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Abstract

Chapter I

acaulisl (acll) mutants are isolated in order to explore novel genetic factors
that regulate elongation of inflorescence stem. In the first part, I report on the
identification of an inversion mutation in the original acl/l-1 plants. Compared to the
original acll-1 plants, the “genuine” acll-1 plants, which is without the inversion, grew
larger and their inflorescence stems grew longer at 22°C and also at 24°C. In the acll-1
plants with the inversion, two genes that locate at each end of the inversion were
disrupted and full-length transcripts were not detected, and expressions of some genes
within and adjacent to the inversion were also altered. These results suggest the
possibility that the expression of multiple genes is involved in the enhancement of the
acll-1 phenotype by the inversion .

In the second part, 1 further investigated the acll/ mutants using the acll-1
mutant line without the inversion. I found Col accession-specific Resistance (R) gene,
SUPPRESSOR OF NPRI, CONSTITUTIVEI (SNC1I) as an essential gene for the acll
growth phenotype. Moreover, 1 identified the acl/ mutations in SUPPRESSOR OF
rps4-RLD (SRFRI), which is known as a negative regulator of defense responses and
SNCI activity. These results suggest that the loss of negative regulation of SNC1 causes
stunted growth in the ac// mutants. Consistent with the srfr/ mutants, which have
already been described, ac/l mutants showed constitutive activation of defense-related

genes at 22°C. I further observed the acll phenotype at intermediate temperatures



between 22°C and 28°C, at which the srfr/ phenotype was reported to be suppressed. It
was revealed that both stunted growth and increased expression of defense-related genes
were gradually repressed as temperature increases and almost completely suppressed at
temperatures above 26°C. Double mutant analysis revealed that the acll plant growth
depends not only on ENHANCED DISEASE SUSCEPTIBILITY1 (EDSI) but also on
PHYTOALEXIN-DEFICIENT4 (PAD4) and REQUIRED FOR MLAI2 RESISTANCEI
(RARI). However, salicylic acid accumulation and NONEXPRESSOR OF PR GENESI
(NPR1I)-dependent pathways were not essential for the acl/l growth phenotype. I also
discovered that higher ammonium concentration in the growth media alleviates the acl//
phenotype. Nitrogen might be involved in the growth regulation of the plants with

induced defense responses.

Chapter II

Development of the epidermis involves members of the class IV
homeodomain-leucine zipper (HD-ZIP IV) transcription factors. The Arabidopsis
HD-ZIP IV family consists of 16 members, among which PROTODERMAL FACTOR?
(PDF2) and ARABIDOPSIS THALIANA MERISTEM LAYERI (ATMLI) play an
indispensable role in the differentiation of shoot epidermal cells. However, the functions
of other HD-ZIP 1V genes that are also expressed specifically in the shoot epidermis
remain not fully elucidated. Construction of double mutant combinations of these
HD-ZIP IV mutant alleles showed that the double mutants of pdf2-1 with homeodomain

glabrousl-1 (hdgl-1), hdg2-3, hdg5-1 and hdgl2-2, produced abnormal flowers with



sepaloid petals and carpelloid stamens in association with reduced expression of the
petal and stamen identity gene APETALA3 (AP3). Expression of another petal and
stamen identity gene PISTILATA (PI) was less affected in these mutants. I confirmed
that the AP3 expression in pdf2-1 hdg2-3 was normally induced at initial stages of
flower development but attenuated both in the epidermis and internal cell layers of
developing flowers. Since the expression of PDF2 and these HD-ZIP IV genes during
floral organ formation is exclusively limited to the epidermal cell layer, these double
mutations may have non-cell-autonomous effects on the AP3 expression in the internal
cell layers. My results suggest that cooperative functions of PDF2 and other members
of the HD-ZIP 1V family in the epidermis are crucial for normal development of floral

organs in Arabidopsis.

Cited and revised from Summary of Kamata et al., 2013. “Mutations in
epidermis-specific HD-ZIP IV genes affect floral organ identity in Arabidopsis
thaliana” Plant Journal.75.430-440.




General Introduction

Arabidopsis thaliana is a model plant that widely used for plant genome
analysis (Somerville and Koornneef, 2002). Since a large collection of mutants and
transgenic plants, whose growth and development have been disrupted, is available, a
forward genetic approach has been practical for discovering genetic factors that regulate
morphogenesis in A. thaliana. In the year 2000, the whole genome of the A. thaliana
has been sequenced, enabling to presume the function of the genes that are not yet
experimentally verified. Thus, the reverse genetic approach is also being a powerful tool
to search and investigate whether and how the gene in concern is related to the plant
growth and development.

Most organogenesis in plants, as well as in A. thaliana, is occurred
postembryonically, unlike animals, in which the most of the organs are formed during
embryogenesis (Carles and Fletcher, 2003). Both shoot and root apical meristems of
plants maintain their activity and give rise to new organs after the germination, allowing
plants to continue growing and developing their bodies through their lifetime. Although
the postembryonic development of plant body is primarily genetically regulated, it is
also highly flexible to the environmental factors, including biotic factors such as heat,
cold, light, drought and nutrient condition, and biotic factors like attacks from pests and
pathogens, to adapt to the environmental changes. The effects from the environmental
changes on the plant growth and development cannot be ignored, as it has been
suggested that environmental stresses can reduce average yields by as much as >50%

for most major crop plants (Wang et al., 2003).



acaulisl (acll) mutants, which were previously isolated in a genetic screen
for defective plant morphology, were further discovered to be an unique type of mutants
that their growth phenotype is fully suppressed at higher growth temperatures (Tsukaya
et al., 1993). Even though the growth of Arabidopsis plants is affected by higher
temperature, the morphological modification in the acll plants is so drastic that it
cannot be explained by general effects from higher growth temperature (Thingnaes et
al.,2003). Thus I thought that ac// would be more than a tool for investigating a genetic
factor that regulate normal plant growth, and give us some more insight into a
relationship between a growth regulatory pathway and the environmental factors, such
as temperature. And in the first chapter of this thesis, I will report on the analysis on the
acll mutants. Since the ACLI gene had not been isolated, the biggest issue on the acl/
analysis was to identify the ACLI gene, and to make it clear which genetic pathways are
involved in the acll plant growth. I identified some genetic factors that affect the acll
phenotype, and eventually identified the ac// mutations in a negative regulator of
defense responses against pathogens.

As shown in the research on the ac// mutants, and also in some other
acll-like mutants (Gou and Hua, 2012), responses against pathogen attacks can
dramatically modify the plant morphology. When plants are exposed to such pathogens,
epidermis, the outermost cell layer that covers the plant body, plays the critical roles for
the defense and resistance. Shoot epidermis is also important for organ separation and
defense responses against drought or other environmental stresses as well as in the

integrity of organs. Moreover, it has been reported that epidermis-specific genes are
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involved in the regulation of organ development in plants (Savaldi-Goldstein et al.,
2007; Eriksson et al., 2010). Therefore, it is likely that epidermis is an important cell
layer for regulating both responses against environmental factors and plant growth. In
the second chapter, I adopted reverse genetic approach to investigate the effects of
T-DNA insertion mutations in the class IV homeodomain-leucine zipper (HD-ZIP IV)
gene family, most of which are confirmed to be specifically expressed in epidermis

(Nakamura et al., 2006), on plant growth and development.
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Chapter I. Stunted growth of acaulisl (acll) mutants is dependent on

constitutive activation of defense response pathways.

