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ABSTRACT

Due to the continual improvements in computer resources on the cloud and smart devices, ap-
plications based on speech recognition technologies are becoming more widely used. However,
recognition accuracy degraded significantly if the speech is noisy, captured in real environments,
or spontaneous, containing ambiguous utterances; both problems are barriers to the practical appli-
cation of speech recognition. This paper provides useful countermeasures in the form of efficient
prior control schemes by leveraging the attributes of practical scenarios.

This research assumes two practical usage targets, a) noise robust speech recognition on tablet
devices, and b) spontaneous speech recognition for contact centers and parliament bodies. This
work deals with three situations of speech application; i) speech interface for tablet devices, ii)
speech mining in contact centers, and iii) speech transcription for parliamentary meetings. We
develop, for the first situation, i.e. tablet devices, 1) acoustic model adaptation and normalization
using pre-observed noise. For the second situation, i.e. contact center, we develop 2) a fast un-
supervised adaptation technique using frame-independent confidence scores, 3) a data selection
technique using prior confidence, 4) a recognition time stabilization technique using prior beam
width control. We also develop 5) fast acoustic pre-processing for the transcription of parliament
meetings, third situation.

To tackle the variation in S/N and convolutional noise expected with tablet devices, we develop
acoustic model adaptation and normalization using pre-observed noise. This technique assumes
that the background noise is relatively stationary and can be captured. It offers robust speech
recognition under a wide range of S/N and convolutional noise; the noise captured prior to speech
recognition allows noise reduction through the techniques of spectral subtraction (SS), additive
noise adaptation using parallel model combination (PMC), and convolutional noise normalization
using cepstral mean normalization (CMN).

To improve accuracy under the constraint of a recognition time limit, often seen in contact cen-
ters, we develop a fast unsupervised adaptation technigue based on frame-independent confidence
scores. This technique leverages the property that the target is stored speech. It uses a limited
number of Gaussian mixture models (GMMs) for the target speech in a preliminary step before
speech recognition, and then improves accuracy rapidly by gender selection and of the application
of maximum likelihood linear regression (MLLR).

For contact centers, we develop a data selection technique with prior confidence estimation to
reduce the cost of processing by dropping low confidence speech data; if such data is processed it is
likely to disrupt the subsequent text mining functions and will eventually be rejected. The property
of this technique is that massive volumes of data are stored and low confidence recognition results
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are unnecessary. It estimates prior confidence scores rapidly by using a limited number of GMMs
and selects only high prior confidence data for speech recognition.

Furthermore, for contact centers, we develop a prior beam width control technique to reduce
the time wasted in processing low quality speech data that should be rejected. This technique also
assumes that the target is massive volumes of stored speech. It rapidly estimates prior scores by
using a limited number of GMMs, and stabilizes the computation time by controlling the search
space spread in decoding.

In addition, we also develop a fast acoustic pre-processing technique that can well handle
changes in the recording environment and speaker to realize a parliamentary meeting transcription
system. We can leverage the property that pre-processing is available since incoming parliament
speech is segmented and temporarily stored in caches. This technique achieves high accuracy, even
if computation time constraints are imposed, by combining four fast acoustic pre-processing meth-
ods of channel selection, speaker indexing, feature parameter normalization, and unsupervised
adaptation.

All five proposed techniques are based on the prior control approach and leverage the properties
of practical speech recognition applications; they provide significant benefits over conventional
speech recognition schemes.
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Chapter 1

Introduction

1.1 Background

Speech information processing is one of the most important topics in the human interface research
field. Speech recognition is the key to developing highly effective human interface applications.
Speech recognition studies started over fifty years ago [1, 2], and speech recognition techniques
have evolved dramatically in the last decade. Recently, due to the enhanced performance of com-
puter resources, broadband wireless networks, and the popularization of smart devices, speech
recognition applications are coming into general use such as voice search [3, 4] by Google, Siri
virtual personal assistant [5] by Nuance, and Shabette Concier (in japanese) voice-agent applica-
tion by NTT docomo [6][7]. Other speech recognition technologies for human-aided transcription
are also in practical use; examples include a broadcast TV closed-captioning service [8] and a
meeting transcription service for the Japanese parliament (Diet) [9].

Speech recognition applications and services are being launched continuously but performance
still needs to be improved. Recognition errors are a significant problem when the speech overlays
background noise in the distant-talking situation, e.g. smart tablet device. While situations that per-
mit formal and reading-style speech can achieve high accuracy, informal and spontaneous speech
generate too many recognition errors; e.g. conversational speech between humans in call centers or
parliamentary meetings. These recognition errors become a big barrier to really practical applica-
tions. This paper attempts to overcome this barrier and accelerate the spread of speech recognition
services.

This work focuses on two practical targets that have wide applicability; a) speech captured
by distant-talking microphone (e.g. tablet device) with background noise , and b) natural sponta-
neous conversational speech between humans (e.g. call center speech or parliamentary discussion).
Speech recognition accuracy is degraded significantly in these practical targets; noise and ambi-
guity in speech are major barriers to the realization of practical speech recognition applications.
The research targets are positioned in Figure 1.1. 1st target, i.e., tablet devices, was a far-sighted
research goal that predicted the recent popularity of smart devices. The 2nd target is spontaneous
speech at the call center or in parliament; there are no truly practical systems since it remains
difficult to recognize spontaneous speech accurately.

1



2 INTRODUCTION

At that time we focused on tablet devices, the devices’ penetration rate at home is definitely
not the same at the present days; there were few studies to tackle the home noise by using tablet
devices. Furthermore, microphone array techniques are often used to deal with distant-talking
speech, and it is more difficult to recognize the distant-talking speech by using internal micro-
phones of the tablet devices.

When we started this work for spontaneous speech, a large-scale national project named enti-
tled “Spontaneous Speech Corpus and Processing Technology” was conducted [10]. Although the
project constructed a large-scale spontaneous spontaneous speech corpus, the Corpus of Sponta-
neous Japanese (CSJ), the corpus consists mainly of monolog speech as presentation [11]. Since
the dialog speech in call center is conversational and so more spontaneous than monolog presenta-
tion, it is more difficult to recognize the dialog spontaneous speech accurately.

Noisy level
Distant- :
talking 1) Tablet device
Close- Previous 2) Call center/
talking main target Parliament
Ambiguous
Read speech Spontaneous speech
(for machines) (between humans)
Figure 1.1:Positioning study targets in speech recognition
1.2 Goal

One goal of this work is to provide the desired performance, which can not be obtained by the
conventional framework, for realizing practical applications based on speech recognition. The
approach adopted here is to introduce efficient prior control techniques by leveraging the properties
inherent to the applications .

The conventional speech recognition framework is shown in Figure 1.2. This framework con-
sists of 4 components; acoustic analysis, decoder, acoustic model, and language model. Compo-
nent parameters are basically adapted for each use case by collecting training data. This incurs
high production costs since a lot of training data is required to overcome the different problems
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encountered in speech recognition; e.g. to achieve sufficient recognition accuracy given limited

computer resources.

The framework of this work is shown in Figure 1.3. It offers an additional component, prior
control. The component offers an efficient prior process that depends on the available proper-
ties of in each practical use case. The prior process alsocontrols subsequent speech recognition

components.
Language
model
N

Input speech signal | Acoustic eech recognition result
put sp g _ {DecoderSp g
analysis
Y,

Acoustic
model

Figure 1.2:Conventional speech recognition framework

Language
ﬂ)del
/—N
\
Input speech signal | Prior Acoustic Speech recognition result
control

analysis
J

Acoustic
model

Figure 1.3:Proposed speech recognition framework
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This work examines use cases of three types; i) speech recognition interface for tablet devices,
i) information extraction from speeches stored in call centers, and 3) transcription support system
for parliament speeches. Each use case exhibits a different problem that must be solved if we are to
realize practical applications. Table 1.1 shows the required constraint condition in each use case.

Table 1.1: The required constraint condition in each use case

Use case Response / speed Offline Completeness
Tablet device , . . . .
(Speech interface) High response Offline for noise Reject noise data
Call center Highspeed  Offline Focus on high accu-
(Speech mining) rate data
Parliament speech High speed Offline for short seg- complete all data
(Speech transcription) ments

The proposed techniques leverage the available property of each use case. Table 1.2 shows the
issues and the the properties focused on in this work. i) Higher accuracy and better response are re-
guired to counter background and convolutional noises for tablet device interfaces. ii) Highly accu-
rate spoken documents should be output under limited computer resources from massive volumes
of speech data in call centers. iii) High recognition accuracy is required within strictcomputation
time limits.

1.3 Overview

This subsection provides an overview of the work in this thesis (Figure 1.4). The proposed prior
control techniques leverage the available properties to resolve the issues present in each use case.
This thesis, in the following chapters, details the speech recognition experiments conducted to
confirm the effectiveness of the proposed prior control techniques .

e Chapter 2 describes the proposed model adaptation and normalization technique that uses
the pre-recognition noise for tablet device interfaces. This proposed technique improves
the recognition accuracy against convolutional and additive noises by using pre-recognition
background noise.
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Table 1.2: The issues and properties available in each use case

Use case Issue Property

Higher accuracy and better
response under noise

Tablet device Background noise can be pre-observed

Low latency is not required
for stored speech samples

Speech samples yielding low recog-
nition quality can be omitted given
the massive amounts of data avail-
able

Higher accurate spoken docu-
Call center ments under limited computer
resources

Low quality speech does not
need to be recognized care-
fully

Prior normalization and adap-
Parliament speech High accuracy strict time limitation are available for the
stored speech

The following three chapters are aimed at information extraction from the massive amounts of
speech data stored in call centers.

e Chapter 3 describes a fast unsupervised adaptation technique based on efficient statistics
accumulation using frame-independent confidence scores within monophone states. This
proposed technique improves the recognition accuracy with no increase in computation re-
quirements by using fast prior unsupervised adaptation for the target speech before recogni-
tion.

e Chapter 4 describes an efficient data selection technique for speech recognition based on
prior confidence estimation using speech and monophone models. This proposed technique
estimates prior confidence scores rapidly, and selects high confidence speech data, data that
can be expected to yield highly accurate speech recognition results from massive volumes of
data.

e Chapter 5 describes efficient beam width control to eliminate excessive speech recognition
time through the use of score range estimation. This proposed technique controls search
beam width prior to decoding, since low quality speech shouldn’t be recognize carefully.

e Chapter 6 describes the proposed fast acoustic pre-processing technique against that can
handle changes in the recording environment and the speaker for parliamentary meeting
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Chapter 2 o
Adaptation and normalization

Chapter 5 o
Excessive time elimination—

Speech
recognition
result

y

N

Input speech signal | Prior Acoustic

control anaysis
S

ter 4
D
Acoustic
model

a selection
Figure 1.4:Overview of this work

Chapter. 6 :
Acoustic pre-processing

Chapter 3 _
Unsupervised adaptation

transcription. The proposed technique can utilize several pre-processing methods to achieve
the desired accuracy within a computation time limit, since the pre-processing approach is
available for the cached incoming speech.

Finally, Chapter 7 reviews this thesis and discusses the realization of practical speech recogni-
tion systems.



Chapter 2

Proposed Model Adaptation and
Normalization Using Pre-Observed Noise

2.1 Introduction

Business is demanding more effective speech dialog systems with the emphasis being placed
on rapid response. Early research mainly focused on robustness. Model adaptation techniques
[12][13][14][15] to counter noise were developed. Robustness is achieved by the adaptation pro-
cessing provided by these techniques. Focusing on just accuracy is not sufficient since practical
systems also need rapid response to satisfy the user requirements. Higher system response speeds
are essential.

Speech recognition accuracy is often degraded by convolutional and additive noises [16].
While the former can be offset by CMN (cepstral mean normalization) [17], HMM-composition,
called as NOVO (noise and voice composition) [12] or PMC (parallel model combination) [13], is
used to offset the latter. These techniques, both which model the convolutional and additive noise
characteristics, are adopted by CMS/PMC [14] and E-CMN/PMC [15]. Recognition accuracy can
be increased by model adaptation: the model is optimized to match the instantaneous noise char-
acteristics. These conventional techniques, CMS/PMC and E-CMN/PMC, first adapt the cepstral
mean parameters of the acoustic model using the user’s utterances against convolutional noise,
and so must acquire user speech samples to initialize the speech recognition system. After that,
compensation is followed by HMM-composition against the additive noise, which adapts to the
observed additive noise but further delays the system’s response to the user. Conventional tech-
niques can not achieve adequate response speeds because model compensation and adaptation are
performed only after the speech sample is received.

In real situation, the speech recognition system is able to observe the additive noise when user
doesn't use the application. Focus on this point, our model generation strategy uses only the ad-
ditive noise observed before user start to utter. Our technique doesn’'t have to wait to capture the
user’s speech sample, therefore can achieve high response. One technique, named NOVO+CMN
[18], achieves faster response by this strategy. Model generation, realized by HMM-composition
and CMN, is performed intermittently using the additive noise observed by the system. Since
noise is effectively constant over short periods in real applications, the results of noise adaptation

7



8 Proposed Model Adaptation and Normalization Using Pre-Observed Noise

are valid and are expected to achieve high performance. This means that after the speaker’s speech
sample is captured; only CMN need be performed to start recognition processing. In another
advance, we create several HMMs to cover the wide S/N range expected in real world applica-
tions, because the S/N value can not be known without the user’'s speech sample. Furthermore,
we use an additive noise reduction method like SS (Spectral Subtraction) at the front end of our
NOVO+CMN technique to raise the S/N. Simulations show that the technique proposed herein,
called SS-NOVO+CMN, achieves better recognition accuracy than the basic methods. The pro-
posed technique is far more practical than either CMS/PMC or E-CMN/PMC since it eliminates
the delay imposed by performing model adaptation after the speech sample is received. This paper
reports experiments made using the multi-speaker dictation task.

on accuracy is often lost due to convolutional noise and additive noise. There are three main
sources of problems with these applications 2.1.1) low Speech/Noise (S/N) ratios, 2.1.2) changes
in S/N, and 2.1.3) changes in transfer characteristttsl{etween the microphone and the user’s
mouth.

2.1.1 Problem of low S/N ratio

In the distant talking situation, as the distance between the speaker’s mouth and the microphone
increases, ambient noise increases and the S/N decreases. The HMM-composition method, NOVO
[12] and PMC [13], are well-known noise adaptation methods that can improve speech recognition
performance in noisy environments. However, the recognition performance of noise adaptation
methods like NOVO, is not sufficient if the S/N is too low, because the speech features are buried
in the noise. Methods to raise the S/N of the observed signals by using noise reduction such as the
SS method [19] and the Wiener filter (WF) method [20] can be used. These methods, however, are
not able to remove noise completely, and they create new problems in that insufficient or excessive
reduction processing leads to remaining noise or speech distortion, respectively. One technique
used noise reduction to raise the S/N and then noise adaptation to compensate the remaining ad-
ditive noise [21]. In this paper, we use SS at the front end of this system and adapt the remaining
noise by NOVO against the low S/N ratio problem.

2.1.2 Problem of changes in S/N ratio

In the real world, ambient noise level changes occasionally. Even if the ambient noise level remains
fixed, the speech level picked up at the microphone depends on the loudness of the speaker’s voice,
the words uttered, and the position of the speaker in relation to the microphone; thus the S/N ratio
changes often and widely. To overcome this problem, we proposed the use of several acoustic
models formed under various S/N conditions [21]; speech recognition processing is carried out in
parallel using these models and the output of the best performing model, the one with the highest
likelihood, is selected. In this paper, we adopt this multi-S/N approach to counter the variation in
S/N ratio.
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2.1.3 Problem of changes irf{ (transfer characteristics)

The convolutional noise, created by the space transfer characterig)itetween the microphone

and the user’s mouth, changes often in the distant talking situation on a Tablet PC or PDA. CMN
[17] is commonly used to counter convolutional noise. Against this problem, we proposed the
NOVO+CMN technique [18].

