (X, N'); = 0 for all N’ € M, (W).
Moreover,

<X7 Wi>t

D DD DT k/ 0L Zy wdl O Zy, Wi

k1,ko vi+vatvz=1

J (k)
oty [
|90k

fori=1,2, where 7(k) =1 (1<k<l,), J(k)=2 (I, <k <l,+m,) and

19, 1, (5)
_ v v J (k) 1\ 1. J(k2) v J (k2) 1 00,k
=3 oL, (|b90 Dl ) b (|bL(902kW(M)‘ ) AN

ko vitvetuvs=1 V ‘00 k2|

;lc,sds + Op(l)

On the other hand, we have
]
(

J (k)
E H - b—% Z /t f(@o,k)s bv’* de Bi: ds
—Jo V100, | °
J kl)dv

1 Z Jeoo.0 N(8,x") b b7 T
= b E[ / / k)sy K )sa B 182, stldsg]
toLf N V100,k]v/160,1| e
t 2
b, 1E[RCZ(MO kk,/ / B, €1||B,2,732|d51d52] < bnlE[RCZ </ |Bz7s|ds> } -0
k 0

k,k’

IN

as n — oo since |9Y(M)g | < CR?(1 — pp)~("F5/2 M |, where My 4o = Z;io(Mp)k,k'/(p + 1)2. Hence we
have (X, W), —P 0 as n — oo for any ¢ € [0, T].
Then it is sufficient to show (X (u)); =P w*T'yu as n — oo for any ¢ € [0,7] and v € R™.

(X))

‘ I (k) 7 (k)
_ o b . b7 lop s (s)
bnlu* Z /6‘7<Mk1,kzzk17sb‘7(7)|)60(Mk3,k4Zk3, ) 0,k3M00,ky
0

k J(k
k1 ko ks s 150,z (5) b 90 4) (o) V100,15 1/160, k4
VA Lgg 1, N0.1, (5)
= b_1 / Bk k Bk & k1,8 ks, by 0k ds + Op(l), (1.30)
K1,k ks ka o ’ 4\/|00 k1|\/|90 k3| \/|90 k2‘\/‘90 k4|
J (k .7 k1) J (k J (k
where Bkl ko — a (Mkl k2|b 90 Ky )/\T(Sn)| 1| 00(;‘1 ( ‘ 1)‘070*1714((002,11),*11' and Z]/i),s = f(QO,k)a‘ bq))>(o< )de

1t6’s formula yields

74, 7, = / 2}, A7), + / 2} dZ + (2} 2L (1.31)
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Moreover, let

. . 7z 1 (s)
k1,0 00,k MO0,k
> Biyks - Br, =

s) = : :
k1, ko,ka \/|00,7€1 | \/|90J€| \/|907k2 ‘ \/‘90,k4| 7

then we have

Jul®

M 1
sup\Fk(U s)| < CRY(1 - pr)~ Z Z s M 10030001, () sup |Zy, ,

ox o 1001y 10 k2 v/ 100y o]

and therefore
/ Esup|Fk(v $)[4I,] 5ds < Clul?|o.x|~ V2N (M MM Vi, e

k1
¢ 2
{( / Fr(v,8)dZ;, vds) Hn]
o Jo

= Z// [ ﬁmz Fi(v, 1) Fpr (v, 52)d(Z}, Zyo )

kK’

Then we obtain

Hn:| dSldSQ

< E[RY)? Z|90k090 k/|/ Sup|Fk(v s1)|*|IL, 4d51/ Esup\Fk/(v $9)|*|T0,]  dso
K,k
§ C|U|4 Z MO)k,k/ Z (MIMoM/)kl7k(MIM0M/)k/1)k/ S C|U|4(ln + mn) = Op(bi)
kK k1, k]
Hence we obtain L
b;lz/ / Fy.(v,8)dZj, ,ds =P 0 (1.32)
= Jo Jo

as n — oo by Lemma 1.11.
By (1.30)-(1.32), we have

¥ b <Z/ Zy > 190k Nbo, (8)
<X>t = b7:1 / Bkl,]% ' k3,7€4 bt = = ds+o (1)
kl,k§3,k4 0 \/|90 k1|\/|90 k3| \/|00 k2|\/|90 k4| :
ket (GG teeale g
> _ ([ r(GGF)P —p2(GG*)P A _( =&, 0
Lp(plap2) = ( —p2 (GGG pi(G*G)P ) ,B(z,y) = ( 0 YEm. > )
D(t) = Y 0o { BB, B Ly(o}", o7 B(BL, BY) |
=0 o=0,
and

o) = (o Bl ) = DOk —p).

where & denotes the unit matrix of size [. Then by [A2] and the estimate P[r(s,) < T] — 0, we obtain

T(ky) 3 T(ks)

- _ 0 s 00,11 )%

(®) = bt Y (D00 k) (D (L (00 1)) iy s —p ot
ki1,k2,k3,kq | L(60,k, ),* || L(00,k, )% |

J (k2) J (ka) t s
bL(9o Ky )o* bL(9o ky )o* f() fo 1‘90,k1 Mo, ks (v)leo,kZOGD,k4 (s)dvds

u—+o0p(1).
67 e e L V180 1/ 100,621/ 100,11/ 10,1,
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Since for intervals K7, Ko, we have

/0 / 1, (0) Ly (s)dvds + / / Ly (0) L, (8)dvds = (K )il | (Ko )i,

then by symmetry of D’, we have

1 bg((ekl) - 'bg((gkg) )
(X) = §b;1u* Z (D/(L(eo,kl)))kl,k2(D’(L(@o,k1>))k3,k4|bj(£1k1 * o j(k(;kl ’ ‘
ki1,k2,k3,ka L(60,k, )% """ L(00,k, )%
bJ(kz) T (ka)

« L0,k )% b L(00,k, ), |(00,k1 n 00,763)75”(00,162 n 00,k4)t|
b7t B V100 118051/ 18051/ 100. 4]

= gb; w Y (D(L(Bog)) weu + op(1).

k;L(60,k)€[0,t)

u+o0p(1)

On the other hand, for p € Z4, x,y € R, p1, p2, p« € [—1,1], we can write

> : 2 _ P?p1(GG*)P — xypop. (GG*)PTL (22p1ps — 2yps) (GGH)PG
B(x, y)Lp(Pla /72)3(33’ y)LO(L _p*) = ( (yzplp* _ xypg)(G*G)”G* y2p1 (GG*)p _ xypgp*(G*G)p“ .

Then for Qtl = (aoBtl,* - 803152,*) + aapt,*/pt,*7 Q? = (803152,* - aUBtl,*> + 8apt,*/pt,*v we have

Di(t)
= > {(23033*/% 2005 prup GG = ((05Bt . + 0B )pint> + (20 + 1) 01, *pf’i“)(GG*)pH}
p=0
= 20,B{.&, +9Q; prﬁ(GG*)p.
p=1
Similarly, we have
Daalt) = 20,8 €, + Q2> (GG,
p=1
and - -
]512@) = _Qf pr}:’_l(GG*)pG, 2521(75) — _Qt Z 2p+1(G*G)pG*.
p=0 p=0

Then by the estimate a, = ¢, (p > 1), [43] and Lemma 1.15, it follows that

<X>t = 5();1 *{ Z (25%1 +2A)12'ZA)21)“(L(IZ)) + Z (25%2 —‘r@zf[)lg)j](L(JJ))}u—|—0p(1)
i;L(I*)€[0,t) 3;L(J9)€0,1)
t
= [ {20,5Pan(s) + 200,82 Peals) + (0L, 0L+ @0, BL) Al
0

(o oo o}

112 2Nl
H0, B2, Q2+ Q20 B2 Alpo,) + BT EE S ST iy, (o)

p1=0p2=0
1\2 2y2 ©
s + S
_~_w Z Z p??*1+2p2apl+p2(s)}dsu+ op(1).
p1=1p2=1
Since

OpA(ps,«) s, OpA(ps,«)Ps,x
Z Z p2p1+2p2+2a1?1+ﬁ2+1(5) = %’ Z Z p2p1+2pza’171+172 (S) = % - A(p&*)v

p1=0p2=0 p1=1p2=1
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we have
i . 1 2\2
(X, = u* /O {Q(ao(s)—i—A(ps,*))(@ngl,*f+2(Co(3>+A(Ps,*))(80352,*)2+(QS—ZQS)apA(pr*WSx*
A (01 - 20,81, + (02 - 20,52.%) basu + 0,01
= uwTwu+o,(1).

Proof of Theorem 1.2.
1. Since A is open, there exists € > 0 such that O(e,0.) = {0; |0 — 0| < €} C A. For &,, € O(e,0.),we have

1
0, Hy (o)) = / 02 Hyy (00 + (6 — ) (6 — 00)du
0

since ,H,(6,) = 0. Therefore, for I',, = —b;* fol 02H, (0. + u(6,, — 04))du, we obtain b,lz/2(6n —0,) =
f’;lbﬁl/Q&,Hn(a*) on {detT, # 0 and &, € O(e,0,)}. Then since Proposition 1.3 and Theorem 1.1 yield
PldetT,, = 0] = 0, P[6,, € O(e,0.,)] — 0 and f'r_tll{dctf‘n;éo} —P I'~1 we have b,l/z(&n —0,) =»E 712N by
Proposition 1.10.

2. Let s,(t) = (1 — py)/2 for n € N and ¢t € [0,7] and {0}, }nen be random variables where o], maximizes
H,(:;s,) and ¢!, = 6,, on {7(sn) = T}. We first show the statement of Theorem 1.2 replacing &,, with o”,.

To this end, we extend Z,,(-;04) to a continuous function which is defined on R™, tend to zero as |u| — oo,
and has the same supremum as Z,(+;0.). We denote the extension of Z,(;0,) by the same symbol.

Let Z(u,0.) = exp(u*TY2N — w*Twu/2) and B(R') = {u;|u| < R'} for R" > 0. Then it is sufficient to show
that limsup,, , .o E[|b}/2(a; —0,)|P] < oo for any p > 2 and Z,(-,0,) =5F Z(-,0.) in C(B(R')) as n — oo for
any R’ > 0, by virtue of Theorem 5 and Remark 5 in Yoshida [54].

By Lemmas 1.14 and 1.1 and Proposition 1.3, for any R’ > 0, there exists ng € N such that

sup sup |0y log Z,(u;04)|| < o0.
n>ng ueC(B(R))

Then by Propositions 1.3 and 1.10 and tightness criterion in C space in Billingsley [8] which can be extended

to the one in C(B(R')), it follows that log Z,(,0.) —** log Z(-,0.) in C(B(R')) as n — oo.
On the other hand, for any p > 2, let L > p, then by Proposition 1.5 and Lemma 1.1, we have

P[bi (o) —0.)| > 7] < P

sup  Zp(u,0,) > 1| < C—f (r>0).
UEV, (r,o4) T

Therefore we obtain sup,, E[|b}/2(o; — 04)|P] < oo. This complete the proof of the statement of Theorem 1.2
for o/,.

We will prove the statement for 6,. By [Al],[A2-q,d] for any ¢ > 2 V ny, and Lemma 1.1, we have
Plr(sn) < T)] = O(b€) for any & > 0. Then it follows that by (6, — 07) —*£ T=1/2A as n — oo by the result
for o], and the inequality

Ploy, # 6] < Plr(sn) < T] = O(b;,°)

for any £ > 0.
Moreover, for any continuous function f of at most polynomial growth, we have

|BIf(by/(6n — 0.))] = Elf(by/%(07, = 0.))]| < C(L+b,/*R") Ploy, # 6] = 0

as n — 0o, where R” denotes the diameter of the parameter space A. O
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Proof of Theorem 1.3. Similarly to the argument in the proof of Theorem 1.2, we have P[H, = H,(;s,)] =
—O(b;,¢) for any & > 0, where s,,(t) = (1—p;)/2. Then by virtue of Theorem 10 in Yoshida [54], it is sufficient
to show that there exists nj € N such that

sup E[(/U (g*)Zn(u)ﬂ(a*+bn1/2u)du) _1} < 0. (1.33)

’
n>mng

By Proposition 1.3 and Lemmas 1.14 and 1.1, for any 6 > 0, there exists p € 2N,p > ny V2, nj, € Nand Cy > 0
such that . R
sup E[|H, (0. + b, "/*u) — Hy(0.)["] < Colul”

n>ny
for any w € U’'(0) where U’(0) = {u € R™;|u;| <6 (i = 1,...,n1)}. Then we have (1.33) by Lemma 2 in
Yoshida [54]. O

1.7.5 Proof of Propositions 1.6 - 1.9
First, we look back Rosenthal-type inequalities in Doukhan and Louhichi [12] (Theorem 3 and Lemma 7).

Theorem 1.4. (Rosenthal-type inequalities) Let ¢ > 2 and q € N. Let {X] }nen be a centered process, ag = 1/4
and
ap = sup sup sup |P(AN B) — P(A)P(B)|
1,jEN,j—i>k A€o (X];I<i) BEo(X/,;m>7)

for k € N. Suppose a, — 0 (k — 00). Then

‘EKZZ)(;)T < QqutiEQ { <Z/ Y An)I1Q! (u )du) % <Xn:/01(oz1(u)/\n)c;)§q(u)du>g },

i=1
where ™' (u) = 3070 Liay >} and Qx-(s) = inf{t > 0, P[|X’| > t] < s}.

Proof of Proposition 1.6.
In this proof, general constants denoted by C' do not depend on n,p, f.
By Lemma 1.2, we obtain

(GG ) v (G*G)P) gy <[HGGEHP [V HGTG)” (<1

for p € Z4. Hence bpvB([ty—1,tx)) < N, — Nj _ +1for 1 <k < [b,], p € Zy and i = 1,2. Therefore we
obtain

sup B[ max  [b2([te_r, tr))| 709 <supE[max(N’ - N} +1)10) < (1.34)
1<k<[b,] PE€ZL+,i=12 k -

for sufficiently large n by [B1-(¢(1 + ¢))].
For h > 0 and k € N, let

" . ,
Ay = Ni=12 Mgt pan-— (@—p)N {W Nivin = Niga-yn > 0},
Apy = Ni=t2 Mg pan—tann (w5 Ni_ g1y — Ni—y, > 0},

P o 2p+1 + 2p+1,—
Ak},h T A “1hT,ty mAb"] ThT tp_1°

where Ny = Q.
Fixp € Zy,i=1,2 and a f—Hdlder continous function f on [0,7]. Then we have

Vﬁ’i([tk—lvtk))lfx;h € Glh—a—[(2p+1)R])VO,(k-+[(2p+1)h]+1)A[bn] -
Let o (u) = X207 g Liapsup, = fip_, 0 = (14+6)/(2(1 + 0 — €5)) and

X = b 2R (s ) L = B2 (e t0)) a1},

¥n Un
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then by Rosenthal-type inequalities, we obtain

E{ q] b9 2q/2q2_1_2 {(Z]/ u) +2[(2p + )b ] + 3)171QY, ((u )du)

(Zl/ o™ +2[(2p+1)b5]+3)QX/()du>q}

[bn]

bt Z X
k=1

IN

Bl

< Cb;q[bn]"/2sup/ (a‘l(U)+2[(2p+1)b5]+3)"‘1Qq/(U)du
k Jo
r_4a 1 145)(g—1 15
< c(p+1)qlb%5‘2</(a1(u))<“‘ )u) (sup/ Q) (w) ) .
0

For sufficiently large n, since (1.12) and (1.34) hold, fo Qq(1+5 (w)du = E[|X}|90+0] (z +1)7 — 27 < ¢'(x +
)71 (2>0,¢ >1) and o Y(u) = k' if o, <u < ap,_,, we have

1 oo
/(a ()qdu—qu (ap_1 —ap) Zk—i—lq_l"
0 k=1 k=0

for ¢ > 1 and

bt Zxk

g

] < CO(p+ 1) 1p8 3 > sup |fif.