Introduction

For exploring genetic factors that are essential for proper morphogenesis of
Arabidopsis thaliana, a forward genetic approach has been a useful tool. Tsukaya et al.
(1993) previously screened for mutants defective in the elongation of the inflorescence
stem and able to identify five complementary groups of mutants, termed acaulis (acl),
for their “stalkless” morphology. Short inflorescence stems and reduced number of
flowers in the acl mutants were due to early proliferative arrest of apical inflorescence
meristems. The number of rosette leaves in the ac/ mutants is approximately the same as
in wild-type plants, indicating that the timing of transition from vegetative to
reproductive phase is not affected. However, except for the acl5 mutant, the acl mutants
exhibited more or fewer defects in leaf morphology (Tsukaya et al., 1993; Hanzawa et
al., 1997; Akamatsu et al., 1999). Since the acl phenotype cannot be rescued by the
exogenous addition of several growth regulators and phytohormones, the stunted
growth of the ac/l mutants is considered to be different from the dwarfism of known
phytohormone-related mutants (Tsukaya et al., 1993; Hanzawa et al., 1997; Akamatsu
et al., 1999). The only ACL gene identified was ACL5, which encodes thermospermine
synthase (Hanzawa et al., 2000; Kakehi et al., 2008). However, it is still uncertain

which genetic pathway is involved in the regulation of plant growth and development of
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other acl mutants.

acll-1 is the most severely stunted mutant among the ac/ mutants. Cell
elongation and maturation are likely to be inhibited soon after the cells differentiate in
the acll-1 plants, as implied by the drastic reduction of cell length in the acll-1 stems
and the loss of intercellular spaces in the acll-1 leaves (Tsukaya et al., 1993). In order
to determine the role of the ACLI gene within the developmental network of
inflorescences, double mutants were generated between the acl/-I mutant and some
developmental mutations that affect the morphology of inflorescences and/or flowers.
However, the function of the ACLI gene has been shown to be genetically independent
of the shoot- and inflorescence-development genes, such as APETALAI (API),
CLAVATA (CLVI1), LEAFY (LFY) and TERMINAL FLOWERI (TFLI) (Tsukaya et al.,
1993).

It has also been reported by Tsukaya et al. (1993) that stunted growth of the
acll mutants is restored at higher temperature, such as 28°C. Ambient temperature is
known to influence aspects of the appearances of plants, such as leaf size and stem
length (Thingnaes et al., 2003; Atkin et al., 2006). However, the dramatic alteration in
morphology of the acll phenotype at high temperature cannot be explained by general
developmental variations controlled by ambient temperature. Temperature-sensitive
stunted phenotypes similar to the ac/l mutants are often observed in suppressor of
NPRI, constitutivel-1 (sncl-1), suppressor of nprl-5-based salicylic acid insensitivity4
(ssi4), bonzail (bonl) and constitutive expresser of PR genes 30 (cpr30), all of which

have constitutive activation of defense responses against pathogens (Hua et al., 2001;
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Shirano et al., 2002; Yang and Hua, 2004; Gou et al., 2009). Effector-triggered
immunity (ETI) is a major defense response in plants that is induced by direct or
indirect recognition of pathogen avirulence effectors by plant resistance (R) proteins
(Jones and Dangl 2006; Alcazar and Parker 2011). In Arabidopsis, a majority of R
proteins possess a nuclotide binding site and leucine-rich repeat (NBS-LRR) motif
either with a Toll/interleukin-1 receptor (TIR) domain or a coiled-coil (CC) domain at
the N terminus (Dangl and Jones, 2001). For the activation of downstream defense
response pathways, TIR-NBS-LRR type R proteins require ENHANCED DISEASE
SUSCEPTIBILITY1 (EDSI) and PHYTOALEXIN-DEFICIENT4 (PAD4) genes, both of
which encode a protein with homology to lipases/acyl hydrolases (Falk et al., 1999;
Jirage et al., 1999; Feys et al., 2001). On the other hand, CC-NBS-LRR type R proteins
require NON RACE-SPECIFIC DISEASE RESISTANCEI (NDRI), which encodes a
putative membrane-bound protein (Century et al., 1995; 1997; Aarts et al., 1998). ETI is
usually accompanied by a hypersensitive response involving rapid and local
programmed cell death, which restricts further spread of the pathogen. Furthermore,
plants produce salicylic acid (SA) and accumulate defense molecules such as
pathogenesis-related (PR) proteins through systemic acquired resistance (SAR). SAR
provides the plants with long-lasting protection against a broad spectrum of pathogens
(Ryals et al., 1996; van Loon, 1997).

The cloning of the ACLI gene will give us the answer how the acll plant
growth is regulated. During molecular mapping of the acl/ mutations, I identified an

inversion mutation in the original acl/-1 mutant line, and a Col accession-specific
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TIR-NBS-LRR R gene, SUPPRESSOR OF NPRI, CONSTITUTIVEI (SNCI) as an
indispensable gene for the acll phenotype to be exhibited in the presence of the acl/
mutations. I eventually identified the ac// mutations in SUPPRESSOR OF rps4-RLD
(SRFRI), a negative regulator of defense responses, suggesting that the acl/ phenotype
is caused by a constitutive activation of defense response pathways. I further analyzed
the acll mutants and will report on several phenotypes that yet have not been described

in previous studies in the acll/srfr] mutants.

Results

Part 1
An inversion identified in acl/l-1 mutant functions as an enhancer of

the acll-1 phenotype

Identification of an inversion mutation in the original acll-1 mutant and isolation
of novel acll-1 line without the inversion

Previous research showed that the acll-I mutation locates close to
AGAMOUS (AG) on chromosome 4 (Tsukaya et al., 1993). My early results from
molecular mapping suggested a linkage of the acll-I phenotype between a
cleaved-amplified polymorphic sequence (CAPS) marker, SC5, and the polymorphism
MASC04642 on chromosome 4 (Figure I-1a). The acll-1 mutant was induced by X-ray

irradiation and exhibits a more severe phenotype than the EMS-mutagenized acll-3
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mutant. Thus, I suspected that the chromosomes of the acl/-1 mutant might be seriously
disrupted. In order to explore chromosome disruptions, approximately 260 kb of the
genomic region from Ar4g22290, the gene nearest to MASC04642, to At4g21690 was
examined by amplifying fragments covering the genomic regions by PCR. As the result,
two PCR products including At4g21960, which encodes a peroxidase (Apel and Hirt,
2004; Welinder et al., 2002), and At4g22250, which encodes a zinc finger protein
(Kosarev et al., 2002), were absent in the acll-1 mutant (Figures I-1a,b). The genomic
regions between these two genes, which are located at a distance of approximately 120
kb, were found to exist in the acll-1 mutant (data not shown). Every PCR product was
present in the acll/-3 mutant, which indicated that the absence of the two PCR products
was specific to the acll-1 mutant. One possibility was that the genomic region between
At4g21960 and Ar4g22250 was inverted. To investigate this possibility, PCR
experiments were performed using combinations of primers at Ar4g2/960 and
At4g22250. Novel DNA fragments were amplified in the acll/-I mutant and their
sequences suggested that At4g271960 and At4g22250 were cleaved, inverted and fused
each other (Figure I-1c,d). I also cloned At4g21960 and At4g22250 from the acll-3
plants and found that there was no mutation. Since the T-DNA insertion lines in
At4g21960 and At4g22250 had no obvious growth defects (data not shown), the loss of
either of Atr4g21960 or At4g22250 is unlikely to be responsible for the acll-1
phenotype.

