
VLSI Circuits and Systems

for Directional-Edge-Based

Intelligent Image Processing

Hongbo ZHU

Supervisor: Professor Tadashi SHIBATA

Department of Electronic Engineering,

The University of Tokyo

December 2009

ThesisFigs/jtitle.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html
ThesisFigs/U-tokyo_logo.eps
http://www.u-tokyo.ac.jp


For the memory of my father Jianmin Zhu ...



Abstract

The continuous progress in semiconductor VLSI technologies during the past

several decades has provided the opportunity of realizing real-time intelligent im-

age processing systems such as image recognition, object tracking, motion recog-

nition, etc. However, the traditional approach of running image processing algo-

rithms on general purpose processors is not practical for building efficient systems

at rational costs with low power-consumption. Therefore, a number of VLSI chips

having parallel processing architectures such as graphics processing units (GPUs)

have been developed to enhance the performance. Although the processing time

can be reduced greatly, such approaches are not still efficient enough due to the

complex and expensive image processing algorithms which usually include a num-

ber of floating point operations. In order to resolve the problem of such a large

gap between the algorithms and their VLSI implementation and to maximally

utilize the power of semiconductor technologies, we try to develop algorithms

which are compatible with the physical characteristics of VLSI circuits.

The robust nature of the human brain in visual information processing has

been attracting a lot of researchers to discover better ways of image processing.

Physiology research has revealed that the directional edge information in images is

utilized as the most important clue in visual object recognition. Being inspired by

such a biological principle, a series of direction-edge-based VLSI-implementation-

adapted intelligent image processing algorithms as well as the corresponding VLSI

circuits and systems have been proposed and developed in our laboratory.

This work succeeds the research in such bio-inspired algorithms, circuits, and

systems. In order to minimize the latency caused by the image data transfer

between the image sensor and the processing circuits, the most serious bottleneck

in such systems, digital-pixel-sensor-embedded (DPS-embedded) processors were

proposed and designed. The performance of such processor has been verified

by building a real-time image recognition system with a very low latency. In

ii



addition, a directional-edge-based object tracking algorithm was also proposed

and partially implemented in an object tracking system by building processing

circuits on FPGAs. In the followings, the work is described in more detail.

Firstly, a DPS-embedded global feature extraction VLSI processor for real-

time image recognition has been developed. By combining the block-readout

architecture of DSP and parallel processing elements, the latency of local feature

extraction has been markedly reduced. By adapting the rank-order filter algo-

rithm to hardware implementation, global feature extraction is accomplished in

only 11 cycles. A prototype chip was designed in a 0.18-µm five-metal CMOS

technology. The measurement results show that the VLSI processor can extract

features more than 400 times faster than software processing running on a 2-GHz

general-purpose processor when operating at 60 MHz.

Then, a DPS-embedded early-visual-processing VLSI processor for real-time

intelligent image processing has been developed. Compared with the first chip,

the enhancement in the functionality of processing elements in the global image

processing block further improves the programmability of the processor. As a

result, such a chip can handle multiple algorithms efficiently. A prototype chip

was designed in a 65-nm 12-metal CMOS technology. The simulation results show

that this VLSI processor can achieve all expected functions.

In order to demonstrate the power of such chips, a real time image recogni-

tion system has been developed. The system is based on a VLSI-implementation

friendly image recognition algorithm. By using the global directional-edge-feature

extraction VLSI processor, the latency between the image capture and the final

recognition as small as 906 µs has been demonstrated. The merit of the global

feature extraction algorithm that it can focus on more significant features auto-

matically has also been experimentally verified.

In the research on algorithms, a directional-edge-based object tracking algo-

rithm was developed. By using directional-edge-based feature vectors, the sys-

tem has been made robust against illumination variation. The on-line learning

technique and the statistical multiple-candidate-location generation have further

improved the performance, making the system robust against object size varia-

tion, partial occlusion, and object deformation. The performance was verified by

experiments under varying disturbing conditions.

iii



Finally, a simple real time object tracking system based on a restrained ver-

sion of the prior algorithm has been implemented successfully. By experimen-

tal results, this system shows satisfying performance in simple tracking tasks

by employing only eight candidate locations. Thanks to the fine-grained VLSI-

implementation of the object tracking algorithm implemented in an FPGA, the

total processing time for the tracking task has been reduced to about 0.1 ms when

the system is running at a frequency of 60 MHz.

In this work, circuits and systems for brain-mimicking algorithms have been

developed based on a very näıve model of the brain. In the algorithms of im-

age processing, directional edge information plays an essential role for perception

of still images as well as moving images. In these systems, the vast amount of

subconscious processing in the mind has been implemented by VLSI chips or FP-

GAs. In order to build “real-time responding human-like intelligent systems” with

small hardware volume and low powers, such development of hardware-friendly

algorithms and their VLSI implementation in fine-grain parallel architectures are

most essential.

iv



Acknowledgements

With the utmost gratitude I would like to thank my advisor Professor Tadashi

Shibata for his loyal support and enduring guidance during the three years. His

enthusiasm for teaching and research, his constant encouragement and guidance

on my research led me to become a full-fledged person. I feel very fortunate to

have taken him as my supervisor, and the precious experiences in this laboratory

will be irreplaceable assets in my life.

I would like to acknowledge my dissertation committee: Prof. Kunihiro Asada,

Prof. Takayasu Sakurai, Prof. Makoto Ikeda, and Prof. Toshihiko Yamasaki for

their preview of the thesis and their extremely valuable comments, discussions to

my research. Their constructive suggestions were indispensable for making my

dissertation study successful.

I would like to thank Prof. Yoshio Mita for his prompt support of my research

as well as his insightful lectures which have greatly expanded my interest in and

enriched my knowledge of MEMS.

I express my appreciation to Ms. Kimiko Mori for her help on so many

documentaries; Ms. Motoko Inagaki, Ms. Yoko Inoue, and Ms. Kimiko Shigihara

for their supports.

I am very thankful to my colleagues and friends: Dr. Kiyoto Ito, Dr. Hitoshi

Hayakawa, Dr. Bui Trong Tu, and Dr. Jia Hao for their invaluable support

and advice; Mr. Norihiro Takahashi, Mr. Robert Grou-Szabo, Mr. Shigetaka

Morikawa, Mr. Yitao Ma, Ms. Mio Nishiyama, Mr. Pushe Zhao, Mr. Ruihan

Bao, and Ms. Dandan Han for being dependable and supportive; Mr. Satoshi

Morishita, Mr. Takashi Miyoshi, Mr. Hyun-soo Kim, Mr. Seungho Shin, Mr.

Zhuoli Sun, and Mr. T. M. P. S. Weerawardhana, for their input and enthusiasm;

and all the members in Shibata & Mita lab for the time we shared together.

I am immensely grateful to my parents Jianmin Zhu and Baofen Liu for their

very prudent unconditional support. Finally, my deepest gratitude I must reserve

v



for my wife Xuhua Zhang, whose patience and understanding with both myself

and my son I am very thankful for.

Many thanks for the Global Center of Excellence (GCOE) program for finan-

cial supporting of my life. The VLSI chips in this study have been fabricated in

the chip fabrication program of VDEC, the University of Tokyo with the collabo-

ration with Rohm Corp. and Toppan Printing Corp. and with STARC, e-Shuttle,

Inc., and Fujitsu Ltd., respectively.

Hongbo Zhu

The University of Tokyo

vi



Contents

Abstract ii

Acknowledgements v

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 VLSI processors for real-time performance . . . . . . . . . 3

1.2.2 Smart sensors for low-latency . . . . . . . . . . . . . . . . 4

1.3 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Scope of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 A Digital-Pixel-Sensor-Based Global Feature Extraction VLSI

Processor for Real-Time Object Recognition 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Feature Extraction Algorithm . . . . . . . . . . . . . . . . . . . . 14

2.3 VLSI Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 System organization . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 DPS featuring block-readout architecture . . . . . . . . . . 17

2.3.3 Local feature extraction circuits . . . . . . . . . . . . . . . 20

2.3.4 Global feature extraction unit . . . . . . . . . . . . . . . . 23

2.4 Chip Design and Measurement Results . . . . . . . . . . . . . . . 26

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



CONTENTS

3 Design of Advanced Early-Visual-Processing VLSI Processor Us-

ing 65-nm Technology 30

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Intelligent Image Processing Algorithms . . . . . . . . . . . . . . 35

3.2.1 Global feature extraction for static image recognition algo-

rithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Differential directional-edge image generation for object track-

ing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Directional edge displacement (DED) map generation for

motion recognition algorithm . . . . . . . . . . . . . . . . 37

3.3 VLSI Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 System organization . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Digital-pixel-sensor and local image processing (LIP) circuit 40

3.3.3 Global image processing unit . . . . . . . . . . . . . . . . 43

3.3.3.1 Circuits design . . . . . . . . . . . . . . . . . . . 43

3.3.3.2 Operation . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Chip Design and Measurement Results . . . . . . . . . . . . . . . 49

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 A Real-Time Image Recognition System Using a Global Directional-

Edge-Feature Extraction VLSI Processor 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 VLSI-Implementation Friendly Recognition Algorithm . . . . . . . 59

4.2.1 Global directional-edge-feature Extraction . . . . . . . . . 59

4.2.2 Feature vectors . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 Learning and recognition . . . . . . . . . . . . . . . . . . . 61

4.3 System Implementation . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Architecture of the system . . . . . . . . . . . . . . . . . . 61

4.3.2 Global directional-edge-feature extraction VLSI . . . . . . 62

4.3.3 Circuits implemented on FPGA . . . . . . . . . . . . . . . 63

4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

viii



CONTENTS

5 Directional-Edge-Based Object Tracking Employing On-Line Learn-

ing and Regeneration of Multiple Candidate Locations 70

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2 Object Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Directional-edge-based feature vector generation . . . . . . 72

5.2.2 Overall flow of the tracking algorithm . . . . . . . . . . . . 73

5.2.3 On-line learning and regeneration of multiple candidate lo-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 FPGA Implementation of a Directional-Edge-Based Real-Time

Object Tracking System 80

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Restrained Object Tracking Algorithm . . . . . . . . . . . . . . . 82

6.2.1 Overall flow of the tracking algorithm . . . . . . . . . . . . 83

6.2.2 Regeneration of multiple candidate locations . . . . . . . . 84

6.3 FPGA-Implementation of Object Tracking Algorithm . . . . . . . 87

6.3.1 System organization and architecture of tracking processor 87

6.3.2 Candidate location processing block . . . . . . . . . . . . . 89

6.3.3 Regeneration block . . . . . . . . . . . . . . . . . . . . . . 94

6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusions 98

7.1 Summary of This Thesis . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Future Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

References 102

List of Publications 118

ix



List of Figures

1.1 Psychologically-inspired VLSI brain model based on the associative

principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Brain-mimicking VLSI system composed of dedicated VLSI chips

having fine-grain massively-parallel architectures for subconscious

processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Four steps of image recognition algorithm. . . . . . . . . . . . . . 13

2.2 Feature extraction algorithm. (a) Local feature extraction at each

pixel site by four-directional edge filtering, (b) extracted local fea-

tures, and (c) feature representing edge flags in four directions. . . 15

2.3 Architecture of global feature extraction VLSI processor. . . . . . 17

2.4 Circuits in one pixel (a) and 1-bit pixel memory circuit (b). . . . . 18

2.5 Block readout architecture. . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Local feature extraction circuit. . . . . . . . . . . . . . . . . . . . 21

2.7 Global feature extraction algorithm. . . . . . . . . . . . . . . . . . 23

2.8 Global feature extraction circuit. . . . . . . . . . . . . . . . . . . 25

2.9 Schematic of the “mark decision” circuit. . . . . . . . . . . . . . . 25

2.10 Layout of global feature extraction VLSI processor without the top

metal, which is used for light shielding. . . . . . . . . . . . . . . . 26

2.11 A photo of the measurement environment. . . . . . . . . . . . . . 27

2.12 Measurement results of global feature extraction VLSI processor.

Global Threshold: 512; (a) edge intensities, (b) all edge map (485

out of 4096), (c) edge map in horizontal, (d) edge map in +45◦,

(e) edge map in vertical, and (f) edge map in −45◦. . . . . . . . . 28

x



LIST OF FIGURES

3.1 DDEI generation for the object tracking algorithm. . . . . . . . . 37

3.2 Process of DED edge map generation for the motion recognition

algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Architecture of this early-visual-processing VLSI processor . . . . 40

3.4 Block-readout method for DPS . . . . . . . . . . . . . . . . . . . 41

3.5 Local image processing circuits . . . . . . . . . . . . . . . . . . . 42

3.6 Global image processing circuits . . . . . . . . . . . . . . . . . . . 44

3.7 “In-PE” functional circuit . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Binary search block in the “In-PE” functional circuit . . . . . . . 46

3.9 Frame processing & data transferring block in the “In-PE” func-

tional circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Layout and photomicrograph of this chip . . . . . . . . . . . . . . 50

3.11 Measurement environment. . . . . . . . . . . . . . . . . . . . . . . 51

3.12 An image taken by the DPS . . . . . . . . . . . . . . . . . . . . . 51

3.13 Measurement results of the global feature extraction function. (a)

edge intensity, local feature edge map in (b) horizontal, (c) +45◦,

(d) vertical, and (e) −45◦, (f) merged edge map after global feature

extraction, and global feature edge map in (g) horizontal, (h) +45◦,

(i) vertical, and (j) −45◦. . . . . . . . . . . . . . . . . . . . . . . . 52

3.14 Measurement results of self-adapted differential edge map genera-

tion function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.15 Measurement results of self-adapted integrated edge map genera-

tion function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 Measurement results of DED map generation function. . . . . . . 55

4.1 VLSI-implementation friendly image recognition algorithm. . . . . 59

4.2 Feature extraction and vector generation. . . . . . . . . . . . . . . 60

4.3 Architecture of the recognition system. . . . . . . . . . . . . . . . 62

4.4 Circuits implemented on FPGA. . . . . . . . . . . . . . . . . . . . 64

4.5 Template matching circuitry. . . . . . . . . . . . . . . . . . . . . . 65

4.6 Photomicrograph and specifications of the fabricated chip (*the

light integration time for photodiodes is not considered). . . . . . 65

4.7 Automatic critical feature adjustment. . . . . . . . . . . . . . . . 66

xi



LIST OF FIGURES

4.8 Measured waveforms showing the processing time. . . . . . . . . . 67

4.9 Operation of the demonstration system. . . . . . . . . . . . . . . 68

5.1 Feature vector generation. . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Basic flow of this tracking algorithm . . . . . . . . . . . . . . . . 74

5.3 Tracking process by regenerate multiple candidate locations. . . . 76

5.4 Tracking hand sequence in complex condition. (64 candidate loca-

tions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.5 Tracking face sequence in complex condition. (64 candidate loca-

tions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Basic flow of this tracking algorithm. . . . . . . . . . . . . . . . . 83

6.2 Tracking process by regenerate multiple candidate locations. . . . 84

6.3 Weight candidate locations. . . . . . . . . . . . . . . . . . . . . . 85

6.4 Regenerate candidate locations. . . . . . . . . . . . . . . . . . . . 86

6.5 System organization. . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Architecture of the tracking processor. . . . . . . . . . . . . . . . 88

6.7 Structure of candidate location processing (CLP). . . . . . . . . . 90

6.8 Small image selection circuits. . . . . . . . . . . . . . . . . . . . . 91

6.9 Local feature extraction circuits (LFE). . . . . . . . . . . . . . . . 92

6.10 Global feature extraction circuits (GFE). . . . . . . . . . . . . . . 93

6.11 Feature vector generation circuits. . . . . . . . . . . . . . . . . . . 94

6.12 Regeneration block . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.13 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 96

xii



List of Tables

2.1 Specifications of test chip. (⋆ the light integration time for photo-

diodes is not considered) . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Summary of the instruction codes. . . . . . . . . . . . . . . . . . . 48

3.2 Specifications of this chip. (⋆ a typical operating condition) . . . . 50

xiii



Chapter 1

Introduction

1.1 Background

Following the well-known Moore’s law (1), semiconductor very large scale in-

tegration (VLSI) technologies have made remarkable progress in the past sev-

eral decades and will continue to advance. Such a rapid development has pro-

vided the opportunity of realizing real-time intelligent image processing systems

such as image recognition, object tracking, and association. However, the tradi-

tional approach of running image processing tasks on general purpose processors

is not practical for building efficient systems at rational costs with low power-

consumption. In order to solve this problem, a number of VLSI chips, including

the popular used graphics processing units (GPUs), are developed to enhance the

performance. These chips can significantly increase the performance of such sys-

tems; for example, in a particular application, a speed up of 263 has been reported

by using a GPU (2). Although the processing time can be reduced greatly, such

approaches are not efficient enough regarding to the complex and expensive image

processing algorithms that usually include a number of floating point operations.

The large gap between the algorithm and the VLSI implementation severely re-

stricts the full utilization of the power of semiconductor technologies. Therefore,

1



1.1 Background

intelligent image processing algorithms that can be implementation directly into

VLSIs are very desirable. In addition, in the era of nanoscale integration, devices

have presented difficult problems such as crosstalk, electromagnetic interference

(EMI), radiations, process variations, simultaneously switching outputs (SSO),

leakage current, temperature fluctuations, etc. The variation problem (3; 4; 5; 6),

in particular, is a very serious issue because it is rooted in the fundamentals of na-

ture. As a result, for building circuits and systems in such advanced technologies,

the algorithms should be robust enough to tolerate the unexpected errors.

To meet such requirements in developing intelligent image processing systems,

instead of using or improving the existed algorithms such as scale-invariant feature

transform (SIFT) (7), gradient location and orientation histogram (GLOH) (8;

9), or Speeded-up robust features (SURF) (10) which are very difficult to be

implemented into VLSI directly, we search ideas from the human brains. This is

because of the brains’ robust functions, especially its strong visual information

processing capability. Physiology research (11) has revealed that the directional

edge information in images is utilized as the most important clue in visual object

recognition. Being inspired by such a biological principle, a series of direction-

edge-based intelligent image processing algorithms as well as the corresponding

VLSI circuits and systems have been proposed and developed.

In §1.2, related works in circuit implementation for intelligent image process-

ing are described. §1.3 explains our bio-inspired image processing algorithms and

their corresponding circuits. Then §1.4 shows the scope of the thesis, and finally

the organization of the thesis is described in §1.5.

2



1.2 Related Works

1.2 Related Works

1.2.1 VLSI processors for real-time performance

In this section, some VLSI implementations for intelligent image processing and

their problems are introduced.

For performance enhancement, many configurable processors are developed by

employing single instruction/multiple data (SIMD) architecture (12; 13; 14; 15).

In reference (12), a one-dimensional SIMD linear array including 128 processing

elements (PEs) is employed for achieving real-time performance in intelligent ve-

hicle video recognition applications. Such kind of SIMD architectures are also

employed in reference (14), in which the 320 PEs are grouped into 40 compute

tiles for the simple and power-efficient interconnection complexity; and in ref-

erence (15), in which the 2048 fine-grained PEs are used for energy and cost

improvements. One drawback of such processors is: these processors focus only

on the low-level image data processing operations like image filtering, and they

are not suitable for object-level parallelism, which is essential for higher level

vision applications such as object recognition.

On the other hand, architectures for not only the data level parallelism, but

also the task level parallelism are also developed (16; 17; 18; 19). For example,

the chip in (18) integrates 10 SIMD PEs for data/task level parallelism. A more

advanced work from the same group is also reported as a SIMD/MIMD dual-mode

parallel processor that contains 8 SIMD linear array PE clusters which have 8

PEs each in (16). Heterogeneous architecture (20) has also been developed for

performance improvement.

Another very influential trend for performance enhancement of image process-

ing is the Graphics Processing Units (GPUs) (2). In (21), a GPU-based Cellular

Neural Network (CNN) simulator that can run 8-17 times faster than a CPU-

3



1.2 Related Works

based CNN simulator is reported; and in some particular applications such as the

MRI reconstruction in (2), a maximum speed up of 263 has been reported.

Therefore, by employing such kind of VLSI chips, the image data processing

time can be dramatically reduced. However, since such chips are designed to be

compatible with many existing algorithms, for each particular application, some

redundant energy consumption is inevitable, which limits the power efficiency of

the whole system. In addition, the delay caused by the data transfer from the

image sensor to the processor, which is usually in a one pixel per clock cycle

way, severely limits the efficiency of the image data access; make such a system

not suitable for time critical applications. Also, the employment of image sensor,

processors, and sometimes memories also makes such systems to be complex and

burden, thus not applicable for size-critical applications.

1.2.2 Smart sensors for low-latency

To develop real time image processing systems with low latency and compact

size, it is very preferable to integrate the image sensor and the processing circuits

on the same chip. The compatibility between the CMOS image sensor and the

processing circuits together with the requirement of efficient image data access

method leads to many researches on smart sensors in which the image processing

functions are implemented on the image sensor.

Several works design the processing circuit mainly inside each pixel to achieve

functions such as: image filtering (22; 23), gradient extraction (24), contrast

processing (25; 26), selective region output (27; 28), inter-frame processing (22;

26; 29; 30; 31), pixel-parallel ADC (32), and bright dot tracking (33). While

embedding the processing circuits in each pixel can achieve very fast process-

ing speed, too complex tasks or unsuitable processing algorithms can cause the

pixel to be very complex or even impossible. On the other hand, implement the

4



1.2 Related Works

column/row-parallel or serial processing circuits on the image sensor but out of

the pixel-array can handle more flexible tasks such as: complex image filtering

(34; 35), histogram-based processing (34), color processing (36), 3D image sensor

(37; 38), multi-sensing (38), and motion detection (39). When combine the high

processing speed of in-pixel circuits and the flexible function of the off pixel-array

circuits, many works also report further image sensor performance improvement

(40; 41; 42), edge-extraction (41), motion detection (41; 43), 3D applications

(44; 45), matrix transform (46; 47), and image compression (48). With the power

of smart sensors, systems with small size and low latency can be achieved. Some

image sensors are expected to be used for bio-application (49; 50; 51).

Therefore, the development of smart image sensors opens the possibility of

designing even high level functional sensors that can handle more complex tasks

such as intelligent image processing. However, compared with the smart sensors

that can handle normal image processing tasks, the smart sensors for intelligent

image processing are less reported. In reference (52), a tracking function is devel-

oped on the image sensor but the application is limited to a particular condition:

eye-tracking. A really intelligent visual sensor is reported in (53), which imple-

ment the image sensor and the vision processor on the same chip. But since

the image data of one frame are firstly buffered in a group of memory, and then

processed by the vision processor, the merit of on chip image sensor is not fully

utilized which limit the power and processing efficiency. In addition, because

the embedded vision processor is developed to be compatible with many existing

algorithms which are probably not VLSI-implementation friendly oriented devel-

oped, such an incompatibility between algorithm and VLSI also leads to system

inefficiency.

5



1.3 Our Approach

1.3 Our Approach

Memory of Past 

Experience

Recalling Maximum-

Likelihood Event
Visual Input

Feature 

Vector

Associative 

Processor

Memory of Past 

Experience

Recalling Maximum-

Likelihood Event
Visual Input

Feature 

Vector

Associative 

Processor

Figure 1.1: Psychologically-inspired VLSI brain model based on the associative

principle.

