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Abstract

Gaze estimation has been widely applied in human computer inter-

action(HCI) and academic research of cognition, e.g., gaze-based user

interface and reading habit analysis. Our goal is to build a real-time

gaze estimation system that is practical to consumer user without

many limitations. The hardware is a single web camera and user

should be able to move head freely.

[HK12] proposed a gaze system on tablet with accuracy of 4.4◦

,however the they only achieved a FPS of 0.7 and head motion is not

allowed. System proposed by [WB14] allow head motion and achieved

a reasonable error and speed, however the eye tracking failure is still

a problem.
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We employed appearance-based method because the only neces-

sary equipment is single web camera and it is robust under low resolu-

tion. However, the main limitations of appearance-based method are

head pose change and eye alignment. In order to compensate the bias

of gaze due to eye image distortion under head pose, we employed a

compensation-based method [LOSS14]. We proposed a new method

to detect eye corner and realized accurate and efficient eye alignment.

The proposed eye detection method is verification based. We first

calculate the locality sensitive histogram(LSH) as a illumination in-

variant feature. Based on the LSH feature, eye corner candidates are

determined by combining the variance project function(VPF) feature

and corner feature. We then verified the candidates by considering

the consistency of test image and training sample. Besides we imple-

mented some other key techniques in gaze estimation system, including

image rectification, eye blink detection, Gaussian Process Regression

optimization.

We evaluated accuracy and computation cost of our system and

eye alignment method. Our eye alignment method achieved better

error rate compared with other eye alignment methods. Our system

achieved a speed of 16 fps on a consumer laptop. We achieved a gaze

error of 10◦ under 20◦ head motion.
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Chapter 1

Introduction

1.1 Background of gaze estimation

The movement of eyes plays an important role in expressing human cognition,

attention and emotion. Many researches have been conducted in the past

30 years, among them computer vision-based gaze estimation has the most

technical potential since users don’t need to wear special equipments such as

electrodes.

Eye gaze estimation has found numerous applications in multiple fields,

such as human computer interfaces, cognitive study1.1, market research

and driver training. Among them, recently there are more applications on

consumer-grade devices. For example, [KIUK13] developed a read habit an-

alyzing system on ipad2 because portable devices can reveal a lot about our

physical and visual context, such as enhancing reading experience and un-

derstanding reading behavior. As a result, there is more and more demand

for a real-time gaze estimation system to satisfy the requirement of these

applications.

The needs of eye gaze estimation system becomes our motivation and our
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Figure 1.1: Application of gaze estimation in tablet UI(left) and research of

reading habit(right)

goal is to develop a real-time gaze estimation system which is practical and

friendly for consumer users. We aim to achieve a frame per second(FPS) to

be above 12fps. In term of hardware, we use a single web camera that is

available on most consumer devices. We aim to solve the limitation of head

motion to make the system more friendly to ordinary users.

Gaze estimation system using camera can be realized by model-based

method [SYW97], iris-based methods [WSV03] and appearance-based meth-

ods [TKA02]. Model-based methods build a 3D model of eye ball and calcu-

late point of gaze (PoG) by a geometric approach. They use infrared LEDs to

create glints on pupil to detect pupil center and corneal center. Model-based

methods have advantage on accuracy, however additional hardware equip-

ment is needed in order to detect pupil center , such as LEDs and infrared

cameras, shown in Figure 1.2..

Appearance-based methods try to build a relationship between eye image

and the coordinate of PoG through a regression or learning process, shown in

Figure 1.3. Compared with model-based methods, appearance-based meth-

ods only require a single web camera to realize gaze tracking while keeping

a reasonable accuracy. Besides, they are robust to low resolution image.

[HK12] implemented a tablet system using neutral network for regression,
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Figure 1.2: Model-based method: infrared LEDs and camera are used to

create and detect glints

obtaining an average accuracy of 4.42◦. However, free head motion is not

allowed because head motion brings high dimensions of freedom and thus

eye image varies drastically.

The main idea of iris-based method [WSV03] is to back project the iris

circle to 3D space and estimate the gaze direction as a normal vector of the

supporting plane, shown in Figure 1.4. Usually a circle edge operator is used

to detect the iris contour. The iris contour is a circle in 3D space appears as a

circle , while in 2D image plane it appears as an ellipse through a perspective

projection, 3D rotation of the circle can be calculated geometrically. In

[wood2014], a real-time iris-based gaze system is realized with a single web

camera, which can handle head motion and have a reasonable error rate of

7◦. The reason of such a high error rate is that low resolution result to

eye lid localization failure and less information of iris. Besides, beyond a

certain view angle, eyelid may occlude iris a lot ,which causes bad result of

iris detection.
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Figure 1.3: Appearance-based gaze estimation:learn gaze point from eye im-

age pixel vector.