I crossed the original acll-1 plants to Col-0 to evaluate the segregation of the

acll-1 phenotype and the inversion. The F2 population was segregated into 496 (73%)
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wild-type plants and 180 (27%) acll-I plants at a 3:1 ratio (x> = 0.716). I further
examined 371 wild-type plants and 146 acl/l-I plants for the inversion (Table I-1).
Regarding the inversion, the segregation at +/+: inv/+: inv/inv at the ratio of 1:2:1 was
less reliable (x*0.025 (2) = 7.38 < x> = 9.07 < x> 0.010 (2) = 9.21). The acll-I
phenotype did not necessarily cosegregate with the inversion, and the inversion is
independent of the cause of the acll-1 phenotype. The recombination rate between the
acll-1 phenotype and the inversion was estimated to be 15.4% according to the
segregation of the F2 plants. To simplify descriptions, I refer to the newly isolated
acll-1 plants without the inversion as acl//-1 +/+, the original acll-1 plants with the
inversion as acll-1 inv/inv, wild-type plants as Col +/+, and the wild-type phenotype

(ACLI/ACLI) plants with the inversion as Col inv/inv.

Expressions of genes related to the inversion

Inversions can disrupt a gene at one of its breakpoints, and furthermore, it is
expected that inversions alter the expression of a gene near a breakpoint because of a
change in its chromosomal environment. Expression of some genes, which locate within
and adjacent to the inversion, differed among the four plant strains: Col +/+, Col inv/inv,
acll-1 +/+, and acll-1 inv/inv (Figure I-2a). I observed a decrease in expression of
At4g22270 (IMMUTANS) (Wu et al., 1999), an increase in At4g22214 (defensin like
protein) (Silverstein et al., 2005), and a slight increase in At4g22235 (defensin like
protein) in two inv/inv plants, Col inv/inv and acll-1 inv/inv. In the acll-1 inv/inv plants,

we found increased expression of Ar4g22050 (aspartyl protease family protein) and
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At4g22070 (WRKY DNA-BINDING PROTEIN 31) (Eulgem et al., 2000) and decreased
expression of Ardg21990 (APS REDUCTASE 3) (Houston et al., 2005), At4g22010
(SKUS SIMILAR 4) (Sedbrook et al., 2002) and Ar4g22212 (defensin like protein).
Among the genes investigated, At4g22080 (pectate lyase family protein), At4g22090
(pectate lyase family protein), At4g22210 (Cys-rich protein), At4g22217 (defensin like
protein) and Ar4g22230 (defensin like protein) decreased in both the acll/-I1 plants,
regardless of the inversion. The expression of Ar4g22030 (F-box family protein) and
At4g22100 (glycosyl hydrolase family 1 protein) was decreased in the Col inv/inv plants
and the acll-1 +/+ plants, and even further decreased in the acll-1 inv/inv plants
compared to the Col +/+ plants. I wondered if the increase or the decrease in the
expression level of these genes is due to mutations in their genomic sequences.
However, the genomic sequences of these genes cloned from acl/l-1 plants were
identical to the wild-type.

Although full-length transcripts of Ar4g21960 and At4g22250 were not
detected in the inv/inv plants (Figure I-1e), partial transcripts from the fused fragments
of At4g21960 and At4g22250 were detected in the inv/inv plants (Figure I-2b). In the
case of At4g22250, the partial transcripts were rather increased in the plants with the
inversion. Taken together, these results from expression analysis suggest that the
inversion has an influence on the expression of a wide range of genes.

In the acll-3 mutants, the expression patterns of the genes related to the
inversion, including At4g21960 and At4g22250, were similar to those of the Col +/+

plants (data not shown).
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The acll-1 phenotype was enhanced by the inversion

While there was no apparent difference between Col inv/inv plants and Col
+/+ plants (Figure 1-3a, Table 1-2) and between acll-3 inv/inv and acll-3 +/+ plants
(Figure 1-5), the comparison of the acll-1 +/+ plants and the acll-1 inv/inv plants made
me realize the difference between these two genotypes. Both the acll-1 +/+ plants and
the acll-1 inv/inv plants exhibited the acll-1 phenotype with short inflorescence stems
and small curly leaves. However, the rosettes of the acll-1 inv/inv plants appeared
slightly smaller than those of the acll-1 +/+ plants (Figure I-3a). The height of the
acll-1 +/+ plants was significantly different to that of the acll-I inv/inv plants,
indicating that the growth defects of the ac//-1 mutants are enhanced by the inversion
(Table I-2).

The reduction of the cell length was significant in acll-1 background in all
types of tissues examined; cells in the epidermis, the outermost layer of cortex, and the
pith (Table I-3, Figure I-4a). The reduction in the size of the epidermal cells was most
severe, and the cells in pith also were significantly affected by the acll-1 mutation. The
acll-1 inv/inv plants exhibited more severe reduction in the cell length than the acll-1
+/+ plants. Unlike cells in epidermis and pith, the length of cortex cells was less
affected. In addition to the severe reduction in length, the differentiation of cells
appeared to be inhibited in the inflorescence stems of the acll/-1 +/+ plants and the
acll-1 inv/inv plants.

Both the acll-1 +/+ plants and the acll-1 inv/inv plants were able to restore
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their plant morphology when grown at 28°C as previously reported (Tsukaya et al.,
1993). Plants tend to become more slender at higher temperatures, as the result of the
general effects of higher temperature. These general effects of higher temperature were
observed in the Col inv/inv plants as well as in the Col +/+ plants throughout the
experiments. Correspondingly, the cells became longer at higher temperature (Figures
I-4b.c). The restoration of the acll-1 phenotype to wild-type was not complete at the
intermediated temperature 24°C (Figure 1-3b). However, the difference between the
acll-1 +/+ plants and the acll-1 inv/inv plants became more obvious at 24°C. The
inflorescence stems of acll-1 +/+ plants elongated to approximately 5 cm in length
(average + standard deviation, 52 + 34 cm, n = 12). On the other hand, the
inflorescence stem of acll-1 inv/inv plants was as short as that grown at 22°C. At 24°C
the length of cells, including those in the cortex, became significantly different between
the acll-1 +/+ plants and the acll-1 inv/inv plants (Table I-3). While neither the acli-1
+/+ plants nor the acll-1 inv/inv plants fully restored the acll-1 phenotype at 24°C, the
inflorescence stems of both the acll/-1 +/+ plants and the aclI-1 inv/inv plants elongated
to a similar length to those of Col plants at 26°C and showed complete restoration to
wild type (Table I-4, Figures 1-4b,c). There was no difference between the acll-1 +/+
plants and the acll-1 inv/inv plants at temperatures exceeding 26°C (t = 0.014 for plant

height at 26°C).
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Part 2
Stunted growth of acaulisl (acll) mutants is dependent on
constitutive activation of defense response pathways induced by

SUPPRESSOR OF NPR1,CONSTITUTIVEI (SNCI)
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Expression of defense related genes are increased in acl2-1, but the acl2-1
phenotype was not fully suppressed by high temperature and eds/-2 mutation

acl2-1 is a semi-dominant mutation that causes reduction of stem length and a
slight abnormality in leaf morphology (Tsukaya et al., 1993). ACL2 appeared to regulate
stem and petiole length via control of cell length for the most part (Tsukaya et al., 1995;
2002). ACL2 was mapped to an interval of <2 ¢cM on chromosome 1. However, the
precise effect of ac/2-1 mutation on the plant growth in a molecular level is not yet been
confirmed (Tsukaya et al., 1995). I observed that the growth defect in the ac/2-1 mutant
is alleviated at higher temperatures (Figure I-14a). Although a complete restoration was
not observed even at 28°C, temperature-dependent growth potential of the aci2-1
mutant suggests a possibility that the ac/2-1 phenotype is also related to the constitutive
activation of defense responses similar to the ac// mutants. By expression analysis, PR/
and PR2 were found to be highly expressed in the acl2-1 mutant, while the key
regulatory genes essential for R gene-mediated defense response, EDSI, PAD4 and
NDRI, were only moderately increased (Figure 1-14b). Different from the acl/ mutants,
the PRI and PR2 expression were not obviously altered by the increases in temperature,
suggesting that activation of defense responses in the acl2-1 mutant is more tolerant to
higher temperatures than those in the ac// mutants.

