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Abstract 

 

Chapter I 

 acaulis1 (acl1) mutants are isolated in order to explore novel genetic factors 

that regulate elongation of inflorescence stem. In the first part, I report on the 

identification of an inversion mutation in the original acl1-1 plants. Compared to the 

original acl1-1 plants, the “genuine” acl1-1 plants, which is without the inversion, grew 

larger and their inflorescence stems grew longer at 22°C and also at 24˚C. In the acl1-1 

plants with the inversion, two genes that locate at each end of the inversion were 

disrupted and full-length transcripts were not detected, and expressions of some genes 

within and adjacent to the inversion were also altered. These results suggest the 

possibility that the expression of multiple genes is involved in the enhancement of the 

acl1-1 phenotype by the inversion . 

 In the second part, I further investigated the acl1 mutants using the acl1-1 

mutant line without the inversion. I found Col accession-specific Resistance (R) gene, 

SUPPRESSOR OF NPR1, CONSTITUTIVE1 (SNC1) as an essential gene for the acl1 

growth phenotype. Moreover, I identified the acl1 mutations in SUPPRESSOR OF 

rps4-RLD (SRFR1), which is known as a negative regulator of defense responses and 

SNC1 activity. These results suggest that the loss of negative regulation of SNC1 causes 

stunted growth in the acl1 mutants. Consistent with the srfr1 mutants, which have 

already been described, acl1 mutants showed constitutive activation of defense-related 

genes at 22˚C. I further observed the acl1 phenotype at intermediate temperatures 
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between 22˚C and 28˚C, at which the srfr1 phenotype was reported to be suppressed. It 

was revealed that both stunted growth and increased expression of defense-related genes 

were gradually repressed as temperature increases and almost completely suppressed at 

temperatures above 26˚C. Double mutant analysis revealed that the acl1 plant growth 

depends not only on ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) but also on 

PHYTOALEXIN-DEFICIENT4 (PAD4) and REQUIRED FOR MLA12 RESISTANCE1 

(RAR1). However, salicylic acid accumulation and NONEXPRESSOR OF PR GENES1 

(NPR1)-dependent pathways were not essential for the acl1 growth phenotype. I also 

discovered that higher ammonium concentration in the growth media alleviates the acl1 

phenotype. Nitrogen might be involved in the growth regulation of the plants with 

induced defense responses. 

 

Chapter II 

Development of the epidermis involves members of the class IV 

homeodomain-leucine zipper (HD-ZIP IV) transcription factors. The Arabidopsis 

HD-ZIP IV family consists of 16 members, among which PROTODERMAL FACTOR2 

(PDF2) and ARABIDOPSIS THALIANA MERISTEM LAYER1 (ATML1) play an 

indispensable role in the differentiation of shoot epidermal cells. However, the functions 

of other HD-ZIP IV genes that are also expressed specifically in the shoot epidermis 

remain not fully elucidated. Construction of double mutant combinations of these 

HD-ZIP IV mutant alleles showed that the double mutants of pdf2-1 with homeodomain 

glabrous1-1 (hdg1-1), hdg2-3, hdg5-1 and hdg12-2, produced abnormal flowers with 
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sepaloid petals and carpelloid stamens in association with reduced expression of the 

petal and stamen identity gene APETALA3 (AP3). Expression of another petal and 

stamen identity gene PISTILATA (PI) was less affected in these mutants. I confirmed 

that the AP3 expression in pdf2-1 hdg2-3 was normally induced at initial stages of 

flower development but attenuated both in the epidermis and internal cell layers of 

developing flowers. Since the expression of PDF2 and these HD-ZIP IV genes during 

floral organ formation is exclusively limited to the epidermal cell layer, these double 

mutations may have non-cell-autonomous effects on the AP3 expression in the internal 

cell layers. My results suggest that cooperative functions of PDF2 and other members 

of the HD-ZIP IV family in the epidermis are crucial for normal development of floral 

organs in Arabidopsis.  

Cited and revised from Summary of Kamata et al., 2013. “Mutations in 
epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis 
thaliana” Plant Journal, 75, 430-440. 
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General Introduction 

Arabidopsis thaliana is a model plant that widely used for plant genome 

analysis (Somerville and Koornneef, 2002). Since a large collection of mutants and 

transgenic plants, whose growth and development have been disrupted, is available, a 

forward genetic approach has been practical for discovering genetic factors that regulate 

morphogenesis in A. thaliana. In the year 2000, the whole genome of the A. thaliana 

has been sequenced, enabling to presume the function of the genes that are not yet 

experimentally verified. Thus, the reverse genetic approach is also being a powerful tool 

to search and investigate whether and how the gene in concern is related to the plant 

growth and development. 

Most organogenesis in plants, as well as in A. thaliana, is occurred 

postembryonically, unlike animals, in which the most of the organs are formed during 

embryogenesis (Carles and Fletcher, 2003). Both shoot and root apical meristems of 

plants maintain their activity and give rise to new organs after the germination, allowing 

plants to continue growing and developing their bodies through their lifetime. Although 

the postembryonic development of plant body is primarily genetically regulated, it is 

also highly flexible to the environmental factors, including biotic factors such as heat, 

cold, light, drought and nutrient condition, and biotic factors like attacks from pests and 

pathogens, to adapt to the environmental changes. The effects from the environmental 

changes on the plant growth and development cannot be ignored, as it has been 

suggested that environmental stresses can reduce average yields by as much as >50% 

for most major crop plants (Wang et al., 2003).  
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acaulis1 (acl1) mutants, which were previously isolated in a genetic screen 

for defective plant morphology, were further discovered to be an unique type of mutants 

that their growth phenotype is fully suppressed at higher growth temperatures (Tsukaya 

et al., 1993). Even though the growth of Arabidopsis plants is affected by higher 

temperature, the morphological modification in the acl1 plants is so drastic that it 

cannot be explained by general effects from higher growth temperature (Thingnaes et 

al., 2003). Thus I thought that acl1 would be more than a tool for investigating a genetic 

factor that regulate normal plant growth, and give us some more insight into a 

relationship between a growth regulatory pathway and the environmental factors, such 

as temperature. And in the first chapter of this thesis, I will report on the analysis on the 

acl1 mutants. Since the ACL1 gene had not been isolated, the biggest issue on the acl1 

analysis was to identify the ACL1 gene, and to make it clear which genetic pathways are 

involved in the acl1 plant growth. I identified some genetic factors that affect the acl1 

phenotype, and eventually identified the acl1 mutations in a negative regulator of 

defense responses against pathogens.  

As shown in the research on the acl1 mutants, and also in some other 

acl1-like mutants (Gou and Hua, 2012), responses against pathogen attacks can 

dramatically modify the plant morphology. When plants are exposed to such pathogens, 

epidermis, the outermost cell layer that covers the plant body, plays the critical roles for 

the defense and resistance. Shoot epidermis is also important for organ separation and 

defense responses against drought or other environmental stresses as well as in the 

integrity of organs. Moreover, it has been reported that epidermis-specific genes are 
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involved in the regulation of organ development in plants (Savaldi-Goldstein et al., 

2007; Eriksson et al., 2010). Therefore, it is likely that epidermis is an important cell 

layer for regulating both responses against environmental factors and plant growth. In 

the second chapter, I adopted reverse genetic approach to investigate the effects of 

T-DNA insertion mutations in the class IV homeodomain-leucine zipper (HD-ZIP IV) 

gene family, most of which are confirmed to be specifically expressed in epidermis 

(Nakamura et al., 2006), on plant growth and development.  
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Chapter I. Stunted growth of acaulis1 (acl1) mutants is dependent on 

constitutive activation of defense response pathways.  

 

 

Introduction 

 For exploring genetic factors that are essential for proper morphogenesis of 

Arabidopsis thaliana, a forward genetic approach has been a useful tool. Tsukaya et al. 

(1993) previously screened for mutants defective in the elongation of the inflorescence 

stem and able to identify five complementary groups of mutants, termed acaulis (acl), 

for their “stalkless” morphology. Short inflorescence stems and reduced number of 

flowers in the acl mutants were due to early proliferative arrest of apical inflorescence 

meristems. The number of rosette leaves in the acl mutants is approximately the same as 

in wild-type plants, indicating that the timing of transition from vegetative to 

reproductive phase is not affected. However, except for the acl5 mutant, the acl mutants 

exhibited more or fewer defects in leaf morphology (Tsukaya et al., 1993; Hanzawa et 

al., 1997; Akamatsu et al., 1999). Since the acl phenotype cannot be rescued by the 

exogenous addition of several growth regulators and phytohormones, the stunted 

growth of the acl1 mutants is considered to be different from the dwarfism of known 

phytohormone-related mutants (Tsukaya et al., 1993; Hanzawa et al., 1997; Akamatsu 

et al., 1999). The only ACL gene identified was ACL5, which encodes thermospermine 

synthase (Hanzawa et al., 2000; Kakehi et al., 2008). However, it is still uncertain 

which genetic pathway is involved in the regulation of plant growth and development of 
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other acl mutants. 

 acl1-1 is the most severely stunted mutant among the acl mutants. Cell 

elongation and maturation are likely to be inhibited soon after the cells differentiate in 

the acl1-1 plants, as implied by the drastic reduction of cell length in the acl1-1 stems 

and the loss of intercellular spaces in the acl1-1 leaves (Tsukaya et al., 1993). In order 

to determine the role of the ACL1 gene within the developmental network of 

inflorescences, double mutants were generated between the acl1-1 mutant and some 

developmental mutations that affect the morphology of inflorescences and/or flowers. 

However, the function of the ACL1 gene has been shown to be genetically independent 

of the shoot- and inflorescence-development genes, such as APETALA1 (AP1), 

CLAVATA (CLV1), LEAFY (LFY) and TERMINAL FLOWER1 (TFL1) (Tsukaya et al., 

1993). 

 It has also been reported by Tsukaya et al. (1993) that stunted growth of the 

acl1 mutants is restored at higher temperature, such as 28˚C. Ambient temperature is 

known to influence aspects of the appearances of plants, such as leaf size and stem 

length (Thingnaes et al., 2003; Atkin et al., 2006). However, the dramatic alteration in 

morphology of the acl1 phenotype at high temperature cannot be explained by general 

developmental variations controlled by ambient temperature. Temperature-sensitive 

stunted phenotypes similar to the acl1 mutants are often observed in suppressor of 

NPR1, constitutive1-1 (snc1-1), suppressor of npr1-5-based salicylic acid insensitivity4 

(ssi4), bonzai1 (bon1) and constitutive expresser of PR genes 30 (cpr30), all of which 

have constitutive activation of defense responses against pathogens (Hua et al., 2001; 
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Shirano et al., 2002; Yang and Hua, 2004; Gou et al., 2009). Effector-triggered 

immunity (ETI) is a major defense response in plants that is induced by direct or 

indirect recognition of pathogen avirulence effectors by plant resistance (R) proteins 

(Jones and Dangl 2006; Alcazár and Parker 2011). In Arabidopsis, a majority of R 

proteins possess a nuclotide binding site and leucine-rich repeat (NBS-LRR) motif 

either with a Toll/interleukin-1 receptor (TIR) domain or a coiled-coil (CC) domain at 

the N terminus (Dangl and Jones, 2001). For the activation of downstream defense 

response pathways, TIR-NBS-LRR type R proteins require ENHANCED DISEASE 

SUSCEPTIBILITY1 (EDS1) and PHYTOALEXIN-DEFICIENT4 (PAD4) genes, both of 

which encode a protein with homology to lipases/acyl hydrolases (Falk et al., 1999; 

Jirage et al., 1999; Feys et al., 2001). On the other hand, CC-NBS-LRR type R proteins 

require NON RACE-SPECIFIC DISEASE RESISTANCE1 (NDR1), which encodes a 

putative membrane-bound protein (Century et al., 1995; 1997; Aarts et al., 1998). ETI is 

usually accompanied by a hypersensitive response involving rapid and local 

programmed cell death, which restricts further spread of the pathogen. Furthermore, 

plants produce salicylic acid (SA) and accumulate defense molecules such as 

pathogenesis-related (PR) proteins through systemic acquired resistance (SAR). SAR 

provides the plants with long-lasting protection against a broad spectrum of pathogens 

(Ryals et al., 1996; van Loon, 1997). 

The cloning of the ACL1 gene will give us the answer how the acl1 plant 

growth is regulated. During molecular mapping of the acl1 mutations, I identified an 

inversion mutation in the original acl1-1 mutant line, and a Col accession-specific 
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TIR-NBS-LRR R gene, SUPPRESSOR OF NPR1, CONSTITUTIVE1 (SNC1) as an 

indispensable gene for the acl1 phenotype to be exhibited in the presence of the acl1 

mutations. I eventually identified the acl1 mutations in SUPPRESSOR OF rps4-RLD 

(SRFR1), a negative regulator of defense responses, suggesting that the acl1 phenotype 

is caused by a constitutive activation of defense response pathways. I further analyzed 

the acl1 mutants and will report on several phenotypes that yet have not been described 

in previous studies in the acl1/srfr1 mutants.  

 

Results 

 

Part 1 

An inversion identified in acl1-1 mutant functions as an enhancer of 

the acl1-1 phenotype 

 

Identification of an inversion mutation in the original acl1-1 mutant and isolation 

of novel acl1-1 line without the inversion 

Previous research showed that the acl1-1 mutation locates close to 

AGAMOUS (AG) on chromosome 4 (Tsukaya et al., 1993). My early results from 

molecular mapping suggested a linkage of the acl1-1 phenotype between a 

cleaved-amplified polymorphic sequence (CAPS) marker, SC5, and the polymorphism 

MASC04642 on chromosome 4 (Figure I-1a). The acl1-1 mutant was induced by X-ray 

irradiation and exhibits a more severe phenotype than the EMS-mutagenized acl1-3 
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mutant. Thus, I suspected that the chromosomes of the acl1-1 mutant might be seriously 

disrupted. In order to explore chromosome disruptions, approximately 260 kb of the 

genomic region from At4g22290, the gene nearest to MASC04642, to At4g21690 was 

examined by amplifying fragments covering the genomic regions by PCR. As the result, 

two PCR products including At4g21960, which encodes a peroxidase (Apel and Hirt, 

2004; Welinder et al., 2002), and At4g22250, which encodes a zinc finger protein 

(Kosarev et al., 2002), were absent in the acl1-1 mutant (Figures I-1a,b). The genomic 

regions between these two genes, which are located at a distance of approximately 120 

kb, were found to exist in the acl1-1 mutant (data not shown). Every PCR product was 

present in the acl1-3 mutant, which indicated that the absence of the two PCR products 

was specific to the acl1-1 mutant. One possibility was that the genomic region between 

At4g21960 and At4g22250 was inverted. To investigate this possibility, PCR 

experiments were performed using combinations of primers at At4g21960 and 

At4g22250. Novel DNA fragments were amplified in the acl1-1 mutant and their 

sequences suggested that At4g21960 and At4g22250 were cleaved, inverted and fused 

each other (Figure I-1c,d). I also cloned At4g21960 and At4g22250 from the acl1-3 

plants and found that there was no mutation. Since the T-DNA insertion lines in 

At4g21960 and At4g22250 had no obvious growth defects (data not shown), the loss of 

either of At4g21960 or At4g22250 is unlikely to be responsible for the acl1-1 

phenotype. 

I crossed the original acl1-1 plants to Col-0 to evaluate the segregation of the 

acl1-1 phenotype and the inversion. The F2 population was segregated into 496 (73%) 
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wild-type plants and 180 (27%) acl1-1 plants at a 3:1 ratio (χ2 = 0.716). I further 

examined 371 wild-type plants and 146 acl1-1 plants for the inversion (Table I-1). 

Regarding the inversion, the segregation at +/+: inv/+: inv/inv at the ratio of 1:2:1 was 

less reliable (χ2 0.025 (2) = 7.38 < χ2 = 9.07 < χ2 0.010 (2) = 9.21). The acl1-1 

phenotype did not necessarily cosegregate with the inversion, and the inversion is 

independent of the cause of the acl1-1 phenotype. The recombination rate between the 

acl1-1 phenotype and the inversion was estimated to be 15.4% according to the 

segregation of the F2 plants. To simplify descriptions, I refer to the newly isolated 

acl1-1 plants without the inversion as acl1-1 +/+, the original acl1-1 plants with the 

inversion as acl1-1 inv/inv, wild-type plants as Col +/+, and the wild-type phenotype 

(ACL1/ACL1) plants with the inversion as Col inv/inv. 

 

Expressions of genes related to the inversion 

Inversions can disrupt a gene at one of its breakpoints, and furthermore, it is 

expected that inversions alter the expression of a gene near a breakpoint because of a 

change in its chromosomal environment. Expression of some genes, which locate within 

and adjacent to the inversion, differed among the four plant strains: Col +/+, Col inv/inv, 

acl1-1 +/+, and acl1-1 inv/inv (Figure I-2a). I observed a decrease in expression of 

At4g22270 (IMMUTANS) (Wu et al., 1999), an increase in At4g22214 (defensin like 

protein) (Silverstein et al., 2005), and a slight increase in At4g22235 (defensin like 

protein) in two inv/inv plants, Col inv/inv and acl1-1 inv/inv. In the acl1-1 inv/inv plants, 

we found increased expression of At4g22050 (aspartyl protease family protein) and 
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At4g22070 (WRKY DNA-BINDING PROTEIN 31) (Eulgem et al., 2000) and decreased 

expression of At4g21990 (APS REDUCTASE 3) (Houston et al., 2005), At4g22010 

(SKU5 SIMILAR 4) (Sedbrook et al., 2002) and At4g22212 (defensin like protein). 

Among the genes investigated, At4g22080 (pectate lyase family protein), At4g22090 

(pectate lyase family protein), At4g22210 (Cys-rich protein), At4g22217 (defensin like 

protein) and At4g22230 (defensin like protein) decreased in both the acl1-1 plants, 

regardless of the inversion. The expression of At4g22030 (F-box family protein) and 

At4g22100 (glycosyl hydrolase family 1 protein) was decreased in the Col inv/inv plants 

and the acl1-1 +/+ plants, and even further decreased in the acl1-1 inv/inv plants 

compared to the Col +/+ plants. I wondered if the increase or the decrease in the 

expression level of these genes is due to mutations in their genomic sequences. 

