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Abstract

The bag-of-features model is one of the most popular and promising ap-

proaches for extracting the underlying semantics from image databases. How-

ever, the associated image categorization based on machine learning tech-

niques may not convince us of its validity since we cannot visually verify how

images have been classified in the high-dimensional image feature space. This

thesis aims at visually rearranging the images in the projected feature space

by taking advantage of a set of representative features called visual words

obtained using the bag-of-features model. The main idea is to associate

each image with a specific number of visual words to compose a bipartite

graph, and then lay out the overall images using anchored map representa-

tion in which the ordering of anchor nodes is optimized through a genetic

algorithm. For handling relatively large image datasets, A pair of similar im-

ages is merged one by one to conduct the hierarchical clustering through the

similarity measure based on the weighted Jaccard coefficient. Voronoi parti-

tioning has been also incorporated into the present approach so that we can

visually identify the image categorization based on support vector machine.

Experimental results are finally presented to demonstrate that the present

visualization framework can effectively elucidate the underlying relationships

between images and visual words through the anchored map representation.
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Chapter 1

Introduction

Sophisticating tools for image categorization becomes more crucial due to

the rapid development of Internet and the increasing size of image databases.

Searching relevant images based on user preferences is not a trivial task if

images are annotated manually, however, the manual annotating process is

time-consuming and subjective. It’s desirable to have content-based image

categorization. While the associated techniques have been improved until re-

cently, it is still a hard work to sufficiently infer the underlying semantics from

images. This problem primarily arises from the fact that we cannot precisely

identify specific objects embedded in the images regardless of possible vari-

ations in their view, lighting, and occlusion conditions. The bag-of-features

(BoF) model [22, 3] successfully alleviates the above problem for effective

image retrieval. A main idea behind the BoF model is to seek an analogy of

methods for inferring text categorization based on the bag-of-words model,

where each document is represented as a sparse vector of representative words

by referring to their occurrence without worrying about their associated or-

ders. In practice, the BoF model allows us to associate an individual image

with a small weighted set of visual words, each of which stands for a group

of local features in the high-dimensional feature space and thus corresponds

to some specific image content in the image.

Since images are represented as histograms by using BoF model, visual
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image categorization problem can be simplified as multi-class supervised

learning problem, which can be solved by employing machine learning tech-

niques. Machine learning techniques include two separate steps in order to

category unlabeled input images: training and testing. In the training step,

classifiers are trained using training images that are labeled by hand, while

in the testing step, images are annotated with their corresponding categories.

Nonetheless, the correctness of the image categorization is not always

convincing even with the help of classification methods based on machine

learning algorithms, since the actual mechanism for the associated image

categorization has not been fully visualized due to the high-dimensionality

of the image feature space. In this thesis, I solve this problem by encoding

the relationship between images and visual words as a bipartite graph first,

and then employing anchored map representation [16] to rearrange the image

set on the 2D screen space, as shown in Figure 1.1(a). Genetic algorithms

have also been employed to optimize the circular ordering of visual words

around the image feature space, so that I can visually elucidate the underlying

relationship between images and visual words (as shown in Figure 1.1(b)).

Furthermore, I employ a hierarchical visualization framework by merging and

splitting images through referring to values of the weighted Jaccard similarity

between sets of visual words associated to their corresponding images, so that

I can achieve a better understanding through global and local exploration.

In the present prototype system, an image will be temporarily merged when

its Jaccard similarity coefficient is larger than a particular threshold, which

can be defined by users. The background of images is drawn by assigning

different colors to different categories while I partition the screen space into

several Voronoi cells by referring to the center coordinate of each image.

The remainder of this thesis is organized as follows: Chapter 2 provides a

review on conventional techniques for bag-of-features and high-dimensional

visualization. Chapter 3 describes how to extract image features and con-
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struct the dictionary of visual words by extracting low-level image features.

Chapter 4 presents my approach to transforming the high-dimensional image

feature space to an anchored map representation by referring to the bipar-

tite relationships between images and visual words. After having presenting

several experimental results to demonstrate the feasibility of my prototype

system in Chapter 5, Chapter 6 concludes this thesis and refer to future work.
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(a)

(b)

Figure 1.1: Using anchored maps to visualize bag-of-features image catego-
rization. (a) Original layout. (b) Enhanced layout with an optimized circular
ordering of visual words annotated with representative images. Images in
same category are brought closer to each other. (#{visual words} = 24.)
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Chapter 2

Related Work

In this Chapter, I describe related work on image categorization, and also

provide a survey on existing high-dimensional visualization techniques.