2.2 Model adaptation and normalization using pre-observed
noise

Figure 2.1 shows the framework of SS-NOVO+CMN, the system proposed here. The important
point of our system is that, we capture only the additive noise (non-utterance) for model generation
in offline step. The system puts SS at the front end to counter low S/N values. The system generates
several acoustic models for various S/N values against additive noise and normalizes cepstral mean
parameters of the noise adapted acoustic models against convolution noise in an offline process.
In an online process, it applies the cepstral mean normalization method to the input signal features
and selects the recognition result from the acoustic model with highest likelihood S/N value.

Note An additive noise reduction method and additive noise adaptation method are described
in Section 2.2.1 and 2.2.2, respectively. The method of generating several S/N noise adapted
models to handle the variation in S/N is described in Section 2.2.3. Section 2.2.4 and 2.2.5 explain
convolutional noise normalization for the acoustic model and for the input signal, respectively.

2.2.1 Additive noise reduction for the input signal

In this first step, we use SS [19] to reduce the additive noise and so raise the S/N. In the SS method,
|O|? is the untreated input power spectrum ang? is the observed noise power spectrud.,|

is estimated noise power spectrum and is held cons{t&dﬂ.is estimated by the noise observed in
non-utterance regions. The estimated noise reduced power sp¢éﬂﬁmmd the remaining noise
power spectrurr|11\7,~|2 are given by

51 = max{|O — a|NP". f|OF} -

[N, [* = max{|[N|> — a|N |, f|N[*} @

Preliminary experiments showed that the optimum overestimation factaas 1.0, while the

spectral flooring parametef, was set to 0.7; these values were used in subsequent experiments
on SS-NOVO+CMN. Speech distortion by excessive noise reduction degrades speech recognition
accuracy and can not restore the distortion with latter additive noise adaptation processing. There-
fore we use a low level of noise reduction to prevent the speech distortion, and adapt the remaining
noise at the latter processing.
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Figure 2.1:Proposed system.

2.2.2 Additive noise adaptation for acoustic model

Against the remaining noise, we use NOVO, a hoise adaptation technique based on HMM-composition.
In this paper, the main parameter of the acoustic model is based on the cepstrum. Accargingly,
is the cepstrum of clean speech, is the cepstrum of the remaining noise, ar@ o is given by

CNOVO = CS4N,
= F_l(log[exp F(cs)] + kloglexp F(cn,])

F andF~! represent Fourier Transform and Inverse Fourier Transform, respectively.

(2.2)

2.2.3 Multi-S/N adaptation

It is impossible to know the S/N value without an actual speech sample from the speaker in the
real world. We use NOVO for noise adaptation to generate several acoustic models for various
S/N values in a previous step. Eqg. (2.2) makes gadependent upon the S/N value. To cope
with changes in S/N, we prepare several acoustic models for the various S/N values expected by
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changing gaink .We select the recognition result from the estimated S/N acoustic model with
maximum likelihood using speech GMMs (Gaussian Mixture Models) generated by multi-S/N
HMM-composition.

2.2.4 Convolutional noise normalization for acoustic model

This section explains the cepstral mean normalization method for the noise adapted model gener-
ated by HMM-composition. Our technique creates a noise adapted model from the observed noise
signal using NOVO as described in [12]. Focusing on the parameters in the spectrum domain
converted from the acoustic model parametggsiepresents the spectrum parameters of the clean
speech acoustic model, and the spectrum parameters of the noise adapted acoustic model generated
by NOVO, Syovo , are given by

Snovo = Ssin,
= Ss+ S,
CMN means that the observed spectrum is normalized by the long-term spectrum in the linear
spectrum domain. The long-term spectruy o is given by

(2.3)

Snovo = SsiN,
= S5+ 5w,
where X represents the long-term mean of spectrtdm The spectrum parameters of the
normalized acoustic model so generatggi2,, are given by

(2.4)

SCMN _ QCMN
NOVO — ~S+N;,

SS+N, (2.5)

The denominator of Eq. (2.5) is equal to the long-term mean of the noisy speech spectrum.

It might be better to use the cepstral mean from the input signal that includes target user speech
sample for normalization. From a strategical standpoint, we do not use the input signal because
we want to prepare the normalized acoustic model before the user speaks to decrease the response
time. Thus our technique uses the parameters of the noise adapted model instead of the input
signal.

Snyovo represents the long-term mean of the parameters in the linear spectrum domain con-
verted from the noise adapted model parameters in the cepstrum domain; that is the cepstral mean.
The noise adapted cepstral mean parameters are approximated to the mean of the average param-
eters of all distributions in the noise adapted model. This approximation is valid and practical
because long-term speech signals contain all phonemes represented by the mixture distributions.
The noise adapted cepstre{4,,, and cepstral mean§,,,, are given by,
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CMN

CNovo = ENOVO — C%%vo
= CNOVO — CNOVO
Novo = TNOVO (2.6)
= CS+N,
R
M

wherey; represents the static cepstral mean parameter of distributamd A/ represents the
number of distributions without pause models.

2.2.5 Convolutional noise normalization for input signal

The input signals are subjected to feature analysis processing based on CMN to counter the changes
in the transfer characteristics. Focusing on the linear spectrum domain of the input signals,
represents the speech spectrum at the sound sdiyceepresents the remaining noise spectrum

after noise reduction as observed at the microphone Janepresents the transfer characteristics
between the sound source and the microphone; the observed spesgrusgiven by

So=HSs+ Sy (2.7)

Subtracting long-term mean of the feature from the observed feature in the cepstrum domain,
CMN, corresponds to division in the linear spectrum domain. The spectrum feature analyzed based
on CMN, S§M¥ [is given by

sgun = 5o

So
B HSgs + S,

~ HSg + S,
. Ss+ Sn,/H
Ss+ Sn,/H

(2.8)

As it assumed that

S
Sy, = g
Hm’L'cSN’,l?ackground (2 9)

- HmicHspace )

SN;?ackg'round
| space
where the microphone characteristicd48“, the space transfer characteristicg/ig*, and
the remaining background noise after noise reductio‘is*sound,
This approximation of Eq. (2.9) allows to generate the robust model which adapts the additive
noise and normalize the convolutional noise using only the observed the additive noise. From this
approximation of Eq. (2.9)55™%, transforms to
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GGMN o 5+ N (2.10)
Ss + Sn,

From Eq. (2.5) and Eq. (2.10), the next equation is obtained.

Se™MN =~ SEEG (2.11)

Normalizing the parameters of the noise adapted acoustic model generated by NOVO by the
cepstral mean of the noise adapted model yields the NOVO+CMN acoustic nsggl, that
matches the input features analyzed with CMIgM Y.

2.3 Experiments

2.3.1 Experimental condition and task

We used artificial hands-free speech data created by convoluting the impulse response and adding
noise to 720 clean speech utterances (dry source), each of which consisted of simulated dialogue
utterances spoken in different (own) styles. The speech utterances simulated the dialog at call
center. Before the recording, we gave the task sheet to the agent and the user. The task sheet
included the simulated situation and keywords without reading text. We recorded that spontaneous
speech between the agent and the user separately. The subjects were 17 males and 31 females, and
each created 15 utterances.

The noises were acquired from a domestic sound database [22], and PC fan noise of a tablet
PC was recorded. The noise levels were fixed, and the speech levels were changed by impulse
response. The speech power levels were not normalized and varied with the subject and utterance.

The impulse response data was measured with the sound source and the microphone separated
by 30, 50 and 70 cm using the TSP (Time-Stretched Pulse) method [23]; a Tablet PC and a speaker
were used as shown in Figure 2.2. Figure 2.3 shows the impulse response at the position of 70 cm
as an example. The reverberation time is 217 msec measured by square integration method.

At first, we created convolutional noisy speech data by convoluting the impulse response
against the clean dry source. We then added the noise samples to the convolutional noisy speech
data.

Table 2.1 shows the speech analysis conditions, Table 2.2 shows the acoustic model (HMM)
conditions used in the experiments, Table 2.3 shows the training data for the baseline acoustic
model, and Table 2.4 shows the evaluation task.

We used a general language model for these experiments, and vocabulary size was 10,000
words. The recognition character correct rate for the dry source were 89.05 %. We utilized a
character-based evaluation in the results to eliminate the influence on the length of the Japanese
word.

Table 2.5 shows the comparative techniques. SS-CMN use SS and CMN at the front end with
CMN acoustic model. Add-matched shows the additive noise matched acoustic model trained
using the training data with the matched additive noise. Env-matched shows the environment
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matched acoustic model trained using the training data with the matched convolutional and additive
noise. These two matched techniques need a lot of time to create the models using large training
data against each condition. It is not possible to know the value of S/N beforehand in practice.
Our solution is to create several acoustic models with different S/N values, and to perform speech
recognition processing in parallel using these models on NOVO-based techniques such as NOVO,
SS-NOVO+CMN, and SS-NOVO+CMN(opt.). Here we prepared acoustic models using 3 S/N
values: 10 dB, 20 dB, and 30 dB.

SS-NOVO+CMN(opt.) shows the optimum SS-NOVO+CMN. It eliminates the approximation
of Eq. (2.9) usingSy, /H instead ofSy, based on the correct impulse respoi&e

Table 2.1: Speech analysis conditions

Sampling rate 16 [kHZz]
Window type Hamming
Frame width 20 [msec]
Frame shift 10 [msec]
Feature parameterMFCC(12),AMFCC(12),APow

Table 2.2: Acoustic model conditions

HMM Triphone continuous mixture distribution
# of states 2000
# of mixtures 16
# of phonemes 30

Table 2.3: Training data
Speakers | 96 male and 80 female
Size 49 [hour]
# of utterances 47577

2.3.2 Experimental results

Recognition correct rate versus noise type at the position of 50 cm and 0 degree

Figure 2.4 shows average character correct rate versus four noise types at the position of 50 cm
and 0 degree. SS-NOVO+CMN shows the best correct rate in most practical situations except for



2.3. EXPERIMENTS 15

Table 2.4: Evaluation task

Dry source 15 utterances / speaker of simulated dialogue speech
. Internet Service Provider, PC support, Telecommunication,
Topic . . .
Mail order, Finance, Local government unit
Speakers 17 male and 31 female
Impulse responseg 30, 50, 70 [cm] at O [degree] and -45, 0, 45 [degree] at 50 [cm]
Noise type Cleaner, PC fan, sink, ventilation fan
Reverberation time 217 [msec]
Table 2.5: Comparative techniques
ID and name Acoustic model Additive noise Convolutional noise
1. baseline clean unknown unknown
2. NOVO adapt known unknown
3.SS clean known unknown
4. CMN clean unknown unknown
5. SS-CMN clean known unknown
6. SS-NOVO+CMN adapt known unknown
7. SS-NOVO+CMN(opt.) adapt known known
8. Add-matched train known unknown
9. Env-matched train known known

the matched models and optimum models.

Env-matched shows the greatest performance but Env/Add-matched need a lot of training
time and they are not practical. Add-matched shows better performance than our proposed SS-
NOVO+CMN with cleaner and PC fan noises. Against these noises, NOVO shows worse perfor-
mance than Add-matched, thus, the approximation accuracy of NOVO is not sufficient. Due to this
wide degradation from Add-matched to NOVO, SS-NOVO+CMN can not restore the performance
degradation.

In all situations, SS-NOVO+CMN(opt.) achieves better performance than SS-NOVO+CMN.
The influence of the approximation of Eqg. (2.9) is not so small but the optimum technique needs
the correct impulse response.

Recognition correct rate versus position with PC fan noise

Figure 2.5 shows the average character correct rate versus position with PC fan noise. SS-NOVO+CMN
shows the best correct rate in average except for the matched and optimum techniques. But SS-
NOVO+CMN and SS-CMN don't have statistically significant difference.
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At the position of 30 cm, the improvement of Env-matched is quite bigger than other posi-
tions. As the distance between microphone and speaker becomes closer, the value of S/N becomes
higher and the early reflection from keyboard area becomes excessive. CMN can not eliminate the
excessive reflection perfectly. Especially, SS-NOVO+CMN have an approximation in CMN pro-
cessing of Eq. (2.6) and it reduces the improvement by approximated CMN under the excessive
convolutional noise.

At the position of 70 cm, the distance between microphone and speaker becomes more distant,
the value of S/N becomes lower. SS achieves the same performance with NOVO. SS and SS-
CMN achieve good improvement with sufficient noise reduction. But SS-NOVO+CMN and SS-
NOVO+CMN(opt.) can not achieve good performance.

Recognition correct rate versus position with all noises

Figure 2.6 shows the average character correct rate versus position with several noises. SS-
NOVO+CMN shows the best correct rate in most and average situations except for the matched
and optimum techniques.

At the position of 70 cm, SS-NOVO+CMN can not achieve better performance than SS-CMN
as the same reason of Section 2.3.2.

Overall, SS-NOVO+CMN achieve the best performance. This technique increased the average
character correct rate by 1.02 % compared to SS-CMN and 11.62 % compared to CMN, which are
both statistically significant at < 0.0001 using a matched pair test.

Computational time

The average previous computational time of SS-NOVO+CMN is 0.50 [sec] for 5.0 [sec] noise data,
so the RTF (Real Time Factor) is equal to 0.10 on an @®bééon™3.6 GHz processor. It takes
0.015 [sec] to generate the SS parameter for the additive noise reduction, 0.42 [sec] for generating
SS-NOVO Syovo) models by HMM-composition for the additive noise adaptation, and 0.063
[sec] for generating SS-NOVO+CMNMNS§Y2,) models for the convolutional noise normalization.

If the techniques need additive noise adaptation processing by HMM-composition after user’s
speech sample is captured, they use not only the waiting time for user’s utterance, but also the
processing time for HMM-composition to initialize the speech recognition systems. Our proposed
technique, SS-NOVO+CMN, use the computational times in the previous step when user doesn’t
use the application, because it need only the observed additive noise. SS-NOVO+CMN doesn’t
waste the time to wait user’s utterance start, and it is convenient for use in real applications.

The average online RTF is 0.68 for SS-NOVO+CMN, 0.65 for CMN, and 0.65 for SS-CMN.
SS-NOVO+CMN doesn’'t have an excessive computation at the online step compared to CMN and
SS-CMN. Therefore, our proposed technique can achieve good response.
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2.4 Summary

Conventional noise adaptation techniques counter additive and convolutional noise but fail to
achieve rapid response. To rectify this omission, we proposed SS-NOVO+CMN; it normalizes
the cepstral mean for the parameters of the noise adapted acoustic models generated by NOVO
(HMM-composition) by using just the remaining additive noise after the application of SS (Spec-
tral Subtraction) in a previous step. Furthermore, it generates several S/N acoustic models to
handle changes in S/N values in real applications. In an online step, it needs only SS and CMN
(Cepstral Mean Normalization) at the front end and S/N selection using GMM. This proposed
technique increased the average character correct rate by 11.62 % compared to CMN condition,
which is statistically significant gi < 0.0001 using a matched pair test, and it is more practical
than conventional techniques since it offers short response times.
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Chapter 3

Fast Unsupervised Adaptation Based on
Efficient Statistics Accumulation Using
Frame Independent Confidence within
Monophone States

3.1 Introduction

Massive quantities of videos and dialogs are stored every day by servers; typical examples in-
clude video sharing services on the Internet and call center services provided by many compa-
nies. Speech recognition technologies can automatically transcribe the speech contained in the
stored items, and thus make the items searchable via these recognized transcriptions [24]. With
respect to call centers, several studies have analyzed customer needs by applying text mining
to automatically-transcribed spoken documents [25, 26]. Analysts demand high accuracy from
speech recognition systems to enable them to extract the customers’ needs efficiently. However
managers are reluctant to improve recognition accuracy by increasing computer resources. Even a
small increase in computation time generates vast computation costs when related to several tens
of thousands of calls per day. Therefore, we must improve recognition accuracy with limited com-
puter resources. This paper aims to achieve higher accuracy within the same computation time
required by the baseline system.