The growth defect was most restored in acl2-1 edsl-2 double mutant, though

the restoration was not complete, among the double mutants generated between acl2-1
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and mutants of key regulatory genes in defense responses (Figure I-14c). Plant growth
of acl2-1 pad4-1 and acl2-1 ndrl-1 double mutants was also restored to some degree,
suggesting that the acl2-1 phenotype is partially dependent on EDSI and, less on PAD4
and NDRI. acl2-1 sid2-2 double mutant slightly restored the mutant phenotype,
implying a more or less influence of SA on the acl2-1 growth. However, npri-I
mutation had no effect on the acl2-1 phenotype.

I further examined the acl2-1 mutant growth on different nitrogen conditions.
However, different from the acll/ mutants, the ac/2-1 mutants grown on the higher
concentration of ammonium were not so much altered from those grown on low
concentration of ammonium, and nitrogen condition had no striking effects on the

acl2-1 growth (Figure I-14d e).

Discussions
In the part 1, I isolated the “genuine” acll-1 plants without the inversion. By
comparing these plants to the original acll-1 plants with the inversion, the inversion

was likely to be function as an enhancer of the acll-1 phenotype.

The inversion enhanced the acll-1 phenotype and altered expression patterns of
various genes
In the previous study, there was a description that the length of the

inflorescence stems of acll-1 plants varied among plants, even though they were grown
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side by side under the same conditions at 22°C (Tsukaya et al., 1993). It is possible that
this unknown factor that influences the growth of the original acl//-1 mutants is the
inversion identified in this study. I observed that the height of plants, the size of rosettes,
and the length of cells were remarkably reduced in the acll-1 inv/inv plants compared
with the acll-1 +/+ plants at 22°C (Tables I-2 and I-3, Figures I-3 and I-4). Moreover,
the inversion functioned more effectively as an enhancer of the acl/-1 phenotype when
plants were grown at 24°C, inhibiting partial restoration of the acll-1 phenotype in the
acll-1 inv/inv plants (Figures [-3b and I-4b,c). When the acll-1 phenotype was fully
restored to wild-type at 26°C or 28°C, the difference between the acll-1 +/+ plants and
the acll-1 inv/inv plants disappeared. Considering that the inversion itself was not
sufficient to significantly alter plant morphology in the Col-0 and acll-3 backgrounds
(Table I-2, Figures I-4 and I-5), it seems that the inversion enhances the defects in the
plant growth only when severe growth defects are already present, such as in acl/l-1/
plants.

I found that, in addition to loss of full-length transcripts of At4g27960 and
At4g22250, the expression patterns of some other genes within and adjacent to the
inversion and were altered by the inversion (Figure [-2). Although it is not yet
confirmed, it is possible that the genes distant from the inversion are also affected by
the inversion and that organ-specific and/or age-specific expression is altered. I propose
that multiple genes are complicatedly involved in the enhancement of the acll-I
phenotype.

The original acll-1 mutant was obtained by X-ray irradiation. In most higher
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plants, including Arabidopsis, DNA double-strand breaks caused by ionizing irradiation
(fast neutron, X-ray, and y-ray) are predominantly repaired by non-homologous
end-joining rather than by simple ligation or accurate homologous recombination. In
non-homologous end-joining, any end can fuse with any end. Thus, the repair of
double-strand breaks in plants is suggested to be error-prone (Gorbunova and Levy,
1999). Sometimes, the repair of double-strands breaks has very complex DNA
rearrangements, combining deletions, insertions, inversions and duplications of the
original sequence (Shirley et al., 1992), and that was what was confirmed at the border

regions of the inversion isolated from the original acll-1 (Figure I-1d).

In the part 2, further studies on the ac// mutants were carried out using the

acll-1 +/+ line isolated in the part 1.
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The acl2 mutation causes constitutive activation of defense response pathways

As shown in Figure I-14b, the acl2-1 mutant showed increased expression of
defense related genes, suggesting the constitutive activation of defense responses.
However, different from the acll/ mutants, the trigger of defense responses in acll2-1
seems to be more tolerant to higher temperatures, since 28°C was not sufficient to fully
repress the elevated expression of defense related genes in acl/2-1 (Figure I-14a.b). Also,
the acl2-1 growth phenotype was not completely restored neither by EDSI nor NDRI
(Figure 1-14c). Considering an early termination of inflorescence stem growth
associated with defense responses that is independent of EDSI and NDRI, the acl2-1

mutation might have something in common with wuni-/d, which caused by a
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gain-of-function mutation of CC-TIR-LRR type or R gene (Igari et al., 2008). uni-1d
phenotype requires ER receptor kinase family members (Uchida ef al., 2011a) and, in
fact, inflorescence elongation of the ac/2-1 mutant alleviated in Ler background (Prof.
Atsushi Kato, personal communication). The uni-1D/UNI protein interacts with
regulatory particle triple-ATPase (RPT) subunit 2a of the 19S regulatory particle in the
26S proteasome, which is turned out to be responsible for inducing both defects in
morphology and defense responses (Chung and Tasaka, 2011), although I am not sure
for the involvement of RPT2a in the acl2-1 mutant phenotype at this time. Further
investigations on the genetic factors involved in the ac/2-1 phenotype and on the acl2-1
mutation itself are needed to understand the mechanisms regulating the plant growth

and defense responses in the acl/2-1 mutant.

Materials and Methods

Plant lines

Arabidopsis thaliana accession Columbia (Col-0) was used as the wild type. acll-1
(Tsukaya et al., 1993; Kamata and Komeda, 2008), acll-3, acl2-1 (Tsukaya et al., 1993),
pad4-1 (Glazebrook et al., 1996), ndri-1 (Century et al., 1995), npri-1 (Cao et al.,
1994), rarl-21 (Tornero et al., 2002), sid2-2 (Wildermuth et al., 2001), sncl-11
(SALK_047058) and rpp4 (SALK_017521) (Yang and Hua, 2004) mutants were
previously described. The eds-2 mutation introgressed into Col-0 background was used

as the edsI-2 mutant in this study (Parker et al., 1996). 2080 (acll-4) was isolated from
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the pool of T-DNA insertion mutants, by Goro Horiguch, and kindly gifted. 2080 was
backcrossed to Col-O for more than 5 times. Backcrosses indicated that the 2080
phenotype is caused by a recessive mutation at a single genetic locus, which does not
link with the T-DNA insertion. 2080 was found to be allelic with acll-1 and acll-3 by
the phenotype of F1 plants between them. Transgenic line SGT754-5-3 having a T-DNA
insertion in the 3rd intron of Ar4g21960 (La background), and SALK_018861 and
SALK_044071 lines having T-DNA inserted in the promoter region and 3’UTR of
At4g22250 respectively (Both are Col background) were isolated from Salk T-DNA
lines (Alonso et al., 2003).