However, the genomic sequences of these genes cloned from acl1-1 plants were 

identical to the wild-type.  

Although full-length transcripts of At4g21960 and At4g22250 were not 

detected in the inv/inv plants (Figure I-1e), partial transcripts from the fused fragments 

of At4g21960 and At4g22250 were detected in the inv/inv plants (Figure I-2b). In the 

case of At4g22250, the partial transcripts were rather increased in the plants with the 

inversion. Taken together, these results from expression analysis suggest that the 

inversion has an influence on the expression of a wide range of genes. 

In the acl1-3 mutants, the expression patterns of the genes related to the 

inversion, including At4g21960 and At4g22250, were similar to those of the Col +/+ 

plants (data not shown). 
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The acl1-1 phenotype was enhanced by the inversion 

While there was no apparent difference between Col inv/inv plants and Col 

+/+ plants (Figure I-3a, Table I-2) and between acl1-3 inv/inv and acl1-3 +/+ plants 

(Figure I-5), the comparison of the acl1-1 +/+ plants and the acl1-1 inv/inv plants made 

me realize the difference between these two genotypes. Both the acl1-1 +/+ plants and 

the acl1-1 inv/inv plants exhibited the acl1-1 phenotype with short inflorescence stems 

and small curly leaves. However, the rosettes of the acl1-1 inv/inv plants appeared 

slightly smaller than those of the acl1-1 +/+ plants (Figure I-3a). The height of the 

acl1-1 +/+ plants was significantly different to that of the acl1-1 inv/inv plants, 

indicating that the growth defects of the acl1-1 mutants are enhanced by the inversion 

(Table I-2).  

The reduction of the cell length was significant in acl1-1 background in all 

types of tissues examined; cells in the epidermis, the outermost layer of cortex, and the 

pith (Table I-3, Figure I-4a). The reduction in the size of the epidermal cells was most 

severe, and the cells in pith also were significantly affected by the acl1-1 mutation. The 

acl1-1 inv/inv plants exhibited more severe reduction in the cell length than the acl1-1 

+/+ plants. Unlike cells in epidermis and pith, the length of cortex cells was less 

affected. In addition to the severe reduction in length, the differentiation of cells 

appeared to be inhibited in the inflorescence stems of the acl1-1 +/+ plants and the 

acl1-1 inv/inv plants. 

Both the acl1-1 +/+ plants and the acl1-1 inv/inv plants were able to restore 
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their plant morphology when grown at 28˚C as previously reported (Tsukaya et al., 

1993). Plants tend to become more slender at higher temperatures, as the result of the 

general effects of higher temperature. These general effects of higher temperature were 

observed in the Col inv/inv plants as well as in the Col +/+ plants throughout the 

experiments. Correspondingly, the cells became longer at higher temperature (Figures 

I-4b,c). The restoration of the acl1-1 phenotype to wild-type was not complete at the 

intermediated temperature 24˚C (Figure I-3b). However, the difference between the 

acl1-1 +/+ plants and the acl1-1 inv/inv plants became more obvious at 24˚C. The 

inflorescence stems of acl1-1 +/+ plants elongated to approximately 5 cm in length 

(average ± standard deviation, 5.2 ± 3.4 cm, n = 12). On the other hand, the 

inflorescence stem of acl1-1 inv/inv plants was as short as that grown at 22˚C. At 24˚C 

the length of cells, including those in the cortex, became significantly different between 

the acl1-1 +/+ plants and the acl1-1 inv/inv plants (Table I-3). While neither the acl1-1 

+/+ plants nor the acl1-1 inv/inv plants fully restored the acl1-1 phenotype at 24˚C, the 

inflorescence stems of both the acl1-1 +/+ plants and the acl1-1 inv/inv plants elongated 

to a similar length to those of Col plants at 26˚C and showed complete restoration to 

wild type (Table I-4, Figures I-4b,c). There was no difference between the acl1-1 +/+ 

plants and the acl1-1 inv/inv plants at temperatures exceeding 26˚C (t = 0.014 for plant 

height at 26˚C).  
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Part 2 

Stunted growth of acaulis1 (acl1) mutants is dependent on  

constitutive activation of defense response pathways induced by  

SUPPRESSOR OF NPR1, CONSTITUTIVE1 (SNC1) 

 

acl1 phenotype requires a Col accession-specific R gene, SNC1 

 Crude mapping analysis using F2 generation from a cross between acl1-3 and 

Landsberg erecta (Ler) showed that the acl1 phenotype linked to the middle to lower 

arm of chromosome 4 (Table I-5), consistent with the previous studies (Tsukaya et al., 

1993; Kamata and Komeda, 2008). Four mapping markers, SC5, AG, CIW7 and CAT2, 

which span an interval of 7.5 Mb on chromosome 4 has shown equally low 

recombination frequencies. After I noticed the presence of the inversion mutation in the 

original acl1-1 line (Chapter 1) (Kamata and Komeda, 2008), I used only acl1-1 +/+ for 

further analysis of the acl1-1 mutants. I crossed the acl1-1 plant, which is without the 

inversion, to Ler and the derived F2 plants showed a similar result (data not shown). 

During the mapping process, I found that the ratio of the acl1 phenotype to wild type in 

F2 progeny was significantly lower than the expected ratio for a single recessive locus. 

In the case of acl1-1, only 14.4% of the F2 progeny showed the acl1-1 phenotype, while 

the acl1-1 phenotype was segregated in a Mendelian fashion when crossed with Col 

(Table I-6). This implies the existence of a natural modifier of the acl1 phenotype in 

Ler. 
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 No recombination was found at G4539, which is located between SC5 and 

AG, in the F3 acl1-1 plants derived from the F2 lines heterozygous for acl1-1 (Figure 

I-6). For finer mapping, F3 and F4 plants were selected, and additional mapping 

markers were generated between SC5 and AG (Table I-7). The region tightly linked to 

the acl1-1 phenotype was further narrowed to an approximately 159-kb region between 

the polymorphisms PERL0772901 and PERL0776597 (Figure I-6b). The genetic region 

between PERL0772901 and PERL0776597 in the acl1 mutants was amplified and 

sequenced. However, there was no mutation in any genes within this region compared 

to Col wild type.  

I further investigated the relationship between the acl1 phenotype and the 

region identified by the mapping analysis. The 159-kb region in question includes RPP5 

(for recognition of Peronospora parasitica 5) gene cluster that consists of multiple 

copies of TIR-NB-LRR R genes homologous to the RPP5 gene of Ler (Figure I-6b,c) 

(Parker et al., 1997; Noël et al., 1999). The genomic sequence of the RPP5 gene cluster 

in Col differs from that in Ler, and synteny is lost in this region between these two 

accessions (Stokes et al., 2002). I found that the expression level of RPP4 (At4g16860), 

SNC1 (At4g16890), At4g16950 and At4g16960 was increased in the acl1-1 mutant at 

22˚C (Figure I-6d). SNC1 and At4g16960 were also increased in the acl1-3 mutant, 

though not at as high a level as in acl1-1 in the case of At4g16960. The expression of 

At4g16920 was slightly increased in both acl1-1 and acl1-3 mutants. At4g16990, which 

is located next to the RPP5 gene cluster, seemed to be expressed at similar levels 

between the acl1 mutants and wild-type plants.  
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A gain-of-function mutation of SNC1 such as snc1-1 is known to cause severe 

stunted phenotype similar to acl1-1, and many of the Arabidopsis mutants exhibiting 

stunted growth with auto-activation of defense responses are SNC1-dependent (Li et al., 

2001; Gou and Hua, 2012). I therefore generated double mutants between acl1 and 

snc1-11, the loss-of-function mutation in SNC1, to examine whether the expression of 

SNC1 is responsible for the acl1 phenotype. The overall appearance of acl1-1 snc1-11 

and acl1-3 snc1-11 double mutants was identical to that in wild-type plants. Moreover, a 

heterozygous snc1-11 mutation was enough to cause the restoration of plant growth of 

acl1 mutants, even in the more severe acl1-1 allele (Figure I-6e,f). RPP4 is another 

RPP5 homologue whose gain-of-function mutant can also cause a severe dwarfism in 

plants (Huang et al., 2010). However, I identified 8 plants having homozygous rpp4 

mutation among 137 acl1-1 phenotyped plants in F2 generation derived from the cross 

between acl1-1 and rpp4. These acl1-1 rpp4 plants were fully identical to the acl1 

single mutants. Above results demonstrated that SNC1 is essential for and mainly 

responsible for the stunted growth of the acl1 mutants. 

 

ACL1 encodes a tetratricopeptide repeat domain containing protein 

Taking into account that the acl1 phenotype is observable only in the presence 

of homozygous Col-specific SNC1 locus, the ACL1 gene is calculated to be located 24.2 

cM apart from the SNC1 locus (Table I-6). Next-generation sequencing identified a 

point mutation in At4g37460 that is located 8.1 Mb, which is equivalent to 

approximately 25 cM, apart from SNC1 in each acl1-1 and acl1-3 genome (Figure I-7a). 
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The acl1-1 mutant had a G to A substitution in the conserved AG dinucleotide of the 3’ 

acceptor splice site at the end of the 10th intron (Reddy, 2007). I obtained the full-length 

At4g37460 cDNA from the acl1-1 mutant and found a deletion of single G at the first 

base of the 11th exon. Frameshift in the subsequent coding region creates a premature 

stop codon at amino acid position 509 (Figure I-7b). A substitution of C for T was found 

in the acl1-3 mutant resulting in a replacement of proline by serine at amino acid 

residue 618 (Figure I-7a,b). The expression level of At4g37460 was seemingly not 

altered in the acl1-1 and acl1-3 mutants (Figure I-7c). Recently, a new acl1 mutant 

allele, 2080 (acl1-4), was isolated from the pool of T-DNA insertional mutants and 

kingly gifted from Dr. Goro Horiguchi (Figure I-8). The 2080 mutant also had a 

disruption in the coding region of At4g37460 and full-length transcript was not detected 

(Figure I-7a,c). 

At4g37460 encodes a tetratricopeptide repeat (TPR) domain-containing 

protein known as SUPPRESSOR OF rps4-RLD (SRFR1) (Kwon et al., 2009). Loss of 

functional SRFR1 in Col background causes increased accumulation of SNC1 and also 

other R genes, resulting in the constitutive activation of defense responses (Kim et al., 

2010; Li et al., 2010). Moreover, an acl1-1-like severe stunted phenotype is observed in 

all those srfr1 mutants isolated previously in the Col background, among which srfr1-3 

has a nonsense mutation near the acl1-1 mutation site (Li et al., 2010). I therefore 

concluded that the acl1 phenotype is caused by mutations in At4g37460/SRFR1.  

 

Constitutive activation of defense related genes and the stunted growth were 
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correlated in the acl1 mutants in a temperature-dependent manner 

  Identification of SNC1 and SRFR1 as the genes involved in the acl1 

phenotype suggests that the acl1 phenotype occurs through activation of a defense 

response pathway. Thus, I examined the expression of defense related genes. Plants 

were grown on sterile media to avoid contact with the pathogens potentially present in 

the environment. The acl1-1 mutants had significantly increased expression of defense 

related genes: EDS1 and PAD4; SA INDUCTION DEFICIENT2 (SID2), which are 

required for SA synthesis (Nawrath and Métraux, 1999); and PR1 and PR2, consistent 

with the previous expression analysis using the srfr1 mutants in the Col background 

(Figure I-9a) (Kim et al., 2010; Li et al., 2010; Bhattacharjee et al., 2011). Moreover, I 

observed a remarkable increase in the expression of NDR1, SID1 (Nawrath and Métraux, 

1999), NONEXPRESSOR OF PR GENES1 (NPR1), a positive regulator of SA-mediated 

SAR (Cao et al., 1997; Ryals et al., 1997), and another PR gene, PR5, in the acl1-1 

mutant (Figure I-9a). These results suggest a constitutive activation of defense 

responses through ETI and SA-dependent pathways in the acl-1 mutants at 22˚C. The 

acl1-3 mutant also showed higher expression of PR1 and PR2 than wild-type plants. 

However, the expression level of other defense related genes in the acl1-3 mutant was 

very similar to that in wild type, presumably reflecting a weak activation of defense 

responses. By contrast, PLANT DEFENSIN1.2 (PDF1.2), which is repressed by SA 

(Spoel et al., 2003), was downregulated in the acl1 mutants (Figure I-9a). I also 

observed whether cell death was occurring in the acl1 plants, because cell death is often 

accompanied by constitutive activation of defense responses. While no visible cell death 
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was observed in the acl1 leaves when grown on sterile agar plates, cell death was more 

frequent in the acl1 leaves than that in wild type when plants were grown in pots and 

exposed to outer environment (Figure I-9b,c). This suggests that SAR is induced in the 

acl1 mutants and that acl1 plants are in a “primed” state, which enables plants to be 

sensitive to pathogen attack (Conrath et al., 2002), although cell death is not essential 

for the stunted growth of the acl1 mutants. 

Previously, we had observed that the acl1-1 mutant partially restores its plant 

growth at 24˚C, which is only 2˚C higher than the usual temperature at which 

Arabidopsis plants are grown (Kamata and Komeda, 2008). At temperatures higher than 

26˚C, acl1-1 mutant was apparently indistinguishable from wild-type plants (Figure 

I-9d). I grew the weak acl1-3 mutant at different temperatures and found that, similar to 

the acl1-1 mutant, the acl1-3 mutant showed a partial but considerable restoration of 

inflorescence length and leaf size at 24˚C, and was fully restored at 26˚C and 28˚C 

(Figure I-9d). Several studies of the mutants with constitutive activation of defense 

responses have been shown that both constitutive activation of defense responses and 

stunted growth observed at 22˚C were completely suppressed at 28˚C (Yang and Hua, 

2004; Gou et al., 2009). I further examined how the expression patterns of the defense 

related genes alter at intermediate temperatures between 22˚C and 28˚C. At 24˚C, the 

expression of the defense related genes was greatly decreased in the acl1 mutants 

compared to that at 22˚C (Figure I-9a). The acl1-1 mutant still showed a faint 

expression of PR1 and PR2 genes at 24˚C but it was further repressed at 26˚C. Likewise, 

the elevated expression of PR1 and PR2 genes in the acl1-3 mutant was significantly 
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repressed at higher temperatures (Figure I-9a). Pot-grown acl1 plants also showed 

gradual repression of defense related genes as growth temperature increased from 22˚C 

to 26˚C (Figure I-10). These results show that gradual alteration of the acl1 growth 

phenotype and the expression of the defense related genes are correlatively regulated in 

a temperature-dependent manner. It was also shown that 26˚C is high enough to 

suppress the acl1 phenotype. In the acl1 mutants, the expression level of SNC1 and 

RPP5 homologues was also decreased at 28˚C compared from that at 22˚C, but was still 

slightly higher than the wild-type level (Figure I-6d). 

 

acl1 phenotype depends on EDS1 and partially on PAD4 

To further examine the dependence of the acl1 phenotype on key regulators of 

the defense responses, I generated double mutants. Both acl1-1 eds1-2 and acl1-3 

eds1-2 double mutants completely restored the mutant phenotype to wild type (Figure 

I-11a,b). While the acl1-3 pad4-1 double mutant was almost identical to wild type, 

acl1-1 pad4 double mutant had much larger leaves and more elongated inflorescence 

stems than the acl1-1 mutant, showing considerable but not complete suppression of the 

acl1-1 phenotype (Figure I-11a,b). On the other hand, acl1 ndr1-1 double mutants 

showed similar growth to the acl1 single mutants (Figure I-11a). This result suggests 

that acl1 growth does not depend on NDR1, although NDR1 expression significantly 

increased in the acl1-1 mutant (Figure I-9a).  

A number of R proteins further require REQUIRED FOR MLA12 

RESISTANCE1 (RAR1), which functions together with SUPPRESSOR OF THE G2 

kamata
長方形



 28 

ALLELE OF SKP1 (SGT1) and HEAT SHOCK PROTEIN90 (HSP90) for proper 

folding and stabilization of R proteins (Austin et al., 2002; Muskett et al., 2002; 

Takahashi et al., 2003). I therefore generated acl1 rar1-21 double mutants. The acl1 

phenotype was restored to some degree by the rar1-21 mutation: Both acl1-1 rar1-21 

and acl1-3 rar1-21 double mutants were larger than the single acl1-1 and acl1-3 

mutants, respectively, though they still exhibited short stems and curly leaves (Figure 

I-11a,b). This suggests an involvement of RAR1 in the acl1 phenotype.  

acl1 sid2-2 double mutants were only slightly larger than the single acl1 

mutants (Figure I-11a,b). acl1 npr1-1 double mutants showed no restoration of the acl1 

growth and their stunted phenotype was rather enhanced, which was more obvious at 

24˚C (Figure I-11a,c). Defense response pathways dependent on SA accumulation and 

NPR1 were not essential for the acl1 growth phenotype. 

 

Nitrogen conditions influence the plant growth of acl1 mutants 

In the course of this study, I discovered that acl1 mutants grew larger on full 

and half-strength Murashige and Skoog (MS) media compared to those grown on the 

MGRL medium, which is usually used for growing plants in pots. The total 

concentrations of nitrate (NO3
-), ammonium (NH4

+) and potassium (K+) were 41.3, 3.9 

and 6.7 times greater, respectively, for MS than MGRL (Table I-8). I added 10 mM 

NH4NO3 or 7 mM KCl to the MGRL medium so that the concentration of these ions 

becomes comparable to the half-strength MS medium and grew plants. While the 

addition of KCl had no effect on the acl1 mutant growth, the addition of NH4NO3 was 
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effective for growing the acl1 mutants larger (data not shown).  