Adaptation techniques can improve recognition accuracy significantly when faced with the in-
trinsic variability of speech such as speaker characteristics and the recording environment [27]. It
is difficult to deal with all the variability of speech using supervised adaptation techniques. We can
improve recognition accuracy at low cost by adapting these techniques for the acoustic characteris-
tics of the input speech based on unsupervised transcription. Since stored speech does not require
the real time processing, a batch-type unsupervised acoustic model adaptation is effective. With an
unsupervised acoustic model adaptation it is necessary to generate unsupervised transcriptions and
accumulate statistics using this transcription. The conventional accumulation of statistics is based
on forward-backward [28] or Viterbi [29] algorithms. These algorithms require state sequences
and so need to determine the transcription in advance. Computation time is needed for decoding

21
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and for generating an unsupervised transcription for unsupervised adaptation.

Unsupervised adaptation techniques based on Maximum Likelihood Linear Regression (MLLR)
[30] are commonly used to improve accuracy. Constrained MLLR (CMLLR) [31] or feature-space
MLLR (fMLLR) often adopts a single global transformation matrix. More complex transforma-
tions are sensitive to unsupervised transcription errors in unsupervised adaptation [32]. Based on
the premise that it estimates only a single matrix, the existing unsupervised adaptation technique
realizes high speed by employing 2 class labels instead of using unsupervised transcription with
speech and pause models [33]. However, this approach cannot significantly improve accuracy. We
aim to realize fast and highly accurate unsupervised adaptation based on the use of monophone-
class labels to estimate a single matrix.

This paper proposes a fast unsupervised adaptation technique for estimating a single transfor-
mation matrix similar to CMLLR. Increased speed is achieved simply by using Gaussian Mixture
Models (GMMs) belonging to monophones in the acoustic model to generate unsupervised tran-
scriptions and by ignoring the time-wise continuity and adopting the accumulation of frame inde-
pendent statistics. This approximation did not degrade the accuracy in previous experiments [34]
performed under limited restrictions, namely where the gender was known and the quantity of data
was small. Experiments show that the proposed technique is fast and highly accurate with a large
amount of stored gender-unknown speech. Our technique reduces both the computation time and
the number of recognition errors significantly. Since the proposed technique runs at faster than the
baseline speed, it does not require a change in the hardware configuration. Therefore, the proposed
system avoids the above mentioned criticism regarding computer resources and can be introduced
easily into call centers.

3.2 Related work on unsupervised adaptation

Unsupervised adaptation is classified into two types: online and batch (e.g. [35]). The online type
described in [36] needs no prior time to generate the unsupervised transcriptions since they are de-
rived from the recognition results of previous utterances. The negative side is that initial utterances
receive no adaptation gain. The batch type can be expected to offer improved accuracy for initial
utterances. In call-center speech situations such initial utterances often contain important details
as the reason for the call [37], and so they are expected to be processed with high accuracy. There-
fore, our proposed technique employs batch-type adaptation but the cost is that prior unsupervised
transcription is required.

There is an abundance of related work on unsupervised acoustic model adaptation for speech
recognition. Most conventional studies are based on three major methods; Maximum a Posteriori
(MAP) [38], Eigenvoice [39], and MLLR [30]. In particular, a lot of recently proposed techniques
have been based on MLLR. Shift MLLR [40] and eXtended MLLR (XMLLR) [41] change the
MLLR transformation formulation for Gaussian mean adaptation techniques, and they use unsu-
pervised transcriptions from the previous stage in multi-pass decoding. Quick fMLLR (Q-fMLLR)
[42] reduces the computation time for statistics accumulation, but it also employs the initial unsu-
pervised transcriptions using a speaker independent model for adaptation. Atkartneeds a
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non-negligible computation time to obtain prior unsupervised transcriptions from decoding even
with a narrow beam [24]. This approach is computationally expensive since the decoding process
uses a large number of Gaussians in the acoustic model, and consumes extra computation time
with the exception of the Gaussian output probability calculation [43]. It is essential to eliminate
the extra computation time needed for generating unsupervised transcriptions. The proposed tech-
nique tackles this time-consuming issue by transcribing using the output probabilities of only a
limited number of Gaussians.

Several existing high-speed unsupervised adaptation techniques reduce the computation time
by using a small number of class labels for prior unsupervised transcriptiewy dt al. has a
general GMM as a phoneme-independent model, and phoneme-dependent models are modeled as
a transformation of this general GMM. Therefore, only one class GMM has to be adapted and
no decoding is needed [44]. Kozet al. uses 2 class labels (speech / pause) before adaptation
[33]. Hence they can reduce computation time significantly, and these techniques are effective for
word recognition with short data lengths. However, we think that they use too few (1 or 2 classes)
labels when transcribing spontaneous conversational speech. Our proposal adopts more classes of
labels using monophones (30 classes are used in our system). The proposed technique increases
the auto-transcription time, but offers improved accuracy since it realizes unsupervised adaptation
from the fine labeling, unlike the coarse transcription approach used in [33].

3.3 Proposed rapid unsupervised adaptation technique

3.3.1 lllustration of statistics accumulation

We compare our proposed statistics accumulation approach with the fundamental forward-backward
algorithm [28] and the conventional Viterbi algorithm [29]. We focus on state occurrence proba-
bility as the statistic for adaptation.

Conventional statistics accumulation

Acoustic model adaptation methods such as MAP [38] and MLLR [30] accumulate the statistics
of posterior probabilityy, (s, m) from them-th mixture component distribution of statet frame
t; v(s, m) is calculated from the occurrence probabilitys) of states as follows.

Cs,m/\[s,m(o ‘l’l’s m> Es,m)
Yels,m) = (s) - 57 A (3.1)

Z Cs,k-/\/:e,k (Ot‘u’s,lm Es,k)
k=1

Here, M, is the number of distributions belonging to state:, ,, is them-th mixture weight
and N, ,(-) is them-th multidimensional Gaussian distribution function with mean vegpigy,
and covariance matriX, ,, of states feature vectoO,.

v:(s) is fundamentally estimated using the forward-backward algorithm [28] as follows;
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ils) = a;(s)B(s)

= — (3.2)
> a(i)Bi)
j=1

wherea;(s) (5:(s)) is the forward (backward) probability of stateat framet, and S is the

total number of states used for statistics accumulation. The forward-backward algorithm requires

time-series labels as the state sequence; therefore it has to prepare a determined transcription in

advance.
The Viterbi algorithm [29] is commonly used in statistics accumulation It approximates
as being equal to 1 on the Viterbi path (0 otherwise) as follows;

1 if sis on the Viterbi path at
Ye(s) =~

0 otherwise. (3-3)

This Viterbi algorithm also requires the state sequence from the transcription, and estimates the
Viterbi path with the state sequence. The Viterbi algorithm requires a pre-determined transcription
before undertaking unsupervised adaptation similar to the fundamental forward-backward algo-
rithm. These algorithms must prepare a pre-determined state sequence. Instead of the continuous
value () < v(s) < 1) in the forward-backward algorithm(s) is a binary value (1 or 0) in the
Viterbi algorithm. The Viterbi algorithm estimateg(s) with complete confidence on the Viterbi
path even though the source label is not reliable in unsupervised adaptation.

Proposed statistic accumulation

In contrast to the forward-backward and Viterbi algorithms, we incorporate a simple reliability ex-
pression in the occurrence probabilify(s) estimation. When reviewing Eq. (3.2) in the forward-
backward algorithm, the right side numerator indicates the probability of passing through the target
states at framet, and the right side denominator indicates the summation of all states’ probabil-
ities. v:(s) can be considered the reliable probability of passing through the target statten

all the state paths at frantei.e. state confidence per frame. The Viterbi algorithm ignores this

state confidence although it retains a pre-determined state sequence. Instead of the state sequence
requirement of this Viterbi algorithm, our proposed technique uses state confidence per frame in
statistics accumulation to approximatés) as follows;

u(s) = O 34)

> b;(0))

j=1

whereb,(O,) is the frame independent output probability of stafer feature vecto©,. This
approximatey, (s) means the posterior probability based on the states’ output probabilities. It can
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also be considered the state confidence since the posterior probability is often used as a confidence
measure [45]. The lattice-based MLLR techniques [46, 47] also use state posterior over an entire
lattice instead of our frame independent state confidence.

v:(s) in the proposed technique is a continuous value similar to the forward-backward algo-
rithm. The lack of a pre-determined state sequence reduces labeling accuracy, but even if the
labeling is not accurate in a frame,(s) becomes smaller, so the influence of labeling error is
reduced with our frame independent statistics accumulation due to the use of this state confidence
per frame. Moreover, to reduce both the detrimental influence of labeling error and the extra
computation time, we accumulate only the best state within a frame as shown by the following
equation.

Sbs(—ot) if sis best state &t

u(s) = {60 59
j=1
0 otherwise.

The advantage of this state confidence is investigated by seffingequal to 1 at the best
state at within a frame such as the Viterbi algorithm, see Section 3.4. Furthermore, since some
decoders ignore the state transition probabilities [48], and MLLR-based adaptation techniques
transform the parameters of Gaussian distributions related to output probabilities, we ignore the
state transition and use only frame independent output probabilities in statistics accumulation.
Thus, the proposed technique can estimate the occurrence probaffiditframe by frame from
the frame independent output probabilityO,) of a states within framet¢, and does not require a
determined label from transcription in advance.

Relation between conventional and proposed statistics accumulation

Fig. 3.1 shows the relation between the conventional forward-backward / Viterbi algorithms and
the proposed statistics accumulation. The upper part of Fig. 3.1 shows the relation between (a)
the forward-backward algorithm, (b) the Viterbi algorithm and (c) the proposed frame independent
statistics accumulation with regard to the formulation of the occurrence probabilityof states

at framet. The lower left part of the figure shows the state’s sequenges @nd~) on the Viterbi

path in (b) the Viterbi algorithm. The lower right part shows the best state’s sequenees (*,

and\)) at each frame in (c) the proposed frame independent statistics accumulation. The other
states are indicated by T is the total number of frames used for statistics accumulation in (b) the
Viterbi algorithm. The states’ sequences on the Viterbi path are derived from determined labels
by utilizing prior unsupervised labeling. The best states’ sequences in (c), namely the proposed
technique, are the best states at each frame without the determined label.

Table 3.1 compares (a) the forward-backward algorithm, (b) the Viterbi algorithm and (c) the
proposed frame independent statistics accumulation with regard to pre-determined state sequence
and state confidence. Conventional statistics accumulation approaches, including both the forward-
backward algorithm [28] and the well-known Viterbi training algorithm [29], requires the deter-
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(a) Forward-backward

y(e)=—288)
3 (i) i)

i=1

ignore state confidence ignore state sequence
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1 sisonViterbi path
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0 otherwise. i=1
0 otherwise.
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Figure 3.1:Relation between (a) forward-backward algorithm, (b) Viterbi algorithm and (c) pro-
posed frame independent statistics accumulation.

mined label (state sequence) to be determined in a prior labeling process. Unlike the conventional
prior labeling process, which needs to generate a number of recognition hypotheses to acquire the
hypothesis with the maximum likelihood using a large vocabulary word trigram, our frame inde-
pendent statistics accumulation only has to calculate the output probabilities of the limited states,
thus reducing the computation time.

3.3.2 Unsupervised adaptation with monophone constraint and power uti-
lization

We describe the monophone constraint for realizing increased speed and the power utilization for
achieving improved accuracy in unsupervised adaptation.
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Table 3.1: Comparison of (a) forward-backward algorithm, (b) Viterbi algorithm and (c) proposed
frame independent statistics accumulation.

State sequence State confidence
(a) Forward-backward algorithm  use (forward / backward path) @se4;(s) < 1)
(b) Viterbi algorithm use (Viterbi path) ignore :(s) = 1 or0)
(c) Frame independent ignore (frame independent) uge{ v(s) <1)

Monophone constraint

Leeet al. achieves fast speech recognition by using monophones [49]. The proposed technique
also speeds up unsupervised labeling by using only monophones. The assumption is that one
monophone is an approximate model of triphones, which have the same central phoneme. Our
target is to estimate a single global transformation matrix rapidly using only monophones; i.e. all
the Gaussians in the monophones. A single matrix obviously has fewer elements than a multiclass
matrix. We consider that the sophisticated labeling provided by triphones is not required to esti-
mate this smaller number of elements. Thus, it is sufficient to use monophones in labeling even if
this yields a few errors. Triphones have many more states than monophones, so our monophone
constraint can reduce computation time significantly. Coarse state labeling, such as speech / pause
labeling, achieves high accuracy [33] but there is little improvement in recognition accuracy. Set-
ting all state loops as unconstrained cannot achieve high unsupervised transcription accuracy, so
the improvement in recognition accuracy is also slight. The optimality of our monophones’ state
constraint is shown by comparison with speech / pause loops and all state loops in Section 3.4.
Posterior probabilityy, (s, m) is calculated using the approximate occurrence probability)
shown in Eq. (3.1). The statistics of mean param@fﬂ Ye(s,m) - Oy and Zthl (s, m), are
accumulated using posterior probability(s, m) over the total number of frame%,. The single
global transformation matrix is generated from these accumulated statistics using the model-space
MLLR described in [31]. The mean parameters of all the distributions in the acoustic model
(triphones as well as monophones) are transformed by this same matrix.

Power utilization

The speech power changes depending on the positions of the speaker and microphone. Recogni-
tion accuracy is degraded if power term is not properly utilized. Accuracy could be improved by
with the proper use of a power adapted model. The proposed technique uses the power term an
extra feature parameter for speech recognition only after adaptation, not before; the occurrence
probability+;(s) is calculated using the likelihood without power whi{é ,,,(-) is calculated with

power in Eg. (3.1) to generate the power adapted model. Furthermore, the speech power level is
normalized utterance by utterance in acoustic model training.
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Figure 3.2:State sequence used in gender selection with utterance selection.

3.3.3 Gender selection with utterance segmentation

We describe utterance segmentation and gender selection for the selection of an appropriate acous-
tic model prior to unsupervised adaptation.

Our baseline speech recognition system adopts a conventional parallel decoding technique us-
ing dual-gender (male / female) acoustic models. Our baseline decoder shares the search spaces of
dual-gender acoustic models and selects gender in the decoding process. This approach is faster
than using dual decoders in parallel. Unfortunately, its speed and accuracy are still unacceptable
since its search space is larger than that of the ‘ideal’ single-gender dependent acoustic model.

Imai et al. used monophones for ‘online’ speech detection and speech recognition with dual-
gender models [50]. The monophone constraint for gender selection is also effective in reducing
computation time in our ‘offline’ system. The proposed technique investigates the use of only
gender dependent speech and pause models as constraints in the gender selection process before
speech recognition for a further reduction in computation time. This approach is efficient for
selecting the appropriate gender acoustic model for speech recognition, especially with acoustic
model adaptation.