Figure 1.4: Detect iris contour(left) and back project eclipse contour to 3D

circle plane(right)
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Figure 1.5: Eye image appearance changes under different head pose.

1.2 Overview and Contribution

We employ appearance-based method as the basic methodology in our gaze

system. The reason is that compared with model-based method extra hard-

ware is not necessary while it is robust to low image and individual difference

is small compared with iris-based method.

However appearance-based method can not handle head pose motion,

shown in Figure 1.5 because distorted eye image fall out of training sample

space which causes inaccurate regression. Another problem is eye alignment,

which directly affects accuracy of gaze estimation. Appearance-based method

learned the gaze point by pixel value of input eye image, thus eye alignment

is very critical. Head motion increase difficulty of eye localization and align-

ment because the feature used to align eye change a lot, such as eye contour

and appearance.

To solve the problem of eye image distortion, we first employed the

method [LOSS14] . Their method can handle head pose variance while

requiring much fewer samples than previous methods. In their approach,

regression between camera viewing direction and gaze direction bias is build

to compensate eye image distortion due to head pose. They claimed that
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gaze error within 3◦ has been achieved.

To solve the problem of eye alignment. we proposed a new eye corner de-

tection method to align eye images that can detect eye corner accurately and

fast. Our eye alignment method combines variance project function(VPF)

and corner features of eye corner and improve detection accuracy via verifying

training-test consistency.

Our contributions are as follows:

• We implemented an appearance-based gaze estimation system in real

time, which can give reasonable result under free head motion. We

achieved a gaze error within 10◦ and the system can run under 16fps.

• We proposed a new eye corner detection method to align eye images

accurately and fast. Our eye alignment method detect eye corner by

combining VPF and corner feature and improve detection accuracy via

verifying training-test consistency.

1.3 Framework of Proposed System

Our system is implemented in a object-oriented way. System flow is shown

in 1.6.

From the input image, we obtain the head rotation and head position

from a head tracker called FaceAPI. Meanwhile we perform face alignment

in order to obtain roughly localize eye. Then we do perspective transform

to eye image in order to keep the eye’s orientation and size uniform under

head motion, which is actually aligning input feature for learning process of

gaze [LOSS14]. Precise eye alignment is performed by detecting inner eye

corner and cropping a rectangle with fixed size w.r.t eye corner position. For

calibration phase, pixel vector of aligned eyes are used as vector for regression
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Figure 1.6: Data flow of appearance-based real-time gaze estimation system

between gaze estimation and eye image, while another regression is performed

between eye image distortion due to camera taken view and gaze estimation

bias. As a result of calibration, two Gaussian Process regression models

are built, which are used to estimate gaze estimation under fixed pose and

compensate gaze with bias of head motion and eye image distortion. Finally,

geometry information is used to calculate the insect point of screen and gaze

direction technology list.

Modules surrounded with read rectangle are employing methods in [LOSS14],

our academic work mainly focus on eye alignment.

Contents in following chapter are as follows: in Chapter 2 we will intro-

duce related work about eye alignment methods and appearance-based gaze

estimation. In Chapter 3, we will introduce our methods to detect eye corner

and align eye image and key techniques of gaze estimation. In Chapter 4,

experiments on eye alignment and gaze estimation will be introduced consid-

ering accuracy and efficiency of our system. We will conclude our work and
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discuss about future work in Chapter 5.
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Chapter 2

Related works

Eye alignment is very important in appearance-based method because the

image pixel vector decides gaze estimation directly. In this chapter, existing

mainstream methods of eye alignment will be firstly introduced. Besides,

eye alignment becomes difficult especially under free head motion because

eye appearance and shape varies drastically, the feature of which is usually

used to align eyes.

Popular approaches can be generally divided into face alignment-based

methods and eye corner detection-based methods. Eye corner is a very im-

portant feature of eyes because its robustness against muscle movements.

Thus eye corner has been used a reference point to do eye alignment. In-

stead of utilizing features of eye, eye alignment can also be done through the

process of global face alignment. We will introduce them in the next two

sections.

Finally appearance-based gaze estimation methods and system will be

introduced.
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Figure 2.1: Face alignment: build a shape or appearance model from anno-

tated training sample, face is aligned by fitting test image to this model.

2.1 Face landmark alignment methods

Face alignment method is also refered as locating facial landmarks such

eyes, nose, mouth and chin. Usually a statistical model of face landmarks

is built to fit local facial features, test image is aligned by fitting to the

model, shown in Figure2.1 . The main face landmarks methods can be di-

vided into optimization-based approaches and regression-based approaches.

Optimization-based approaches include some popular models such as active

shape model(ASM) [CTCG95], Deformable Parts Model(DPM) [FMR08].

Regression-based approaches include [XDlT13],[RCWS],[ZLLT14].