2.1 Image Categorization Based on Machine

Learning Techniques

Content-based image retrieval has been a hot topic in the fields like image

processing field, computer graphics, and multimedia. For effective search for

specific contents, it is important to classify images into several categories by

inferring semantics of visual features embedded in them. The bag-of-features

(BoF) model is a well-known approach for such image representation and

helps us categorize images by computing the number of occurrence of partic-

ular visual features contained in each image [22, 3]. This idea originates from

the concept of bag-of-words that naturally allows us to classify documents

by counting the number of particular words defined in the dictionary [11].

The bag-of-words model represents documents or sentences as bags of words,

where the word order and even grammar are disregarded, so that documents

or sentences can be represented as vectors of words, where each entry of

these vectors refers to the frequence of corresponding word. After represent-

ing documents as vectors, these vectors are used for training classifiers and

5



document classification problem is solved. Indeed, this concept has been ex-

tended to the image databases where an image is represented as a vector of

features, here features called visual words are employed as words and a set

of features is employed as the dictionary in the bag-of-words model. Thus,

image categorization is usually considered as a two-step approach, including

representing images as vectors of extracted features and recognizing images

based on simulating human behavior on classifying types of images.

About the feature extraction and image representation, in the early stage

of approaches of feature extraction, several studies focused on detecting

global image features for encoding the image as a whole. Nonetheless, these

features appeared to be incorporated for the purpose of categorizing images

because they are too sensitive to image transformations such as translation,

scaling, and rotation together with lighting conditions and occlusions. Lowe

presented a feature detection technique called scale-invariant feature trans-

form (SIFT) [14], which extracts local image features in a way that they are

robust enough to the prescribed conditions. In the BoF model, the visual

words were obtained by collecting the SIFT features from a set of training

images and employing the conventional k-means clustering [22, 3] to identify

the corresponding cluster centers as the visual words, and then represent

images as vectors of these visual words. In recent year, sparse coding [25]

instead of k-means clustering is used for clustering features in order to get

better performance in image representations.

As for practical approaches for image categorization, After encoding each

image in the database as a weighted sum of the relevant visual words. In-

deed, BoF models facilitates us to assign a sparse vector representation of

visual words to each image by quantizing it in terms of its associated visual

words [22, 3] or L1-norm regularization [25]. Support vector machine (SVM)

has been often employed as a standard classifier since it produces high accu-

racy in image categorization [3, 5]. As an extension, Bosch et al. [1] revisited
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the recognition scheme and apply it to the video by employing probabilis-

tic latent semantic analysis (pLSA) followed by k-nearest neighbor (k-NN)

classification.

Over the years, a wide range of methods has been developed to improve

the quality of the image categorization. A state-of-the-art technique is spa-

tial pyramid matching (SPM) proposed by Lazebnik et al. [13], where they

incorporated spatial gradient information of images at multiple scales into

the BoF model. More studies also focused on improving the discrimina-

tive power of the visual words dictionary. For example, Winn et al. [24]

introduced a statistical measure for the optimization framework to make the

dictionary of the visual words more compact, while Perronnin [20] combined

local and global feature detection frameworks to exhibit higher performance.

However, the space of image features extracted by these approaches is always

high-dimensional and too abstract to understand the meaningful structures

hidden behind that space.

2.2 Visualizing High-dimensional Image Fea-

ture Space

Visualizing high-dimensional feature space often successfully elucidates the

image classification obtained through machine learning techniques. A dimen-

sionality reduction technique called multidimensional scaling (MDS) [23, 12]

is one of the common techniques to project the high-dimensional space onto

a 2D screen space for better readability. Kyle Heath et al. [8] built graph

structures called Image Webs where collections can be highly interconnected

through implicit links between image pairs viewing the same or similar ob-

jects. Recently, Paulovich et al. [19] and Mamani et al. [15] developed di-

mensionality reduction frameworks that allows us to interactively edit the

underlying structures of the high-dimensional space through screen-space
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manipulations. Furthermore, Mizuno et al. [18] presented a framework for

interactively exploring feature space that is specific to the BoF models, by

referring to the relationships between images and visual words. In my ap-

proach, I also focus on such relationships specific to the BoF models and

encode them as anchored map representations [16, 21] for visualization pur-

poses. Technical details of the present approach will be detailed later in

Chapter 4.
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Chapter 3

Bag-of-features Model for
Image Categorization

This chapter first provides a brief overview of the BoF model for encoding

images as feature vectors, then describes how images are categorized using

machine learning techniques.

