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Abstract

The perovskite-type compounds have a wide variety of physical properties
that make this material favorable for various electronic-device applications.
Defects and impurities govern many of these important physical properties;
therefore, the knowledge of the defects is indispensable for the further un-
derstanding and development of this material group. Theoretical approaches
are particularly important for the subject, because experimental approaches
are compelled to observe very limited aspects of the defects and need assis-
tance to understand the nature of the defects in solids. Calculation based
on density functional theory (DFT) is one of suitable approaches for the
topic. However, more accurate treatment of exchange-correlation (XC) en-
ergy functional beyond conventional local density approximation (LDA) is
required for the accurate evaluation of defects in solids. In this thesis, three
different beyond LDA approaches are introduced: self-interaction correction
(SIC), DFT+U , and Hartree Fock (HF)-DFT hybrid functional (PBE0 and
HSE), and their characteristics are discussed. We applied these improved
XC functionals to the electronic structure calculation of oxygen vacancy (VO)
in SrTiO3 and evaluated the efficiency of the XC functionals. Our conclu-
sion is that the hybrid functional is suitable for the calculation of defects
in perovskite-type oxides, and hybrid HSE functional is used in the follow-
ing study. One of remarkable findings in this thesis work is the stability
of hydride (H−) at oxygen site in perovskite-type oxides. Even though the
hydride in ATiO3 is contrary to the common brief that the hydrogen is pro-
ton (H+) in this material group, our results clearly indicate that the H− at
V 2+
O site is a major defect species in ATiO3 annealed under hydrogen gas.

The stable replacement of O2− with H− indicates that the experimentally
observed 1+ stability of the oxygen vacancy (V +

O ) is not true but it should
be explained by the formation of H+

O defect species. We further found that
up to two H− anions have a possibility to occupy the V 2+

O site. The formation
of (2H)O defect complex leads to complete compensation of the carrier elec-
trons, which explains the previous H2 annealing experiments for SrTiO3−δ

single crystal. The last topic is the effect of defects on the ferroelectric prop-
erty of BaTiO3. Ferroelectricity is a representative physical property inhered



in several perovskite-type oxides and is known to easily disappear via various
factors. We found that free-carrier electron intrinsically eliminates the ferro-
electric displacement in BaTiO3, and the disappearance of the ferroelectric
phase is further accelerated by the lattice deformation inevitably induced by
the donor-type defects. The series of theoretical calculations clarify the roles
of carrier electrons and donor-type defects on the ferroelectric property in
perovskite-type oxides.

4



Acknowledgements

I would like to express my deepest gratitude to Prof. Shinji Tsuneyuki, for
his insightful suggestions and continuous support for this work. Without his
helpful discussions, this work would not have been possible. I am deeply
grateful to Dr. Kazuto Akagi for his helpful guidances and discussions for
the theoretical calculation of solid state materials at the initial stage of my
work. I also wish to express my gratitude to Dr. Yoshihide Yoshimoto
for his constructive discussions and useful comments for the implementation
of a new theoretical frame work into TAPP (Tokyo ab initio programming
package). I also wish to thank Dr. Yoshihiro Gohda for his useful discussions
and excellent collaborations on this work. I am pleased to acknowledge Dr.
Keitaro Sodeyama, Dr. Taichi Kosugi and all the members of Tsuneyuki
research group during my stay as a researcher. I would like to thank all
persons who made my work possible at Department of Physics, Graduate
School of Science, The University of Tokyo.

I am exceedingly grateful to the members in Taiyo Yuden Co., Ltd. This
work was initially started under Dr. Hirokazu Chazono, and I would like
to express my thank to his direction of this work. I also wish to thank Dr.
Hiroshi Kishi, Dr. Youichi Mizuno, Dr. Kenji Kawano and Dr. Toshimasa
Suzuki for their useful discussions and continuous encouragements.

I also wish to thank to my parents, elder sister, brother-in-law and parents-
in-law for their continuous warm encouragements. Finally, I am truly grate-
ful to my family, my wife and two children for their continuous support and
patience.





Contents

1 Introduction 9
1.1 Defect and impurity in solids . . . . . . . . . . . . . . . . . . . 9
1.2 Brief review of perovskite-type oxide . . . . . . . . . . . . . . 10

1.2.1 Perovskite-type titanate . . . . . . . . . . . . . . . . . 10
1.2.2 Crystallographic character of perovskite crystal . . . . 15
1.2.3 Electronic structure . . . . . . . . . . . . . . . . . . . . 16

1.3 Defect and impurity in perovskite oxides . . . . . . . . . . . . 21
1.3.1 Oxygen vacancy . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Hydrogen impurity . . . . . . . . . . . . . . . . . . . . 23
1.3.3 Relation between defect and ferroelectricity . . . . . . 25

1.4 First-principles calculation for defects and impurity . . . . . . 26
1.5 Motivation and outline of the thesis . . . . . . . . . . . . . . . 27

1.5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.5.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . 27

2 Density functional theory 31
2.1 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Kohn-Sham energy functional . . . . . . . . . . . . . . 31
2.1.2 Kohn-Sham equations . . . . . . . . . . . . . . . . . . 32
2.1.3 Exchange correlation energy functional . . . . . . . . . 34
2.1.4 Ultrasoft pseudopotentials and PAW . . . . . . . . . . 36
2.1.5 Density of states (DOS) . . . . . . . . . . . . . . . . . 40