To further examine the effect of nitrate and ammonium on the acl1 plant 

growth separately, I developed a nitrogen-free medium by replacing Ca(NO3)2 by CaCl2 

and excluding NH4Cl in the MGRL medium. Supplementation of nitrate to the 

nitrogen-free medium, by exchanging CaCl2 to Ca(NO3)2, was sufficient for plant 

survival, but acl1 plant size remained unchanged even at 10 mM nitrate (Figure I-12a). 

Supplementation of ammonium, by adding NH4Cl, enabled the acl1-1 mutants to 

increase in size depending on the NH4Cl concentration. The acl1-1 plants reached 

almost the same size as that of wild type at 15 mM NH4Cl (Figure I-12b). I further 

found that there was an interaction between the presence of ammonium and nitrate 

content. For the acl1 and wild-type plants to grow larger in response to NH4Cl, 10 mM 

rather than 1 mM nitrate was adequate (Figure I-12b,c). When plants were grown in 

pots and watered with media containing different concentrations of ammonium, mature 

acl1 plants showed improvement in the elongation of inflorescence stem by increase in 

the NH4Cl concentrations and the mature acl1-3 plants grew to similar size to wild-type 

plants at higher than 5 mM ammonium (Figure I-12d).  

Likewise, growth of the double mutants generated between acl1-1 and 

mutants of regulatory genes in defense responses also altered at higher ammonium 

concentration (Compare Figures I-11a and I-13a). The acl1-1 pad4-1 mutant became 

apparently identical to wild-type plants on the medium containing 10 mM ammonium 

(Figure I-13). On the contrary, the acl1-1 rar1-21 double mutant grown on the media 

with higher concentration of ammonium was less altered from that on the MGRL 
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medium. 

 

Expression of defense related genes are increased in acl2-1, but the acl2-1 

phenotype was not fully suppressed by high temperature and eds1-2 mutation 

acl2-1 is a semi-dominant mutation that causes reduction of stem length and a 

slight abnormality in leaf morphology (Tsukaya et al., 1993). ACL2 appeared to regulate 

stem and petiole length via control of cell length for the most part (Tsukaya et al., 1995; 

2002). ACL2 was mapped to an interval of <2 cM on chromosome 1. However, the 

precise effect of acl2-1 mutation on the plant growth in a molecular level is not yet been 

confirmed (Tsukaya et al., 1995). I observed that the growth defect in the acl2-1 mutant 

is alleviated at higher temperatures (Figure I-14a). Although a complete restoration was 

not observed even at 28˚C, temperature-dependent growth potential of the acl2-1 

mutant suggests a possibility that the acl2-1 phenotype is also related to the constitutive 

activation of defense responses similar to the acl1 mutants. By expression analysis, PR1 

and PR2 were found to be highly expressed in the acl2-1 mutant, while the key 

regulatory genes essential for R gene-mediated defense response, EDS1, PAD4 and 

NDR1, were only moderately increased (Figure I-14b). Different from the acl1 mutants, 

the PR1 and PR2 expression were not obviously altered by the increases in temperature, 

suggesting that activation of defense responses in the acl2-1 mutant is more tolerant to 

higher temperatures than those in the acl1 mutants. 

The growth defect was most restored in acl2-1 eds1-2 double mutant, though 

the restoration was not complete, among the double mutants generated between acl2-1 
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and mutants of key regulatory genes in defense responses (Figure I-14c). Plant growth 

of acl2-1 pad4-1 and acl2-1 ndr1-1 double mutants was also restored to some degree, 

suggesting that the acl2-1 phenotype is partially dependent on EDS1 and, less on PAD4 

and NDR1. acl2-1 sid2-2 double mutant slightly restored the mutant phenotype, 

implying a more or less influence of SA on the acl2-1 growth. However, npr1-1 

mutation had no effect on the acl2-1 phenotype.  

I further examined the acl2-1 mutant growth on different nitrogen conditions. 

However, different from the acl1 mutants, the acl2-1 mutants grown on the higher 

concentration of ammonium were not so much altered from those grown on low 

concentration of ammonium, and nitrogen condition had no striking effects on the 

acl2-1 growth (Figure I-14d,e). 

 

 

Discussions 

 In the part 1, I isolated the “genuine” acl1-1 plants without the inversion. By 

comparing these plants to the original acl1-1 plants with the inversion, the inversion 

was likely to be function as an enhancer of the acl1-1 phenotype. 

 

The inversion enhanced the acl1-1 phenotype and altered expression patterns of 

various genes 

In the previous study, there was a description that the length of the 

inflorescence stems of acl1-1 plants varied among plants, even though they were grown 
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side by side under the same conditions at 22˚C (Tsukaya et al., 1993). It is possible that 

this unknown factor that influences the growth of the original acl1-1 mutants is the 

inversion identified in this study. I observed that the height of plants, the size of rosettes, 

and the length of cells were remarkably reduced in the acl1-1 inv/inv plants compared 

with the acl1-1 +/+ plants at 22˚C (Tables I-2 and I-3, Figures I-3 and I-4). Moreover, 

the inversion functioned more effectively as an enhancer of the acl1-1 phenotype when 

plants were grown at 24˚C, inhibiting partial restoration of the acl1-1 phenotype in the 

acl1-1 inv/inv plants (Figures I-3b and I-4b,c). When the acl1-1 phenotype was fully 

restored to wild-type at 26˚C or 28˚C, the difference between the acl1-1 +/+ plants and 

the acl1-1 inv/inv plants disappeared. Considering that the inversion itself was not 

sufficient to significantly alter plant morphology in the Col-0 and acl1-3 backgrounds 

(Table I-2, Figures I-4 and I-5), it seems that the inversion enhances the defects in the 

plant growth only when severe growth defects are already present, such as in acl1-1 

plants.  

I found that, in addition to loss of full-length transcripts of At4g21960 and 

At4g22250, the expression patterns of some other genes within and adjacent to the 

inversion and were altered by the inversion (Figure I-2). Although it is not yet 

confirmed, it is possible that the genes distant from the inversion are also affected by 

the inversion and that organ-specific and/or age-specific expression is altered. I propose 

that multiple genes are complicatedly involved in the enhancement of the acl1-1 

phenotype. 

The original acl1-1 mutant was obtained by X-ray irradiation. In most higher 
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plants, including Arabidopsis, DNA double-strand breaks caused by ionizing irradiation 

(fast neutron, X-ray, and γ-ray) are predominantly repaired by non-homologous 

end-joining rather than by simple ligation or accurate homologous recombination. In 

non-homologous end-joining, any end can fuse with any end. Thus, the repair of 

double-strand breaks in plants is suggested to be error-prone (Gorbunova and Levy, 

1999). Sometimes, the repair of double-strands breaks has very complex DNA 

rearrangements, combining deletions, insertions, inversions and duplications of the 

original sequence (Shirley et al., 1992), and that was what was confirmed at the border 

regions of the inversion isolated from the original acl1-1 (Figure I-1d). 

 

 In the part 2, further studies on the acl1 mutants were carried out using the 

acl1-1 +/+ line isolated in the part 1.  

 

Growth defect of the acl1 mutants is caused by the loss of the negative regulation 

of SNC1, which requires EDS1 for its function 

The region containing the RPP5 gene cluster was shown to be co-segregate 

with the acl1-1 phenotype, by map-based cloning approach, and it was further 

confirmed that the acl1 phenotype require TIR-NBS-LRR R gene SNC1 as an essential 

gene for the acl1 growth phenotype. I also identified the acl1 mutations in a negative 

regulator of SNC1, the SRFR1 gene, strongly suggesting the loss of negative regulation 

of SNC1-induced defense response pathway causes the acl1 stunted growth. Although 

RPP4 is another gene that has been reported to cause dwarfism in its gain-of-function 
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mutant (Huang et al., 2010) and I observed that RPP4 expression was increased in the 

acl1 mutants, RPP4 was not responsible for the acl1 growth. 

The stunted growth and the elevated expression of the defense related genes 

correlated positively with rises in temperature (Figures I-9a,d and I-10). Temperature 

has been known to influence more than one aspect of plant defense responses, and the 

modulation of defense responses by higher temperatures is a general phenomenon 

among plants (Whitham et al., 1996; Hwang et al., 2000; Alcázer and Parler, 2011). In 

the case of the acl1 mutants, the temperature-dependence of its phenotype could be 

explained by the nature of SNC1, which is likely to be a functional sensor of 

temperature: Nuclear accumulation of SNC1 is reduced at higher temperature, such as 

28˚C, and this is likely to contribute to the inhibition of defense responses (Zhu, Y. et al., 

2010). It has been reported that defense activation and stunted growth in srfr1 mutants 

are also suppressed at 28˚C (Kim et al., 2010). However, regarding the acl1 plant 

growth, the activity of the SNC1 protein would already be under the threshold level 

required to induce defense responses at 26˚C (Figure I-9a,d). I assume that the 

accumulation of the SNC1 protein in the nucleus is quite sensitive to temperature and 

gradually inhibited with increasing temperature, because a slight change in temperature, 

from 22˚C to 24˚C and from 24˚C to 26˚C, apparently modifies the acl1 phenotype.  

I also speculate that there is a certain threshold level for the SNC1 gene 

product to trigger defense responses and that SNC1 expression in the acl1 snc1-11/+ 

mutant at 22˚C was under that threshold level, since a heterozygous snc1-11/+ mutation 

was enough to suppress the severe stunted growth in the acl1 mutants (Figure I-6e,f).  
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The expression analysis showed that genes related to the defense responses 

are constitutively activated in the acl1 mutants (Figure I-9a-c). In addition to the EDS1 

and PAD4 that are reported to be activated in the srfr1 mutants (Bhattacharjee et al., 

2011), NDR1 and genes required for SA accumulation and positive regulation of the 

SA-mediated defense pathways were also upregulated in the acl1 mutants. Moreover, 

frequently induced cell death in the acl1 leaves suggests that the acl1 plants are primed 

for stronger activation of SAR and cell death (Figure I-9b,c).  

I further examined the involvement of each defense related gene in the acl1 

growth by double mutant analysis. It was clearly shown that the acl1 plant growth is 

entirely controlled under EDS1 by the complete restoration of the acl1 eds1-2 

phenotype to wild type (Figure I-11a,b). According to the plant growth of the double 

mutants, the acl1 phenotype partially depends on PAD4, but not on NDR1. These results 

are consistent with the dependence of the activity of TIR-NBS-LRR R genes on these 

key regulatory genes in inducing defense responses (Glazebrook et al., 1996; Feys et al., 

2001; van der Biezen et al., 2002), indicating that the activity of the TIR-NBS-LRR R 

genes mediated by EDS1 and PAD4 controls the plant growth phenotype. Since NDR1 is 

dispensable for the acl1 phenotype, increased expression of NDR1 in the acl1 mutants 

would not be the primary effect of the acl1 mutation and rather caused by a positive 

feedback regulation of the defense response pathway.  

Although SA accumulation and the NPR1-dependent signaling pathway play 

an important role in plant defense, SID2 and NPR1 were unnecessary for the acl1 

phenotype (Figure I-11). Thus, SA and NPR1-dependent pathways are not essential for 
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inducing the growth defects and the acl1 phenotype, and the acl1 growth is regulated 

independently of these pathways. However, the sid2-1 mutation slightly restored the 

acl1 growth defects and, on the contrary, the npr1-1 mutation enhanced the acl1 

phenotype. Assuming that the SA level in the acl1 mutants is increased by the npr1-1 

mutation, similarly to that in snc1-1 npr1 mutant (Li et al., 2001), these minor 

alterations in the acl1 phenotype can be explained by the SA level. 

In my study, the acl1-1 rar1-21 mutant partially repressed the acl1 phenotype 

(Figure I-11a,b). Since the predominant R gene regulating the acl1 phenotype is SNC1, 

that would mean that some function of SNC1 depends on RAR1. However, the growth of 

the snc1-1 rar1-21 plant was less altered from that of the single snc1-1 mutant 

(Goritschnig et al., 2007). It is possible that R genes other than SNC1 involved in the 

acl1 morphology, though yet not identified, are RAR1-dependent. Another possibility is 

that wild-type SNC1 is partially RAR1-dependent and the mutated Snc1-1 is not. 

 

ACL1 encoded SRFR1, which negatively regulates defense responses. 

All the acl1 mutant lines possessed a mutation common only in SRFR1 

(At4g37460). The acl1-1 phenotype was nearly identical to the srfr1 phenotype, which 

has already been described in the Col background (Figures I-6d,e and I-9a) (Kim et al., 

2010). The srfr1 growth phenotype also has been reported to require Col-specific SNC1, 

and no growth defect was observed in srfr1 mutants in RLD accession backgrounds nor 

in srfr1 plants with the RPP5 gene cluster of Ler (Kwon et al., 2004; Li et al., 2010). 
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SRFR1 is a single-copy gene that encodes tandem repeats of the TPR motif, 

which is known to mediate protein–protein interactions and assembly of multiprotein 

complexes (D’Andrea and Regan, 2003; Kwon et al., 2009). In Arabidopsis, SRFR1 is 

found to interact with EDS1 and SGT1 (Li et al., 2010; Bhattacharjee et al., 2011). 

SRFR1-EDS1 complex shows a similar localization pattern to SNC1-EDS1 and other R 

protein-EDS1 complexes, suggesting a possibility of the involvement of SRFR1 in 

directly affecting the stability of EDS1-resistance protein complexes (Bhattacharjee et 

al., 2011). Interaction between SGT1 and SRFR1 through its N-terminal TPR domain is 

considered to have a negative role in R protein accumulation, which would prevent 

auto-activation of plant defense responses (Azevedo et al., 2006; Li et al., 2010). The 

early stop codon caused by a frame shift in the acl1-1 mRNA sequence is located in the 

conserved TPR repeat at the middle of the SRFR1 protein (Figure I-7). Since the acl1-1 

mutant exhibits a severe phenotype similar to that of a null T-DNA insertion mutant, 

srfr1-4, the SRFR1 function is likely to be lost in the acl1-1. On the other hand, the 

weak growth defect observed in the acl1-3 mutant suggests that the SRFR1 function is 

partially retained in the acl1-3 mutation. The acl1-3 missense mutation is in the 

C-terminal region conserved among SRFR1-like proteins. Although the function of this 

C-terminal region is still unknown, I presume that it is important for full activity of 

SRFR1. All srfr1 mutations identified previously cause a premature stop of SRFR1 

protein translation (Kwon et al., 2009; Kim et al., 2010; Li et al, 2010). The acl1-3 

mutation would be a unique mutation that enables us to investigate the effects of 

alteration in a single amino acid. I expect that further analysis on acl1-3 and, if available, 
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other missense mutations of SRFR1 would help us to understand the molecular basis of 

the SRFR1 protein in more detail. 

The sequence similarity of TPR domain of SRFR1 to transcriptional 

repressors such as Ssn6 in S. cerevisiae and O-linked N-acetylglucosamine transferases 

in C. elegans and D. melanogaster implies that the SRFR1 function as transcriptional 

co-repressors (Kwon et al., 2009). In the acl1 mutants, expression levels of SNC1 and 

some RPP5-homologues were decreased but maintained even at 28˚C, the temperature 

that eliminates a positive feedback amplification of SNC1 and R genes mediated by SA 

(Figure I-6) (Yang and Hua, 2004; Yi and Richards, 2007). Similarly, expression of 

SNC1 in srfr1-4 snc1-11 double mutant was still elevated despite the fact that 

self-upregulation of SNC1 is abolished (Kim et al., 2010). From these results, it is 

possible to consider that SRFR1 acts in negative regulation of SNC1 transcription, 

independent of positive feedback regulation of SNC1.  

 

acl1 plant growth was influenced by the ammonium concentration when an 

adequate amount of nitrate was provided 

I showed that the nitrogen condition modifies the acl1 phenotype. Although, it 

does not completely suppresses the acl1 growth defects like elevated temperature, weak 

phenotype such observed in the acl1-3 and the acl1-1 pad4 mutants can be easily 

masked on nitrogen-rich media like MS. 

The activation of the defense response increases demands on cellular 

metabolism. It has been proposed that induction of the defense pathway is costly, 
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consuming the nutrient source for biosynthesis of defense compounds, and therefore 

forces the plants to restrict their growth to adjust to a reduced level of nutrient 

availability (Tian et al., 2003; Heidel et al., 2004; Smith and Stitt, 2007). Partial 

improvement of the acl1 plant growth by an increased supply of nitrogen source (Figure 

I-12) might be explained by the increased nutrient allocation to plant growth.  

However, considering that two nitrogen forms, ammonium and nitrate, have 

distinct effects on acl1 growth, I propose another possibility. Although Arabidopsis has 

a pathway for nitrogen reduction from nitrate to ammonium, it has been reported that 

Arabidopsis utilizes ammonium preferentially when provided with a mixed nitrogen 

source (Gazzarrini et al., 1999) and there would be a specific effect caused only by 

ammonium. During pathogenesis, intracellular glutamine (Gln), which is a first major 

product of ammonium assimilation, was depleted in plant cells (Liu et al., 2010). This 

would inhibit subsequent production of glutaminate (Glu) that consumes reduced 

ferredoxin as an electron donor (Suzuki and Knaff, 2005). Moreover, other sinks for 

electrons, such as carbon fixation and photorespiration pathways, were also largely 

repressed and would perturb redox balance when defense responses are activated (Foyer 

et al., 2009; Liu et al., 2010). Redox imbalance triggers the overaccumulation of 

reactive oxygen species (ROS) and SA, which enhances the SA-dependent defense 

response and PR gene expression (Mach et al., 2001; Liu et al., 2010). I suspect that a 

supply of nitrogen source in the form of ammonium can promote production of Gln and 

Glu, reduce the redox imbalance, and suppress highly activated defense responses and 

associated growth defects in the acl1 mutants. I also observed a decrease in the 
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expression level of defense related gene in the acl1 mutants supplied with higher 

concentration of ammonium (Figure I-15). Enhanced ammonium assimilation is enabled 

by the presence of nitrate (Britto and Kronzucker, 2002) and this may be why an 

adequate concentration of nitrate is required for the acl1 mutants to achieve 

ammonium-dependent growth. A low ammonium/nitrate ratio in growth media also 

leads accumulation of nitrite and nitric oxide in plants that acts in positive feedback of 

EDS1-dependent pathway (Wang et al., 2013). This would be another reason why 

higher ammonium concentration alleviates the severe stunted growth in the acl1 mutant.  