Both gender selection and utterance segmentation are performed by using output probabilities
from GMMs only in the states belonging to speech (gender) GMMs and pause Hidden Markov
Models (HMMs) in dual-gender acoustic models. Fig. 3.2 shows the state sequences used in this
process at each franie e (o) indicates the best state (the other state) within the frdmis. the
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total number of frames used in this process.

Utterance segmentation

Utterance segmentation uses (gender dependent) speech GMMand pause GMMs belonging

to pause HMMs P/, Py, PJ; the 3 states of the pause model used in our dual-gender system)

in dual genderd € {m, f}; m: male andf: female) dependent acoustic models; since the
pause models are not shared by males and females in our system, the pause GMMs are trained
dependently by using gender dependent training data and so our pause GMMs are gender depen-
dent. Utterance start-points are detected by using a basic energy-based method with a hangover
time. After start-point detection, we calculate the frame independent output probabiliti®s

of speech and pause Gaussian mixture modeds G, PY, P, Pj) for feature vectoO; at frame

t. If the speech modebgs (O,)) is the best states(in Fig. 3.2), frame is considered to be speech.

If not, framet is considered to be a pause. When the pause frame continues for longefthan

(e.g. 0.8 sec), the utterance is segmented as an end-point. Excessive utterance segmentation loses
consonant discrimination and degrades accuracy in posterior speech recognition. Therefore, if the
interval time between utterances is less th&ft! (e.g. 1.0 sec), the utterances are concatenated.
Whereas Imaet al. use monophones for segmentation [50], the proposed technique uses only the
output probabilities of speech / pause model so it simplifies implementation and reduces computa-
tion time.

Gender selection

The proposed technique selects gender concurrently with utterance segmentation. It determines
gender by a majority vote of best state, either méle.(O,)) or female {.s(O,)) within each

speech frame. The above utterance concatenation is performed only between utterances of the
same gender. Gender selection only counts the number of best frames against each gender model,
and so consumes less computation time.

3.3.4 Framework of proposed system

Fig. 3.3 shows the framework of the proposed system. It consists of two parts; gender selection
(Section 3.3.3) and unsupervised adaptation (Section 3.3.1 and 3.3.2). The latter part has the fol-
lowing three component technologies ; frame independent statistics accumulation (Section 3.3.1),
monophone constraint (Section 3.3.2) and power utilization (Section 3.3.2). The proposed system
performs gender selection utterance by utterance. It then employs fast frame independent statis-
tics accumulation with monophone constraint against the utterances estimated to be from the same
gender in the adaptation process, and performs speech recognition with power utilization.



30 Fast Unsupervised Adaptation Based on Efficient Statistics Accumulation

Baseline dual-gender acoustic model

Input Gender selection with Speech recognition Recognition
P ¥ utterance segmentation 09 9
cals (+Pow) results
(speech/pause) x W

Labeling and Transformation -

Gender selection process Acoustic
L

statistics accumulation matrix
(monophone and ] estimation &Zfe Gender dependent
frame independent) (MLLR) adapted
- acoustic model
Single
transformation
Unsupervised adaptation process matrix

Figure 3.3:Framework of proposed system.

3.4 Experiments

We introduce recognition experiments that we performed to investigate the effectiveness of our pro-
posed technique for spontaneous speech; the baseline is no adaptation with a dual-gender acoustic
model.

3.4.1 Experimental settings

In this experiment the acoustic analysis condition is as described below; sampling frequency: 16
kHz, 20 msec length Hamming window shifted by 10 msec, and acoustic features: 25 orders
(MFCC 12,AMFCC 12,Apower) or 26 orders (power utilization after adaptation). The evaluation
task uses 120 calls (9.91 hours and 9,056 utterances) by 24 Japanese speakers (7 males and 17
females), and the speaking style is spontaneous speech in a two-party dialog. We use a dual-gender
acoustic model, the number of states is 1,958 in total and 90 monophone states, the distribution
number is 26,568 for males and 29,836 for females, and the size of training data is 122.71 hours
(109,294 utterances) for males and 113.23 hours (110,792 utterances) for females. The maximum
number of mixtures in each state is 16, but some states have fewer mixtures depending on the
guantities of training data for each state. The language model is a word trigram developed by
using manual transcriptions of dialog speech, and its vocabulary size is 59,676 words. The speech
recognition decoder is VoiceRex [51].

The baseline is the technique in the previously adopted speech recognition system; it uses
parallel decoding without prior gender selection or unsupervised adaptation. The same beam width
is used in all these experiments. The proposed unsupervised adaptation techniques are combined
with the proposed gender selection technique.
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3.4.2 Experimental results and discussion

We utilized a character-based evaluation to eliminate the influence of Japanese word length; the
abbreviations “Cor.” and “Acc.” mean correct rate and accuracy, respectively. The computation
time is normalized by the baseline recognition time; “Slct.” is the prior gender selection time with
utterance segmentation, “Adpt.” is the prior adaptation time with labeling, and “Sum.” is the total
computation time.

3.4.3 Experimental results and discussion for gender selection

We have to select an appropriate gender acoustic model for unsupervised adaptation, and so we
first investigate the influence of gender selection. The ID number, the abbreviation (abbr.) and the
effect of the compared gender selection techniques are shown in Table 3.2 in relation to gender
selection. The effect of@nder _glection, “GS”, is confirmed by comparing gender-known, “gd”,

with -unknown “m/f” (ﬁlale / female); “gd” uses the ‘ideal’ @nder_ependent acoustic model.

The proposed gender selection wifsesch / puse models from the dual-gender acoustic model,
“GS(s/p)”, is compared to the monophone-based technique, “GS(mo)”, as described in [50].

As the result of gender selection, the baseline technique, “1. m+f: baseline”, exhibited de-
graded speed and accuracy compared with ‘ideal’ gender dependent technique, “2. gd”, since
it expanded the search space and triggered gender selection errors. The prior gender selection
techniques, “3. m/f+GS(mo) and “4. m/f+GS(s/p)”, achieved accuracy equivalent to that of the
ideal gender dependent technique, “2. gd” and “5. gd+GS(s/p)”, so the adverse impact of our
proposed gender selection and utterance segmentation is very small. The proposed speech/pause
constraint technique, “4. m/f+GS(s/p)”, is faster than the conventional monophone constraint tech-
nique, “3. m/f+GS(mo)”, see [50], with equivalent accuracy. As a result, the proposed gender
selection approach, “4. m/f+GS(s/p)”, is equivalent to the ‘ideal’ gender dependent technique,
“2. gd”; thus our proposed speech/pause constraint is effective for gender selection.

Table 3.2: Performance of compared techniques regarding gender selection with utterance seg-
mentation.

ID and abbr. Gender selection Cor. Acc. Sum. Sict.

1. m/f: baseline Parallel decoding 79.22 73.79 1.00

2. gd Known 80.78 75.39 .939

3. m/f+GS(mo) Monophone loop 80.72 75.40 .977 .046
4. m/f+GS(s/p) Speech/pauseloop 80.71 75.34 .956 .008
5. gd+GS(s/p) nownandsegments By o, ;507 939 006

speech / pause loop
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3.4.4 Experimental results and discussion for unsupervised adaptation

Next, we investigate the influence of unsupervised adaptation. ID and abbr. are shown in Ta-
ble 3.3 regarding unsupervised adaptation. Theppsed_usupervised @aptation technique,

“pUA’, which uses state loop auto-transcriptioﬁ and frame independent statistics accumulation
with the proposed gender selection “m/f+GS(s/p)”, is compared todheentional msupervised
adaptation technique, “cUA", using forward-backward statistics accumulation with ‘ideal’ gender-
dependent “gd” acoustic model and auto-transcription by three language models; speech / pause
loop “cUA(s/p)” using 2 class labels as described in [33]nmpehone loop “cUA(mo)” and word
trigram “cUA(tri)”. The proposed technique with monophone constraint auto-transcription, “pUA(mo)”,
is compared to alktate loop (no constraint) “pUA(all)” and speech / pause loop “pUA(s/p)”.
“pUA(mo)” is also compared to “w/0SC”: ithout gate onfidence {,;(s) = 1 at best state within
frame). The entire unsupervised adaptation process is performed call by call.

Table 3.4 shows the effect of unsupervised adaptation without power utilization. All unsuper-
vised techniques (6-8 or 9-11) provided better accuracy than the unadapted techniques (2 or 4).
The conventional unsupervised adaptation technique using word trigrams achieved the best accu-
racy but its computation time was twice that of the baseline technique, “1. m+f: baseline”, since
it requires preparation time to generate a unsupervised transcription. Simplifying the language
model used in labeling (68) reduced not only the computation time but also the accuracy. The
conventional speech / pause based technique, “8. cUA(s/p)”, which is similar to [33], is faster than
“1. m+f. baseline”, but it offers the least improvement in accuracy. The proposed unsupervised
adaptation technique, “10. pUA(mo)”, matched the accuracy of the conventional monophone-based
technique, “7. cUA(mo)”, and the total computation time was also less than that of the baseline
technique, “1. m+f: baseline”. The proposed adaptation process contributed to the higher speed
since the adaptation effect increased the beam search efficiency. The proposed adaptation tech-
nique, “10. pUA(mMo0)”, has better accuracy than either slow “9. pUA(all)” or fast “11. pUA(s/p)”,
so our proposed monophone constraint is optimal as expected in Section 3.3.2. The advantage of
state confidence appears in the difference between the proposed technique, “10. pUA(mo0)”, and
no state confidence technique, “12. 10+w/0SC”. There is some improvement due to the effect of
considering state confidence and the validity of the approximation of Eqg. (3.5).

Finally, the effect of power utilization (Pow: P@&m) is verified, see Table 3.5. With power
utilization, the techniques demonstrate some advantages; the proposed power utilization approach
is effective in improving accuracy.

The proposed technique is indicated by “14. pUA(mo)+Pow”. This technique reduced the
relative error in the correct rate by 13.7 %, which is statistically significapt at.0001 based
on the difference between the means of the two binominal distributions, and in the computation
time by 17.9 % compared to the baseline technique, “1. m+f: baseline”. Moreover, it offers over
twice the speed of the conventional trigram-based adaptation technique under the ‘ideal’ gender-
dependent condition with little degradation in accuracy.
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Table 3.3: Compared techniques regarding unsupervised adaptation.

ID and abbr. Statistic accumulation Labeling

6. cUA(tri)  Forward-backward Word trigram

7. cUA(mo) Forward-backward Monophone loop

8. cUA(s/p) Forward-backward Speech/pause loop
9. pUA(all)  Frame independent All-state loop

10. pUA(mo) Frame independent Monophone state loop
11. pUA(s/p) Frame independent Speech/pause loop

12 wlosc  Frameindependent

without state confidence Monophone state loop

Table 3.4: Performance of unsupervised adaptation without power utilization.

ID and name Cor. Acc. Sum. Slct. Adpt.

6. CUA(r)  82.04 76.76 2.00 -  1.08
7. cUA(mo) 8161 7626 146 - 512
8. CUA(slp) 81.32 76.02 .936 -  .022

9. pUA(@@ll) 8152 76.25 1.36 .008 .456
10. pUA(mo) 81.63 76.38 .922 .008 .020
11. pUA(slp) 81.39 76.20 .918 .008 .008
12. 10+w/oSC 81.53 76.24 .924 .008 .019

Table 3.5: Effect of power utilization in unsupervised adaptation

ID and name Cor. Acc. Sum. Slct. Adpt.
1. baseline 79.22 73.79 1.00 - -

6. cUA(tri) 82.04 76.76 2.00 - 1.08
13. cUA(tri)+Pow  82.07 77.15 1.92 - 1.08
10. pUA(mo) 81.63 76.38 .922 .008 .020

14. pUA(mo)+Pow 82.07 77.00 .820 .008 .020

3.5 Summary

This paper proposes fast unsupervised adaptation by accumulating the acoustic statistics efficiently
using the frame independent output probabilities of speech (gender) / pause / monophone models.
The proposed technique segments each utterance individually and selects a gender model per ut-
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terance simultaneously with less computation time than if only gender and pause models are used.
It offers fast unsupervised adaptation using monophone states by accumulating the statistics with
the best state’s confidence within a monophone per frame against the selected gender dependent
acoustic model. After the adaptation, the approach uses a power term in the speech recognition
process to improve accuracy. Tests showed that our technique reduced the relative error in the cor-
rect rate by 13.7 %, which is statistically significanpat .0001 based on the difference between

the means of two binominal distributions, and the computation time by 17.9 % compared with the
baseline without prior gender selection and unsupervised adaptation. Furthermore, the proposed
technique reduced the computation time by 57.3 % while exhibiting an accuracy equivalent to that
of the conventional adaptation technique.



Chapter 4

Efficient Data Selection for Speech
Recognition Based on Prior Confidence
Estimation Using Speech and Monophone
Models

4.1 Introduction

Massive quantities of videos and dialogs are stored every day; typical examples are video sharing
services on the Internet and call center services provided by companies. Speech recognition tech-
nologies can transcribe the spoken components of these items automatically thus making the items
searchable via their transcripts [24]. Several studies have analyzed customer needs by employing
text mining [26, 25] and extracting the reasons for the calls [37] from stored conversational spo-
ken documents. A typical call center will store several tens of thousands of calls per day, and we
believe that not all calls should be transcribed for the following three reasons. 1) The computation
cost involved in transcribing all calls is excessive. 2) An informative analysis can be achieved
from a subset of the calls. 3) The quality of the recorded speech samples varies [27], and erro-
neous speech recognition (due to the poor input) will degrade the efficiency of subsequent spoken
document retrieval [52] and analysis.

Several confidence measures have been proposed for identifying “accurate” speech samples
[45]. Unfortunately, they require the computationally expensive step of speech recognition pro-
cessing to obtain confidence scores, which are estimated from the recognition results; they waste
considerable computer resources on samples that will eventually be rejected. Most conventional
methods target word or utterance verification. A dialog (similar to spoken document) level confi-
dence measure has been proposed [53], but it is also computationally inefficient because it requires
several features including speech recognition results to estimate confidence. Several data selection
methods have been proposed [54], but their target is to select training data, so they fail to reduce
the computation cost significantly.

Our proposal efficiently identifies speech samples that will be well recognized with an ex-
tremely low computation cost prior to speech recognition. It can identify those samples that have

35
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high confidence levels from massive numbers of stored speech samples. Prior confidence must be
estimated rapidly because speech recognition can only proceed after the estimation results have
been received. The proposed estimation technique utilizes the acoustic model used for posterior
speech recognition. The proposal uses only context independent (monophone) models and speech
models to reduce the computation cost. For even greater efficiency, its confidence estimation step
eliminates all processing other than the calculation of acoustic output likelihood from Gaussian
Mixture Models (GMMs). The prior confidence is calculated frame by frame from the difference
between the outpuibg-likelihoods of the monophone and speech GMMs. This confidence formu-
lation is an approximation of the state level posterior probability with the statarrenceroba-
bility. This paper evaluates the actual efficiency of our technique in speech recognition and spoken
document retrieval tasks. Experiments show that the proposed technique is significantly faster
than the conventional posterior confidence measure based on speech recognition, while maintain-
ing equivalent data selection performance.

The rest of this paper is organized as follows. Related work is outlined in Section 4.2. The
proposed technique is described in Section 4.3. Section 4.4 introduces experiments conducted to
confirm the effectiveness of the proposed technique. Our conclusion is presented in Section 4.5.