2.2 Improved exchange-correlation functional . . . . . . . . . . . . 41
2.2.1 Self-Interaction Correction (SIC) . . . . . . . . . . . . 42
2.2.2 DFT+U . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2.3 Hybrid Functional . . . . . . . . . . . . . . . . . . . . 47

2.3 Effects of improved XC functionals . . . . . . . . . . . . . . . 50
2.3.1 Band structures of SrTiO3 . . . . . . . . . . . . . . . . 50
2.3.2 Other band structure examples . . . . . . . . . . . . . 57
2.3.3 Summary of the improved functionals . . . . . . . . . . 62

2.4 Evaluation of defect in solid . . . . . . . . . . . . . . . . . . . 65

7



Contents

2.4.1 Formation energy . . . . . . . . . . . . . . . . . . . . . 65
2.4.2 Electronic transition energy . . . . . . . . . . . . . . . 66
2.4.3 Potential alignment . . . . . . . . . . . . . . . . . . . . 67

3 Calculation of oxygen vacancy in SrTiO3 69
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Nature of the oxygen vacancy . . . . . . . . . . . . . . . . . . 70
3.3 XC functional dependence of defect level . . . . . . . . . . . . 72
3.4 Formation energy . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Roles of hydrogen in perovskite-type oxides 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Interstitial hydrogen . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 Electronic structure of Hi . . . . . . . . . . . . . . . . 81
4.2.2 Diffusion process of Hi . . . . . . . . . . . . . . . . . . 86
4.2.3 Formation energy of Hi . . . . . . . . . . . . . . . . . . 91

4.3 Exchange of Oxygen by Hydrogen . . . . . . . . . . . . . . . . 91
4.3.1 Diffusion of hydrogen into oxygen-vacancy . . . . . . . 91
4.3.2 Charge density difference . . . . . . . . . . . . . . . . . 95
4.3.3 Formation energy of HO . . . . . . . . . . . . . . . . . 95
4.3.4 Partial density of states (PDOS) of HO . . . . . . . . . 97

4.4 Replacement of O by multiple H . . . . . . . . . . . . . . . . . 100
4.5 Vibrational property of H at O site . . . . . . . . . . . . . . . 107
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5 Relation between donor-type defect and ferroelectricity 113
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Computational details . . . . . . . . . . . . . . . . . . . . . . 114
5.3 Electron-induced phase transition . . . . . . . . . . . . . . . . 114
5.4 Defect-induced phase transition . . . . . . . . . . . . . . . . . 121
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6 Concluding remarks 133
6.1 Summary of the thesis . . . . . . . . . . . . . . . . . . . . . . 133
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

A Appendix 137
A.1 USP formalism of pseudo SIC . . . . . . . . . . . . . . . . . . 137
A.2 USP formalism of LDA+U . . . . . . . . . . . . . . . . . . . 139

8



Chapter 1

Introduction

1.1 Defect and impurity in solids

Improvement of physical and chemical property of material is strongly de-
sired in its application to various electronic devices, because the advance
of the material property is the most essential and powerful way for the im-
provement of the electronic-device performances. Invention of a new material
often drastically changes the size, functionality and concept of old devices.
Every solid has defects, and the material property greatly depends on the
nature of the defect species and its concentration, which often determine the
performance of material. Recent technological advance makes it possible to
control the defects in material, which gives birth to a new technological area
of “defect engineering”. Precise control of the defect species often improves
the material property to the satisfactory level. Furthermore, completely new
and unexpected behaviors are expected in the carefully prepared defect engi-
neering process. Therefore, more extensive study of the defects in condensed
matter, such as natural vacancy and doped impurity, is of great importance
not only for the material science but also for the industrial aspects.

In contrast to its importance, the atomistic level mechanism of the defect
and impurity is not always clear due to technical difficulties in experimental
approaches. Even though the electronic structure of a defect can be mea-
sured by electron spin resonance (ESR) or electron energy loss spectroscopy
(EELS), their interpretations are not always clear, and sometimes very dif-
ficult due to the complexity of these experimental results. Furthermore,
direct observation of the atomic configuration around the isolated point de-
fect is impossible with transmission electron microscopy (TEM) or X-ray
diffraction (XRD) because the point defect does not have any periodicity in
a periodically arranged host crystal structure. These problems are difficult
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Chapter 1. Introduction

to be solved only from experimental approaches, and theoretical study as
a complemental way to clarify the experimental results is desired to fully
understand the nature of the defect in solids.

First-principles calculation, which is solely based on the Schrödinger equa-
tion of quantum mechanics, has attracted much attention to study the elec-
tronic structure of defects in solid materials. Based on the Kohn-Sham equa-
tions within the framework of density functional theory (DFT), one can easily
know the stability and valence state of a defect species. Furthermore, the
atomic configuration around the defect species is obtained by moving atoms
according to the force acting on each atom, which is very useful information
to compensate the insufficiency of the experimental results. The success of
the first-principles calculation for the interpretation of experimental results
as well as the prediction of material performance has been widely recognized
at the present time.

In this thesis, we will show theoretical calculations of defects and impu-
rities in perovskite-type ATiO3 (A =Sr, Ba) oxides including the evaluation
of the efficiency of currently available theoretical frameworks based on DFT.
The perovskite-type compounds have a wide variety of physical properties
that makes the material group favorable for various electronic-device appli-
cations. The defects and impurities govern many of these important physical
properties; therefore, the knowledge of the defects is indispensable for the
further understanding and developments of this material group. This intro-
duction will provide a brief overview of basic properties of the perovskite-type
oxides and the effects of defects and impurities on the material properties,
which will be discussed in detail in the following chapters. Based on the
summary of the problems in previous researches, the motivation and outline
of the thesis work are explained.