As introduced in §1.1, researches have been advanced in our laboratory aiming

at realization of flexible information processing like a human brain. Our labo-

ratory has originally proposed the “psychologically-inspired VLSI brain model”

as the foundation (54). Fig. 1.1 shows the psychologically-inspired VLSI brain

model based on the associative principle. Since the biological details about the

higher cognitive functions of the brain are not yet known, we call it psychological

inspiration, by which we mean the model has been built by observing our mental

activities by ourselves. The model is based on the assumption that human intel-

ligence is produced by the vast amount of past memories accumulated through

our life long experience, and that the most similar event to the current event

is automatically retrieved from the past memories and is utilized to understand

the situation and make a decision (55). The core of the system is an associative

processor, the maximum-likelihood search engine, which has been developed in

6

Introduction/IntroductionFigs/EPS/association.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


1.3 Our Approach

digital (56; 57; 58) as well as analog (59; 60; 61; 62) CMOS technologies.

Conscious 

Processing

Massively Parallel 

Subconscious Processing

T emplate vector

memory

S imilarity-evaluation elements

S imilarity-value regis ters

W inner-take-all

C ontroller

Visual 

input

Primary 

visual cortex

directional 

edge detection

Colliculus superior 
(motion detection)

Prefrontal cortex 
(integration)

Motion

Pattern
64 x 64

Edge & Mask Cell
Array

Threshold
Detector

Edge Filter

Global Adder

Image Buffer

64 x 64
Edge & Mask Cell

Array

Threshold
Detector

Edge Filter

Global Adder

Image Buffer

Figure 1.2: Brain-mimicking VLSI system composed of dedicated VLSI chips

having fine-grain massively-parallel architectures for subconscious processing.

Fig. 1.2 (54) illustrates a brain-mimicking VLSI system, a very näıve (or

maybe over-simplified) model of the brain aiming at VLSI implementation. Mas-

sively parallel subconscious processing is carried out by VLSI chips dedicated

to each processing according to the intelligent image processing algorithms for

image recognition (63; 64; 65), object tracking (66), ego-motion detection (67),

and motion recognition (68; 69) we developed originally. Such VLSI chips in-

cluded achieve real-time performance of such algorithms in moving object detec-

tion (70; 71), directional edge detection (72; 73) and image feature representation

7

Introduction/IntroductionFigs/EPS/vlsi_brain.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


1.4 Scope of This Thesis

(74; 75), motion field generation and their vector representation (76; 77) as well

as their perception by associative retrieval of past experiences (56; 57; 58; 59;

60; 61; 62; 78; 79). Each chip is implemented in analog, digital or mixed signal

technology in a fine-grain massively-parallel architecture.

1.4 Scope of This Thesis

Although the parallel computation architectures of these VLSI chips introduced

in §1.3 can accelerate the processing speeds of the intelligent image processing

algorithms considerably. Most of these processors must read image data one

pixel at a time from an off-chip image sensor (74). As a result, a large latency

occurs during this data transfer, making these approaches not suitable for time-

critical applications. On the other hand, for those chips with embedded image

sensor introduced in §1.3, the functionalities are also limited to very particular

processing tasks, thus can not be used directly to build a system (70; 72; 73).

Therefore, a scope of this study is to develop a VLSI architecture to attack

the problem of data transfer delay between the image sensor and the processors

in such systems. The digital pixel sensor (DPS (32; 80; 81)) featuring the block-

readout technique (82; 83) has been used to break the bottleneck of the low

data transfer bandwidth between image sensors and processing circuits in this

architecture. As a result, it has become possible to carry out the local image

processing such as local feature extraction at each pixel in a line-parallel manner

without extra buffer memory to store the image data. In addition, an efficient

global image processing unit consists of SIMD processing elements for each pixel

site is developed to run the intelligent image processing algorithms (65; 66; 68)

efficiently.

A proof-of-concept chip for the proposed architecture was designed in a 0.18

8



1.5 Thesis Organization

µm five-metal complementary metal-oxide-semiconductor (CMOS) technology.

The effectiveness of this architecture has been demonstrated by building a real-

time image recognition system. Thanks to the fast response of this processor, the

system achieves a latency of only 906 µs which is very suitable for time-critical

applications. Another chip with more flexible functions was also designed in a 65

nm 12-metal CMOS technology and the measurement results shows that it can

work correctly.

In addition, a VLSI-implementation-friendly object tracking algorithm that is

robust in various circumstances was proposed. To enhance the performance of a

tracking system, an on-line learning technique together with a statistical approach

were developed. This statistical approach is based on regeneration of multi-

candidate locations which is similar to the particle filter but much easier to be

implemented into VLSI. By simulation experiments under various conditions, this

algorithm has been shown to be robust against illumination variation, object size

variation, partial occlusion, and object deformation. Furthermore, a restrained

version of this algorithm has been implemented into a real-time object tracking

system using FPGAs successfully. By experimental results, this system shows

satisfying performance in simple tracking tasks. Thanks to the fine-grained VLSI-

implementation of the object tracking algorithm inside an FPGA, the total time

consumption of the image processing task has been reduced to about 0.1 ms when

the system is running at a frequency of 60 MHz.

1.5 Thesis Organization

In chapter 2, a digital-pixel-sensor-based global feature extraction VLSI processor

for real-time object recognition is introduced with algorithm, architecture, imple-

mentation, and measurement results. An enhanced version of this processor is

9



1.5 Thesis Organization

introduced in chapter 3, in which more flexible functions are included. Then in

chapter 4, a real-time image recognition system using the VLSI processor de-

veloped in chapter 2 is described. In chapter 5, a directional-edge-based object

tracking algorithm employing on-line learning and regeneration of multiple can-

didate locations is introduced with software simulation results. Chapter 6 gives

a system implementation of a restrained version of the object tracking algorithm

introduced in chapter 5. Finally, chapter 7 summarizes major accomplishments

of this study.

10



Chapter 2

A Digital-Pixel-Sensor-Based

Global Feature Extraction VLSI

Processor for Real-Time Object

Recognition

2.1 Introduction

There has been considerable interest in real-time object recognition since they

play essential roles in various applications such as automotive car control, video

surveillance, robot control, human-computer interfaces, and so forth. A number

of algorithms have been proposed in this field to achieve this task, aiming at

higher precision, faster response time, and lower computational cost. Generally,

these algorithms were developed as software programs running on general-purpose

processors(84; 85; 86; 87; 88). Because these algorithms are computationally

expensive, to achieve real time performances in object recognition tasks, very

large scale integration (VLSI) chips such as digital signal processors (DSPs), field

programmable gate arrays (FPGAs), and application-specific integrated circuits

(ASICs) were developed to accelerate the computation(89; 90; 91; 92; 93; 94).

11



2.1 Introduction

In ref. (89), a highly parallel DSP architecture that can process many complex

functions such as 5 × 5 spatial filtering was designed for real-time image recog-

nition. In ref. (91), the reported image processing applications employing FPGA

are between 8 and 800 times faster than the equivalent programs running on a

Pentium III processor. In ref. (94), a resonant adiabatic mixed-signal ASIC was

designed and a real-time template-based face detection function was realized as

one application of this work. Therefore, with the power of such programmable

VLSI chips, the processing speed of existing recognition algorithms can be clearly

enhanced.

However, in many cases, algorithms are not tuned to be efficiently imple-

mented in VLSI hardware. Since VLSI hardware implementation is essential for

building real-time image recognition systems, some researchers began to conceive

of algorithms that can be easily integrated on a chip for more compact imple-

mentation with lower power consumption(95; 96). Reference (95) presents an

algorithm for iris recognition using phase-based image matching. To reduce the

size of iris data, they introduce the idea of two-dimensional Fourier phase code

for representing iris information, which can be implemented using state-of-the-art

DSP technology. In ref. (96), an object detection/recognition algorithm based

on principal component analysis was proposed and implemented by introducing

three-dimensional integration of multiple chips.

Human like flexible recognition algorithms specifically adapted to VLSI im-

plementation have been developed(97). Physiology research results reveal that

the directional edge information in images is utilized as the most important

clue in visual object recognition(11). Being inspired by such a biological princi-

ple, a directional edge-based feature vector representation algorithm called pro-

jected principal-edge distribution (PPED) was proposed(98) and has been suc-

cessfully applied to medical radiograph analysis as well as to handwritten pattern

12



2.1 Introduction

recognition(63). This image recognition algorithm is composed of four steps as

illustrated in Fig. 2.1: image capture, feature extraction, vector generation and

template matching. Some VLSI chips were designed for this architecture(56; 74;

78; 79). In ref. (74), a VLSI processor for feature extraction and vector genera-

tion was developed. In refs. (56; 78; 79), different VLSI chips were designed to

accelerate template matching. Thanks to the parallel computation architectures

of these VLSI chips, the processing speed of the recognition algorithm has been

considerably accelerated, making real-time object recognition feasible. However,

since such processors must read image data one pixel at a time from an off-chip

image sensor, a large latency occurs, making these approaches not suitable for

time-critical applications.

Image 

Capture

Feature 

Extraction
Vector 

Generation
Template 

Matching

Figure 2.1: Four steps of image recognition algorithm.

Thus, the purpose of this study is to develop a global feature extraction VLSI

processor that is more compatible with time-critical image recognition tasks. The

digital pixel sensor (DPS(32; 80; 81)) featuring the block-readout architecture(82)

has been used to break the bottleneck of the low data transfer bandwidth between

image sensors and processing circuits. As a result, it has become possible to carry

13

Chapter1/Chapter1Figs/EPS/Intro.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.2 Feature Extraction Algorithm

out the local feature extraction processing at each pixel in a line-parallel manner.

To eliminate trivial local features, an efficient global feature extraction circuitry

that can retain any given number of relatively more significant features has been

designed and integrated on the same chip. By measurement results, it has been

shown that this VLSI processor is capable of extracting features 400 times faster

than software running on a 2-GHz general-purpose processor when operating at

60 MHz.

The organization of this chapter is as follows. In §2.2, the feature extraction

algorithm proposed in this study is explained. In §2.3, the VLSI implementa-

tion of the algorithm is described. In §2.4, the layout of the test chip and the

measurement results are presented. Finally, the conclusions are given in §2.5.

2.2 Feature Extraction Algorithm

The feature extraction algorithm developed in the present study is based on four

types of directional edge filtering (horizontal, +45◦, vertical, and −45◦) as in the

original PPED algorithm (98). However, the present algorithm differs from the

original PPED in terms of how the significant features are selected to generate

the final directional edge maps. It is composed of two main processes: the local

feature extraction and the global feature extraction. Figure 2.2(a) shows the local

feature extraction processing at each pixel site. Firstly, convolutions between the

5 × 5-pixel region centered at the pixel site and four 5 × 5-pixel filtering kernels

(one for each direction) are calculated. Then, based on the four convolution

results, the maximum gradient value is selected to determine the most significant

edge direction at the pixel site and its convolution value is preserved. This process

is repeated for every pixel, and the entire image is scanned with the filtering

kernels. Figure 2.2(b) shows the edge flags obtained in the local feature extraction

14



2.2 Feature Extraction Algorithm

Horizontal +45 degree Vertical -45 degree

Absolute

Value

Absolute

Value

Absolute

Value

+1

-1

+1 +1 +1 +1

-1 -1 -1 -1 +1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1

+1

+1

-1

-1

-1

-1

-1

+1

+1

+1 +1

+1

-1

-1

-1

-1

-1

Absolute

Value

Maximum-Gradient-Selection 

Four filter kernels for each pixel

Direction and its Convolution Value

Input Image

Local feature 

extraction

Global feature 

extraction

(a)

(b)

(c)

Horizontal +45 degree Vertical -45 degree

Horizontal +45 degree Vertical -45 degree

Absolute

Value

Absolute

Value

Absolute

Value

+1

-1

+1 +1 +1 +1

-1 -1 -1 -1 +1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1

+1

+1

-1

-1

-1

-1

-1

+1

+1

+1 +1

+1

-1

-1

-1

-1

-1

Absolute

Value

Maximum-Gradient-Selection 

Four filter kernels for each pixel

Direction and its Convolution Value

Horizontal +45 degree Vertical -45 degree

Absolute

Value

Absolute

Value

Absolute

Value

+1

-1

+1 +1 +1 +1

-1 -1 -1 -1

+1

-1

+1 +1 +1 +1

-1 -1 -1 -1

+1 +1 +1 +1

-1 -1 -1 -1 +1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1

+1

+1

-1

-1

-1

-1

-1

+1

+1

+1

+1

+1

-1

-1

-1

-1

-1

+1

+1

+1 +1

+1

-1

-1

-1

-1

-1

+1

+1

+1 +1

+1

-1

-1

-1

-1

-1

Absolute

Value

Maximum-Gradient-Selection 

Four filter kernels for each pixel

Direction and its Convolution Value

Input ImageInput Image

Local feature 

extraction

Global feature 

extraction

(a)

(b)

(c)

Horizontal +45 degree Vertical -45 degree

Figure 2.2: Feature extraction algorithm. (a) Local feature extraction at each

pixel site by four-directional edge filtering, (b) extracted local features, and (c)

feature representing edge flags in four directions.

15

Chapter1/Chapter1Figs/EPS/algorithm.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.3 VLSI Implementation

stage. Since these edge flag maps are very noisy and contain much redundant

information, only salient features are selected and retained in the global feature

extraction stage. This is carried out by selecting only a predetermined number of

significant edge flags out of all the pixels in the image, which have larger gradient

values than the others. Such a selection is possible because all the convolution

values obtained from every pixel site are preserved. Figure 2.2(c) shows four

global feature maps when only 40 % of the more significant edge flags are retained.

Such a feature detection scheme is different from the original PPED in which the

local variance of luminance distribution was utilized to select essential features.

It was shown that the global features obtained in the present algorithm show

more robust performances in certain recognition tasks including, in particular,

motion perception (66; 69).

2.3 VLSI Implementation

2.3.1 System organization

A VLSI processor was accurately designed following the feature extraction algo-

rithm described in §2.2. Figure 2.3 shows the overall architecture. It is composed

of three main blocks: 68 × 68 DPS, 16 groups of local feature extraction (LFE)

circuits, and a global feature extraction (GFE) unit. DPS is used to capture the

image. Sixteen groups of processing elements are used for parallel local feature

extraction. The complex interconnection between DPS and 16 LFE circuits is

markedly simplified by the block-readout architecture, which will be explained

in detail later. Because the size of each filter kernel is 5 × 5, a 68 × 68 original

image is converted to four 64 × 64 directional edge maps with the maximum

convolution value at every pixel site. Then, the directional edge flags with their

convolution values are stored in static random access memories (SRAMs) in the

16



2.3 VLSI Implementation

16 groups of

Local Feature

Extraction 

Circuit

68X68

Digital Pixel 

Sensor

DATA  

BUS

Global Feature

Extraction

Unit

DATA  

BUS

16 groups of

Local Feature

Extraction 

Circuit

68X68

Digital Pixel 

Sensor

DATA  

BUS

Global Feature

Extraction

Unit

DATA  

BUS

Figure 2.3: Architecture of global feature extraction VLSI processor.

GFE unit. Rank-order-filter algorithm adapted for hardware implementation is

employed in the GFE unit so that the global thresholding process for all 4096 11-

bit data can be accomplished in only 11 cycles. Such a fast processing capability

is contrasted with those complex algorithms used in software (99).

2.3.2 DPS featuring block-readout architecture

After the DPS is introduced in ref. (32), which integrated both single-slope

bit-parallel analog/digital converter (ADC) and 8-bit dynamic random access

memory (DRAM) cells into each pixel, the research on DPS has been advancing

to achieve more flexible performances (80; 81; 82). In ref. (82), a new architecture

for pixel data readout was developed, making massive and parallel access to image

data possible. This architecture enables us to read out image data from eight rows

in a bit-serial manner at one read cycle and to seamlessly scan the entire pixel

array with filtering kernels up to 5 × 5-pixel sizes. As a result, the DPS has

17

Chapter1/Chapter1Figs/EPS/archi.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.3 VLSI Implementation

become compatible with various image processing algorithms. Therefore, the

single-slope bit-parallel ADC introduced in ref. (32) and the enhanced 8 bit

DRAM cells with eight control signals for block-readout architecture introduced

in ref. (82) are both employed in the pixel design in the present chip.

Memory

Reset

Analog 

ramp signal
8-bit digital 

ramp signal

8 control signals

Shutter

V
Write enable

Time Time0

Vreset

0

255

Vreset

Comparator

MemoryMemory

Reset

Analog 

ramp signal
8-bit digital 

ramp signal

8 control signals

Shutter

V
Write enable

Time Time0

Vreset

0

255

Time Time0

Vreset

0

255

Vreset

Comparator

(a) (b)

Write enable

Control signal

Digital ramp 

signal (1 bit)

Connected for 

block readout

Write enable

Control signal

Digital ramp 

signal (1 bit)

Connected for 

block readout

Figure 2.4: Circuits in one pixel (a) and 1-bit pixel memory circuit (b).

Figure 2.4(a) shows the basic concept of the DPS (32). The pixel unit consists

of a photodiode, a reset transistor, a shutter transistor, a sampling metal-oxide-

semiconductor (MOS) capacitor, an analog comparator, and 8-bit DRAM cells.

Figure 2.4(b) shows 1-bit pixel memory circuit. A global reset process in which

both reset transistor and shutter transistor are on forces the voltage V at the

MOS capacitor to Vreset for all pixels. After that, the reset transistor turns off

while the shutter transistor remains on, then the decrease in voltage V at the

MOS capacitor corresponds to the light intensity at each pixel. After some period,

all the shutter transistors are turned off simultaneously and the light intensity in

each pixel is converted into the analog signal V . Then, an analog ramp signal and

eight-bit digital ramp codes, which are synchronized to each other, are provided

to all pixel units for ADC. The analog comparator in each pixel compares V with

the analog ramp. At the beginning of ADC, the analog ramp is below V , and

18

Chapter1/Chapter1Figs/EPS/pixel.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.3 VLSI Implementation

the comparator output (“write enable”) is “1”. At the time when the analog

ramp voltage exceeds V , “write enable” changes to “0”, and the digital code

corresponding to V is stored in the memory; thus, the ADC of the pixel data

is accomplished. This operation is conducted simultaneously at all pixels, thus

achieving massively parallel ADC. Eight control signals are used here to select

which bit to read out during a read process.

Row 1 ~ 4

68X68 DPS

Row 5 ~ 8

Row 9 ~ 12

Row 65 ~ 68

C
o

l.
 1

 ~
 4

C
o

l.
 5

 ~
 8

C
o

l.
 9

 ~
 1

2

C
o

l.
 6

5
 ~

 6
8

B
lo

c
k

 r
e

a
d

o
u

t 
c

o
n

tr
o

l 
c
ir

c
u

it
s

LFE

Circ.

Control

circuits
LFE

Circ.

LFE

Circ.

LFE

Circ.

4X8

16 groups of local feature extraction circuits

4X8 4X8 4X8

Row 1 ~ 4

68X68 DPS

Row 5 ~ 8

Row 9 ~ 12

Row 65 ~ 68

C
o

l.
 1

 ~
 4

C
o

l.
 5

 ~
 8

C
o

l.
 9

 ~
 1

2

C
o

l.
 6

5
 ~

 6
8

B
lo

c
k

 r
e

a
d

o
u

t 
c

o
n

tr
o

l 
c
ir

c
u

it
s

LFE

Circ.

Control

circuits
LFE

Circ.

LFE

Circ.

LFE

Circ.

4X84X8

16 groups of local feature extraction circuits

4X84X8 4X84X8 4X84X8

Figure 2.5: Block readout architecture.

Figure 2.5 shows the principle of block-readout architecture (82). To seam-

19

Chapter1/Chapter1Figs/EPS/blockreadout.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.3 VLSI Implementation

lessly scan the entire pixel array with 5 × 5-pixel-size filtering kernels, four

rows are grouped together and controlled by the same enable signal generated

by “block-readout control circuits”. In one read cycle, the same bit in pixels

from two consecutive groups of rows are read out. For example, in Fig. 2.5, the

same bit in “light gray” pixels from rows 1 to 8 can be read out simultaneously.

These data are sufficient to perform the 5 × 5 kernel calculations at all “dark

gray” pixel sites in a bit-serial manner immediately with no extra buffer memo-

ries. Therefore, simultaneous filtering at all “dark gray” pixel sites is possible in

principle. However, to keep the circuits rational in the interconnection and chip

areas, the kernel calculation should be performed in a line-parallel manner.

Sixteen groups of LFE circuits are employed as shown in Fig. 2.5. The

leftmost LFE circuits process the data from columns 1 to 8, the second LFE

circuits from the left process the data from columns 5 to 12, and the rightmost

LFE circuits process the data from columns 61 to 68. Figure 2.5 shows an example

in which 5 × 5 kernel operations centered at all “black” pixel sites are conducted

by these 16 groups of LFE circuits at the same time. Thus, the kernel calculations

of one line are completed in four iterations. The details of the signal processing

in the LFE circuit is explained in section §2.3.3 using Figure 2.6. Thanks to this

architecture, the one-pixel by one-pixel image data transfer and extra image data

storage are unnecessary. As a result, the latency is reduced considerably.

2.3.3 Local feature extraction circuits

Fig. 2.6 shows the implementation of a single LFE circuit shown in Fig. 2.5 in

more detail. By using the block-readout architecture, 8 × 8 1-bit data from a

selected block in the DPS are transferred to each LFE circuit at each clock cycle.

An LFE circuit possesses eight masks, two masks for each kernel: one for the plus

component, the other for the minus component. In each mask, there are three

20



2.3 VLSI Implementation

8X8

67 1-bit 

input adder

Absolute subtract

Horizontal

convolution

Plus 45

convolution

Vertical

convolution

Minus 45

convolution

Maximum gradient selection circuitry

Directional edge

with convolution

8X8

67 1-bit 

input adder
67 1-bit 

input adder

Absolute subtract

Buffer

4X84X8

Two masks for horizontal 

edge detection

+ component - component

8X8 8X8

11-bit 

shift register
11-bit 

shift register

LSB LSB

8X8 8X8 8X8

11-bit 11-bit

11-bit 

shift register

LSB

11-bit

o o

8X88X8

67 1-bit 

input adder

Absolute subtract

Horizontal

convolution

Plus 45

convolution

Vertical

convolution

Minus 45

convolution

Maximum gradient selection circuitry

Directional edge

with convolution

8X88X8

67 1-bit 

input adder
67 1-bit 

input adder

Absolute subtract

Buffer

4X84X8

Two masks for horizontal 

edge detection

+ component - component

8X88X8 8X88X8

11-bit 

shift register
11-bit 

shift register

LSBLSB LSBLSB

8X88X8 8X88X8 8X88X8

11-bit11-bit 11-bit11-bit

11-bit 

shift register

LSBLSB

11-bit11-bit

o o

Figure 2.6: Local feature extraction circuit.

21

Chapter1/Chapter1Figs/EPS/LFE.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.3 VLSI Implementation

types of pixels, which are indicated as “dark gray”, “light gray” and “white” in

Fig. 2.6. In the “dark gray” pixels, the bit data are blocked and converted to

zero, thus transforming the 8 × 8 1-bit data block into a 5 × 5 1-bit data block.

The “light gray” pixels are also blocked to zero to generate kernel filter patterns,

where plus and minus coefficients are generated by two separate masks. Then the

data bits only in the “white” pixels are transferred to the 67 1-bit input adder.

This adder outputs the result in four bits. Here, 64 inputs are for the image data

and the extra three bits are for the upper three bits of the previous summation

results, which are fed back to inputs in each cycle.