On the other hand,
[bn]

gl
k=1

Moreover, by [B2-(qe)], we obtain

q
_J5
} 1ZsupE| Ni,_, + 19005 sup | £ TP(AL )] 755

PR ([t—1,tr))1(ar e
k,bg)

[(AZ bé’) } < 4(2p + 1) zsupo SupP[Nt_;,_[b ] lbé’ NZ = 0] < C(p + 1) q6t5
Hence we have
[bn] ) q _ gesd’
E|: ngyg”([tk_l,tk))(lAp o 1) } <C(p+1)b, g2 sup | fe]?.
=1 k‘,bn
Therefore we obtain
[bn] . . 4
B|| X 02 e t0) )| | < Clot 0 s, (1.35)
k=1
Furthermore, Holder continuity of f and (1.34) yield

q [br]
(fe = fi)dvi! ] < [ wp ()Y (Toa] P ERE ([te—1, k)] < Cb, Puwp(f)?. (1.36)

k=1

[bn] ot

gl
k=171
By (1.35) and (1.36), we have

/ Jrdvht — / fedCE"
0 0

] < C(p+1)q‘1b;q”{sgp|ft|q+wﬁ(f)q}~ (1.37)



50 CHAPTER 1. QLA FOR NONSYNCHRONOUSLY OBSERVED DIFFUSION PROCESSES

Since p € Z4 and i = 1,2 are arbitrary, we obtain [A3’-¢,n] by (1.13) and (1.37). O

Proof of Proposition 1.7.
1. For h > 0 and 1 <i < [b,], let

AP+ +2 .
Ah,t - mnz =1 ﬁle[ 1,pAR=1(T—t)|NN {W Ntr_Hh - Ntr_,_(l_l)h > O}7
AP— +2
Ay = 02T Miepan-tgon AW N{_ g1y, — Vi, > 0},
AP L 2p+1 + 12p+1,—
Az‘,h T A —1hT.t; A bp] = 1hT ti_1"

Then w € flfyj and t;_1 < R(fpx) < t; imply |0, k] < j(dp + 2)[bp] T for w € Q, 1 < k < I, + my,
n €N, 0 <i < [b,] and j € N. Moreover, /Alf’j = Q if j is sufficiently large for each ¢ and p. Therfore, for
AN; =N} =N} +N? = N2 and AP, = AP\ U/ AY

ijr We obtain

E[(®p1)T] = KZ > Hp,k|§1/‘frj>q]SE[(%i]ﬂ(4p+2)[bn]_1TANi1A§$j>q]

i=1 k;R(00,1) € (ti—1,t:] i=1j=1
bn] oo
< [ba]?” 1223 (4p +2)"T*[ba] “*E(AN)* 1 |
i=1 j=1

for p € Z, since {Af’j }jen are disjoint. Then by [B1-(p)q)], [B2-(ps(¢+2)], the Holder inequality and a similar
estimate for P[(A} )] in the proof of Proposition 1.6, we have

E[(®5,1)7] < Cloa] " D>~ (4 + 2 P(AD;_,)]V/P: < C(p+1)° qu{c P+ 1)j P < O(p 4 1)

i=1j=1 j=1
for sufficiently large n.
In particular, by the Holder inequality and Jensen’s inequality, we have

el s i) = 2 e S (25 ) )

Therefore [A4-¢', (1 + 3/¢’)] holds since 1, —P 0 by the next Proposition 1.8.
2. The proof is similar to that of 1. For sufficiently large n, we have

[ba] oo ,
E[<®P17PZ)Q/2] S [bn]z_lE{ZZ ( Z Z ‘eplvkll A |9P2~,k2|10P1+p2,k1m00,k27ﬁ®> 1Af5+2p2+1:|
i=1j=1 " R(00,ky )E(ti—1,t:] k2 1
q on] oo q a. g q
< MNE[Z S ((ps +2)5 A (dpa + 27} ] 4TH (AN,
=1 j—1
: 3
X <Z(N@,i+(2p1+2p2+1)j[bn]—1T)AT - N(vti1—(2p1+2p2+2)j[bn]—1T>vo)) 1Af}7+2pz+1}
v=1 ’
[bn) oo a a L
< ol Y0 ST {(4p1 +2)5 A (dpz +2)7}E{(4py + 4pa + 3)j + 1} P[(AD 3Py,
i=1 j=1

Since (a A b)(a +b) < 2ab (a,b > 1), we obtain

E[(®p,p.)" Z p1+1)% (p2 + 1)29{C(p1 + pa + 1) 72T }7E < C(py + 1)V (py + 1)7/2H,
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which completes the proof. O

Proof of Prop051t10n 1.8.
Let A} = Ajb”_J UT] "+ for j € N. Then since r,, < 2jb,t on Aj, for sufficiently large n, we have
{ ZlA/\UJ 4 a ] < S @by )IPI(A) 1)) < Ot g [TV < OB,
j=1

j=1

where Aj) = (). O

Proof of Proposition 1.9.
By [B2-q], there exists N € N such that

(1.38)

) 1
sup max sup PIN{ N1 ~- N/ =0]< 3

n>no =12 0<t<T—N[b,] 1T

For M = [b,/3N], h = [b,] T and sy = 3kNh, we have

17 InJp 1 M 7N J?
= — dt = —P lim = —P-lim b ! —_ .
“ T/o “ nosoe Z o STkt Y 177]

k=11,J;L(I)€[sKk—1,5k)

Let
A0 A7 2,+ 1,— AT _ A i—1 713’
Ak - (2)7 A?e - Ajh Sk N A]h Sk—1’ A?c - Age \U;IZOA?C )
and

E, = ml3=1{N31k—1+lNh - Nslk,1+(l—1)1vh > 0}

for 1 <k < M and j € N. Then for sufficiently large 7, Ai = . Moreover, for sufficiently large n, we have
inflgkgj\/j P[Ek] Z 3/4 by (138) and

11N J)? > [0 TP
2 oo 2 X 2 GNTIRGN I

I,J;L(I)€E[sk—1,5k) J=11,J;L(I)€[sk—1,5k)

(N 4 5) 72

j=1 LJL(I)€E[sk—1,51)

For r € N and u > 0, we have 22 + ... + 22 > u?/r when x; >0 (1 <i <7), 21 + ...+ 2, > u. Hence

= (N +5)"2 (Nh)?1ylp,

Z [InJ? Z
2 1 2 ’
LJ;L(I)€E[sk—1,5%) 111 = 9% AN +AN;+1

where AN} = N — N! (1 <k < M,i=1,2). Then we obtain

bl [N JJ2 > & N? Lig e,
> bt X! h X! 1.
Z g =" Z:Z ik Wk T 9T (N + )2 AN + ANZ +1 (1.39)

On the other hand, Theorem 1.4 and a similar argument to the proof of Proposition 1.6 yield

- (x ;0[] < __Cba
Pl S| | < s

for 7 € N and sufficiently large n. Therefore

co M
b Y N (X TR =P 0 (1.40)

j=1k=1
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as n — o0
(1.39) and (1.40) yield

oo M
ay > limsupb, ! ZZE[ k- (1.41)

n— 00 J=1 k=1

Furthermore, since {AN]i}lSkgM,i:LQ,nan are tight by the assumption, there exists R > 0 such that
SUD,, >, ki P [AN} > R'] < 1/8. Consequently,

sup P[(AN}+ANZ +1)7' < 2R +1)7'] < 1/4. (1.42)
n>ni,k

On the other hand, by [B2-¢], we obtain

P02 ndl] < PIADT<6 swp PING,, — Nj =0/ <0

n>ng,t,t
for J € N and n > ng. Thus, there exists J which does not depend on n, k such that

PlUL A =1- P U, 4] %. (1.43)

Therefore by (1.41),(1.42),(1.43) and the estimate infy << P[Ex] > 3/4, we obtain

N2 1 1 N2QR +1)7' 1
> byt M o= Py
MZ9TT(N + )2 PP MoRTT1 4T 36TJ(N + J)2 3N



Chapter 2

Quasi-Likelihood Analysis for diffusion
processes with jumps

2.1 Introduction

Given a probability space (€2, F, P,~) with filtration F = (F;)icr, , let X = {X;};er, be a d-dimensional cadlag
F-adapted process satisfying the stochastic differential equation

{ dXy = a(Xe—,0%)dt +b(X—,0*)dW; + [ c(Xe—, 2,0%)p(dt, dz),
(2.1)

Xo =g,

where x( is a random variable, {W;}¢cr, is an r-dimensional standard F-Brownian motion, and p(dt,dz) is a
Poisson random measure on Ry x E, E = R%\{0}, with compensator ¢° (dt,dz) = P.-[p(dt,dz)]. We assume
Fi, o(Wy — Wy;u > t) and o(p(A); A C (t,00) x E is a Borel set) are independent for any ¢ > 0. We denote
a* = (0*,0%) for the two statistical parameters o* € II C R% and §* € © C R% which are unknown to the
observer. On the other hand, the coefficients a and ¢ are assumed to be known R?-valued Borel functions defined
on R% x © and R? x E x O respectively, and b is a known R? @ R"-valued Borel function defined on R¢ x II.

We want to estimate a* = (¢*,0*) from the discrete observations {Xty}ogigm where t' = ith, h = h,,.
In this chapter, we will present a quasi-likelihood analysis for jump diffusion processes. First we propose a
quasi-likelihood function and then show the asymptotic normality of the quasi-maximum likelihood estimator
and a Bayes type estimator based on it.

Recently, jump diffusion models are becoming powerful tools to model various stochastic phenomena in many
areas such as econometrics, physics, biology, and so on. Numbers of studies worked with jump diffusion models;
for example among vast literature, we refer the reader to Prakasa Rao [38] and Cont and Tankov [10] and also
references therein.

An earlier work of estimation of discretely observed jump diffusions is in Shimizu and Yoshida [43, 45, 46].
They proved consistency and asymptotic normality of the quasi-maximum likelihood estimator, under A — 0,
nh — oo and nh? — 0. Differently from diffusion models, one of the difficulties caused by the existence of jumps
is that the observer cannot distinguish the increments of the data with jumps from those without jumps though
classification of increments is necessary to assign each increment to the diffusion/jump likelihood function, when
a likelihood analysis is executed. To solve the problem, they proposed a discrimination filter, which enabled to
discriminate asymptotically between increments with jumps and increments without jumps. After that, Shimizu
studied M-estimation for infinite activity jump processes in [42], and nonparametric estimation of density of
Lévy measure in [43]. It should be noted that Mancini [30] independently presented consistent estimation of
the characteristics of jumps for Poisson-diffusion model.

We construct a quasi-likelihood analysis for stochastic differential equations with jumps. For this attempt, we
will take a general approach by the convergence of the statistical random field associated with the quasi-likelihood

53
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function. In the philosophy of the Ibragimov-Has minskii-Kutoyants program (Ibragimov and Has'minskii [20—
22] and Kutoyants [25-28]), we expect that the asymptotic properties of statistics based on the quasi-likelihood
function can be derived in a unified way once the convergence of the statistical random field is established with
a large deviation estimate for it. Though the Ibragimov-Has’minskii-Kutoyants program features it, the large
deviation inequality becomes a technical obstacle, as explained in Yoshida [54]. However recently we obtain
a methodology to produce a polynomial type large deviation inequality systematically. It is a general way
independent of any particular nature of stochastic processes; inevitably we can apply it to the quasi-likelihood
analysis for jump-diffusion processes, as we will do it in this article. We refer the reader to Yoshida [54] for
details and a construction of the quasi-likelihood analysis for diffusion processes.

The Bayesian analysis reflects the advantage of the quasi-likelihood analysis so constructed. That is, we
propose a Bayesian type estimator for the jump-diffusion and derive its asymptotic behavior. It becomes
possible by our methodology. We also obtain certain tail probability estimates of the quasi-maximum likelihood
and Bayesian estimators, which yield the convergence of moments of those estimators. The convergence of
moments plays an essential role in key steps of theoretical statistics, for example, the asymptotic expansion of
statistics, the theory of information criteria and the theory of prediction. For instance, the correction term of
AIC, which is defined as the bias of the estimated Kullback-Leibler divergence of the predictive distribution,
is validated as the expectation of the square of the scaled maximum likelihood estimator though mathematical
backing in this rigorous sense has been neglected in most of literature even in i.i.d. settings.

In Section 2.2, we describe a quasi-likelihood function for the jump-diffusion model, and state the assump-
tions. Shimizu and Yoshida [46] assumed that the Lévy density fy satisfies fo(2)1{.j<;} < K|z|7 for some
v >3, r>0and K > 0. The condition on v in Shimizu and Yoshida [46] is weakened in this paper to admit
models in which fy(z) = O(1) near the origin, such as a normal distribution. We present the main theorems
on the asymptotic normality and the convergence of moments of any order for the quasi-maximum likelihood
estimator and a Bayesian type estimator with respect to the quasi-likelihood. Section 2.3.1 gives an exposition
of the polynomial type large deviation theory in Yoshida [54]. Then the main theorems are proved in Section
2.3.2.

2.2 Quasi-likelihood and asymptotic property of the estimators

In this section, we will present the main results on the asymptotic properties of the quasi-maximum likelihood
estimator and the Bayesian type estimator. In order to define the quasi-likelihood function (2.3)-(2.4) below,
we introduce certain functions, for which we need precise descriptions in a sequence of assumptions below. The
quasi-likelihood function looks involved due to the truncation function ¢,,. However it is unavoidable in general
because the sampled data are only available and the substitution of them for the continuously observed data
breaks the function of the compensator; consequently we would meet many problems of divergence without
truncations. On the other hand, too strong truncation would cause lack of efficiency. The balance is important
and it is far from straightforward. This is the reason why we set a rather long sequence of assumptions before
introducing the quasi-likelihood function. However, in some ”good” cases, we can omit ¢,. See Condition
[H10].