3.1 Image Representation Based on the Bag-

of-Features Model

The bag-of-features model (BoF) is a well-known approach for image repre-

sentation and helps us categorize images by computing the number of oc-

currence of particular visual features contained in each image [19, 3]. This

idea originates from the concept of bag-of-words that naturally allows us

to classify documents by counting the number of particular words defined

in the dictionary [8]. Indeed, this concept has been extended to the image

databases where a set of local features called visual words is employed as

the dictionary for the analysis of image contents. In general, the BoF model

consists of three steps: feature extraction, visual words dictionary formation

and image-histogram representation.
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(a) (b) (c)

Figure 3.1: The BoF model. (a) SIFT feature vectors extracted from images
are plotted in the 128 dimensional feature space. (b) The k-means clustering
algorithm is employed to identify a visual word as the center of each cluster.
(c) Each image is encoded as normalized histogram coordinates in terms of
the visual words.

3.1.1 Feature Extraction

The first step of the BoF construction is the feature extraction, where we

extract SIFT features from the respective images. A feature here is a piece

of information that is relevant for solving the computational task related

to image categorization. Features may be image color information, corners,

edges, shape and texture features, nonetheless, these features appeared to be

inappropriate for image categorization because they are not robust to trans-

lation, scaling and rotation. Lighting conditions and occlusions and affect the

result of image categorization. Lowe presented a feature detection technique

called scale-invariant feature transform (SIFT) [11], which extracts image

features in a way that they are robust enough to the prescribed conditions.

The SIFT features are described as 128-dimensional feature vectors and after

extracting SIFT features from images we then plot these features within the

128-dimensional feature space as shown in Figure 3.1(a).
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3.1.2 Visual Words Dictionary Formation

For conducting the second step as the visual words dictionary formation,

all the SIFT features are grouped into a specific number of clusters. The

simplest technique for this purpose is the conventional k-means clustering

algorithm, where the number of clusters k is predefined. Now we are ready

to identify the center of each cluster as a representative feature called a visual

word, and compose the list of k visual words as the dictionary as exhibited

in Figure 3.1(b).

3.1.3 Image Histogram Representation

The last step is image histogram representation, where we encode each image

as a histogram coordinates in terms of the visual words. This is accomplished

by quantizing each SIFT feature vector contained in the image to its closest

visual word in the 128-dimensional feature space first, and then counting

the occurrence of each visual word to construct the histogram. Finally, each

image is represented as a sparse vector of visual words by normalizing the

bins of the histogram to compose the normalized histogram coordinates, as

shown in Figure 3.1(c).

3.2 Image Categorization using Support Vec-

tor Machine

After representing images as feature vectors by employing BoF model, the

support vector machine (SVM) is employed as the simplest learning models

for classifying images by partitioning the high-dimensional space spanned

by the extracted visual words [3]. In practice, the classifier finds the max-

imum marginal hypersurfaces that separates positive and negative samples

in the training dataset, and further classifies each of the unknown samples

by referring to the separating hypersurfaces. In this thesis, I introduce the

11



SVM-based image categorization process proposed by Csurka et al. [3] and

visualize how the bounding hypersurfaces enclose the images of specific type

according to the input training samples provided by users. In my approach, I

employed radial basis functions (RBFs) kernels for representing such separat-

ing hyperplanes to better classify the complicated configuration of images in

the high-dimensional space, and visualize the associated image classification

in the screen space for more convincing representation.
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Chapter 4

Hierarchical Bipartite Graph
Visualization

In this chapter, I describe how to visualize image categorization via an an-

chored map representation by referring to the bipartite relationships between

images and visual words. I also introduce the weighted Jaccard similarity in-

dex for adaptively clustering images so that we can hierarchically represent

large scale image sets within the framework of anchored maps. Moreover,

a voronoi partitioning has been incorporated into my approach to help us

visually identify the image categorization based on support vector machine.