1.2 Brief review of perovskite-type oxide

ATiO3 (A = Sr, Ba) that is strontium titanate (SrTiO3) and barium titanate
(BaTiO3) studied in this thesis are most extensively studied and widely uti-
lized materials among various perovskite-type oxides [1]. The basic properties
including their crystal structures, phase diagrams and electronic structures
are explained in this section.

1.2.1 Perovskite-type titanate

The name of “perovskite” is from the crystal structure of calcium titanate
(CaTiO3) shown in Fig. 1.1, which was named after the Russian mineralogist

10



1.2. Brief review of perovskite-type oxide

Figure 1.1: Crystal structure of CaTiO3. Phase I has cubic (Pm3m) and
phase II has orthorhombic (Pbmm) symmetry. Phase transition temperature
TC is about 1,260 ◦C.

L. A. Perovski. The name is currently used to describe a group of crystal with
the similar crystal structure of CaTiO3 represented by a general formula of
ABO3. The perovskite structure has long attracted much attention of geol-
ogists, because natural perovskite-type oxides, such as MgSiO3 are proposed
to be the most abundant mineral in Earth’s mantle. The dense packing of the
structure makes the perovskite ideal for the high-pressure environment. The
perovskite compound has been a subject of interest for numerous researchers
including solid state physics, earth science and chemistry, because of their
composition and structural variety with totally different physical properties.
The rich physical properties, such as ferroelectricity, piezoelectricity, pyro-
electricity, optical property, as well as their applications are summarized in
Table 1.1.

The basic chemical formula of perovskite structure is expressed as ABX3,
where A and B are metal cations. In many cases, X is an oxide ion, but it
can also be fluorine, chlorine, nitrogen, etc. The valence of the A-site cation
ranges from +1 to +3, and the B-site cation can take the valence value from
+3 to +5. Typical examples of A-site atoms are alkali (Li, Na, K), alkaline
earth (Ca, Sr, Ba, ...) or rare earth (La, Gd, Pr, Sm, ...), and B-site atoms are
3d transition metals (Mn, Fe, Co, Ti, ...). Depending on the type of elements
at A and B site, the perovskite oxide changes its character from insulating to

11



Chapter 1. Introduction

Table 1.1: Properties and applications of perovskite-type oxides.
Properties Compounds Application Refs.

Ferroelectricity, Pb(Zr,Ti)O3, Nonvolatile memory, [2–5]
Piezoelectricity, Pb(Mg, Nb)O3, Ultrasonic sensor,
Pyroelectrcity. LiNbO3, LiTaO3. Speaker, IR Sensor,

RF filter (SAW).

Dielectric property. (Ba,Sr)TiO3, Multilayer ceramic cap. [6, 7]
BaTiO3. (MLCC), Thin film cap.

Optical property. LiNbO3, KNbO3, E.-O. modulator, [8–10]
NaNbO3. SHG, Optical switch.

Ionic conductivity, BaCeO3, SrCeO3, Electrode of SOFC, [11–18]
(proton, mixed ion) BaZrO3, SrZrO3, Hydrogen sensor.

1(La,A)(Co,B)O3−δ.

Magnetic property. LaMnO3, Magnetoresistance, [19,20]
GdFeO3. Magnetic bubble memory.

Super conductivity. SrTiO3, Superconductor. [21–26]
Ba(Pb,Bi)O3,
2(La,Sr)2CuO4,
3YBa2Cu3O7−x

Catalytic property. LaFeO3, Catalyst. [27,28]
La(Ce,Co)O3.

1 A = Sr, Ba; B = Fe, Cr, Mn, Ga
2 Layered perovskite structure
3 Oxygen-deficient multi-layered perovskite structure

metallic state. For insulating perovskite-type oxides, charge neutrality must
be always preserved, which indicate that the sum of the valence for the A-
and B-site cations must be equal to the sum of the three oxide ions (O2−×3).
This is a robust rule that can be applied to any combination of A- and B-site
atoms in perovskite-type insulators, such as A2+B4+O2−

3 (SrTiO3, BaTiO3,
Pb(Zr, Ti)O3), A

1+B5+O2−
3 (KNbO3, NaNbO3) and A

3+B3+O2−
3 (LaMnO3,

LaNiO3) .

Strontium titanate (SrTiO3)

Strontium titanate (SrTiO3) is one of the most widely investigated perovskite-
type oxides that has attracted much attention because of its considerable po-
tential for various technological applications. The simple structure of SrTiO3

is regarded as a prototype for many perovskites, in which the detailed inves-
tigation of intrinsic/extrinsic defects and dopants can lay the basis of the-
oretical approach that can be applied to structurally and chemically more

12



1.2. Brief review of perovskite-type oxide
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Figure 1.2: The change of a- and c-axis length at around the phase transition
temperature of SrTiO3 [29]. The right-hand side figure is the rotational AFD
lattice distortion of SrTiO3.

complex perovskite oxides. In addition to being a prototypical model of
the perovskite-type structure, SrTiO3 shows a wide variety of physical and
chemical properties, such as insulator-to-metal transition [30–33], supercon-
ductivity [21, 26, 31], ionic conductivity [34] and visible-light emission [35].
At room temperature, SrTiO3 has an ideal cubic Pm3m perovskite structure
with a Ti atom at the center, Sr atoms at the corner and three O atoms at
the face centers. At lower temperature (∼ below 105 K), SrTiO3 undergoes
a structural phase transition to a tetragonal phase [29, 36–38] without the
emergence of ferroelectric phase as shown in Fig. 1.2. This is the so-called
antiferrodistortive (AFD) phase transition that is caused by a rotation of
the TiO6 octahedra along one of the Cartesian axes (Fig. 1.2). The dielec-
tric constant saturates at a large value of 20,000 as temperature approaches
zero [39]. The absence of ferroelectric transition is suggested to be caused
by quantum fluctuation, which give rise to a quantum paraelectric phase at
very low temperature [30, 40].