For example, in Fig. 2.6, the leftmost mask forces the 59 signals in both “light

gray” and “dark gray” pixels to be zero before being transferred to the adder and

only allows the five plus components for the horizontal direction to pass. These

mask patterns are controlled using two groups of shift registers, one group for

vertical scanning, the other for horizontal scanning. Controlled by these signals,

the mask can process 5 × 5 filtering kernel at all 4 × 4 pixel sites in the middle

of the 8 × 8 data block. Therefore, with 16 groups of LFE circuits, the “dark

gray” area in Fig. 2.5 can be scanned by 5 × 5 filtering kernels seamlessly.

Because the block-readout architecture transfers one bit in each read cycle

from the least significant bit (LSB) to the most significant bit (MSB), the adder

counts the number of 1’s in its 64 (8 × 8) inputs. The maximum of this number

is five because only five pixel data can pass through the mask. The LSB of the

adder’s output is sent to the “11-bit shift registers”, while the upper three bits

are fed back to the input for accumulation. Since only five 8-bit image data

can pass through each mask and be added in a bit-serial manner, the maximum

summation result is 255 × 5, which is an 11-bit number. As shown in Fig. 2.6,

after these shift registers collect all 11 bits of the summation results, the “absolute

subtract” circuit calculates the absolute difference between the “+” component

22



2.3 VLSI Implementation

and the “-” component, which is the 11-bit convolution value for this direction.

Then, the maximum gradient selection circuitry that is designed employing the

two-dimensional bit-propagating scheme (56) determines the edge direction at

the pixel site. In this manner, the edge direction at this pixel site is determined

with its corresponding convolution value. The results are stored in SRAM arrays

in the GFE unit for future processing of global feature extraction.

2.3.4 Global feature extraction unit

Traditionally, the rank order filter is used to determine the nth order in a set of N

data (99). For example, n = 1 yields the maximum value, n = N the minimum

value, and n = (N + 1)/2 the median value. In this paper, the algorithm is mod-

ified for marking the values that are larger than the nth order and implemented

in a simplified circuitry for global feature extraction.

5 11 11 0100

1

2

3

4

C
y
c

le
s

0

1        

1  1  0  0  1

1                

1

M
A

R
K

0

F
L

A
G

0

DATA 1

F
iv

e
 c

y
c

le
s

1  0  0  0  1

1                

M
A

R
K

0

F
L

A
G

0

DATA 2

0  1  1  1  0

0                

M
A

R
K

0

F
L

A
G

0

DATA 3

0  0  1  1  1

0                

0

M
A

R
K

0

1

F
L

A
G

0

DATA 4

0  1  1  1  1

0                

M
A

R
K

0

F
L

A
G

0

DATA 5

Input pixel data (Five), mark the top three data

True

True

True

False

No. of “1” > 3

False

1 11 00 00 001        1        0        1        

11

11

11

11

11

11

1      

1  

1

1      

1  

1

00 001      

1  

0

0      

0  

0

1      

1  

1

01

01

11

00

00

Initial status

00

00

0 : The value of “MARK” has not been decided;

1 : The value of “MARK” has been decided.
FLAG = 

5 11 11 0100

1

2

3

4

C
y
c

le
s

0

1        

1  1  0  0  1

1                

1

M
A

R
K

0

F
L

A
G

0

DATA 1

F
iv

e
 c

y
c

le
s

1  0  0  0  1

1                

M
A

R
K

0

F
L

A
G

0

DATA 2

0  1  1  1  0

0                

M
A

R
K

0

F
L

A
G

0

DATA 3

0  0  1  1  1

0                

0

M
A

R
K

0

1

F
L

A
G

0

DATA 4

0  1  1  1  1

0                

M
A

R
K

0

F
L

A
G

0

DATA 5

Input pixel data (Five), mark the top three data

True

True

True

False

No. of “1” > 3

False

1 11 00 00 001        1        0        1        

11

11

11

11

11

11

1      

1  

1

1      

1  

1

00 001      

1  

0

0      

0  

0

1      

1  

1

01

01

11

00

00

Initial status

00

00

0 : The value of “MARK” has not been decided;

1 : The value of “MARK” has been decided.
FLAG = 

Figure 2.7: Global feature extraction algorithm.

The algorithm employed in the implementation is explained using an example

given in Fig. 2.7. The figure shows the operation of finding the larger three data

in a five-data set (DATA1 ∼ DATA5). The operation begins from MSB and prop-

agates to the following bit in the next clock cycle. Each datum is accompanied by

23

Chapter1/Chapter1Figs/EPS/ROF.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.3 VLSI Implementation

a “FLAG” and a “MARK”. The “FLAG” shows whether the value of “MARK”

has been decided or not; while the “MARK” shows whether this datum is larger

than or equal to the third rank order datum. Both “FLAG” and “MARK” are

set to “0” at the beginning.

In the first clock cycle, all MSBs of the five data are summed up. If the

sum is greater than the assigned order, the result of this operation is “True (1)”;

otherwise, it is “False (0)”. In the example, the sum is equal to 2; thus, the

summation result in this bit is “False (0)”. Then, “FLAG” for the data whose

values are different from the result, i.e., DATA1 and DATA2, is converted to “1”,

and “MARK” is altered to the same value as its bit. In this manner, all the

following bits in DATA1 and DATA2 are masked by their “MARK”, i.e., “1” in

this example.

In the second clock cycle, the processing is carried out on second MSBs from

the five data. The same procedure as in the first clock cycle is repeated. According

to the example, the sum is four, and it is larger than the assigned order number.

Thus, the result is “True (1)”. Here, the less significant bits of DATA4 are all

altered to “0”. The same set of operations is repeated down to LSB. The result

is available as soon as the calculation of LSB is finished. Therefore, DATA1,

DATA2, and DATA5 are marked “1” as the three larger values out of five.

Figure 2.8(a) shows the configuration of the GFE unit, which is composed of

4096 processing elements, a 4096 1-bit input adder, and a comparator. In each

cycle, the outputs from the 4096 processing elements are added by the 4096-

input adder, from which the rank order number (TH) is subtracted. The MSB

of the subtraction result, which is “0” when the summation is larger than the

rank order number (TH) and “1” otherwise, is inverted and fed back to each

processing element for determining “FLAG” and “MARK”. Figure 2.8(b) shows

one processing element, which is composed of two parts: a 13-bit SRAM and a

24



2.3 VLSI Implementation

(a) (b)

13-bit SRAM

To adder

4096 1-bit input 

adder

ComparatorTH

Mark decision

circuit

Processing element

4096 processing elements

(a) (b)

13-bit SRAM

To adder

4096 1-bit input 

adder

ComparatorTH

Mark decision

circuit

Processing element

4096 processing elements

Figure 2.8: Global feature extraction circuit.

“mark decision” circuit. The 13-bit SRAM stores 11-bit convolution value and

2-bit value for four directions (“00”: horizontal, “01”: +45◦, “10”: vertical, and

“11”: −45◦).

REG

DATA

REG

Feedback
For adder

“FLAG” logic 

circuit

“MARK” logic circuit

Selector

“MARK” register

REG

DATA

REG

Feedback
For adder

“FLAG” logic 

circuit

“MARK” logic circuit

Selector

“MARK” register

Figure 2.9: Schematic of the “mark decision” circuit.

Figure 2.9 shows the simplified schematic of the “mark decision” circuit. The

circuit is comprised of three parts: a “FLAG” logic circuit, a “MARK” logic

25

Chapter1/Chapter1Figs/EPS/GFE.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html
Chapter1/Chapter1Figs/EPS/MarkDecision.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.4 Chip Design and Measurement Results

circuit, and a selector. It processes the pixel data in a bit-serial manner according

to the algorithm illustrated in Fig. 2.7. After 11 cycles, 4096 “MARK” values are

decided and preserved in “MARK” register in each “mark decision” circuit. The

data in these “MARK” registers can be read out; therefore, both the “MARK”

values and the data in the SRAM array can be read out.

2.4 Chip Design and Measurement Results

68X68 

DPS

16 groups of 

Processing

Elements

Global Feature 

Extraction Circuits

68X68 

DPS

16 groups of 

Processing

Elements

Global Feature 

Extraction Circuits

Figure 2.10: Layout of global feature extraction VLSI processor without the top

metal, which is used for light shielding.

A VLSI chip was designed in a 0.18-µm five-metal complementary metal-

oxide-semiconductor (CMOS) technology. Figure 2.10 shows the entire layout

without the top metal that is used for light shielding. This chip includes all three

blocks described in §2.3. The specification of this chip is summarized in Table

2.1.

Fig. 2.11 shows the environment of the seasurement, in which the chips is

mounted on a socket and placed beneath the lens. The object is put above the

26

Chapter1/Chapter1Figs/EPS/Layout.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.4 Chip Design and Measurement Results

Table 2.1: Specifications of test chip. (⋆ the light integration time for photodiodes

is not considered)

Technology 0.18-µm CMOS, 1-poly, 5-metal

Core size (mm2) 4.5 × 2.5

Number of pixels 68 × 68

Pixel pitch (µm2) 18 × 18

Fill factor 7.4%

Transistor count 1.6 million

Supply voltage 1.8 V

Clock freq. 60 MHz

Power 67 mW(⋆)

Frame rate 5000 f/s(⋆)

5mm

Lens

5mm

Lens

Figure 2.11: A photo of the measurement environment.

27

Chapter1/Chapter1Figs/EPS/photo.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.4 Chip Design and Measurement Results

Edge 

intensities

Horizontal +45 -45VerticalAll

Edge maps 

with global 

threshold

(a)

(b) (c) (d) (e) (f)

Edge 

intensities

Edge 

intensities

Horizontal +45 -45VerticalAll

Edge maps 

with global 

threshold

Horizontal +45 -45VerticalAll

Edge maps 

with global 

threshold

(a)

(b) (c) (d) (e) (f)

Figure 2.12: Measurement results of global feature extraction VLSI processor.

Global Threshold: 512; (a) edge intensities, (b) all edge map (485 out of 4096),

(c) edge map in horizontal, (d) edge map in +45◦, (e) edge map in vertical, and

(f) edge map in −45◦.

lens. By measurement results, the function of the system has been verified. Fig.

2.12 shows the measurement results. The global threshold was set at 512, which

denotes that it should retain more significant 512 edges out of 4096 pixels. The

simulation results give 485 edges as shown in Fig. 2.12(b). The missed edges are

due to the pixels that have the same convolution value. The remaining edges for

each direction are shown in Figs. 2.12(c) - (f). The processing time is 0.19 ms at

60 MHz, which is more than 400 times faster than software processing running

on a 2-GHz general-purpose processor. If distribution histograms are produced

from these edge maps, they play essential roles in intelligent image recognition

applications as shown in refs. (63) and (64). Such a high-speed performance

with the minimal latency is in particular important in applications to motion

recognition (68; 69).

28

Chapter1/Chapter1Figs/EPS/measure.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


2.5 Summary

2.5 Summary

a DPS-embedded global feature extraction VLSI processor for real-time image

recognition has been developed. By combining the block-readout architecture of

DSP and parallel processing elements, the latency of local feature extraction has

been markedly reduced. By adapting the rank-order filter algorithm to hardware

implementation, global feature extraction is accomplished in only 11 cycles. A

prototype chip was designed in a 0.18-µm five-metal CMOS technology. The

measurement results show that the VLSI processor can extract features more than

400 times faster than software processing running on a 2-GHz general-purpose

processor when operating at 60 MHz.

29



Chapter 3

Design of Advanced

Early-Visual-Processing VLSI

Processor Using 65-nm

Technology

3.1 Introduction

Nowadays, in our daily lives, image sensors can be found in many commodities

such as cameras, mobile phones, computers, game machines, cars, and so forth.

Thanks to these little “eyes”, recording and transferring pictures and movies be-

come very convenient, which greatly broaden our view as well as memories. With

an image sensor at the back of the car, we don’t need to turn back during parking,

with an ultra-high speed camera, we can see what exactly happens when a needle

is penetrating a balloon, and with a camera on the mobile phone, we don’t need

to memorize the bus schedule. Besides these ordinary task, in which we just need

raw images, many new applications are also under researching and developing,

aiming for more sophisticated systems which can provide the desired information

from the images: such as natural human-computer interface (100), autonomous

30



3.1 Introduction

robot/vehicle (101; 102), visual surveillance (103), and the ubiquitous environ-

ment (104; 105). Since such kind of real-time intelligent image processing tasks

are always computationally very expensive, how efficiently we can process the

image data acquired by image sensors is an essential issue in developing these

systems. There are two important factors that affect the system performance,

one is how to access the image data efficiently, and the other is how to process

the image data efficiently.

The vast availability of image sensors is due to the continuously improvement

of the silicon process technology. Although charge-coupled devices (CCDs) have

traditionally been the dominant image-sensor technology, recent advances in the

design of complementary metal oxide semiconductor (CMOS) technologies have

made them more preferable for their lower power, lower price, and wider dy-

namic range. In addition to these benefits, the compatibility of CMOS image

sensor with processing circuits is very important for performance enhancement.

By developing specific circuits for different purposes, Ref. (106; 107; 108; 109)

achieve noise-reduction, Ref. (110; 111; 112) get wider dynamic-range, Ref. (113)

also reports seamlessly binning mode change. Furthermore, since the design of

functional circuits on CMOS image sensor has much flexibility, it is also possible

to achieve even more complex image processing tasks on the same chip.

The appearance of CMOS image sensors with low price and sufficient per-

formance brings the opportunity of realizing the algorithms that are verified by

software processing of image data stored on some media (e.g. a hard disc). As

a result, the real-time intelligent image processing systems become possible. For

example, the “open source computer vision (OpenCV) (114)”, a very popular

library of programs, collects many basic functions for real time applications such

as segmentation, recognition, classification, motion tracking, etc. However, since

the computation of such algorithms are usually very heavy, in many cases the

31



3.1 Introduction

performance of software running on general purpose CPUs is far from sufficient

even with the multi-core technique. To attack this problem, many VLSI chips

are developed for accelerating these algorithms by employing different parallel

processing circuits (12; 16; 20). A very influential trend toward this problem is

the graphics processing units (GPUs) (2). In (21), a GPU-based cellular neu-

ral network (CNN) simulator that can run 8-17 times faster than a CPU-based

CNN simulator is reported; and in some particular applications such as the MRI

reconstruction in (2), a maximum speed up of 263 has been reported. There-

fore, by employing such kind of hardware accelerators, the image data processing

time can be dramatically reduced. However, since such chips are designed to be

compatible with many existing algorithms, for each particular application, some

redundant energy consumption is inevitable, which limits the power efficiency of

the whole system. In addition, the delay caused by the data transfer from the

image sensor to the accelerator, which is usually in a one pixel per clock cycle way,

severely limits the efficiency of the image data access; makes such a system not

suitable for time critical applications. Also, the employment of image sensor also

makes the system to be complex and burden, thus not applicable for size-critical

applications.

The compatibility between the CMOS image sensor and the processing cir-

cuits together with the requirement of efficient image data access method leads

to many researches on smart sensors in which the image processing functions are

implemented on the image sensor. Several works design the processing circuit

mainly inside each pixel to achieve functions such as: image filtering (22; 23),

gradient extraction (24), contrast processing (25; 26), selective region output

(27; 28), inter-frame processing (22; 26; 29; 30; 31), pixel-parallel ADC (32), and

bright dot tracking (33). While embedding the processing circuits in each pixel

can achieve very fast processing speed, too complex tasks or unsuitable process-

32



3.1 Introduction

ing algorithms can cause the pixel to be very complex or even impossible. On

the other hand, implement the column/row-parallel or serial processing circuits

on the image sensor but out of the pixel-array can handle more flexible tasks

such as: complex image filtering (34; 35), histogram-based processing (34), color

processing (36), 3D image sensor (37; 38), multi-sensing (38), and motion detec-

tion (39). When combine the high processing speed of in-pixel circuits and the

flexible function of the off pixel-array circuits, many works also report further

image sensor performance improvement (40; 41; 42), edge-extraction (41), mo-

tion detection (41; 43), 3D applications (44; 45), matrix transform (46; 47), and

image compression (48). With the power of smart sensors, systems with small

size and low latency can be achieved. Some image sensors are expected to be

used for bio-application (49; 50; 51).

Therefore, the development of smart image sensors opens the possibility of

designing even high level functional sensors that can handle more complex tasks

which we named intelligent image processing such as: image recognition, tracking

and even motion recognition. However, compared with the smart sensors that

can handle normal image processing tasks, the smart sensors for intelligent image

processing are less reported. In reference (52), a tracking function is developed

on the image sensor but the application is limited to a particular condition: eye-

tracking. A really intelligent visual sensor is reported in (53), which implement

the image sensor and the vision processor on the same chip. But since the image

data of one frame are firstly buffered in a group of memory, and then processed

by the vision processor, the merit of on chip image sensor is not fully utilized

which limit the power and processing efficiency. In addition, because the em-

bedded vision processor, as well as many other visual processors (12; 16; 20), is

developed to be compatible with many existing algorithms which are probably

not VLSI-implementation friendly oriented developed, such an incompatibility

33



3.1 Introduction

between algorithm and VLSI also leads to system inefficiency. As a result, how

to develop the intelligent image processing algorithms to make them easy to be

implemented directly at the device and circuit levels is very important. Being

inspired by the biological principle (11), a series of VLSI-implementation friendly

algorithms were proposed and have been successfully applied to pattern recog-

nition (63; 65; 98), object tracking (66) and motion recognition (68; 69). Some

VLSI chips have been designed for accelerating these algorithms such as the VLSI

processor for feature extraction and vector generation (74) and template match-

ing VLSI chips in both analog and digital domains (56; 78; 79). To further reduce

the latency of such systems, a Digital-Pixel-Sensor (DPS (32; 80; 81)) embedded

global feature extraction VLSI processor has been developed for real-time image

recognition (115; 116). By employing a block read-out architecture (83) and an

efficient sorting algorithm, the feature extraction processing: the most computa-

tional intensive step in the image recognition algorithm, can be achieved in an

efficient method with low latency. By employing this smart sensor, a real-time

image recognition system was developed in reference (117). Thanks to the effi-

cient image data access and processing methods, the latency between the image

capture and the final recognition has been reduce to only 906 µs, which makes

such a sensor very suitable for time critical applications. One drawback of this

work is, since this smart sensor is developed especially for static image recog-

nition, it is difficult to handle other algorithms such as object tracking (66) or

motion recognition (68) directly, requiring much processing out of this chip.

Thus, in this paper, we succeed the design in reference (115; 116), to de-

velop a DPS embedded early-visual-processing VLSI processor which can be used

for more applications. By properly balancing the processing tasks into: pixel-

parallel ADC, line-parallel local image processing and pixel-parallel global image

processing, a compact and programmable design is achieved. The DPS technique

34



3.2 Intelligent Image Processing Algorithms

achieves fast pixel-parallel ADC, providing the possibility of accessing the digi-

tized image data directly from the sensor array, which also gives the opportunity

of saving the specific memories for image data buffering. The block read-out archi-

tecture (83) realizes the efficiency image data access; enable the bit-serial kernel

calculation without any data buffering. For local processing, a programmable

line-parallel local image processing circuits which can handle filtering and max-

imum gradient selection functions which need to be performed repetitively for

each pixel site. The local processed data are stored in the memories inside the

processing element (PE) of global processing circuits, which perform frame level

calculations such as salient feature selection, differential feature map generation,

integrated feature map generation, and self-adapted frame selection. This ar-

chitecture is designed using a 65-nm 12-Metal standard CMOS process. The

function of this chip was verified by measurement results.

The organization of this paper is as follows. In §3.2, the targeted intelli-

gent image processing algorithm in this study is explained. In §3.3, the VLSI

implementation is described. In §3.4, the layout of the test chip and the chip

measurement results are presented. Finally, the conclusions are given in §3.5.

3.2 Intelligent Image Processing Algorithms

3.2.1 Global feature extraction for static image recogni-

tion algorithm

As introduced in chapter 2 and also references (63; 65; 98), the feature extraction

algorithm for the static image recognition is based on four types of directional

edge filtering (horizontal, +45◦, vertical, and −45◦). It is composed of two main

processes: the local feature extraction (LFE) and the global feature extraction

(GFE). In the LFE, convolutions between the 5 × 5-pixel region centered at

35



3.2 Intelligent Image Processing Algorithms

the pixel site and four 5 × 5-pixel filtering kernels (one for each direction) are

calculated. Then, based on the four convolution results, the direction with the

maximum gradient value is selected as the most significant feature, which we call

the local feature, at the pixel site and its convolution value is preserved. The

direction in all pixel sites are expressed by four binary edge maps (horizontal,

+45◦, vertical, and −45◦), for example, a black point (binary number 1) in the

horizontal edge map means the direction of this pixel site is horizontal. In the

GFE, based on the convolution values for all pixel sites, only a determined num-

ber of pixel sites with larger convolution values are selected and retained. The

determined number is emphasized here because it is closely related to the other

two intelligent image processing algorithms. Since such a global feature extraction

algorithm is well explained in §2.2, the details are not shown here.

3.2.2 Differential directional-edge image generation for ob-

ject tracking algorithm

A robust object tracking algorithm is proposed in reference (66). By introducing

the concept of the differential directional-edge image (DDEI), a map of edge flags

produced from the difference of two consecutive edge images, the information from

background has been effectively removed. As a result, this algorithm is robust

against the influence of cluttered background, as well as illumination change and

speed variation. Since the smart sensor in this paper mainly focuses on how

to generate the DDEI efficiently for such kind of tracking algorithms, only the

process of DDEI generation is introduced in detail.

In order to generate the DDEI, firstly edge filtering is carried out at every

pixel site in the tracking window using a 5 × 5-pixel directional filtering kernel,

the vertical kernel is usually used for tracking in the horizontal direction. After

filtering each pixel site has a convolution value. Then perform the process of

36



3.2 Intelligent Image Processing Algorithms

t1+ 1t1

3% 11%

XOR processing

1%Remained edge 

% in image

Edge Map

(<10%) (<10%) (>10%)

DDEI

Figure 3.1: DDEI generation for the object tracking algorithm.

GFE to retain only a determined number of the more significant edges as the

binary edge map. Generation of a DDEI is illustrated in Fig. 3.1. From the two

directional-edge images at t1 and t1 + τ1, DDEI is generated by taking XOR.

In generating DDEI, the number of edge flags after XOR is counted in every

frame. When the edge count reaches a predetermined value, i.e., ThDDEI , the

edge flag map at the moment is accepted as the DDEI at t1. ThDDEI is adopted

as a percentage of the total number of pixels in the tracking window. Initially,

ThDDEI is set by hand, and then this value is controlled automatically by some

other mechanism.

3.2.3 Directional edge displacement (DED) map genera-

tion for motion recognition algorithm

In reference (68), a motion field generation algorithm using block matching of edge

flag histograms has been developed aiming at its application to motion recogni-

tion systems. The usage of edge flags instead of pixel intensities has made the

algorithm robust against illumination changes. In order to detect local motions

37

Chapter2/Chapter2Figs/EPS/kim_algo.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.2 Intelligent Image Processing Algorithms

of interest effectively, a new adaptive frame interval adjustment scheme has been

introduced in which only the edge flags due to local motions present in the frame

are accumulated and utilized in block matching. As a result, the computational

cost for best match search has been substantially reduced. Since the smart sensor

in this paper mainly focuses on how to generate the DED map efficiently, only

the process of DED map generation is introduced in detail.

Figure 3.2: Process of DED edge map generation for the motion recognition

algorithm.

Fig. 3.2 shows the process of DED edge map generation, which is similar

with the DDEI generation process. Firstly, an edge map is generated from an

image frame by setting the determined number so that the number of edge flags

remaining becomes a certain percentage of the total number of pixels in the frame.