4.2 Related work on data selection for speech recognition and
its application

Since there are many factors that cause variability in speech signals [27], the recognition accuracy
is strongly dependent on the dageveral data selection methods have been proposed for training
[54, 55] and adapting [56] acoustic models for speech recognitioret\Wualso selected datato be
transcribed for training by using the confidence score;[&if$ technique is called active learning

A great number of confidence measure methods have been proposed [45] and they could also be
useful for selecting data during speech recognition processing, since inaccurately recognized data
impacts negatively on the subsequent application. Stoyarettevdetected misrecognized words

in spoken dialog systems [58]. Seigelal. estimated a confidence measure at the word/utterance
level by using conditional random fields (CRF). Ogastal. also used CRF directly to estimate

the recognition rate rather than the confidence score both per utterance and per lecture at the spoken
document level [59]. Asanet al. also estimated the spoken document confidence score by using
contextual coherence [60]. Senayal. detected low-quality documents by using a confidence
measure and semantic consistency based on the latent Dirichlet allocation (LDA) model for spoken
document retrieval [61]. Let al. used semantic similarity to estimate a confidence measure for
spoken term detection [62]. There are several confidence measure methods at a variety of levels
depending on the application.

Conventional confidence measure estimations require speech recognition results; this means
that a lot of computation time is required to recognize low-confidence and unuseful data, which
should be rejected. Thus, we attempt to reject unuseful data at the document level to prevent harm-
ful effects on the subsequent application prior to speech recognition. In a conventional approach,
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Leeet al. proposed rejecting data before speech recognition by using noise GMMs [63]. However,
this method could reject data at the utterance level and needs to know the noise type beforehand.
Changet al. also proposed a pre-rejection algorithm that enhances the robustness of speech recog-
nition by using pitch correlation [64], which allows it reject seriously distorted speech signal during
wireless communication. However, it fails to reject slightly distorted speech with pitch continu-
ity. This paper proposes an efficient method for selecting useful data for speech recognition and
subsequent spoken document retrieval at the document level, which consists of many utterances
before speech recognition addition, since our main target speakers, i.e. operators (agents) in
call centers, use headset-type close-talk microphones, the recorded speech has high SNR (speech
to noise ratio) without distortion. In call center speech, it is more important to tackle spontaneous
speech instead of noisy or distorted speech. Thus, we focus on acoustical confidence.

4.3 Proposed data selection based on prior confidence estima-
tion

4.3.1 Formulation of prior confidence estimation

The most common confidence measure is based on the word posterior probability defined as fol-
lows;
. P(W)P(O|W P(W)P(O|W
pw(0) = POVPOIW) __P(W)POIW) .)
P(0) > P(W)P(O|W)
W
whereO and W are an acoustic observation feature sequengsog, ..., or) and its corre-

sponding word sequence, respectiveB(,W) is word occurrenceprobability as given by the
language model, and™™ means the word, state, or sequence with the highest likelihood. The
normalization termP(O) cannot be easily computed [65], so conventional schemes approximate
it using theN-best list from speech recognition results as in [66].

It requires a high computation cost to extract word sequences by using a language model that
covers a large vocabulary. To avoid this cost, our strategy dispenses with the language model and
instead targets the state sequefiée Hidden Markov Models (HMMs);

P(S)P(O[S)
> P(S)P(0]S)

S
Our proposal eliminates all processing steps other than frame-independent acoustic likelihood

calculation to further reduce the computation cost; it ignores the transition probability in the same
way as several speech recognition decoders [48], and uses only the Gaussian output probability
from GMMs to estimate confidence frame by fratne. frame-independent)

Thatis, the posterior probabiliW(S[O) is approximately calculated from the frame-independent
state posterior probability?’(s|o;) with best stat& against observed featueg at framet for data
lengthT as shown below;

P(S|0) = (4.2)
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T

P(Slo) ~ [ [ P(5lor) (4.3)

t=1

where the frame-independent state posterior probalflifo, ), is calculated from the output
probability b, (o,) of states frame by frame as follows;

o PE)k(o) »
P(8|oy) S~ Pls)hi(or) (4.4)

M,
bs(ot) = Z ws,mNs,m(Otl,us,my Z:s,m> (45)

wheres is the best state in frame M, is the number of distributions belonging to state
W, 1S them-th mixture weight andV; ,,,(-) is them-th Gaussian distribution function with mean
vector, ., and covariance matrix, ,, of states.

To increase the processing speed further, the proposed technique uses only monophones when
calculating Eq. (4.4); is the best state, i.e. the state with the maximum Gaussian output probability
among the states of the monophone HMMs. The assumption is that triphones can be approximated
by monophones, and this assumption is often used to improve the speed of speech recognition
processing as in [67]. The monophone in our acoustic model is still trained by the acoustic features
with triphone-based alignment. Accordingly, this assumption is a very reasonable approach to
improving speed.

The denominator of Eq. (4.4),, P(s)bs(o;) is the sum of all states’ (all phonemes’) output
probabilities; it can be approximated by the speech model as follows;

> " P(s)by(0r) ~ P(g)by(0x) (4.6)

whereyg is the state of the speech model (GMM) that is trained from the acoustic features of all
phonemes i.e. all states. Our speech model has only a single statepsoulrencerobability of
the speech modeR(g), must be equal to 1 in speech frames. By assigningA(tg in Eq. (4.6),
we obtain the following.

> P(s)by(0) ~ by(oy) (4.7)

The second term in Eq. (4.7) is similar to the denominator in the second term in Eq. (4.1); thus
this approximation is reasonable.

By substituting this expression into Eq. (4.4), the frame-independent posterior probability,
P(8]o,), is approximately calculated as follows;

P(8)bs(0y)

P(8lo;) ~ b,(00)

(4.8)
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The occurrencerobability of states, P(s), can be calculated from the appearance frequency
of states. We herein assume that there is no significant difference between the state appearance
frequencies of the acoustic training speech data and the target speech data; in particular, we use
only monophone states, and the difference is not significant at the monophone level. Under this
assumptionp(s) is given by the following equation by using total occupahcy), which reflects
the appearance frequency of staie the acoustic model training data.

['(3)

> _T(s)

S

P(3) ~ (4.9)

The frame-independent confidence scefe;), is transformed in the log domain from Eq. (4.8)
as follows.

c(o;) = log(P(8)bs(or)) — log by(oy) (4.10)

If the speech model is adopted as the Universal Background Model (UBM) and we ignore the
stateoccurrencerobability P(s), Eq. (4.10) is similar to the likelihood ratio often used in speaker
verification as in [68].

Prior confidence scor€' is calculated by normalizing the frame-level prior confidence score,
c(oy), by data lengti’ to allow a comparison of speech samples with different lengths as follows;

Z c(oy)

=1
C== (4.11)

Fig. 4.1 summarizes the above-mentioned relational expression from a conventional confidence
measure based on posterior word probability to the proposed prior confidence measure. Since our
proposed prior confidence can be estimated by using the acoustic likelihood from only speech and
monophone models, it is significantly faster than a conventional confidence measure.

4.3.2 Qualitative explanation of prior confidence estimation

Fig. 4.2 shows the difference between tbg-likelihoods of a monophone and speech model
against clear and ambiguous speech; this is a simplified fijgatdor explanatioras each model

has only one state and one distribution. The speech model is trained from the acoustic features of
all phonemes in speech frames, so the distributions in the speech model have broader variances
than the distribution in the monophone model. Accordingly, the speech model provides a compar-
atively stabldog-likelihood regardless of speech quality. If the input speech is clear and similar

to the training acoustic data (the expectation is for high accuracy), the input acoustic features are
located around the mean of either monophone’s distributions. In this casegiliieelihood of the

best monophone is larger than that of the speech model, and the prior confidence becomes higher.
In contrast, with ambiguous speech (the expectation is for low accuracy), the input features are lo-
cated on the side of the distributions and the monophdag4ikelihood becomes smaller, so the
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Figure 4.1:Relational expression from conventional to proposed prior confidence measure.

prior confidence becomes small. As a result, the difference betwedogthikelihoods of the best
monophone and the speech model reflects the expected accuracy in posterior speech recognition.

4.3.3 Procedure of proposed system

The procedure of the proposed system is shown in Fig. 4.3. The conventional system subjects all
data to speech recognition. In contrast, the proposed system estimates confidence and selects the
samples to be passed to speech recognition. In prior data selection, the speech data is ranked by the
estimated prior confidence. The proposed system selects those samples that have high confidence
scores and then performs speech recognition on the selected samples using triphones in the acoustic
and language models. The computation cost falls since the speech recognition step is minimized,
and our proposal can efficiently identify well-recognized speech samples.

Fig. 4.4 focuses on the prior confidence estimation process. It calculates the output probability
frame by frame from GMMs of monophone HMMs and the speech model in the acoustic model
for each complete speech sample. Frame-level prior confid€pgeis estimated from the differ-
ence between theg-likelihoods of the best states in the monophéreel filled circle in Fig. 4.4)
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Figure 4.3:Proposed system.

and speech models as given by Eg. (4.10). Here, the acoustic features of speech and pause are
significantly different. Thus, the proposed technique discriminates speech and pause by using the
output probability of GMMs belonging to pause HMMs and the speech model, frame by frame.

g is the best statélue circle in Fig. 4.4)n the speech GMMs and pause HMMs in Eq. (4.10).

Our proposed system adopts the utterance segmentation technique described in [69] before con-
fidence estimationUtterance segmentation uses speech GMMs and pause GMMs belonging to
pause HMMs in acoustic model, and when the pause frame continues for longet,dha(@.g.

0.8 sec), the utterance is segmented as an end-gdirtsegments include some pause frames by
using a hangover scheme [70]. Prior confidence s€oig calculated by averaginfyjame level
confidence score as given by Eq. (4.1 select data to send for speech recognition by using the
prior confidence score C.
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Figure 4.4:Prior confidence estimation process.

4.4 Experiments

4.4.1 Experimental condition and task

In this experiment the acoustic analysis condition is as described below; sampling frequency: 16
kHz, 20 msec length Hamming window shifted by 10 msec, and acoustic features: 25 orders
(MFCC 12, AMFCC 12, Apower). The evaluation task uses 240 calls (19.81 hours and 17,672
utterances) by 48 Japanese speakers (17 males and 31 females), and the speaking style is spon-
taneous speech in a two-party dialoge. conversational speecihe recognition rates of the
evaluation task are distributed over a wide range; 76.00 % on average, 89.75 % maximum and
47.98 % minimum. The ratio of data with over 80 % recognition rate is 30 % (= 72 /240).

The training data of the acoustic model contains spontaneous and conversational speech in a
simulated call center, arttie size of training data is 119.51 hours (103,822 utterances) for males
and 104.50 hours (97,209 utterances) for females. There are a total of 1,958 states, 90 monophone
statesand the number of phonemes is 8@ distribution number is 26,567 for males and 29,836
for females. There are 64 distributionsarsingle state ofhe speech model, 1,429 for males and
1,435 for females in monophones, and 26,567 for males and 29,836 for females in total. The
maximum number of mixtures in each state is 16, but some states have fewer mixtures depending
on the quantities of training data for each state.
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The language model is a word trigram developed by using manual transcriptions of dialog
speech, and its vocabulary size is 59,676 woildse size of the language model corpus is 44.69
mega words. The perplexity is 111.64, and the OOV (out of vocabulary) rate is 1.66&xe are
1,500 queries for spoken document retrieval.

The speech recognition decoder is VoiceRex [51]. We used a dual-gender acoustic model and
employed our proposed prior gender selection technique [69].

We start by investigating the impact of speech data selection and to this end adopt the metric
of the average recognition rate of the selected speech samples. The effect of speech data selection
is confirmed by comparing the following 5 conditions; “ideal”: selection in descending order of
recognition rate, “average”: average recognition rate (should simulate random selection), “poste-
rior”: selection in descending order of confidence score (estimated by using recognition results
after speech recognition based on word trigrams), “mono-loop”: selection in descending order of
confidence score (estimated by using phoneme recognition results with monophone loop gram-
mar), and “prior”: selection in descending order of our proposed prior confidence score. “poste-
rior” adopts our baseline confidence measure that used thest list of recognition results as in
[66]. The “mono-loop” confidence measure is calculated by the difference between the acoustic
scores of the recognition results of monophone loop grammar and speech / pause loop grammar,
it eliminates the effect of the language model used in “posterior”. This evaluation is based on
character units to eliminate the influence of word length.

Furthermore, we evaluate the data selection performance in the spoken document retrieval task.
We retrieve for the spoken documents (calls) by using text queries from 240 calls, the same data
used in the previous speech recognition evaluation td$le queries are nouns, adjectives, and
verbs. We adopt the mean average precisidi(P) for spoken document retrieval evaluation as
in [71], and the data selection performance in spoken document retrieval is evaluated by using the
raw average precisiom(P) of the selected speechl AP and rawA P are defined [72] as follows;

1 o1 & g
MAP = — — 4,12
N, ; N; kzz; rank; ( )
N,
1 = N;
AP — — G 4.13

where N, denotes the number of queries; denotes the number of relevant speech samples
contained in theV retrieved documents for queky andrank;, denotes the rank of the-th
relevant document for query.

The speed of confidence estimation is the time taken to compute the confidence score of the
speech. Thus, the “posterior” computation time includes speech recognition processing. Instead of
generating the recognition result with maximum likelihood, the proposed technique searches for
the best state in terms of monophones frame by frame, hence this computation time comparison is
fair with regard to confidence estimation.



44 Efficient Data Selection for Speech Recognition

4.4.2 Results

The recorded data selection performance is shown in Figs. 4.5 and 4.6. The horizontal axis is the
speech data selection rate; it is calculated as the ratio of the number of selected speech samples
to the number of all speech samples. The vertical axis in Fig. 4.5 is the average recognition rate
of selected speech, and is the raw average precision for spoken document retrieval in Fig. 4.6.
The mean average precision is shown in Table 4.1. The confidence estimation time is shown in
Table 4.2. The computation time is normalized by that of “posterior” in Table 4.2.

Results in speech recognition

The effect of our data selection proposal is also shown in Fig. 4.5. The proposed “prior” confidence
estimation achieved better recognition rates than “average” under all selection rates, so our data
selection proposal improved the average recognition rate of the selected speech. It also matched
the recognition rate of “posterior” for most selection rates. There was a considerable difference
between “prior” and the conventional “posterior” around a selection rate of 10 %. However, we
consider this to be due to the effect of the language model used in “posterior” because “mono-loop”
also suffered a drop in recognition performance around this selectionBatdes, recognition

rates are degraded even if just a few bits of low-accurate data are sel@teedecognition rate
increased as the data selection rate decreasgdthe correct recognition rate exceeded 80 % at

a selection rate of 20 %. Thus, our proposed technique can identify well-recognized speech data
before speech recognition.

Results in spoken document retrieval

The evaluation results of our data selection proposal for the spoken document retrieval task are
shown in Table 4.1 and Fig. 4.6. The proposed “prior” technique achieved equivalent performance
in terms of both mean and raw average precision. In particular, our proposal achieved better than
“average” at all selection rates and its improvement of precision increased as the selection rate
was reduced as evaluated using the raw average precision. Therefore, our proposed data selection
technique can retrieve spoken documents accurately.