Barium titanate (BaTiO3)

Perovskite-type BaTiO3 is also a typical ferroelectric material that has been
extensively studied since its discovery more than 60 years ago. The discov-
ery of ferroelectricity in a simple perovskite structure has given birth to a
large number of ferroelectric ABO3-type perovskite oxides that are currently
of great technological interest due to their various excellent properties, as
shown in Table 1.1. The large dielectric constant of BaTiO3 at around room
temperature is of great importance for the capacitor application such as
a multi-layer ceramic capacitor (MLCC) [6, 41] because the large dielectric
constant effectively minimize the size without spoiling the capacitance. The
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Chapter 1. Introduction

Figure 1.3: Phase transition behavior of BaTiO3. The polar axis of the three
ferroelectric phases, and the change of the lattice constant of all four phases
are shown in the figure. Above the Curie temperature (TC = 120◦C), the
BaTiO3 becomes non-polar cubic phase.

small and high-energy density capacitors greatly contribute to the miniatur-
ization of electronic devices, such as mobile phone, PC, automobile electronic
system, etc.

The definition of ferroelectricity is the existence of spontaneous polariza-
tion that can be switched by external electric field. The spontaneous polar-
ization in BaTiO3 is induced by lattice instability due to the mismatch of
ionic size composing BaTiO3. The size of B-site Ti ion is too small to be sta-
ble in the center of TiO6 octahedra, which makes Ti ion moving off-center in
the direction of any of six oxygen ions to achieve a minimum energy configu-
ration. The lattice instability of BaTiO3 induces a series of phase transitions
from paraelectric cubic (C) to ferroelectric tetragonal (T ), orthorhombic (O),
and rhombohedral (R) phases at 396, 278, and 183 K, respectively. The polar
axes in T , O and R phases are [001], [011] and [111], respectively. The series
of phase transition is summarized in Fig. 1.3. The dielectric constant of

14



1.2. Brief review of perovskite-type oxide

Figure 1.4: Cross sectional images of ABO3 on (a) AO and (b) BO2 planes in
a ABO3 perovskite structure. The figure assumes the ionic radii of SrTiO3:
Sr2+ for A- and Ti4+ for B-site ions.

BaTiO3 is very large, especially at each phase transition temperature, where
the value reaches more than 10, 000.

1.2.2 Crystallographic character of perovskite crystal

The perovskite structure ABO3 is composed of a framework of corner-sharing
BO6 octahedra with the A cation located on an interstitial site surrounded
by the eight octahedra. From the geometrical relation, the rA + rO should
be equal to

√
2(rB + rO) in an ideal cubic perovskite structure as shown in

Fig. 1.4, where rA, rB and rO are the ionic radii of the A, B and oxygen
ions, respectively. Based on the above consideration, V. M. Goldschmidt
[42] introduced a relationship between ionic radii and lattice instability of
perovskite structure, which is called tolerance factor t defined as follows:

t =
rA + rO√
2(rB + rO)

. (1.1)

The instability of the perovskite lattice can be conveniently classified by the
value of the tolerance factor [43–47]. In fact, the tolerance factor t is quite
effective in predicting the global trend of lattice instabilities in perovskites,
such as ferroelectric distortions [43,46] and tilts and rotations of BO6 octahe-
dra [43,44] including antiferrodistortive (AFD) instabilities of SrTiO3 [38,48].
Experimentally, many perovskites are confirmed to take the tolerance factor
values in a range 0.81 < t < 1.11. The ideal perovskite structure has t = 1.00,
where the ionic radii of the constituent atoms completely match. The tol-
erance factor of SrTiO3 is tSrTiO3 = 1.009, which indicates the stable ion
packing of the SrTiO3. The value t < 1 indicates that the A-site cation is
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Figure 1.5: The shapes of d-orbitals of isolated transition metal, which can
be classified into eg and t2g symmetry. White circles denote point charges at
the oxygen anion sites.

too small (or B-site cation is too large) for the crystal structure; A–O bonds
are under tension and B–O bonds are under compression, which makes the
corner shared BO6 octahedra tilt or rotate so as to accommodate the large
BO6 octahedra into the cubic lattices defined by the small A cations. The
crystal structure of CaTiO3 (t = 0.973) shown in Fig. 1.1 is a typical ex-
ample for the tilting of TiO6 octahedra. Of particular interest is the lattice
instability of BaTiO3 whose t is 1.062. In this case (t > 1), the B-site cation
is too small compared to the allowed space defined by the A-O distance,
which leads to off center shift of the Ti atom. The shift of the Ti atom along
a polar axis is the direct cause of the spontaneous polarization in BaTiO3.