This edge map is called the source edge map. Then, the edge map is generated

from the next-frame image with the same determined number and logic OR is

38

Chapter2/Chapter2Figs/EPS/hayakawa_algo.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

taken between the edge map and the source edge map. The combined edge map

thus produced is called the accumulated edge map. From the third frame image,

edges are detected with the same edge percentage, which is then merged with

the accumulated edge map by taking OR again. In this manner, the accumulated

edge map is updated at every incoming image frame. Such a procedure is repeated

until the edge count in the accumulated edge map increases to a certain value.

Then the resultant accumulated edge map is compared with the source edge

map and the difference is detected. Namely, Exclusive OR is taken between the

accumulated map and the source map. The edge map produced in this manner is

called the directional edge displacement map (DED map), in which only the edge

flags due to the motion occurring during the image sequence are accumulated and

remaining.

3.3 VLSI Implementation

3.3.1 System organization

A VLSI processor was accurately designed for the intelligent image processing

algorithms described in §3.2. Figure 3.3 shows the overall architecture. It is

composed of three main blocks: 100 × 100 DPS, 24 groups of local image pro-

cessing (LIP) circuits, and a global image processing (GIP) unit. DPS is used to

capture the image. 24 groups of processing elements are used for parallel filtering

or local feature extraction. The complex interconnection between DPS and 24

LIP circuits is markedly simplified by the block-readout architecture, which has

been explained in detail in §2.3. Because the size of each filter kernel is 5 ×

5, a 100 × 100 original image is converted to 96 × 96 directional edge map(s)

with the maximum convolution value at every pixel site. Then, the directional

edge flags with their convolution values are stored in static random access mem-

39



3.3 VLSI Implementation

Global Image

Processing 

Circuits (GIP)

24 groups of Local 

Image Processing

Circuits (LIP) 

24 groups of Local 

Image Processing

Circuits (LIP) 

100 X 100 

Digital Pixel 

Sensor (DPS)

Figure 3.3: Architecture of this early-visual-processing VLSI processor

ories (SRAMs) in the GIP unit. An efficient binary sorting algorithm adapted

for hardware implementation is employed to perform the GFE processing so that

the global thresholding process for all 9216 11-bit data can be accomplished in

only 11 cycles. Such a fast processing capability is contrasted with those complex

algorithms used in software (99).

3.3.2 Digital-pixel-sensor and local image processing (LIP)

circuit

The architecture of the digital-pixel-sensor and the block-readout method have

been introduced in detail in §2.3. This section only gives a brief description

of these two parts. Figure 3.4 shows the block diagram of both DPS and LIP.

To keep the circuits rational in the interconnection and chip areas, the kernel

calculation should be performed in a line-parallel manner. Thus, 24 LIP circuits

are employed which can perform the filtering or LFE for one row (96 pixel sites)

40

Chapter2/Chapter2Figs/EPS/archi.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

Row 1 ~ 4

100X100 DPS

Row 5 ~ 8

Row 9 ~ 12

Row 97 ~ 100

C
o

l.
 1

 ~
 4

C
o

l.
 5

 ~
 8

C
o

l.
 9

 ~
 1

2

C
o

l.
 9

7
 ~

 1
0
0

B
lo

c
k

 r
e

a
d

o
u

t 
c

o
n

tr
o

l 
c
ir

c
u

it
s

LIP

Circ.

Control

circuits
LIP

Circ.

LIP

Circ.

LIP

Circ.

4X8

24 groups of local image processing circuits

4X8 4X8 4X8

Row 1 ~ 4

100X100 DPS

Row 5 ~ 8

Row 9 ~ 12

Row 97 ~ 100

C
o

l.
 1

 ~
 4

C
o

l.
 5

 ~
 8

C
o

l.
 9

 ~
 1

2

C
o

l.
 9

7
 ~

 1
0
0

B
lo

c
k

 r
e

a
d

o
u

t 
c

o
n

tr
o

l 
c
ir

c
u

it
s

LIP

Circ.

Control

circuits
LIP

Circ.

LIP

Circ.

LIP

Circ.

4X84X8

24 groups of local image processing circuits

4X84X8 4X84X8 4X84X8

Figure 3.4: Block-readout method for DPS

41

Chapter2/Chapter2Figs/EPS/block_readout.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

in 4 iterations.

Bit-serial adder

8 X 8

Bit-serial adder

Shift 

registers

Absolute subtract

Shift 

registers

“+” mask “-” mask

+1

-1

+1+1+1+1

-1 -1 -1 -1

Maximum gradient 

selection circuitry

8 X 8

(a)

(b)

Bit-serial adderBit-serial adder

8 X 8

Bit-serial adderBit-serial adder

Shift 

registers

Absolute subtract

Shift 

registers

“+” mask “-” mask

+1

-1

+1+1+1+1

-1 -1 -1 -1

+1

-1

+1+1+1+1

-1 -1 -1 -1

Maximum gradient 

selection circuitry

8 X 8

Maximum gradient 

selection circuitry

8 X 8

(a)

(b)

Figure 3.5: Local image processing circuits

Fig. 3.5(a) shows the implementation of a single LIP circuit shown in Fig. 3.4

in more detail. By using the block-readout architecture, 8 × 8 1-bit data from a

selected block in the DPS are transferred to each LIP circuit at each clock cycle.

An LIP circuit has four kernel processing circuits, which contains 2 masks: one

for the plus component, the other for the minus component. The detail structure

42

Chapter2/Chapter2Figs/EPS/LIP.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

of the horizontal kernel processing circuits is shown in Fig. 3.5(b). In each mask,

there are two types of pixels, which are indicated as “gray” and “white”. In the

“gray” pixels, the bit data are blocked and converted to zero, while the data

bits in the “white” pixels are allowed to pass through to generate kernel filter

patterns for a particular pixel site. The plus and minus coefficients are generated

by two separate masks. The data bits in the “white” pixels are transferred to the

bit-serial adder. The LSB of the adder’s output is sent to the “shift registers” for

accumulation. After these shift registers collect all bits of the summation results,

the “absolute subtract” circuit calculates the absolute difference between the

“+” component and the “-” component, which is an 11-bit convolution value for

this direction. Then, the maximum gradient selection circuitry that is designed

employing the two-dimensional bit-propagating scheme (56) determines the edge

direction at the pixel site. In this manner, the edge direction at this pixel site is

determined with its corresponding convolution value. The results are stored in

SRAM arrays in the GIP unit for future processing of global feature extraction.

3.3.3 Global image processing unit

3.3.3.1 Circuits design

The efficient binary sorting algorithm developed from the rank-order-filter algo-

rithm for the global feature extraction was explained in detail in §2.3, this section

starts from the introduction of the overall architecture of the GIP unit.

Figure 3.6(a) shows the configuration of the GIP unit, which is composed

of 9216 (96 pixels × 96 pixels, one PE for processing one pixel site) processing

elements, a full parallel 9216 1-bit input adder, and a comparator. This GIP unit

has two system modes, which is explained in detail later. One is GFE mode;

the other is frame processing mode. In each cycle, the outputs from the 9216

processing elements are added by the 9216-input adder, from which the rank

43



3.3 VLSI Implementation

Full parallel adder

96 X 96 

Processing 

Element (PE)

ComparatorTH

Feedback 

to all PEs

PE:

In-PE

Functional

Circuit

Direction

Gradient

SRAM

Full parallel adder

96 X 96 

Processing 

Element (PE)

ComparatorTH

Feedback 

to all PEs

Full parallel adder

96 X 96 

Processing 

Element (PE)

ComparatorTH

Feedback 

to all PEs

PE:

In-PE

Functional

Circuit

Direction

Gradient

SRAM

(a) (b)

Figure 3.6: Global image processing circuits

order number (TH) is subtracted in the comparator. In GFE mode, the MSB of

the subtraction result, which is “0” when the summation is larger than the rank

order number (TH) and “1” otherwise, is inverted and fed back to each processing

element for determining “FLAG” and “MARK” as described in the binary sorting

algorithm in §2.3. While in the frame processing mode, two edge maps from two

frames are combined by “OR” or “XOR” calculation in a pixel-parallel way, and

the total number of the combination result is compared with the other threshold

to determine whether it should be recorded or discarded. Figure 3.6(b) shows

one processing element, which is composed of two parts: a 13-bit SRAM and a

“In-PE functional circuit”. The 13-bit SRAM stores 11-bit convolution value and

2-bit value for four directions (“00”: horizontal, “01”: +45◦, “10”: vertical, and

“11”: −45◦).

Figure 3.7 shows the schematic of the “In-PE functional circuit”, which con-

44

Chapter2/Chapter2Figs/EPS/GIP.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

Binary search block

Frame processing &

data transferring 

block

Edge map 

information: 

“Mark”

Data 

from 

SRAM

Selector

To full 

parallel 

adder

Mode 

control 

signal

Feedback Output for 

adding

Data from 

neighboring 

PE

Data for neighboring PE 

/Output

Figure 3.7: “In-PE” functional circuit

tains two main blocks: one is the “binary search block”; the other is “frame

processing & data transferring block”. The system mode is controlled by the sig-

nal “mode control signal” as shown in this figure. This signal decides the output

of which block should be transferred to the full parallel adder for summation. The

data from the SRAM in the same PE is transferred to both of the two blocks.

Besides the image data that preserved in the SRAM, the “binary search block”

also receives the “feedback” signal which is generated from the “comparator”.

In the GFE mode, it generates the proper signal for adding in order to perform

the GFE as well as the final result, which appears as the edge map information:

“mark” as shown in this figure. With many control signals, the “frame processing

& data transferring block” has three main functions: data loading, pixel-parallel

edge map processing, and shift the results out. It receives the data both from

the SRAM, the “binary search block”, and the result data provided by the neigh-

boring PE, while providing proper data for adding or as result data to the next

neighboring PE.

Figure 3.8 shows the schematic of the “binary search block” circuit in detail.

The circuit is comprised of three parts: a “FLAG” logic circuit, a “MARK” logic

45

Chapter2/Chapter2Figs/EPS/In_PE.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

REG

Data

REG

Feedback “FLAG” logic 

circuit

“MARK” logic circuit

Selector

“MARK” register

Output for 

adding

Edge map 

information: 

“Mark”

REG

Data

REG

Feedback “FLAG” logic 

circuit

“MARK” logic circuit

Selector

“MARK” register

Output for 

adding

Edge map 

information: 

“Mark”

Figure 3.8: Binary search block in the “In-PE” functional circuit

circuit, and a selector. It processes the pixel data in a bit-serial manner according

to the algorithm illustrated in §2.3. After 11 cycles, 4096 “MARK” values are

decided and preserved in “MARK” register in each “mark decision” circuit. The

data in these “MARK” registers are transferred out as the edge map information:

“mark” and read out though the “frame processing & data transferring block”.

Figure 3.9 shows the schematic of the “frame processing & data transfer-

ring block”. It is composed of a multi-purpose register for recording the result

and three combinational sub-blocks which are named as: “working mode select”,

“data select”, and “function select” as shown in the figure. There are three con-

trol signals for the “working mode select” sub-block. When “LOAD Data” is

enabled, the function are further decided by the “data select” sub-block. If the

“Load Data SRAM” is active, the datum from the SRAM is preserved in the reg-

ister; while if the “Load Data SELF” is active, the datum in this register itself

is reloaded. Such a design is employed because this register shares some control

46

Chapter2/Chapter2Figs/EPS/MarkDecision.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

REG

Data/SRAM

Load_Data_SRAM

Load_Data_SELF

“Mark”
In_Pixel_Normal

In_Pixel_OR

In_Pixel_XOR

Data for 

neighboring PE 

/Output for adding

Data from neighboring PE 

SHIFT_Out

FUNCTION_In_Pixel

LOAD_Data
Data 

select

Function 

select

For recording 

the result 

Working 

mode 

select

REG

Data/SRAM

Load_Data_SRAM

Load_Data_SELF

“Mark”
In_Pixel_Normal

In_Pixel_OR

In_Pixel_XOR

Data for 

neighboring PE 

/Output for adding

Data from neighboring PE 

SHIFT_Out

FUNCTION_In_Pixel

LOAD_Data
Data 

select

Function 

select

For recording 

the result 

Working 

mode 

select

Figure 3.9: Frame processing & data transferring block in the “In-PE” functional

circuit

signal with the two registers in the “binary search block” and it should keep

the result during the GFE of a new frame. When the “FUNCTION In Pixel” is

enabled, the function are further decided by the “function select” sub-block. If

“In Pixel Normal” is active, the edge information: “mark” is directly recorded

into the register. While if the “In Pixel OR” or “In Pixel XOR” is active, the

“mark” preserved in the register and the “mark” from the “binary search block”

are processed with the “OR” or “XOR” computation correspondingly. Finally,

when the “SHIFT Out” is enabled, all registers in this “frame processing & data

transferring block” of the PEs are connected into 24 shift register chains, which

can shift circularly to output the results. The output of the last register is

feedback to the first register in each chain so that the results are not affected

in the output process. The data preserved in the register is output for adding

when “FUNCTION In Pixel” is enabled or as the data for neighboring PE of the

“SHIFT Out” is enabled. A summary of the instruction codes is shown in Table

3.1. These eight-bit codes are created by connecting the logic values of the eight

47

Chapter2/Chapter2Figs/EPS/Frame_Proc.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.3 VLSI Implementation

control signals in this order: LOAD Data, FUNCTION In Pixel, SHIFT Out,

Load Data SRAM, Load Data SELF, In Pixel Normal, In Pixel OR, and In Pixel XOR.

Table 3.1: Summary of the instruction codes.

Instruction code Function

100 10 XXX Load data from SRAM

100 01 XXX Keep the prior value

010 XX 100 Load the edge map information: “Mark”

010 XX 010 Perform the OR calculation

010 XX 001 Perform the XOR calculation

3.3.3.2 Operation

For the global feature extraction used in static image recognition, the “system

mode” is constantly kept to be GFE mode to extract the global feature for each

frame and records the results to the multi-purpose registers; then the results are

transferred out of the circuits. For generating a DDEI, the first frame is processed

in system mode GFE and the results are recorded into the multi-purpose registers.

From next frame, after the GFE of this new frame, instead of recording the

result for directly the multi-purpose registers, the system mode is changed to

frame processing mode and a pixel-parallel “XOR” calculation is performed. The

number of edge marks in the DDEI results are summed by the full-parallel adder

and compared with the corresponding threshold. If it is less than the threshold,

which means the object has not moved enough for generating a DDEI, the system

will restore the original result by applying another “XOR” for the calculated

results and the edge map of the new frame, waiting for evaluating the next frame.

If it is equal or larger than the threshold, which means the object has moved

enough for creating a DDEI, then the DDEI results are shifted out and the edge

map generated for this frame is recorded into the multi-purpose registers for

48



3.4 Chip Design and Measurement Results

generating next DDEI. For generating a DED map for motion recognition, again,

the first frame is processed in system mode GFE and the results are recorded

into the multi-purpose registers. From next frame, after the GFE of this new

frame, instead of recording the result directly to the multi-purpose registers, the

system mode is changed to frame processing mode and a pixel-parallel “OR”

calculation is performed to calculate the accumulated edge map. The number of

edge marks in the accumulated edge map are summed by the full-parallel adder

and compared with the corresponding threshold. If it is less than the threshold,

which means the movement is not enough for generating a DED map, the system

will just keep the accumulated edge map, waiting for the next frame. If it is

equal or larger than the threshold, which means the movement in the scene is

large enough for creating a DED map; then a XOR is applied to the accumulated

edge map and the edge map generated for this frame. The resultant DED map

results are shifted out and the edge map generated for this frame is recorded into

the multi-purpose registers for generating the next DED map.

3.4 Chip Design and Measurement Results

A VLSI chip was designed in a 65-nm 12-metal CMOS technology. Figure 3.10(a)

shows the entire layout and Figure 3.10(b) shows a photomicrograph of the fab-

ricated chips. The top 3 levels of metal are used for light shielding. To achieve

good performance and high integrity, the photodiode as well as analog circuits

inside each pixel are designed using the 180nm process, while all digital circuits

are designed using the normal 65-nm process. This chip includes all three blocks

described in §3.3. The specification of this chip is summarized in Table 3.2.

Figure 3.11 shows the environment of the measurement. This chip is mounted

on a socket and put beneath the lens. Two 100W lights are used as the light

49



3.4 Chip Design and Measurement Results

2.1 mm

4
.2

 m
m

DPS

GIP

LIP

2.1 mm

4
.2

 m
m

2.1 mm

4
.2

 m
m

DPS

GIP

LIP

(a) (b)

Figure 3.10: Layout and photomicrograph of this chip

Table 3.2: Specifications of this chip. (⋆ a typical operating condition)

Technology 65-nm CMOS, 1-poly, 12-metal

Core size (mm2) 1.3 × 3.4

Number of pixels 100 × 100

Pixel pitch (µm2) 10.6 × 10.6

Fill factor 14%

Transistor count 4.3 million

Supply voltage 1.3 V(⋆)

Clock freq. 20 MHz(⋆)

Power 13 mW(⋆)

Frame rate 40 f/s(⋆)

50

Chapter2/Chapter2Figs/EPS/Layout.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.4 Chip Design and Measurement Results

Figure 3.11: Measurement environment.

source, and image is put about 20 cm from the lens.

Figure 3.12: An image taken by the DPS

Figure 3.12 shows an image taken by this sensor with a shutter speed of 24ms.

Since this foundry process which was designed for regular CMOS logic circuits

and analog circuits is not tuned for developing photo-diode and DRAM used in

each pixel of this image sensor, there are some noises in this image. However, the

purpose of this work is to develop the fine-grained parallel image processing cir-

cuits for the image sensor to achieve efficient implementation. Furthermore, such

noises can be greatly eliminated in our image processing algorithms by employing

51

Chapter2/Chapter2Figs/EPS/65nm_measure_env.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html
Chapter2/Chapter2Figs/EPS/65nm_measure_image.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.4 Chip Design and Measurement Results

the global feature extraction.

Local 

Processing

Global 

Processing 

(11%)

Horizontal +45 degree Vertical -45 degree

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Local 

Processing

Global 

Processing 

(11%)

Horizontal +45 degree Vertical -45 degree

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.13: Measurement results of the global feature extraction function. (a)

edge intensity, local feature edge map in (b) horizontal, (c) +45◦, (d) vertical,

and (e) −45◦, (f) merged edge map after global feature extraction, and global

feature edge map in (g) horizontal, (h) +45◦, (i) vertical, and (j) −45◦.

Figure 3.13 shows the measurement results for both the local image processing

and global feature extraction. The data after the local image processing are

shown in Figure 3.13 (a-e), in which (a) showing the intensity of each pixel site

and (b-e) showing the direction of each pixel site. The data after the global

feature extraction are shown in Figure 3.13 (f-j), in which (f) showing the merged

edge map of four direction and (g-h) showing the edge map for each direction.

The threshold was set at 11%. Most of the noises in the original image have

been eliminated in the global feature extraction. If distribution histograms are

produced from these edge maps, they play essential roles in intelligent image

recognition applications as shown in refs. (63) and (64).

Figure 3.14 shows the measurement results for the self-adapted differential

52

Chapter2/Chapter2Figs/EPS/65nm_measure_gfe.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.4 Chip Design and Measurement Results

Intensity

Frame 32 Frame 33 Frame 63 Frame 64

Differential 

edge map

Reference 

edge map

Intensity

Frame 32 Frame 33 Frame 63 Frame 64

Differential 

edge map

Reference 

edge map

Figure 3.14: Measurement results of self-adapted differential edge map generation

function.

edge map generation. In frame 32, a new reference edge map is generated. From

frame 33 to frame 63, since the movement is not significant in the scene, each

time after generating the differential edge map, the edge map is recovered to

the reference edge map of frame 32. In frame 64, since the number of edges in

the differential edge map exceeded the differential threshold, which means there

are significant movement in the scene, after generating the differential edge map,

instead of recover the original reference edge map generated in frame 32, the edge

map of frame 64 is generated as a new reference edge for the following differential

edge map. In the differential edge map generated in frame 64, more edges are

from the moving part and the background has been reduced greatly. In this

experiment, the global threshold is set to be 5.5% and the differential threshold

is set to be 2.8%. Here only the right half of scene has objects as image since

some problems in layout affected the stability of the “XOR” function in the left

53

Chapter2/Chapter2Figs/EPS/65nm_measure_xor.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.4 Chip Design and Measurement Results

part of the scene.

Frame 1 Frame 2 Frame 3 Frame 4

Intensity

Integrated 

edge map

Reference 

edge map

Frame 1 Frame 2 Frame 3 Frame 4

Intensity

Integrated 

edge map

Reference 

edge map

Figure 3.15: Measurement results of self-adapted integrated edge map generation

function.

Figure 3.15 shows the measurement results for the self-adapted integrated edge

map generation. Four frames are shown in this image and the global threshold is

set to be 11% and the integrated threshold is set to be 16.5%. In the first frame,

it will output an edge map as the first reference edge map. In the second frame,

the second edge map is integrated with the first one to make an integrated edge

map, since the total number of edges in this integrated edge map is smaller than

the integrated threshold, which means the movement in the scene is not enough,

the image sensor will keep integration. In the third frame, the third edge map is

also added to the integrated edge map. In the fourth frame, after integrating the

fourth edge map to the integrated edge map, the total number become larger than

the integrated threshold, which means the movement in the scene is significant

enough for the following processing. Then the integrated edge map is output and

54

Chapter2/Chapter2Figs/EPS/65nm_measure_or.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.4 Chip Design and Measurement Results

the fourth edge map is also output as the second reference edge map for the next

integration. In this experiment, the global threshold is set to be 11% and the

integrated threshold is set to be 16.5%.

Frame 51 Frame 57 Frame 58

Intensity

Integrated 

edge map

Reference 

edge map

DED map

Figure 3.16: Measurement results of DED map generation function.

Figure 3.16 shows the measurement results for the DED map generation.

However, to achieve a compact design, this algorithm has been modified that

the DED map is generated by processing XOR between the integrated edge map

and the newly generated reference edge map, instead of using the prior reference

edge map. In frame 51, the total number of the edges in the integrated edge

map exceeded the integration threshold; then the DED map is generated by

performing XOR between this integrated edge map and the newly generated

55

Chapter2/Chapter2Figs/EPS/65nm_measure_orxor.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


3.5 Summary

reference edge map in this frame. From frame 52 to frame 58, the movement

is not significant enough to generate DED map, so the edges are just collected

in the integrated edge map. In frame 58, again, the total number exceeded the

integration threshold; the same processing in frame 51 is performed. In this

experiment, the global threshold is set to be 5.5% and the integrated threshold

is set to be 11%.

3.5 Summary

A digital-pixel-sensor-based early-visual-processing VLSI processor for real-time

intelligent image processing has been developed. By combining the block-readout

architecture for DPS and parallel processing elements, the latency of local image

processing has been markedly reduced. By adapting the rank-order filter algo-

rithm to hardware implementation, global feature extraction is performed in a

very fast manner. The enhancement in the functionality of processing element

improves the programmability of the processor greatly. As a result, such a chip

can handle multiple algorithms efficiently. A prototype chip was designed in a 65-

nm 12-metal CMOS technology. The measurement results show that this VLSI

processor can achieve all expected functions.

56



Chapter 4

A Real-Time Image Recognition

System Using a Global

Directional-Edge-Feature

Extraction VLSI Processor

4.1 Introduction

Real time image recognition has become an emerging research area for various

applications such as intelligent robot control, automotive vehicle control, video

surveillance, natural human-computer interface, smart game controller, and so

forth. The traditional software-based recognition algorithms running on general

purpose processors are computationally very expensive, and building real-time

response systems at rational costs and power-consumption is not practical. To

enhance the performance, a number of VLSI chips have been designed for specific

image processing operations such as feature extraction and template matching

(93; 94). Instead of designing chips for already available algorithms, a more

effective way is to make algorithms themselves more adaptive to VLSI hardware

implementation. The face detection core in (118) is designed with a particular

57



4.1 Introduction

face detection algorithm. The network-on-chip in (16) is equipped with a special

visual-attention-based object recognition algorithm.