Optimization-based approaches build a model shape and appearance of

face from training data, and they align test samples by designing an objective

function that encodes the alignment error and try to minimum the objective

function.

ASM annotated training data to build statistical models of the face’s ap-

pearance and geometry. To learn a shape model, PCA is computed upon a
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set of labeled data of shape or appearance and variance modes are obtained.

Then a combination of shape or appearance subspace is done to achieve any

shape. Although usually shape is combined by a 2D linear model, 3D shape

model [BV99] is proposed to handle continuous view change. Active Appear-

ance Model(AAM) [CET01] share a common representation of facial shape

geometry. The difference is that in AAM, besides modeling of shape pa-

rameters, a appearance model is also build by performing PCA on texture.

Compared with other methods, ASM/AAM show advancements in accuracy,

computational complexity and generalization. However, these methods are

sensitive to initial pose because some of them use gradient descent based

method and may encounter local minimum under complex appearance with

illumination and noise [XDlT13]. Besides, extreme view variance of face is

unable to be represented by just linear combination or appearance subspace

of training samples. The object function of AAM is below and alignment is

achieved by finding optimal motion parameter p and appearance coefficients

ca.

min
ca,p
||d(f(x,p))−Uaca|| (2.1)

DPM [FMR08] methods fuse geometry configuration into local shape or

appearance model.The DPM first divide face landmark sets or appearance

into a set of parts with connections between certain parts. Global geometry

configuration are then established, which is usually represented with a un-

derlying graph constituted with vertices corresponding to the landmark parts

and edges corresponding to connection between different parts . Landmarks

are then simultaneously detected by scoring both a local appearance model

and deformation cost. Accuracy and efficiency rely heavily on structure of

the graph that represents geometry configuration. Face alignment methods
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based on DPM typically vary the optimization method of modeling global

geometry configuration. [UFH12] learn the parameters of DPM with a struc-

tured output SVM. Instead of a binary SVM, they use a loss function to

specify the classifier.

CLM [CC08] built the global geometry configuration by assuming all faces

lie in a linear subspace constituted by PCA based, which is similar to AAM

methods. Unlike AAM, appearance texture sampling is performed for a nor-

malized rectangle patches around each feature, which makes the variation

dimension much lower. Another difference between AAM and CLM is search

procedure of how to find the fittest parameter to minimize alignment error.

While AAM use a regression based method to find relationship between pa-

rameter update value and intensity difference, CLM optimized a object func-

tion of prior likelihood based on shape model and image response surfaces

iteratively. Compared with AAM, CLM has advantage on computational cost

and better generalization properties, however it suffers from aperture problem

that the local appearance of some facial feature are inherently ambiguous.

In [Sar13], a scored output version of SVM is used to score the matching

quality between template and image. Unlike traditional CLM methods, a

non-parametric representation is built to model the posterior likelihood. For

optimization a subspace constrained mean-shifts approach is proposed and

show a good balance between computational cost and reducing effects of local

minimum. However, head motions are not handled well.

The original regression-based approach [CET98] learn a regression model

between alignment error and the image feature, the regression is build through

a iterative process. [XDlT13] build a non-parametric shape model in order

to generalize better to untrained situations. For optimization, a supervised

12



descent method is proposed to avoid expensive computational cost of numer-

ical approximations.The main advantage of regression methods is simplicity

and efficiency focus on accurate and efficient optimization of object function

of a given model through a process of regression. The main drawback is that

relationship between feature location and feature value is always nonlinear,

requiring high-capacity regression models that are difficult to train and often

generalize poorly.

The landmark detector of [UFH12, Sar13, XDlT13] is publicly available.

We compared [Sar13, XDlT13]with proposed eye alignment method in the

chapter of experiment to show accuracy and efficiency of our method.

2.2 Eye corner detection

Eye alignment can be achieved by detecting eye corner position because the

relative position eye corner w.r.t eye image is robust under different gaze

and facial expressions. Besides, eye corner has many good features for de-

tection. Pixels around eye corner form a corner, along which vertical and

horizontal intensity variance generate as well as good corner feature. Also

since eye corner is the intersection of the two eye lid curves and the end

points of eyelid curves at the same time, we can use clues such as eyelid edge

and eye contour to detect eye corner. Thus eye corner is a robust reference

point in eye alignment. Eye corner detection methods can be roughly cate-

gorized into filter-based approaches, corner-based approaches and intensity

variance-based approaches. Filter based approaches[ZY02] detect eye corners

by creating a eye corner filter which is similar to the intensity distribution

of eye corner, which is similar to template matching methods. Pixel that

has maximum likelihood is considered as eye corner. The filter is applied
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to eye image and maximum point regarded as the location of eye corner.