The tolerance factor is very intuitive and can be widely applied to a
series of lattice instabilities in perovskite-type oxides. However, some sys-
tems whose t is within the permissible range are not stable [47]. Moreover,
the tolerance factor cannot explain the strong ferroelectric displacement of
PbTiO3 (t = 1.019) compared to BaTiO3 (t = 1.062), and another explana-
tion based on chemical bonding is required for the phenomenon; contrary to
the fully ionic nature of Ba2+ in BaTiO3 whose phase transition temperature
TC(BaTiO3) = 393 K, Pb-6s and O-2p hybridization greatly raises the phase
transition temperature of PbTiO3 (TC(PbTiO3) = 763 K) [49]. Even though
the tolerance factor can describe overall structural properties of ABO3 per-
ovskites, it is an insufficient classification for all the lattice instabilities in
perovskite materials.

1.2.3 Electronic structure

The electronic structure of ABO3 perovskite is basically composed of O-2p
valence band and B-d conduction band. The d-band composing conduc-
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1.2. Brief review of perovskite-type oxide

Figure 1.6: Ligand-anion configuration of a perovskite structure with cubic-
symmetry, and the splitting of energy levels due to the ligand field. The
five-fold degenerated d orbitals split into eg and t2g levels. E

0
d is their average.

tion band minimum (CBM) of perovskites is of great interest, because the
electronic structure of CBM determines most of the physical and chemical
activities, such as electron conduction, catalytic and optical behaviors. The
band structure of ABO3 perovskite oxides can be qualitatively explained
based on the symmetry and splitting of the d orbitals due to the crystal
field, as explained in the following sections.

Crystal field theory

The d orbitals of isolated transition-metal atom have five-fold degeneracy
with different magnetic quantum number. In perovskite ABO3 crystal struc-
ture, the degeneracy of the d orbitals of transition-metal B cation is solved
due to the Coulomb potential from surrounding O2− ligand ions. The situ-
ation can be analytically explained by crystal field theory, where the effects
of the ligand oxygen ions are simply replaced by point charges surrounding
the B cation as shown in Fig. 1.5. The figure also includes the point charges
which replaces oxygen ligand anions at the same distance in the ±x,±y,±z
directions [50]. In perovskite structure, the B-site cation is coordinated by
six oxygens, and the simplest example is the cubic-symmetry crystal field
as shown in Fig. 1.6. According to the symmetry, the five d-orbitals are
categorized into two groups: dε: dxy, dyz, dzx and dγ: dx2−y2 , d3z2−r2 , where
dε and dγ orbital groups have t2g and eg symmetry, respectively [50]. The
eigenfunction of these d orbitals are summarized as follows:
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dε (t2g)
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dγ (eg)
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√
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(1.3)

where r =
√
x2 + y2 + z2, and R32(r) is a radial distribution function of 3d

orbital denoted by:

R32(r) =
4

81
√
30

(
Z

a0

) 3
2

ρ2e−
ρ
3 ,

ρ =
Z

a0
r, (1.4)

where a0 is Bohr radius and Z is the atomic number.
The orbital energy of dε orbital is lower than that of dγ orbital, because

they extend between the point charges so as to avoid the direct Coulomb
force from the point charges as shown in Fig. 1.5. On the other hand, the
dγ orbitals that are directly subject to the Coulomb force from the point
charges have higher energies. The energy difference between eg and t2g can
be analytically calculated [50], and the value between these two energies is
expressed as:

Eeg − Et2g = 10Dq =
1.67Ze2

4πε0

1

a5

∫ ∞

0

r4R2
32(r)r

2dr, (1.5)

which are illustrated in Fig. 1.6.
Each ligand oxygen forming an BO6 octahedra has three p orbitals, which

can be classified into similar eg and t2g symmetry as shown in Fig. 1.7.
The p-d hybridization occurs only between p and d orbitals with the same
symmetry. Figure 1.7 also shows energy levels expected in BO6 octahedra.
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1.2. Brief review of perovskite-type oxide

Figure 1.7: Symmetry of p orbitals forming BO6 octahedra. The left-hand
side figures indicate t2g and eg symmetry of these p orbitals. The bonding and
anti-bonding states occur between p and d orbitals with the same symmetry
as shown by the right-hand side figure.

The bonding and anti-bonding states are mainly composed of p and d orbitals,
respectively. This is because that the O-2p energy level is usually lower than
that of transition metal d level. Therefore, the conduction band minimum
(CBM) is mainly characterized by the transition metal dt2g with a small
hybridization with O-2pt2g .

Band structure

Band structure of perovskite-type oxide was initially discussed by J. B. Good-
enough [51] for ReO3 that is a red color solid with a metallic conductivity.
The crystal structure of ReO3 shown in 1.8(a) is similar to the cubic per-
ovskite except that A cation is missing. Each rhenium atom is surrounded
by 6 oxygen anions that form a ReO6 octahedra. The band structure of
ReO3 can be regarded as a prototypical electronic structure that can be a
basis for more complex perovskite compounds. ReO3 is a highly conducting
d band electron conductor whose resistivity is very low comparable to metal
silver [50]. The proposed energy level diagram of ReO3 is shown in Fig 1.8(b).
ReO3 has 5d1 electronic configuration and there is one conducting electron
on the d band of Re. The t2g orbitals of Re-5d and O-2p hybridize with
each other so as to form π bonding states, where the anti-bonding states
form CBM (denoted by π∗) and the bonding states form VBM (π) in the
energy diagram shown in Fig. 1.8 (b). The eg states of d and p orbitals form
σ-bonding states and these bonding and anti-bonding states are outside of
the π bonding states. An APW calculation performed later by Mattheiss [52]
slightly alters the schematic picture of the energy diagram, since the splitting
of the π and σ band is not so clear as shown in Fig. 1.8(c). These slight
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Figure 1.8: (a) Crystal structure of ReO3 and (b) energy level diagram pro-
posed by J. B. Goodenough [51]. (c) Band structure of ReO3 calculated by
Mattheiss [52] with APW method.
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1.3. Defect and impurity in perovskite oxides