To obtain double mutants, ac/l/ mutants were crossed with each defense
mutant. F2 plants expressing the acll phenotype and heterozygous to the defense
mutation were selected and then self-fertilized. PCR primers used for genotyping

defense genes are listed in Table I-9.

Plant growth

Seeds were sown on water-moistened rockwool, which placed on vermiculite in pots,
and placed in darkness at 4°C for 3 days before they were transferred to growth
chambers. Unless noted, the growth chambers were set at 22°C under long-day
conditions (16 hours light/ 8 hours darkness) and plants were watered with the modified
MGRL medium (Kamata and Komeda, 2008), which contains 10 mM nitrate and 0.5
mM NH,CI as nitrogen source. For plants grown on plates, surface-sterilized seeds were

sown on the media containing 2 % (w/v) sucrose and 0.8% (w/v) bacto agar (BD).
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Growth temperature was altered to 24°C, 26°C or 28°C and MS (Wako), 1/2X MS,
nitrogen-free medium was used if necessary. The nitrogen-free medium contained 5
mM CaCl, instead of 5 mM Ca(NO,), and NH,Cl was excluded from the MGRL

medium. Media were additionally supplemented with nutrients as described in the text.

Map-based cloning of acll

acll mutants were crossed to Ler and F2 to F4 progenies exhibiting the acl/l phenotype
were used for recombination analysis using cleaved-amplified polymorphic sequence
(CAPS) and simple sequence length polymorphism (SSLP) markers based on the
information from the Arabidopsis Information Resource (TAIR, www.arabidopsis.org).
Additional derived CAPS (dCAPS) markers at polymorphisms between Col and Ler
accessions, designed based on information available from TAIR (Table I-7). The 159 Kb
region including RPP5 gene cluster was amplified separately as short overlapping
fragments by PCR (Ex taq, Takara Bio) and sequenced with BigDye® Terminator v.1.1

Cycle Sequencing kit (Applied Biosystem).

Examination of the inversion

Genomic DNA was extracted from rosette leaves as described by Edwards et al. (1991).
Primers used for the examination of the existence of genomic region from At4g22290 to
At4g21690 are designed more than 50 bp outside from the gene regions annotated by
TAIR. Expected PCR fragments were less than 7 kb and amplified with Ex taq (Takara

Bio). PCR fragments were then treated with several restriction enzymes and cleaved
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into shorter fragments to identify the changes in the length of fragment more precisely
by agarose gel electrophoresis. In the case of genes longer than 7 kb, genes were
separated in two parts to ensure the amplification by PCR. For the amplification of
At4g21960, NK215; 5’-GAGAT CAGTA AAATA GATCG-3’ and NK216; 5’-TTTAA
GGAGC GTGCA TTGC-3’ were used as primers. For At4g22250, NK232; 5’-TATAA
TGTCA TCATC ACTGC-3’ and NK240; 5’-TCGAG TATCT CAATG ATCGG-3’ and
for Ard4g21920, NK 248; 5-AAACA TCAAA CTTCA CGGAG-3’ and NK249;
5’-AATAC GTAGT TTTGA CCTGG-3" were used. PCR fragments of approximately
2.2 Kbp, 0.8 Kbp and 3.3 Kbp in length were obtained by PCR respectively. NK255
5’-AGATC ACATT GAATC TGCAG-3’ and NK256 5’-TAAGT CAGTG TGGAA
CTAAG-3" were designed at non-gene-coding region between At4g21960 and
At4g21970 to obtain 1.7 Kbp PCR products used just for the positive control of PCR
performed in Figure I-1. For detecting the conjugated fragments of Ar4g27960 and
At4g22250, NK215 and NK240 were used to obtain approximately 1.3 Kbp PCR
fragment fragment and NK216 and NK232 were used to obtain approximately 1.6 Kbp
PCR fragment only from the inversed DNA. Conjugated fragments were sequenced

with BigDye® Terminator v.1.1 Cycle Sequencing kit (Applied Biosystem).

Expression analysis for genes related to the inversion mutation.
Plants were grown for 10 days on the agar plate at 22°C under long-day conditions.
RNA was extracted with RNeasy® plant mini kit (QIAGEN). Extracted RNA was

treated with cloned DNasel (Takara Bio). Reverse-transcriptase reaction was carried out
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with Random 9 mers to synthesize cDNA from every type of transcripts. Both RT
(reverse transcriptase) reaction and PCR (polymerase chain reaction) were preformed
with RNA PCR kit (AMV) Ver.3.0 (Takara Bio). Gene specific primers used for PCR
were NK244; 5’-ACTGC GCGGT GGAGT CATG-3’, NK856; 5’-GTAGC ATGTG
AGGGA CGTGG-3’, NK398; 5’-AGACG GAGAT TCCAG GTTG-3°, NK239;
5’-TTAGA GTTTC CGTTA CCGAG-3’, NK349; 5’-CTAGG AGGGC GACGA
GGC-3’, NK262; 5’-TTTAT GACAC GTGCA GGG-3, NK350; 5’-TCGTG ACCGC
TCATC TGTC’-3°, NK263; 5’-GTGCT CTAGA GAATT GTGGC-3’. EFla
(A15g60390, as a control) were amplified with NK24; 5°’-ACTTG CAGCT ATGGG
TAAAG-3" and NK25; 5’-CGAAA GTCTC ATCAT TTGGC-3’. For semi-quantitative
RT-PCR of the genes located near and within the inversion, primers listed on the Table

I-10 were used.

Semi-quantitative RT-PCR for genes related to defense responses

Total RNA from the shoot of 10 day-old seedlings grown on sterile agar plates was
extracted using RNeasy plant mini kit (Qiagen). The first-strand cDNA was synthesized
from 1 ug of total RNA in a 20 pl reaction volume using the PrimeScript RT-PCR kit
(Takara Bio) with Oligo-dT primer. Sequences of gene-specific PCR primers are
provided in Table I-11. For Semi-quantitative RT-PCR analysis, the primers were
designed to span introns to avoid amplification from contaminated genomic DNA,
except for At4g16880. PCR runs consisted of 24-32 cycles, depending on the linear

range of PCR amplification for individual genes. PCR cycle included incubations at
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94°C for 30 sec, at 55°C for 30 sec, and at 72°C for 90 sec. PCR products were detected
by electrophoresis through 1.2% agarose gels, depending on the length of PCR product
and stained with ethidium bromide. All RT-PCR procedures were repeated at least three

times with similar results.

Observation of cellular structure and measurement of cell length

Inflorescence stems of plants grown for 40 days after germination were fixed overnight
in FAA [70% ethanol: formaldehyde: acetic acid = 18: 1: 1 (v/v)], dehydrated in an
ethanol series and embedded in Technovit resin as described in manual (Kluzer). 5 ym
thick sections were stained with 0.05% (w/v) toluidine blue O dissolved in 1% (w/v)
Na,BO,0; 10H,0 aquous solution. Sections were photographed (E-330, Olympus)
under light microscopy (eclipse 80i, Nikon) and cell length was measured using
Photoshop 8.0 (Adobe systems). Three individuals from each strain and each

temperature were used for analysis.