Now we detail the setting and notation. We assume that ¢° has a representation ¢% (dt,dz) = fg-(2)dzdt
with a density fg(z) disintegrated as fo(z) = A(0)Fy(z) by a nonnegative function A(6) and a probability density

9 el o 2 8?2
Fy for § € ©. For a vector k = (K1, ks, ..., k), we denote 0, = (871’ a—m,...,a—m), 0z = (W)lﬁw‘ﬁl and

93 = (Wiam)lgi,j,kg. It will be assumed that the full parameter space = = 11 x © is a bounded open subset

of R% x R%, and that =, II, and © admit Sobolev’s inequality. An open set U C R™ is said to admit Sobolev’s
inequality if for any p > m, there exists a positive constant C depending U and p, such that

sup |u(z)] < C Z [OFu()|l,

zecU k=01

for all u € CY(U). It is the case if U has a Lipschitz boundary.
We will use the following notation: 8(z,0) = b(z,0)b? (z,0) for o € II. For S C R™, S denotes closure

l l
of S. For k= (kijh<ij< and ¢ = (tijr)i<ijr<t, we define [s| = /37,y k3 and |o] = /375 oy L
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respectively. For a function g defined on R? x =, we write g;_;(a) = 9(Xin o), AXP = Xin — Xy [ AXy =
X; — Xi—, Xin(0) = AX? — ha;—1(0) and X;,, = X; ,(6%). We abuse the notation and write F;_1 = Fir
Let £ € N and u, be a sequence of positive numbers. Denote by R = R, : Ex R x RI x Q — R¥ a
sequence of random functions for which there exists a constant C such that |R(a, u,, )| < u,C(1 + |z])¢ for
all a € 2,2 € RY n € N,w € Q. Moreover, in the case that k = 1, let R(cv, up,z) = 1 — R(, up, ). We use the
symbol C for a generic positive constant varying from line to line. The symbols R(«, u,, z) and R(a, Up, T) are
also used to express generic variables that satisfy the inequality as above. Let C (R™) be the space of continuous
functions on R™ that tend to zero as |x| — oco. Equip C (R™) with the supremum norm. For nonnegative
sequences {an, }nen and {b, }nen, an = b, means that there exists C' > 0 such that a,, < Cb, for all n € N. We
denote E for expectation with respect to Py«. Let n=3/5 < h <n=*/7 for h =h, > 0,0 < b < 1/8 and let {¢,}
be a sequence of positive number such that ¢, — 0,
b
\/fh v i <1, and 1=n’h%ef. (2.2)
€2 €n

For example, b = 1/10 and ¢, := h'/1S.
We consider the following conditions to obtain the main results.
[H1] For some constant L and function ((z) of at most polynomial growth in z,
la(z,0%) — aly, 0%)| + |b(z, ™) = b(y, 0™)| < L|z -y,
le(x, 2,0%) = c(y, z,07)| < C(2)[x —yl, le(x, 2,07)] < ((2)(1 + [=]).

[H2] The process {X;} has the exponential a-mixing property, i.e., there exists ¢ > 0 such that,

1
sup sup |Po-[AN B] — Py [A]Po+[B]| < —e~"  (h > 0).
teRy Aco[X,:r<t],BE€Ec[X,:r>t+h] c

Moreover, we will assume the stationarity of X for simplicity.

The ergodicity of X follows from [H2]. Denote by 7(dx) the invariant probability measure, i.e.,

T
% /O F(X,)dt —F / () (dz)

as T'— oo for any m-integrable function f. For the exponential mixing property [H2| of a jump diffusion process
and the following condition [H3], we refer the reader to Masuda [32] and [31].

[H3] For every p > 1, sup,~ E[|X¢|P] < oo.

[H4] For each o € II, the derivatives 9%b(z, o) (k = 0, 1,2) exist on R? and they are continuous in x. Moreover,
for fixed z, the derivatives d)a(x, ) and dLb(z,0) (I = 0,1, 2,3,4) exist and continuous on © and II respec-

tively, and a and b can be continuously extended to © and II respectively, for any = € R?. Furthermore,
a, b, and their derivatives are of at most polynomial growth in x uniformly in a:

|0Fb(x, o), |0ha(x, 0)], 0L b(x,0)] < C(1 +|2))¢ (z € RY, a € 2),
for1=0,1,2,3,4,and k=1, 2.
[H5] There exist constants r > 0 and K > 0 such that fy«(2)1{./<,3 < K|2|'™%, and that
sup/|z\pf9(z)dz < 00
0c©

for all p > 1.
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[H6] For each (0,z), the mapping z — y = c(x,z,0) is an injection from E into E and has an inverse
z = ¢ (x,y,0) from the image of ¢ onto E, which is differentiable with respect to y. Furthermore, the
set B(z) :=Im(c(x,-,0)) = {y € E; there exists z € E, such that y = ¢(z, z,0)} is open and independent
of § € ©, and the set {(z,y) € R¢ x E;z € RY, y € B(x)} is a Borel set. Moreover, for the absolute value
J(x,y,0) of the Jacobian of ¢~*(z,y,6) and

Vo(y,2) = folc ' (2,9,0))J(2,y.0) (y € B(z),z €R%,0€0),
the set A(x) = {y € B(x); Yg(y,x) # 0} does not depend on 6.

[H7] There exists positive constants co and r; such that |y| > colc ™ (x,y,0%)| for any € R? and y €
B(z) N {y; lyl <}

[H8] inf, cga ,en det B(z,0) > 0.
We assume that Wy of [H6] admits an extension to £ x R? in such a way that Wy satisfies [H9]-[H12] below.

[H9] The function Wy(y,x) has derivatives 95 Wy(y, x), 0,05 ¥q(y, 2)(k = 0,1,2,3,4) in (z,y,0) G_Rd x E x 0O
which is continuous in y, and for € R%, y € E, Uy (y,x) can be continuously extended to ©. Moreover,
for z € R and k =0,1,2,3, 4,

IN

/ sup [ Wy (y,2)dy < C(1+|z])°,
B

(z) 0€©

/ sup |04 log W (y, 2)| x To- (y,2)dy < C(1+|a])C,
A(z) 6€©

sup / 108 log Wa(y, 2)|? X Wo- (g, 2)dy < C(1+[2])C,
0€0 J A(x)

sup/ |00 log Wo(y,z)|' x Wo-(y,x)dy < C(A+[2z))° (I=3,4).
0€© J A(x)

Let 9% log U 0,0% log ¥ =— k=0,1,2,3.4).

€ p 108 G(yvx) ‘I’e(y,x):O, yOp 10 B(yv'r) Wy (y,2)=0 o8} ( ydy4,9, )

As anticipated at the beginning of this section, we need a sequence of truncation functions.
[H10] At least one of the following two conditions holds true.

1. There exists a sequence of real valued Borel functions {p,(z,y)}neny on R? x E, possessing the
following properties: 0 < ¢,, < 1, and there exists M > 0 such that ¢, (z,y) = 0 whenever (z,y) €
D,,, where

M1+ |z)M
E n

M1+ |z)M1+ |y)M
UUi—o {(:L’, y)e RY x E;sup |6y6§ log Uy(y,x)| > (L+] |)k+1( lv) )
ISC] €n
Moreover, ¢, is differentiable with respect to y, 0y, is continuous in y,

Oyn =0 on D,, and sup  [Oyon| = O(e;h).
zeRI ye E

2. It holds that |8.0f log Wo(z, y)| < C(A+[y)C (1+|z)° (x e RY,y € E,0 € ©,1=0,1, k =10,1,2,3,4).
In this case, we set ¢, = 1 and €, = h16"\b.

[H11] There exists a > 0 such that

sup [ 105 log Wo(y. )] x Wo- (5. )(1 ~ pu(e.p))dy < Ch*(1+[o]) (k= 0.2).
00 J A()
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sup / [Wo(y,2) — o (5, 2)|(1 — pn(, y))dy < Cho(1 + [2])C.
0€6 JB(z)

/B 80001~ )y < O (1 5[]

The condition [H9]-[H11] are rather complicated in the case that [H10] 2 does not hold. The conditions [H9]-[H11]
are satisfied if there exist constants a1, ag, as,as > 0 such that the following [G1] and [G2] are satisfied.

[G1] The function ¥y (y,z) has derivatives 95 Wy (y, x), 9,05 Uy(y, ) (k =10,1,2,3,4) in (z,y,0) € Ré¢x Ex©

which is continuous in y, and for x € R%,y € E, Wy(y, ) can be continuously extended to ©. Moreover,

sup 0f log Wo(y, x)| < C{lyl" v [loglyl|** }(1+ [#])° (v € A(x)),
e

1
sup [0,05 log Wo(y, @) < C{ly™ v — (1 + o) (y € Alx)),
0€O ly

sup 05 a(y,x)] < Cem W1+ |logly|)* (1 + |2)° (y € B(x)),
€
forz € RY k=0,1,2,3,4.

[G2] There exist a sequence of real valued Borel functions {¢,(z,y)}nen on RY x E and positive constants
{e;}2_, such that ¢; < ca, 3 < ¢4, €, <h®, 0 < ¢, <1, and for z € R? and n € N,

. Cq
on(z,y) = 0 if |yl > ey T ly| < cién,
€
. " Cc3
L)077,(3372/) = 1 lf Co€np S ‘yl S Wa
€n

for large n. Moreover, ¢, is differentiable with respect to y, 9y¢,, is continuous in y and

sup  [dypn| = O(e, ).
z€RL ye E

Define Y! and Y? as follows:

Y(o;0%) = %/tr (Ig— B (z,0)B(z,0)) m(dz) — %/log mw(dm),

and

Y2(9;a*) _% /(G(ﬁ,e) - a(xae*))Tﬁ—l(xaU*)(a(x,ﬁ) — a(z,0"))m(dz)
+//A( )(log Uy(y, ) — log o (y, 2)) U= (y, z)dym(dz)

_//B( )(\IIG(yal')—\I/g*(y7x))dy7r(dx)
= 5 [(ale.) ~ ala,07)7 5 2,0%)a(w,6) - alw, ) r(do)

+ / / (log o (y, &) — log o (y, 2)) U- (y, 2)dym(dz) — (M) — A(6°)).
A(z)

[H12] There exist positive constants x(a*) and x'(a*) such that
Yi(o;0*) < —x(a*)|o —o*|* forall o €ll,

and
Y2(0;0) < —x'(a*)|0 — 0% forall 6cO.
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Let D > 0 be a constant! and let p satisfy

5 +b<p< =
3 SP< 3
where b is the constant in the definition of €,. Our quasi-likelihood is given by

Ly(a) = exp(Hp(a)), (2.3)

where

1 & _
H, (a) ~3 Z (0)Xin(0)1axr|<Dhry

—_

52 logdet Bi—1(0)1{jaxr|<Dhr}

+Z{10g Uo(AX], Xir )hon(Xen s AX])1(jaxn>Dhe}
=1

—h Z/ oy, Xen )pn(Xer |, y)dy. (2.4)

B(Xyn |

The above quasi-likelihood function is slightly different from that of in Shimizu and Yoshida [46] by technical
reasons.

The intuitive meaning of H,, is the following. If no jumps occur in the interval (¢ ;,t?] then we have

i i
AXT = / a(Xo,07)dt + / b(Xo— . 0")dWs ~ @y (67 + by (0") (Wi — Wer ), (25)
tr tr

1—1 1—1

and the conditional log-likelihood function of the variable of the right-hand side corresponds to the first two
terms of H,, without a constant term.

If the process {X;} jumps only once in the interval (¢ ,,t?] at the time 7* and ¢(z, z,0) = z, then we obtain

AXP ~ AX,n, (2.6)

for sufficiently large n since the diffusion part of AX/ is negligible compared with the jump part. The distri-
bution of the variable of the right-hand side of (2.6) corresponds Fy« and we have

log Fy« (AX]') = log Ug- (AX) — log A(6"). (2.7)

The first term of (2.7) corresponds approximately to the third term of H,,.
Therefore, H,, is the quasi-log-likelihood function that if |AX| < Dh? then H, judges no jumps occur in
the interval (¢ ,,t?], and if |AX"*| > Dh” then H, judges a jump occurs in the interval (¢! ,,t?]. We refer

the reader to Shimizu and Yoshida [46] for more detail of the rationale of the derivation of H,.

We define T'! (6*) and I'?(a*) as follows:

I''(e*) = %/tr(@iﬁ_l(x,0*)6(3:,0*))7?(d1:)+%/aglogdet,é’(x,a*)ﬂ'(dm)
5 [ (571058710, 5(w,0")m(d)

2

IWe may set D = 1 in what follows. It is theoretically the same, however the choice of D will have a practical meaning.
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I?(a*) = /8@@ z,0%) 8 (&, 0*)dpalx, 0% )r(dr) //B( )89\1'9*(30 ,y)dym(dz)
—// 03 log Uy- (y, x) Vg« (y, x)dyr(dz).
A(x)

= /89aT(x,0*)B_l(x,a*)8ga(ac,0*)7r(dx)
(D9 Vo~ (y, x))?
= dyr(dx
// \110* Yy, r ) Y ( )
Let (c}n,én) be a quasi-maximum likelihood estimator for H,, i.e., (&n,én) is a random variable and

H, (60,0,) = max, g gee Hn(o,0). Let G, = (v/n(6n —0%),V nh(f, — 0%)), and @ be a random vector which
follows a normal distribution N(0,diag(I'(a*)~1, T%(a*)71)).

Theorem 2.1. Suppose that [H1] — [H12] are fulfilled. Then i,—® i as n — co. Moreover E[f(i,)] — E[f(1)]
as n — oo for any continuous function f of at most polynomial growth.

We also discuss consistency and asymptotic normality of the adaptive Bayes type estimator. Let
T1n, T2, be prior densities of o and 0 respectively and parameter spaces II and © are convex sets. We as-
sume 0 < inf,emrpconen(Tin A Ton) < SUPsergeo nen(T1n V T2,n) < 00, and {7k n}nen is equicontinuous
(k = 1,2). Then the adaptive Bayes type estimators (&n,én) for (o,0) with respect to the quadratic loss
function are defined inductively by

On

/aexp(H (a,@*))wlm(a)do'/{/nexp (Hn(a,a*))m,n(a)da}

b, = / 0 exp (Ho(3n,0)) w2 (0)d0 / {/ exp (Hy (3, 0)) ng,n(e)de}
where 6* is an arbitrary dummy value of 6. Let
in = (Vn(6n —0*),Vnh(6, —0%)).

Theorem 2.2. Suppose that [H1]—[H12] are satisfied. Then ti,—%i as n — co. Moreover, E[f(i,)] — E[f(1)]
as n — 0o for any continuous function f of at most polynomial growth.

Remark 2.1. As there is flexibility to choose parameters D, p, m, 0* and the function p, which satisfies the
assumptions of Theorems 2.1 and 2.2, the choice affects estimation results for finite n in practice. In particular,
the choice of the threshold DhP is important because we might detect no jumps in any interval if we set a too
high threshold, and we might judge that jumps occur in all intervals if we set a too low threshold. The problem of
the choice of the threshold seems difficult and there seems no deciding theory yet. However Shimizu [44] argued
about a method of selecting a threshold with a certain criterion.

Remark 2.2. Though the quasi-likelihood function H, and the estimators (6n,én) and (5n,§n) are defined as
functions on (Q, F, Py« ), we often regard them as functions on the state space.

We will show some examples of models which satisfy [H1] — [H12].
Example [Lévy OU processes| Let d = 1, ¢, = /16, 0 < R; < Rf (1 <i<5). Suppose that {X,} satisfies
dX; = —aX;_dt + odW, —|—/ zp(dt, dz),
E

where (a,0) € (R], Rf) x (R, R}) and X follows the invariant probability measure 7.
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(i) Let
aﬁ B—1_—az
fg(Z) = /\I‘(ﬁ)z € 1{Z>0}7

where 0 = (a, \, o, B) € (R}, Rf) x (R3,R3) x (R;,R}) x (1, RY). Then
log Uy(y) =logA+ Bloga —logT(B) + (B8 —1)logy —ay (y > 0).