The genetic dependence of the nitrate-dependent growth of mutants with 

constitutive activation of defense responses is poorly understood. Since the eds1-2 

mutation completely restored the acl1 mutant phenotype (Figure I-11a,b), it is difficult 

to evaluate if there is any EDS1-independent pathway in nitrogen-dependent acl1 

growth. The complete restoration of growth phenotype in the acl1-1 pad4-1 mutant only 

at higher ammonium concentration (Figure I-13) suggests that PAD4-independent 

defense pathway in the acl1 pad4 double mutants can be repressed at high ammonium 

concentration. On the other hand, the acl1-1 rar1-21 mutant was less altered from that 

grown on the MGRL medium (Figures I-12 and I-13), suggesting that 

RAR1-independent pathway might be less responsive to the nitrogen.  

We have only a little knowledge about the genetic factors involved in the 

acl1/srfr1 plant growth. Since it is confirmed that the acl1 phenotype depends on 

EDS1-mediated SNC1 activity, investigation of the downstream factors of EDS1 and 

SNC1 might help to understand the growth the regulatory mechanism of the acl1 
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mutants. Regarding the SNC1 gene, increasing reports on modifier of snc1-1 (mos) 

mutations suggest essential factors for activation of SNC1 and downstream defense 

responses (Germain et al., 2010; Monaghan et al., 2010; Zhu, Z. et al., 2010; Xu et al., 

2011; Xia et al., 2013; Xu et al., 2013). However, downstream genes that directly 

regulate plant growth are not yet identified. This might be because that multiple plant 

growth regulators are involved in plant immunity (Pieterse et al., 2009), and a single 

gene suppressor might have little effect on modifying apparent plant growth. In this 

report, I propose a possibility that nitrogen is one of those factors that affect some 

aspect of plant growth in the acl1 mutants. I expect further detailed genetic and 

biochemical analysis using acl1 mutants will help revealing the regulators of plant 

growth associated with defense responses. 

 

The acl2 mutation causes constitutive activation of defense response pathways 

 As shown in Figure I-14b, the acl2-1 mutant showed increased expression of 

defense related genes, suggesting the constitutive activation of defense responses. 

However, different from the acl1 mutants, the trigger of defense responses in acl12-1 

seems to be more tolerant to higher temperatures, since 28˚C was not sufficient to fully 

repress the elevated expression of defense related genes in acl2-1 (Figure I-14a,b). Also, 

the acl2-1 growth phenotype was not completely restored neither by EDS1 nor NDR1 

(Figure I-14c). Considering an early termination of inflorescence stem growth 

associated with defense responses that is independent of EDS1 and NDR1, the acl2-1 

mutation might have something in common with uni-1d, which caused by a 
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gain-of-function mutation of CC-TIR-LRR type or R gene (Igari et al., 2008). uni-1d 

phenotype requires ER receptor kinase family members (Uchida et al., 2011a) and, in 

fact, inflorescence elongation of the acl2-1 mutant alleviated in Ler background (Prof. 

Atsushi Kato, personal communication). The uni-1D/UNI protein interacts with 

regulatory particle triple-ATPase (RPT) subunit 2a of the 19S regulatory particle in the 

26S proteasome, which is turned out to be responsible for inducing both defects in 

morphology and defense responses (Chung and Tasaka, 2011), although I am not sure 

for the involvement of RPT2a in the acl2-1 mutant phenotype at this time. Further 

investigations on the genetic factors involved in the acl2-1 phenotype and on the acl2-1 

mutation itself are needed to understand the mechanisms regulating the plant growth 

and defense responses in the acl2-1 mutant. 

 

 

Materials and Methods 

Plant lines 

Arabidopsis thaliana accession Columbia (Col-0) was used as the wild type. acl1-1 

(Tsukaya et al., 1993; Kamata and Komeda, 2008), acl1-3, acl2-1 (Tsukaya et al., 1993), 

pad4-1 (Glazebrook et al., 1996), ndr1-1 (Century et al., 1995), npr1-1 (Cao et al., 

1994), rar1-21 (Tornero et al., 2002), sid2-2 (Wildermuth et al., 2001), snc1-11 

(SALK_047058) and rpp4 (SALK_017521) (Yang and Hua, 2004) mutants were 

previously described. The eds1-2 mutation introgressed into Col-0 background was used 

as the eds1-2 mutant in this study (Parker et al., 1996). 2080 (acl1-4) was isolated from 
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the pool of T-DNA insertion mutants, by Goro Horiguch, and kindly gifted. 2080 was 

backcrossed to Col-0 for more than 5 times. Backcrosses indicated that the 2080 

phenotype is caused by a recessive mutation at a single genetic locus, which does not 

link with the T-DNA insertion. 2080 was found to be allelic with acl1-1 and acl1-3 by 

the phenotype of F1 plants between them. Transgenic line SGT754-5-3 having a T-DNA 

insertion in the 3rd intron of At4g21960 (La background), and SALK_018861 and 

SALK_044071 lines having T-DNA inserted in the promoter region and 3’UTR of 

At4g22250 respectively (Both are Col background) were isolated from Salk T-DNA 

lines (Alonso et al., 2003). 

To obtain double mutants, acl1 mutants were crossed with each defense 

mutant. F2 plants expressing the acl1 phenotype and heterozygous to the defense 

mutation were selected and then self-fertilized. PCR primers used for genotyping 

defense genes are listed in Table I-9.  

 

Plant growth 

Seeds were sown on water-moistened rockwool, which placed on vermiculite in pots, 

and placed in darkness at 4˚C for 3 days before they were transferred to growth 

chambers. Unless noted, the growth chambers were set at 22˚C under long-day 

conditions (16 hours light/ 8 hours darkness) and plants were watered with the modified 

MGRL medium (Kamata and Komeda, 2008), which contains 10 mM nitrate and 0.5 

mM NH4Cl as nitrogen source. For plants grown on plates, surface-sterilized seeds were 

sown on the media containing 2 % (w/v) sucrose and 0.8% (w/v) bacto agar (BD). 
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Growth temperature was altered to 24˚C, 26˚C or 28˚C and MS (Wako), 1/2X MS, 

nitrogen-free medium was used if necessary. The nitrogen-free medium contained 5 

mM CaCl2 instead of 5 mM Ca(NO3)2 and NH4Cl was excluded from the MGRL 

medium. Media were additionally supplemented with nutrients as described in the text. 

 

Map-based cloning of acl1 

acl1 mutants were crossed to Ler and F2 to F4 progenies exhibiting the acl1 phenotype 

were used for recombination analysis using cleaved-amplified polymorphic sequence 

(CAPS) and simple sequence length polymorphism (SSLP) markers based on the 

information from the Arabidopsis Information Resource (TAIR, www.arabidopsis.org). 

Additional derived CAPS (dCAPS) markers at polymorphisms between Col and Ler 

accessions, designed based on information available from TAIR (Table I-7). The 159 Kb 

region including RPP5 gene cluster was amplified separately as short overlapping 

fragments by PCR (Ex taq, Takara Bio) and sequenced with BigDye® Terminator v.1.1 

Cycle Sequencing kit (Applied Biosystem). 

 

Examination of the inversion 

Genomic DNA was extracted from rosette leaves as described by Edwards et al. (1991). 

Primers used for the examination of the existence of genomic region from At4g22290 to 

At4g21690 are designed more than 50 bp outside from the gene regions annotated by 

TAIR. Expected PCR fragments were less than 7 kb and amplified with Ex taq (Takara 

Bio). PCR fragments were then treated with several restriction enzymes and cleaved 
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into shorter fragments to identify the changes in the length of fragment more precisely 

by agarose gel electrophoresis. In the case of genes longer than 7 kb, genes were 

separated in two parts to ensure the amplification by PCR. For the amplification of 

At4g21960, NK215; 5’-GAGAT CAGTA AAATA GATCG-3’ and NK216; 5’-TTTAA 

GGAGC GTGCA TTGC-3’ were used as primers. For At4g22250, NK232; 5’-TATAA 

TGTCA TCATC ACTGC-3’ and NK240; 5’-TCGAG TATCT CAATG ATCGG-3’ and 

for At4g21920, NK 248; 5’-AAACA TCAAA CTTCA CGGAG-3’ and NK249; 

5’-AATAC GTAGT TTTGA CCTGG-3’ were used. PCR fragments of approximately 

2.2 Kbp, 0.8 Kbp and 3.3 Kbp in length were obtained by PCR respectively. NK255 

5’-AGATC ACATT GAATC TGCAG-3’ and NK256 5’-TAAGT CAGTG TGGAA 

CTAAG-3’ were designed at non-gene-coding region between At4g21960 and 

At4g21970 to obtain 1.7 Kbp PCR products used just for the positive control of PCR 

performed in Figure I-1. For detecting the conjugated fragments of At4g21960 and 

At4g22250, NK215 and NK240 were used to obtain approximately 1.3 Kbp PCR 

fragment fragment and NK216 and NK232 were used to obtain approximately 1.6 Kbp 

PCR fragment only from the inversed DNA. Conjugated fragments were sequenced 

with BigDye® Terminator v.1.1 Cycle Sequencing kit (Applied Biosystem).  

 

Expression analysis for genes related to the inversion mutation. 

Plants were grown for 10 days on the agar plate at 22˚C under long-day conditions. 

RNA was extracted with RNeasy® plant mini kit (QIAGEN). Extracted RNA was 

treated with cloned DNaseI (Takara Bio). Reverse-transcriptase reaction was carried out 
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with Random 9 mers to synthesize cDNA from every type of transcripts. Both RT 

(reverse transcriptase) reaction and PCR (polymerase chain reaction) were preformed 

with RNA PCR kit (AMV) Ver.3.0 (Takara Bio). Gene specific primers used for PCR 

were NK244; 5’-ACTGC GCGGT GGAGT CATG-3’, NK856; 5’-GTAGC ATGTG 

AGGGA CGTGG-3’, NK398; 5’-AGACG GAGAT TCCAG GTTG-3’, NK239; 

5’-TTAGA GTTTC CGTTA CCGAG-3’, NK349; 5’-CTAGG AGGGC GACGA 

GGC-3’, NK262; 5’-TTTAT GACAC GTGCA GGG-3, NK350; 5’-TCGTG ACCGC 

TCATC TGTC’-3’, NK263; 5’-GTGCT CTAGA GAATT GTGGC-3’. EF1a 

(At5g60390, as a control) were amplified with NK24; 5’-ACTTG CAGCT ATGGG 

TAAAG-3’ and NK25; 5’-CGAAA GTCTC ATCAT TTGGC-3’. For semi-quantitative 

RT-PCR of the genes located near and within the inversion, primers listed on the Table 

I-10 were used. 

 

Semi-quantitative RT-PCR for genes related to defense responses 

Total RNA from the shoot of 10 day-old seedlings grown on sterile agar plates was 

extracted using RNeasy plant mini kit (Qiagen). The first-strand cDNA was synthesized 

from 1 µg of total RNA in a 20 µl reaction volume using the PrimeScript RT-PCR kit 

(Takara Bio) with Oligo-dT primer. Sequences of gene-specific PCR primers are 

provided in Table I-11. For Semi-quantitative RT-PCR analysis, the primers were 

designed to span introns to avoid amplification from contaminated genomic DNA, 

except for At4g16880. PCR runs consisted of 24-32 cycles, depending on the linear 

range of PCR amplification for individual genes. PCR cycle included incubations at 
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94˚C for 30 sec, at 55˚C for 30 sec, and at 72˚C for 90 sec. PCR products were detected 

by electrophoresis through 1.2% agarose gels, depending on the length of PCR product 

and stained with ethidium bromide. All RT-PCR procedures were repeated at least three 

times with similar results.  

 

Observation of cellular structure and measurement of cell length 

Inflorescence stems of plants grown for 40 days after germination were fixed overnight 

in FAA [70% ethanol: formaldehyde: acetic acid = 18: 1: 1 (v/v)], dehydrated in an 

ethanol series and embedded in Technovit resin as described in manual (Kluzer). 5 µm 

thick sections were stained with 0.05% (w/v) toluidine blue O dissolved in 1% (w/v) 

Na2BO4O7 10H2O aquous solution. Sections were photographed (E-330, Olympus) 

under light microscopy (eclipse 80i, Nikon) and cell length was measured using 

Photoshop 8.0 (Adobe systems). Three individuals from each strain and each 

temperature were used for analysis. 

 

Trypan blue staining 

Leaves were stained with lactophenol trypan blue solution [10 ml of lactic acid, 10 ml 

of glycerol, 10 g of phenol, and 10 mg of trypan blue dissolved in 10 ml of distilled 

water] by boiling for approximately 1 min. Leaves were then cleared in 2.5 g/ml chloral 

hydrate solution and examined under a light microscope. Dead cells are stained blue. 

 

Preparation of the genomic DNA library and next-generation sequencing 
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1 g of frozen seedlings of Col, acl1-1 and acl1-3 were individually ground in liquid 

nitrogen to a fine powder. Nuclei fraction was enriched using “Semi-pure Preparation of 

nuclei procedure” of CelLytic PN Isolation/Extraction Kit (Sigma-Aldrich), and 

genomic DNA was isolated using Plant DNeasy mini kit (Qiagen). 0.5 µg of DNA was 

sheared using Covaris S2 (Covaris) at 100-bp setting. After being purified using a 

QIAquick PCR purification kit (Qiagen), the DNA library was prepared using Genomic 

Adaptor Oligo Mix (Illumina) as the DNA adaptor and NEBNext DNA Sample prep 

Reagent Set 1 (New England Biolabs) according to manufacturer’s manual. Ligation 

products were size-selected by electrophoresis on 2% (w/v) agarose gel. 200-250 bp 

DNA fragments were excised from agarose gel and purified using QIAquick gel 

extraction kit (Qiagen). Then adopter-modified DNA fragments were enriched by PCR 

with PCR Primers 1.1 and 2.1 (Illumina) and KAPA HiFi HotStart ReadyMix (KAPA). 

The PCR program was 98˚C for 30 sec, followed by 10 cycles of 98˚C for 10 sec, 65˚C 

for 30 sec and 70˚C for 30 sec. PCR products were gel-purified using a QIAquick gel 

extraction kit. Sequencing with illumina-GAIIx and informatics were performed as 

described in Uchida et al. (2011b). 
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Tables 
Table I-1. Segregation of acl1-1 phenotype and the inversion 

-------------------------------------------------------------------------------------------------------------------- 

Phenotype    Inversion  

  --------------------------------------------------------------------------------------- 

Wild type (+/+) Hemizygote (inv/+)    Homozygote (inv/inv)  

-------------------------------------------------------------------------------------------------------------------- 

Wild-type   123      203           45 

acl1-1     5       22          119 

-------------------------------------------------------------------------------------------------------------------- 
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Table I-2. Measurement of plant height at 22˚C 
--------------------------------------------------------------------------------------------------------------------- 
Genotype  Average ± standard deviation (cm)  t-value  
--------------------------------------------------------------------------------------------------------------------- 
acl1-1 +/+*  6.0 ± 1.8 (n = 39) 
acl1-1 inv/inv*  4.3  ± 1.2 (n = 31)  t = 4.52† 
Col +/+**  179.7  ± 17.4 (n = 16) 
Col inv/inv**  180.0 ± 29.1 (n = 7)  t = 0.031†† 
--------------------------------------------------------------------------------------------------------------------- 
Plants were grown for 40 days.  
*Total plant height including the rosette and the inflorescence stem. 
**Length of the inflorescence stem was measured as plant height. 
†Difference between acl1-1 +/+ and acl1-1 inv/inv is significant (significance level: α = 0.05). 
†† Difference between Col +/+ and Col inv/inv is not significant (significance level: α = 0.05). 
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Table I-3. Comparison between cell length of +/+ and inv/inv plants 
----------------------------------------------------------------------------------------------------------------------------------------------------------- 

Epidermis  Cortex   Pith    n*

 (µm)  (µm)  (µm) 

----------------------------------------------------------------------------------------------------------------------------------------------------------- 

22˚C acl1-1 +/+  43.0 ± 14.6   28.5 ± 6.38   78.0 ± 25.0  50 

22˚C acl1-1 inv/inv  21.2 ± 9.25   26.1 ± 6.84   43.6 ± 11.1   20 

  t-value 6.19†  1.36  5.91† 

22˚C Col +/+ 2met**  266.7 ± 100.4 40.2 ± 8.61  175.3 ± 48.9  20 

22˚C Col inv/inv 2met**  243.2 ± 54.0  38.5 ± 11.9  197.2 ± 39.1  30 

  t-value 1.07  0.552  -1.75 

22˚C Col +/+ 3met**  232.1 ± 54.4  31.2 ± 9.03  178.1 ± 54.6  30 

22˚C Col inv/inv 3met**  245.9 ± 56.5  31.7 ± 7.96  159.8 ± 43.7  20 

  t-value -0.803  -0.209  1.25 

24˚C acl1-1 +/+ 2met**  112.6 ± 62.3  28.6 ± 8.71   92.7 ± 35.5  40 

24˚C acl1-1 inv/inv 2met** 25.6 ± 7.24  36.4 ± 10.9  72.1 ± 39.3  20 

  t-value 6.20†  -2.99†  2.04† 

24˚C acl1-1 +/+ 3met**  205.0 ± 83.1  31.5 ± 9.56  128.1 ± 31.2  30 

24˚C acl1-1 inv/inv 3met** 23.2± 14.4  13.7 ± 6.30  37.4 ± 18.6  30 

  t-value 11.81†  8.53†  13.67† 

----------------------------------------------------------------------------------------------------------------------------------------------- 

† Difference is significant (significance level: α = 0.05). 

* Total number of cells assayed for calculate t-value. 