Trypan blue staining

Leaves were stained with lactophenol trypan blue solution [10 ml of lactic acid, 10 ml
of glycerol, 10 g of phenol, and 10 mg of trypan blue dissolved in 10 ml of distilled
water] by boiling for approximately 1 min. Leaves were then cleared in 2.5 g/ml chloral

hydrate solution and examined under a light microscope. Dead cells are stained blue.

Preparation of the genomic DNA library and next-generation sequencing
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1 g of frozen seedlings of Col, acll-1 and acll-3 were individually ground in liquid
nitrogen to a fine powder. Nuclei fraction was enriched using “Semi-pure Preparation of
nuclei procedure” of CelLytic PN Isolation/Extraction Kit (Sigma-Aldrich), and
genomic DNA was isolated using Plant DNeasy mini kit (Qiagen). 0.5 ug of DNA was
sheared using Covaris S2 (Covaris) at 100-bp setting. After being purified using a
QIAquick PCR purification kit (Qiagen), the DNA library was prepared using Genomic
Adaptor Oligo Mix (Illumina) as the DNA adaptor and NEBNext DNA Sample prep
Reagent Set 1 (New England Biolabs) according to manufacturer’s manual. Ligation
products were size-selected by electrophoresis on 2% (w/v) agarose gel. 200-250 bp
DNA fragments were excised from agarose gel and purified using QIAquick gel
extraction kit (Qiagen). Then adopter-modified DNA fragments were enriched by PCR
with PCR Primers 1.1 and 2.1 (Illumina) and KAPA HiFi HotStart ReadyMix (KAPA).
The PCR program was 98°C for 30 sec, followed by 10 cycles of 98°C for 10 sec, 65°C
for 30 sec and 70°C for 30 sec. PCR products were gel-purified using a QIAquick gel
extraction kit. Sequencing with illumina-GAIIx and informatics were performed as

described in Uchida ef al. (2011Db).
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Tables

Table I-1. Segregation of acl/-1 phenotype and the inversion

Wild type (+/+) Hemizygote (inv/+) Homozygote (inv/inv)
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Table I-2. Measurement of plant height at 22°C

Genotype Average + standard deviation (cm) t-value
acll-1 +/+%* 6.0 +1.8 (n=39)

acll-1 inv/inv* 43 +1.2 (n=31) t=4.52¢
Col +/+%* 179.7 +174 (n=16)

Col inv/inv** 1800 +£29.1 (n=7) t=0.0317%

Plants were grown for 40 days.

*Total plant height including the rosette and the inflorescence stem.

**Length of the inflorescence stem was measured as plant height.

tDifference between acll-1 +/+ and acll-1 inv/inv is significant (significance level: o = 0.05).

11 Difference between Col +/+ and Col inv/inv is not significant (significance level: o = 0.05).
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Table I-3. Comparison between cell length of +/+ and inv/inv plants

Epidermis Cortex Pith n*
(pm) (pm) (pm)
22°C acll-1 +/+ 430+ 14.6 28.5+6.38 780+250 50
22°C acll-1 inv/inv 212+£925 26.1 £6.84 436+ 11.1 20
t-value 6.19¢ 1.36 591+
22°C Col +/+ 2met** 266.7 + 1004 402 £ 8.61 1753 +£489 20
22°C Col inv/inv 2met** 2432 +£540 385+11.9 1972 +39.1 30
t-value 1.07 0.552 -1.75
22°C Col +/+ 3met** 232.1+544 31.2+9.03 178.1 £54.6 30
22°C Col inv/inv 3met** 2459 £56.5 31.7+7.96 159.8 £43.7 20
t-value -0.803 -0.209 1.25
24°C acll-1 +/+ 2met** 1126 +623 28.6 £8.71 92.7+£355 40
24°C acll-1 inv/inv 2met** 256+724 364+109 72.1+39.3 20
t-value 6.20 -2.99% 2.04%
24°C acll-1 +/+ 3met** 2050+ 83.1 31.5+£9.56 128.1+31.2 30
24°C acll-1 inv/inv 3met** 232+ 144 13.7+6.30 374 +18.6 30
t-value 11.81% 8.53%F 13.67%

1 Difference is significant (significance level: o = 0.05).

* Total number of cells assayed for calculate t-value.

** Metameric type of apical meristems: 2met, the type 2 metamer, main inflorescence stem differentiates cauline leaves
with elongating internodes; 3met, the type 3 metamer, main florescence stem bears flowers without bracts formed upon

the type 2 metamer (Schultz and Haughn, 1991).
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Table I-4. Measurement of plant height at 26°C

Genotype Average + standard deviation (cm) t-value
acll-1 +/+%* 2276  +£27.5 (n=12) t=-0.350F
acll-1 inv/inv* 227.3 +52.1 (n=23) t=-0.242 7
Col +/+%* 2214 +545 (n=12)

Col inv/inv* 2310  +£58.7 (n=16) t=-0.519F

Plants were grown for 40 days.
*Length of the inflorescence stem was measured as plant height.

THeight of the plants is not significantly deviated from Col +/+.
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Table I-5. Frequency of recombination between acl//-3 and molecular markers on chromosome 4

Marker segregation in F2 Recombination
Marker Kb Col/Col : Col/Ler : Ler/Ler frequency (%)
LD 1,124 8: 5:2 30.0
nga8 5,629 54:25:1 20.8
FCA312 8814 172:14:3 154
SC5 9,165 61: 4:0 3.1
AG 10,384 296: 6:0 20
CIW7 11,524 216: 8:0 23
CAT2 16,701 89: 4:0 3.1
DHS1 18,096 14: 2:0 7.1
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Table 1-6. Segregation rate of the acl/l-1 phenotype in the F2 generation

Phenotype
Cross Wild type acll-1 (percentage) e
acll-1 X Col 213 63 (22.8 %) 0.695 (P>0.1)*
acll-1 X Ler 376 63 (144 %) 26.5 (P<0.001)*

* Chi-square value for the expected ratio of 3 wild-type : 1 acll-1.
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Table I-7. Additional mapping markers generated for map-based cloning

Fragments (bp)

Marker name (Kb) Primer sequences (5°-3”) Restriction enzyme Col Ler

PERLO0770186 GTAGGATATGATCCTCTTTTGG BamHI 128,25 153
(9,2534) GTTGACAGAAATGTCGAAAAGGGAT

PERLO0771474 CTATAAATACCCTGACTTGC Hinfl 155 125,30
(9,357.9) TGAGAATGCGAATGGAACTAAGCAAAGAC

PERL 0772901 TTCACCAGACTCTCTATTC Clal 143 118,25
(9,443.2) TTTGTACTCGGTAGTACTCCATCGA

PERLO0775439 CTTTGTTATACCTCATAATGGG Bglll 125,25 150
(9,552.2) TTATGTTCCTGGGAAATACAAGATC

PERL0776597 CTCTTAGATGTAAGATTGTG Bglll 121,25 146
(9,601.7) TCGTCCTCTTCAGGTACCTGAGATC

PERL0778995 GTACCTCTGTTTAGTGTG EcoRV 125,25 150

(9,758.4)

ATTACTACATGCCCCAAGATGATAT
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Table 1-8. Composition of MS and MGRL media used in this study