Moreover, we take a function p(x) such that p € C*(R), 0 < p<1,p=1on {|z|] <1} and p =0 on

{]z| > 2}, and
1—p(£)—p(2 0
= { 1A () (0
for large n. Then this model satisfies [H1] — [H12]. The symbols I'! and I'? become
1 *\ 2
(o) = (0%)2
and
p2/(0*)* 0 0 0
o 0 1/2* 0 0
FQ(a ) - 0 O )\*,6*/(&*)2 —)\*/Oé* 9
0 0 =X\ o NH{I(BF)I(BY) — ('(8%))}/(D(B%))?

respectively, where pio = [ 2?7(dz). For the Levy OU process, 7 can be calculated explicitly. See Sato [40]
and [41] and Wolfe [55].

(ii) Let
- 1 (Z — 91)2
Jo(2) = A eXp{ 20, }
where Ry, R} >0, 0 = (a, \,01,02) € (R, R) x (Ry,Rf) x (=R}, Ry) x (R5,R). Then
VRY:
log Uy(y,x) = log A — M - 110g(27rt92).
20, 2

In this case, [H10] 2. holds. So we can set ¢, = 1. Then this model satisfies [H1] — [H12]. Let
no= Y, l{jaxr|>pney- Then the quasi-maximum likelihood estimator (G, dn, An,01,n,02,,) can be
calculated as

1 n
~2 _ n ~ 2
Op = h(n — n1> ;(AXZ + anhXt?71) 1{‘AX?‘§D}LP}’
an = - (Z XtLAXfl{mx,@LKDhﬂ}) / (hZXQ;ul{MX;LKDhP}) v
i=1 i=1
VL :iiAX."l 0 :if:(AXﬂ—é )21
n nh? LT o i—1 i 1{|aAX"|>Dhe}s U2 0y 2 i 1,n)" L{|ax7|>Dhe};

if 0 < ny < n and the parameter space Z is sufficiently large to contain this point. The symbols I'' and

I'?2 become
o 1 X A

CRRPSAFTA
where py = [ 2?7(dz). So by Theorem 2.1, the asymptotic distribution of (v/n(6, —o*), vV nh(f, —6*)) for
the quasi-maximum likelihood estimator (6., 6,,) becomes N (0, diag((0*)2/2, (0%)2 iz, X*, 05 /X*, 2(05)%/\*)).

I'(a*) = ——=, T?(a*) = diag(
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2.3 Proof of the main results

In this section, we will prove Theorems 2.1 and 2.2. For this purpose, let us begin with a few basic results on
the polynomial type large deviation inequality and its applications to the quasi-likelihood analysis. This scheme
is applicable to various stochastic structures, in particular it works well for nonlinear stochastic processes.

2.3.1 Polynomial type large deviation inequality and the quasi-likelihood analysis

To show consistency and asymptotic normality of the quasi-maximum likelihood estimator and the Bayes type
estimator, we will use the method in Yoshida [54].

Let © C R™ be bounded open set admitting Sobolev’s inequality, while T is an arbitrary set. We apply the
quasi-likelihood analysis based on a random field H,(,7) : Q x © x T — R, that is C* on © and continuous
on O for every w € Q and 7 € T. Let {a, }nen be a sequence of positive numbers such that a,, — 0 as n — oo.
Set b, = a,?, & = (0*,7*) € ©x T, and U, = {u € R™;0* + a,u € ©}. We consider the ratio of the
quasi-likelihood functions defined by

Zn(u,7;0%) = exp{Hp (0" + apu,7) — H,(0*,7)} (w€ Uy, m€T).

Corresponding to the log likelihood function and the observed information in likelihood analysis, we also set

Yo (0,7:0%) = = (Hy (0,7) — Ho(0",7)),

n

(=l

and I',,(0,7) = —b,102H,(0,7) (# € ©,7 € T).

The key of our arguments is the so-called polynomial type large deviation inequality. In order to derive it, we
will assume several conditions, however, they are rather mild compared with the assumptions to ensure the usual
exponential type large deviation inequality. In the conditions stated below, T'(7;£*) and Y (6, 7;0*) are given
deterministic functions and the latter satisfies Y (6*,7;0*) = 0. Suppose that L > 0, o > 0, 5 = o/(1 — «),
0 < f1 <1/2,02>0,0< p; <1andps > 0. The following conditions [P1]-[P5] are the conditions
[A17],[A4],[A6],[B1],[B2] in Yoshida [54], respectively.

[P1] For M3 = L(8 — p1)~ %,

Ms
supE | | bt sup |05H,(0,7)] < 00.
neN (8,71)€©XT

Moreover, for My = L( 261 p1)" 1,

11—«

sup E {sup(bgﬂFH(G*,T) — F(T;f*)|)kj4:| < 0.
neN TET

[P2] p1 < BA 26, a < pg/2,and 1 — 285 — py > 0.

1-a?

[P3] For My = L(1 — p1)~ ",

sup £
neN

My
(sup |an89Hn(9*,7')|) ] < 0.
TET

For My = L(l — Qﬂz — pg)_l,

M
sup &/ sup 52_62|Yn(97759*) =Y (0,7;07)] < o0.
neN 0€O, T€T

[P4] The matrix I'(7;£*) is positive definite uniformly in 7 € T.
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[P5] There exists a deterministic and positive number y such that
Y(0,7:0%) =Y(0,7:0%) - Y (0", 7:07) < —x|0 — 0"
forall e ©®andall 7€ 7.

The following theorems are Theorems 3, 5 and 10 of Yoshida [54]. Here we give a simplified version of them.

Theorem 2.3. Suppose that [P1]-[P5] are satisfied. Then there exists a constant Cr, > 0 such that

. ) Cr
Pe- sup Zn(u,m30%) > e /2 gT—L

(u,T)EV, (r)xXT

(2.8)

for alln € N and r > 0 where sup ) = —oco, and

Vo(r) = {u e R™; 0" + ayu € ©,|u| > r}.

Let ©; C R™* be bounded open set (k =1,2,...,K), 0 =01 XO3x...xOk, m = 25:1 my. Let {aF}en
be positive sequence such that a®¥ — 0 (n — 00), a, = diag(all,,,...,aXI,, ). Set

Zn(u;0*) = exp{H,(0" + a,u) — H,(0%)} (u€U,),

where I; denotes a unit matrix of rank I. We extend Z,(-;6*) to a function in C'(R™) so that its norm is
not greater than that of Z,(-;0*), and denote it by the same symbol. Let 6, be a random variable and
H,(0,) = maxycq Hn (), and let a, = ((a,) ™' (0, — 6%)).

Write B(R) = {u € R%; |u| < R} for R > 0.

Theorem 2.4. Assume the following conditions.

(1) There exists a random function Z(-;0*) in C(R™) such that for every R > 0, Zy(-;0*) =% Z(-;6*) in
C(B(R)) as n — co.

(2) There exists a measurable mapping G that is a unique mazimum point of Z(-;0%) a.s.

Moreover, we assume that for any L > 0, limsup,,_, o, ||tn||L < o0.
Then i, —% 4 as n — oo, and E[f(i,)] — E[f(d)] as n — oo for any continuous function f of at most
polynomial growth.

The adaptive Bayes type estimator for parameters 0y (k =1,..., K) is generally defined as follows. Let
be a prior density of the parameter 0, foreach k =1,..., K. Let 8, = (01,0, ...,0;) and 0 = (0k, 041, ..,0K).
We assume 0 < infg, co, nen Tin < SUDPg, coy.,neN Tk < 00, and {7 n tnen is equicontinuous (k =1,..., K).

Then the adaptive Bayes type estimators (0xn)r=1,... i for parameters (0;)r=1,... x With respect to the quadratic

loss function are defined inductively by

.....

1
Okn = {/ eXp(Hn(ek1,n,9k,92+1))Wk,n(ek)cwk}
O

X O exp (Hn(ék—l,nv Ok 9_2+1)> T n Ok ) dOr,
Ok

where % 41 18 @ known dummy value of 01+1. By convention, we neglect 6, and Ok 1.

Let ©,{04}E |, H,(0) and {ak},cn be the same setting as above and we assume Oy is convex for k =
1,2,..., K. We denote V,*(r,0;5) = {u, € R™*; 0% + afuy € O, lug| > 7}, u = (u1,...,ux), and

ZE (ur; 04,1, 05, Op1) = exp{H, (041,05 + aFug, O 1) — Hy(0)_1, 05, Op1) }-
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Let (é;@’n)kzl,m,;{ be adaptive Bayes type estimators for parameters (0y)x=1,... x with prior densities {7 » }nen1<k<k-
We denote

iy = (ag) " (Orn —07)
-1
= (/ ZE(up; Oy s O, O 1) e (05 + aﬁuk)duk>
Uk (63)

x/ wn Z8 (i By 01 BV (6] + ) s,
Uk (6;5)

1
up = (/ Zk(uk;ﬁ*)duk> / uka(uk;G*)duk,
R™k R™k

KYand @ = (@,...,4x), where UX(07) = {u, € R™*; 07 +akuy, € O} and Z* is a random field

Theorem 2.5. Assume the following conditions.

(1) For every k = 1,...,K, ZF(-;0%) € C’(Rm’“) and for every R > 0, (Zyli(uk;ék_LmoZ,9_1:+1))k=1,...,K —d
(ZF(ug; 0%))k=1.... 1c in C({u;|u| < R}) asn — oo.

(2) For any L > 1, there exists C, > 0 such that

Pe | swp  ZN(uisOy 1, 00,0050 2 e 3

uR€VE (r,05)

forallne N, r >0, and k=1,2,... K.

(3) For some N € N,

-1
sup F / ZF(u; 051 1y 05, 05 Thn (07, + anug)du < 0.
n>N Uk (67) ’

Then

an—>da as n — o0,

and

Elf(an)] — E[f(a)],
as n — oo for any continuous function f of at most polynomial growth.

Theorem 2.3 implies that the polynomial type large deviation inequality (2.8) is obtained by some mo-
ment conditions on the contrast function H, and its derivatives and regularity conditions [P4] and [P5].
The polynomial type large deviation inequality will be necessary in application of Theorem 2.4 to check that
limsup || @y ||L< oo for any L > 0 and in application of Theorem 2.5 to check Condition (2) above. These
conditions are immediate consequence of (2.8) and control a probability that |&,| becomes large. This control
plays an essential role in the proof of convergence of moments of any order for 4, and the convergence of the
Bayes type estimator. The rest of this chapter is mainly devoted to verifying the moment conditions [P1] and
[P3] for parameters o and 6 in order to obtain the polynomial type large deviation inequality.
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2.3.2 Proof of Theorems 2.1 and 2.2

As the first step, we will apply Theorem 2.3 to o as “0” and 0 as “7” there. In this case, “I';,” and “Y,,” in
Theorem 2.3 are as follows:

Il(o,0) = —%83Hn(a, 0)

1 n_o - ~
= %ZXiT,n(e)agﬁiJ1(U)Xi,n(9)1{mx;wgmp}
i=1

1 n
to Z 92 logdet B;—1(0)1{jaxr|<Dhe}s

i=1
and
1
Yo(o,0;0%) = ﬁ{Hn(a,O)—Hn(a*,H)}
1 -5 _ 1wy
T 20k D X087 (0) = B4 (0"} Xin(0) Lgaxr <pney
i=1
1 - detﬁi_l( )
—%zl det B2 (0" )1{|AX"|<DhP}

At the second stage of the proof, we will consider the random field § — H,,(6,,,0) for the estimator of 6.
When applying Theorem 2.3, as “I';,” and “Y,,”, we take the ones given by

To(0) = ——-05Hn(n,0)

= —— > {95a] 1 (0)B1(60) Xin(0) — hdpal 1 (0)B; () Doai—1(0)} {jaxr < Dhey

1 n
_% Z{ag IOg \IIG(AXZL?XtZ’;I)}(Pn(Xt?,laAXin)l{lAX,'f‘thP}

i=1
1 n
+= / Ty Wo(y, Xep  Jon(Xep |, y)dy,
02 S, X Jon e
and
1
Y, (0;0*) = — (Hp(6n,0) — Hp(6n,0))
nh
1 - - _
T T onn2 Z(XZH(G)/Bi—ll(Jn)X17n(0) XT W1 (60) X, n)l{jaxp|<Dhe}
1 n
—|—% Z{log \IJQ(AX?,X,::LI) - 10g \Ilg* (AXgl?Xt?,l)}(pn(Xt?,l’AX?)1{|AX;”|>DhP}
—— Z/ \Ife (v, Xon ) = Wou (y, Xen_ ) on(Xen | )dy.
B(Xn_
To prove main theorems, we need several lemmas. Let J* = p((t?_,,t?] X E), Z; = f[o t]szp(dt,dz),

and € := %, then n? < nh for large n. We set 7/ = inf{t;|AX,| > 0,t | <t <t} and vl = sup{t; |AXy| >

0,t" ; <t <t!}. If the infimum or supremum on the right-hand side does not exist, then we define the random

times to equal t}'. Let C7y = {J]' = 0,|AX]'| < Dh*}, Cy = {JI' = 1, |AX"| < DhP}, Cfy = {J] >

2, |[AXP| < Dh#}, DIy = {JP = 0,|AXP| > Dh#}, DIy = {Jf = 1,|AXP| > Dhe}, DIy = {JI' > 2,|AX"| >
Dhr}.
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Lemma 2.1. (Shimizu and Yoshida [46]) Assume [H1],[H3] and [H5]. Then for 0 < p <1/2, D > 0 and any
p=1

Dh?
P, sup |Xt — Xyn 1| > 7|fi—l < R(a,hp,th 1),
tp <t<rp " 2 "
Dh?
Pa* |: sup ‘Xt" - Xt| > 7|f2 1:| S R(O[,h,p7X ;L_1)7
v <E<tn
where sup ) = —oo. Each function R does not depend on i.

Remark 2.3. [H5] is a little weaker condition than the corresponding condition in Shimizu and Yoshida [46].
However, by reading the proof of the corresponding lemma in Shimizu and Yoshida [46] carefully, we can verify
that [H5] is a sufficient condition to prove Lemma 2.1. A similar argument holds for [H4] and [H5] of Lemma
2.3.

Lemma 2.2. Assume [H1],[H3],[H5],[H6] and [HT]. Let 3 +b < p < %, where b is the constant appearing in
(2.2). Then for anyp > 1, asn — o

Po-[Clo|Fica] = R(ash, Xy )
Po[D}|Fic1] = R(a,h?, Xyn )
Por[CP4|Fica] = R(o, h'V3%0 Xy )
Po-[DI|Fi] = A(a*)hR(a BB Xy )
Po[CPy|Fia] < A@*)?h

Po[Dfa|Fica] < Ma*)?h

Proof. The proof is almost the same as the proof of Lemma 2.2. in Shimizu and Yoshida [46]. First, it is obvious
that P« [Cf5|Fim1] < AMa*)?h?, and Po« (D} Fi—1] < M(a*)?h*. On C},

2Dh? ]

P [CFia] < Pw[(Xt;—XT;>+<XT;7—X¢,1>+AX P < DI |AZp | > S g = 1 F,
Co

Pa- (182, < 222 = 117,

where AZ.n has density Fy- under F;_; and co is the constant in condition [H7]. If [( X — Xon) + (Xpn— —
Xin )+ AXT | < Dh* and |AX;»| is small enough, then by [H7], we have

|Xt:1 — XTZn| + ‘XT;L, — Xt;L71| Z Co|AZ‘,—in| — Dh”.
Therefore, by Lemma 2.1, we have for large n,

P [C]|Fia] < pm[ sup Xy — X |+ sup [Xew — Xy > DR?|Fi,
teftr ) tefvp 7]
. K 1—d
+)\(04*)he*/\(”‘ )h/ |Z|* dz
|2|<2Dh* /co Aa*)
R(a, h?, Xyn ) + ChPT!