4.1 Bipartite Network Composition

The most common way of visualizing the high-dimensional image feature

space is to employ dimensionality reduction techniques. Nonetheless, it is

often the case that we still cannot fully discriminate each image category

from others if the images are simply projected onto the low-dimensional

space. My original idea for alleviating this problem is to extract bipartite

relationships between images and visual words from the BoF model first, and

then transform them into a network structure so that I can takes advantage

of existing graph drawing techniques for better visualization.

For this purpose, I first establish edge connections between each image

13



(a) (b) (c)

Figure 4.1: Bipartite relationships between images and visual words in the
BoF model. (a) An original bipartite graph. (b) A sparse bipartite graph
after edge pruning. (c) The corresponding anchored map representation.

and its relevant visual words if they correspond to non-zero histogram coor-

dinates of that image. Note that here I represents images and visual words

as nodes of the bipartite graph, while I associate each normalized histogram

coordinate value with the corresponding edge as its weight value as shown

in Figure 4.1(a). Furthermore, I would like to make the bipartite graph as

sparse as possible for better readability of the resulting graph visualization.

Thus, I sort the edges in an ascending order according to the weight values,

and prune the edge having the minimum weight one by one until I cannot

remove edges any more without decomposing the graph into multiple con-

nected components, as shown in Figure 4.1(b). In this way, I construct a

sparse representation of the bipartite graph over the image and visual word

nodes [26].

4.2 Anchored Map Representation

As for the visualization of the bipartite relationships, I investigate more graph

drawing techniques, since the graph is a data structure that is used for repre-

senting mutual relationship between attributes. Large numbers of techniques
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are studied for drawing general graph while here I focus on drawing bipartite

graph because the mutual relationship between images and their represented

visual words is exactly a bipartite structure. Bipartite graph is a specific

subset in graphs, where the attributes can be exactly distributed into two

independent subsets. Misue presented an approach called anchored maps,

which fixes one set of attributes in a circular ordering and allow remaining at-

tributes to move by employing conventional force-directed placement [16, 17].

An energy-based spherical embedding method is also introduced to adjust po-

sitioning vector of each attribute, while the method limits the placement of

attributes on two concentric circles [6]. In this thesis, I choose anchored maps

for visualizing the relationship between images and visual words because the

technique provides more feasibility to the placement of images.

In the anchored map representation, nodes in one of the two disjoint

sets of the bipartite graph are spaced along the boundary of a disk region,

while nodes of the other set are free to move within the disk, as shown in

Figure 4.1(c). The restricted nodes are fixed like anchors, hence the terms

“anchors”and “free nodes”.

The drawing procedure of anchored maps includes two steps:

• Space anchors equally along the boundary.

• Arrange free nodes at the appropriately positions by using spring em-

bedder algorithm [4]. Edges connected the two disjoint nodes are drawn

as straight line segments.

In my system, I release the image nodes within the central disk region

as free nodes of the anchored map and fixed the visual word nodes along its

circular boundary as anchors. The conventional spring embedder algorithm

is also applied to the free nodes to avoid unnecessary overlap among images in

the central region, where I also incorporates edge weights into my formulation

so that each image will be brought closer to its relevant visual words according
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to their corresponding normalized histogram coordinates. In spring embedder

algorithm, the initial positions of the free nodes has influence on the layout of

the anchored map representations, in order to get better layout, the positions

of free nodes are initialized to the weighted average of the adjacent visual

words.