Results of computation time

The computation time of confidence estimation is shown in Table 4.2. Our proposal is significantly
faster than the conventional “posterior” technique. It is over 50 times faster for confidence estima-
tion. Another important point is that “prior” is also faster than “mono-loop”. This reveals that the
proposed technique eliminates all processing except for acoustic Gaussian likelihood calculation.
Table 4.3 shows the effect of our speech data selection proposal. It lists the average recognition
rate, the raw average precision, and the total computation time with speech recognition processing
for several selection rates. Without data selection (selection rate = 100 %), the total computation
time is increased due to the overhead processing of the prior confidence estimation, but the increase



4.4. EXPERIMENTS 45

0 ~—-idesl
\.
N ----average
S Y posterior
£ ™, === mono-loop
jé 85 1 s prior (proposed)
é l‘% .'\.\.\.\.
s K
= i \/ AN \\‘\.
% N v b\\-\_w\ TS ~
"»...\‘ - - \,\.
- TS
- _____ =
75 L) ] T L] 1
0 20 40 60 80 100

Dataselectionrate[%]

Figure 4.5:Speech data selection performance in terms of recognition rate.

Table 4.1: Spoken document retrieval performance in terms of Mean Average Precision (MAP).
ideal posterior mono-loop prior (proposed)
58.26  57.63 57.44 57.43

Table 4.2: Computation time for confidence estimation.
posterior mono-loop prior (proposed)
1.00 .0722 .0184

is slight. As the selection rate falls, the superiority of the proposed technique strengthens in terms
of the recognition rate, raw average precision and processing speed.
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Figure 4.6:Speech data selection performance in terms of raw Average Precision (AP).

4.4.3 Discussion

At first, we focus on

of our proposal is to estimate the overall confidence for each call with a large number of sentences.
opening greetings), which are expected to be well recognized, constitutes just
one factor in confidence estimation, thus the effect of fixed phrases is not very critical. However,
the conventional confidence measure increases with fixed phrases, since fixed phrases provide
a higher language score. Instead, our proposed prior confidence estimation approach uses only
an acoustic model without the language model, and so the proposed data selection procedure is

Fixed phrases (e.g.

performed independ

the difference between the posterior and prior confidence medheesm

ently of the sentences and these word contexts in a call.

Table 4.3: Effect of proposed speech data selection.

Selection rate [%]

10 20 30 40 50 60 70 80 90 100

Recognition correct rate [%] 80.58 80.31 79.97 79.85 79.44 7865 77.86 77.27 76.75 76.00

Average precision [%]
Average recall [%]

76.11 7184 69.98 6854 6783 66.62 6562 6519 6490 64.53
13.75 25.89 36.97 4557 5291 5890 64.47 6816 71.99 74.53

Total computation time

A55 279 394 497 589 678 769 .855 945 1.02
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Second, we discuss the effectiveness of rejecting low-accuracy Headls.important word is
difficult to recognize (e.g. an unpronounceable service name), specific calls containing that impor-
tant word cannot be retrieved because the prior confidence becomes low owing to the pronunciation
problem. Since our call analysis assumes the use of spoken documents with the recognition results,
specific calls also cannot be retrieved because of recognition error. It is therefore reasonable to ig-
nore calls with many recognition errors.

Third, we discuss optimization of the data selection raBansidering the subsequent text
mining, we believe that the recognition rate should exceed roughly 80 %, and so the adequate data
selection rate is below around 30 % in our experiméiten thousand calls arrive every day, 35
(~ 19.81 [hour] /240 [call] x 10.000 [call] /24 [hour /processor]) speech recognition processes are
required to recognize all calls per day. In the case that we can uses only ten recognition processes,
we have to select the data at the rate of 30940 / 35) by the following dayThe data volume
decreases significantly by around 1/3. However, since many data are stored every day at call
centers, the volume can be recovered by increasing the number of days that data are retained.

Finally, we discuss the performance difference between ideal and confidence data selection.
There is a large gap between ‘ideal’ and confidence scores in data selection. This is because the
correlation between recognition rate and confidence score is not sufficiently high. Of particular
note, since our target task is spontaneous speech which includes ambiguous utterances, the supe-
riority of the recognition result is often not obvious compared to the other recognition candidates;
the correlation between the estimated confidence score of the recognition result and the correct
recognition rate became small.

4.5 Summary

This paper proposed a rapid prior confidence estimation technique for selecting speech samples
that will yield accurate recognition results. It reduces the computation cost since it selects only
the best samples for speech recognition based on prior confidence estimation; only a Gaussian
acoustic likelihood computation with speech and context independent models is needed. Simula-
tions showed that our confidence estimation technique is over 50 times faster than the conventional
posterior confidence measure based on speech recogratdnabout 3.9 times faster than the
monophone-loop confidence measure based on phoneme recogritienproposed technique
matched the selection performance of the conventional technique, and also improved the precision
of the spoken document retrieval task.






Chapter 5

Efficient Beam Width Control to Eliminate
Excessive Speech Recognition Time Based
on Score Range Estimation

5.1 Introduction

Massive amounts of speech data are stored on a daily basis; typical call centers store several tens
of thousands of calls per day. Speech recognition can transcribe these speech data automatically
which makes thensearchable via the transcripts [24]. Several studies have analyzed customer
needs by employing text mining [26, 2&) extractthe reason for the call [37] from stored speech
documents. To rapidly improve business effectiveness, the analysis results must be extracted by
processing this massive dataset on a daily basis; i.e. all calls should be transcribed by the morning
of the following day. However, the computation time needed to auto-transcribe a lot of conver-
sational speech can be excessive. In particular, poor quality speech data require a long time to
auto-transcribe since they produce hypotheses with no significant score differediels de-
gradeghe pruning efficiency in beam search. Since poor speech data yields erroneous transcripts
the dataare of no use in subsequent spoken document processing and should be removed by us-
ing confidence measures [52, 60]; recognition time is wasted by producing transcripts that are not
useful.

This paper aims to reduce the computation time neede@émgizing thespeech data that will
yield erroneous transcriptions. To minimize the time takensfmeech recognitigrseveral tech-
niques have been proposed that optimize the decoding parameters [73] under a speed constraint
[74]. Several adaptive pruning techniques have been proposed [75, 76] to tackle the speech vari-
ability problem [27]; they adapt the parameters during decoding. However, both techniques use
a development set to determine the parameters. Thus, they fail to fully optimize the parameters
if the quality of the target speech is substantially different from that of the development set. To
reduce the excessive computation time, histogram pruning [77] is an often-used approach. Since
it is not as effective as score beam pruning, pruning criteria are often used in combij@&jion
Since histogram pruning is performed frame-wise basethemstantaneouscore distribution,
the beam width should be wide enough to maintain recognition accuracy. Predictive pruning is

49
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also performed based on aspects of the score in¢haefuture [79].

On the premise that we are processing stored speech data as in call centers, we target each
speech item (i.e. call) directly instead of depending on a developmentresproposed approach
controls the score beam width prior to decoding and incrementally in subsequent decoding for each
speech item based @prolonged(i.e. notinstantaneousscore spread. The proposed technique
formulates the score range within the beam width, and reduces the speech recognition time by
maintaining that range. The score range is rapidly estimated by using only those Gaussians that
belong to monophones prior to decoding. There is the possibility that the computation time might
be increased by other factors such as confusion at the word and triphone levels, which might not be
reflected in the prior monophones’ score spread. To better handle the speech data that take inordi-
nately longer than the base computation time, we also restrict the beam width in decoding based on
the range by using the processed decoding speed and the time available to process the remainder of
the target speecithis yields highly effective timeout control since the proposed method is assured
of performing recognition up to the end of the speech segment whereas simple timeout control is
likely to terminate before the segment’s end which degrades recognition performance.

We evaluate the efficiency of the proposed technique in spontaneous speech recognition tasks
with several speech quality levels; i.e. the SNR is varied from 0 d®tdB. Experiments show
that our technique satisfies the speed constraint regardless of the quality of the target speech, and
matches the accuracy achieved with ideally optimized parameters. Furthermore, the proposed
technique reduces the recognition time needed to transcribe the speech data recorded in an actual
call center with no significant drop in accuracy.

The rest of this paper is organized as follows. Related work is outlined in Section 5.2. The
proposed technique is described in Section 5.3. Section 5.4 introduces the experiments conducted
to confirm the effectiveness of the proposed technique. Our conclusion is presented in Section 5.5.

5.2 Related work on decoding parameter control

The decoding parameters, including beam width, determine speech recognition performance; i.e.
accuracy and speed. Decoding parameter optimization is classified into two types: offline and
online. Offline-type parameter optimization methods have been propivsgdiseoptimal curve
tracking [73] or linear programming [80, 81]; they offer overall optimization with training data.
Several methodattempt tamprove accuracy by using a response probability model [82] or search
error risk minimization [83, 84]; they also require a training phase in the offline step.

Since the decoding speed is dependent on machine and acoustical conditions, namely clean and
noisy data [85]pnline-type parameter optimizatiomethods are essentlacause the target speech
can be used directly to improve performangais is especially so if there are massive amounts of
speech data that vary in quality. Thus, several online pruning methods employ predictive pruning
[79], adaptive-beam pruning [86] and dynamic pruning [87] with a confidence measure [88, 89].
These methods don’t impose a delay prior to recognizing the initial utterances. Predictive pruning
methods aim to improve pruning performance by predicting the future score, but have no mech-
anism to reduce the excessive computation time for low quality speech since prediction doesn’t
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necessarily well handle low quality speech. The adaptive and dynamic methods aim to stabilize
the surviving number of hypotheses at each frame. It is difficult to reduce the number of hypothe-
ses without search error if instantaneous decisions are made in histogram pruning, and it is difficult
to control beam width appropriately.

Most decoding parameter optimization methods require a speech recognition process even for
initial utterances. As a result a lot of computation time is required and this reduces the decoding
efficiency. The acoustic look ahead method can improve decoding efficiency by using some future
time frames [90]. Without using full-scale recognition processing for initial utterances, we attempt
to improve efficiency significantly by using a prolonged look-ahead process instead of short time
frames with a limited number of Gaussian distributions before decoding.process can control
beam width efficiently since the prolonged frames stabilize the score’s statistical distribution.

Bulyko adopted speed constraints to optimize the decogamgmeterdy using develop-
ment data [74]. We also introduce a decoding speed constraint to radu@rantedand time-
consuming processing during decoding.

5.3 Proposed beam width control based on score range estima-
tion

Score beam pruning is the best-known method of controlling the computation time. It retains only
those hypotheses whose score is close (within the score beam width) to the best state hypothesis
[91]. Since thdog-likelihood score distribution of hypotheses varies according to speech quality,
the recognition computation time fluctuates with speech quality. The computation time remains
stable if the survival rate of hypotheses can be kept at a constant level. The proposed approach esti-
mates the prior score range from prolonged frames of each target speech item by using an acoustic
model with a limited number of Gaussians. On the assumption that the prior score spread is pro-
portional to the score spread in subsequent speech recognition events, we stabilize the recognition
computation time by reducing the score beam width so as to keep the score range within the beam
width just before speech recognition. To further reduce the cqstoaessingime-wastingspeech

data, we also reduce the beam width by estimating the required speed-up ratio fronoceEsing

speed and the remaining time as indicated byattm@unt ofspeectthat remains to be processed

5.3.1 Framework of proposed approach

The framework of the proposed system is shown in Fig. 5.1. The conventional system uses fixed
decoding parameters (e.gBg,,.) that wereoptimized against a development set. In contrast,

the proposed approach uses the input target speech to estimate the prior score range within the
beam widthit then performs speech recognition by using the controlled score beam Wigth,

To estimate the prior score range rapidly, useonly monophones as in [91]. The prior score
range is calculated by the average monophone score spreadlagilielihood scores from the
monophone Gaussian Mixture Models (GMMdjurthermore, the proposed technique offsets the
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Figure 5.1: Schematic diagram of proposed system

beam width with the score range incrementally during speech recognition by using the speed-up
ratio as estimated for each utterance.

5.3.2 Formulation of proposed approach

The proposed technique consists of two parts; prior and incremental beam width control. The
former is performed just before decoding, and the latter is performed utterance by utterance during
decoding.

Formulation of proposed prior beam width control

Score beam decoding prunes hypotheses wlogskkelihood scores fall under the threshold given
by the bestog-likelihood score minus the score beam width. If assumehat the hypothesis
probability can be simply expressed by a Gaussian distribution, its log-likelihood score distri-
bution,y = f(x), is approximately represented by the logarithm of the Gaussian, namely the
guadratic function (parabola) shown in Fig. 5.Bere variabler indicates different hypotheses
at each time frame during decoding, and thaxis corresponds to a one-dimensional abstraction
of the hypothesis space. We assume that the best hypothebas the best log-likelihood score
Yrest, Which is the vertex of the function at = ;. The other hypotheses are distributed around
1 with log-likelihood y as in Fig. 5.2 Given the score beam width &fs, the pruning threshold
Y €qualsy,.: — Bs. At this point, the hypothesis survival rate after the pruning process corre-
sponds to the range satisfying> v, and is correlated with the summation of bg-likelihood
score ¢ probability) i.e. score rang#: the size of the area within the beam width in Fig. 5.2.
The range ofog-likelihood scores is spread due to the variance of the Gaussian distribution. By
normalizing score rangg, we can keep the hypothesis survival rate constant, and therefore keep
the computation time constant.

To calculate score rangg we swap the vertical and horizontal axes as in Fig. 5.3jr@edrate
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the inverse functio(-) = f~1(-) as follows;

Bg Bgs
N / 9(5)d5
0

0
= 2[G(9)]5* = 2G(Bg) = const. (5.1)

wherey is the difference score from the bésg-likelihood score (i.eg = Yy — v) aNdG(-)
is the integration function of(-).

Thelog-likelihood scores approximated by using the logarithm thie Gaussian distribution
N (z; u, o), whichis expressed by the following equation, wheréog V270 corresponds to ver-
teX Ypest-

(5.2)

Thus, difference scorgcorresponds to the second term in Eq. (5.2) and can be converted using

. . 1
the following equation whereé = = —  anda = 257"
(2
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Figure 5.3:Log-likelihood distribution with swapped vertical and horizontal axes.

2
X r — .

y:ybest_y:(2g) :O-/xQ (53)

o

. : 1 1 . .
Then, by converting Eq. (5.3) intb= —-72, the inverse functiog(y) becomes
a2

N 1 1

9(9) = —9=. (5.4)
o2

1 1 2 .3
G :/ Ny = ——3+) = 253 5.5
(9) 9(9)dy 5 10 "y (5.5)
By substituting Eq. (5.5) into Eq. (5.1), we obtain the following.
4 3
S =2G(Bs) = ; T B = const. (5.6)
2

Therefore, score rang® depends on beam widtBs and coefficient, which is associated
with variances? of the score distribution.
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Figure 5.4:Comparison ofog-likelihood distributions of base and target speech.

With clear speech, the difference score from the best log-likelihood score becomes large, and
so the distribution becomes narrow as shown in Fig. 5.4. In contrast, with noisy speech, as also
shown in Fig. 5.4, the difference score become small, and thus the distribution becomes wide.

Since the score rangeis constant as shown by Eq. (5.6), the beam width relation between the
target, Bs,, 4., and the base3s,, ., is shown by usingy...anda....as in the following equation. In
Fig. 5.4, the base beam width is fixed by using clear speech; the target speech is noisy.