= R(o, h"™/3% Xy )

IN

if we take p > p+ 1.
For D}, by applying Lemma 2.1 again, we have
Pa* [DZO|‘FZ_1] = Pa* [ XTLW — Xt:,';1| > th,’/"{l = t?'E—l]
= R(a,h?, Xin ).
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Finally,
Pa*[030|.7:¢_1] = a*[']n—o‘]:z 1] [ 10|]:1 1]
= e MM R(a, b , Xir )
= R(Ot,h, Xt;’;l)v
and
Po-[DP1|Fica] = Pos[J]" = 1Fima] — Por [C7| Fiza]

_ )\(O{*)he_A(a*)hR(a7 h3/8+b, Xt_?il)-
O
Lemma 2.3. (Shimizu and Yoshida [46]) Assume [H1],[H3] — [H7]. Then for k; =1,2,...,d (j =1,2,3,4),
E[X(kl)lc” |]:z 1
EXAV X5 100 | Fic

= (Oé hf Xt?; )7

1

]

] _ 5(k1 kz)( *) + R(avhzvXt;Ll)’
E‘[Xv(kl))((kz))((l€3 cr |]:z 1] = R(a h Xt" 1)’

EIXEDXEDREDXED o |Fig] = BB gk gk gllaka) gk ko) glka ko))

+R(a7 h 3 XtZLI )a

where Xi()]:l) and ﬂl(f’ll) denote the elements of the vector X; ., and the matriz 3;_1,respectively (1 < k,1 < d).

Before proceeding to the next step, since we have defined several parameters and their relationships, we list
up those relations again for convenience of reference:

b
fh vl 2o,

n<h=<nYT 0<b<1/8, e, — 0,
€n

’fL

3 1 1
1 < n3htelf, §+b§p<§, €= and n¢ < nh,

as n — oQ.

Proposition 2.1. (Yoshida [54]) Let (2, F, P) be a probability space, {F};}jen be a stationary process with mean
0 and suppose that for some 0 < h <1 and C > 0,

sup sup |P[A N B] — P[A]P[B]| < Cexp(—hk)
JEN Aco[Fy;1<j],BEc|F};1>j+k]

for all k € N and that for every p > 2, sup;cy || Fj||, < Cp for some constant C, depending on p but independent
of h. Then for some constant C' = C'(C,p, Cpt1) < 00 independent of h and the sequence {F}},

i=1

ya
2

E

sup < [(nhil) +nh17”]

Jj=1,....n

for alln € N.

The following proposition is stronger than the ergodic property for the sum of the function of the jump-
diffusion process with the exponential mixing property.

Proposition 2.2. Suppose that [H2] and [H3] are satisfied, and Borel functions F,, : R? x R? x = satisfy
|Fn(z,y,0)| < C(1+|2))¢ (n € N,z,y € R o € Z) for some constant C > 0. Then for every p > 2,

1 P
neﬁZ{Fn(thgl,AXi",a)—E[Fn(Xt7717AXZ‘,a)]} } < oo.

i=1

sup sup F [
ac=ZneN
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Proof. By Proposition 2.1, we have

P
supsupE{nZ{F Xin JAX] o) — B[F, (X, AX], )]} }
ac=ZneN i—1 o

< Csupnp(_1+€){(nh_1)% +nh'P}

neN
2

= Csup( ) {l—i— nh)?! }<oo
neN nh

The following proposition takes an essential role in estimating the third term of H,, later in Lemmas 2.6
and 2.7. This proposition is the key element of the proof of Theorems 2.1 and 2.2.

Proposition 2.3. Let k € N and p > 28=1. Suppose {F;i}o<i<n is a filtration on a probability space (2, F, P),
and {F; }1<i<n 5 a Tandom sequence adapted to {F;} such that E[|F;|P] < oo (1 <i<mn). Then

DB < B | () +CkaE |ZE F)|Fia] |7 11,
=1 i=1
!Z{Fz-—E[Fiiful}\p] < GuaB || 3_wit'(F) +c,kZE !ZE F)|Fi] |7 ]
=1 i=1

where Cy, 1. s a constant depending only on p and k, and

vi(F) = F
Y E) = {yi(F) = EWi(F)|Fiaa]}? (1€ N).

For k = 2,3, we have

l/ff(F) = F°-— 2FE[F|Fi_1] + (E[F|]'_171D2
E[;(F)|Fic1] = E[F?|Fi1] — (B[F|Fi-1])®
WH(F) = {F?—2FE[F|Fiy] + 2AE[F|Fim))® - E[F?|Fim)}?

= F'— 4F°E[F|Fi_y] + 8F(E[F|F;_1])? — 8F(E[F|F;-1])® + 4(E[F|Fi_1])*
—2F2E[F?|F;_1]| + 4FE[F|Fi_1|E[F?|F;_1] — 4(E[F|F;_1]))?E[F?|F;_1]
+(E[F?|F;-1))*

These equations are used repeatedly later to apply Proposition 2.3 for k = 2.

Proof of Proposition 2.3. We will prove the second inequality by induction on k. The first one is a trivial
consequence of the second inequality. For k = 1, since {> .~ {F; — E[F;|F;—_1]}}o<m<n is a martingale, by the
Burkholder-Davis-Gundy inequality,

< CE || S {F - E[RIF )P

i=1

1> {F - E[F|F ]}

i=1

Suppose the second inequality holds for k. Suppose that p > 2¥. Then since {31, {:F T (F) B[ T (F)|Fi-1]} Yo<m<n
is martingale, by the Burkholder-Davis-Gundy inequality and induction hypothesis, we obtain
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—_

n n k n
F |Z{FiE[Fi|ﬂ—ﬂ}|p] < G || DUl E)E | + G Y F IZEM(Fi)m_lH?’*]
=1 =1 =2 =1
< Cp2F E || S (el (F) - B (F)IFia )}
=1
R n » k n »
+Cpu27 E || Y B[ (E)Fial|? | + Cox D E || D0 EWHE)Fica]|7
=1 =2 i=1
< CpunE || Y (WENEF) - Bl (B Foa 2|7
1=1
k+1 n »
+Cpp1 Y E |ZE[¢5(FD|}-¢1”2“]
=2 =1
n » k+1 n »
= Cpunr B || D 0F2(F)|T | 4+ Copr D E || D ERNE)Fa]|7 7| O
1=1 =2 =1

Proposition 2.4. Suppose that [H1],[H3],[H5]-[H7] are satisfied. Let {u,} and {v,} be the sequences of positive
numbers and gp(z,y,a) (n € Nya € E) be Borel functions. Assume g, is differentiable with respect toy € E,
Oygn 1s continous in y, and

Oygn (@, y,0)| < Con(1+1]y))“(1+ ),
forneN, a €=, xRy e E. Moreover, assume at least one of the following two conditions holds true.
1. |gn(z,y,0)| < Cu,(1+|2))¢ (n€EN, a €=, z € Ry E).

2. |gn(z,y,0)] < CA+y)A+1]2))¢ (n €N, a € E, z € R,y E) and there exists p > 0 such that
u,? < h.

Then
1
EE[gn(Xt{LlaAinaO‘)l{IAX?|>Dh/’}|]:i—1] = /( )gn(Xt{leyaO‘)\IIG*(antZ’;l)dy
B(Xn
i—1

+R(a, K33+ u, v Vho,, Xin ) (n €N).

Proof. The proof is similar to that of Proposition 3.6 of Shimizu and Yoshida [46]. First, by Proposition 3.1 of
Shimizu and Yoshida [46], it holds for k € N,k > 2 that

E[|AXPF|Fi-1] = R(a, h, Xgr ).

So if Condition 2 holds, then

IN

uy, P E[|gn(Xen , AX], )|?|Fi_4]
R(ov, h?upn, Xpn )E[(1+ |AX]])CP|F;-1]
= R(avh2unaXt;’;1)- (2.9)

EHgn(Xt:Ll ) Ain7 O‘)‘lﬂgn(thril AXT a)|>un} |]:i—1]

IN

Therefore by Lemma 2.2, we have

E [|9n(Xt;L17AXZL,Oé)|1D;;OuD32\]:i—1]

E ['gn(Xt;‘_laAXinv a)|(1(DZDUD32)H{|gW,(Xt;z71,AX{L,a)\>un} + 1(D;0UD22)O{\gn(Xt?71,AX,i",a)|§un})|]:i71}

= R(a,h’un, Xpn ). (2.10)
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Consequently we obtain

1
EE {Qn(Xt;Ll,AXinva)l{\AX;L\>DhP}|}—i—1}

1 n
= EE [gn(Xt;L,ﬂAXi 704)1D:’,'1|]:i—1:| +R(a,hun,Xt;L71).

In the case that Condition 1 holds, Lemma 2.2 leads (2.11).
In both cases, we have for ¢ € N and ¢ > 2,

E| X — X7n|471“?:1} | Fi_1] = R(ov, b, Xpn )
i i Pa* [Jln — 1] 1 i—1/7
and
Bl Xon — Xpn (1= 2 0 Rk X ).
i i—1 Pa*[Jin — 1] ) 19y i—1

Let £M(t) = tAX] + (1 — t)AXT;L and GI' = {|]AX]| < |Xt? = Xyp
§r(t) #0(0<t<1)on Dy N(GY)°. So by the Cauchy-Schwartz inequality, we have

-

. ' n Loy, n(ep) 3
M) (B[l [ oy, 2 0), )P 7))

1 n
7B |lon (X, AXT, ) = gn (X, AXep, @)Ly ey

IN

Ipr nGrye 3
E[Xn—XTn Xpno — Xpn |)2 2 G0° i_])
< (B0 = Xep X = Xep [P e = i
= R(a,\/ﬁvn,Xt;L_l).

Moreover, by Lemma 2.1, we have for any p > 0,

Pa*[D;(fl N Gﬂ]:lfﬂ < Pa*[

)(15;L - Xu:ll + |X‘I’i"* - Xt?71| > th|]:i*1] < R(OZ?hp’Xt;il)'
Therefore by similar argument to the derivation of (2.11) with an equation
E[(|X'rl"7 — Xt;l71| + |Xt;1 — Xyzl|)p|f171} = .R(Ol7 h, Xt?,l) = R(a, 17Xt;171),

where p > 2, we obtain

1
EE gn(Xen ,AX] @) — gn(XtZ‘;lvAXTZHO‘)‘IDI';IOG? Fio1| = R, huy, Xgn ).
Then (2.11), (2.12), and (2.14) yield
1 n
7E [gn(Xt;L_l7AXi aa)l{\AXﬂ>DhP}|]:ifl}
1
= EE{gn(Xt;“;l,AXT;%a)lD;l |]:i—1} + R(a, huy, V \/EUth;Ll)-

The equation (2.15), Lemma 2.2 and a similar argument to the derivation of (2.14) yield

1
wE {9"(Xt’34vAXi"’a)l{lAX;LthP}IE—J

1
= E [Qn(Xti",l,AXT;",a)l{ng:u\E—J + R(a, h*5Pu, v Vho,, Xen ).

69

(2.11)

+ |X7p— — X [}, then it holds that

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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Let £7(t) = te(Xon o, AZ7n,07) + (1 — t)ci1 (AZrn, 0%). 1f d > 2, we have

]:7;1:|

1
EE |gn(Xt';L_l7Cifl(AZ‘F{UQ*)aa)_g’n(Xt?_NC(XT;."77AZTZWQ*)aa)’l{J{‘:l}
= R(a,Vhv,, X ), (2.17)

by a similar argument to the derivation of (2.12) and modifying £7(t) so that £ bypass the origin and the
length of modification is O(hv/h), if necessary. If d = 1 and J?* = 1, then since the function x — ¢(z, AZn,0%)
is continuous and ¢(z, AZ:»,0%) #0 (z € R%), we have £7(t) # 0 (0 <t < 1). So similarly, (2.17) holds.

Then by (2.17), we can rewrite the right-hand side of (2.16) by changing residual terms as

1 [ *
EE In (X ci1(AZn, 0 ),Oé)l{Jy:1}|.7:i—1} + R(a, h*5Pu, v Vhon, Xin )

1[4
= EE / /gn(Xt?;l,ci_l(z,G*),a)p(ds, dz)|.7-—i_1] + R(a, 38+, v \/EUth;LI)
A

1o [ .
= EE / /gn(Xt;Ll,ci_l(z,O*),oz)qe (ds,dz)|.7:¢_1] + R(a, h3/8 0, v \/EUthi";l)
A

= E{/gn(Xt?il,c,;_l(z, 0%), ) for (z)dz|‘7'—7;_1} + R(a, h3/3+by,, v \/EUth;LI)

- / on(Xex 92 0) T (4, Xep )y + Rlev, B/ Puy v Vv, Xon ).
B(th )

Remark 2.4. Let
Dg")(m,y,&) = 85 log Uy (y, 2)on(z,y) (k=0,1,2,3,4).

Then since h®/e, =< 1, by Proposition 2.4, [H1],[H3],[H5] — [H7],[H9] and [H10], we have

1
7 E {Dgf)(XtﬁuAX?v9)1{\AX?\>W}|E:—1] = /( | D (Xin |y, 0)Wor (y, Xen | )dy
B(Xn
i—1
nE - Vh
+R(Oé, ek\/ﬁ W’Xﬂil) (kj = 0,172,3,4).
1 o2 2
gE[|D5f)(Xt;:uAXi 0] 1{\AX?\>DhP}|fi71] = /( ) DS (Xen 9, 0)| W (y, Xz, )dy
B X“L
h?/® vh
+R(e, 2kvD =T 2(kvi)+1 »Xip ) (B=0,1,2,3,4).
n il
E UDS)(Xt;LI,AXi ,0)| 1{\AX{L\>DhP}|‘Fi—1} = R(a,h, X ) (1=3,4).

For the last equation, we use

1 n il 1
B (DY (X AXE ) TaxpispreplFit ] = /( : D (X, 0)| Vo (y, Xop, )dy
B(X;n
hET /B
+R(OZ, 7651 V 765;_1 5 Xt?—l)

AR
— R(a,1,Xp )+ R(a, (‘6{) V€£57Xt511)

n n
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and
@ < ﬁ =< 1 =< 1. (2.18)
€ 134 /n3h5

We will verify the conditions of Theorem 2.3 with (6, 7) — (o, 6) where (0, 7) are parameters in Section 2.3.
First, we verify [P1].

Lemma 2.4. Assume [H1] — [HS8]. Then for any p > di + do,

(1) sup,e | (§supacz 0211, 0)]) | < o=

p
2) sup,cn E[(n suppee [T (0", 0) — rl(a*>|) ] < .