MS (Wako) MGRL

Concentration (mM) Concentration (mM)
NH,NO, 20.6 Na,HPO, 1.5
KNO, 18.8 NaH,PO, 0.26
CaCl,*2H,0 30 KCl 30
MgSO,*7H,0 1.5 Ca(NO,),*4H,0 50
KH,PO, 1.25 MgSO,*4H,0 1.5
H,BO, 0.10 NH,CI 0.50
MnSO,*4H,0 0.10 H,BO, 0.003
ZnSO,*7H,0 0.03 MnSO,*4H,0 0.010
KI 0.005 ZnSO,*7H,0 0.001
Na,MoO, *2H,0  0.001 MoO, 0.0002
CuSO,*5H,0 0.0001 CuSO,*5H,0 0.0001
CoCl*6H,0 0.0001 CoCl*6H,0 0.0001
Na,-EDTA 0.11 Fe(II)-EDTA 0.02
FeSO,*7H,0 0.10
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Table I-9. Primers and restriction enzymes used for genotyping defense mutants

Genotype Primers (5°-3”) Restriction enzyme

EDS1 ACACATCGGTGATGCGAGACA
GGCTTGTATCATCTTCTATCC

edsl-2 ACACATCGGTGATGCGAGACA
GTGGAAACCAAATTTGACATTAG

PAD4/pad4-1 GAAGCAGCAATGAACAATTC Finl digests wild-type product
CACTCCTCAGGCACTTTAAC

NDRI TGGTTTAAGCATGAGAGTCC
TTCGACCACCTTCTGTGTC

ndrl-1 CCAACTAAGCACATTTTGGG

CCCAACATATAATTGTTTCTTG
rarl-21 GGAATGAAAGAGTGGAGCTGCTACTAG Spel digests mutant product
TTTTGGAACCGATTTGGCCAG
SID?2 CAACCACCTGGTGCACCAGC
AAGCAAAATGTTTGAGTCAGCA
sid2-2 TTCTTCATGCAGGGGAGGAG
AAGCAAAATGTTTGAGTCAGCA

npri-1 GTCTCGAATGTACATAAGGC Nlalll digests wild-type product
ATCATGAGTGCGGTTCTACC
SNC1 ATGACAAGTTGACATCGG

CCTGAATGAATTGGTGGAGA
sncl-11 (NPTII) ATTGAACAAGATGGATTGCACG
TCAGAAGAACTCGTCAAGAAGG

RPP4 ATCAATTTGCGTTGGCATCC
GGAGATTTGATTTTAGCCAC
rppd ATCAATTTGCGTTGGCATCC

TTAGGCGACTTTTGAACGCG
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Table I-10. Gene function and sequence of primers used for expression analysis of genes located

near and within the inversion

Locus Function

Primers (5°-3”), forward and reverse

At4g21940 CALCIUM-DEPENDENT PROTEIN KINASE 15

(CPK15)

At4g21950 Unknown protein similar to AT4G04630.1

At4g21970 Similar to Os05g0114600

At4g21980 AUTOPHAGY 8A (APG8A)

At4g21990 APS REDUCTASE 3 (APR3)

At4g22000 Hypothetical protein

At4g22010 SKUS5 SIMILAR 4 (SKS4)

At4222030 F-box family protein

At4g22050 Aspartyl protease family protein

At4g22060 F-box family protein

At4g22070 WRKY DNA-BINDING PROTEIN 31

At4g22080 Pectate lyase family protein

At4g22090 Pectate lyase family protein

At4g22100 Glycosyl hydrolase family 1 protein
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TGGACAAGAGAACATTGTTG
CTCTGCAATAACCTTTAGAG
CGAAGAATATTCAATTAAAGAG
M13 primer M4 (Takara)
GGAAGGGGGAGAAGAGGTTTC
CTAAAGAGTTAAAAGACCATTG
CTAAACCTCTCGAGGCAAG
TCAAGCAACGGTAAGAGATC
ATTGTTGCTTCTGAGGTTAC
CAACATTCTCGCTATTGAAG
TGGAAAAGCTGCAGAAGCTG
M13 primer M4 (Takara)
TCGAACTATCCGGAGAAATC
TGGATATTCATCTCGGTACG
TAGCTTGTCTAGGTTTGATG
AAAGATACAACAGACTTGAG
AATGTTCCAATGGATTCCGC
ACTTAGCGAACCCAACTTTC
AGCTTCCTTTAGATCTCTTG
M13 primer M4 (Takara)
TGAAGCTGCCATGATAAGCG
ACACATCCGAAACTCAAAAC
GAGAATGCCAAGAGTAAGAC
AAGTTTCCCGGAGCTACTG
AGAATGCCAAGGGTAAGACG
TCCGGGAGCGACTGTGAATC
TCCTTCACACTCGTAACC
GAAATCTTTGGCTCTTTGAAC



At4g22105 SCR-LIKE 26 (SCRL26)

At4g22110 Alcohol dehydrogenase

At4g22115 SCR-LIKE 14 (SCR L14)

At4g22120 Early-responsive to dehydration protein-related protein

At4g22130 STRUBBELIG-RECEPTOR FAMILY 8 (SRFS)

At4g22140 DNA binding protein

At4g22150 LANT UBX DOMAIN-CONTAINING PROTEIN 3

(PUX3)

At4g22160 Unknown protein

At4g22165 F-box family protein

At4g22170 F-box family protein

At4g22180 F-box family protein

At4g22190 similar to conserved hypothetical protein

At4g22200 ARABIDOPSIS K+ TRANSPORTER (AKT2/3)

At4g22210 LOW-MOLECULAR-WEIGHT CYSTEINE-RICH 85

(LCR85)

At4g22212 Defensin-like (DEFL) family protein

At4g22214 Defensin-like (DEFL) family protein

At4g22217 Defensin-like (DEFL) family protein

59

GCTACTTTTTTCTTGGTTTC
TACACCGGCATAAATGTTCCG
AAAAATTCGAGCTAGGCAAG
AAAGAATGCAGCGGAGAGAC
GGGCAATGTTAAAGAAGTGG
GCAAGGAACATAACATCTAC
GAATTATGGTGAAGCTTGGC
CGGTTTCTAATGTATCTTTC
ACTGAGAGACAGGTTTCAAC
CAGAATGAGATATCGACGTG
CAAAGTTGTGAGAGCGGGAG
AAACGGACCTTAACATCATC
CTTCTTTTCTTGATAGCATTC
TGAATGACTACAGAACTTGC
AGAATGTCTTGTTGGGTAAAG
M13 primer M4 (Takara)
AACATAACCCTAATTCCTGG
TACGAACCAATGAGCTCTAG
AACATAACCCTAATTCCTGG
TACGAACCAATGAGCTCTAG
AAGCGTCTCAGAGGAGATAC
TAACATATGAAGAAGAAAGTTC
GTGTTATGTACCACAAACTC
M13 primer M4 (Takara)
ATTTGGAACGTTTCTTACCC
ACATCCACATAAGAGATGTG
ATGTCTCCTACAGATGGGC
TCACATGCTTTCCATTTCAG*
CATATCTCCTACAGAAGTAGT
TCACATGCTTTCCATTTCAG*
ATCTCCTACAGAAGCAGTG
ATGCCTGCTTTTTTATATCC
CTATCTCCCACCGAAGTGG



At4g22220 IRON-SULFUR CLUSTER ASSEMBLY COMPLEX

PROTEIN (ISU1)