** Metameric type of apical meristems: 2met, the type 2 metamer, main inflorescence stem differentiates cauline leaves 

with elongating internodes; 3met, the type 3 metamer, main florescence stem bears flowers without bracts formed upon 

the type 2 metamer (Schultz and Haughn, 1991). 
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Table I-4. Measurement of plant height at 26˚C 
--------------------------------------------------------------------------------------------------------------------- 
Genotype  Average ± standard deviation (cm)   t-value  
--------------------------------------------------------------------------------------------------------------------- 
acl1-1 +/+* 227.6 ± 27.5  (n = 12)   t = - 0.350† 
acl1-1 inv/inv* 227.3  ± 52.1  (n = 8)   t = - 0.242 † 
Col +/+*  221.4  ± 54.5  (n = 12) 
Col inv/inv* 231.0 ± 58.7  (n = 16)   t = - 0.519† 
--------------------------------------------------------------------------------------------------------------------- 
Plants were grown for 40 days.  
*Length of the inflorescence stem was measured as plant height. 
†Height of the plants is not significantly deviated from Col +/+. 
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Table I-5. Frequency of recombination between acl1-3 and molecular markers on chromosome 4 
----------------------------------------------------------------------------------------------------------------------- 
   Marker segregation in F2  Recombination 
Marker      Kb  Col/Col : Col/Ler : Ler/Ler  frequency (%) 
----------------------------------------------------------------------------------------------------------------------- 
LD   1,124       8 :  5 : 2  30.0 
nga8   5,629    54 : 25 : 1  20.8 
FCA312   8,814   172 : 14 : 3  15.4 
SC5   9,165    61 :  4 : 0   3.1 
AG  10,384   296 :  6 : 0   2.0 
CIW7  11,524   216 :  8 : 0   2.3 
CAT2  16,701    89 :  4 : 0   3.1 
DHS1  18,096    14 :  2 : 0   7.1 
----------------------------------------------------------------------------------------------------------------------- 



 54 

Table I-6. Segregation rate of the acl1-1 phenotype in the F2 generation 
---------------------------------------------------------------------------------------------------------------- 
  Phenotype   
  ----------------------------------------------  
Cross  Wild type  acl1-1 (percentage)  χ2 
---------------------------------------------------------------------------------------------------------------- 
acl1-1 X Col 213  63 (22.8 %)  0.695 (P > 0.1)* 
acl1-1 X Ler 376  63 (14.4 %)  26.5 (P < 0.001)* 
---------------------------------------------------------------------------------------------------------------- 
* Chi-square value for the expected ratio of 3 wild-type : 1 acl1-1. 
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Table I-7. Additional mapping markers generated for map-based cloning 
---------------------------------------------------------------------------------------------------------------------------------------- 

        Fragments (bp) 

        ---------------------- 

Marker name (Kb) Primer sequences (5’-3’)  Restriction enzyme Col Ler 

---------------------------------------------------------------------------------------------------------------------------------------- 

PERL0770186 GTAGGATATGATCCTCTTTTGG  BamHI  128, 25 153 

 (9,253.4)  GTTGACAGAAATGTCGAAAAGGGAT   

PERL0771474 CTATAAATACCCTGACTTGC  HinfI  155 125, 30 

 (9,357.9)  TGAGAATGCGAATGGAACTAAGCAAAGAC   

PERL 0772901 TTCACCAGACTCTCTATTC  ClaI  143 118, 25 

 (9,443.2)  TTTGTACTCGGTAGTACTCCATCGA 

PERL0775439 CTTTGTTATACCTCATAATGGG  BglII  125, 25 150 

 (9,552.2)  TTATGTTCCTGGGAAATACAAGATC   

PERL0776597 CTCTTAGATGTAAGATTGTG  BglII  121, 25 146 

 (9,601.7)  TCGTCCTCTTCAGGTACCTGAGATC   

PERL0778995 GTACCTCTGTTTAGTGTG  EcoRV  125, 25 150 

 (9,758.4)  ATTACTACATGCCCCAAGATGATAT   

------------------------------------------------------------------------------------------------------------------------------------------ 
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Table I-8. Composition of MS and MGRL media used in this study 
--------------------------------------------------------------------------------------------------------- 
MS (Wako)    MGRL 
------------------------------------------  ------------------------------------------ 

Concentration (mM)   Concentration (mM) 
-------------------------------------------------------------------------------------------------------- 
NH4NO3  20.6    Na2HPO4   1.5 
KNO3  18.8    NaH2PO4    0.26 
CaCl2•2H2O  3.0    KCl   3.0 
MgSO4•7H2O  1.5    Ca(NO3)2•4H2O  5.0 
KH2PO4   1.25    MgSO4•4H2O  1.5 
H3BO3   0.10    NH4Cl   0.50 
MnSO4•4H2O  0.10    H3BO3   0.003 
ZnSO4•7H2O  0.03    MnSO4•4H2O  0.010 
KI   0.005   ZnSO4•7H2O  0.001 
Na2MoO4 •2H2O  0.001   MoO3   0.0002 
CuSO4•5H2O  0.0001   CuSO4•5H2O  0.0001 
CoCl2•6H2O  0.0001   CoCl2•6H2O  0.0001 
Na2-EDTA  0.11   Fe(III)-EDTA  0.02 
FeSO4•7H2O  0.10    
------------------------------------------------------------------------------------------------------ 
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Table I-9. Primers and restriction enzymes used for genotyping defense mutants 
----------------------------------------------------------------------------------------------------------------------------------------- 

Genotype  Primers (5’-3’)   Restriction enzyme 

----------------------------------------------------------------------------------------------------------------------------------------- 

EDS1  ACACATCGGTGATGCGAGACA 

GGCTTGTATCATCTTCTATCC 

eds1-2  ACACATCGGTGATGCGAGACA  

GTGGAAACCAAATTTGACATTAG 

PAD4/pad4-1 GAAGCAGCAATGAACAATTC  FinI digests wild-type product 

CACTCCTCAGGCACTTTAAC  

NDR1  TGGTTTAAGCATGAGAGTCC 

TTCGACCACCTTCTGTGTC 

ndr1-1  CCAACTAAGCACATTTTGGG  

CCCAACATATAATTGTTTCTTG 

rar1-21  GGAATGAAAGAGTGGAGCTGCTACTAG SpeI digests mutant product 

  TTTTGGAACCGATTTGGCCAG 

SID2  CAACCACCTGGTGCACCAGC 

AAGCAAAATGTTTGAGTCAGCA  

sid2-2  TTCTTCATGCAGGGGAGGAG 

AAGCAAAATGTTTGAGTCAGCA 

npr1-1  GTCTCGAATGTACATAAGGC   NlaIII digests wild-type product 

  ATCATGAGTGCGGTTCTACC  

SNC1  ATGACAAGTTGACATCGG 

  CCTGAATGAATTGGTGGAGA 

snc1-11 (NPTII) ATTGAACAAGATGGATTGCACG 

  TCAGAAGAACTCGTCAAGAAGG 

RPP4   ATCAATTTGCGTTGGCATCC  

GGAGATTTGATTTTAGCCAC  

rpp4  ATCAATTTGCGTTGGCATCC 

TTAGGCGACTTTTGAACGCG   

------------------------------------------------------------------------------------------------------------------------------------- 
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Table I-10. Gene function and sequence of primers used for expression analysis of genes located 
near and within the inversion 
---------------------------------------------------------------------------------------------------------------------------------------------------------- 

Locus Function     Primers (5’-3’), forward and reverse 

----------------------------------------------------------------------------------------------------------------------------------------- 

At4g21940 CALCIUM-DEPENDENT PROTEIN KINASE 15  TGGACAAGAGAACATTGTTG 

(CPK15)     CTCTGCAATAACCTTTAGAG 

At4g21950 Unknown protein similar to AT4G04630.1  CGAAGAATATTCAATTAAAGAG 

M13 primer M4 (Takara) 

At4g21970 Similar to Os05g0114600   GGAAGGGGGAGAAGAGGTTTC 

CTAAAGAGTTAAAAGACCATTG 

At4g21980 AUTOPHAGY 8A (APG8A)   CTAAACCTCTCGAGGCAAG 

      TCAAGCAACGGTAAGAGATC 

At4g21990 APS REDUCTASE 3 (APR3)   ATTGTTGCTTCTGAGGTTAC 

      CAACATTCTCGCTATTGAAG 

At4g22000 Hypothetical protein    TGGAAAAGCTGCAGAAGCTG 

      M13 primer M4 (Takara) 

At4g22010 SKU5 SIMILAR 4 (SKS4)   TCGAACTATCCGGAGAAATC 

      TGGATATTCATCTCGGTACG 

At4g22030 F-box family protein    TAGCTTGTCTAGGTTTGATG 

      AAAGATACAACAGACTTGAG 

At4g22050 Aspartyl protease family protein   AATGTTCCAATGGATTCCGC 

      ACTTAGCGAACCCAACTTTC 

At4g22060 F-box family protein    AGCTTCCTTTAGATCTCTTG 

      M13 primer M4 (Takara) 

At4g22070 WRKY DNA-BINDING PROTEIN 31  TGAAGCTGCCATGATAAGCG 

      ACACATCCGAAACTCAAAAC 

At4g22080 Pectate lyase family protein    GAGAATGCCAAGAGTAAGAC 

      AAGTTTCCCGGAGCTACTG 

At4g22090 Pectate lyase family protein   AGAATGCCAAGGGTAAGACG 

      TCCGGGAGCGACTGTGAATC 

At4g22100 Glycosyl hydrolase family 1 protein  TCCTTCACACTCGTAACC 

      GAAATCTTTGGCTCTTTGAAC 
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At4g22105 SCR-LIKE 26 (SCRL26)   GCTACTTTTTTCTTGGTTTC 

      TACACCGGCATAAATGTTCCG 

At4g22110 Alcohol dehydrogenase    AAAAATTCGAGCTAGGCAAG 

      AAAGAATGCAGCGGAGAGAC 

At4g22115 SCR-LIKE 14 (SCR L14)   GGGCAATGTTAAAGAAGTGG 

      GCAAGGAACATAACATCTAC 

At4g22120 Early-responsive to dehydration protein-related protein GAATTATGGTGAAGCTTGGC 

      CGGTTTCTAATGTATCTTTC 

At4g22130 STRUBBELIG-RECEPTOR FAMILY 8 (SRF8) ACTGAGAGACAGGTTTCAAC 

      CAGAATGAGATATCGACGTG 

At4g22140 DNA binding protein    CAAAGTTGTGAGAGCGGGAG 

      AAACGGACCTTAACATCATC 

At4g22150 LANT UBX DOMAIN-CONTAINING PROTEIN 3  CTTCTTTTCTTGATAGCATTC 

(PUX3)     TGAATGACTACAGAACTTGC 

At4g22160 Unknown protein    AGAATGTCTTGTTGGGTAAAG 

      M13 primer M4 (Takara) 

At4g22165 F-box family protein    AACATAACCCTAATTCCTGG 

      TACGAACCAATGAGCTCTAG 

At4g22170 F-box family protein    AACATAACCCTAATTCCTGG 

      TACGAACCAATGAGCTCTAG 

At4g22180 F-box family protein    AAGCGTCTCAGAGGAGATAC 

      TAACATATGAAGAAGAAAGTTC 

At4g22190 similar to conserved hypothetical protein   GTGTTATGTACCACAAACTC 

      M13 primer M4 (Takara) 

At4g22200 ARABIDOPSIS K+ TRANSPORTER (AKT2/3) ATTTGGAACGTTTCTTACCC  

      ACATCCACATAAGAGATGTG 

At4g22210 LOW-MOLECULAR-WEIGHT CYSTEINE-RICH 85  ATGTCTCCTACAGATGGGC 

(LCR85)     TCACATGCTTTCCATTTCAG* 

At4g22212 Defensin-like (DEFL) family protein  CATATCTCCTACAGAAGTAG† 

      TCACATGCTTTCCATTTCAG* 

At4g22214 Defensin-like (DEFL) family protein  ATCTCCTACAGAAGCAGTG 

      ATGCCTGCTTTTTTATATCC 

At4g22217 Defensin-like (DEFL) family protein  CTATCTCCCACCGAAGTGG 



 60 

      TATTGAGCACGGATACTATC 

At4g22220 IRON-SULFUR CLUSTER ASSEMBLY COMPLEX TTCTTCATCTGTTGCCACTG 

 PROTEIN (ISU1)    CACCATTTGTCTTCACACG 

At4g22230 Defensin-like (DEFL) family protein  TTTCCTTTTCAGCACCACGC 

      CATATCTCCTACAGAAGTAG† 

At4g22233 Potential natural antisense gene   CTGATCGAAGTCGCTAAC 

      TATGATCCATACAAAGAGAC 

At4g22235 Defensin-like (DEFL) family protein  TCTCCTATAGAAGTGAATGG 

      ACATGCTTTCCTTTTCAGC 

At4g22240 Plastid-lipid associated protein   AAGTAAACCTACAACCACAC 

      AAATGGATCCTCGCCTACAC 

At4g22260 IMMUTANS (IM)    GCTCATAATGGAAGAATTGG 

      GCAACCACAAAGGCTAGTAG 

----------------------------------------------------------------------------------------------------------------------------------------- 

*. †, The same primers were used because these genes shared highly similar sequences. 
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Table I-11. Primers used for semi-quantitative RT-PCR 
-------------------------------------------------------------------------------------------------------------------------------- 

Gene  Primer 1 (5’-3’)   Primer 2 (5’-3’) 

-------------------------------------------------------------------------------------------------------------------------------- 

EDS1  TGCTC GATCA CCTGA ATAAT C ACACA TCAAC TGTTG CAAAC 

PAD4  CAGTT AAAGA TCAAG GAAGG TGTAG AAATT CGCAA TGTCG 

NDR1  ATGAA GACAC AGAAG GTGG  CGAAT AGCAA AGAAT ACGAG 

SID1  CTGGT CGCAG AATCG GTG  GCCGA AACAA TCTGT GAAG 

SID2  CCATC TCTCG TAGTT ACTC  CATTA AACTC AACCT GAGGG 

NPR1  GATCT TGAAA ATAGA GTTGC AC ACGAT GAGAG AGTTT ACGG 

PR1  GAATT TTACT GGCTA TTCTC TG TTAGT ATGGC TTCTC GTTC 

PR2  TTCAA CCACA CAGCT GGAC  ACTTA GACTG TCGAT CTGG 

PR5  CTCGT GTTCA TCACA AGC  AGGGC AGAAA GTGAT TTC 

PDF1.2  TGCTT TCGAC GCACC GG  CTCAT AGAGT GACAG AGAC 

RPP4   AATAC GTGTG CCACC CAC  CTCGA TCTCA TTTCT ATCTT G 

At4g16880  GTATG TTACC AAAGA TTTCA AG CGTAT GAATT ACCTG GACG 

SNC1  CTTCA TAGAT TGGTG AAGTT AG TCAGT TACCA GAAAC AGGAA AC 

At4g16900  CTGTA GGGCA GGTGG AG  TTAAC GTATT CTAGA ATCC 

At4g16920  GCGGA TGGGG ATGAC AT  TCAGT TACCA GAATC AGTAG 

At4g16930  GATTC TCGAA ACTGG TGTAA TG CCTGT TCTTC TCGGT TGG 

At4g16940  ACGTT TAACA CCGAA TG  CATCA CAGCG TTGAG TCTTC 

At4g16950  CTCTT TTTTG CCCCT TCTTC  GATCT TCTGA ACGGG CCTAA TG 

At4g16960  ACGTT TAACA CCGAA TG  TTCCC AAGGG ACTGG AC 

At4g16990  GATTG CCGGT AATCG TC  CCTTG TTCAC AGTAC TC 

SRFR1  ATGGC GACGG CGACG GC  CTGTG TTCGC CTAAT CCATG 

EF1a  ACTTG CAGCT ATGGG TAAAG  CGAAA GTCTC ATCAT TTGGC 

SRFR1 for cDNA sequencing ATGGC GACGG CGACG GC TCAAT CGTTG TAAGT GCTAA G 

------------------------------------------------------------------------------------------------------------------------------------ 
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Figure I-1. Identification of inversion in the original acl1-1 mutants. 
(a) Locations of genes assayed in this study. 
(b) PCR performed with DNA from wild-type, the original acl1-1 mutant, and the acl1-3 mutant to detect full-length genomic regions
 of At4g21960 and At4g22250. 
(c) Detection of novel conjugated fragments in the original acl1-1 mutant. 
(d) Structure of wild-type At4g21960 and At4g22250 and conjugated genes caused in the inversion. Filled and open squares: exons. 
Bold lines: introns. Arrows with pNK-number: positions of primers used. Within nucleotide sequences, gray shading, At4g21960; 
white boxes, At4g22250; capital letters, exons; small letters, introns. Underlined 6 bp were duplicated. Black shading indicates 2 bp
 substitution from TT to AC. A 34-bp fragment was deleted from At4g22250. 
(e) RT-PCR performed with RNA from 10-day-old plants. 

acl1-1 acl1-3
At4g21960 At4g22250

acl1-1
At4g21960 At4g22250

At4g22250
At4g22250

At4g21960

kamata
テキストボックス
インターネット公表に関する使用承認が雑誌社（出版社）から得られていないため、
本図については、非公開。
「An inversion identified in acl1-1 mutant functions as an enhancer of the acl1-1 phenotype」
Genes and Genetic Systems 誌 83巻、293~300頁
Fig. 1  参照



At4g21940
At4g21950
At4g21970
At4g21980
At4g21990
At4g22000
At4g22010
At4g22030
At4g22050
At4g22060
At4g22070
At4g22080
At4g22090
At4g22100

At4g22110

At4g22120
At4g22130

At4g22140

At4g22115

At4g22105

not detected

At4g22150
At4g22160

At4g22170
At4g22180
At4g22190
At4g22200
At4g22210

At4g22220
At4g22230

At4g22240
At4g22260

At4g22233
At4g22235

At4g22212
At4g22214
At4g22217

At4g22165

EF1α

*

*
*
*

*
*
*
*

*

*
*

*

*

(a)

(b)

100 bp

0645

＊At4g22250

NK240 NK263

NK398 NK239
NK350 NK239

At4g21960
＊

1700 0

NK856 NK244

NK856 NK262
NK244NK349

At4g21960: NK244-NK349

At4g21960: NK856-NK262

At4g22250: NK350-NK239
At4g22250: NK240-NK263

conjugated transcript: NK856-NK398

conjugated transcript: NK244-NK239
(1.0)

(0.5)

(0.2)

Col 
+/+

Col 
inv

/in
v

ac
l1-

1 +
/+

ac
l1-

1 i
nv

/in
v

*

EF1α

appox. length
(Kbp)

Col 
+/+

Col 
inv

/in
v

ac
l1-

1 +
/+

ac
l1-

1 i
nv

/in
v

Col 
+/+

Col 
inv

/in
v

ac
l1-

1 +
/+

ac
l1-

1 i
nv

/in
v

Figure I-2. Expression analysis of genes within and adjacent to the inversion. 
(a) RT-PCR analysis of genes within and adjacent to the inversion. RNA was extracted from 10-days-old plants. 
*Genes exhibited different expression patterns among four plant strains. 
(b) Partial expressions of At4g21960 and At4g22250 and conjugated transcripts in the inv/inv plants. Gene structure and expected 
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acl1-1 +/+ acl1-1 inv/inv

Col +/+ Col inv/inv

 

(a) 22˚C (b) 24˚C

acl1-1 inv/inv

acl1-1 +/+

Figure I-3. Enhancement of acl1-1 phenotype by the inversion. 
(a) Overall development of acl1-1 +/+ plants and acl1-1 inv/inv plants observed at 40 days after 
germination (the upper sections) and rosettes of Col +/+ plants and Col inv/inv plants at 35 days after 
germination (the lower sections). Plants were grown at 22˚C. 
(b) Growth of acl1-1 +/+ and acl1-1 inv/inv plants at 24˚C. Plants were grown for 40 days after 
germination.
Bars = 3 cm. 
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Figure I-4. Length of cells of inflorescence stems. 
(a) Length of cells in epidermis, cortex, and pith. Percentages indicate the ratio of cell length of each 
genotype and metamer to the length of type 2 metamer of Col +/+. 2met = type 2 metamer, 3met = type 3 
metamer. 
(b,c) Length of cells in epidermis of type 2 (b) and type 3 (c) metamer at 22, 24, 26, and 28˚C. At 22˚C, the 
type 2 and type 3 metamers of the acl1-1 +/+ plants and the acl1-1 inv/inv plants were assayed together. 
Lines: averages of each plant strain. 
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Figure I-5. Comparison of plant growth between Col +/+ and Col inv/inv, and acl1-3 
+/+ and acl1-3 inv/inv. 	