Proof. (1) From Lemmas 2.2 and 2.3, it follows that

SupE{( sup |03 Hy (7,0)) }

neN N acE
- i‘éﬁE{(i‘é?’thX (605574 (0)Xin(O)Liaxz<0ney

1 n
+3 > 03 logdet B;1(0) Lyaxn <Dy

i=1

]

3 _ P
< CsupkFE <fsup‘2 Z 361 1 ( )Xi,nl{mxnghp}) +C
neN oell
< C E(f ‘ X7 08874 () Ko raxe
< cam (ol 3 axiizom)

— - 7 p
- E[anaiﬁ[_ﬁ(U)Xi,nl{\AXmthP}|fi—ﬂ}D } e

Moreover, by the Burkholder-Davis-Gundy inequality,

sup sup F (7‘ 53 ! inl . )
aegneg { QhZ{ B, 1 {|aAX"|<Dhr}

BIXE007 ) KoLz <onn | Fioi]) )|

nh*\ 2
< ou(om) < "
because p > 1/4. Similarly,
sup sup B (. ii ~{XT038 (o) Xin L axy
oell neN n th (R i,n L{|AX]|<Dhr}
T 93 3—1 o P
E[X*"af'ﬁi—l(U)X@nl{\AX?\SDhP}|fi—1]}D } <o (2.20)

Then by (2.19), (2.20) and Sobolev’s inequality, we have

{XzTnag Y (0)Xinlgaxri<phey

sup F | sup (f ‘
neN |:a€5 2h

E[X], 038, (0) Xinl{axr<pney | Fiz1]}

] <
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This completes the proof of (1). O
(2) By the definition of I'} and I'', we have

Il(o*,0) =Tl (c*) = Ay + Ay,

where
%Z azﬁz 1( *)Xi,n(e)]-{\AX:’\Sth}
1
~5 [ (@25 (w050, r(ae),
and

1< .
Ay = %25)310gdetﬁi71(0 )1{|AX{1|§DhP}

—% / 02 log det B(z, o) (dx).

We will estimate A; and As. In order to estimate Ay, we first notice that

n

1 1 % - *\ YV 1% — *\ YV
sup |n2 - Z — (XT(0)028,(0") X;,n(0) — X[, 028, (o )Xin) 1{jaxr|<Dhe} ’p

sup B
L 0cO n -1 2h

neN

o \P
< Csup (nfhp) < 0. (2.21)
neN

Furthermore, the Burkholder-Davis-Gundy inequality implies

n

1 T 92
SllpE[ 72 2th naa ( )X’L nl{‘AX"‘<DhP}

neN nz:l
1 o
E[2thTnag (o )Xi,nl{\AX?\Sth}l]:i—ﬂ)|p]
n25h4p i n2e B %
< o () o () < 22

Moreover, by Lemmas 2.2, 2.3 and Proposition 2.2, we have

EEEIEK ZE Qthnag 1(0") XinLyaxy <pmey | Fic]
1 p
—5/tr(agﬂ_l(x7a*)ﬁ(x,a*))w(dm))) ] < . (2.23)
From (2.21), (2.22) and (2.23), it follows that
P
sup £ [(n6 sup |A1|> } < 0. (2.24)
neN 0cO

Next we will estimate Ay. By using Proposition 2.2, we have

sup F
neN

1 - p
777, Z 82 logdet Bifl(a*)l{lAX%ﬂlSth} — E[aﬁ logdet ﬁifl(a*)l{‘AXin‘Sth}]) ’ ‘| < 0. (2.25)
i=1
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Moreover, by Lemma 2.2, we have

sup £
neN

’\/ﬁ <21TL;E[8§ logdet Bi—1(0")1(jaxp|<Dhey] — /82 log det (x,0") (dx)) H <oo. (2.26)

From (2.25) and (2.26), it follows that

sup £ HneAgm < 00. (2.27)
neN
Inequalities (2.24) and (2.27) complete the proof. O

By this lemma, we can verify [P1] of Theorem 2.3 for any L > 1 if we take 51 > 0 small enough.
Conditions [P4] and [P5] are easily verified by [H12]. Next, we will verify [P3].

Lemma 2.5. Assume [H1] — [HS8]. Then for any p > di + do,
(1) sup,en £ [supee@ ’ﬁ&,Hn(U*,H)ﬂ < 00,

(2) sup,en B [(supaeg n|Y, (0,0 :0%) —Y(o: 0*)|)p] < 00.
Proof. (1) By the definition of H,,, we have

2 *
_ﬁaaHn(U 0) = fh Z in(0)058; L(oM)X; in(0)1{|aX"|<Dhe}
+7 0, logdet B;-1(0™)1faxn|<Dhoy- (2.28)
NG ; {1AX|<Dhe}
We will estimate the right-hand side of (2.28). First, we notice that

sup £
neN

oup | 2 (X 0000807 Kun8) = X057 (0 o) 1{Ax:<mp}’p1

€O —
p}

TZ ai—1(0%) —ai—1(0 )) 0s8;_ 1( ) zn+in(0))1{|AX[‘|§Dh”}

IN

CsupE [ sup
neN 0cO

7 Z {2(01—1(9*) - ai—l(e))Taaﬂi__11(U*)Xi,n]-{\AXi”\gDhﬂ}
i=1
]

p} +C.(2.29)

— E[2(a;-1(0%) — az‘—l(9))Taoﬁi:11(U*)Xi,nl{\Axngho}|]:z‘—1]}

+Csup F [ sup
neN 6cO

1 - * — *\ VvV
\/ﬁ;EP(ail(Q ) —a;i—1(0))7 0,8, (o )Xi,nl{lAXﬂSDhP”}—ifl]

The second term of the right-hand side is finite because of Lemmas 2.2 and 2.3.
Moreover, the summation in the first term becomes a martingale. Then, by the Burkholder-Davis-Gundy
inequality, we have

sup sup F

neN O H\/»

HM:

{(ai—1(9*) —ai-1(0))" 058, (") Xin1{jaxr|<Dhe}

— El(a;—1(0%) — ai,l(e))Taaglf_ll(g*)Xi,nl{\AX,mSth}|J-'i,1]} ] < o0o. (2.30)

Similarly,

a * — *\ YV
554 (@-1(0) = a1 (0) 70, 7 () KLy axy (<o)

v

sup sup F

1
neNHc© H \/’ﬁ

1

— El(ai-1(0") — ai—l(9))Taaﬁ;11(U*)Xi,nl{mxgwgmﬂ}|fz‘—1]}

2

,,] < oo. (2.31)
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Then by (2.30), (2.31), and Sobolev’s inequality, we have

1 . * — *\ VY
supE{sup 7 > {(ai_lw ) — ai-1(0))7 0,8, (07) Xinl{jaxr <Dhey
=1

neN 0cO

— El(ai1(07) = ai-1(0) 9,874 (") Kin iy < ey [ Fict ]}

,,] < 0. (2.32)

Therefore, (2.29) and (2.32) yield

sup K
neN

sup
0co

p] < 0. (2.33)

Z{ (7'51 1( ) zn(e) O'ﬂz 1( ) zn}l{\AX"KDhﬂ}

Let K; ,, = {%Xgnﬁgﬁi:ll(a*))_(i,n + 0, log det B;_1(c*)} L{jaxr|<pney- Then, to complete the proof, it is
sufficient to estimate the summation of K; ,. For this purpose, we will use Proposition 2.3. First, by Lemmas
2.2 and 2.3, we have

1 - = — * *
E[EXZnaaﬂ;l1(U*)Xi,n1{|AX?|§DhP}|]:i71} = tr(0:B;(0")Bi=1(0%)) + R(cv, b, Xyn )
—05logdet Bi—1(0”) + R(a, h, Xyn ).

Therefore, it follows that

sup E[|% > E[Kin|Fica]|"] < oo (2.34)
i=1

neN

Moreover, by Lemmas 2.2 and 2.3, we have

sup B ’fZE Vi (K )| Fie 1] ‘%] < 0. (2.35)
neN
So by Proposition 2.3 for k = 2, we have
1 n »
E| K, < CsupEl[|= HKin)|*]+C
sup !\fZ 1 < OompBlI 3 vkl +
h8r b 1 h8p 3 b )
< CiléIR)I(W) +C§Cilé§(nh ) +C < oo. (2.36)

y (2.28), (2.33) and (2.36), we have

SupE[sup‘f (" eM .

neN oo
O
(2) By the definition of Y, and Y7, we have
Y, (0,0;0%) — Y (0;0%) = A3 + Ay, (2.37)
where
1 & 1, e
A = —5 Z (0){B; 1 (0) — B; 1 (0")} Xim(0)1jaxr < Dhey
1
~3 /tr (Ig— B~ (z,0)B(z,0%)) 7(dz),
and

1 & det ;-1 (o) 1 det 5(z,0)
= i oy o g [ 108 G )
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We first estimate As. By the Burkholder-Davis-Gundy inequality and Sobolev’s inequality, we have

I &Ko _ 1, e
SUPE[SUP no— {XiT,n(a){ﬁii(U) — B4 (0")} X (0)1{ax7 1< Doy
neN a€E 2nhi:1
p
- E X, 0{8(c) - 52':11(U*)}Xzyn(e)1{|AX;L|§Dhﬂ}|~7:z'—1] } ]
n25h4p 2
< _— . 2.38
< oum() < 239
Moreover,
- _ _
sup F S E[XF (o) = B (0" X, . (0)1 n oy | Fie
sup [i‘;‘; n th;{ [(Xin OB 21(0) = B4 (0")} Xin(0)1jaxp 1< DRy | Fizt]
p
— B (X5 {81(0) = B (0"} X mljaxri<oney | Fii) } ]
< supC (nh)’ < co. (2.39)
neN

Furthermore, by Lemmas 2.2 and 2.3, Proposition 2.2 and Sobolev’s inequality, we have

1 « - _ 1, o
SupE[SuP ”{ — 5o D B XL A8 (0) = B (0" Kindaxp <o [ Fici ]
1=1

neN ac=

_ % / tr (Ig— B (z,0)B(x,0")) W(dx)}

P
} < 0. (2.40)
From (2.38), (2.39) and (2.40), it follows that
sup £ [sup |n6A3|p} < 00. (2.41)
neN a€E

Next, we will estimate A4. By Proposition 2.2 and Sobolev’s inequality, we have

1 " detﬁﬁq(a)
sup F | sup |[n— {lo —1 n
nGIIiI Leg 2n ; s det 5i_1(c*) {|AX]"|<Dhr}
det Bi—l(o') P
—E|:10g ml{‘AX?‘SDhP}}} < 0Q. (242)
Moreover, by Lemma 2.2, we have
1 & det 8;—1(0) 1/ det f(x, o)
— Y FE|log———=1 n | == [ log————=n(d O(h). 2.43
2n ; {og det B;—1(0*) {IaX?|<Dhr} 2 8 det B(z, a*)w( z) +O(h) ( )
From (2.42) and (2.43), it follows that
sup £ {sup |nEA4|p} < 00. (2.44)
neN ac=
Inequalities (2.41) and (2.44) complete the proof. O

By Lemmas 2.4 and 2.5, we can verify conditions of Theorem 2.3 for any L > 0, by setting parameters so
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that
1 1
- > -
2 ﬁ? =9 €,
0 p2 < 1- 2627
P2
0 < a< 5
@
po=
0 < ﬂl < €,
2
0 < pr<1ABA b
l1-«
So by Theorem 2.3, we have
1 * -z CL
P, sup Zp(u1,0;0%) > e 2| < —, (2.45)
(u1,0)EVL(r)x© r
for all n € N and r > 0, where C7, > 0 is a constant,
Vir) = {u; € R"; 0" + % eI, |uy| > r},
and
Ziun 050%) = exp (Holo” + 2L.0) = H,(0%,0) )
Then for any L > 0,
P, [ Vn(6, —o*)| > r} < Py sup Z (uy,0;0%) > 1
(u1,0)EV1(r)x©
CL
Therefore for any p > 0, let L > p, then it follows that
oo
sup E||v/n(6, — o*)|p} < supp/ rP71P,. { Vn(e, —ao*)| > r} dr
neN neN 0
00 o CL
< p P71 A rT)dT < 0. (2.46)
0

Next, we will verify the conditions of Theorem 2.3 with # in place of 76” and T being a point.

Lemma 2.6. Assume [H1] — [H12]. Let py > da V2, p2 > 2 and 0 < 51 < a Ae, where a is the constant
appearing in [H11]. Then

(1) SuanNE [(ﬁSUPQEG |63H’n(6’n79)|)p1} < 00,

(2) sup,en B [((nh)61|f‘i(9*) — I‘Q(a*)|)p2] < 0.
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Proof. (1) By differentiating H,, with respect to 6 three times, we have
1
—aan(a—n,a)
= o Zae% 1(0)B;4(6m) Xin ()1 ax7 < Dhey
- Zaaaz 1(0)B— 1(Un)80az 1(9)1{\Axp\gphp}
+ ’I’Lh ZD(S i 17AX 0)]—{\AX" >Dhr} — T Z/ 89\1/9 ant7 1)Q0n(Xti_1ay)dy- (247)

(th 1

We will estimate each term of the right-hand side of (2.47). First, it is easily shown that

P1
supE || —su d5al_1(0)8;(60)0a;i—1(0)1 n , < o0,
neg (n eeg‘z pai=1(0) 821 (60)9pi—1 (0) L axp <Dn }|> 1
and .
sup &/ ( sup ’ Z/ DTy (y, Xtil)@n(Xtil,y)dyO < o0,
nen 1t 0eo B(X. )

so the second term and the forth term of the right-hand side of (2.47) are estimated.
To estimate the first term of (2.47), let § > 0 and {0 € R%; |0 — 0*| < 6} C II. Then by (2.46), mean-value
theorem and the Cauchy-Schwarz inequality, we have

SUPEKSHP\*Z%% {(0) (B (60) — By (07)) X, (9)1{|AX;L|SDhP}1{|&n70*|§6}Dpl}

neN 6co
p1
< Csu < 0. 2.48

y (2.46), it is easy to show that

ZlégEKZlég |¢T Zaaaz (OB 60) = B D Kin O L axpi<om Liow-o-5)]) ] < oo

(2.49)

Moreover, the Burkholder-Davis-Gundy inequality and Sobolev’s inequality yield

1 _
sup F | su Bal (0 Xin(0)1 o
sup | sup nh;{ fal 1 (0)821 (0) K (0) L axr <o)

B [0l (6)52 (") Xum ()1 x| o] }

]

AR 1

Furthermore, by Lemmas 2.2 and 2.3, we have

ilégE[Sgg %ZE Ol (0)8 (") Ko (O)1 axsicony | Fia] | ] < oo (2.51)
Inequalities (2.48), (2.49), (2.50) and (2.51) give
_ P1
iléIéE[Sgg ﬁzaeaz 1(0)B711(60) Xin(0)1{jax7 1< Dhey } < 0. (2.52)
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This completes the estimate of the first term of (2.47).
Finally, we will estimate the third term of (2.47). By Remark 2.4 and (2.18), we have
ED®(Xy,_,, AX],0)1axr>0nep | Fio1] = Rlo, h, Xin ), (2.53)

1

and
hll/S h\[

5 7
€ el

EID (Xy,_,, AX],0)*1axr|>pney | Fiz1] = R(a, Vh, Xen ). (2.54)

So by using Proposition 2.3 for k = 2, we have

]