4 3 4 3
_ 2 _ 2
S = % Starget % BSbase (5 ' 7)
Satarget 3O[base

Target beam widttBs,,, is calculated from base beam width, . as follows;

atarget %
Bstarget = BSbase (58)

pase

A review of Eq. (5.3) shows that there is a proportional relationship betwesm«; § < «.
y indicates the difference from the bésg-likelihood score, i.e. the score spredastead of using
the difference score among usual recognition hypotheses to calculate the score spread, we use
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the average of frame-wise difference scgre° between the best and worst log-likelihood scores
among monophones to reduce the computation time.

yymono

atarget — target (5 9)

Qpase yg@"e"

Thus, the target beam width can be calculated from the ratio of the average monophone’s score
spread and used to normalize the score range within the beam width as follows;

yymono
base

1
~mono \ 3
BSiarge = <yg> BSiase (5.10)

Here, we calculate base score spreggq by using the development set beforehand. The
beam width,Bs,,.. is kept throughout the duration of the target speech item. Because the purpose
of the proposed method is to eliminate unwarranted computation, the beam width is changed when
Bsiage 1S sSmaller thamBg, .

We assumehat the probabilities of the surviving hypotheses follow an approximately Gaussian
distribution, andhattheir score spread depends on the distance between the observed feature and
the acoustic modeFurtherthat the average score difference in monophone states has a predictable
relationship with the subsequent score spread in speech recognition as given by Eg. (5.9), and the
score beam width can be optimizasingEq. (5.10).

The proposed method is basically a 2-pass approach. We use GMMs in monophone HMMs to
calculate the target beam width from the score sprm)(in the 1st pass, and then use triphone
HMMs to decode the target speech in the 2nd pass.

Formulation of proposed incremental beam width control

It is possible that prior beam width controhnnot adequately minimize computation tigiace

the decoding speed also depends on other factors, such as confusion at the word and triphone
level, that are not reflected in the prior monophones’ score range. On the assumption that we
have stored speech, we can acquire the total datafigneand the processed decoding speed (i.e.

real time factor)R, ... With the data timeD,,....and the computation timé,....during speech
recognition. The proposed technique incrementadifimateghe required decoding speétl. ...

from the remaining data timbB ..., (= Duw— Dyocesy @Nd the remaining computation tirfig,,.. (=

Tiom— Throcesy Qiven the limited decoding speétl,. (= Tiow/ Dwow» €-9- 1.0), which reflects the speed
constraints as in [74], see Fig. 5.5. The required decoding speed is achieved by using the speed-up
ratio k (= Riequre/ Rooces)-  FOCUSING 0N Eg. (5.6), since the computation time is proportional to
score range, the proposed technique incrementally alters score beam Wigth (= [Bs,,.,, the
previous score beam widtHg, ), as follows;
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Figure 5.5:Proposed incremental recognition time control.
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process,

Here, the previous score beam widfhy, ., is equal toBs,,. before decoding. Since we apply
incremental beam width control utterance by utterance during decoding, the beam width changes
frequently. To stabilize the computation time, we use the prolonged progressive average as base
beam widthBg,,, and decoding speefl, .....asindicatedby the following equation. The beam
width is adjustedonly when the required decoding speed exceeds the speed up to this point.

2
Rre uire 3
BSincr. = (—q) Bsprev (5 12)

proces:

5.3.3 Comparison of proposed and existing techniques

Theproposed approach is more efficient than histogram pruning [77]. Histogram pruning restricts
the surviving number of hypotheses based on the histogram-based score distribution. However,
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pruning is based on instantaneous score histograms and is performed frame by frame, and so a
larger beam width is required to maintain equivalent accuracy. The surviving number of hypotheses
changes frame by frame, and thus histogram pruning can only work at the frames wherein the
surviving number exceeds the beam width after constructing the score histogram. Our proposal for
score beam pruning is more efficient since it works immediately if the hypothesis is not close to the
best hypothesis. Furthermotlge proposed technique can stably control the score beam width by
using the prolonged score spread calculated for all frames of the target speech. It cafjueso

the width incrementally during decoding by using the processing speed up to this point and the
remaining data length as determined from the remaiamgunt ofunprocessed speedata

5.4 Experiments

5.4.1 Experimental settings

The acoustic analysis condition in this experiment is as described below; sampling frequency:
16 kHz, 20 msec length Hamming window shifted by 10 msec, and acoustic features: 25 orders
(MFCC 12,AMFCC 12,Apower) or 26 orders (power utilization after adaptation). The evaluation
task uses 240 speech samples (19.81 hours and 17,672 utterant@gBNR) produced by 48
Japanese speakers (17 males and 31 females); the speaking style is spontaneous speech in a two-
party dialog. We use a dual-gender acoustic model, the total number of states is 1,958, the number
of phonemes is 30, there are 90 monophone states, the distribution number is 26,567 for males
and 29,836 for females, the size of the training data is 131.53 hours (114,289 utterances) for males
and 123.44 hours (118,219 utterances) for females, and the training is based on differentiated
Maximum Mutual Information (dMMI) [92]. The maximum number of mixtures in each state is
16, but some states have fewer mixtures depending on the quantities of training data for each state.
The language model, a word trigram developed by using manual transcriptions of dialog speech,
hasvocabulary sizeof 59,676 words. The speech recognition decoder is VoiceRex [51, 93]. We
used a dual-gender acoustic model and employed the proposed prior gender selection technique
[69].

The metrics of the average recognition rate and computation were used to assetise im-
pact ofthe beam width optimization proposal on speech samples with several SNR values, from
0 dB to oo dB created by addingvhite noiseartificially. The effect of the proposed beam width
optimization is confirmed in a four-way comparison; “conventional”: previously-fixed beam width
optimized by using development data, “ideal”: the beam width is optimized in a preliminary step
by using target SNR speech data with the maximum recognition rate under a speed constraint as in
[74], it simulates the ideal condition as the development and target data are the same, “proposed”:
proposed beam width optimization; “proposed (prior)” uses only the proposed prior beam width
control, and “proposed (prior+incremental)” employs both prior and incremental beam width con-
trol. Here, the speed constraint is that we must keep the computation time less thamovéttded
noise, i.e. SNR= co dB. All compared techniques use histogram pruning [77] and number beam
width is optimized by referring to development datee. we use both score and number beam
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Table 5.1:Recognition rate of proposed technique.

SNR [dB] | conventional proposed (prior) proposed (prior+incremental) ideal
00 79.50 79.50 79.47 79.50
40 78.28 78.26 78.24 78.27
35 76.40 76.33 76.28 76.37
30 72.61 72.39 72.35 72.47
25 63.79 63.46 63.42 63.51
20 46.60 45.65 45.66 46.15
15 15.63 15.84 15.71 15.71
10 8.25 8.09 8.09 8.42

5 5.57 5.86 5.86 5.90
0 3.34 3.32 3.32 3.36

pruning in all techniquesTo optimize the basic parameters and thus maximize the recognition
accuracy, the development set consisted of mostly clean speech recorded in other call centers (176
calls [32.4 hour]).

We also compare the effectiveness of the “proposed” techniques with the above-mentioned
“conventional” technique using speech recorded in an actual call center; 276 speeches (39.25 hours
with 17,955 utterances). The remaining conditions are as noted at the head of this section.

5.4.2 Results and discussions

Experiment on speech with additional noise

The recorded beam optimization performance is shown in Table 5.1 and Fig. 5.6. Table 5.1 shows
the average recognition rate [%] of spedoha giventarget SNR. The horizontal axis in Fig. 5.6

is the SNR (speech quality), and the vertical axis is the average computation time normalized by
that of the conventional method witk dB.

As shown in Table 5.1, there is no significant difference between the speech recognition rates;
the proposed techniques match the recognition rate of the conventional technique regardless of
SNR. “Proposed”and “ideal” beam controyield worse recognitiorratesthan “conventional”
beam control, sincéhe latter facesio constrainbn computation timefortunately,the recogni-
tion rate discrepancy is slighthe effect of our beam optimization proposal is shown in Fig. 5.6.
The “conventional” computation time depends on the SNR, and the computation time exceeds
that of oo dB under several SNR conditions; e.g. the increase is 50 % at 20 dB. In contrast, the
“proposed” computation time remains less than thato@lB regardless of SNR; our prior beam
width control is effective in reducing excessitree computation timeof low quality speech. Since
wide regions are buried in noise and are recognized as non-speech periods (pause) at lew SNR (
15 [dB]), both techniques reduce the computation time comp@adte 20 dB condition because
they immediatelypruningthe many hypotheses whose scores are lower than the pause hypothesis.
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Figure 5.6:Computation time of proposed technique.

Table 5.2:Performanceof the proposed technique for speech recorded in an actual call center.

Correct Accuracy] XRT % of time-consumingrocess
conventional 88.17 78.74 .632 44.93
proposed (prior) 88.12 78.70 496 12.32
proposed (prior+incremental) | 88.05 78.63 471 9.42

However, even at low SNR, the “proposed” techniques provide a significant reduction in compu-
tation time with no significant degradation in recognition rate. The proposed techniques achieve a
slightly better decoding speed in combination with incremental beam width control at high SNR
while providing the same accuracy.

Experiment on speech recorded in actual call center

Table 5.2 shows the performance with speech recorded in an actual call center, namely the aver-
age recognitiorcorrectrate/accuracy [%{Correct/Accuracypnd computation time [x RT (Real
Time)]. Therateof excessivdime-consumingrocesss also shown in the table. We consider that
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time-consuming speech is speech data whose computation time exceeds the average time needed
by the “conventional” technique.

The proposed prior beam width control reduces the computation time by 21.5 % while main-
taining the accuracy. The proposed technique also reduces the computation time by 25.4 % with
no significant degradation in accuracy and thte of excesivetime-consumingorocessby 21.0
% compared with the “conventional” technique by combing the prior and incremental beam width
control. The proposed incremental method can reduce the rate of time-consuming process to un-
der 10 %. This means that the proposed technique can significantly reduce computer resource
consumption.

5.5 Summary

This paper proposed an efficient score beam width optimization technique that is performed before
and during speech recognition. It formulates the score range within the score beam width, and
keeps the range constant by controlling the beam width with the score spread so as to maintain the
decoding computation time. The score spread is calculated by using a limited number of GMMs
belonging to monophones, and so it offers high speed. On the assumption that there is stored
speech, we further control the beam width by estimating, utterance by utterance, the required de-
coding speed-up ratio for the score range during speech recognition processing to reduce the time
by processing les of thatractablespeech data. Recognition experiments on spontaneous speech
show that the proposed technique maintains the decoding speed regardless of speech quality while
matching theecognition accuracygf the conventional approackurthermore, the proposed tech-
niguerecognizedspeech data recorded in an actual call center while reducing the computation time
and theamountof unwarranted data processed significantly with effectivelgrap inaccuracy.






Chapter 6

Fast Acoustic Pre-processing against
Recording Environment and Speaker
Changes for Parliamentary Meeting
Transcription

6.1 Introduction

Parliamentary meeting records are created daily by teams of stenographers. It would be far more
efficient to create the meeting records from the transcriptions generated by automatic speech
recognition. Several transcription systems are studied on the subjects of European parliaments
[94][95][96] and the Japanese national congress [97]. Our mission is also to develop a Japanese
transcription system for actual parliamentary meetings as a rival to [97]. However [97] uses
ideal audio data captured by close-talking microphones and manually segmented into speaker-by-
speaker. A more practical goal is to tackle actual audio data while keeping the recognition accuracy
high. Furthermore, since the manually-corrected meeting records should be fixed quickly after the
meeting is over, low latency is required in truly practical speech recognition.

Actual parliamentary meeting speeches pose two significant challenges:

1. the unique audio recording environment,

2. frequent changes of target speaker.

Speech is captured by close and distant microphones and loudspeakers are present in the actual
parliamentary meeting room as shown in Fig. 6.1, so the outputs of distant microphones con-
tain reverberation. We should eliminate the harmful effects of the distant microphones to realize
accurate recognition. The typical parliamentary meeting consists of several speakers; chairper-
son, respondent and interpellator. We also have to tackle the issues raised by the intrinsic speech
variations [27] like recording environment and speaker characteristics.

Our proposed system employs fast acoustic pre-processing with highly accurate speech recog-
nition; it improves accuracy by offsetting variation in speaker and recording environment rapidly
via limited Gaussian computation. First, the proposed method selects the close microphone’s

63
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Figure 6.2:Proposed system.

signal automatically by comparing the powers, in the frequency domain, of close and distant mi-
crophones as in [98]; the selected signal is mostly composed of the target close speaker’s speech,
so the influence of the reverberation signal is quite small. Second, our method segments the se-
lected signal speaker-by-speaker using clustering the utterances which are split by VAD (Voice
Activity Detection) using speech/pause GMMs (Gaussian Mixture Models). Third, the acoustic
feature vectors are normalized segment-by-segment using CMN (Cepstral Mean Normalization)
[17][99], CVN (Cepstral Variance Normalization) [100] and VTLN (Vocal Tract Length Normal-
ization) [101]; the proposed VTLN method rapidly estimates the frequency warping fagtby (

using a limited number of GMMs from context independent models (monophones). Fourth, we
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adopt our proposed fast unsupervised adaptation based on MLLR (Maximum Likelihood Linear
Regression) [30] by efficient statistics accumulation through the use of using adapted acoustic
model to recognize the normalized acoustic features.

This paper uses actual meeting speeches captured in the parliament to assess the proposed
system. Experiments show that the pre-processing proposal is fast enough that speech recognition
processing speed is not negatively impacted; the proposed system matches the high recognition
accuracy of the ideal recording condition even though its computation time is short.

The rest of this paper is organized as follows; the proposed system is described in Section 6.2.
Section 6.3 introduces the experiments conducted to confirm its effectiveness. Our conclusion is
drawn in Section 6.4.

6.2 Proposed system

Fig. 6.2 shows the framework of the proposed system. Our proposed acoustic pre-processing tech-
nique consists of four methods; 6.2.1) channel selection, 6.2.2) speaker indexing, 6.2.3) acoustic
feature normalization, and 6.2.4) unsupervised adaptation. The first method, channel selection,
is our countermeasure to the reverberation noise captured by distant microphones. The second
method, speaker indexing, deals with the speaker change problem. The latter two methods, acous-
tic feature normalization and unsupervised adaptation, treat the intrinsic variation issues of record-
ing environment and speaker characteristics. As shown in Fig. 6.2, the latter three methods utilize
a limited number of GMMs belonging to the acoustic model. To start creating the meeting records
immediately after starting the meeting, the input signal is split at a certain time intervals, and
the segments are entered into the proposed system. The system yields the recognition results by
application of the proposed acoustic pre-processing and speech recognition processing. Our pro-
posed system employs the speech recognition processing based on WFST (Weighted Finite State
Transducer) as in [102].

6.2.1 Channel selection

There are three people in our target parliamentary meeting; chairperson, respondent, and interpel-
lator. Since there is little possibility that the chairperson and respondent speak at the same time,
their two speech signals are mixed to yield a mono signal; it becomes the left (L) channel, while
the interpellator’s signal is set as the right (R) channel. The distant microphone’s signal contains
the reverberation noise created by the reflection of sound from the walls, thus it is not suitable for
speech recognition. The proposed method selects the closer microphone’s channel from the stereo
right/left signals as the target speech to be recognized.

Our channel selection method is performed based on comparing the power of frequency bins
extracted from the stereo signals as in [98]. To reduce the harmful influence of the inherent fre-
guency characteristics of speech, we apply majority voting with the number of the superior bins
to determine the candidate channel as shown in Fig. 6.3. The final candidate decision is made
with consideration of utterance continuity and breath region. This approach prevents the loss of
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Figure 6.3:Explanation of channel selection.

low power consonants with hang-over time, while the ambient noise is suppressed by using noise
reduction processing as in [103]. This proposed selection is rapid since it is a simplified method
based on power comparison in the frequency domain with no Gaussian computation.