(a) Overall appearance of Col +/+, Col inv/inv, acl1-3 +/+ and two plants from distinct 
lines of acl1-3 inv/inv. Number in the parenthesis indicate the line number. Bar = 5 cm. 	


(b) Rosette size and plant height of plants of Col +/+, Col inv/inv, acl1-3 +/+ and two 
acl1-3 inv/inv lines. Error bars indicate standard deviation.	


Plants were grown for 40 days at 22˚C. 	


(b)	


(a)	




Figure I-6. Mapping of the locus linked to acl1 phenotype.	


(a)  864 plants  exhibiting acl1-1 phenotype in  F3 population from the cross  between acl1-1  and Ler  were 
examined. Recombination frequency at each marker is shown. 	


(b)  Finer  mapping was  performed using  184 F4 and 240 F3 plants  and  additional  mapping markers.  The 
numbers indicate the total number of recombinant chromosomes at each marker. The RPP5 gene cluster region 
is shown by a yellow box. 	


(c) Structure of the RPP5 gene cluster. Yellow arrows indicate TIR-NBS-LRR R genes. Striped dark-yellow-
colored arrows indicate genes that contain partial TIR-NBS-LRR domains and green arrows indicate non-R 
genes. 	


(d) Semi-quantitative RT-PCR of the R genes located within and next to the RPP5 gene cluster. PCR products 
from At4g16900 and At4g16940 were not detectable. EF1α was used as control. 	


(e,f) Phenotype of the acl1 snc1-11 double mutants. Plants were grown for 25 days (e) or 40 days (f) in pots. 
Bars = 1 cm (e) and 5 cm (f). 	
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 (e)	


(f)	


kamata
テキストボックス
5年以内に雑誌等で刊行予定のため、本図については非公開。



Figure I-7. Structure of ACL1/SRFR1 (At4g37460). 	


(a) Genetic structure of ACL1/SRFR1. Exons are indicated by red boxes. Introns are 
indicated by lines and untranslated regions by gray boxes. Red-colored letters represent 
mutations in the acl1 mutants. 	


(b) Protein structure of ACL1/SRFR1. Dark-blue boxes indicate the tetratricopeptide 
repeat (TPR). 	


(c) Semi-quantitative RT-PCR of ACL1/SRFR1 in the acl1 mutants at 22˚C. EF1α was 
used as control. 	


(b)	
 (c)	


(a)	
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Figure I-8. Growth phenotype of a new acl1 mutant allele, 2080. 	


40 days-old acl1-1 and 2080 plants grown at 22˚C. Bar = 1 cm.	
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Figure  I-9.  Constitutive  activation  of  defense  response  genes  and  temperature 
dependence of the acl1 phenotype. 
(a) Semi-quantitative expression analysis of SA-mediated defense genes (EDS1, PAD4, 
NDR1,  SID1,  SID2,  NPR1,  PR1,  PR2,  and  PR5)  and  a  JA-mediated  defense  gene 
(PDF1.2)  in  10-days-old  seedlings  grown  on  sterile  agar  plates.  EF1  was  used  as 
control. 
(b,c) Detection of cell death in the acl1 leaves at 22˚C. Plants were grown on either sterile 
agar media (b) or in pots (c) for 25 days and leaves were stained by trypan blue, which 
gives blue staining in regions undergoing cell death. 
(d) Plant growth of wild type, acl1-1 and acl1-3 at different temperatures. Plants were 
grown for 40 days at indicated temperatures in pots. 
Bars = 100 µm (b,c) and 5 cm (d). 
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Figure  I-10.  Semi-quantitative  expression  analysis  of  SA-mediated 
defense genes in 14-days-old Wild type (WT) and acl mutant plants 
grown at 22˚C in pots. 	


EF1α was used as control. 	
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(a)	


b	


Figure I-11.  Phenotype of double mutants between acl1 and mutants of genes in the 
defense response pathways. 	


(a,b) Plants were grown for 25 days (a) or 40 days (b) in pots at 22˚C. 	

(c) acl1-1 npr1-1 and acl1-3 npr1-1 plants were grown for 40 days either at 22˚C or 24˚C.	

Bars = 1 cm (a), 5 cm (b) and 2.5 cm (c).	
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Figure I-12. Effect of nitrate and ammonium on the acl1 plant growth. 
(a-c) Plants were grown for 2 weeks on agar plates containing the nitrogen-free medium supplied 
with additional nitrogen source as descried. Rosette size indicates average length of long and short 
diameter of the rosette.
(d) Mature pots-grown plants watered with nitrogen-free media supplied with 10 mM nitrate and 
the indicated concentration of NH4Cl. Plants were grown for 40 days. 
Bars = 5 cm.
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Figure  I-13.  Growth  of  the  double  mutants  on  media  containing  higher 
concentration of ammonium. 	


Plants were grown for 25 days (a) or 40 days (b) watered with nitrogen-free media 
supplemented with 10 mM Nitrate and 10 mM NH4Cl. Bars = 1 cm (a) and 5 cm (b). 	


(b)	


(a)	
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Figure I-14. Phenotype of the acl2-1 mutant	


(a) Temperature-dependent growth of the acl2-1 mutant. Plants were grown at indicated 
temperature for 40 days, and watered with MGRL medium.	


(b) Semi-quantitative RT-PCR of the defense-related genes in the acl2-1 mutant. EF1α 
was used as control. 	


(c) Double mutants between acl2-1 and mutants of key regulatory genes in defense 
responses. Plants were grown for 40 days at 22˚C, and watered with MGRL medium.	


(d) Growth of acl2-1 mutant watered with the nitrogen-free medium supplemented with 
10 mM nitrate and indicated concentrations of NH4Cl. 	


(e) Growth of acl2-1 seedlings on the media containing different concentrations of NO3

- 
and NH4Cl. 	


Bars = 5 cm. 	
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Chapter II: Mutations in epidermis-specific HD-ZIP IV genes affect 

floral organ identity in Arabidopsis thaliana. 

 

 

Introduction 

Homeodomain-leucine zipper (HD-ZIP) proteins are transcription factors 

present only in the plant kingdom. They have a homeodomain (HD), which is a 

conserved 60-amino acid motif for DNA-binding, and a leucine zipper motif, which 

mediates their homo- and hetero-dimerization. The class IV HD-ZIP (HD-ZIP IV) 

proteins are characterized by an internal loop in the middle of the leucine zipper motif, 

which is thus called a zipper-loop-zipper (ZLZ) domain (Schrick et al., 2004). They also 

contain a steroidogenic acute regulatory protein-related lipid transfer (START) domain 

and a START-adjacent (SAD) domain in the C-terminus. The HD-ZIP IV family in 

Arabidopsis thaliana consists of 16 genes: GLABRA2 (GL2), ARABIDOPSIS 

THALIANA MERISTEM LAYER1 (ATML1), ANTHOCYANINLESS2 (ANL2), 

PROTODERMAL FACTOR2 (PDF2) and HOMEODOMAIN GLABROUS1 

(HDG1)-HDG12, among which HDG6 is identical to the previously identified FWA 

(Nakamura et al., 2006). Expression analyses with promoter-GUS gene fusions have 

revealed that ATML1, PDF2, HDG2, HDG5, HDG11 and HDG12 are expressed 

predominantly in the epidermal layer of shoot meristems and organs (Nakamura et al., 

2006), suggesting that many members of the HD-ZIP IV family regulate gene 

expression in the epidermis. However, only four single knockout mutants are known to 
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show morphological alterations. The gl2 mutant is defective in trichome and seed 

mucilage formation, and has ectopic root hairs in non-hair cell files (Rerie et al., 1994; 

Di Cristina et al., 1996). In anl2, anthocyanin accumulation is reduced in the shoot and 

several extra cells are formed between cortical and epidermal layers of the root (Kubo et 

al., 1999; Kubo and Hayashi, 2011). The hdg11 mutant has trichomes with increased 

branching and the phenotype is enhanced in hdg11 hdg12 double mutants (Nakamura et 

al., 2006), while hdg2 has trichomes with smooth cell walls (Marks et al., 2009). 

ATML1 and PDF2, which are closely similar in sequence to each other, are both 

expressed specifically in the outermost cell layer (L1) of shoot apical meristems (Lu et 

al., 1996; Sessions et al., 1999; Abe et al., 2003). While each T-DNA insertion mutant 

of ATML1 and PDF2 shows wild-type phenotype, the atml1-1 pdf2-1 double mutant has 

severe defects in the differentiation of shoot epidermal cells, indicating that they play 

redundant but critical roles in the formation of the shoot epidermis (Abe et al., 2003). 

So far, however, there has been no further information on double mutants within the 

family that display abnormal phenotypes except for pdf2-1 hdg3-1 and atml-1 hdg3-1, 

which show slight defects in cotyledon development (Nakamura et al., 2006) and 

precise functions of HD-ZIP IV members and functional redundancy among them 

remain largely to be elucidated. 

There are also accumulating reports of epidermis-related functions of HD-ZIP 

IV genes in other plants. In maize, OUTER CELL LAYER4 (OCL4) has been suggested 

to regulate trichome patterning and anther development (Vernoud et al., 2009), while 

OCL1 may be involved in lipid metabolism and cuticle biosynthesis (Javelle et al., 
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2010). The cotton GbML1 regulates fiber development (Zhang et al., 2010). In tomato, 

Woolly (Wo), the closest homolog of Arabidopsis PDF2, is essential for embryo 

development and its dominant allele is known to exhibit the woolly trichome phenotype 

(Yang et al., 2011). However, these genes represent only a part of the HD-ZIP IV family 

and we are still far from comprehensive understanding of the HD-ZIP IV family. 

Epidermis is organized in a continuous monolayer of cells that covers plant 

body. Epidermal cells in shoot organs are exclusively derived from L1, the outermost 

layer of shoot apical meristems, which continues to undergo anticlinal cell division 

(Barton and Poethig, 1993). Shoot epidermis plays a critical role in organ separation and 

defense responses against drought or pathogens as well as in the integrity of organs. In 

flowers, the Arabidopsis cytochrome P450 KLUH (KLU) expressed in the epidermis 

stimulates organ growth non-cell-autonomously and may be one of the major players in 

the coordination of the final size of floral organs (Anastasiou et al., 2007; Eriksson et 

al., 2010). When floral organ identity genes in Arabidopsis such as AGAMOUS (AG), 

SEPALLATA3 (SEP3), APETALA3 (AP3) and PISTILLATA (PI) are expressed 

specifically in the L1, the flowers show similar modifications to those with constitutive 

expression of the respective genes, suggesting that the differentiation and maturation of 

floral organs can be partially directed from the L1 cells (Urbanus et al., 2010). Although 

AP3 expressed only in the epidermis is not sufficient for full restoration of floral organ 

identity in ap3 mutants, it acts non-autonomously to recover overall shape of petals, 

confirming the important contribution of the epidermis to organ development (Jenik and 

Irish, 2001; Urbanus et al., 2010). 
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To examine further the function of the HD-ZIP IV genes in Arabidopsis, their 

double mutants were generated and I found that the combinations of pdf2-1 with mutant 

alleles of HDG1, HDG2, HDG5 or HDG12 resulted in abnormal floral organ formation, 

suggesting the importance of the interplay in the epidermis between PDF2 and these 

HD-ZIP IV proteins during flower development. 

 

Results 

A previous study has revealed that double mutants of HD-ZIP IV gene pairs 

with high sequence similarity such as HDG2-HDG3 and HDG4-HDG5 (Figure II-1) do 

not necessarily show abnormal phenotype (Nakamura et al., 2006). I therefore focused 

on the study of double mutant combinations of pdf2 or atml1 alleles with the alleles of 

other HD-ZIP IV genes. 

 

pdf2-1 hdg2-3 produces flowers with sepaloid petals and carpelloid stamens 

HDG2 is the second closest homologue to ATML1 and PDF2 (Figure II-1). 

The mutant alleles, hdg2-2 and hdg2-3, have a T-DNA inserted in the START 

domain-coding region and in the HD-coding region of HDG2, respectively, and the 

latter may represent a null allele (Figure II-2) (Nakamura et al., 2006). Thus, double 

mutant between hdg2-3 with pdf2-1 was first generated. In the course of detailed 

phenotypic analysis, one or two of the two short stamens were found to be occasionally 

absent in pdf2-1 and hdg2-3 single mutant flowers (Figure II-3a,b). pdf2-1 hdg2-3 

flowers had smaller petals and stamens than the wild type, and fertility was severely 
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reduced (Figures II-3c and II-4a-c). The mutant petals were greenish and rather 

resembled sepals (Figure II-4d). Tissue sections of the petal revealed that inner cells 

were often composed of more than two layers of large cells like sepals (Figure II-4e-g). 

I further observed by using scanning electron microscopy (SEM) that the epidermal 

cells of the adaxial surface of pdf2-1 hdg2-3 petals were flat and long like sepals rather 

than conical like normal petals (Figure II-5a-c). The abaxial surface of these petals was 

composed of cells with normal shape and clusters of elongated cells with scattering 

guard cells (Figure II-5d-f). Stamens of pdf2-1 hdg2-3 flowers frequently had enlarged 

anthers and carpelloid structures such as stigmatic papillae and ovules or filaments 

without anthers (Figure II-5g-k). These abnormalities were observed at higher 

frequency in the four long stamens than in the two short stamens (Figure II-3b). I also 

confirmed that the phenotype of pdf2-1 hdg2-2 flowers was almost identical to that of 

pdf2-1 hdg2-3 flowers (Figure II-3). 

 

pdf2-1 hdg1-1, pdf2-1 hdg5-1 and pdf2-1 hdg12-2 also show partial homeotic 

phenotype 

I found that hdg1-1 also had flowers lacking one or two of the two short 

stamens while hdg1-2 had normal flowers (Figure II-3a). The T-DNA insert in hdg1-1 is 

located in the intron splitting the START domain-coding region and that in hdg1-2 is in 

the exon encoding the ZLZ domain of HDG1 (Figure II-2) (Nakamura et al., 2006). 

pdf2-1 hdg1-1 showed partial homeotic conversions of petals into sepals and stamens 

into carpels, a phenotype similar to that of pdf2-1 hdg2-3 (Figures II-3b and II-6a,b), 
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while pdf2-1 hdg1-2 showed no homeotic phenotype but instead had flowers lacking in 

one or two of the short stamens with higher frequency than pdf2-1 (Figures II-3 and 

II-6c,d). Expression of the GUS reporter gene fused to a HDG1 promoter has previously 

been detected only in the epidermis of stamen filaments (Nakamura et al., 2006). 

However, I confirmed that the longer promoter could direct the GUS expression also in 

the epidermis of stems, pedicels, anthers of stamens and the nucellus in flowers (Figure 

II-7). On the contrary, I could not detect the GUS expression in flower meristems during 

early developmental stages. 

The hdg5-1 allele, which carries a T-DNA insertion in the START 

domain-coding region of HDG5 (Figure II-2), showed wild-type phenotype but pdf2-1 

hdg5-1 also produced flowers with sepaloid petals and carpelloid stamens, resulting in 

reduced fertility (Figures II-3 and II-6e,f). On the contrary, double mutants of pdf2-1 

with hdg5-2, which has a T-DNA insertion in the SAD domain-coding sequence (Figure 

II-2), were indistinguishable from pdf2-1 plants (Figure II-3). 

I also found that pdf2-1 hdg12-2 flowers exhibited only weak conversion of 

petals and stamens to sepals and carpels, respectively, with low frequency compared to 

the double mutants described above (Figures II-3 and II-6g,h). The shape of epidermal 

cells of the adaxial surface of pdf2-1 hdg12-2 petals was intermediate between those of 

petals and sepals, and guard cells were observed among them (Figure II-8). 