1 n
EH— D@ (X, . AX 01 axn
sup sup nh; w (Xt s AXF0)1axn > Dhey

1 S 3 3 n %
= ;gg:ggE[\n4h4 ;w (D (Xt AX, O Laxp=on)| |
Pl
nh\" n R1/8  h/h :
c C vty
o (5) " e (i (M5
21 P1
c LI I Oe. LYo (2.55)
< _ . .
= d\wwr) T neh \nhe, >
Similarly,
sup su EHiia D) (X AXT, 0)1 pl}
OngEIIzI nh e 0%n ti—1s i {|AX|>Dhr}
P1 P1
1 4 1 2
< () ~Oum(mg) o< 50

By (2.55), (2.56) and Sobolev’s inequality, we have

p1
bupE[sup —ZID) (X, 1, AXT,0)1ax7>Dhey ] < 00. (2.57)

neN 0co

This completes the estimate of the third term. O
(2) By the definition, we obtain

Fi(ﬂ*) — FQ((X*) = A5 + A6 + A7 + Ag,

where
1 o o)
= 72 pal_1 (08,4 (6m) Xinl{axr|i<Dhe}s
*Z@gal 1 Bi_ 1(‘771)89@1 1(9*)1{\AX{L\SDhP}
—/(99&T(l‘79*)6_1(:L‘,O'*)(99a(.’1,’,9*)77'((15(})7
1 n .
=—— > DX (Xep , AX], 0)1(ax7|>Dhe) +//A( )33 log Wo- (y, ) Wg- (y, ) dym(da),
=1 x
and

Z/ 89‘1’0* Y, Xen )SDn(Xt" D y)dy — // 89‘1’9* (z,y)dym(dz).
B(Xyn_ ) B(x)
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To estimate A, first by (2.46), we have

SHPEK *VZ@M 1(07) (6n)—ﬁ{_ll(0*))Xi,n1{\AXnghP}|>m}

neN

h? p2 1 ho3 " (nh)B1\ "
< (Csu nhﬁl) < Csu nh)™ < Csu ( ) < 0
nEII\)I (\/ﬁh( ) neII\)I ( vn hé ( ) > nEII\)T néhe

Moreover, since by Lemmas 2.2 and 2.3, we have

wup [ (0 S5 37 B 078207 Kz Fia])
< Csup ((nh)ﬂl\/ﬁ)p < 00,
neN

and

)]

Z 7/’2 89% 1(07)8; - 1( )inl{lAX”KDh”})‘]:f 1]

neN
(nh)?%\ %
< Csup < 00,
neN nh

therefore, it follows from Proposition 2.3 for k = 2 that

SugEK *|Zaeaz (0B (07) XinLyaxy < Dhe)
ne

)]

CSUPE[( AL ’Zlﬁ?’ dpai_1(0%)B,(0") Xinl{jaxr|<Dhe}) D%} +C

neN

IN

p2
(nh)*P1\ 7 1\ %
< C:lég( 3pA ) +C§C:lel§ 373 +C < oo.

Inequalities (2.58) and (2.59) give
p
supE[((nh)ﬁl|A5D 2} < 0.

neN

Next, we will estimate Ag. First by (2.46), we have

))<=

neN

1 n
sup E| (Vnh|=> " 0pa]_(0°){B;1(64) — B (07) }0pai—1(0%)1{axr|<Dhey
- :
=1

Moreover, Proposition 2.2 yields

1 n
SHPE[((ﬂh)GI*Z(3960?71(9*)5[ 1(07)99ai—1(0")Ljaxr|<Dhey
neN n i—1
p2
—E [0gal_1(07)8; 4 (07)Dpai—1(0°) 1 yaxr|<Dhey) )|) } < oo

Furthermore, by Lemma 2.2, we have

supE[((nhﬂlZ [89@1 10981 (0%)Ogai 1(9*)1{\AX,?\Sth}]

neN

/aga 2,08 (z ,J*)@ga(x,G*)W(dx)|)p2] < o0

79

(2.58)

(2.59)

(2.60)

(2.61)

(2.62)
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Inequalities (2.60), (2.61) and (2.62) give
p2
supEK(nh)€|A6|> ] < 0.
neN
On the other hand, Proposition 2.2 and [H11] lead
sup F [((nh)’31|A8|)p2} < 0.
neN

Finally, we will estimate A7. By using Proposition 2.3 for k¥ = 2 and Remark 2.4, we have

1 < .
SU.[I\)]E|:((7’Lh)ﬁl — E {]Dg?)(Xt?_l,AXZL,G )1{|AX1,"|>DhP}
ne

p2
- E[Dg)(Xt;‘_laAX?ag*)1{|AX{L|>DhP}|—Fi1]}‘) }

4p1\ 22 261 7 481 7z
< Csup((nh) ) +ng§<(nh)h ) SCsup<(nlz) ) +C

nen \ n3h*ed n neN \ n2h?

p2

< Csup (anﬁl_%) 110 < . (2.63)
neN

Moreover, by [H11], Proposition 2.2 and Remark 2.4, we have

sup [ ((nh)ﬁl

1 - n g
enN nh ZE[Dg)(Xt?A’AXi 0 )1{|AXZ"|>DhP}‘-Fi71}
" i=1

P2
—/ o2 log\Ilg*(y,a:)\Ilg*(y,x)dyw(do:)D } < 0. (2.64)
A(z)

Inequalities (2.63) and (2.64) give

sup E{ () Ar))"] < o

O

By Lemma 2.6, we can verify [P1] of Theorem 2.3 for the random field § — H,(6,,0), if B; is small enough.
By [H12], we can verify [P4] and [P5]. We will verify [P3] by the following lemma.

Lemma 2.7. Assume [H1] — [H12]. Then for p3 > di V4, ps > da V2, and £>B2 > (3 —€) V(3 —a),
(1) sup,en B Uﬁ@an(&n,e*”pg} < o0,

1 P4
(2) sup,en E | (suppeo (nh)3 ¥, (6:0) = Y2(6:07)]) | < oo.

Proof. (1) By the definition of H,,

1 <« _
——0gH,(6,,0") = ——= Y 0gal (078, 1(60)Xinlgaxn|<Dhe
m 0 (J ) mz 0 1( )51 1(0— ) nH{|AX|<Dhr}

ZD 1) th AXn 9*)1{|AXZL|>th}
Z/ 59\1’9 (Y, Xer )en(Xep |, y)dy. (2.65)
Vn B(Xm )

First, we will estimate the first term of the right-hand side of (2.65). Since

E[0pa] 1 (0%)B; - (0)Xinlyaxri<pney|Fi-1] = R(a, hh, Xer ),
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and
El|0ga; 1 (6%)B, (o) Xinlgaxri<pney | Fic1] = R(a, hy Xen ),
by using Proposition 2.3 for k = 2, we have

pr3
h4p 1
sugsugE[ Z@gal W08 (o )in1{|Axn|<th}{ ]<C’sup< h2> +C < 0. (2.66)
oellne
Similarly, we obtain
sup su E dpal - Xinl n P < oo. 2.67
Uegneg {rz ha;_1(0%)0:5;_ 1( ) ni{|AX] |§Dh}‘ } ( )

Therefore by Sobolev’s inequality, we have

SupE[sup Zagal 1 9* Z 1( )in1{|AX”|<th}’ :| Q. (268)
neN ocll

Inequality (2.68) complete the estimate of the first term of the right-hand side of (2.65).
Next, we will estimate the second term and the third term of the right-hand side of (2.65). Let

M} =D (Xen |, AX],0°)1(axr|>Dhe} — h/( )80\110*(y7Xt;‘71)90n(Xt?717y)dy-
B Xt’".

Then by Remark 2.4, we have

BIMFIFioi] = Rl n S X ),

i—1

E[(M)!'|Fica] = R(oyh, X ) (1=2,3,4).
So it follows that

- p3 nh'/8  nhvh P
: E’ (M| Fi —Cs v < 0,
e e DI R CE S T R

1 & ) 5
EEEEHM;E[‘/’f(Mi )| Fiia] } < 00,
and
ilégEHMm ;E[% (M| Fii] }

P3

']

1 - n n n mn n 2
_ supEHr2h2 ) E[{(Mi )2 — OMPE[MP|Fi_y] + 2E[MP|Fi_1]? — E[(M")?| Fi_1]} |fi_1]
=1

p‘g <

1
= Csup( ) < 0.
neN nh

Therefore by using Proposition 2.3 for k = 3, we have

P3

1 8
]SCSUp(ML) + C < 0.

neN neN

1 n pP3
Rl &

This completes the proof. O
(2) By the definition of Y,, and Y2,

Yo (0;0%) —Y?(0;0%) = Ag + Aig + A1 + Ago
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where
I U
Ag = — Z(az‘—1(9) —a;i—1(0"))B 4 (60) Ximl(jaxr|<Dhr )
=1
1 & 14 .
A = -5~ (@i-1(0) = ai—1(07))B; 1 (6n)(@i-1(0) — ai—1(67))1{jaxn | <Dhey
i=1
+% /(a(x,@) — a(x,ﬂ*))ﬂfl(m,a*)(a(xﬁ) —a(x,0%))w(dz),
1 - n n *
Ay = %Z{D%O)(Xth,AXi ,0) =D (Xyn | AXT,0°) (| ax7|>Dhe)
[ [ gty ) — 108 V- (g2 Wi 3. )y
A(x)
and

= —*Z/ ‘I'o (v, Xer ) — Vo (y, Xen ) on(Xer )y
B(Xup_

+//B(z)(%(y’x)_‘1'9*(ya$))dy7r(dx),

To estimate Ag, we first notice that by (2.46),

- % —1 /4 —1/ ¥ P4
SUPE{SUP Z (ai-1(0) — ai—1(07))(B;_1(6n) — B;21(07)) Xinl{jaxr|<pney }
neN (A<C] i=1

(nh)¢ h”)p4 ((nh)6 _ )p4 <(nh) " >p4
< C —C % <C hete < o0, 2.69
< ome (U7 vk Vo =i e (269

Moreover, by the Burkholder-Davis-Gundy inequality, Lemmas 2.2 and 2.3 and Sobolev’s inequality, we have

D=

1 - * —1 *\ v pa
SupE[Sup 7]1 § Qj— 1 *ai—l(a ))51_1(0 )Xi,nl{lAXﬂSth} :|
neN 0cO i1
1 n - o
< ObupE[Sup 7 { a;i—1(0) — ai—1(0))B; 1 (") Xinl(jaxr|<Dhe}
neN 0co

8

P4:|
P4

h2e 5 X hg 2
< Csup ((nh)262> + C'sup(nh?)®+ < C'sup | (nh)3 42 + C'sup(nh?)P+ < 0. (2.70)
neN nh neN neN nh neN

— E [(ai=1(0) — a;i—1(07) 8,4 (0") Xin1(jaxr|<Dhey | Fiz1] }

I .
+C supE[sup ‘(nh)é— ZE [(ai—1(0) — a;i—1(0%)) B (0*) X5, nl{jaxn|<pney|Fiz1]
neN  Loco nh 1

Inequalities (2.69) and (2.70) give

P
supEH sup(nh)EAg‘ 4} < 00.
neN 0co

Next, to estimate A1g, we have by (2.46),

sup E[sup ’\/ﬁi Z ((ai_l(ﬁ) —a;—1(0%))B; 4 (6m)(ai—1(0) — ai_1(0%)1axr|<Dhe}

neN 6cO

— (ai—1(0) — a;—1(0%)) B4 (o) (ai—1(0) — aifl(a*))l{lAXﬁgDhﬂ})

“} <oo. (271
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Moreover, by using Proposition 2.2 and Sobolev’s inequality, we have

n

1
sup B sup |(nh)*5 > ((ai-1(0) = ai-1(0)BZ (0" ) @1-1(6) = ai-1(0) 1 axpi<Dney

— E [(ai-1(0) — ai_1(0%))8;, 7 (%) (ai-1(0) — ai—1(6)1jaxr|<Dhey] ) pj < 0. (2.72)

Furthermore, Lemma 2.2 yields

sup E[sup ‘\/ﬁ(% Z E [(ai-1(8) — ai 1(6)8, (0" ) @i1(6) — ai—1(0") L axn <pmey ]

neN 0cO

_ %/(a(m,@) a(e,07)5 (2.0 (alz,0) — a(e, 0))(d) )] < oo. (2.73)

Inequalities (2.71), (2.72) and (2.73) give
P
supEH sup(nh)eAlo‘ 4} < 0.
neN 0co

To estimate A1, by using Proposition 2.3 for k = 2, Remark 2.4, and Sobolev’s inequality, we have

(nh)* & 0) ©
FE E DO(X;n AXP0) —DO (X AXT 0% n P
:lég blelg nh i=1 ({ e (Xep s i) (X, v )} {AXF>Dhe}

— E |:{]D)1(q‘0) (Xt?—17AXina 9) - D,'(,LO) (Xt?—l 5 AXZL7 9*)}1{‘AX7"‘>DhP}|]:7,71:| )

"]

< csup<W>%+c:csup<( ! )i-(nh)§>%+0<oo. (2.74)

9
neN \nPhteq neN \\PPRES ) napd

Moreover, by Proposition 2.2, Remark 2.4, [H11], and Sobolev’s inequality, we have

supE{sup ‘(nh “AE< ZE [{]D) 0) th JAXT0) — I[)glo) (Xt?il,AXZ-",9*)}1{‘AX;L‘>DM}|}"¢_1
neN 0cO

//A(x) log We(y, z) — log Ue- (y, ) - (?J,x)dyw(dx))‘m} < . (2.75)

Inequalities (2.74) and (2.75) lead

P4
supEH Sup(nh)“/\eAu‘ } < 0.
neN 6co

Finally, to estimate A1z, by Proposition 2.2 and Sobolev’s inequality, we have

1 n
sup Esup |h) = ([ (Wl Xip ) = Vo (0 X Dn(Xiy o)y
neN  Lgeo n- B(Xn )

- //B(z)(‘l’e(yvx) - m@*(y,x))%(a:,y)dyw(dx)) pq < 00. (2.76)

By [H11], we have

sub ee@ (nh)® // (Ty(y,z) — g« (y,x))(1 — 9071(xay))dy7r(dx)) p4}

< Csup((nh)*h)" < (2.77)

Inequalities (2.76) and (2.77) give

A Pa
sup F H sup(nh)* “Aqs
neN  Lloco

] <o

This completes the proof. O
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Using Lemmas 2.6 and 2.7, we can verify the condition of Theorem 2.3 for any L > 0, with the parameters
satisfying

1 1 1
Z_av(s = < Z
(2 €) (2 a) < 52<2,
0 < p2<1—20y,
P2
0 < a<=,
4=
«
B = T— o
0 < pBi<aAe,
2
0 < pr<1ABA b
11—«
So by Theorem 2.3, there exists C, > 0 such that
2 ~ * -z CL
P, sup  Z:(ug;6,,0%) > e 2 <, (2.78)
u2€V2(r) r
for all n € N and r > 0, where
* U2
V2(r) == {uy € R%; 0" + N €0, |us| >r},

and

Z2(ug, 0;0%) := exp (Hn(o7 0" + \Z%) — Hp, (o, 9*)) .