modification, however, does not spoil the essence of the p-d hybridization in
the band structure of ReO3. ATiO3 (A = Sr, Ba) is a band insulator with an
empty conduction band composed of d0 character of Ti4+, which is different
from d1 electronic configuration of ReO3. Nevertheless, the basic character
of the band structure of ATiO3 is very similar to that of ReO3, and almost
the same interpretation is valid in ATiO3.

1.3 Defect and impurity in perovskite oxides

1.3.1 Oxygen vacancy

The defect and impurity in transition-metal oxides have been an actively
studied issue, because of the strong impact on the material properties. The
typical intrinsic defects in ATiO3 are cation (both A-site and Ti atom) and
oxygen anion vacancy, and many physical properties, especially electron con-
ductivity greatly depends on the amount of anion and cation vacancies (non-
stoichiometry) [33,53,54]. Among these defect species, oxygen vacancy (VO)
whose general formula is ATiO3−δ is of fundamental importance, because it
is easily generated in the fabrication process of the perovskite oxides in var-
ious ways, such as crystal growth, ceramic firing and annealing treatment.
Furthermore, the migration of VO under electric filed has a great impact on
the fatigue or degradation of electronic devices with perovskite oxide, such
as ferroelectric memory with Pb(Ti,Zr)O3 [55], thin-film capacitor (TFC)
with (Ba, Sr)TiO3 [53] and multi-layer ceramic capacitor (MLCC) based on
BaTiO3 [6,56,57]. It is not surprising that the nature of the oxygen vacancy
in perovskites has been a subject of various theoretical and experimental
studies [31–33,53,55–64].

The generation of defects can be written with Kröger-Vink notation that
is a widely used description for defects in semiconductor and insulator. The
VO in SrTiO3−δ is often regarded as doubly charged V 2+

O , which leads to the
following Kröger-Vink formula:

O×
O ⇆ 1

2
O2(gas) +V••

O + 2e′. (1.6)

In the Kröger-Vink formula, each defect state is written in the form MC
S ,

where M is the atom species (vacancy is denoted by “V”) and S is the posi-
tion of the defect (oxygen site is denoted by “O”). C is the charge state, where
“×”,“•” and “′” are neutral, positive and negative charges, respectively. In
Eq. (1.6), O×

O is an oxygen anion on the oxygen site and V••
O is a 2+ charged

oxygen vacancy on the oxygen site. The electron doping with the oxygen
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vacancy induces an insulator-to-metal transition in ATiO3, and the behav-
ior has been widely studied in an attempt to understand the carrier doping
mechanism and the role of the oxygen vacancy itself. Stoichiometric SrTiO3

and BaTiO3 are band insulators with band gap values of 3.21 and 3.11 eV,
respectively [1, 65]. By the doping of the oxygen vacancy, the SrTiO3−δ be-
comes either semiconductor or metallic conductor depending on the concen-
tration of the oxygen deficiency [30], and it even becomes a superconductor
at very low temperature [21]. The electron doping can be also achieved by
the substitutional doping with different valence cations for both A- and Ti-
site of ATiO3 (A =Sr, Ba), such as La3+ at Sr2+ and Nb5+ at Ti4+ [54]. The
characteristic point of the electron doping in SrTiO3 is their extremely small
critical density (around 1018 cm−3) for the insulator-metal (IM) transition,
which is several orders of magnitude smaller than the typical values observed
for other electron-doped transition-metal oxides [33]. Similarly, the super-
conductivity occurs at a relatively low carrier-electron concentration (around
1019 cm−3 ) [33]. In contrast to SrTiO3, electron doped BaTiO3 undergoes
IM transition at much higher electron-doping level around 1020 cm−3 [54].
The reason for such a high doping level in BaTiO3 is attributed either to
disorder-induced Anderson-type localization or phonon-induced localization
(small-polaron model) of the carrier electron [54].

Despite the fact that a fair amount of fundamental research has been
carried out for the oxygen deficiency in ATiO3−δ, the nature of VO has not
been well clarified yet. Most puzzling experimental result is the relation
between the oxygen deficiency and carrier-electron density. For example,
SrTiO3−δ is expected to have 2δ number of electrons according to Eq. (1.6).
On the other hand, several experimental results suggest that the VO is singly
ionized V +

O in SrTiO3−δ samples weakly reduced with H2 and H2O gas [31,
58,64], which are expressed by the formula:

O×
O ⇆ 1

2
O2(gas) +V•

O + e′, (1.7)

In grossly oxygen deficient samples that are fabricated with Ti-gettering
for oxygen or from oxygen deficient starting materials (TiO2−x and SrCO3)
[32, 59], the valence state of VO is further reduced to ∼ V 0.5+