Furthermore, we generated double mutants between pdf2-1 and alleles of the 

other HD-ZIP IV genes reported in Nakamura et al. (2006) but observed no homeotic 

conversions of floral organs in these mutants (Figure II-9 and data not shown). pdf2-1 
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hdg11-1 hdg12-2 triple mutants showed no difference in flower morphology from 

pdf2-1 hdg12-2 (Figure II-3). 

 

pdf2-2 and atml1 alleles are not involved in homeotic conversion of floral organs 

In addition to pdf2-1, I obtained a new allele of PDF2, which has a T-DNA 

insertion in the exon for the more C-terminal part of the START domain than does 

pdf2-1, and named pdf2-2 (Figure II-2). Interestingly, pdf2-2 had flowers lacking one of 

the two short stamens with higher frequency than pdf2-1 but pdf2-2 hdg2-3 showed no 

additional abnormality (Figure II-3). pdf2-2 was also crossed with hdg1-1, hdg5-1, and 

hdg12-2 alleles, but these double mutants showed no homeotic conversions of floral 

organs and manifested only the pdf2-2 phenotype, namely the lack of a short stamen 

(Figure II-3). 

Since PDF2 is functionally redundant with ATML1 (Abe et al., 2003), I next 

examined double mutants between atml1 alleles and hdg1-1, hdg2-3, hdg5-1, or 

hdg12-2. atml1-1 and atml1-3 carry a T-DNA insertion in the exon encoding the SAD 

domain and the homeodomain, respectively (Figure II-9) (Abe et al., 2003; Roeder et 

al., 2012). But no combination of them showed homeotic changes in floral organs 

(Figure II-9). 

I further confirmed that hdg1-1 hdg2-3, hdg1-1 hdg5-1, hdg1-1 hdg12-2, 

hdg2-3 hdg5-1, hdg2-3 hdg12-2 and hdg5-1 hdg12-2 also showed normal development 

of flowers except for an occasional lack of short stamens (data not shown). 
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AP3 expression is reduced in mutant flowers 

According to the ABC model, homeotic conversion of petals into sepals and 

stamens into carpels is caused by loss-of-function of the class B floral identity genes 

(Coen and Meyerowitz, 1991). Thus, I examined expression levels of the two class B 

genes, AP3 and PI, in the above-described phenotypic mutants. AP3 expression was 

reduced remarkably in pdf2-1 hdg2-3, pdf2-1 hdg1-1, and pdf2-1 hdg5-1 inflorescences, 

and moderately in pdf2-1 hdg12-2 (Figure II-10), suggesting the correlation of the 

severity of the homeotic phenotype with the level of AP3 expression. On the other hand, 

reduction in PI expression was detected only in pdf2-1 hdg1-1 and pdf2-1 hdg2-3 

inflorescences (Figure II-10). Expression levels of the class A floral identity gene AP2, 

the class C gene AG, and the class E gene SEP3, which are also required for specifying 

the organ identity of petals and stamens (Honma and Goto, 2001; Theissen, 2001), were 

not reduced in these mutant inflorescences (Figure II-11). 

Real-time RT-PCR experiments using RNA prepared from flower buds at 

different stages revealed that the level of AP3 expression was much lower in pdf2-1 

hdg1-1 and pdf2-1 hdg2-3 than in the wild type throughout different stages of flower 

development, while the level of PI expression was gradually decreased in these mutants 

at later stages (Figure II-12a). However, in situ hybridization experiments revealed that, 

as is the case with wild-type flowers (Jack et al., 1992; Smyth et al., 1990), the AP3 

transcript was detected in the mutant flowers at stage 3 (Figure II-12b-e), suggesting 

that the onset of the AP3 expression is unaffected in these mutants. After stage 3, AP3 

transcript was detected only in the proximal part of petals and stamens (Figure II-12d, 
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arrow heads). PI expression is detected in whorls 2, 3 and 4 of wild-type flowers at 

stage 3, then restricted to whorls 2 and 3, and maintained together with AP3 expression 

throughout the development of petals and stamens (Goto and Meyerowitz, 1994). PI 

expression patterns in pdf2-1 hdg1-1 and pdf2-1 hdg2-3 flowers were similar to those in 

wild-type flowers (Figure II-12f-i). Since initiation of AP3 expression involves the 

meristem identity genes such as LEAFY (LFY), AP1, and UNUSUAL FLORAL 

ORGANS (UFO) (Weigel and Meyerowitz, 1993; Levin and Meyerowitz 1995; Lee et 

al., 1997), I examined expression patterns of these genes and confirmed that they were 

not altered in pdf2-1 hdg2-3 and pdf2-1 hdg1-1 (Figure II-11). 

I also introduced the GFP gene driven by the AP3 promoter into pdf2-1 

hdg2-3 and pdf2-1 hdg1-1. Similar to the pattern observed by in situ hybridization, the 

GFP fluorescence in wild-type plants transformed with the pAP3::GFP construct was 

detected in whorls 2 and 3 at stage 3 and maintained in petals and stamens until later 

stages of flower development (Figure II-12). In pdf2-1 hdg1-1 and pdf2-1 hdg2-3, the 

GFP signal appeared in the presumptive whorls 2 and 3 of floral meristems at stage 3 

and, unlike in the wild type, the signal became restricted to the basal region of petals 

and stamens at stages 6 to 9 (Figure II-12k-m). I observed only sporadic signals of GFP 

in the middle to upper part of the petal at stage 10 (Figure II-12l), suggesting that AP3 is 

not uniformly expressed in these mutants. 

 

Transgenic expression of AP3 or PDF2 rescues the phenotype 
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I examined whether or not transgenic expression of AP3 could restore the 

development of petals and stamens in pdf2-1 hdg2-3. When the AP3 full-length cDNA 

was fused to the CaMV 35S promoter (35S::AP3) and introduced into pdf2-1 hdg2-3 

plants, the gross appearance of petals and stamens were indistinguishable from that of 

the wild type (Figure II-13a,b) and the fertility was fully restored. Epidermal cells of the 

petals in pdf2-1 hdg2-3 carrying the 35S::AP3 construct were conical in the adaxial 

epidermis and uniformly rectangular in the abaxial epidermis (Figure II-13c,d) like 

those in the wild-type.  

I also performed complementation experiments with the wild-type PDF2. The 

PDF2 full-length cDNA was fused to the native PDF2 promoter (pPDF2::PDF2) and 

introduced into pdf2-1 hdg2-3. Five transgenic lines were obtained and two of them 

showed normal development of flowers as pdf2-1 transformed with the same construct, 

but the other three developed flowers with smaller petals than wild-type flowers (Figure 

II-13e-g). Even in these flowers, stamens were fully fertile and showed no carpelloid 

features (Figure II-13h). 

 

pdf2-1 transcripts are present in the epidermis 

T-DNA insertion mutants of PDF2 and other HD-ZIP IV genes could produce 

incomplete transcripts from the respective alleles. The presence of the pdf2-1 transcript 

was examined by RT-PCR with specific primers designed to amplify the region that is 

upstream of the T-DNA insertion and encodes the HD-ZLZ domain. The resulting PCR 

products were detected at similar levels in the wild type and pdf2-1 hdg double mutants 
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(Figure II-14a). In situ hybridization using a probe for 5’ UTR of PDF2 showed that the 

pdf2-1 transcript was expressed in the L1 cells of inflorescence and floral meristems, a 

pattern identical to that of the wild-type PDF2 transcript (Figure II-14b). RT-PCR 

experiments were also performed using specific primers for HD-ZLZ domain-coding 

sequences of HDG1, HDG2, HDG5 and HDG12, and revealed that the transcripts from 

hdg1-1 and hdg5-2 are present but those from hdg1-2, hdg2-3 and hdg12-2 are not in 

their respective double mutants with pdf2-1 (Figure II-14a). Since the T-DNA insertion 

in hdg1-1 is located in an intron of HDG1, the full-length HDG1 transcript could be 

produced but no RT-PCR products were amplified from hdg1-1 by using the primers 

encompassing the insertion site (data not shown). 

 

Discussion 

HDG2 is involved in determining the identity of petals and stamens 

Previous studies have reported that pdf2-1 and hdg2-3 single mutants show no 

obvious phenotype (Abe et al., 2003; Nakamura et al., 2006). I found, however, the 

short stamens were occasionally absent in these mutants (Figure II-3a). Furthermore, 

pdf2-1 hdg2-3 was shown to cause partial homeotic conversions of petals and stamens 

into sepals and carpels, respectively. Since hdg2-3 carries a T-DNA insertion in the 

HD-coding exon of HDG2 and no transcripts including this exon were detectable 

(Figure II-13a), it may represent a loss-of-function mutation, suggesting that HDG2 

together with PDF2 is required for the identity of petals and stamens. 
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I note that, while pdf2-2 also sometimes had reduced number of stamens, 

pdf2-2 hdg2-3 showed no homeotic phenotype. The site of T-DNA insertion in pdf2-1 is 

located in the midst of the START domain-coding sequence of PDF2, while that in 

pdf2-2 is in its C-terminal part. Thus, it is conceivable that the pdf2-1 allele, which 

could produce PDF2 truncated in the START domain, has some negative effects on the 

determination of stamen and petal identity. I also observed that neither atml1-1 nor 

atml1-3 in combination with hdg2-3 showed homeotic flower defects. It is possible that, 

unlike PDF2, ATML1 does not play a role in determining the floral organ identity. 

Alternatively, because these atml1 alleles do not represent the mutant disrupting the 

START domain of ATML1 like pdf2-1, their defects might be recovered by PDF2. 

 

HDG1, HDG5, and HDG12 also function in flower development 

hdg1-1 has a T-DNA in an intron interrupting the START domain-coding 

sequence of HDG1. hdg1-1 also often had reduced number of the short stamens while 

hdg1-2, which carries a T-DNA insertion in the ZLZ-coding region and likely represents 

a loss-of-function allele, had normal flowers. These results suggest that hdg1-1 also 

have some negative effects on floral organ development. The severe phenotype such as 

carpelloid stamens and the lack in anthers in pdf2-1 hdg1-1 may reflect synergistic 

effects of these alleles. On the other hand, the reduction in the number of the short 

stamens in pdf2-1 was enhanced by hdg1-2 rather than by hdg1-1 (Figure II-3a). This 

might be due to the only moderate down-regulation of AP3 in pdf2-1 hdg1-2 (Figure 

II-10a). Indeed, a very weak mutant allele of AP3, ap3-11, produces fertile stamens but 
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with reduction in number (Yi and Jack, 1998). However, the possibility should not be 

excluded that the effect of pdf2 and hdg mutations on the number of stamens is through 

the modulation of other factors than AP3. Taken together, I suggest that HDG1 and 

PDF2 play a cooperative role in the formation of stamens. Preferential expression of 

HDG1 in the epidermis of developing stamens also insists that HDG1 functions in 

stamens (Figure II-7). However, given the fact that neither hdg1-1 hdg2-3 nor hdg1-2 

hdg2-3 showed any additional phenotype (data not shown), the role of HDG1 might be 

subsidiary to that of PDF2 in floral organ development.  

I also observed homeotic conversions of petals and stamens in pdf2-1 hdg5-1. 

hdg5-1 carries a T-DNA insertion in the middle of the START domain-coding exon of 

HDG5, suggesting that the property of hdg5-1 is also similar to that of pdf2-1. However, 

the effect of hdg5-1 may be moderate compared to that of pdf2-1 and hdg1-1 because 

hdg5-1 single mutants had normal flowers. Furthermore, hdg5-1 had no additional 

effect on the phenotype of hdg2-3 and hdg1-1, suggesting again that PDF2 plays a 

principal role among the HD-ZIP IV family in flower development. Since hdg5-2, in 

which the START domain-coding region is predicted to be intact, showed no homeotic 

phenotypes in the double mutant with pdf2-1, it likely represents a weaker allele. It is 

also possible again that the START domain has a negative regulatory role in the 

activation of HD-ZIP IV proteins. 

The T-DNA insertion in hdg12-2 is located in the middle of the ZLZ 

domain-coding exon of HDG12, suggesting that hdg12-2 is a loss-of-function allele. 
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Thus relatively weak phenotype observed in pdf2-1 hdg12-2 flowers suggests that 

HDG12 is less involved in flower development than is HDG2. 

Among other HD-ZIP IV mutants investigated, pdf2-1 hdg3-1 showed 

increased frequency of infertile and filamentous stamens (Figure II-9), while the hdg3-1 

single mutant was identical to wild type (data not shown). This implies that HDG3 is 

also involved in proper development of stamens together with PDF2 and is consistent 

with a previous report suggesting that HDG3 functions in anther dehiscence (Li et al., 

2007). 

 

pdf2-1 has non-cell-autonomous effects on AP3 expression 

Reduction of AP3 expression was not limited to epidermal cells of the floral 

meristem in pdf2-1 hdg2-3, while the pdf2-1 transcript was detected specifically in the 

epidermis of the inflorescence meristem (Figures II-12d,l,m and II-14b). This suggests 

that pdf2-1 could have non-cell-autonomous effects on the determination of floral organ 

identity, although the possibility that the pdf2-1 gene product directly binds to the AP3 

promoter and represses its expression cannot be excluded. In maize, the fusion protein 

of the ZmOCL1 HD-ZLZ domains with the repressor domain of the Drosophila 

Engrailed protein reduces expression of GA20 oxidase and probably the gibberellin 

(GA) content (Khaled et al., 2005). Synthesis of functional GAs may be required for 

maturation of petals and stamens along with the promotion of AP3 expression (Yu et al., 

2004; Plackett et al., 2011). Although no GA-deficient mutants cause abnormalities in 

floral organ identity (Goto and Pharis, 1999), evidence of a link between GA signaling 
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and the floral homeotic genes is mounting (Plackett et al., 2011). It might be possible 

that GA synthesis is reduced in the epidermis of pdf2-1 hdg2-3 flowers, thereby leading 

to a reduced expression of AP3 non-cell-autonomously. There are some reports 

suggesting the existence of epidermis-derived non-cell-autonomous signals that regulate 

whole organ growth but the identity of these signals remains elusive (Savaldi-Goldstein 

et al., 2007; Savaldi-Goldstein and Chory, 2008). Anastasiou et al. (2007) proposed a 

possibility that KLU, a cytochrome P450 monooxygenese, can modify fatty-acid-related 

molecules and regulate organ growth non-cell-autonomously. Considering that 

epidermis-expressed HD-ZIP IV proteins regulate expression of the genes related to 

lipid metabolism such as BODYGUARD (BDG), FIDDELHEAD (FDH), and LIPID 

TRANSFER PROTEIN (LTP) (Abe et al., 2003; Wu et al., 2011), it is also possible that 

extracellular lipid composition is important for non-autonomous signaling and is greatly 

affected in the epidermis of floral organs in the double mutants with the homeotic 

phenotype. 

AP3 expression is maintained by direct interaction of the AP3/PI heterodimer 

to the AP3 promoter region in an autoregulatory fashion (Hill et al. 1998; Tilly et al. 

1998; Lamb et al. 2002). PI expression was less affected in the double mutants with 

homeotic phenotype than AP3 expression and only gradually decreased as flowers 

matured (Figure II-10j). Thus, the inhibitory effect of pdf2-1 and/or hdg mutations may 

not be on the autoregulatory mechanism of AP3/PI expression but rather specific to 

AP3. 
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In conclusion, my results suggest that cooperative functions of PDF2 with at 

least HDG1, HDG2, HDG5, and HDG12 in the epidermis are involved in determining 

the identity of petals and stamens. However, because of the limitations of mutant alleles 

available for analysis, the reasons why the phenotypes detected in double mutant 

combinations remain not completely understood. There might also be additional 

HD-ZIP IV members that participate in floral organ formation, although they could have 

been missed due to the lack of appropriate mutant alleles. For future work, it will be 

necessary to generate further multiple mutant combinations and RNAi-induced 

knockdown plants to define precise roles of each gene. 

 

Materials and Methods 

Plant material and growth conditions 

Arabidopsis thaliana accession Columbia-0 (Col-0) was used as the wild type. Most of 

the T-DNA insertion alleles have been described previously (Abe et al., 2003; 

Nakamura et al., 2006). atml1-3, pdf2-2, and hdg5-2 alleles were derived from the 

SALK insertion line, SALK_033408 (Roeder et al., 2012), the SAIL lines, 

SAIL_503_E09 and SAIL_238_A05, respectively, and obtained from ABRC. Plants 

were grown under the condition descried in the chapter I, except for the continuous light 

and growth temperature, which was at 23˚C. Genotypes of double mutants were 

determined by PCR of genomic DNA with gene-specific primers shown in previous 

studies (Abe et al., 2003; Nakamura et al., 2006) and Table II-1. 
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Anatomy of floral organs 

For anatomy, early-formed (first to tenth) flowers on the primary inflorescence were 

examined under stereomicroscopy (n ≥ 15). For cross sections, flowers were embedded 

in Technovit 7100 (Kulzer), sectioned and stained as described in the chapter I. 

For scanning electron microscopy (SEM), flowers were fixed in FAA for 1 h 

at room temperature and dehydrated in an ethanol series. After exchange of ethanol to 

isoamyl acetate by a graded ethanol-isoamyl acetate series, samples were critical-point 

dried in liquid CO2, coated with platinum, and viewed on a SEM JOEL JSM-6510LV 

(JOEL). 

 

Confocal microscopy 

Apical part of the primary inflorescence was embedded in 7% agar and sectioned with a 

vibratome. Confocal microscopy was performed on an inverted fluorescent microscope 

IX70 (Olympus) equipped with a confocal unit. Fluorescence of pAP3::GFP was exited 

with a wavelength of 488 nm and detected using a CCD camera through 500-550 nm 

band-pass filter. Autofluorescence of chlorophyll was detected at 615-680 nm. 

 

Plasmid construction 

For making pAP3::GFP, AP3 promoter of 830-bp length was amplified by PCR using 

Ex Taq polymerase (Takara) and cloned into pGEM-T Easy vector (Promega). 