[ZYWW05] located eye corners according to a bank of Gabor-based filter,

convolved at five different scales and orientations, from which averaged out-

puts yielded the final detection kernel. Similar to a filter, template matching

can also be used to detect eye corners, which calculates the correlation co-

efficient between template image and eye image. Template matching is not

robust under perspective transformation of eye image due to head motion

because eye corner appearance varies a lot.

Corner-based methods focus on the corner feature of eye corner. [BCVC13]

detect harris corners and use local maximum as candidates of eye corner.

They consider the corner nearest to nose is eye corner. According to their

experiment, harris corner based method achieved the best performance com-

pared with AAM and canny edge methods. However, their method is based

on the assumption that eye area is localized relatively well. Besides, noise

between area of nose and eye and low illumination could decrease robustness

of this method.

Variance projection function(VPF) [FY98] utilizes the feature of inten-

sity variations near eye corner. VPF calculates the variance of intensity on

vertical and horizontal directions. The VPF can be written as:

δ(x) =
∑
y

[I(x, y)− Im(x)]2 (2.2)

where Im(x) is the mean intensity value of xth column. [HG09] improved

VPF by adding the Harris’s response function as a weight, achieving a robust

result for frontal images with no significant lighting variations. They call the

method Weight Variance Projection Function(WVPF).

Besides those methods utilizing feature of eye corner itself, eye contour

information can also be used to detect eye corner because eye corner is the

14



intersection of two eye lid curves. [SP11] extract eye contour and fit a eclipse

to the contour. Eye corner candidates are selected by Harris-corner method,

upon which features related to the contour eclipse are calculated including

internal angle, distance to eclipse center, intersection of interpolating poly-

nomials, etc.

2.3 Appearance-based gaze estimation

Appearance-based methods regard the entire eye image as the high dimen-

sional input instead of extracting features like glint or pupil from eye image.

Mapping function is obtained by regression or learning and then directly

maps the eye image to screen position.Therefore, no infrared camera or ge-

ometry calibration is needed. However one problem of appearance-based

method is head motion. Head motion will bring in high dimension freedom

to regression process, thus eye image distort drastically.For example, not only

the eye ball, the eye lip also looks very different. Therefore, a large amount

of calibration is required, which will increase the inconvenience for user. In

order to allow head motion, Feng [?] proposed a method based on synthesis

of eye image. They regard head-moving images as fixed head pose captured

by multiple cameras. For computational simplicity, cameras are projected

onto one camera plane, which is parallel to the image plane. They model the

pixel displacement between head-moving eye images as 1D flow, and then

produce such flows to synthesis new training image from original training

image (four refer-ences) under fixed head pose. However, this method re-

quires tedious computation for training and thus not suitable for real time

system. [SMSK08]proposed a pose-based clustering approach that extends

an appearance manifold model to handle head pose variance.
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Figure 2.2: Rotate gaze vector from r0 to r̂. [LOSS14]

[LOSS14] proposed a learned regression between camera viewing direc-

tion and gaze direction biasto compensate eye image distortion due to head

pose.They compensate the gaze bias in two steps: learning-based regression

and geometry-based calculation. First they build a Gaussian Process Regres-

sion(GPR) between gaze bias 4σ and head pose 4vc, which can be written

as

4 σx
i = fx(4vci ) v GP(0, kw(4vci ,4vcj)) (2.3)

Geometry calculation is also necessary because gaze rotates along with head

rotation, shown in Figure 2.2. Assuming gaze is fixed relative to head, we ro-

tate head from r0 to r̂, then gaze vector will undergo the same rotation.Their

method can handle head pose variance while requiring much fewer samples

than previous methods. Thus we employ the method of [LOSS14] to handle

head motion problem in our system.
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Chapter 3

eye corner detection-based eye

alignment and system

implementation

In this chapter, we first introduce how to eliminate illumination change in

section3.1. Then we introduce how we detect eye corner in section 3.2. In sec-

tion 3.3, we introduce how to verify detected eye corner candidates. Finally,

we introduce other key component in our gaze system.

Considering eye alignment result decides the input value for the predic-

tion, wrong eye alignment will directly decrease gaze estimation accuracy.

In order to realize an efficient eye alignment method, we proposed an eye

corner detection-based method. Even though face alignment corner detec-

tion method has advantage on overall accuracy. Eye corner-based method

is more accurate with eye localization done because eye corner is robust for

gaze and has good feature for detection. The largest limitation of eye corner

detection-based methods is that rough eye localization is necessary. In our

system, we use a commercial head tracker that can provide the relatively
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refined eye localization. Thus we choose to use eye detection-based method.

We also implemented other key techniques in gaze estimation system in-

cluding compensation method of gaze error[LOSS14], rectification of image[LOSS14].