6.2.2 Speaker indexing

To improve recognition accuracy, the acoustic features of each speaker are normalized, and the
acoustic model is trained by the per-speaker normalized features. Therefore, speaker indexing is
performed to segment the input signal prior to speech recognition. Acoustic feature normalization
is performed against the per-speaker segmented signal, and then speech recognition is executed.

Our speaker indexing proposal divides the input signal utterance-by-utterance, and forms speaker
segments by clustering the divided utterances as shown in Fig. 6.4. Utterance segmentation is per-
formed by using VAD with speech and pause models as in [104]. If the pause frame is continued
overr (e.g. 0.8 sec), the utterance is segmented. The speech model is composed of GMMs belong-
ing to the context independent models (monophones) in the acoustic model, and the pause model
is formed by GMMs belonging to pause HMM (Hidden Markov Model).

Since the input signal is divided at a fixed time interval, the number of speakers in each seg-
ment is limited. Conventional speaker indexing methods like variance-BIC [105] have difficulty in
controlling the number of speakers, so we adopt speaker clustering as in [106]. However, the CLR
(Cross Likelihood Ratio) used in [106] is very computationally expensive since it applies acoustic
likelihood computation repeatedly, so we propose a simplified and faster method.
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Figure 6.4:Process flowchart of speaker indexing.

The proposed method uses GMMs to represent utterance features. Here, the utterance GMM is
trained by using the acoustic features in the utterance segment. We pérfogans clustering by
using KL (Kullback Leibler) divergence as the distance measure between clusters, and utterance
GMM as the initial cluster; the cluster is also represented by GMMs and the cluster GMM is
composed from the utterances belonging to the cluster. Short utterance segmertd (8.gec])
do not offer stable GMM generation, and so are excluded from the clustering. After clustering
finishes, short segments are integrated with their neighboring cluster.

6.2.3 Acoustic feature normalization

We adopt the following three acoustic feature normalization methods; CMN [17][99], CVN [100]
and VTLN [101]. The acoustic model is trained by the normalized acoustic features, and speaker
indexing is performed after CMN/CVN against the entire input signal. The acoustic feature nor-
malization of CMN/CVN/VTLN is run against the speaker segments generated by speaker index-
ing.

Our proposed VTLN estimates the frequency warping factdm{ith small computation cost.
It seeks the best state, with maximum log output probability within the states in the acoustic
model against acoustic feature vectpf«) at framet. As shown in Eq. (6.1), it calculates the
sum of log output probabilities in the best state sequence against the candidate warping factors
a, and adoptsy that offers the maximum summation value. We reduce the computation cost by
applying the state-wise constraint, which restricts the states for which output probabilities must be
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calculated to monophone states as in Fig. 6.5. We also reduced the number of candidate factors,
«, with no significant performance penalty as indicated by preliminary experiments. We further
increase speed by adding the frame-wise constraint, which restricts the frame number needed to
estimaten.

T-1

& = argmax Z log bs(04()) (6.1)

a t=0

6.2.4 Unsupervised acoustic model adaptation

For additional accuracy improvement, the unsupervised acoustic model adaptation is conducted
against the speaker segments yielded by speaker indexing. Due to the computation time constraints,
we employ the proposed fast unsupervised adaptation method as in [107][104]. The proposed
unsupervised adaptation is based on the premise of a single-class MLLR [31], and a single global
transformation matrix is estimated after accumulating statistics by using the frame independent
output probabilities of all states’ GMMs that belong to monophones.
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Table 6.1: Performance of speech recognition

Channel selection Speaker indexing Unsupervised adaptation Cor. | Acc.
0. off off off 82.11| 75.62
1. off on off 83.65| 77.45
2. on off off 85.07| 78.59
3. on on off 87.64| 81.84
4, on on on 87.99| 82.15
5. ideal off off 85.65| 79.35
6. ideal on off 87.70| 81.87
7. ideal ideal off 88.73| 83.45
8. ideal ideal on 89.93| 84.83

Here, to approximate the occurrence probabilitys) at states by Eq. (6.2), the statistics
accumulation counts only the best state within frarbg using output probability,(o,) at states
against the feature vectoy. The labeling for unsupervised adaptation has to get just the best output
probability b;(o,) by calculatingS states belonging to monophones as also shown in Fig. 6.5.
The staticsy;(s, m) of distributionm are accumulated by calculating the posterior probability
of distributionm on states based on approximate occurrence probabijfy). The single global
transformation matrix is generated from these accumulated statistics using the model-space MLLR
of [31]. The mean parameters of all distributions in the acoustic model (triphones as well as
monophones) are transformed by this matrix.

_bi(o)) s is best staté at+

S
. bj(ox) (6.2)

1
0 otherwise.

Ye(s) ~

6.3 Experiments

6.3.1 Experimental setting

The speech analysis conditions are as follows; 16 kHz sampling frequency, 30 msec Hamming win-
dow, 10 msec shift, and the order of feature parameters is 38 (MFCGNMIECC 12, AAMFCC

12, Apower, AApower). The evaluation material is a 2.82 hour committee meeting with 17 speak-
ers captured in the parliament. The acoustic model is gender and speaker independent following
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[108]; it has 3,124 states and 49,984 distributions. The language model is word trigram built on
[109], and the vocabulary size is 69,581 words. Speech recognition decoder is VoiceRex [51]. The
acoustic model is trained using the normalized acoustic features output by CMN/CVN/VTLN, and
these normalizations are used at all conditions because the acoustic model is trained with the nor-
malizations. The input speech signal for this system was divided into segments; the length of each
segment is over 300 [sec].

6.3.2 Experimental results

Speech recognition performance is shown in Table 6.1. We use the character-unit speech recogni-
tion correct rate (Cor.) and accuracy (Acc.) as the evaluation criteria. The proposed technique uses
“on” at all entries with bold font, and the baseline uses “off” at all entries. The proposed channel
selection is compared with “ideal”: selects target speaker’'s channel based on hand labeling, and
“off”: mixes the stereo signals with the monaural signal without channel selection. The speaker
indexing is compared with “ideal”: speaker-by-speaker segmentation is correctly performed based
on hand labeling, and “off” uses the segments divided at fixed time intervals without speaker in-
dexing. The proposed unsupervised acoustic adaptation is compared to “off”: does not employ
adaptation.

The ideal recording condition, i.e. ideal channel selection and manual speaker indexing (7.),
was assumed in previous research [97]; it used close-talking microphones and manually segmented
the data into speaker-by-speaker units. Compared to this ideal condition, the proposed system
(4.) keeps high accuracy with a slight degradation in recognition correct rate and accuracy; the
difference is only around 1 point.

With regard to the effect of channel selection, the proposed method realized a significant recog-
nition error reduction by using channel selection{0.2. and 1.— 3.). Compared to ideal hand-
labeled channel selection (3= 6.), it achieved equivalent recognition accuracy. These results
demonstrate the effectiveness of our channel selection proposal.

The proposed method improved accuracy by using speaker indexing both with and without
channel selection (0— 1. and 2. — 3.). It also produced similar improvement under ideal
channel selection (5— 6.). These results reflect the effects of acoustic feature normalization
(CMN/CVN/VTLN) per speaker.

With regard to unsupervised acoustic model adaptation, the proposed method improved accu-
racy (3.— 4.) with the proposed channel selection and speaker indexing. A similar improvement
is also confirmed with ideal channel selection and speaker indexing &.).

Table 6.2 shows the computation time for each pre-processing step, speech recognition, and
the total times for the proposed system (shown as 4.). The computation time is normalized by the
time length of the input speech file; i.e. it uses the RTF (Real Time Factor). This table also shows
the ratio of each step against the total computation time.

The total computation time is around half the input file duration, so our system is very fast.
The acoustic pre-processing proposal occupies about 22 % of the total computation time and its
computation cost is considerably smaller than that of speech recognition.
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Table 6.2: Computation time of speech recognition

| RTF | Ratio

sum 507 |1
Acoustic pre-processing | .112 | .220
- Channel selection .026| .051
- Speaker indexing .004| .009

- Feature normalization .055| .108
- Unsupervised adaptatian .026| .052
Speech recognition 395 | .780

6.4 Summary

This paper proposed a highly accurate and fast acoustic pre-processing technique for creating
records of meeting in the parliament. The first proposal, channel selection, compares power in
the frequency domain in different channels to solve the problem of the reverberation noise in sig-
nals captured far from the speaker. The second proposal, speaker indexing, tackles the speaker
change problem by using utterance clustering. The remaining proposals, acoustic feature normal-
ization and unsupervised adaptation, deal with the variation intrinsic to the recording environment
and speaker characteristics by using a limited number of GMMs in the acoustic model. Tests con-
ducted on actual meeting speech recorded in a parliamentary room show that the proposed system
basically matches the accuracy achieved with the ideal recording condition at twice the real-time
speed.






Chapter 7

Conclustion

7.1 Preview of work

The aim of this thesis was to overcome the barriers that hinder the realization of practical appli-
cations based on speech recognition. We focused on three use cases; i) speech interface on tablet
devices, ii) information extraction from speech samples stored in call centers, and iii) transcription
system for parliament meetings. This work tackled the problems posed by the use cases with five
techniques; all leverage the properties of the use cases as shown in Table 7.1.

The problems and available properties of the above-mentioned three use cases addressed by
this thesis are described below.

Chapter 2 focused on the issue of improving the recognition accuracy of tablet devices under
convolutional and additional noise with rapid response times. This technique leverages the prop-
erty that background additional noise can be captured in a preliminary step; it allows us to create a
noise adapted and normalized model that resolves this issue.

Chapters 3 to 5 introduce three techniques deal with the practical issue of collecting highly
accurate spoken documents from massive volumes of spontaneous speech data under the limited
computer resources available for information extraction in call centers. These techniques leverage
the property that the target data is stored speech, and can be investigated prior to speech recogni-
tion.

In chapter 6, the critical issue is achieving high accuracy under processing time limits against
changes in the recording environment and speaker for efficient parliamentary meeting transcrip-
tion. Since parliamentary speech data is segmented and cached before recognition, we can in-
troduce several acoustic pre-processing methods to index, normalize and adapt the target stored
speech segments.

The proposed techniques were detailed together with the practical issues and properties of each
use case.

Chapter 2 treats the issue that users require speech recognition systems that offer rapid response
and high accuracy concurrently. Speech recognition accuracy is degraded by additive noise, im-
posed by ambient noise, and convolutional noise, created by space transfer characteristics, espe-
cially in distant talking situations. Against each type of noise, existing model adaptation techniques
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achieve robustness by using HMM-composition and CMN (cepstral mean normalization). Since
they need an additive noise sample as well as a user speech sample to generate the models required,
they cannot achieve rapid response, though it may be possible to catch just the additive noise in a
prior step. In the prior step, the technique proposed herein uses just the additive noise to generate
an adapted and normalized model against both types of noise. When the user’'s speech sample is
captured, only online-CMN need be performed to start recognition processing, so the technique
offers rapid response. In addition, to cover the unpredictable S/N values possible in real applica-
tions, the technique creates several S/N HMMs. Simulations using artificial speech data show that
the proposed technique increased the character correct rate by 11.62 % compared to CMN.

Chapter 3 proposed a fast unsupervised acoustic model adaptation technique with efficient
statistics accumulation for speech recognition. Conventional adaptation techniques accumulate
the acoustic statistics based on a forward-backward algorithm or a Viterbi algorithm. Since both
algorithms require a state sequence prior to statistic accumulation, the conventional techniques
need time to determine the state sequence by transcribing the target speech in advance. Instead
of pre-determining the state sequence, the proposed technique reduces the computation time by
accumulating the statistics with state confidence in a monophone per frame basis. It also rapidly
selects the appropriate gender acoustic model before adaptation, and further increases the accuracy
by employing a power term after adaptation. Recognition experiments using spontaneous speech
show that the proposed technique reduces computation time by 57.3 % while providing the same
accuracy as the conventional adaptation technique.

Chapter 4 proposed an efficient speech data selection technique that can identify those data
that will be well recognized. Conventional confidence measure techniques can also identify well-
recognized speech data. However, those techniques require a lot of computation time for speech
recognition processing to estimate confidence scores. Speech data with low confidence should
not go through the time-consuming recognition process since it will yield erroneous spoken docu-
ments that will eventually be rejected. The proposed technique can select the speech data that will
be acceptable for speech recognition applications. It rapidly selects speech data with high prior
confidence based on acoustic likelihood values with only speech and monophone models. Exper-
iments show that the proposed confidence estimation technique is over fifty times faster than the
conventional posterior confidence measure while providing equivalent data selection performance
for speech recognition and spoken document retrieval.

Chapter 5 proposed a technique that provides efficient beam width control; it yields practical
computation times for the auto-transcription of massive amounts of speech data. We focus on the
fact that a lot of time is wasted in recognizing poor quality speech data that will ultimately yield
erroneous transcriptions and provide no useful results. To stabilize the time regardless of quality,
our proposed technique controls the beam width based on pre-estimated prolonged score spread
against the target speech; it formulates the score range within the width and maximizes compu-
tation efficiency by regulating the range relevant to the hypotheses’ survival rate. The proposed
technique can control the width rapidly simply by using monophones prior to decoding. It also re-
stricts the beam width in decoding by using the processing speed and remaining data time to better
handle stubborn speech data. Experiments on actual call-center speech data with several SNR val-
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ues confirm a reduction in computation time while matching the accuracy of existing techniques.

Chapter 6 proposed a fast acoustic pre-processing technique with automatic speech recognition
for a system to transcribe parliamentary meetings. It well handles changes in the actual record-
ing environment and speaker to keep recognition accuracy high with low latency. The proposed
technique rapidly adapts the system to the environment and the speaker via limited Gaussian com-
putation; it selects the target speaker’s signal by comparing signal powers of close and distant
microphones in the frequency domain and then segments the signal, speaker-by-speaker, using ut-
terance clustering for acoustic feature normalization. It also employs fast unsupervised acoustic
adaptation based on efficient statistics accumulation through the use of monophones. Experiments
conducted on actual meeting speeches show that the proposed technique runs at twice the real-time
speed with no significant degradation in accuracy compared to the ideal recording condition.

Table 7.1: The five issues and property in each use case

Use case Issue Property and technique Chapter

Noise
Accuracy improvement adapted/normalized

and high response un-model is generated 2
der noise by using pre-observed
background noise

Tablet device
(Speech interface)

Fast prior unsupervised
adaptation can be per-
formed since low la- 3
tency is not required in
stored speech

Highly accurate speechLow accuracy speech is
document from massiveidentified and not pro- 4
data cessed data

Call center
(Speech mining)

Low quality speech
shouldn’'t be recog-
nized in full detail as 5
doing so would waster
resources.

Fast prior normaliza-
Parliament speech ~ High accuracy undertion and adaptation are

(Speech transcription) time limits applied since speech
samples are cached
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7.2 Summary

This thesis targeted the goal of removing the barriers to the realization of practical systems based
on speech recognition. Robust speech recognition systems are required to handle noise-corrupted
speech and spontaneous speech. We developed a acoustic model adaptation and normalization
technigue for noisy speech recognition with tablet devices by using pre-observed noise. For spon-
taneous speech recognition, we developed three techniques, fast prior unsupervised adaptation
using confidence scores, data selection based on prior confidence estimation, computation time
reduction by control beam width before decoding for call center speech. We further developed fast
acoustic pre-processing for transcribing parliament meetings.
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