Subsequently, the fragment was cut with HindIII and BglII and cloned into the 

pBI101-based Ti plasmid vector that carries a GFP reporter gene (Matsuhara et al., 
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2000). For making 35S::AP3, full-length AP3 cDNA was amplified by RT-PCR with 

total RNA extracted from wild-type flowers, cloned into pGEM-T Easy vector, cut with 

BamHI, and then cloned into the BamHI site of pBI121 (Clontech). The resulting 

35S::AP3 fusion gene was cloned as HindIII/EcoRI fragment into pBarMAP vector 

(Breuninger et al., 2008). For pPDF2::PDF2 construction, PDF2 promoter sequence of 

1591 bp was amplified from wild-type genomic DNA and the full-length PDF2 cDNA 

was amplified by RT-PCR. After the resulting fragments were respectively cloned into 

pGEM-T Easy, XbaI/ClaI fragment of the PDF2 promoter and ClaI/BglII fragment of 

the PDF2 cDNA were sequentially cloned into the modified pBarMap. Primer pairs 

used were listed in Table II-1. 

 

Plant transformation 

The Ti plasmids were introduced into Agrobacterium tumefaciens C58C1 by 

electroporation. For pAP3::GFP plants, Col-0 plants were transformed by the floral dip 

method (Clough and Bent, 1998). The pAP3::GFP transgene was further introduced into 

pdf2-1 hdg2-3 and pdf2-1 hdg1-1 mutants by crossing. Transformation with 35S::AP3 

and pPDF2::PDF2 constructs was performed by floral spray methods (Chung et al., 

2000) and the transformants were selected by spraying 1:10 dilution of BASTA. 

 

RNA extraction and RT-PCR 

Total RNA was prepared with the RNeasy plant mini kit (Qiagen). First-strand cDNA 

was synthesized from 2 µg of total RNA with an oligo(dT) primer using the PrimeScript 
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RT-PCR kit (Takara). Real-time PCR was performed using the DNA Engine Opticon2 

System (Bio-Rad) with KAPA SYBR Fast qPCR kit (KAPA biosystems). Gene-specific 

primers are listed in Table II-1. ACTIN8 (ACT8) gene was used as an internal control to 

normalize the expression data for each gene. For detection of the HD-ZIP IV transcripts 

in double mutant combinations, each cDNA fragment was amplified by 22 cycles of 

PCR for ACT8, 26 cycles for HDG1, HDG2, HDG5, and HDG12, and 28 cycles for 

PDF2, respectively. The PCR condition was 94˚C for 2 min, followed by the cycles of 

94˚C for 30 s, 53˚C for 30 s, and 72˚C for 60 s. 

 

In situ hybridization 

Inflorescences were fixed in FAA, dehydrated in an ethanol series, passed through a 

xylene-ethanol series, embedded in Paraplast (Sigma) and sectioned at 7 µm thickness. 

Gene-specific RNA probes for AP3, PI, AP1, LFY and UFO were prepared as described 

previously (Jack et al., 1992; Weigel et al., 1992; Goto and Meyerowitz, 1994; 

Gustafson-Brown et al., 1994; Lee et al., 1997). For the pdf2-1 transcript, PDF2 cDNA 

fragment was amplified with the primers used for semi-quantitative RT-PCR (Table 

II-1) and cloned into pGEM-T Easy. The fragment was then transferred to the EcoRI 

site of pBluescript SK+ (Stratagene) and linearized with BamHI and XhoI to prepare 

antisense and sense probes, respectively. Probe labeling, hybridization and 

immunological detection were performed as previously described (Abe et al., 1999).  

 

Histochemical GUS staining 
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2.5-kb promoter of HDG1 was amplified with primers 5’-CTGCA GATGA AGGCT 

TCCAA TGTTG-3’ and 5’-GGATC CGAGG GAAAT ATTTA ATGAA G-3’ and with 

wild-type genomic DNA as template. PCR fragment was cloned into pGEM-T Easy 

Vector (Promega) and verified by DNA sequencing. The HDG1 promoter fragment was 

cleaved with PstI/BamHI and cloned into the corresponding sites of pBluescript SK+ 

(Stratagene) and subsequently inserted in front of the GUS gene in the binary vector 

pBI101.3 (Clontech) by using the SalI/BamHI restriction sites. The resulting plasmid 

pHDG1::GUS was introduced into wild-type plants via Agrobacterium-mediated 

transformation and transformants were isolated by kanamycin selection as described in 

the Materials and Methods. GUS staining, fixing tissue, and sectioning were performed 

as described (Nakamura et al., 2006). 
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Tables 
Table II-1. Primers used in this study 
(a) Primers used for genotyping mutant alleles. 
------------------------------------------------------------------------------------------------ 
Genotype Primer Sequence (5’ to 3’) 
------------------------------------------------------------------------------------------------ 
PDF2-2 F, ATTGA TAGGA TCTCT GCTAT TGC 

R, CTGTT GTCGA CATTG TTGTC 
pdf2-2  F, ATTGA TAGGA TCTCT GCTAT TGC 

SynLB, GAAAT GGATA AATAG CCTTG CTTCC 
HDG5  F, TCCAA GTGAT GTTGA CAATG GGA 

R, TAAGT TCTTG AACAC AAGAG ACAGC 
hdg5-2 F, TCCAA GTGAT GTTGA CAATG GGA 

SynLB, GAAAT GGATA AATAG CCTTG CTTCC 
------------------------------------------------------------------------------------------------ 
(b) Primers used for plasmid constructions for complementation tests. 
------------------------------------------------------------------------------------------------ 
PCR product Primer Sequence (5’ to 3’) 
------------------------------------------------------------------------------------------------ 
AP3 promoter  F, AAGCT TAGTT TTGAA ACAAC ACTAA 

R, AGATC TTTTT GTTGA AGAGA TTTGG 
AP3 cDNA  F, GGATC CATGG CGAGA GGGAA GATC 

R, GGATC CTTCA AGAAG ATGGA AGGTA 
PDF2 promoter  F, TCTAG AGAAA AAAAA AACAA GACG 

R, ATCGA TGAGA CAATG ATAAA GAGAA G 
PDF2 cDNA  F, ATCGA TGTAC CATCC AAACA TG 

R, GGGCC CAGAT CTACG CTCCT CCTCC AAC 
------------------------------------------------------------------------------------------------ 
 
(c) Primers used for RT-PCR. 
------------------------------------------------------------------------------------------------ 
Gene Primer Sequence (5’ to3’) 
------------------------------------------------------------------------------------------------ 
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AP3  F, GAATA TGGCG AGAGG GAAGA 
R, CTAGC CTCTG CTTGA TCTGA 

PI  F, TGGGT AGAGG AAAGA TCGAG 
R, CTTCA AATGC CTGAG CTCCA 

AP2  F, TCCCA ATTCA AACCA CCAAT 
R, CGCCG GAAAC AGTGA GAA 

AG  F, AGCAC AACCT TACCT TCCAT 
R, AACAG AGAGC TCGTA AGCTT 

SEP3 F, GAAAG CTGTA CGAGT TTTGC AG 
R, TTGAA GGCAC ATTGG GTTCT 

ACT8 F, CTCAC GGAGA TCTTC ATCGT C 
R, TCTCT TGCTC GTAGT CGACA G 

PDF2 F, GCGCT CATCAA TAACT CCTT 
R, CAAAC ATGTT TGGAT GGTAC 

HDG1 F, TCAAC GGTTT TCTCG ACGAC 
R, CGTTC GATTT GAGTC TTCAT C 

HDG2  F, AGATC TATGT TCGAG CCAAA TATGC 
R, CTCTT CCCTT AATCG AGC 

HDG5 F, GGATC CATGT TGACA ATGGG AGAAG 
R, GTCTT GTTGT GCCTT CATT 

HDG12 F, CGTCA CACAC CTCAC CAGAT 
R, CTTCC ATAGC GGTCA CAG 

AP1  F, GTGAT GCTGA AGTTG CTCTT G 
R, CCACT GCTCC TGTTG AGC 

LFY  F, CTCTC CCAAG AAGGG TTATC 
R, TATAT CCCAG CCATG ACGAC 

UFO F, TCTCT CTTTT GCTTA TATCC CTTCA 
R, CGCTA AAAGG GCTAT AGTTC ATACA-3’ 

------------------------------------------------------------------------------------------------ 
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Figure II-1. Unrooted phylogenetic tree of HD-ZIP IV proteins. 	


The  protein  sequences  were  analyzed  using  CLUSTAL W (Thompson  et  al., 
1994). The tree was constructed by using the neighbor-joining method (Saitou and 
Nei, 1987).	


AT	
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Figure II-2.  Locations of  T-DNA insertions in mutant alleles  of  HD-ZIP IV 
genes used in this study.	


Exons are indicated by boxes and introns are indicated by lines. Black and gray 
colored boxes represent HD and the ZLZ domain. Boxes filled with stripes and dots 
represent the START domain and SAD, respectively.	
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Figure II- 3. Phenotype of wild type and pdf2 hdg stamens.	

(a) Variation of the number of stamens per flower.	

(b) Percentage of phenotypes observed in long (left) and short (right) stamens of wild-type and 
a series of mutants. Fertile stamens had yellow mature anthers with pollen grains. Infertile 
stamens had greenish anthers without any obvious pollen grains. The stamens with carpel-like	

structures such as stigmatic papillae and ovule were counted as carpelloid.	

(c) Length of filaments of fertile and infertile stamens. Error bars indicate standard deviation.	


a	
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(a)

(f)(e) (g)

(b) (d)(c)

Figure II-4. Floral phenotype of pdf2-1 hdg2-3.
(a-c) Mature flowers of wild type (a), hdg2-3 (b) and pdf2-1 hdg2-3 (c). Both sepals and petals were 
removed from a flower on the right side (a-c). Only sepals were removed from a flower in the center (c).
(d) From left to right: a wild-type sepal, a wild-type petal, and three petals typically observed in pdf2-1 
hdg2-3.
(e-g) Cross-section of a wild-type petal (e), a wild-type sepal (f), and a pdf2-1 hdg2-3 petal (g).
Bars = 1 mm (a-d), 100 µm (e-g).
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Figure II-5. SEM images of petals and stamens.	

(a-c) Adaxial surface of a wild type petal (a), a pdf2-1 hdg2-3 petal (b), and a wild type sepal (c).	

(d-f) Abaxial surface of a wild type petal (d), a pdf2-1 hdg2-3 petal (e), and a wild type sepal (f).	

(g) Wild type stamen.	

(h-l) a pdf2-1 hdg2-3 stamens with stigmatic papillae (h), with an abnormally enlarged anther	

and stigmatic papillae (i), with ectopic ovule-like structures (j, k), and with no anther (l).	


Bars = 10 µm (a-f), 100 µm (g-l). 	
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Figure II-6. Floral phenotypes of hdg single and pdf2-1 hdg double mutants.	

(a,b) hdg1-1(a) and pdf2-1 hdg1-1 (b).	

(c,d) hdg1-2 (c) and pdf2-1 hdg1-2 (d).	

(e,f) hdg5-1 (e) and pdf2-1 hdg5-1 (f).	

(g,h) hdg12-2 (g) and pdf2-1 hdg12-2 (h).	

Bars = 1 mm.	
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Figure II-7. Promoter activity of HDG1 examined by beta-glucuronidase (GUS) 
reporter system using 2.5-kbp region upstream of the HDG1.	

(a) Inflorescence of pHDG1::GUS introduced Col-0 plants.	

(b-e) Epidermis specific GUS staining pattern in floral meristem (b), young stamens 
and the center of carpels (c), inflorescence stems (d), and in young ovules (e).	

Bars = 1 mm (a) and 100 µm (b-e).	
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(   )	
 (   )	


Figure II-8. SEM images of petal surface of pdf2-1 hdg12-2. 	


Adaxial (a) and abaxial surface (b). Bars = 10 µm.	
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Figure II-9. Stamen phenotype of pdf2-1 hdg and atml1 hdg mutants other 
than shown in Figure II-3.	

(a) Variation of the number of stamens per flower.	

(b) Percentage of phenotypes observed in long and short stamens of wild-type and 
mutants.	
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Figure II-10. Expression analysis of AP3 and PI in mutant inflorescences.	

Real-time RT-PCR was performed using inflorescence apices containing floral 
buds younger than stage 13. Error bars indicate standard deviations of three 
independent samples. Asterisks indicate a significant difference from the wild 
type (Student’s t test; *P < 0.05 and **P < 0.1).	


kamata
長方形



Figure II-11. Expression analysis of floral organ identity genes in mutant inflorescences.	

(a) Real-time RT-PCR of AP2, AG and, SEP3. RNA was extracted from inflorescence apices	

containing floral  buds younger than stage 13.  Error  bars  indicate standard deviations of  three 
independent samples.	

(b-l) in situ hybridization patterns of AP1 (b-d), LFY (f-h), and UFO (j-l). Antisense probes for 
each gene were hybridized with wild type (b, f, j), pdf2-1 hdg1-1 (c, g, k), and pdf2-1 hdg2-3 (d, h, 
l) sections. Sense probes produced no signal in wild type flowers (e, i, k). Bars = 100 µm.	
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Figure II-12. Temporal and spatial expression patterns of AP3 and PI.	

(a) Temporal expression of AP3 and PI during flower development. Flowers were sorted 
into  four  groups  according  to  their  size.  More  than  two  biological  replicates,  each 
contained flowers from more than 150 independent inflorescences, were analyzed.	

(b-e) In situ hybridization of AP3 in wild type (b), pdf2-1 hdg1-1 (c), and pdf2-1 hdg2-3 
(d).	

Arrows indicate  signals  at  presumptive  whorls  2  and 3  at  stage  3  (d)  and arrowheads 
indicate signals at the basal part of petals and stamens at stage 5 (left) and stage 6 (right) 
(c). Wild-type sections were also examined with the AP3 sense probe (e).	

(f-i) In situ hybridization of PI in wild type (f), pdf2-1 hdg1-1 (g), and pdf2-1 hdg2-3 (h).	

Wild-type sections were also examined with the AP3 sense probe (i).	

(j-l) Confocal microscopy images of wild-type (j), pdf2-1 hdg1-1 (k), pdf2-1 hdg2-3 (l, m) 
inflorescences  expressing  pAP3::GFP.  An  arrow  indicates  the  GFP fluorescence  in  a 
developing petal. Numbers indicate floral stages.	

Scale bars = 100 µm.	
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Figure  II-13.  Floral  phenotype  of  plants  transformed  with  35S::AP3  or 
pPDF2::PDF2.	

(a,b)  Inflorescences  of  pdf2-1  carrying  35S::AP3  (a)  and  pdf2-1  hdg2-3  carrying 
35S::AP3 (b).	

(c,d) SEM images of adaxial surface (c) and abaxial surface (d) of a petal in pdf2-1 
hdg2-3 carrying 35S::AP3.	

(e-h)  Inflorescences  of  pdf2-1  carrying  pPDF2::PDF2 (e),  pdf2-1  hdg2-3  carrying 
pPDF2::PDF2  showing  wild-type  phenotype  (f),  and  pdf2-1  hdg2-3  carrying 
pPDF2::PDF2 producing short petals (g, h). Sepals and petals were removed from a 
flower on the right side (h).	

Bars = 5 mm (a, b, e-g), 10 µm (c, d), and 1 mm (h).	


kamata
長方形



Figure II-14. Detection of HD-ZIP IV transcripts in pdf2 hdg mutants.	

(a) Semi-quantitative RT-PCR of HD-ZIP IV genes in pdf2 hdg mutants. PCR was performed 
using gene-specific primers designed to amplify the region encompassing the HD-ZIP domain of 
each gene.	

(b) In situ hybridization of PDF2 in wild type and pdf2-1. The 5’-UTR of PDF2 mRNA was 
used as probe. No signal was detected in the wild type with the sense probe. Bar = 100 µm.	
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General Discussion 

 

I have shown several genetic factors that are involved in the growth and 

development of Arabidopsis thaliana. In the first chapter, I reported that the ACL1 gene 

was identical to SRFR1, which negatively regulates defense responses against pathogens. 

Constitutive activation of defense signaling pathway induced by SNC1 was found to 

cause the severe stunted growth such observed in the acl1-1 mutant. And in the next 

chapter, HD-ZIP IV genes, whose function in the plant development had been unknown, 

are suggested to be involved in the proper development and determination of organ 

identity in flowers. As far as I had investigated, it is uncertain that the phenotype of the 

HD-ZIP IV mutants is related to the perception of the information from the outer 

environment like pathogen infection. However, in the analysis of the acl1 mutants, it 

became clear that the ACL1 gene is a key regulator of plant growth correlated with the 

resistance pathway against pathogens, whose activity is also influenced by temperature 

and nutrient condition in the growth media. 

At present, I have only identified the genetic factors or mutations as an input, 

and plant growth phenotype as an output of the signaling pathways that regulate plant 

growth and development. I expect further studies would reveal the molecular 

mechanisms that link these inputs and outputs, and more details in the co-operative 

regulation of plant growth and development by genetic and environmental factors. In 

molecular aspects, lipid metabolism might be related to both of the signaling pathways 

involved in the growth of the acl1 and HD-ZIP IV mutants. EDS1 and PAD4, which are 
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essential for defense response pathways via TIR-NBS-LRR R genes, encode acetyl 

hydrolase with homology to eukaryotic lipases (Falk et al., 1999; Jirage et al., 1999). It 

was therefore suggested that they might play a role in lipid based signaling by 

hydrolysing a lipid substrate. On the other hand, epidermis-expressed HD-ZIP IV 

proteins regulate expression of the genes related to lipid metabolism (Abe et al., 2003; 

Wu et al., 2011), and it is also possible that extracellular lipid composition is important 

for the floral development. Although further investigations on the relationships between 

lipid metabolism and the regulation of defense signaling, or floral development are 

needed, it would be interesting to examine the involvement of the lipid metabolisms in 

the regulatory pathways of plant growth and development in future studies.  
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