O [32]. In these
grossly oxygen deficient samples, the oxygen vacancy is suggested to be
no longer an isolated vacancy, and a possibility of some kind of vacancy-
clustering formation has been pointed out by the transmission electron mi-
croscopy (TEM) and electron conduction measurements [33,60]. The oxygen-
vacancy clustering has been theoretically studied by Shanthi et al. [61] who
calculated various combination of clustering models and clarified that the
oxygen-vacancy clustering tends to generate deep in-gap states and all the
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carrier electrons from the oxygen vacancies are trapped by these in-gap states.
More recent first-principles calculation with on-site Coulomb-potential cor-
rected DFT (LDA+U) clarified that oxygen vacancies tend to order in a lin-
ear way [63], and the localized in-gap state traps all of the electrons released
from the oxygen vacancies. Thus, the oxygen-vacancy clustering would be
the cause of the great reduction of the carrier-electron density in the grossly
oxygen deficient SrTiO3−δ. However, the experimentally confirmed +1 va-
lence state of the isolated oxygen vacancy in the slightly reduced SrTiO3−δ

cannot be explained in terms of the oxygen-vacancy clustering. Therefore,
the electronic structure of the isolated oxygen vacancy in SrTiO3−δ has been
a subject of extensive theoretical studies [30, 61, 62, 66, 67]. However, the
electronic structure calculation of the realistically isolated oxygen vacancy
is a very hard task because of several requirements which are difficult to
be sufficiently satisfied, such as an appropriate approximation for exchange
correlation energy and the adoption of sufficiently large atomistic models to
represent the proper diluted defect concentrations. Due to these problems,
there have been disputes for the electronic structure of an isolated oxygen
vacancy in SrTiO3. This is a problem not only for SrTiO3, but also for other
transition-metal oxides, such as BaTiO3 [64], TiO2 [68] and ZnO [69, 70].
Despite these difficulties, the electronic structure calculation is considered to
be a powerful tool for the analysis of the complicated experimental results,
and the theoretical assistances are greatly desired to fully understand the
nature of the defects in transition-metal oxides.

1.3.2 Hydrogen impurity

Hydrogen is a ubiquitous element and easily contained in materials as an
impurity. In particular, hydrogen annealing, which is the most frequently
used technique to reduce transition-metal oxides, makes the analysis of the
carrier-electron density very confused, because the roles of the hydrogen in
these hydrogen-annealing process are not well clarified yet. There are two
possible scenarios for the hydrogen reduction of the perovskite-type ATiO3

oxides. Many previous experiments assume the removal of oxygen by hydro-
gen as a form of H2O, which results in a generation of the oxygen vacancy
and carrier electrons:

O×
O +H2(gas) ⇆

1

2
H2O(gas) +V••

O + 2e′. (1.8)

Another possibility is the incorporation of the hydrogen at an interstitial site
of the perovskite lattice. The interstitial hydrogen (Hi) has been suggested
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to act as a shallow donor in ATiO3.

1

2
H2(gas) ⇆ H•

i + e′. (1.9)

The existence of Hi in ATiO3 can be confirmed with infrared (IR) spec-
troscopy by detecting absorption peaks of the O-H vibrational motions around
3,500 cm−1 [71]. Therefore, both oxygen vacancy and hydrogen may poten-
tially contribute to the electrical conductivity in ATiO3. In the semiconduc-
tor device possessing, a large increase of the leakage current is observed for
SrTiO3 films and related materials, such as (Ba,Sr)TiO3 when annealed with
forming gas that contains hydrogen [59]. However, the main cause of the
increased carrier-electron density is unclear because of the lack of knowledge
for the mutual interaction between VO and Hi, such as relative stability and
possibility of complex defect formation with VO and Hi. There are similar
discussions for the electron conductivity of ZnO, where the oxygen vacancy
makes a deep in-gap state and all the carrier electrons from the oxygen va-
cancy are trapped at the defect level [69]. Hence, the oxygen vacancy cannot
be a source of the carrier electron in ZnO, and the most promising candidate
for the origin of the carrier electron is the hydrogen related defect species in
ZnO [69].

Recent studies also suggest the importance of “hidden” hydrogen in semi-
conductors and insulators. First-principles calculation indicates that the typ-
ical hidden hydrogen is an anionic hydride (H−) which occupies the anion
vacancy in ZnO [70, 72], SnO2 [73] and II-VI semiconductors [74]. The H2

molecule at the anion-vacancy site is also a promising candidate for the hid-
den hydrogen in ZnO [70, 75, 76]. On the other hand, the existence of H−

is contrary to the common belief that the perovskite-type oxides are good
proton (H+) conductor, and the possibility of H− in this material have not
been well considered yet. However, these previous studies for wide variety
of semiconductors and insulators imply the importance of the hidden hydro-
gen also in the perovskite-type oxides. In addition, some recent experiments
show puzzling results that oxygen-deficient blue-black conducting SrTiO3−δ

transforms into a transparent insulating state upon annealing under H2 con-
taining atmosphere [59,77]. These experimental results cannot be explained
by the proton picture of hydrogen at interstitial sites (H+

i ), suggesting that
the role of hydrogen in the material group ATiO3 (A = Sr, Ba) should be
reconsidered.

The hydrogen is an ubiquitous element, and is difficult to be completely
eliminated from materials. Simultaneously, the detection of the hydrogen is
also difficult due to their light mass and the characteristic electronic struc-
ture without core-level states. Therefore, theoretical approach with first-
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1.3. Defect and impurity in perovskite oxides

principles calculation is greatly desired for the understanding of the behavior
of hydrogen in perovskite-type oxides.