In the anchored map representation, the length of the circular boundary

only influence the size of the drawing, doesn’t influence the readability of

the layout; While the order of the anchors plays an important role in the

readability of the layout. By optimizing the order of anchors based on some

rules, I can improve the readability of anchored maps. And in my sparse

representation of the bipartite graph, each image usually depends on a small

number of visual words. This means that my scheme is more likely to bring

image of the same category close to each other in the anchored map rep-

resentation since they usually share almost the same set of visual words in

their histogram representation. Furthermore, this visual readability of the

image categorization can be enhanced if I carefully reorder the visual word

nodes along the circular boundary of the disk to make each image node have

its neighbor visual word nodes within its vicinity. This is accomplished by

devising genetic-based algorithms for optimizing the circular ordering of vi-

sual words, where I define a chromosome as a value-encoding sequence of

visual word IDs as showed in Figure 4.2. For fully discriminating between

image categories, I optimize the chromosome sequence by defining the cost

function. So that, for each image node, every pair of its adjacent visual word

nodes become closer to each other. This amounts to calculating the circu-

lar distance between adjacent visual word nodes for each image node, and

summing up the squared distances except for the largest one [16]. The cost

function can be expressed by using the following formula:

C =
k−1∑
i=1

Dq
I , (4.1)
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where k represents the number of visual words connected with image I, and

parameter q is the power of circular distance D. Parameter q is set to be 2

in the experiments of this thesis. As in the example showed in Figure 4.2,

the image a is connected with three visual words: A, B and D. The circular

distance between each pair of adjacent visual word is 1, 1 and 4. And cal-

culate the cost function by summing up the squared distances except for the

largest one:

C = 12 + 12 = 2

I optimize the chromosome sequence by finding local minimum solution of

the cost function. This genetic-based optimization provides us with better

anchored maps in the sense that images in the same category will be closer

to each other in the central disk region as shown in Figure 1.1(b).

1

2

3

4

5
6

Figure 4.2: A genetic-based optimization is employed to improve the read-
ability of the anchored map representation. The chromosome is defined as a
value-encoding sequence of visual word IDs.

The reason why I employed parameter q to the cost function is illustrated
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in the Figure 4.3. When q is set to be 1, the cost function C = 11 + 31 = 4

in the case of Figure 4.3(a), and C = 21 + 21 = 4 in the case of case Fig-

ure 4.3(b), since the same value of cost function in either case, I cannot

decide which layout is better. In order to solve this problem as well as

take account of the symmetry and balance q is set to be q > 1 [16]. In all

the experiments of this thesis, parameter q is 2, when q = 2, cost function

C = 12 + 32 = 10 in the case of Figure 4.3(a), and C = 22 + 22 = 8 in the

case of Figure 4.3(b). Thus, the layout in Figure 4.3(a) is better than the

layout in Figure 4.3(a).

d=3

d=1

d=2

d=2

(a) (b)

Figure 4.3: Parameter q in the cost function.

4.3 Hierarchical Clustering of Images

As the number of input images increases, the central disk region of the an-

chored map will be more crowded with the images. For improving the scal-

ability of the anchored map representation, I also introduced hierarchical

representation of the anchored map by adaptively clustering images accord-

18



ing to their image similarities. More specifically, I compose a dendrogram

tree structure of images by merging a pair of the most similar images one

by one iteratively [21]. For evaluating the similarity among images, we em-

ploy the conventional Jaccard similarity index, which is the most popular

similarity measure between a pair of sets [2].

Let us consider two sets X and Y for example. The conventional Jaccard

index is defined as J(X, Y ) = |X ∩ Y |/|X ∪ Y |, where |Z| represents the

number of elements contained in the set Z. However, in my case, the weighted

Jaccard similarity index [10, 2] is more appropriate in the sense that we can

incorporate the importance of each relevant visual word when evaluating the

image similarities, rather than simply counting the number of relevant visual

words in the union and intersection of the two sets.

As described earlier, my bipartite graph is composed by connecting an

image with its relevant visual words, and the weight of each edge is equiva-

lent to the normalized histogram coordinate value of the corresponding visual

word with respect to that image. Thus I can easily compute the weighted

Jaccard similarity index between a pair of images by referring to their cor-

responding sets of visual words X and Y , together with their corresponding

edge weights, as follows:

WJ(X,Y ) =

∑n
i=1min(Xi, Yi)∑n
i=1max(Xi, Yi)

, (4.2)

where n denotes the total number of visual words contained in the union of

X and Y . Note that the numerator is obtained by summing up the minimum

values between two weights of the edges emanating from visual words in X

and Y , while the denominator is the sum of the maximum values.