3.1 Eliminate illumination change

It is important to eliminate the inference of light in appearance-based estima-

tion especially under free head motion. Especially under free head motion,

even if the lighting condition doesn’t change, head motion will change the

lights the region of eye received, which can’t be ignored according to our

observation. n order to eliminate illumination change, we utilized the work

of [HYL+13]. We first will give a explanation why LSH is an illumination

invariant feature, and then we explain more metrics that locality sensitive

histogram brings in eye corner detection.

Histogram of a image is a 1D array, of which value is usually an integer

indicating the frequency of occurrence of a particular intensity value. On

the other hand, local histogram record statistics within a region of a pixel in

an image. They are computed at each pixel location, and have been proved

to be very useful for tasks like tracking [Por05]. Local sensitive histogram

extended local histogram by considering weight of each pixel. In LSH, pixel

far away from the target center is weighted less as they more likely contain

background information or occluded objects. LSH can be written as:

HE
p (b) =

W∑
q=1

α|p−q| ·Q(Iq, b), b = 1, . . . , B, (3.1)

where α is a parameter controlling the decreasing weight as a pixel moved

away from the target center, W is the number of pixels and B is the total

number of bins. and Q((I)q, b) is one when intensity value (I)q is b, otherwise
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Figure 3.1: histogram interval has same affine transform as image, thus pixel

number is invariant.

zero.

LSH is an illumination invariant feature, which means illumination will

change not value of LSH. Assume we have a illumination change as written

in:

I ′p = Ap(Ip) = a1,pIp + a2,p, (3.2)

where a1,p and a2,p are parameters of the affine transform at pixel p. Consid-

ering a window Sp centered at pxiel p. The number of pixels in Sp residing

in [bp − rp, bp + rp] is

Lp =

bp+rp∑
b=bp−rp

HS
p (b), (3.3)

where rp control the integration interval. Under illumination transform Ap,

[HYL+13] proved that the integration interval scales with the illumination

affine transform.

r′p = a1,prp, (3.4)

L′p will corresponds to the number of pixel with intensity value that resides

in [Ap(bp− rp), Ap(bp + rp)]., thus L′p is equal to Lp if ignore the quantization

error. Thus LSH value is invariant under illumination. The process is shown

in Figure 3.1
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Figure 3.2: VPF value of iris region decreased drastically on LSH image.

LSH not only provide a illumination variant pixel feature, but also strengthen

the VPF feature of eye corner mentioned in Chapter 2. As shown in Figure

3.2, VPF of iris region is the global maximum. While the LSH image, VPF

of iris region became local minimum. The reason is that LSH computes the

pixel number within a certain window that has similar intensity value with

the window center. Thus if pixel values are similar in a region, all the LSH

values of this region will be large. Thus the intensity variance will be small.

3.2 Detect eye corner with corner and VPF

feature

We introduced several eye corner detection methods in section 2.2. Among

them, we know that corner feature and VPF feature is robust even under

extreme variance. However according to our experiment horizontal VPF

is not applicable because head motion disordered the pattern of variance

projection feature. To explain this more, in normal case VPF feature of
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Figure 3.3: eye corner has global maximum likelihood using our feature.

eye corner has a unique pattern, by using which region of interest(ROI) is

relatively less difficult to determine. However in a free head motion case,

symmetry of VPF feature will be disordered.

Thus we employed these two features. Besides, in order to reduce the

inference of iris area, we considered the distance to nose since inner eye

corner is closed than iris to nose. The method can be formulated as below:

W (x, y) = R(x, y) · [I(x, y)− Im(x)]2 · (w − d) (3.5)

where R(x, y) is the harris corner response function, [I(x, y) − Im(x)]2 is

VPF feature, d is the distance to nose. As shown in Figure3.3, eye corner

has global maximum likelihood using our feature which is obvious higher

than other region of eye.

Finally, we can get candidates of eye corner by choosing the points with

large likelihood W (i, j). In order to ensure that candidates include the

correct eye corner, we split the region of interest evenly on vertical and

horizontal orientation, an then certain number of points from each subregion

are picked up. By smoothing the choices of candidates spatially, we can avoid
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the candidates concentrate on the same region, thus ground truth point of

eye corner is more likely to be included in candidates.

3.3 Eye corner candidate verification via test-

training consistency

By calculating WVPF feature we described in last section, we can get the

right eye corner position very possibly. However, because the ROI is difficult

to determine, we have to expand the ROI to ensure eye corner is included.

Thus region of iris or eye brown will also be included in some cases. Because

these regions also have obvious harris corner feature and VPF feature, they

may be mistook as eye corner. Besides, eye corner feature may be less obvious

under dark illumination.