Being inspired by the biological principle (11), a VLSI-implementation friendly

image recognition algorithm was proposed and has been successfully applied to

pattern recognition (63). There are three steps in this algorithm as illustrated

in Fig. 4.1: feature extraction (step I), vector generation (step II) and template

matching (step III). Some VLSI chips have been designed for this architecture

such as the VLSI processor for feature extraction and vector generation (74) and

template matching VLSI chips in both analog and digital domains (59). Thanks

to the parallel computation in these chips, the processing speed of the recognition

algorithm has been considerably accelerated, making real-time image recognition

feasible. However, because most of these chips were designed for only one or at

most two steps for this algorithm, it is difficult to build a fast response recognition

system since the latency caused by the large quantity of data transfer between

every consecutive two chips. The most serious bottleneck occurs between the

image sensor chip and the feature extraction chip.

In this paper, real-time image recognition is demonstrated by building a simple

test system using specialized VLSI chips. This system has two main components:

one is a digital-pixel-sensor-embedded global directional-edge-feature extraction

VLSI processor which was introduced to solve the most serious bottleneck in

step I; the other is a vector-generation and template-matching processor (step II

& III) which was implemented on an FPGA development board. The monitor

control for displaying the recognition results is also implemented on the FPGA.

The architecture of the feature extraction VLSI processor has been presented in

(115; 116). However, its function was only verified by NANOSIM simulation. In

this work, a real working chip was used for the first time in conjunction with

the auxiliary functions implemented on an FPGA to build a very-low latency

58



4.2 VLSI-Implementation Friendly Recognition Algorithm

Step I: Step II: Step III:     Recalling the 

most similar experience 

by template matching
Feature 

Extraction

Vector 

Generation

Figure 4.1: VLSI-implementation friendly image recognition algorithm.

real-time image recognition system. Furthermore, the capability of the system

for automatic adaptation to selecting more significant features has been experi-

mentally demonstrated.

4.2 VLSI-Implementation Friendly Recognition

Algorithm

The algorithm has two modes of operation: the learning mode and the recognition

mode. Step I and step II are common for both modes, while step III depends on

which mode is working.

4.2.1 Global directional-edge-feature Extraction

The feature extraction algorithm is based on four types of directional edge filter-

ing (horizontal, +45◦, vertical, and −45◦). It is composed of both local feature

extraction and global feature extraction. During local feature extraction, the

convolutions between the 5×5 partial image centered at each pixel site and four

59

Chapter3/Chapter3Figs/EPS/reco_algo.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.2 VLSI-Implementation Friendly Recognition Algorithm

Original image

+1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1
+1

+1

-1

-1

-1

-1

-1

+1

+1

+1 +1

+1

-1

-1

-1

-1

-1

+1

-1

+1+1+1+1

-1 -1 -1 -1 +1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1+1
+1

-1

-1 -1

-1

-1

+1

+1

+1
+1

+1

-1

-1

-1

-1

-1

+1

+1

+1
+1

+1

-1

-1

-1

-1

-1

+1

+1

+1 +1

+1

-1

-1

-1

-1

-1

+1

+1

+1 +1

+1

-1

-1

-1

-1

-1

+1

-1

+1+1+1+1

-1 -1 -1 -1

+1

-1

+1+1+1+1

-1 -1 -1 -1

Local Feature 

Extraction

Local 

features

(a)

Global Feature 

Extraction

Horizontal +45 deg. Vertical -45 deg.

Vector 

Generation

Horizontal +45 deg. Vertical -45 deg.

Global 

features

Feature 

vector

(b)

(c)

Horizontal +45 deg. Vertical -45 deg.

Template 

Matching

Figure 4.2: Feature extraction and vector generation.

5×5-pixel filtering kernels (one for each direction) are calculated. For each pixel

site, only the maximum convolution value is preserved as the gradient value with

its direction as the directional edge flag. Fig. 4.2(a) shows the edge flags obtained

in the local feature extraction stage. In order to develop a self-adaptive algorithm

that can select only salient features automatically, a global feature extraction pro-

cess was developed. In this process, only a predetermined number of significant

edge flags which has larger gradient values than the others are retained. Fig.

4.2(b) shows four global feature maps when only 40% of more significant edge

flags are retained.

60

Chapter3/Chapter3Figs/EPS/fea_vec.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.3 System Implementation

4.2.2 Feature vectors

Although feature maps very well represent image features, the amount of data

is still massive and dimensionality reduction is essential for efficient processing.

64-dimension feature vectors are generated from feature maps by taking the spa-

tial distribution histograms of edge flags. Fig. 4.2(c) illustrates the generation

procedure for a feature vector called averaged principle-edge distribution (APED)

vector. In this process, each feature map is equally divided into 4×4 cells and

the edge flags in each cell are counted and each element in the feature vector

indicates the number of edge flags within the corresponding cell.

4.2.3 Learning and recognition

In the learning mode, the generated APED is recorded as a new template. Since

a same object is displayed in different conditions for better learning, the same

object can have several different template vectors. In the recognition mode, the

generated feature vector is compared with all template vectors that the system

memorized during the learning mode. The template vector yielding the minimum

distance (the Manhattan distance is utilized in this work) is detected as the

maximum-likelihood case to the input.

4.3 System Implementation

4.3.1 Architecture of the system

Fig. 4.3(a) shows the whole architecture of the real-time image recognition sys-

tem. Global directional-edge-feature extraction VLSI processor is used for im-

age capture and feature extraction. Then the extracted features are transferred

to the FPGA development board, in which the vector generation and learn-

ing/recognition are performed, and the results are displayed on a monitor. Since

61



4.3 System Implementation

Edge maps

DPS-embedded feature

extraction VLSI

Circuits implemented 

on FPGA

FPGA board

DAC for monitor

(a)

16 groups of

Local Feature

Extraction 

Circuit

68 X 68

Digital Pixel 

Sensor

DATA  

BUS

Global Feature

Extraction

Unit

DATA  

BUS

(b)

Edge maps

DPS-embedded feature

extraction VLSI

Circuits implemented 

on FPGA

FPGA board

DAC for monitor

(a)

16 groups of

Local Feature

Extraction 

Circuit

68 X 68

Digital Pixel 

Sensor

DATA  

BUS

Global Feature

Extraction

Unit

DATA  

BUS

(b)

Figure 4.3: Architecture of the recognition system.

the extracted features are edge maps and the data size is much smaller than

the original image size, the latency due to the data transfer has been decreased

dramatically.

4.3.2 Global directional-edge-feature extraction VLSI

Fig. 4.3(b) shows the architecture of the global directional-edge-feature extraction

VLSI. It is composed of three main blocks: a 68×68 digital-pixel-sensor (DPS), 16

groups of local feature extraction (LFE) circuits, and a global feature extraction

(GFE) unit. DPS is used to capture the image. Sixteen groups of processing ele-

ments are used for parallel local feature extraction. The complex interconnection

between DPS and 16 LFE circuits is markedly simplified by the block-readout

architecture introduced in (83). Because the size of each filter kernel is 5×5, a

68×68 original image is converted to four 64×64 directional edge maps with the

maximum convolution value preserved at every pixel site. Then the directional

edge flags with their convolution values are stored in SRAMs in the GFE unit.

62

Chapter3/Chapter3Figs/EPS/sys_archi.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.3 System Implementation

Rank-order-filter algorithm adapted to hardware implementation is employed in

the GFE unit so that the sorting process for all 4096 11-bit data in the global

feature extraction can be accomplished in only 11 bit-comparison cycles. Such

a fast processing capability is contrasted with those complex algorithms used in

software. Through the GFE unit, the four edge maps are compressed into a full

edge map, which is a superposition of all four edge maps along with the direc-

tional information at each pixel site. More details about this VLSI architecture

are available in (116).

4.3.3 Circuits implemented on FPGA

Fig. 4.4 shows the circuits implemented on FPGA. The compressed full edge

map information from the feature extraction VLSI is stored into an SRAM on

the FPGA. After the data of one frame is transferred completely, the data are

decomposed into four edge maps and stored in four edge-map SRAMs separately.

An extra copy of the four edge maps and the full edge map are also stored in

a special purpose SRAM for display. In the APED vector generation circuitry,

the four edge flags on the same pixel location are read out simultaneously and

accumulated in parallel by individual accumulators, thus generating APED vec-

tor components. Then the results are sent to present APED vector recording

circuitry.

The function of the system after APED vector generation changes depending

on the mode of operation, which is controlled by a toggle switch. In learning

mode, a push button is used to trigger a learning process. Each time the button

is pushed, the APED vector generated at the moment is stored in the memory as

a template. In the recognition mode, every APED vector generated is matched

with all template vectors stored in the memory for recognition. Fig. 4.5 shows

the architecture of the template matching circuitry. The elements of 64 APED

63



4.4 Experimental Results

Buffering memory and decompression unit

Horizontal

edge maps

+45 deg.

edge maps

Vertical

edge maps

-45 deg.

edge maps

Accumulator Accumulator Accumulator Accumulator

APED vector generation

Present

APED vector
APED vector

templateMatching circuitry

Global control circuitry VGA controller

Buffering memory and decompression unit

Horizontal

edge maps

+45 deg.

edge maps

Vertical

edge maps

-45 deg.

edge maps

Accumulator Accumulator Accumulator Accumulator

APED vector generation

Present

APED vector
APED vector

templateMatching circuitry

Global control circuitry VGA controller

Figure 4.4: Circuits implemented on FPGA.

template vectors are read out in parallel and sent to the sum-of-absolute-difference

(SAD) circuits. At the same time, the corresponding component of the present

APED vector is broadcasted to all SADs. The output of each SAD is accumulated

and compared to find the minimum to yield the recognition result.

4.4 Experimental Results

Fig. 4.6 shows a photomicrograph and specifications of the global directional-

edge-feature extraction VLSI processor fabricated in a 0.18-µm 5-metal CMOS

technology. In order to achieve a compact layout and high-performance operation,

the chip was entirely designed by hand-layout. This chip can achieve 5000 frame/s

at 60 MHz if the light integration time for photodiodes is not considered, with a

power consumption of 67 mW at 1.8 V.

Fig. 4.7 shows three edge maps that demonstrate the automatic critical fea-

64

Chapter3/Chapter3Figs/EPS/APED_vec.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.4 Experimental Results

APED vector

template

APED vector

template

APED vector

template

Memory 1

SAD SAD SAD

15-bit

Accumulator

15-bit

Accumulator

15-bit

Accumulator

8-bit 8-bit 8-bit

To winner-take-all circuits

Memory 2 Memory 64

Address

Present 

feature 

vector

Memories of past experience

APED vector

template

APED vector

template

APED vector

template

Memory 1

SAD SAD SAD

15-bit

Accumulator

15-bit

Accumulator

15-bit

Accumulator

8-bit 8-bit 8-bit

To winner-take-all circuits

Memory 2 Memory 64

Address

Present 

feature 

vector

Memories of past experience

Figure 4.5: Template matching circuitry.

68 X 68 

DPS

16 groups 

of LFE

Global Feature 

Extraction Unit

Chip specifications

Technology

Core size

Supply voltage

Clock freq.

Power

Transistors

0.18 µm CMOS, 

5-layer AL

1.6M

11 mm²

1.8 V

60 MHz

67 mW (*)

Frame rate 5000 f/s(*)

68 X 68 

DPS

16 groups 

of LFE

Global Feature 

Extraction Unit

68 X 68 

DPS

16 groups 

of LFE

Global Feature 

Extraction Unit

Chip specifications

Technology

Core size

Supply voltage

Clock freq.

Power

Transistors

0.18 µm CMOS, 

5-layer AL

1.6M

11 mm²

1.8 V

60 MHz

67 mW (*)

Frame rate 5000 f/s(*)

Figure 4.6: Photomicrograph and specifications of the fabricated chip (*the light

integration time for photodiodes is not considered).

65

Chapter3/Chapter3Figs/EPS/temp_match.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html
Chapter3/Chapter3Figs/EPS/chip_spec.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.4 Experimental Results

Background (paper) Object (scissors) 

moves in (Partly)

Object (scissors) 

moves in (Completely)

(a) (b) (c)

Background (paper) Object (scissors) 

moves in (Partly)

Object (scissors) 

moves in (Completely)

(a) (b) (c)

Figure 4.7: Automatic critical feature adjustment.

ture attention capability of the chip. Here, four separate directional edge maps

are merged to one. In this experiment, an image of a hand is used as the back-

ground. Fig. 4.7(a) is the merged edge map when only the background is shown

in the scene. When another object begins to appear in the scene (Fig. 4.7(b)),

the number of edge flags from the background image decreases, because it is in

a little out of focus condition. When the object comes into the scene completely

(Fig. 4.7(c)), the whole background disappears and only the edge features from

the object remain because it is more sharply focused than the background image.

Fig. 4.8 shows measured waveforms from the system. The top signal goes

from 0 to 1 when the extracted features of one frame are completely transmitted

to the FPGA. Then the decompression circuits generate four edge maps from the

full edge map. The time for decompression is 38 µs. The signal in the middle

goes from 0 to 1 when the four edge maps are generated and goes from 1 to 0

when an APED vector is generated. The time for APED vector generation is 38

µs. The bottom signal goes to 0 when template matching is being performed.

Thanks to the parallel architecture in template matching, the processing time is

less than 2 µs. Restricted by the data transfer between the VLSI chip and the

FPGA board, the feature extraction chip was operated at 20 MHz, resulting in

66

Chapter3/Chapter3Figs/EPS/exp_1.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.4 Experimental Results

Edge maps 

(38 µs)

APED vectors 

(38 µs)

Template matching 

(<2 µs)

Edge maps 

(38 µs)

APED vectors 

(38 µs)

Template matching 

(<2 µs)

Figure 4.8: Measured waveforms showing the processing time.

the feature extraction time of 482 µs. The data transfer time is 346 µs. Therefore,

the latency between the image capture and the final recognition is only 906 µs,

which is fully compatible to time critical applications.

Fig. 4.9 shows the demonstration system. It can learn 64 template vec-

tors. Most memories on FPGA were used for displaying the results. The global

directional-edge-feature extraction VLSI processor is mounted under the lens. In

the monitor, the top five square images are the merged edge map and edge maps

in horizontal, +45◦, vertical, and −45◦ from left to right. Below these edge maps

are two APED vectors, the present APED vector on the left, and the most similar

APED vector in the memory on the right. Finally, all edge maps in the memory

are displayed at the bottom with a color mask on the most similar. Using this

system, a series of simple hand gesture recognition experiments were performed,

in which hand gestures of eight different persons were matched with 40 templates

for five gestures generated from one person. The recognition rate was almost

100% when the hand was posed about the same position.

67

Chapter3/Chapter3Figs/EPS/exp_2.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.4 Experimental Results

Lens

Edge maps of present input

Present APED vector Best matched APED vector

Memory
The most similar pattern recalled: 

recognized as “scissors”

Hand (scissors)

Lens

Edge maps of present input

Present APED vector Best matched APED vector

Memory
The most similar pattern recalled: 

recognized as “scissors”

Hand (scissors)

Figure 4.9: Operation of the demonstration system.

68

Chapter3/Chapter3Figs/EPS/exp_3.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


4.5 Summary

4.5 Summary

A real time image recognition system has been developed. This system is based

on a VLSI-implementation friendly image recognition algorithm. By using the

global directional-edge-feature extraction VLSI processor, the latency between

the image capture and the final recognition as small as 906 µs has been achieved.

The merit of the global feature extraction algorithm that it can focus on more

significant features automatically has also been experimentally verified.

69



Chapter 5

Directional-Edge-Based Object

Tracking Employing On-Line

Learning and Regeneration of

Multiple Candidate Locations

5.1 Introduction

Object tracking is the critical task in many practical applications such as video

surveillance, human-computer interface, vehicle navigation, and robot control.

For a robust object tracking system, there are many challenges: illumination vari-

ation, object size variation, partial occlusion, and object deformation. A number

of tracking algorithms have been proposed (119) including template matching

(120), “mean shift” tracking (121), active contour, and statistical approaches

such as Kalman filters and particle filters (122).

However, while each algorithm demonstrating good performance in its par-

ticular conditions, a robust solution with reasonable calculation cost is still far

from being completed. Each approach has some weaknesses. Template matching

can not deal with the object deformations of the moving objects very well. Mean

70



5.1 Introduction

shift is vulnerable to the variation in illumination. Active contour needs off-line

learning, i.e., which is not always available in practice. Statistical approaches

such as Kalman filters and particle filters need a lot of computation to achieve

good performance.

In contrast to the limited performances of existing tracking algorithms, the

object tracking abilities in most animals are excellent. Although the mecha-

nism of the visual perception system has not thoroughly been understood, many

researches on this topic give a lot of inspiring results (11). The work in (11)

reveals that the visual perception in animals relies heavily on directional-edges

for both static object and moving object. Based on such a biological principle,

many directional-edge-based object recognition algorithms have been proposed

and give good performance (123). However, such a concept has not been widely

used in object tracking.

Regarding the calculation time, since real-time performance is usually de-

manded, sometimes hardware is developed specifically to accelerate the process-

ing speed. For example, since the computation cost of the particle filter is very

heavy, FPGA-based VLSI architecture has been designed to dramatically enhance

the processing speed (124). But in many cases, tracking algorithms are not tuned

to be efficiently implemented in VLSI hardware.

Therefore, the purpose of this study is to develop a VLSI-implementation-

friendly object tracking algorithm that is robust in various circumstances. In-

spired by the biological research in (11), a directional-edge-based feature vector

is introduced to represent the features of the object in an image. With such fea-

ture vectors, the very basic template matching algorithm can work well in condi-

tion of illumination variation. To further enhance the performance of a tracking

system, an on-line learning technique as well as a statistical approach were de-

veloped. This statistical approach is based on regeneration of multi-candidate

71



5.2 Object Tracking Algorithm

locations which is similar to the particle filter but much easier to be implemented

into VLSI. By simulation experiments under various conditions, this algorithm

has been shown to be robust against illumination variation, object size variation,

partial occlusion, and object deformation.

5.2 Object Tracking Algorithm

5.2.1 Directional-edge-based feature vector generation

The first step of this feature vector generation algorithm is the feature map gener-

ation which extracts edge information from an input image. Fig. 5.1(a-e) shows

an input image and its four-directional edge maps. Each edge map represents

the distribution of edge flags corresponding to each direction, i.e. horizontal,

+45 degree, vertical, or -45 degree in the original image. These edge maps are

the most fundamental features extracted from the original image. Then a 64

dimension vector is generated as spatial distribution histograms of edge flags in

these edge maps as shown in Fig. 5.1(f). The percentage of the total edge flags

in an input image is fixed, thus for images of the same size, the summation of

all components of such a vector is a constant (N). This average principle-edge

distribution (APED (65)) feature vector is used throughout the present tracking

algorithm.

When the feature vector is combined with template matching, a tracker robust

to illumination variation can be achieved. However, in more complex conditions

such as object size variation, partial occlusion, and object deformation, such a

straightforward approach is prone to failure. Since statistical algorithms usually

work well in tracking with ambiguities, being inspired by the basic concept of

particle filter, a statistical approach employing regeneration of multiple candidate

locations has been developed to improve the system performance.

72



5.2 Object Tracking Algorithm

Horizontal +45 Vertical -45

Edge map 

generation

Input image

(a) (b) (c) (d) (e)

o o

Feature 

vector

(f)

Figure 5.1: Feature vector generation.

5.2.2 Overall flow of the tracking algorithm

Fig. 5.2(a) shows the overall flow of this tracking algorithm. The first frame

of the movie is processed by the “initialization block”. In the initialization, the

target should be chosen as a square area as shown in the inside part of the red

rectangular in Fig. 5.2(b). Then the “feature vector generation” function gen-

erates the first feature vector and records it in the “feature vector templates

container”. The “candidate locations initialization” function initializes all can-

didate locations based on the position of the selected target as the blue points

shown in Fig. 5.2(c) and record them in the “candidate locations container”.

After the initialization, whenever a new frame is available, the tracking block

is processed once. In tracking block, candidate locations are regenerated and

new feature vector may be created and added to the “feature vector templates

container”. With more feature vector templates, the system learns more about

the target. Since such an on-line learning system usually add new feature vector

templates when something occurs on the target, the description below suppose

there are more than one feature vector templates in the “feature vector templates

73

Chapter4/Chapter4Figs/EPS/fig1.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


5.2 Object Tracking Algorithm

container”. All candidate locations’ center of gravity is calculated as the tracking

result as shown is Fig. 5.2(d,e), in which the blue points are the regenerated

candidate locations.

Feature vector 

templates container

Candidate 

locations container

Feature vector 

generation

Candidate 

locations 

initialization

Initialization block

Target

First frame

The first feature 

vector
Initialize

Tracking block

New feature 

vector

Regenerate the candidate locations and 

create new feature vector template.

Regene-

ration

New frame

Center of Gravity 

(tracking result)

Frame 1 (initialization)

Frame 1227 (tracking)

(a)

(b)

(d)

(c)

(e)

Best matched 

template

Feature vector 

templates container

Candidate 

locations container

Feature vector 

generation

Candidate 

locations 

initialization

Initialization block

Target

First frame

The first feature 

vector
Initialize

Tracking block

New feature 

vector

Regenerate the candidate locations and 

create new feature vector template.

Regene-

ration

New frame

Center of Gravity 

(tracking result)

Frame 1 (initialization)

Frame 1227 (tracking)

(a)

(b)

(d)

(c)

(e)

Best matched 

template

Figure 5.2: Basic flow of this tracking algorithm

5.2.3 On-line learning and regeneration of multiple can-

didate locations

The tracking process is shown as three steps in Fig. 5.3. Suppose the total

number of candidate locations is C. Whenever there is a new frame, the tracking

process starts at step 1: for each candidate location in the “candidate locations

container”, the feature vector of the square region centered by this location in

the new frame is extracted. The size of the square region is the same as used

during initialization. Then the Manhattan distances between the corresponding

feature vector and all feature vector templates are calculated and the minimum

distance value is recorded. Based on the minimum Manhattan distance, each

candidate location is assigned a weight. Since small Manhattan distance means

74

Chapter4/Chapter4Figs/EPS/fig2.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


5.2 Object Tracking Algorithm

the candidate location is similar to one of the feature vector templates, smaller

Manhattan distance get a larger weight.

For example, the weighting strategy in the present work is described as follow.

Define the summation of all components of a feature vector is N . Then if the

Manhattan distance is larger than N , a weight of 0 is assigned. For Manhattan

distances Mdistance smaller than N , integer weights are assigned nearly propor-

tional to the evaluation formula: 10 − INT (10 × Mdistance/N). Here INT (x)

means to take the integer component of x. When Mdistance is zero or smaller than

N/10, the formula gets the maximum value 10, then the corresponding weight is

Wmax, which equals to C/4 in the experiments of this work. After step 1, each

candidate locations is assigned with a weight.