Figure 4.4(a) shows an example, where the Xi and Yi are defined as nor-

malized histogram coordinates for the image nodes x and y, and thus we can

set (Xi) = (0.1, 0.3, 0.3, 0.2, 0.1, 0.0) and (Yi) = (0.0, 0.0, 0.2, 0.4, 0.3, 0.1).

This means that we can compute the weighted Jaccard similarity index be-
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(a) (b)

Figure 4.4: Hierarchical structure of bipartite graph visualization. (a) An
example bipartite graph between images and visual words. (b) Dendrogram-
based representation of clustered images.

tween the image nodes x and y as

WJ(X, Y ) =
0.0 + 0.0 + 0.2 + 0.2 + 0.1 + 0.0

0.1 + 0.3 + 0.3 + 0.4 + 0.3 + 0.1
=

1

3
.

Using the weighted Jaccard measure, I can iteratively merge a pair of the

most similar images into a group one by one, and encode the clustering

process as a dendrogram tree representation as shown in Figure 4.4(b). As

illustrated in this figure, I incorporate an image node having a smaller number

of child nodes into the other image node representing more child nodes in

my implementation.

In the example of Figure 4.5, the image set contains images of two different

objects, i.e., bonsais and baseball gloves. Bonsai images are outlined by red

and baseball glove images are outlined by blue. The central disk region of

the anchored map is crowded with images in the original layout as showed

in Figure 4.5(a). After clustering images according to their similarities, the

readability of the anchored map representation will be improved as showed in

Figure 4.5(b). My system also allows users to adjust the number of clusters
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by preference, experiment results will be shown in Chapter 5.

4.4 Visualizing SVM-based Image Classifica-

tion

I also equip my prototype system with an interface for classifying images

using support vector marching (SVM). In practice, users are allowed to in-

teractively specify a subset of images as a training set for SVM-based classi-

fier together with the tags that represent whether the corresponding images

are classified into a specific category or not. Nonetheless, conventional BoF

models just present the classification results only and do not provide us with

any information about how the images are classified in the high-dimensional

image feature space. I projected the high-dimensional image categorization

onto the central disk region within the anchored map, and introduced the

Voronoi tessellation technique in order to clarify how the region is partitioned

according to the image categorization. Here, I employ the position of each

image node as a seed point for the Voronoi cell, and assign a specific color to

that cell according to its image category obtained through the SVM classifi-

cation. This successfully makes us convinced with the image categorization

provided by the SVM-based classifier by visualizing the associated image cat-

egorization within the anchored map representation. As shown in Figure 4.6,

coin image category is assigned to be yellow so that we can visualize how the

coin images are categorized in this representation.

Note that, in my implementation, I incorporated a hardware-assisted al-

gorithm for computing Voronoi diagrams [9] and restrict the drawing area to

the central disk region of the anchored map using the stencil buffer.
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(a)

(b)

Figure 4.5: Hierarchical Clustering of Images. (a) Original layout. (b) En-
hanced layout by adaptively clustering images according to their similarities.
Each image stands for a cluster of images and its size indicates how many
images are contained in that cluster.
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(a)

(b)

Figure 4.6: Visualizing SVM-based image classification by employing voronoi
tessellation technique. (a) Enhanced layout with an optimized circular order-
ing of visual words annotated with representative images. (b) Region is parti-
tioned according to the image categorization using Voronoi tessellation tech-
nique. Coin image category is assigned to be yellow. (#{visual words} = 24.)
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Chapter 5

Experimental Results

The present system has been implemented on a laptop PC with an Intel

Core i7 CPU (2GHz, 4MB cache) and 8GB RAM, and the source code has

been written in C++ using the OpenGL library for drawing graph layouts,

OpenCV library for SIFT feature extraction and SVM learning models, and

GAlib library for the implementation of the genetic-based algorithm. The

images datasets used in this thesis were collected from Caltech256 [7].

Figure 5.1 exemplifies how the underlying image categorization can be

better visualized by taking advantage of the optimal ordering of visual words

around the circular boundary of the anchored map representation. The im-

age set contains images of two different objects: cars and chessboards from

which we try to discriminate one against another, while the yellow polygons

represent the region dominated by car images. Here, Figure 5.1(a) shows

the initial ordering of visual words and layout of images in the dataset where

images of cars and chessboards are intricately mixed. On the other hand, im-

ages of two categories are sufficiently discriminated in Figure 5.1(b) when we

rearrange the ordering of the visual words using genetic-based optimization.