Because of these facts, we consider that a verification phase is necessary

to ensure that we detect the correct eye corner. The idea is simple that

we compare the aligned eye images with eye corner candidates with training

sample images that we assume are correctly aligned. Because eye alignment

is relatively robust under fixed head pose, we use the training samples as

comparison targets. Comparison can be done upon two features: pixels

difference and max contour size. Pixel difference comparison can be written

as:

L = min ||Ic,i − It,j|| (3.6)

where Ic,i is the aligned image using eye corner candidate,It,jis the training

sample under fixed head pose. We calculate the minimum distance between

a certain candidate image and training samples, and use the distance as one

feature of eye corner likelihood.

We also employ max contour size of edge to calculate eye corner likelihood.
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Figure 3.4: correctly aligned image has larger contour than incorrect one.

As we can see in Figure 3.4, correctly aligned eye image has larger contour

than incorrect ones. We find this is a robust feature because most of the

incorrect alignment is due to iris region, which align eye image incompletely.

We employ algorithm in [S+85] to analyze the connected component contour.

We first extract the candy edge feature and build the topological structure of

the border in image. Then we can find the maximum connected component

contour as the root of the topological structure.

The final likelihood function can be written as below:

W (x, y) = R(x, y) · [I(x, y)− Im(x)]2 · (w − d) · Smax/L (3.7)

where Smaxis the max contour size and L is the min distance between can-

didate image and training samples.

3.4 Implementation of other key techniques

Besides eye alignment, there are several other key techniques in our gaze

estimation system, including gaze bias compensation, image rectification,

Gaussian Process Regression(GPR) optimization and blink detection.

Image rectification is to perform a perspective transform to image so that

eye image show in similar poses. It is necessary under head motion because
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eye image show in arbitrary poses Figure3.5 (left), which increase difficulty

of eye alignment. To perform image rectification, we employ method in

[LOSS14]. They first defined camera coordinate system and head coordinate

system. The idea is to move camera hypothetically so that camera coordi-

nate system become parallel to head coordinate system. With rectification,

eye image pose look consistence(right). We implemented this technique by

narrowing rectification target to roughly cropped eye image. This improved

system efficiency because eye image region is less than 1/10 of the whole face

image. Image rectification can be written as:

p′ = zKΩrK
−1p (3.8)

where p is the pixel coordinate in eye image I and p′ is the corresponding

pixel coordinate in rectified eye image. z is a distance scalar, K is intrinsic

matrix of camera and Ωr is the rotation matrix which is the same as in

[LOSS14].

Gaussian Process Regression optimization We employed Gaussian

Process Regression(GPR) to learn gaze direction from input image. The pre-

dictions of a Gaussian process model will depend on the choice of covariance

function. In order to achieve better accuracy and generalization, we decide

to infer the parameter values from the data. We calculated hyperparameters

θ by maximizing the likelihood function p(t|θ) which is written as below:

lnp(t|θ) =
−1

2
ln|CN | −

−1

2
tTC−1N t− N

2
ln(2π), (3.9)

where CN is the covariance matrix. The maximum is performed by calculat-

ing gradient of function.

Eye blink detection is performed by building a classifier based-on super

vector machine(SVM). We used the RPI ISL Eye Database [WJ05], which
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contained 2070 closed eye images and 1773 open eyes with different sizes and

orientations.

Gaze bias compensation we collect training samples under different head

poses and calculated gaze bias using the regression learned under fixed head

pose. Then we build a regression between head pose and corresponding gaze

bias using Gaussian Process Regression(GPR).
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Figure 3.5: eye images show different pose under head motion(left). Rectified

eye images has similar pose.
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Chapter 4

Experiment

In this chapter, we would evaluate our gaze estimation system. The evalu-

ation is performed from three aspects: eye alignment, gaze estimation and

efficiency.

4.1 Experiment environment and setting up

Our system is measured on a laptop with 8GB memory and 1.8GHz CPU. We

used a logitech920 web camera with 960*720 resolution image. The screen

size is 37.5cm(height)*30cm(width) with a resolution of 1280*1024. User is

sitting around 30cm from the screen. We have a two phases of training. In the

first phase, they are asked to stare at 6*6 reference points that distributed

evenly on screen. At that time they keep head pose fixed. The second

training phase is to learn regression between gaze bias and head motion by

collecting 200 sample images. We ask users to stare at one reference point

in the middle of screen while rotate and move head freely. In test phase, we

ask user to stare at 4*4 reference points distributed evenly on screen. Each

reference point display for 4 seconds and we collect 30 test images for each
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point. Gaze error is calculated by comparing ground truth and estimation

result. We begin training and test phase by asking user to interact with a

console user interface.