Proof of Theorem 2.1. We will prove Theorem 2.1 by using Theorem 2.4. To use Theorem 2.4, we first prove
weak convergence of Z,(u1,us;a*). By the Burkholder-Davis-Gundy inequality and Sobolev’s inequality, we
have for any p > 1,

1 P
——Vo Hn ;0
B |su| oo |
1 n - ~ »
=k Zlég’\/ﬁ;aeai_l(e)a"ﬂill(U)Xi’"(a)l{AX:%Dhﬂ} ]
1 — _ _
< CFE {ilég NG izzl{aeaiq(9)30@-,11(U)Xi,n(e)l{mx;\gphp}

- E[ﬁeai—1(9)3oﬁiill(U)Xi,n(e)l{mxmsmp}I}}_l]}m

+CFE |sup

aEE

1 < _ _ p
%ZE[&gaiﬂ(9)8061_711(0)&’“(0)1{|AX;|§DM}I}},l]‘ 1
i=1

= 0 (n— ).

Therefore, by using Lemmas 2.4 and 2.5, we have

L6, 0%) = S
log Z,(1130,0") = Halo" + —2.0) = Ha(o",0)
= 1 OsHy (0", 0)[u1] + i82H (*,0)[(u1)®?]
\/ﬁ olln 9 1 m olin 9 1
1 2 ®3
(1-1t)° 5 ! uy
+ /0 5 O3 (0" + \/ﬁt,G) NG dt
1

= 0,07 ] = 5T @))%+ 0y(1)

54 ] 5T ") ()],
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where A1 ~ Ng, (0,T1(a*)) by martingale central limit theorem. Similarly,
Us
vnh
1

_ * * L 2 * *
= maan(U ,0 )[U2]+ 2nh69Hn(0' ,0 )

Pt o e, U2 uy )\’
+/0 5 O H, (0%, 0% + mt) [(\/%) ]dt
= 00 (o)) = 5T () + 0,(1)

— TNy [ug] — %1“2(0[*)[(1@)@2],

log Z%(ug;0*,0%) = Hy(oc", 0" +

)— Hyp(c",6%)

where Ay ~ N, (0,I%(a*)). Moreover, similar arguement yield

log Z,, (u1, ug; ™)

— logZ,ll(ul;G*+%,U*)+logZZ(uz;a*,0*)
1 1
= T A [ur] + Dafug] — §F1(a*)[(ul)®2} - §F2(0<*)[(u2)®2] (n — o0),

where A and A, are independent.
On the other hand, let B(R) = {(u1,u2) € R% x R%; |uy|? + |ug|? < R?}, then the tightness of the family
{log Zy (u1,u2; &*)|c(B(R)); n € N} follows if we show

supF
neN

sup |0y log Z, (ug,ue; )| < oo (2.79)
ueC(B(R))

because of the tightness criterion in C' space in Billingsley [8]. However, since

Oy log Z,, (u1, ue; ™)

o 0 * & * U2 o * %
— o (1o + o+ 22— 0))
1 uy U 1 Uy (V%) >
= 780Hn *+7;9*+ 778 HTL *+770*+ )
(\/ﬁ (@ Vn nh) Jah (@ Vn \/nh)

by using Lemmas 2.4 and 2.5, and similar to the proof of Lemmas 2.6 and 2.7, we can prove (2.79).
Then for

Z(utusia®): = exp <A1[u1] + Aofus] %rl(a*)[u;m] - ;FQ(a*)[ug’g]) ,

it follows that
Zn(ur, ug; ) =27 (uy, ug; ) in  C(B(R)) (2.80)
as n — 00. So the weak convergence of Z, (u1,us; ) is proved.

Next, we prove the moment condition of @, . By a similar argument to the derivation of (2.46), using (2.78),
we have for any p > 0,

sup E [(M(én —0")P| < .

neN
Therefore, for i, := (v/n(6n — 0*), Vnh(6, — 6%)),
sup F [|G,|P] < 0. (2.81)
neN

By (2.80), (2.81) and Theorem 2.4, we have
Gy, =% 4= (T (a") T AL T2 (@*) 7T Ag) ~ N(0, diag(T! (a*) 71, T2 (a*)7h)),
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and
Elf(a,)]—=E[f(a)],

as n — 0o, for any continuous function f with at most polynomial growth. O

Proof of Theorem 2.2. We will prove Theorem 2.2 by using Theorem 2.5. First, we prove weak convergence of
(ZL(0%,0%), Z2(-,6n,0%)). Let

Z ug;a*) = exp | Aqfug] — ;Fl(a*)[u?Q]) )

and

then by the proof of Theorem 2.1, log Z} (uy;0*,0*) — log Z'(uy;a*) as n — oo. Next, By Lemmas 2.4, 2.5
and Lemma 2 in Yoshida [54], there exists § > 0 such that

-1
U
sup E / Z(uy; 0%, 0%y (0" + —=)duy < 00. (2.82)
n>N ( S vn
So by using Theorem 2.5 for fixed 6*, we have
sup B[|V(Gn — o)) < o0, (2.83)

neN

for any p > 0. Therefore, in a similar way to the proof of Lemmas 2.6 and 2.7 and discussion after them, we
have for any L > 0,

r C
Py | sup  Z%(up;6,,0%) > e 2| < —LL, (2.84)
uz€V2(r) r
for any n € N and r > 0.
Moreover, similarly to the proof of Theorem 2.1, it follows that
(ZE(0%,0%), Z2(-,60,0%)) = (Z'(;0), Z%(0")  in C(B(R)) (n— oo), (2.85)
and there exists ¢’ > 0 such that
-1
~ U2
sup E / Z2(u2; 69, 0 )20 (0F + —=)du < 00. 2.86
nZN < IUQ‘S(;/ ( 2 ) 2 ( ﬁnh) 2 ( )

By (2.45), (2.82), (2.84), (2.85), (2.86) and Theorem 2.5, we have

d

Uy = \/ﬁ(&n —0"), m(én —6"))

(
— = (I a*)'AL T2 (") Ag) ~ N(0, diag(T! (o)1, T2 (a*)™h)),

and
Elf(a,)] - E[f(a)],

as n — oo. for any continuous function f with at most polynomial growth. O



Bibliography

Adams, R. A.: Sobolev spaces. Pure and Applied Mathematics (Vol. 65). London, New York: Academic
Press (1975)

Adams, R. A. and Fournier, J. J. F. : Sobolev spaces. Second edition. Pure and Applied Mathematics
(Amsterdam), 140. Elsevier / Academic Press, Amsterdam (2003)

Ait-Sahalia, Y., Fan, J., and Xiu, D.: High-Frequency Covariance Estimates With Noisy and Asynchronous
Financial Data. Journal of the American Statistical Association, 105, 1504-1517. (2010)

Barndorff-Nielsen, O.E., Hansen, P.R., Lunde, A., and Shephard, N.: Multivariate realised kernels: Con-
sistent positive semi-definite estimators of the covariation of equity prices with noise and nonsynchronous
trading, Journal of Econometrics, 162, 149-169. (2011)

Bibinger, M.: Efficient covariance estimation for asynchronous noisy high-frequency data, Scandinavian
Journal of Statistics, 38, 23-45. (2011)

Bibinger, M.: An estimator for the quadratic covariation of asynchronously observed It6 processes with
noise: Asymptotic distribution theory, Stochastic Processes and their Applications, 122, 2411-2453. (2012)

Bichteler, K. and Jacod, J.: Calcul de Malliavin pour les diffusions avec sauts: existence d’une densite dans
le cas unidimensionnel, Lecture Notes in Math, Springer-Verlag, Berlin, 132-157 (1986)

Billingsley, P.: Convergence of Probability Measures. Willey, New York (1968)

Christensen, K., Kinnebrock, S., Podolskij, M.: Pre-averaging estimators of the ex-post covariance matrix
in noisy diffusion models with non-synchronous data, Journal of Econometrics, 159, 116-133. (2010)

Cont, R. and Tankov, P.: Financial modeling with Jump Processes, Financial Mathematics Series, Chapman
& Hall/CRC, 2004

Dohnal, G.: On estimating the diffusion coefficient, Journal of Applied Probability, 24, 105-114. (1987)

Doukhan, P. and Louhichi, S.: A new weak dependence condition and applications to moment inequalities.
Stochastic Processes and their Applications 84, 313-342. (1999)

Epps, T. W.: Comovements in Stock Prices in the Very Short Run. Journal of the American Statistical
Association, 74, 291-298. (1979)

Genon-Catalot, V. and Jacod, J.: On the estimation of the diffusion coefficient for multidimensional diffu-
sion processes, Annales de I’THP Probabilités et statistiques, 29, 119-151. (1993)

Genon-Catalot, V. and Jacod, J.: Estimation of the diffusion coefficient for diffusion processes: random
sampling, Scandinavian Journal of Statistics, 21, 193-221. (1994)

Gobet, E.: Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach,
Bernoulli, 7, 899-912. (2001)

Hayashi, T. and Yoshida, N.: On covariance estimation of nonsynchronously observed diffusion processes.
Bernoulli, 11, 359-379. (2005)

87



BIBLIOGRAPHY

Hayashi, T. and Yoshida, N.: Asymptotic normality of a covariance estimator for nonsynchronously ob-
served diffusion processes. Annals of the Institute of Statistical Mathematics, 60, 367-406. (2008)

Hayashi, T. and Yoshida, N.: Nonsynchronous covariation process and limit theorems. Stochastic Processes
and their Applications, 121, 2416-2454. (2011)

Ibragimov, I.A., Has’minskii, R.Z.: The asymptotic behavior of certain statistical estimates in the smooth
case. I. Investigation of the likelihood ratio. (Russian) Teorija Verojatnostei i ee Primenenija, 17, 469-486.
(1972)

Ibragimov, I.A., Has’'minskii, R.Z.: Asymptotic behavior of certain statistical estimates. II. Limit theorems
for a posteriori density and for Bayesian estimates. (Russian) Teorija Verojatnostei i ee Primenenija, 18,
78-93. (1973)

Ibragimov, I.A., Has’minskii, R.Z.: Statistical estimation: asymptotic theory. Springer, New York, 1981

Jacod, J.: On continuous conditional Gaussian martingales and stable convergence in law. Seminaire de
Probabilites, XXXI, 232-246, Lecture Notes in Math., 1655, Springer, Berlin (1997)

Kessler, M.: Estimation of an ergodic diffusion from discrete observations, Scandinavian Journal of Statis-
tics, 24, 211-229. (1997)

Kutoyants, Yu. A.: Parameter estimation for stochastic processes, Translated and edited by B.L.S.Prakasa
Rao, Herdermann, Berlin, 1984

Kutoyants, Yu. A.: Identification of dynamical systems with small noise, Kluwer, Dordrecht Boston
London, 1994

Kutoyants, Yu. A.: Statistical inference for spatial Poisson processes, Lecture Notes in Statistics, 134.
Springer, Berlin Heiderberg New York London Paris Tokyo Hong Kong, 1998

Kutoyants, Yu. A.: Statistical inference for ergodic diffusion processes, Springer Series in Statistics.
Springer-Verlag London, Ltd., London. 2004.

Malliavin, P. and Mancino, M. E.: Fourier series method for measurement of multivariate volatilities.
Finance and Stochastics, 6, 49-61. (2002)

Mancini, C.: Estimation of the characteristics of the jumps of a general Poisson-diffusion model. Scand.
Actuarial J., 1, 42-52 (2004)

Masuda, H.: Ergodicity and exponential S-mixing bounds for multidimensional diffusions with jumps.
Stochastic Process. Appl. 117, no. 1, 35-56 (2007)

Masuda, H.: On stability of diffusions with compound-Poisson jumps. Bull. Inform. Cybernet. 40, 61-74
(2008)

Masuda, H.: Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck
processes, Electronic Journal of Statistics, 4, 525-565. (2010)

Ogihara, T. and Yoshida, N.: Quasi-likelihood analysis for the stochastic differential equation with jumps,
Statistical Inference for Stochastic Processes, 14, 189-229. (2011)

Ogihara, T. and Yoshida, N.: Quasi-likelihood analysis for nonsynchronously observed diffusion processes,
Stochastic Processes and their Applications, 124, 2954-3008. (2014)

Prakasa Rao, B.L.S.: Asymptotic theory for nonlinear learst squares estimator for diffusion processes,
Mathematische Operationsforschung Statistik. Series Statistics, 14, 195-209. (1983)

Prakasa Rao, B.L.S.: Statistical inference from sampled data for stochastic processes, Contemporary Math-
ematics - American Mathematical Society, 80, 249-284. (1988)



BIBLIOGRAPHY 89

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Prakasa Rao, B. L. S.: Semimartingales and Their Statistical Inference, Monographs on Statistics and
Applied Probability, 83, Chapman & Hall/CRC, 1999

Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1999)

Sato, K.: Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge,
1999

Sato, K., Yamazato, M.: Operator-self-decomposable distributions as limit distributions of processes of
Ornstein-Uhlenbeck type, Stochastic Process. Appl., 17,73-100 (1984)

Shimizu, Y.: M-estimation for discretely observed ergodic diffusion processes with infinitely many jumps.
Stat. Inference Stoch. Process. 9, no. 2, 179-225 (2006)

Shimizu, Y.: Density estimation of Levy measures for discretely observed diffusion processes with jumps.
J. Japan Statist. Soc. 36, 37-62 (2007)

Shimizu, Y.: A practical inference for discretely observed jump-diffusions from finite samples. J. Japan
Statist. Soc. 38, 391-413 (2008)

Shimizu, Y., Yoshida, N.: Janpugata kakusankatei no risankansokukarano suiteinitsuite. (Estimation of dif-
fusion processes with jumps based on discretely sampled observations.) The 2003 Japanese Joint Statistical
Meeting, Meijo University, September 2-5, 2003.

Shimizu, Y. and Yoshida, N.: Estimation of parameters for diffusion processes with jumps from discrete
observations, Statistical Inference for Stochastic Processes, 9, 227-277. (20006)

Sgrensen, M. and Uchida, M.: Small diffusion asymptotics for discretely sampled stochastic differential
equations, Bernoulli, 9, 1051-1069. (2003)

Uchida, M.: Estimation for dynamical systems with small noise from discrete observations, Journal of the
Japan Statistical Society, 33, 157-167. (2003)

Uchida, M.: Estimation for discretely observed small diffusions based on approximate martingale estimating
functions, Scandinavian Journal of Statistics, 31, 553-566. (2004)

Uchida, M. and Yoshida, N.: Nondegeneracy of statistical random field and quasi likelihood analysis for
diffusion. Research Memorandum 1149, Institute of Statistical Mathematics (2011)

Uchida, M. and Yoshida, N.: Nondegeneracy of Random Field and Estimation of Diffusion. arXiv:1212.5715.
(2012)

Yoshida, N.: Estimation for diffusion processes from discrete observation, Journal of Multivariate Analysis,
41, 220-242. (1992)

Yoshida, N.: Polynomial type large deviation inequalities and convergence of statistical random fields, ISM
Research Memorandum 1021, Institute of Statistical Mathematics. (2006)

Yoshida, N.: Polynomial Type Large Deviation Inequalities and Quasi-Likelihood Analysis for Stochastic
Differential Equations. Ann. Inst. Statist. Math 63, 431-479. (2011)

Wolfe, S. J.: On a continuous analogue of the stochastic difference equation X,, = pX,,_1 + By, Stochastic
Process. Appl., 12, 301-312 (1982)