The image set exhibited in Figure 5.2 contains images of three different

objects, i.e., cars, tomatoes and grapes from which we try to discriminate car

images specifically from the others. For effectively handling a large number

of images, I first compute a small number of image clusters through hier-
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archical grouping of images, and distinguish car images from the others as

our target using the SVM-based image categorization. Note that here the

images outlined in red are labeled as example images within the specific cat-

egory (i.e. car images), while those in blue are images that are out of our

target. I then gradually decompose each image cluster into smaller clusters,

and adjust the image categorization by interactively labeling a small number

of images as the training set according to their categories. This successfully

allows us to enclose car images within yellow background region from the

coarsest level to the finest (i.e. original) level as shown in Figure 5.2.

Figure 5.3 demonstrates how we can categorize images of a specific cate-

gory even when we train our image classifier indirectly with similar looking

images. In this case, I represent each image in terms of visual words obtained

from training images containing tomatoes, coins, and cars and try to collect

images of round shapes. However, I also takes as input images of additional

categories such as CDs and glasses in this example, while we still can catego-

rize images of round objects into our target category using the SVM-based

classifier, and clearly visualize the associated image categorization both at

coarse and fine levels through the anchored map representation as shown in

the Figure 5.3.
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(a)

(b)

Figure 5.1: Discriminating images from tow different categories (cars and
chessboards). Car images outlined in red and chessboard images out-
lined in blue. (a) Original layout. (b) Enhanced layout with an opti-
mized circular ordering of visual words annotated with representative images.
(#{visual words} = 24.)
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(a) (b)

(c) (d)

Figure 5.2: Discriminating car images using the support vector machine at
multiple hierarchical levels. Images of the training set are labeled as red (car
images) and blue (others). The inferred region of the car images is rendered
in yellow through the Voronoi tessellation. (a) 10%, (b) 30%, (c) 40%, and
(d) 100% of images. (#{visual words} = 100.)
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(a)

(b)

Figure 5.3: Categorizing images of round objects from images of five different
categories (tomatoes, coins, cars, CDs, and glasses). (a) Coarse level. (b)
Fine level. (#{visual words} = 100.)
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Chapter 6

Conclusion and Future Work

In this thesis, I have presented an approach to visualize image categoriza-

tion within the high-dimensional feature space by taking advantage of the

characteristics of the BoF model and graph drawing techniques. The idea

behind my approach is to extract the bipartite relationships between the in-

put images and visual words first and then visualize them as a network using

the anchored map representation. This new type of dimensionality reduction

framework successfully convinces us of the plausibility of resulting image cat-

egorization based on the BoF model. The readability of the anchored map

representations have been further enhanced by seeking the optimal circular

ordering of visual words and dendrogram-based hierarchical representation of

images. Voronoi-based partitioning has been also incorporated into the cen-

tral disk region of the anchored map to visualize the border of some specific

image category.

As future work, fully classifying images of multiple categories according

to users’ preference remains to be tackled. The readability of the anchored

map representations also depends on the quality of the sparse vector repre-

sentations of the images in terms of the extracted visual words. Improving

the sparse coding of such images in the BoF model is left as a topic of future

research. Enhancing the interactivity of the present image retrieval system

is also left as a future research theme.
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via pLSA. In Proceedings 9th European Conference on Computer Vision

(ECCV 2006), volume 3954 of Springer Lecture Notes in Computer Sci-

ence, pages 517–530, 2006.

[2] Flavio Chierichetti, Ravi Kumar, Sandeep Pandey, and Sergei Vassilvit-

skii. Finding the Jaccard median. In Proceedings 21st Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 293–311, 2010.

[3] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski,

and Cédric Bray. Visual categorization with bags of keypoints. In

ECCV’04 Workshop on Statistical Learning in Computer Vision, pages

1–22, 2004.

[4] Peter Eades. A heuristic for graph drawing. Congressus Numerantium,

42:149–160, 1984.

[5] Jan Eichhorn and Olivier Chapelle. Object categorization with SVM:

Kernels for local features. In Advances in Neural Information Processing

Systems (NIPS), 2004.