In step 2, the system firstly checks candidate locations one by one to find

whether there are some candidate locations having the weight Wmax. For each of

such candidate location, a new candidate location is generated randomly in its

vicinity. After the processing for all candidate locations is finished, if the number

of newly generated candidate locations is smaller than the total number of can-

didate locations C, the system continue to check candidate locations one by one

to find whether there are candidate locations have the weight ≥ (Wmax − 1). For

such candidate locations, a new candidate location is generated in the vicinity of

each location. This process is repeated until C new candidate locations are regen-

erated. Then replace the present candidate locations with these newly generated

candidate locations into the “candidate locations container” for the next frame

as shown in Fig. 5.3. In this way the candidate locations that have larger weights

are more probable to generate more new candidate locations nearby. These two

steps are similar to the weighting and resampling in particle filters, while much

easier to be implemented into VLSI.

To further enhance the performance of the system, an on-line feature vector

75



5.3 Experimental Results

template generation technique is developed as step 3 in Fig. 5.3. After the

former two steps, new candidate locations are generated. Then the feature vector

of the square region centered by the center of gravity of all newly generated

candidate locations in the present frame is calculated and compared with all the

feature vector templates in the “feature vector templates container”. When the

minimum Manhattan distance between the feature vector and all feature vector

templates is larger than a threshold (for example: 0.06×N in the present work),

this feature vector is added as a new feature vector template. This method gives

the system an on-line learning capability, which further improves the performance

of the system.

Feature vector 

templates container

Tracking block

Step 1: Weight candidate locations

Step 2: Regenerate candidate locations

New frame

Step 3: On-line feature vector template generation

Candidate 

locations container

Feature vector 

templates container

Tracking block

Step 1: Weight candidate locations

Step 2: Regenerate candidate locations

New frame

Step 3: On-line feature vector template generation

Candidate 

locations container

Figure 5.3: Tracking process by regenerate multiple candidate locations.

5.3 Experimental Results

The video sequence in ref. (66) is used to evaluate the performance of this tracking

algorithm. Eight frames are selected from the results as examples and shown in

Fig. 5.4(a). Frame 1 is used for initialization in which the position and size of

the hand are selected; then the first APED vector in template is created. Near

76

Chapter4/Chapter4Figs/EPS/fig3.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


5.3 Experimental Results

frame 267, the hand transforms a little. In frame 646, the system generates an

ADED vector automatically, which is added as a new template. Therefore, in

frame 647, a new template appears at the upper-left corner. The illumination

changes in frame 954 and 1197. In the rest three frames, partial occlusion occurs.

The tracking system works well in all such complex conditions. The templates

are shown in Fig. 5.4(b). The number below each template is the frame number

from which the template was generated. Except the leftmost template, which is

decided by human, all the other templates are generated automatically by the

tracking algorithm when there are some things occur on the target. Based on

these results, the on-line learning ability of the tracking system is verified.

Frame 1 Frame 267 Frame 647 Frame 954

Frame 1197 Frame 1656 Frame 2000 Frame 2376

(a)

(b)

1 646 953 1196 1904 2349

Frame 1 Frame 267 Frame 647 Frame 954

Frame 1197 Frame 1656 Frame 2000 Frame 2376

(a)

(b)

1 646 953 1196 1904 2349

Figure 5.4: Tracking hand sequence in complex condition. (64 candidate loca-

tions)

Fig. 5.5(a) shows 10 frames from the results of another video sequence, which

contains more complex conditions. After initialization in frame 1, the system

tracks the target by an on-line generated template nearing frame 714. Near

frame 1254, the person walks to the camera so the face becomes bigger, while

77

Chapter4/Chapter4Figs/EPS/fig4.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


5.4 Summary

near 1902 the person walks farther to the camera. A new template is generated

in each case. For consecutive frames 1770 and 1771, the change in position is

about 13 pixels, which is about 15 percents of the target size. In the last three

frames shown in Fig. 5.5(a), more severe partial occlusion occurs. The person

removes his glasses and moves for a while then wear it again. This system works

well in all such conditions. Fig. 5.5(b) shows all nine templates in the “feature

vector templates container” in which eight templates on the right were on-line

generated automatically.

Frame 1 Frame 714 Frame 1254 Frame 1770 Frame 1771

Frame 1902 Frame 2271 Frame 2394 Frame 2658 Frame 2841

(a)

(b)

1 629 725 989 1893 2270 2425 2658 2659

Frame 1 Frame 714 Frame 1254 Frame 1770 Frame 1771

Frame 1902 Frame 2271 Frame 2394 Frame 2658 Frame 2841

(a)

(b)

1 629 725 989 1893 2270 2425 2658 2659

Figure 5.5: Tracking face sequence in complex condition. (64 candidate locations)

5.4 Summary

A directional-edge-based object tracking algorithm was developed. By using

directional-edge-based feature vectors, the system has been made robust against

illumination variation. The on-line learning technique and the statistical multiple-

candidate-location generation have further improved the performance, making the

system robust against object size variation, partial occlusion, and object defor-

78

Chapter4/Chapter4Figs/EPS/fig5.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


5.4 Summary

mation. The performance was verified by experiments under varying disturbing

conditions.

79



Chapter 6

FPGA Implementation of a

Directional-Edge-Based

Real-Time Object Tracking

System

6.1 Introduction

Real-time object tracking is highly demanded in many practical applications such

as video surveillance, human-computer interface, vehicle navigation, and robot

control. For developing a robust object tracking system, there are many chal-

lenges: abrupt object motion, changing appearance patterns of both the object

and the scene, non-rigid object structures, object-to-object and object-to-scene

occlusions, and camera motion. Regarding these complex environments, in order

to achieve good performance in object tracking, many algorithms has been pro-

posed (119). Particle filter is one of the very popular and powerful algorithms

for solving this problem in various conditions (122; 125; 126; 127; 128). How-

ever, the real-time performance, which is very critical for many applications, is

difficult to achieve especially for high precision algorithms such as (122) by using

80



6.1 Introduction

software running on the general purpose serial CPU, because of the heavy com-

putation cost. Although by employing the high technique of multi-core, digital

signal processors (DSPs) and graphics processing units (GPUs) (2; 21) real-time

performance is feasible, it also results a complex power-hungry system, which is

not desirable.

Instead of using general purpose processing circuits, developing specific VLSIs

for performance enhancement is one solution to achieve high speed, compact im-

plementation, and low power. In reference (124), a particle filter design method-

ology is proposed and implemented on a field programmable gate array (FPGA).

The simulation results shows such a processor outperforms conventional DSPs in

both speed and power consumption. But since the computation of particle filter

is generally very complex and expensive, including a number of floating point

operations, it is not very desirable in terms of direct VLSI implementation. Such

a problem dues to the fact that the particle filter algorithm is not tuned to be

efficiently implemented in VLSIs.

Therefore, in chapter 5 a VLSI-implementation-friendly object tracking al-

gorithm that is robust in various circumstances is proposed. Inspired by the

biological research in (11), a directional-edge-based feature vector is adopted to

represent the features of the object in an image. With such feature vectors, the

very basic template matching algorithm can work well in condition of illumination

variation. To further enhance the performance of a tracking system, a particle fil-

ter inspired statistical approach was developed which we named the regeneration

of multi-candidate locations. Since this algorithm simplified the particle filter

algorithm into a non-floating point processing only manner, it is much easier to

be implemented into VLSI. Also an on-line learning technique is developed for

dealing with the complex environment. By simulation experiments under vari-

ous conditions, this algorithm has been shown to be robust against illumination

81



6.2 Restrained Object Tracking Algorithm

variation, object size variation, partial occlusion, and object deformation.

In this chapter, a simple real-time object tracking system based on the idea of

multi-candidate locations is developed. By implementing the VLSI-implementation

friendly functions on an FPGA, the processing speed of this system is very fast.

According to the experimental result, this system can finish the calculation task

in about 0.1 ms after finishing the image data transfer from the image sensor to

the FPGA. Since in this work, only eight candidate locations are employed for

tracking and the on-line learning is not included, the performance is not enough

for real applications. Nevertheless, such a fast image processing speed gives the

opportunity of designing a better tracking system with high performance when

developing control circuits for pipelining the processing circuits and other func-

tionalities such as the on-line learning.

The organization of this chapter is as follows. In §6.2, the targeted intelli-

gent image processing algorithm in this study is explained. In §6.3, the VLSI

implementation is described. In §6.4, the layout of the test chip and the circuit

simulation results are presented. Finally, the conclusions are given in §6.5.

6.2 Restrained Object Tracking Algorithm

The first step of this feature vector generation algorithm is the feature map

generation which extracts edge information from an input image. Fig. 5.1(a-

e) in chapter 5 shows an input image and its four-directional edge maps. Then a

64 dimension vector is generated as spatial distribution histograms of edge flags

in these edge maps as shown in Fig. 5.1(f). The percentage of the total edge

flags in an input image is fixed, thus for images of the same size, the summation

of all components of such a vector is a constant (N). This average principle-

edge distribution (APED (65)) feature vector is used throughout this tracking

82



6.2 Restrained Object Tracking Algorithm

algorithm.

6.2.1 Overall flow of the tracking algorithm

Fig. 6.1(a) shows the overall flow of this tracking algorithm. The first frame

of the movie is processed by the “initialization block”. In the initialization, the

target should be chosen as a square area as shown in the inside part of the red

rectangular in Fig. 6.1(b). Then the “feature vector generation” function gener-

ates the “target feature vector”. The “candidate locations initialization” function

initializes all candidate locations based on the position of the selected target as

the blue points shown in Fig. 6.1(c) and record them in the “candidate locations

container”. After the initialization, whenever a new frame is available, the track-

ing block is processed once, in which every candidate locations are regenerated

to move with the target. All candidate locations’ center of gravity is calculated

as the tracking result as shown is Fig. 6.1(d,e), in which the blue points are the

regenerated candidate locations.

Candidate 

locations container

Feature vector 

generation

Candidate 

locations 

initialization

Initialization block

Target

First frame

Target feature 

vector

Initialize

Tracking block

Regenerate the candidate locations.

Regene-

ration

New frame

Center of Gravity 

(tracking result)

Frame 1 (initialization)

Frame 1227 (tracking)

(a)

(b)

(d)

(c)

(e)

Best matched 

template

Figure 6.1: Basic flow of this tracking algorithm.

83

Chapter5/Chapter5Figs/EPS/flow_fpga.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


6.2 Restrained Object Tracking Algorithm

6.2.2 Regeneration of multiple candidate locations

The tracking process is shown as two steps in Fig. 6.2. Whenever there is a

new frame, the tracking process starts at step 1: calculate a “weight” for each

present candidate location in the “candidate locations container” based on the

new frame and the “target feature vector”, Then in step 2, the candidate locations

are regenerated based on the present candidate locations and their weights which

are generated at step 1.

Tracking block

Step 1: Weight candidate locations

Step 2: Regenerate candidate locations

New frame

Candidate 

locations container
Target feature 

vector

The weight of each 

candidate location

Figure 6.2: Tracking process by regenerate multiple candidate locations.

Fig. 6.3 shows “step 1” in more detail. For each candidate location in the

“candidate locations container”, the square region centered by this location in

the new frame, which is named “the image provided by a candidate location” in

this figure, is collected. The size of the square region is the same as used during

initialization. Then the feature vector of this square region is extracted by the

“feature vector generation” function. Next, the Manhattan distances between

this feature vector and the “target feature vector” is calculated and recorded.

Based on this distance, each candidate location is assigned a weight. Since small

Manhattan distance means the candidate location is similar to target feature

vector, smaller Manhattan distance get a larger weight.

84

Chapter5/Chapter5Figs/EPS/tracking_fpga.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


6.2 Restrained Object Tracking Algorithm

The image provided by 

a candidate location

Candidate locations 

container Target feature 

vector

Feature vector 

generation

Distance 

calculation

New frame

Weighting

Weight candidate locations

Figure 6.3: Weight candidate locations.

For example, the weighting strategy in the present work is described as follow.

Suppose the total number of candidate locations is C. Define the summation

of all components of a feature vector is N . Then if the Manhattan distance

is larger than N , a weight of 0 is assigned. For Manhattan distances Mdistance

smaller than N , integer weights are assigned nearly proportional to the evaluation

formula: 10 − INT (10 × Mdistance/N). Here INT (x) means to take the integer

component of x. When Mdistance is zero or smaller than N/10, the formula gets

the maximum value 10, then the corresponding weight is Wmax, which equals to

15 in the experiments of this work. After “step 1”, each candidate locations is

assigned with a weight.

Fig. 6.4 shows “step 2” in more detail. Since each candidate location has a

weight, the location is expressed by (Xi, Yi, Wi) as shown in Fig. 6.4(a), while i

is the number of the candidate location; Xi and Yi stands for the horizontal and

vertical coordination of this position; Wi stands for the weight. As illustrated

in Fig. 6.4(b), the system firstly checks candidate locations one by one to find

whether there are some candidate locations having the weight Wmax (7 in this

85

Chapter5/Chapter5Figs/EPS/weight_fpga.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


6.2 Restrained Object Tracking Algorithm

Candidate locations

No. 1: (X1, Y1, W1)

No. 2: (X2, Y2, W2)

No. n: (XC, YC, WC)

Candidate locations

No. 1: (X1, Y1, W1)

No. 2: (X2, Y2, W2)

No. n: (XC, YC, WC)

Weight

W1 W2 WC

7
6
5

Generate a new candidate 

location near (X2, Y2)

Generate a new candidate 

location near (XC, YC)

(a) (b)

Figure 6.4: Regenerate candidate locations.

example). For each of such candidate location, a new candidate location is gen-

erated randomly in its vicinity (one new candidate location near (X2, Y2)). After

the processing for all candidate locations is finished, if the number of newly gen-

erated candidate locations is smaller than the total number of candidate locations

C, the system continue to check candidate locations one by one to find whether

there are candidate locations have the weight ≥ (Wmax − 1) (6 in this example).

For such candidate locations, a new candidate location is generated in the vicinity

of each location (one new near (X2, Y2) and one new near (XC , YC)). This process

is repeated until C new candidate locations are regenerated. Then replace the

present candidate locations with these newly generated candidate locations into

the “candidate locations container” for the next frame as shown in Fig. 6.2. In

this way the candidate locations that have larger weights are more probable to

generate more new candidate locations nearby.

These two steps are similar to the weighting and resampling in particle filters,

while much easier to be implemented directly into hardware.

86

Chapter5/Chapter5Figs/EPS/regenerate_fpga.eps
http://www.if.t.u-tokyo.ac.jp/index-e.html


6.3 FPGA-Implementation of Object Tracking Algorithm

6.3 FPGA-Implementation of Object Tracking

Algorithm

6.3.1 System organization and architecture of tracking

processor

Based on the algorithm introduced in §6.2, a real-time object tracking system

which achieves satisfying performance in simple environment by employing only

eight candidate locations are developed. The organization of this system is shown

in Fig. 6.5. It contains four main blocks including: an image sensor, a tracking

processor which is implemented on an FPGA board, display control circuits on a

separated FPGA board, and a display for showing the tracking result. The main

processing tasks are executed on the tracking processor, in which a powerful

FPGA chip of Altera: the Stratix III EP3SL340, is used. This FPGA contains

338,000 logic elements (LEs) with 20497 Kb RAM, which is enough to handle

this system. Since there is not display connection on this board, another FPGA

board is used especially for showing the results in real time. This board embeds

many convenient chips including Cyclone II C270 FPGA device, VGA DAC with

VGA-out connector, two 32-Mbyte SDRAM, switches, etc.

Image

sensor

Tracking processor

on an FPGA board

Display control circuits

on an FPGA board

Image 

data
Image data 

and results

Display

Tracking 

results

Figure 6.5: System organization.

The over-all data flow of is system is also shown in Fig. 6.5. The image sensor

87

Chapter5/Chapter5Figs/EPS/trsys_org_fpga.eps


6.3 FPGA-Implementation of Object Tracking Algorithm

captures the image and transfers the image to the tracking processor, on which

the images are processed. The tracking results, including the position of the eight

candidate locations and the position of the object, together with the image data,

are transferred to the display control circuits. The display control circuits output

the result through the VGA-out connector to a display. The most important part

is the tracking processor.

Image

sensor

Eight groups of 

Candidate Location 

Processing Blocks 

(CLP)

Eight groups of 

Candidate Location 

Processing Blocks 

(CLP)

Candidate 

locations 

container 

(8 in all)

Image data buffering

memory

Feature vector 

generation circuits

(for initialization)

Target feature vectorRegeneration

Block

Weight for each 

candidate location

Tracking 

results

Global control

circuits

Image 

data

Tracking Processor

Figure 6.6: Architecture of the tracking processor.

The architecture of this tracking processor in illustrated in Fig. 6.6. This

system has eight candidate locations, the positions of which are recorded in the

“candidate locations container”. Each candidate location has a “candidate loca-

tion processing (CLP)” block for itself. So there are eight CLP blocks in all. The

88

Chapter5/Chapter5Figs/EPS/trsys_tracking_processor_fpga.eps


6.3 FPGA-Implementation of Object Tracking Algorithm

data from the image sensor are firstly buffered into a memory, and then broad-

casted to eight groups of CLP blocks, the “feature vector generation circuits”

especially for initialization, and the “display control circuits” outside this FPGA.

During initialization, which is triggered by a push button, the “feature vector

generation circuits” in this figure generates the “target feature vector” based on

the position of the target object which is manually set. This “target feature vec-

tor” is supplied to each CLP for weighting a candidate location. But processing

the information of image data and the position, a CLP generates a weight for

the candidate location. The “regeneration block” renew the information of all

candidate locations based on the weight of each candidate location. The signals

for controlling the flow of the system is generated by a “global control circuits”.

After reset, the initialization is triggered by a push button. During initialization,

the “target feature vector” is generated, and the position of each candidate lo-

cation is set based on the position of the target. Then, when ever a new frame

is transferred to the FPGA, a tracking calculation is performed. The size of the

target is set to be 64 × 64 in this system.

6.3.2 Candidate location processing block

As shown in Fig. 6.7(a), the CLP contains both the “feature vector generation cir-

cuits”, which is the same with the one especially for initialization in Fig. 6.6 and

the “weighting circuits”. By efficiently processing image data from the buffering

memory, the “feature vector generation circuits” generates the feature vector for

the candidate location in the new frame. Then the “weighting circuits” calculates

a weight by comparing the generated feature vector and the target feature vector.

A more detailed structure of the “feature vector generation circuits” is shown in

Fig. 6.7(b). It consists of three function components. The “small image selec-

tion circuits” receives the image data and the position of the candidate location,

89



6.3 FPGA-Implementation of Object Tracking Algorithm

Feature vector 

generation circuits

Weighting circuits

Image data buffering

memory

Candidate 

location

Feature 

vector

Target feature 

vector

Weight for this 

candidate location 

CLP

Small image 

selection circuits
Image 

data

Image 

data

The image 

provided by 

this candidate 

location

Feature extraction 

circuits (LFE & GFE)

4 directional 

edge maps

Feature vector

generation circuits

Feature 

vector

Candidate 

location

(a) (b)

Figure 6.7: Structure of candidate location processing (CLP).

and record the small 68 × 68 image centered by the candidate location for the

following “feature extraction circuits”, in which the global features are extracted

as four 64 × 64 directional edge maps as illustrated in §6.2. Then the “feature

vector generation circuits” convert the edge maps into an APED feature vector.

Fig. 6.8 shows the “small image selection circuits” in more detail. By con-

trolling the write enable signal and the write address, a 68 × 68 image centered

by the candidate location is recorded into the SRAM. After the whole frame has

been transferred from the image sensor to the SRAMs in the “small image selec-

tion circuits” of each candidate location, the “feature extraction circuits” starts

to read small image data and performing feature extraction, which consists of

both the local feature extraction (LFE) and global feature extraction (GFE).

Fig. 6.9 shows the LFE in detail. The image data preserved in the SRAM in

90

Chapter5/Chapter5Figs/EPS/trsys_clp_fpga.eps


6.3 FPGA-Implementation of Object Tracking Algorithm

Image 

data

Enable signal 

and address

generation

Small image selection circuits

Candidate 

location

Data interface 

for GFE

SRAM for 

small image

Figure 6.8: Small image selection circuits.

“small image selection circuits” (as the eagle in this Fig. 6.9(a)) are transferred

one pixel by one pixel to four groups of 68 pixels shift registers for recording

four rows of pixels as shown in Fig. 6.9(b). Each pixel records a 12-bit intensity

datum. When the first pixel, as the upper left pixel in Fig. 6.9(a), reaches the

upper right position of the four rows of registers, the 1 × 5 array composed of the

pixel from the SRAM (as the red pixel in Fig. 6.9(b)) and the right most pixel of

each row of the register array (as the four blue pixels in Fig. 6.9(b)) just records

the pixels in the 1 by 5 region at the upper left of the image. The same concept

is illustrated in Fig. 6.9(b) by using the same image of eagle, in which the blue

region is the pixels recorded in the shift registers and the pixel from the SRAM

is in red. This 1 × 5 array is transferred to a 5 × 5 scanning shift registers as

shown Fig. 6.9(c), which is used for seamlessly scanning every 5 × 5 region within

the 68 × 68 image. For each 5 × 5 region, the data are processed by the “pixel

site processing” block which generates the gradient and the direction of this pixel

site. The gradient data which are further used in GFE, are recorded in a 64 × 64

16-bit shift register array as shown in Fig. 6.9(d), while the direction data which

are transferred to the “feature vector generation circuits” are recorded in a 64 ×

64 2-bit shift register array as shown in Fig. 6.9(e).

91

Chapter5/Chapter5Figs/EPS/trsys_small_image_sel.eps


6.3 FPGA-Implementation of Object Tracking Algorithm

SRAM for small image One pixel 

by one pixel

Shift registers for recording 

4 rows of pixels (68 X 4)

An 1 X 5 

data array

Pixel site 

processing

5 X 5 scanning 

shift registers

(a)

(b)

(c)

Shift registers for recording 

gradient (64 X 64)

Shift registers for recording 

direction (64 X 64)

Gradient

Direction

(d)

(e)

To 

GFE

Output

Figure 6.9: Local feature extraction circuits (LFE).

The structure of “pixel site processing” block is designed exactly according

to the LFE algorithm introduced in §2.2. The kernel calculation is achieved in

fully parallel by four adders and four absolute value calculation circuits. Then

combinational maximum-gradient-selection circuits are used to select the largest

value. This value together with the direction is buffered as the outputs.

Fig. 6.10 shows the architecture of the GFE circuits. The same sorting

algorithm is employed as introduced in §2.3 which contains both a “mark” and a

“flag” for each pixel site. However, since such a parallel processing array as used

92

Chapter5/Chapter5Figs/EPS/trsys_lfe.eps


6.3 FPGA-Implementation of Object Tracking Algorithm

64 X 64 

Mark Registers

64 X 64 

Mark Registers

64 X 64 

Flag Registers

64 X 64 

Flag Registers

64 X 64 

Shift Registers

(In LFE)

64 X 64 

Shift Registers

(In LFE)

Line parallel 

Mark decision 

circuits

Figure 6.10: Global feature extraction circuits (GFE).

in the chip of chapter 2 is not feasible in FPGA, for a better trade of between

the complexity of the circuits and the speed, we developed this algorithm in a

line-parallel way, in which the processing of a particular bit for each gradient

value is divided into 64 cycles. In each cycle, as shown in Fig. 6.10, the gradient

values, marks, and flags of 64 pixels are processed and the results are feedback

to both the “mark” and “flag” shift register arrays.

Fig. 6.11 shows the architecture of the “feature vector generation circuits”.