At4822230 Defensin-like (DEFL) family protein

At4g22233 Potential natural antisense gene

At4g22235 Defensin-like (DEFL) family protein

At4g22240 Plastid-lipid associated protein

At4g22260 IMMUTANS (IM)

TATTGAGCACGGATACTATC
TTCTTCATCTGTTGCCACTG
CACCATTTGTCTTCACACG
TTTCCTTTTCAGCACCACGC
CATATCTCCTACAGAAGTAGT
CTGATCGAAGTCGCTAAC
TATGATCCATACAAAGAGAC
TCTCCTATAGAAGTGAATGG
ACATGCTTTCCTTTTCAGC
AAGTAAACCTACAACCACAC
AAATGGATCCTCGCCTACAC
GCTCATAATGGAAGAATTGG

GCAACCACAAAGGCTAGTAG

*. 1, The same primers were used because these genes shared highly similar sequences.
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Table I-11. Primers used for semi-quantitative RT-PCR

Gene Primer 1 (5°-3”) Primer 2 (5°-3”)

EDS1 TGCTC GATCA CCTGA ATAAT C ACACA TCAAC TGTTG CAAAC
PAD4 CAGTT AAAGA TCAAG GAAGG TGTAG AAATT CGCAATGTCG
NDRI ATGAA GACAC AGAAG GTGG CGAAT AGCAA AGAAT ACGAG
SID1 CTGGT CGCAG AATCG GTG GCCGA AACAATCTGT GAAG
SID2 CCATC TCTCG TAGTT ACTC CATTA AACTC AACCT GAGGG
NPRI GATCT TGAAA ATAGA GTTGC AC ACGAT GAGAG AGTTT ACGG
PRI GAATT TTACT GGCTA TTCTC TG TTAGT ATGGC TTCTC GTTC
PR2 TTCAA CCACA CAGCT GGAC ACTTA GACTG TCGAT CTGG
PR5 CTCGT GTTCA TCACA AGC AGGGC AGAAA GTGAT TTC
PDF1.2 TGCTT TCGAC GCACC GG CTCAT AGAGT GACAG AGAC
RPP4 AATAC GTGTG CCACC CAC CTCGATCTCATTTCT ATCTT G
At4g16880 GTATG TTACC AAAGATTTCA AG CGTAT GAATT ACCTG GACG
SNC1 CTTCA TAGAT TGGTG AAGTT AG TCAGT TACCA GAAAC AGGAAAC
Atdg16900 CTGTA GGGCA GGTGG AG TTAAC GTATT CTAGA ATCC
At4g16920 GCGGA TGGGG ATGAC AT TCAGT TACCA GAATC AGTAG
At4g16930 GATTC TCGAA ACTGG TGTAA TG CCTGT TCTTC TCGGT TGG
Atdg16940 ACGTT TAACA CCGAATG CATCA CAGCG TTGAG TCTTC
At4g16950 CTCTT TTTTG CCCCT TCTTC GATCT TCTGA ACGGG CCTAA TG
At4g16960 ACGTT TAACA CCGAATG TTCCC AAGGG ACTGG AC
At4g16990 GATTG CCGGT AATCG TC CCTTG TTCAC AGTAC TC
SRFRI ATGGC GACGG CGACG GC CTGTG TTCGC CTAAT CCATG
EFla ACTTG CAGCT ATGGG TAAAG CGAAA GTCTC ATCAT TTGGC

SRFRI for cDNA sequencing

ATGGC GACGG CGACG GC

TCAAT CGTTG TAAGT GCTAA G
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(@)

(b)

Figure I-5. Comparison of plant growth between Col +/+ and Col inv/inv, and acll-3
+/+ and acll-3 inv/iny.

(a) Overall appearance of Col +/+, Col inv/inv, acll-3 +/+ and two plants from distinct
lines of acll-3 inv/inv. Number in the parenthesis indicate the line number. Bar = 5 cm.
(b) Rosette size and plant height of plants of Col +/+, Col inv/inv, acll-3 +/+ and two
acll-3 inv/inv lines. Error bars indicate standard deviation.

Plants were grown for 40 days at 22°C.
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(a)

(b)

(d)

(e)

Figure I-14. Phenotype of the acl2-1 mutant

(a) Temperature-dependent growth of the ac/2-1 mutant. Plants were grown at indicated
temperature for 40 days, and watered with MGRL medium.

(b) Semi-quantitative RT-PCR of the defense-related genes in the acl2-1 mutant. EFl o
was used as control.

(c) Double mutants between acl2-1 and mutants of key regulatory genes in defense
responses. Plants were grown for 40 days at 22°C, and watered with MGRL medium.

(d) Growth of acl2-1 mutant watered with the nitrogen-free medium supplemented with
10 mM nitrate and indicated concentrations of NH,Cl.

(e) Growth of acl2-1 seedlings on the media containing different concentrations of NO;
and NH,Cl.

Bars =5 cm.



Chapter II: Mutations in epidermis-specific HD-ZIP IV genes affect

floral organ identity in Arabidopsis thaliana.

AV RE =2y FRERICET BEHARDMESL (Hiilktt) DEESNTHWaERNTZD,
AREITDNTE, FERF,
Mutationsin epidermis-specifi¢iD-ZIP IV genesaffectfloral organidentity in Arabidopsisthaliana
PlantJournal 75 430~440
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General Discussion

I have shown several genetic factors that are involved in the growth and
development of Arabidopsis thaliana. In the first chapter, I reported that the ACLI gene
was identical to SRFRI, which negatively regulates defense responses against pathogens.
Constitutive activation of defense signaling pathway induced by SNCI/ was found to
cause the severe stunted growth such observed in the acl//-I mutant. And in the next
chapter, HD-ZIP IV genes, whose function in the plant development had been unknown,
are suggested to be involved in the proper development and determination of organ
identity in flowers. As far as I had investigated, it is uncertain that the phenotype of the
HD-ZIP IV mutants is related to the perception of the information from the outer
environment like pathogen infection. However, in the analysis of the acll mutants, it
became clear that the ACLI gene is a key regulator of plant growth correlated with the
resistance pathway against pathogens, whose activity is also influenced by temperature
and nutrient condition in the growth media.

At present, I have only identified the genetic factors or mutations as an input,
and plant growth phenotype as an output of the signaling pathways that regulate plant
growth and development. I expect further studies would reveal the molecular
mechanisms that link these inputs and outputs, and more details in the co-operative
regulation of plant growth and development by genetic and environmental factors. In
molecular aspects, lipid metabolism might be related to both of the signaling pathways

involved in the growth of the acl/ and HD-ZIP IV mutants. EDSI and PAD4, which are
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essential for defense response pathways via TIR-NBS-LRR R genes, encode acetyl
hydrolase with homology to eukaryotic lipases (Falk et al., 1999; Jirage et al., 1999). It
was therefore suggested that they might play a role in lipid based signaling by
hydrolysing a lipid substrate. On the other hand, epidermis-expressed HD-ZIP IV
proteins regulate expression of the genes related to lipid metabolism (Abe et al., 2003;
Wu et al., 2011), and it is also possible that extracellular lipid composition is important
for the floral development. Although further investigations on the relationships between
lipid metabolism and the regulation of defense signaling, or floral development are
needed, it would be interesting to examine the involvement of the lipid metabolisms in

the regulatory pathways of plant growth and development in future studies.
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