[6] Takayasu Fushimi, Yamato Kubota, Kazumi Saito, Masahiro Kimura,

Kouzou Ohara, and Hiroshi Motoda. Speeding up bipartite graph vi-

sualization method. In Proceedings Advances in Artificial Intelligence,

30



volume 7106 of Springer Lecture Notes in Computer Science, pages 697–

706, 2011.

[7] Gregory Griffin, Alex Holub, and Pietro Perona. Caltech-256 object

category dataset. Technical report, California Institute of Technology,

2007.

[8] Kyle Heath, Natasha Gelfand, Maks Ovsjanikov, Mridul Aanjaneya, and

Leonidas J Guibas. Image webs: Computing and exploiting connectiv-

ity in image collections. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2010, pages 3432–3439, 2010.

[9] K. E. Hoff III, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast

computation of generalized voronoi diagrams using graphics hardware.

In Proceedings SIGGRAPH ’99, pages 277–286, 1999.

[10] Sergey Ioffe. Improved consistent sampling, weighted minhash and l1

sketching. In Proceedings 10th IEEE International Conference on Data

Mining 2010, pages 246–255, 2010.

[11] Thorsten Joachims. Text categorization with support vector machines:

Learning with many relevant features. Springer, 1998.

[12] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to

a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[13] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spa-

tial pyramid matching for recognizing natural scene categories. In IEEE

Computer Society Conference on Computer Vision and Pattern Recog-

nition, volume 2, pages 2169–2178, 2006.

[14] D. G. Lowe. Object recognition from local scale-invariant features. In

Proceedings 7th IEEE International Conference on Computer Vision,

volume 2, pages 1150–1157, 1999.

31



[15] G. M. H. Mamani, F. M. Fatore, L. G. Nonato, and F. V. Paulovich.

User-driven feature space transformation. Computer Graphics Forum,

32(3):291–299, 2013.

[16] Kazuo Misue. Drawing bipartite graphs as anchored maps. In Proceed-

ings Asia-Pacific Symposium on Information Visualisation 2006 (APVis

’06), pages 169–177, 2006.

[17] Kazuo Misue. Anchored map: graph drawing technique to support net-

work mining. IEICE Transactions, 91-D(11):2599–2606, 2008.

[18] Kazuyo Mizuno, Hsiang-Yun Wu, and Shigeo Takahashi. Manipulating

bilevel feature space for category-aware image exploration. In Proceed-

ings of the 7th IEEE Pacific Visualization Symposium (PacificVis 2014),

pages 217–224, 2014.

[19] F. V. Paulovich, D. M. Eler, J. Poco, C. P. Botha, R. Minghim, and

L. G. Nonato. Piecewise laplacian-based projection for interactive data

exploration and organization. Computer Graphics Forum, 30(3):1091–

1100, 2011.

[20] F. Perronnin. Universal and adapted vocabularies for generic visual

categorization. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 30(7):1243–1256, 2008.

[21] Shuji Sato, Kazuo Misue, and Jiro Tanaka. Readable representations for

large-scale bipartite graphs. In Knowledge-Based Intelligent Information

and Engineering Systems, pages 831–838, 2008.

[22] J. Sivic and A. Zisserman. Video google: a text retrieval approach

to object matching in videos. In Proceedings 9th IEEE International

Conference on Computer Vision, pages 1470–1477, 2003.

32



[23] W. S. Torgerson. Multidimensional scaling: I. theory and method. Psy-

chometrika, 17(4):401–419, 1952.

[24] J. Winn, A. Criminisi, and T. Minka. Object categorization by learned

universal visual dictionary. In Proceedings 10th IEEE International Con-

ference on Computer Vision, volume 2, pages 1800–1807, 2005.

[25] Jianchao Yang, Kai Yu, Yihong Gong, and Thomas Huang. Linear spa-

tial pyramid matching using sparse coding for image classification. In

Proceedings IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2009.

[26] Gao Yi, Hsiang-Yun Wu, Kazuo Misue, Kazuyo Mizuno, and Shigeo

Takahashi. Visualizing bag-of-features image categorization using an-

chored maps. In Proceedings of the 7th International Symposium on

Visual Information Communication and Interaction, pages 39–48, 2014.

33