After GFE, the features are expressed by four edge maps. For fast feature vec-

tor generation, the data of one column in each edge map are transferred to the

“feature vector generation circuits” simultaneously. Each edge map has its own

“vector component generation block”. Each of them contains four “accumula-

tors” for generate four components at the same time in 16 clock cycles. Such

architecture enables the generation of a 64-dimensional APED vector in only 64

93

Chapter5/Chapter5Figs/EPS/trsys_gfe.eps


6.3 FPGA-Implementation of Object Tracking Algorithm

Accumulator

for one 

component

Vector component 

generation block

Figure 6.11: Feature vector generation circuits.

clock cycles.

The APED vector generated by the circuits in Fig. 6.11 are compare with the

“target feature vector” in the “weighting circuits”. The “Manhattan distance”,

which is very easy to be implemented into circuits, is calculated for evaluating

the corresponding weight (integer). In this system, the weight is just calculated

by divide the “Manhattan distance” by a constant value. However, more flexible

relationship between the “Manhattan distance” and the weight can be easily

implemented by a look-up table.

6.3.3 Regeneration block

Fig. 6.12 shows the concept of candidate locations regeneration circuits in this

system. The “down counter” starts from the maximum value of all possible

weights values. The comparator compare the value from the “down counter”

and the weight for each location in a serial manner. When a weight (Wi) larger

than or equal to the “down counter” value, a new candidate location is generated

near (Xi, Yi). This process finishes when there are enough (eight) new candidate

locations generated.

94

Chapter5/Chapter5Figs/EPS/trsys_vec_gen.eps


6.4 Experimental Results

Weight 1 Weight 2 Weight 8

Comparator

Down counter

Eight candidate 

locations:

(X1, Y1, W1) (X2, Y2, W2) (X8, Y8, W8)

New 

candidate 

locations

Figure 6.12: Regeneration block

6.4 Experimental Results

Fig. 6.13 shows the result in which the knob of a door is tracked when the camera

is moved. In frame 163 and 230, the scene was shifted to the left; while in frame

410 and 522, the scene was shifted to the lower right direction. Finally, the scene

was shifted to right in frame 579. In such a simple test, the tracking system can

focus on the object faithfully without missing. This system is running at a fre-

quency of 60 MHz. Thanks to the VLSI-implementation-friendly object tracking

algorithm, the total processing time for one frame after the complete transferring

of this frame is reduced to about 6000 clock cycles, which means only 0.1 ms at 60

MHz. About 94.5% of these clock cycles are used for feature extraction, in which

local feature extraction takes more than 80%, since it needs the repetitive calcu-

lation for each pixel site in a serial manner. The calculation time for the global

feature extraction, which is very time consuming in software-based algorithms,

95

Chapter5/Chapter5Figs/EPS/trsys_rege.eps


6.5 Summary

has been reduced greatly due to a very efficient VLSI-implementation adapted

algorithm.

Frame 1 Frame 163 Frame 230

Frame 410 Frame 522 Frame 579

Figure 6.13: Experimental results

Considering building a system that faithfully runs the algorithm introduced

in chapter 5, if developing the control circuits for using the processing circuits in

this system in a pipeline manner with on-line learning, a robust tracking system

with a latency of less than 1 ms second is also feasible. Compared with the

processing time for one frame on a 1.6 GHz general purpose CPU, which is about

5 seconds, a speed up of 5000 times can be expected. Such an order of performance

enhancement is much faster than the available GPUs (2). At the same time, it

cost less power since the frequency is not high.

6.5 Summary

In this chapter, a simple real time object tracking system based on a restrained

version of the prior algorithm has been implemented successfully. By experi-

96

Chapter5/Chapter5Figs/EPS/trsys_exp1.eps


6.5 Summary

mental results, this system shows satisfying performance in simple tracking tasks

by employing only eight candidate locations. Thanks to the fine-grained VLSI-

implementation of the object tracking algorithm implemented in an FPGA, the

total processing time for the tracking task has been reduced to about 0.1 ms when

the system is running at a frequency of 60 MHz. This performance gives the op-

portunity of designing the robust object tracking system on the same FPGA with

a performance speed up of 5000 times compared with the serial CPUs. Such an

approach is also much efficient that employing the parallel processing circuits for

general purpose such as GPUs (2).

97



Chapter 7

Conclusions

7.1 Summary of This Thesis

In this work, VLSI circuits and systems for directional-edge-base intelligent image

processing algorithms have been researched and developed. In order to minimize

the latency caused by the image data transfer between the image sensor and the

processing circuits, DPS-embedded processors were proposed and designed. The

performance of such processor has been verified by building a real-time image

recognition system with a very low latency. In addition, a directional-edge-based

object tracking algorithm was also proposed and partially implemented in an

object tracking system by building processing circuits on FPGAs. The followings

are summaries through this thesis.

In chapter 2, a DPS-embedded global feature extraction VLSI processor for

real-time image recognition has been developed. By combining the block-readout

architecture of DSP and parallel processing elements, the latency of local feature

extraction has been markedly reduced. By adapting the rank-order filter algo-

rithm to hardware implementation, global feature extraction is accomplished in

only 11 cycles. A prototype chip was designed in a 0.18-µm five-metal CMOS

technology. The measurement results show that the VLSI processor can extract

features more than 400 times faster than software processing running on a 2-GHz

98



7.1 Summary of This Thesis

general-purpose processor when operating at 60 MHz.

In chapter 3, a digital-pixel-sensor-based early-visual-processing VLSI proces-

sor for real-time intelligent image processing has been developed. By combining

the block-readout architecture for DPS and parallel processing elements, the la-

tency of local image processing has been markedly reduced. By adapting the

rank-order filter algorithm to hardware implementation, global feature extrac-

tion is performed in a very fast manner. The enhancement in the functionality

of processing element improves the programmability of the processor greatly. As

a result, such a chip can handle multiple algorithms efficiently. A prototype chip

was designed in a 65-nm 12-metal CMOS technology. The measurement results

show that this VLSI processor can achieve all expected functions.

In chapter 4, a real time image recognition system has been developed. The

system is based on a VLSI-implementation friendly image recognition algorithm.

By using the global directional-edge-feature extraction VLSI processor, the la-

tency between the image capture and the final recognition as small as 906 µs has

been demonstrated. The merit of the global feature extraction algorithm that it

can focus on more significant features automatically has also been experimentally

verified.

In chapter 5, a directional-edge-based object tracking algorithm was devel-

oped. By using directional-edge-based feature vectors, the system has been made

robust against illumination variation. The on-line learning technique and the sta-

tistical multiple-candidate-location generation have further improved the perfor-

mance, making the system robust against object size variation, partial occlusion,

and object deformation. The performance was verified by experiments under

varying disturbing conditions.

In chapter 6, a simple real time object tracking system based on a restrained

version of the prior algorithm has been implemented successfully. By experi-

99



7.2 Future Perspective

mental results, this system shows satisfying performance in simple tracking tasks

by employing only eight candidate locations. Thanks to the fine-grained VLSI-

implementation of the object tracking algorithm implemented in an FPGA, the

total processing time for the tracking task has been reduced to about 0.1 ms when

the system is running at a frequency of 60 MHz. This performance gives the op-

portunity of designing the robust object tracking system on the same FPGA with

a performance speed up of 5000 times compared with the serial CPUs. Such an

approach is also much efficient that employing the parallel processing circuits for

general purpose such as GPUs.

7.2 Future Perspective

In this work, the image sensor technique, parallel digital circuits, and directional-

edge-based intelligent image processing algorithms are combined to develop sys-

tems that can achieve, although rather näıve, some human-like functions. As

all these targeted algorithms are developed to be easily implemented into VLSI

directly at the very beginning, an efficient trade off between processing speed,

response time, and the corresponding system complexity has been achieved. Re-

garding to the power consumption, since such systems are still in the demon-

stration level, including functions on FPGA, display control circuits, and many

auxiliary chips, the total energy is not low. However, once such systems were

well established, the total power consumption could be reduced dramatically by

developing more functions into ASICs.

Accompanied with the further development of today’s semiconductor process

technology and the deeper understanding on the visual processing mechanism

of the human brain, I believe the bio-inspired VLSI/ULSI devices will become

more and more feasible, with matured functionality. Such devices don’t need to

exactly reproduce the whole brain as it is on the semiconductor. Instead, it takes

100



7.3 Conclusions

more hint from this nature, implement the existed functions by fully utilizing the

available characteristic of materials to maximally achieve an optimized system.

Just considering how much time it takes for the formation of the human brain,

the time for the “formation” of human-made semiconductor-based brain may take

much, much less time.

7.3 Conclusions

VLSI Circuits and systems for brain-mimicking algorithms have been developed

based on a very näıve model of the brain. In the algorithms of image processing,

directional edge information plays an essential role for perception of still images

as well as moving images. In these systems, the vast amount of subconscious pro-

cessing in the mind has been implemented by VLSI chips or FPGAs. In order to

build “real-time responding human-like intelligent systems” with small hardware

volume and low powers, such development of hardware-friendly algorithms and

their VLSI implementation in fine-grain parallel architectures are most essential.

101



References

[1] G. Moore, “Progress in digital integrated electronics,” in International

Electron Devices Meeting (IEDM), 1975, vol. 21, pp. 11–13. 1

[2] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel pro-

gramming with cuda,” Queue, vol. 6, no. 2, pp. 40–53, March/April 2008.

1, 3, 4, 32, 81, 96, 97

[3] T. Mizuno, J. Okamura, and A. Toriumi, “Experimental study of threshold

voltage fluctuation due to statistical variation of channel dopant number in

mosfetfs,” IEEE Trans. Electron Devices, vol. 41, no. 11, pp. 2216–2221,

1994. 2

[4] P. A. Stolk, F. P. Widdershoven, and D. B. M. Klaassen, “Modeling statisti-

cal dopant fluctuations in mos transistors,” IEEE Trans. Electron Devices,

vol. 45, no. 9, pp. 1960–1971, 1998. 2

[5] A. Asenov, “Suppression of random dopant-induced threshold voltage

fluctuations in sub-0.1-µm mosfetfs with epitaxial and δ-doped channels,”

IEEE Trans. Electron Devices, vol. 46, no. 8, pp. 1718–1724, 1999. 2

[6] K. Takeuchi, T. Fukai, T. Tsunomura, A. T. Putra, A. Nishida, S. Kamo-

hara, and T. Hiramoto, “Understanding random threshold voltage fluc-

tuation by comparing multiple fabs and technologies,” in International

Electron Devices Meeting (IEDM), 2007, pp. 467–470. 2

[7] D. G. Lowe, “Distinctive image feature from scale-invariant keypoints,”

Int. J. Comput. Vision, vol. 60, no. 2, pp. 91–110, November 2004. 2

102



REFERENCES

[8] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,

F. Schaffalitzky, T. Kadir, and L. Van Gool, “A comparison of affine region

detectors,” Int. J. Comput. Vision, vol. 65, no. 1-2, pp. 43–72, 2005. 2

[9] K. Mikolajczyk and C. Schmid, “A performance evaluation of local de-

scriptors,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 10, pp.

1615–1630, October 2005. 2

[10] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust fea-

tures,” Computer Vision - ECCV 2006, pp. 404–417, 2006. 2

[11] D. H. Hubel and T. N. Wiesel, “Receptive fields of single neurones in the

cat’s striate cortex,” J. Physiol., vol. 148, pp. 574–591, October 1959. 2,

12, 34, 58, 71, 81

[12] S. Kyo, T. Koga, S. Okazaki, and I. Kuroda, “A 51.2-gops scalable video

recognition processor for intelligent cruise control based on a linear array

of 128 four-way vliw processing elements,” J. Solid-State Circuits, vol. 38,

no. 11, pp. 1992–2000, November 2003. 3, 32, 33

[13] W. Raab, N. Bruels, U. Hachmann, J. Harnisch, U. Ramacher, C. Sauer,

and A. Techmer, “A 100-gops programmable processor for vehicle vision

systems,” IEEE Des. Test Comput., vol. 20, no. 3, pp. 8–15, January-

February 2003. 3

[14] A. A. Abbo, R. P. Kleihorst, V. Choudhary, L. Sevat, P. Wielage, S. Mouy,

B. Vermeulen, and M. Heijligers, “Xetal-ii: a 107 gops, 600 mw massively

parallel processor for video scene analysis,” J. Solid-State Circuits, vol. 43,

no. 1, pp. 192–201, January 2008. 3

[15] H. Noda, M. Nakajima, K. Dosaka, K. Nakata, M. Higashida, O. Ya-

mamoto, K. Mizumoto, T. Tanizaki, T. Gyohten, Y. Okuno, H. Kondo,

Y. Shimazu, K. Arimoto, K. Saito, and T. Shimizu, “The design and

implementation of the massively parallel processor based on the matrix ar-

chitecture,” J. Solid-State Circuits, vol. 42, no. 1, pp. 183–192, January

2007. 3

103



REFERENCES

[16] K. Kim, S. Lee, J. Kim, M. Kim, and H. Yoo, “A 125 gops 583 mw network-

on-chip based parallel processor with bio-inspired visual attention engine,”

J. Solid-State Circuits, vol. 44, no. 1, pp. 136–147, January 2009. 3, 32, 33,

58

[17] J. Tanahe, Y. Taniguchi, T. Miyamori, Y. Miyamoto, H. Takeda, M. Tarui,

H. Nakayama, N. Takeda, K. Maeda, and M. Matsui, “Visconti: Multi-vliw

image recognition processor based on configurable processor,” in Custom

Integr. Circuits Conf. (CICC), 2003, pp. 185–188. 3

[18] D. Kim, K. Kim, J. Y. Kim, S. Lee, and H. J. Yoo, “An 81.6 gops object

recognition processor based on noc and visual image processing memory,”

in Custom Integr. Circuits Conf. (CICC), 2007, pp. 443–446. 3

[19] D. Kim, K. Kim, J. Y. Kim, S. Lee, S. J. Lee, and H. J. Yoo, “81.6 gops

object recognition processor based on a memory-centric noc,” IEEE Trans.

Very Large Scale Integr. VLSI Syst., vol. 17, no. 3, pp. 370–383, March

2009. 3

[20] H. Kondo, M. Nakajima, N. Masui, S. Otani, N. Okumura, Y. Takata,

T. Nasu, H. Takata, T. Higuchi, M. Sakugawa, H. Fujiwara, K. Ishida,

K. Ishimi, S. Kaneko, T. Itoh, M. Sato, O. Yamamoto, and K. Arimoto,

“Design and implementation of a configurable heterogeneous multicore soc

with nine cpus and two matrix processors,” J. Solid-State Circuits, vol. 43,

no. 4, pp. 892–901, April 2008. 3, 32, 33

[21] T. Y. Ho, P. M. Lam, and C. S. Leung, “Parallelization of cellular neural

networks on gpu,” Pattern Recognition, vol. 41, no. 8, pp. 2684–2692,

August 2008. 3, 32, 81

[22] N. Massari and M. Gottardi, “A 100 db dynamic-range cmos vision sensor

with programmable image processing and global feature extraction,” J.

Solid-State Circuits, vol. 42, no. 3, pp. 647–657, March 2007. 4, 32

[23] J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps cmos

sensor with massively parallel image processing,” J. Solid-State Circuits,

vol. 43, no. 3, pp. 706–717, March 2008. 4, 32

104



REFERENCES

[24] M. Barbaro, P. Y. Burgi, A. Mortara, P. Nussbaum, and F. Heitger, “A

100×100 pixel silicon retina for gradient extraction with steering filter ca-

pabilities and temporal output coding,” J. Solid-State Circuits, vol. 37, no.

2, pp. 160–172, February 2002. 4, 32

[25] P. F. Ruedi, P. Heim, F. Kaess, E. Grenet, F. Heitger, P. Y. Burgi, S. Gyger,

and P. Nussbaum, “A 128×128 pixel 120-db dynamic-range vision-sensor

chip for image contrast and orientation extraction,” J. Solid-State Circuits,

vol. 38, no. 12, pp. 2325–2333, December 2003. 4, 32

[26] M. Gottardi, N. Massari, and S. A. Jawed, “A 100 µw 128×64 pixels

contrast-based asynchronous binary vision sensor for sensor networks ap-

plications,” J. Solid-State Circuits, vol. 44, no. 5, pp. 1582–1592, May 2009.

4, 32

[27] O. Schrey, J. Huppertz, G. Filimonovic, A. Bubmann, W. Brockherde, and

B. J. Hosticka, “A 1k×1k high dynamic range cmos image sensor with

on-chip programmable region-of-interest readout,” J. Solid-State Circuits,

vol. 37, no. 7, pp. 911–915, July 2002. 4, 32

[28] Y. Sugiyama, M. Takumi, H. Toyoda, N. Mukozaka, A. Ihori, T. Kurashina,

Y. Nakamura, T. Tonbe, and S. Mizuno, “A high-speed cmos image sensor

with profile data acquiring function,” J. Solid-State Circuits, vol. 40, no.

12, pp. 2816–2823, December 2005. 4, 32

[29] S. Mizuno, K. Fujita, H. Yamamoto, N. Mukozaka, and H. Toyoda, “A

256×256 compact cmos image sensor with on-chip motion detection func-

tion,” J. Solid-State Circuits, vol. 38, no. 6, pp. 1072–1075, June 2003. 4,

32

[30] Y. M. Chi, U. Mallik, M. A. Clapp, E. Choi, G. Cauwenberghs, and

R. Etienne-Cummings, “cmos camera with in-pixel temporal change de-

tection and adc,” J. Solid-State Circuits, vol. 42, no. 10, pp. 2187–2196,

October 2007. 4, 32

105



REFERENCES

[31] P. Lichtsteiner, C. Posch, and T. Delbruck, “A 128×128 120 db 15 us latency

asynchronous temporal contrast vision sensor,” J. Solid-State Circuits, vol.

43, no. 2, pp. 566–576, February 2008. 4, 32

[32] S. Kleinfelder, S. Lim, X. Liu, and A. E. Gamal, “A 10000 frames/s cmos

digital pixel sensor,” J. Solid-State Circuits, vol. 36, no. 12, pp. 2049–2059,

December 2001. 4, 8, 13, 17, 18, 32, 34

[33] V. Brajovic and T. Kanade, “Computational sensor for visual tracking with

attention,” J. Solid-State Circuits, vol. 33, no. 8, pp. 1199–1207, August

1998. 4, 32

[34] Y. Ni and J. Guan, “A 256×256 pixel smart cmos image sensor for line-

based stereo vision applications,” J. Solid-State Circuits, vol. 35, no. 7, pp.

1055–1061, July 2000. 5, 33

[35] A. Graupner, J. Schreiter, S. Getzlaff, and R. Schuffny, “cmos image sensor

with mixed-signal processor array,” J. Solid-State Circuits, vol. 38, no. 6,

pp. 948–957, June 2003. 5, 33

[36] K. Yoon, C. Kim, B. Lee, and D. Lee, “Single-chip cmos image sensor for

mobile applications,” J. Solid-State Circuits, vol. 37, no. 12, pp. 1839–1845,

December 2002. 5, 33

[37] Y. Oike, M. Ikeda, and K. Asada, “Design and implementation of real-time

3− d image sensor with 640×480 pixel resolution,” J. Solid-State Circuits,

vol. 39, no. 4, pp. 622–628, April 2004. 5, 33

[38] L. Lindgren, J. Melander, R. Johansson, and B. Moller, “A multiresolution

100− gops 4− gpixels/s programmable smart vision sensor for multisense

imaging,” J. Solid-State Circuits, vol. 39, no. 4, pp. 622–628, April 2004.

5, 33

[39] J. Choi, S. W. Han, S. J. Kim, S. I. Chang, and E. Yoon, “A spatial-

temporal multiresolution cmos image sensor with adaptive frame rates for

tracking the moving objects in region-of-interest and suppressing motion

106



REFERENCES

blur,” J. Solid-State Circuits, vol. 42, no. 12, pp. 2978–2989, December

2007. 5, 33

[40] D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G. F. D. Betta, “Novel

cmos image sensor with a 132-db dynamic range,” J. Solid-State Circuits,

vol. 37, no. 12, pp. 1846–1852, December 2002. 5, 33

[41] Y. Muramatsu, S. Kurosawa, M. Furumiya, H. Ohkubo, and Y. Nakashiba,

“A signal-processing cmos image sensor using a simple analog operation,”

J. Solid-State Circuits, vol. 38, no. 1, pp. 101–106, January 2003. 5, 33

[42] J. Yuan, H. Y. Chan, S. W. Fung, and B. Liu, “An activity-triggered 95.3

dbdr -75.6 dbthdcmos imaging sensor with digital calibration,” J. Solid-

State Circuits, vol. 44, no. 10, pp. 2834–2843, October 2009. 5, 33

[43] V. Gruev and R. Etienne-Cummings, “A pipelined temporal difference

imager,” J. Solid-State Circuits, vol. 39, no. 3, pp. 538–543, March 2004.

5, 33

[44] Y. Oike, M. Ikeda, and K. Asada, “A 120×110 position sensor with the

capability of sensitive and selective light detection in wide dynamic range

for robust active range finding,” J. Solid-State Circuits, vol. 39, no. 1, pp.

246–251, January 2004. 5, 33

[45] Y. Oike, M. Ikeda, and K. Asada, “A 375×365 high-speed 3 − d range-

finding image sensor using row-parallel search architecture and multisam-

pling technique,” J. Solid-State Circuits, vol. 40, no. 2, pp. 444–453, Febru-

ary 2005. 5, 33

[46] A. Bandyopadhyay, J. Lee, R. W. Robucci, and P. Hasler, “matia: a

programmable 80 µw/frame cmos block matrix transform imager architec-

ture,” J. Solid-State Circuits, vol. 41, no. 3, pp. 663–672, March 2006. 5,

33

[47] A. Nilchi, J. Aziz, and R. Genov, “Focal-plane algorithmically-multiplying

cmos computational image sensor,” J. Solid-State Circuits, vol. 44, no. 6,

pp. 1829–1839, June 2009. 5, 33

107



REFERENCES

[48] W. D. Leon-Salas, S. Balkir, K. Sayood, N. Schemm, and M. W. Hoffman,

“A cmos imager with focal plane compression using predictive coding,” J.

Solid-State Circuits, vol. 42, no. 11, pp. 2555–2572, November 2007. 5, 33

[49] A. Rothermel, L. Liu, N. P. Aryan, M. Fischer, J. Wuenschmann, S. Kibbel,

and A. Harscher, “A cmos chip with active pixel array and specific test

features for subretinal implantation,” J. Solid-State Circuits, vol. 44, no.

1, pp. 290–300, January 2009. 5, 33

[50] H. G. Graf, C. Harendt, T. Engelhardt, C. Scherjon, K. Warkentin,

H. Richter, and J. N. Burghartz, “High dynamic range cmos imager tech-

nologies for biomedical applications,” J. Solid-State Circuits, vol. 44, no.