4.2 Eye alignment

We tested our data on 3200 images collected from 8 subjects with gaze and

head pose on arbitrary directions. We evaluate the eye alignment by mea-

suring inner eye corner detection error between manually labeled ground

truth and detection results. We compared our method with constrained

local model-based(CLM) face alignment method [Sar13] which proposed a

optimization-based fitting method, a regression-based face alignment method

called Intraface [XDlT13], and two feature-based method which is harris-

corner [BCVC13] and gabor filter-based template matching [ZYWW05]. Fig-

ure 4.2 showed the accumulation error rate, We can know that our method

achieved the best performance compared with other four methods. Intraface

and harris-corner methods also have very small error rate. CLM and template-

matching have relatively large error. We didn’t record result of weight

VPF[HG09] because the error pixel is beyond 20. However, the accumu-

lation error rate of intraface converged fastest, which means the standard

deviation is small.

To see the result in another perspective, we calculated mean value and

standard validation of error, shown in Figure.4.2. We can know that appearance-

based methods such as CLM and intraface have smaller standard deviation,

which means their result is more stable. However our method has the least

mean error.We can’t definitely say that our method has the greatest perfor-

mance of eye alignment because eye alignment is ambiguous and eye corner is

28



0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Eye Corner Detection Error

R
a
t
e

Err(pixel)

 

 

intraface

CLM

harris

proposed

template matching

Figure 4.1: Horizontal axis showed the normalized error of inner eye corner

estimation for each methods. The performance is measured as percentage of

images below certain error value.

not the only criteria. Besides, the definition of eye corner itself is ambiguous.

We can infer from the gaze result in Section 4.3 that eye alignment stability

is also significant in appearance-based gaze estimation.

Detection result can be seen in Figure4.3. We can see that all methods

achieve good result under fixed eye image except harris-corner method may

be disturbed by high light area near nose. However under head motion,

accuracy of template matching and CLM method both decreased due to

the variance of eye image appearance. Compared with that, our method is

relatively robust even under head motion.

4.3 Gaze estimation

We test our gaze estimation on the same 3200 sample images in Section 4.2.

We compensated gaze error due to head motion employing the method in

[LOSS14], which we believe can handle the eye distortion problem due to

head motion. As we figure out that eye alignment is important in gaze esti-
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Figure 4.2: Mean and standard deviation of eye corner detection error. Our

methods has the least mean error and reasonable standard deviation.

Figure 4.3: Eye corner detection result of Harris corner, template matching

, proposed method and CLM.
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Figure 4.4: x and y axis gaze direction error. Our methods has the least

mean error on both direction.

mation, we use different eye alignment methods which we already compared

in previous section. We measure the gaze direction error on x axis and y axis

for different alignment methods respectively.The result is shown in Figure

4.4. We can know that our method also achieved the least error on both x

axis and y axis of about 11◦. CLM achieved the second highest accuracy

because the eye alignment of CLM is very stable. One interesting thing is

that the result of template matching is good even if the eye alignment result

is bad.

Gaze result on different subjects in shown in Table 4.4. We can know that
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the difference between subjects is relatively small. This is the advantage of

appearance-based gaze estimation compared with iris-based methods.

Table 4.1: gaze error of different subjects

subject x axis y axis

1 9.02◦ 8.92◦

2 7.13◦ 8.68◦

3 7.45◦ 10.35◦

4 6.45◦ 10.34◦

5 6.03◦ 11.89◦

6 8.93◦ 13.29◦

7 3.84◦ 7.10◦

8 7.61◦ 8.23◦

In order to show the affect of head pose, we measured gaze error on differ-

ent head pose and compared the gaze errors before and after compensation.

The result is shown in Table 4.2, we can tell that gaze error increased dras-

tically without gaze error compensation, and the error get larger along with

head rotation. Another observation is that even we performed compensa-

tion, the error is still large under head motion. The reason is that some

test images are under head motion that is larger than training image, thus

regression between head pose and gaze bias cannot be estimation accurately.

In order to prove that gaze result can be improved by covering large head

motion cases, we exclude extreme cases from test images. First we define

extreme cases, which is shown in Figure 4.5. As head pose training space is

relative to head pose, we perform a perspective transform to training space

T along with head motion to T ′ . If ground truth of gaze direction fall out of
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Table 4.2: gaze error under different head pose before and after gaze error

compensation

head rotation x axis y axis x no comp y no comp

0◦-12◦ 6.60◦ 8.64◦ 7.23◦ 9.12◦

12◦-24◦ 6.99◦ 9.90◦ 12.55◦ 13.67◦

24◦- 7.46◦ 11.08◦ 18.36◦ 22.13◦

T ′, we call it an extreme case. Among 3200 images, around 1700 images are

belonging to the extreme cases. We exclude the 1700 images and recalculated

gaze error, the gaze error improved from 11.5◦ to 10◦,shown in Table 4.3.