1, pp. 281–289, January 2009. 5, 33

[51] T. D. Huang, S. Sorgenfrei, P. Gong, R. Levicky, and K. L. Shepard, “A

0.18-µm cmos array sensor for integrated time-resolved fluorescence detec-

tion,” J. Solid-State Circuits, vol. 44, no. 5, pp. 1644–1654, May 2009. 5,

33

[52] D. Kim and G. Han, “A 200µs processing time smart image sensor for

an eye tracker using pixel-level analog image processing,” J. Solid-State

Circuits, vol. 44, no. 9, pp. 2581–2590, September 2009. 5, 33

[53] C. C. Cheng, C. H. Lin, C. T. Li, and L. G. Chen, “ivisual: an intelligent

visual sensor soc with 2790 fps cmos image sensor and 205 gops/w vision

processor,” J. Solid-State Circuits, vol. 44, no. 1, pp. 127–135, January

2009. 5, 33

[54] T. Shibata, “Bio-inspired devices, circuits and systems,” in Proc. 35th

European Solid-State Circuits Conference (ESSCIRC 2009), 2009, pp. 8–

15. 6, 7

[55] T. Shibata and T. Ohmi, “Neural microelectronics,” in International Elec-

tron Devices Meeting (IEDM), 1997, pp. 337–342. 6

108



REFERENCES

[56] M. Ogawa, K. Ito, and T. Shibata, “A general-purpose vector-quantization

processor employing two-dimensional bit-propagating winner-take-all,” in

Proc. Symp. VLSI Circuits, 2002, pp. 244–247. 7, 8, 13, 23, 34, 43

[57] K. Ito, M. Ogawa, and T. Shibata, “A high-performance ramp-voltage-scan

winner-take-all circuit in an open loop architecture,” Jpn. J. Appl. Phys.,

vol. 41, no. 4B, pp. 2301–2305, April 2002. 7, 8

[58] H. Hayakawa, M. Ogawa, and T. Shibata, “Right-brainleft-brain in-

tegrated associative processor employing convertible multiple-instruction-

stream multiple-data-stream elements,” Jpn. J. Appl. Phys., vol. 44, no.

4B, pp. 2109–2118, April 2005. 7, 8

[59] M. Ogawa and T. Shibata, “A delay-encoding-logic array processor for

dynamic-programming matching of data sequences,” J. Solid-State Circuits,

vol. 40, no. 7, pp. 1578–1582, July 2005. 7, 8, 58

[60] M. Ogawa and T. Shibata, “Nmos-based gaussian-element-matching analog

associative memory,” in Proc. 27th European Solid-State Circuits Confer-

ence (ESSCIRC 2001), 2001, pp. 272–275. 7, 8

[61] T. Yamasaki and T. Shibata, “Analog soft-matching classifier using

floating-gate mos technology,” IEEE Trans. Neural Networks, vol. 14, no.

5, pp. 1257–1265, September 2003. 7, 8

[62] D. Kobayashi, T. Shibata, Y. Fujimori, T. Nakamura, and H. Takasu, “A

ferroelectric associative memory technology employing heterogate fgmos

structure,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2188–2197,

October 2005. 7, 8

[63] M. Yagi and T. Shibata, “An image representation algorithm compati-

ble with neural-associative-processor-based hardware recognition systems,”

IEEE Trans. Neural Networks, vol. 14, no. 5, pp. 1144–1161, September

2003. 7, 13, 28, 34, 35, 52, 58

[64] Y. Suzuki and T. Shibata, “Validating directional edge-based image feature

representations in face recognition by spatial correlation-based clustering,”

109



REFERENCES

in Proc. the 15th European Signal Processing Conference (EUSIPCO 2007),

2007, pp. 1940–1944. 7, 28, 52

[65] Y. Suzuki and T. Shibata, “Multiple-clue face detection algorithm using

edge-based feature vectors,” in in Proceedings of ICASSP 2004, 2004, pp.

V737–V740. 7, 8, 34, 35, 72, 82

[66] S. Kim and T. Shibata, “Feature-based object tracking using spatial match-

ing of differential directional-edge images,” in Proc. The International Con-

ference on Signal Processing and Communication Systems 2007 (ICSPCS

2007), 2007, pp. 193–197. 7, 8, 16, 34, 36, 76

[67] J. Hao and T. Shibata, “A vlsi-implementation-friendly ego-motion detec-

tion algorithm based on edge-histogram matching,” in in Proceedings of

ICASSP 2006, 2006, pp. II–245–248. 7

[68] H. Hayakawa and T. Shibata, “Spatiotemporal projection of motion field

sequence for generating feature vectors in gesture perception,” in Proc. The

2008 International Symposium on Circuits and Systems (ISCAS’08), 2008,

pp. 3526–3529. 7, 8, 28, 34, 37

[69] H. Hayakawa and T. Shibata, “Block-matching-based motion field gener-

ation utilizing directional edge displacement,” in Proc. The International

Conference on Signal Processing and Communication Systems 2007 (IC-

SPCS 2007), 2007, pp. 90–95. 7, 16, 28, 34

[70] K. Ito and T. Shibata, “A time-domain gradient-detection architecture for

vlsi analog motion sensors,” in Proc. 2006 International Symposium on

Circuits and Systems (ISCAS’06), 2006, pp. 201–204. 7, 8

[71] Y. Niki, Y. Manzawa, S. Kametani, and T. Shibata, “Moving-object-

localization hardware algorithm employing or-amplification of pixel activi-

ties,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2767–2773, April 2008. 7

[72] Y. Nakashita, Y. Mita, and T. Shibata, “Analog edge-filtering processor

employing only-nearest-neighbor interconnects,” Jpn. J. Appl. Phys., vol.

44, no. 4B, pp. 2119–2124, April 2005. 7, 8

110



REFERENCES

[73] N. Takahashi, K. Fujita, and T. Shibata, “A pixel-parallel self-similitude

processing for multiple-resolution edge-filtering analog image sensors,”

IEEE Trans. Circuits Syst. I, vol. 56, no. 11, pp. 2384–2392, November

2009. 7, 8

[74] H. Yamasaki and T. Shibata, “A real-time image-feature-extraction and

vector-generation vlsi employing arrayed-shift-register architecture,” J.

Solid-State Circuits, vol. 42, no. 9, pp. 2046–2053, September 2007. 8,

13, 34, 58

[75] T. Nakagawa and T. Shibata, “A real-time image feature vector gener-

ator employing functional cache memory for edge flags,” in Proc. 2009

International Symposium on Circuits and Systems (ISCAS’09), 2009, pp.

3026–3029. 8

[76] K. Fujita, K. Ito, and T. Shibata, “A single-motion-vectorcycle-generation

optical flow processor employing directional-edge histogram matching,” in

Proc. 2009 International Symposium on Circuits and Systems (ISCAS’09),

2009, pp. 3022–3025. 8

[77] Y. Okano and T. Shibata, “High-frame-rate dense motion vector field gen-

eration processor with simplified best-match searching circuitries,” in Proc.

IEEE Asian Solid-State Circuits Conference (A-SSCC), 2009. 8

[78] T. Yamasaki, M. Yagi, and T. Shibata, “A fully-parallel analog vector

matching lsi for robust image recognition,” in Proc. IEEJ Int. Analog

VLSI Workshop, 2002, pp. 128–133. 8, 13, 34

[79] T. T. BUI and T. Shibata, “Compact bell-shaped analog matching-cell

module for digital-memory-based associative processors,” Jpn. J. Appl.

Phys., vol. 47, no. 4, pp. 2788–2796, April 2008. 8, 13, 34

[80] A. Kitchen, A. Bermak, and A. Bouzerdoum, “A digital pixel sensor array

with programmable dynamic range,” IEEE Trans. Electron Devices, vol.

52, no. 12, pp. 2591–2601, December 2005. 8, 13, 17, 34

111



REFERENCES

[81] C. Shoushun, A. Bermak, W. Yan, and D. Martinez, “Adaptivequantiza-

tion digital image sensor for low-power image compression,” IEEE Trans.

Circuits Syst. I, vol. 54, no. 1, pp. 13–25, January 2007. 8, 13, 17, 34

[82] B. Tongprasit, K. Ito, and T. Shibata, “A computational digital-pixelsensor

vlsi featuring block-readout architecture for pixel-parallel rankorder filter-

ing,” in Proc. The 2005 International Symposium on Circuits and Systems

(ISCAS’05), 2005, vol. 3, pp. 2389–2392. 8, 13, 17, 18, 19

[83] K. Ito, B. Tongprasit, and T. Shibata, “A computational digital pixel sensor

featuring block-readout architecture for on-chip image processing,” IEEE

Trans. Circuits Syst. I: Regul. Pap., vol. 56, no. 1, pp. 114–123, January

2009. 8, 34, 35, 62

[84] J. Shotton, A. Blake, and R. Cipolla, “Multi-scale categorical object recog-

nition using contour fragments,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 30, no. 7, pp. 1270–1281, July 2008. 11

[85] J. Yang, D. Zhang, A. F. Frangi, and J. Yang, “Two-dimensional pca: a new

approach to appearance-based face representation and recognition,” IEEE

Trans. Pattern Anal. Mach. Intell., vol. 26, no. 1, pp. 131–137, January

2004. 11

[86] T. Zhang, B. Fang, Y. Y. Tang, G. He, and J. Wen, “Topology preserving

non-negative matrix factorization for face recognition,” IEEE Trans. Image

Process., vol. 17, no. 4, pp. 574–584, April 2008. 11

[87] A. Diplaros, T. Gevers, and I. Patras, “Combining color and shape in-

formation for illumination-viewpoint invariant object recognition,” IEEE

Trans. Image Process., vol. 15, no. 1, pp. 1–11, January 2006. 11

[88] A. Laika and W. Stechele, “A review of different object recognition methods

for the application in driver assistance systems,” in Proc. of WIAMIS’07,

2007, pp. 10–10. 11

112



REFERENCES

[89] H. Kawai, Y. Inoue, R. Streitenberger, and M. Yoshimoto, “A highly par-

allel dsp architecture for image recognition,” IEICE Trans. Fundam., vol.

E78-A, no. 8, pp. 963–970, August 1995. 11, 12

[90] N. K. Ratha, K. Karu, S. Chen, and A. K. Jain, “A real-time matching

system for large fingerprint databases,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 18, no. 8, pp. 799–813, August 1996. 11

[91] B. A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross, and M. Chawathe,

“Accelerated image processing on fpgas,” IEEE Trans. Image Process.,

vol. 12, no. 12, pp. 1543–1551, December 2003. 11, 12

[92] P. A. Ruetz and R. W. Brodersen, “Architectures and design techniques

for real-time image-processing ic′s,” J. Solid-State Circuits, vol. SC-22, no.

2, pp. 233–250, April 1987. 11

[93] G. M. Bo, D. D. Caviglia, and M. Valle, “An analog vlsi implementation of

a fature extractor for real time optical character recognition,” J. Solid-State

Circuits, vol. 33, no. 4, pp. 556–564, April 1998. 11, 57

[94] R. Karakiewicz, R. Genov, and G. Cauwenberghs, “480-gmacs/mw reso-

nant adiabatic mixed-signal processor array for charge-based pattern recog-

nition,” J. Solid-State Circuits, vol. 42, no. 11, pp. 2573–2584, November

2007. 11, 12, 57

[95] K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima, “An ef-

fective approach for iris recognition using phase-based image matching,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 10, pp. 1741–1756,

October 2008. 12

[96] H. Ando, S. Kameda, D. Arizono, N. Fuchigami, K. Kaya, M. Sasaki,

and A. Iwata, “Principal component analysis-based object detec-

tion/recognition chip for wireless interconnected three-dimensional integra-

tion,” Jpn. J. Appl. Phys., vol. 47, no. 4, pp. 2746–2748, April 2008. 12

113



REFERENCES

[97] T. Shibata, “Intelligent signal processing based on a psychologically-

inspired vlsi brain model,” IEICE Trans. Fundam., vol. E85-A, no. 3,

pp. 600–609, March 2002. 12

[98] T. Shibata, M. Yagi, and M. Adachi, “Soft-computing integrated circuits

for intelligent information processing,” in Proc. Int. Conf. Information

Fusion, 1999, vol. 1, pp. 648–656. 12, 14, 34, 35

[99] B. K. Kar and D. K. Pradhan, “A new algorithm for order statistic and

sorting,” IEEE Trans. Signal Processing, vol. 41, no. 8, pp. 2688–2694,

August 1993. 17, 23, 40

[100] V. I. Pavlovic, R. Sharma, and T. S. Huang, “Visual interpretation of hand

gestures for human-computer interaction: a review,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 19, no. 7, pp. 677–695, July 1997. 30

[101] G. N. DeSouza and A. C. Kak, “Vision for mobile robot navigation: a

survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 2, pp. 237–

267, February 2002. 31

[102] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “monoslam: real-

time single camera slam,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

29, no. 6, pp. 1052–1067, June 2007. 31

[103] I. Saleemi, K. Shafique, and M. Shah, “Probabilistic modeling of scene

dynamics for applications in visual surveillance,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 31, no. 8, pp. 1472–1485, August 2009. 31

[104] A. Pentland, “Looking at people: sensing for ubiquitous and wearable

computing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 1, pp.

107–119, January 2000. 31

[105] G. C. de Silva, T. Yamasaki, and K. Aizawa, “An interactive multimedia

diary for the home,” Computer, vol. 40, no. 5, pp. 52–59, May 2007. 31

[106] S. Kavadias, B. Dierickx, D. Scheffer, A. Alaerts, D. Uwaerts, and J. Bo-

gaerts, “A logarithmic response cmos image sensor with on-chip calibra-

114



REFERENCES

tion,” J. Solid-State Circuits, vol. 35, no. 8, pp. 1146–1152, August 2000.

31

[107] M. Sakakibara, S. Kawahito, D. Handoko, N. Nakamura, H. Satoh, M. Hi-

gashi, K. Mabuchi, and H. Sumi, “A high-sensitivity cmos image sensor

with gain-adaptive column amplifiers,” J. Solid-State Circuits, vol. 40, no.

5, pp. 1147–1156, May 2005. 31

[108] M. F. Snoeij, A. J. P. Theuwissen, K. A. A. Makinwa, and J. H. Huijsing,

“A cmos imager with column-level adc using dynamic column fixed-pattern

noise reduction,” J. Solid-State Circuits, vol. 41, no. 12, pp. 3007–3015,

December 2006. 31

[109] H. Takahashi, T. Noda, T. Matsuda, T. Watanabe, M. Shinohara, T. Endo,

S. Takimoto, R. Mishima, S. Nishimura, K. Sakurai, H. Yuzurihara, and

S. Inoue, “A 1/2.7-in 2.96 mpixelcmos image sensor with double cds ar-

chitecture for full high-definition camcorders,” J. Solid-State Circuits, vol.

42, no. 12, pp. 2960–2967, December 2007. 31

[110] M. Mase, S. Kawahito, M. Sasaki, Y. Wakamori, and M. Furuta, “A wide

dynamic range cmos image sensor with multiple exposure-time signal out-

puts and 12-bit column-parallel cyclic a/d converters,” J. Solid-State Cir-

cuits, vol. 40, no. 12, pp. 2787–2795, December 2005. 31

[111] N. Akahane, S. Sugawa, S. Adachi, K. Mori, T. Ishiuchi, and K. Mizobuchi,

“A sensitivity and linearity improvement of a 100−db dynamic range cmos

image sensor using a lateral overflow integration capacitor,” J. Solid-State

Circuits, vol. 41, no. 4, pp. 851–858, April 2006. 31

[112] G. Storm, R. Henderson, J. E. D. Hurwitz, D. Renshaw, K. Findlater, and

M. Purcell, “Extended dynamic range from a combined linear-logarithmic

cmos image sensor,” J. Solid-State Circuits, vol. 41, no. 9, pp. 2095–2106,

September 2006. 31

[113] S. Yoshihara, Y. Nitta, M. Kikuchi, K. Koseki, Y. Ito, Y. Inada, S. Ku-

ramochi, H. Wakabayashi, M. Okano, H. Kuriyama, J. Inutsuka, A. Tajima,

115



REFERENCES

T. Nakajima, Y. Kudoh, F. Koga, Y. Kasagi, S. Watanabe, and T. Nomoto,

“A 1/1.8-inch 6.4 mpixel 60 frames/s cmos image sensor with seamless

mode change,” J. Solid-State Circuits, vol. 41, no. 12, pp. 2998–3006, De-

cember 2006. 31

[114] “http://opencv.willowgarage.com/wiki/,” . 31

[115] H. Zhu and T. Shibata, “A digital-pixel-sensor-based global feature extrac-

tion vlsi for real-time image recognition,” in Proc. International Conference

on Solid State Devices and Materials (SSDM), 2008, pp. 476–477. 34, 58

[116] H. Zhu and T. Shibata, “A digital-pixel-sensor-based global feature extrac-

tion processor for real-time object recognition,” Jpn. J. Appl. Phys., vol.

48, no. 4, pp. 04C080–1–7, April 2009. 34, 58, 63

[117] H. Zhu and T. Shibata, “A real-time image recognition system using a

global directional-edge-feature extraction vlsi processor,” in Proc. 35th

European Solid-State Circuits Conference (ESSCIRC 2009), 2009, pp. 248–

251. 34

[118] Y. Hori and T. Kuroda, “A 0.79-mm2 20-mw real-time face detection core,”

J. Solid-State Circuits, vol. 42, no. 4, pp. 790–797, April 2007. 57

[119] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: a survey,” ACM

Computing Surveys, vol. 38, no. 4, pp. 1–45, 2006. 70, 80

[120] F. Jurie and M. Dhome, “Hyperplane approximation for template match-

ing,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 996–1000,

July 2002. 70

[121] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp. 564–577, May

2003. 70

[122] Y. Rathi, N. Vaswani, and A. Tannenbaum, “A generic framework for

tracking using particle filter with dynamic shape prior,” IEEE Trans. Image

Process., vol. 16, pp. 1370–1382, 2007. 70, 80

116



REFERENCES

[123] J. Mutch and D. G. Lowe, “Multiclass object recognition with sparse,

localized features,” in CVPR, 2006, vol. 1, pp. 11–18. 71

[124] S. Hong, J. Lee, A. Athalye, P. M. Djuric, and W. Cho, “Design methodol-

ogy for domain specific parameterizable particle filter realizations,” IEEE

Trans. Circuits Syst. Regul. Pap., vol. 54, no. 9, pp. 1987–2000, September

2007. 71, 81

[125] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on

particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE

Trans. Signal Process., vol. 50, no. 2, pp. 174–188, February 2002. 80

[126] X. Xu and B. Li, “Adaptive rao-blackwellized particle filter and its evalua-

tion for tracking in surveillance,” IEEE Trans. Image Process., vol. 16, no.

3, pp. 838–849, March 2007. 80

[127] O. Lanz, “Approximate bayesian multi-body tracking,” IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 28, no. 9, pp. 1436–1449, September 2006.

80

[128] Y. Lao, J. Zhu, and Y. F. Zheng, “Sequential particle generation for visual

tracking,” IEEE Trans. Circuits Syst. Video Technol., vol. 19, no. 9, pp.

1365–1378, September 2009. 80

117



List of Publications

List of Publications Related to This Research

Journal Papers:

1. Hongbo Zhu and Tadashi Shibata, “A Digital-Pixel-Sensor-Based Global

Feature Extraction VLSI for Real-Time Object Recognition,” Japanese

Journal of Applied Physics. vol. 48 no. 4, pp. 04C080-1∼7, 2009.

Refereed Papers at International Conferences:

1. Hongbo Zhu and Tadashi Shibata, “A Digital-Pixel-Sensor-Based Global

Feature Extraction VLSI for Real-Time Image Recognition,” in Extended

Abstracts of the 2008 International Conference on Solid State Devices and

Materials (SSDM 2008), pp. 476∼477, Tsukuba, Japan, Sep. 24-26, 2008.

2. Hongbo Zhu and Tadashi Shibata, “A Real-Time Image Recognition Sys-

tem Using a Global Directional-Edge-Feature Extraction VLSI Processor,”

in Proceedings of the 35th European Solid-State Circuits Conference (ES-

SCIRC 2009), pp. 248∼251, Athens, Greece, Sep. 14-18, 2009.

3. Hongbo Zhu, Pushe Zhao and Tadashi Shibata, “Directional-Edge-Based

Object Tracking Employing On-Line Learning and Regeneration of Multiple

Candidate Locations,” Accepted for publication in the 2010 International

Symposium on Circuits and Systems (ISCAS’10), Paris, France, May 30-

June 2, 2010.

118



REFERENCES

Other Publications

Journal Papers:

1. Hiroki Inubushi, Noriyuki Takahashi, Hongbo Zhu, and Kenji Taniguchi,

“Ultrasonic 3D Image Sensor Employing PN code and Beam-Forming Tech-

nologies,” A. vol. J90-A no. 6, pp. 517∼523, 2007.

(in Japanese)

Refereed Papers at International Conferences:

1. Hongbo Zhu, Hiroki Inubushi, Noriyuki Takahashi, and Kenji Taniguchi,

“An ultrasonic 3D image sensor employing PN code”, The 5th IEEE con-

ference on sensors. pp. 319∼322, Daegu, Korea, Oct. 22-25, 2006.

Patent:

119

list_of_pub/EPS/jpaper.eps
http://www.ieice.org/jpn/trans_online/index.html
list_of_pub/EPS/patent.eps
http://www.j-tokkyo.com/2007/G01S/JP2007-278805.shtml

	Abstract
	Acknowledgements
	1 Introduction
	1.1 Background
	1.2 Related Works
	1.2.1 VLSI processors for real-time performance
	1.2.2 Smart sensors for low-latency

	1.3 Our Approach
	1.4 Scope of This Thesis
	1.5 Thesis Organization

	2 A Digital-Pixel-Sensor-Based Global Feature Extraction VLSI Processor for Real-Time Object Recognition
	2.1 Introduction
	2.2 Feature Extraction Algorithm
	2.3 VLSI Implementation
	2.3.1 System organization
	2.3.2 DPS featuring block-readout architecture
	2.3.3 Local feature extraction circuits
	2.3.4 Global feature extraction unit

	2.4 Chip Design and Measurement Results
	2.5 Summary

	3 Design of Advanced Early-Visual-Processing VLSI Processor Using 65-nm Technology
	3.1 Introduction
	3.2 Intelligent Image Processing Algorithms
	3.2.1 Global feature extraction for static image recognition algorithm
	3.2.2 Differential directional-edge image generation for object tracking algorithm
	3.2.3 Directional edge displacement (DED) map generation for motion recognition algorithm

	3.3 VLSI Implementation
	3.3.1 System organization
	3.3.2 Digital-pixel-sensor and local image processing (LIP) circuit
	3.3.3 Global image processing unit
	3.3.3.1 Circuits design
	3.3.3.2 Operation


	3.4 Chip Design and Measurement Results
	3.5 Summary

	4 A Real-Time Image Recognition System Using a Global Directional-Edge-Feature Extraction VLSI Processor
	4.1 Introduction
	4.2 VLSI-Implementation Friendly Recognition Algorithm
	4.2.1 Global directional-edge-feature Extraction
	4.2.2 Feature vectors
	4.2.3 Learning and recognition

	4.3 System Implementation
	4.3.1 Architecture of the system
	4.3.2 Global directional-edge-feature extraction VLSI
	4.3.3 Circuits implemented on FPGA

	4.4 Experimental Results
	4.5 Summary

	5 Directional-Edge-Based Object Tracking Employing On-Line Learning and Regeneration of Multiple Candidate Locations
	5.1 Introduction
	5.2 Object Tracking Algorithm
	5.2.1 Directional-edge-based feature vector generation
	5.2.2 Overall flow of the tracking algorithm
	5.2.3 On-line learning and regeneration of multiple candidate locations

	5.3 Experimental Results
	5.4 Summary

	6 FPGA Implementation of a Directional-Edge-Based Real-Time Object Tracking System
	6.1 Introduction
	6.2 Restrained Object Tracking Algorithm
	6.2.1 Overall flow of the tracking algorithm
	6.2.2 Regeneration of multiple candidate locations

	6.3 FPGA-Implementation of Object Tracking Algorithm
	6.3.1 System organization and architecture of tracking processor 
	6.3.2 Candidate location processing block
	6.3.3 Regeneration block

	6.4 Experimental Results
	6.5 Summary

	7 Conclusions
	7.1 Summary of This Thesis
	7.2 Future Perspective
	7.3 Conclusions

	References
	List of Publications