Table 4.3: gaze error of different subjects after excluding extreme cases

subject x axis y axis

1 7.11◦ 8.67◦

2 8.04◦ 7.94◦

3 7.75◦ 8.35◦

4 5.25◦ 7.79◦

5 6.45◦ 11.02◦

6 6.15◦ 11.57◦

7 4.14◦ 6.31◦

8 4.82◦ 5.07◦
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Figure 4.5: Extreme case: gaze fall out of T ′, thus regression is inaccurate.
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4.4 Evaluation of computational cost

We performed the comparison by employing different eye alignment method,

including optimization-based face alignment method CLM, regression-based

face alignment method intraface,proposed method, harris corner method and

optimization-based method in [LOSS14]. The result showed that our system

can be run under 16 fps, faster than CLM which optimized the whole face.

The fastest method is intraface. Intraface is a independent system, so we

only calculated run time of eye alignment for intraface. Since eye alignment

is the most time-consuming part in gaze estimation, we can still consider

intraface is faster than our system. However our method is more accurate

than intraface Harris corner also showed its efficiency. Optimization-based

method [LOSS14] only achieved a 5 fps, the reason is that the iterative-based

searching and reconstruction process is time-consuming.

Table 4.4: efficiency comparison of eye alignment method

Methods fps Comment mean error

CLM 12 complex optimization for whole face 7.18

intraface 33 state of art 3.48

Proposed 17 highest accuracy 2.29

Harris Corner 24 simple feature method 3.38

Feng’s 5 reported in [LOSS14] not reported
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Chapter 5

Conclusions

In this thesis, we aimed to implement a real-time gaze estimation system for

ordinary user under free head motion. We employed appearance-based gaze

estimation method because it needs only a single web camera and robust

under relatively low resolution image. The main problems of appearance-

based gaze estimation under free head motion are eye image distortion and

eye alignment. We employed [LOSS14]’s method to learn gaze bias from head

motion. In order to achieve accurate and fast eye alignment, we proposed a

verification-based eye corner detection method. Experiment showed that our

methods achieved good accuracy in eye corner detection and gaze estimation.

Our system can run at a 16 fps, the gaze error is around 10◦ under 20◦ head

pose motion.

The main contributions of this work are summarized as follow:

• We implemented an appearance-based gaze estimation system in real

time, which can give reasonable result under free head motion.

• We proposed a weighted corner feature-based approach to detect eye

corner, with a verification phase to decrease false detection.
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Gaze error of our system is 10◦, there are several possible reasons. Firstly,

training samples have, secondly still eye tracking

For future work, we first consider to improve accuracy and robustness of

our system as discussed in last section. For example, we may use different

training method to obtain sufficient training sample in a user-friendly way.

Besides, instead of a laptop, we consider to develop a real-time system on

portable devices such as tablets or smart phones. Since user may have larger

head motion more frequently, eye alignment and gaze compensation is more

challenging. We are now using a commercial facetracker, in order to realize

a open-source system, we consider to transfer our system to linux or ios

platform, which is more accessible to mathematical library.
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Gabriela Csurka and José Braz, editors, VISAPP ’12: Proceed-

ings of the 7th International Conference on Computer Vision

Theory and Applications, volume 1, pages 547–556, Portugal,

February 2012. SciTePress — Science and Technology Publica-

tions.

[WB14] Erroll Wood and Andreas Bulling. Eyetab: model-based gaze

estimation on unmodified tablet computers. In Proceedings of the

Symposium on Eye Tracking Research and Applications, pages

207–210. ACM, 2014.

[WJ05] Peng Wang and Qiang Ji. Learning discriminant features for

multi-view face and eye detection. In Computer Vision and

41



Pattern Recognition, 2005. CVPR 2005. IEEE Computer So-

ciety Conference on, volume 1, pages 373–379. IEEE, 2005.

[WSV03] Jiangang Wang, Eric Sung, and Ronda Venkateswarlu. Eye gaze

estimation from a single image of one eye. In Computer Vi-

sion, 2003. Proceedings. Ninth IEEE International Conference

on, pages 136–143. IEEE, 2003.

[XDlT13] Xuehan Xiong and Fernando De la Torre. Supervised descent

method and its applications to face alignment. In Computer Vi-

sion and Pattern Recognition (CVPR), 2013 IEEE Conference

on, pages 532–539. IEEE, 2013.

[ZLLT14] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou

Tang. Facial landmark detection by deep multi-task learning.

In Computer Vision–ECCV 2014, pages 94–108. Springer, 2014.

[ZY02] Jie Zhu and Lei Yang. Subpixel eye gaze tracking. In Auto-

matic face and gesture recognition, 2002. proceedings. fifth ieee

international conference on, pages 124–129. IEEE, 2002.

[ZYWW05] Zhonglong Zheng, Jie Yang, Meng Wang, and Yonggang Wang.

A novel method for eye features extraction. In Computational

and Information Science, pages 1002–1007. Springer, 2005.

42


	cover(1)
	phdthesis(1)