1.3.3 Relation between defect and ferroelectricity

Ferroelectricity that includes spontaneous polarization, piezoelectricity and
pyroelectricity is an inherent property in some perovskite-type oxides, such
as BaTiO3 and Pb(Zrx, Ti1−x)O3, and the property makes the perovskites
particularly useful for various electronic device applications as summarized in
Table 1.1. However, the ferroelectricity is easily damaged by so many factors,
such as introduction of defects and impurities [78–82], application of pressure
or stress [83–85], and surface effects in thin films and fine particles [86–89].
The ferroelectricity of BaTiO3 is also greatly damaged by the increase of the
electron conductivity induced by donor-type defects and dopants. One would
expect that the ferroelectric phases would naturally disappear in the presence
of metallic conductivity due to the screening of the long-range electrostatic
interactions that are partially responsible for the emergence of ferroelectric-
ity [49, 90]. However, experiments with reduced BaTiO3−δ indicate that the
presence of the free electron does not immediately suppress the ferroelectric
phase, but the ferroelectric deformation sustains even under the metallic con-
ductivity [78,79]. Under the low-resistivity condition, ferroelectric hysteresis
loops cannot be measured due to the large leakage currents. Therefore, the
existence of the ferroelectric phase under metallic conductivity in the reduced
BaTiO3−δ are experimentally confirmed by using X-ray diffraction, dc and
optical conductivities [78, 79] and typical volumetric shrinkage at ferroelec-
tric phase transition temperatures [58] instead of the direct measurement of
the ferroelectric hysteresis loops. The critical carrier-electron concentration
for the disappearance of the ferroelectric phases in BaTiO3−δ is recently con-
firmed to be n ≈ 1.9 × 1021 cm−3 [78], which is one order magnitude larger
than the critical carrier-electron concentration of insulator-to-metal transi-
tion in electron doped BaTiO3 (∼ 1020 cm−3) [54]. Although the disappear-
ance of the ferroelectric phase by donor-type dopants has been extensively
discussed [54, 58, 78–82], it has not been clear whether the transition from
ferroelectric to paraelectric phases is caused by the introduction of free car-
rier electron or by the lattice deformation due to donor-type defects. These
two effects are very difficult to separate experimentally [58, 78] because de-
fects (or dopants) are inevitably introduced in electron doping experiments.
It is highly desirable to form a theoretical basis to understand this subject,
because the current understandings are based on only some indirect and re-
stricted experiments, and obviously lack basic understandings for the relation
between the carrier electron and the ferroelectricity.
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1.4 First-principles calculation for defects and

impurity

First principles calculation based on density-functional theory (DFT) has be-
come a promising method for the study of electronic structure of defects in
semiconductor and insulator. The theoretical study of defects in transition-
metal oxides has been one of intensively studied research areas. However,
many of these studies are in highly controversial states due to several prob-
lems in DFT. The most popular approach for the defect calculation is based
on Kohn-Sham equation that is Schrödinger equation for a fictitious system of
non-interacting particles with many body effects represented by an exchange-
correlation (XC) energy functional. The accuracy of Kohn-Sham equation
is governed by the XC functional, and the strictly accurate ground state is
obtained if one can know the exact form of the XC energy functional. The
most popular XC energy functional is local-density approximation (LDA),
where the XC potential depends solely upon the value of the charge den-
sity at each position. In spite of its very simple formulation derived from
homogeneous electron gas model, LDA has been successfully applied to a
wide variety of solids and has been greatly contributed to the advance of the
electronic structure calculation of solid state materials.

However, LDA has several serious problems that should be corrected for
the calculation of defects in solids. The underestimation of band gap values
in semiconductors and insulators is a well-known drawback of LDA, and the
inaccuracy of the gap is hardly improved by generalized gradient approxima-
tion (GGA) that includes gradient term of density into LDA. The nature of a
defect, such as relative position of defect level within the gap and the stability
of charged state, greatly depends on the band gap value. Therefore, the band
gap error of LDA should be corrected by improved XC functionals so as to
obtain satisfactory results. In addition, self-interaction error (SIE) due to the
insufficient exchange of LDA should be completely eliminated for a system
with a localized electron nature, because LDA becomes completely useless es-
pecially for a system with strongly correlated electron. Many defect states in
solids have intermediate nature between the localized and delocalized limits
of electron systems, which makes the limitation of LDA very unclear. Al-
though it would be very difficult to discuss the validity of the XC functional
for these problems, many of previous studies employing LDA or GGA suggest
an empty defect state of oxygen vacancy (V 2+

O ) in SrTiO3 [30, 61], whereas
improved functionals such as the GGA+U and the Hartree-Fock (HF)-DFT
hybrid functional show total (V 0

O) localization of electrons at the vacancy
site [62, 66, 67]. The upward shift of the localized state is a clear sign of the
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SIE due to the insufficient exchange. Therefore, there must be not a small
error in the picture of oxygen vacancy level of SrTiO3 calculated with LDA.
Thus, both band gap and SIE should be appropriately corrected by improved
XC functionals over LDA [62,64].

1.5 Motivation and outline of the thesis

1.5.1 Motivation

As described in previous sections, the improvement of material property of
perovskite-type oxides greatly depends on the understanding of the defects
and impurities. It is also noted that the improvement of the XC functional
is necessary for these studies, because the electron localization around the
defect species is difficult to be treated with conventional LDA and GGA. For
this reason, we have studied defects and impurities in perovskite-type ATiO3

(A=Sr, Ba) oxides based on the first-principles calculation with improved
XC functional in the framework of DFT. The main purpose of our study is
the clarification of various experimental results observed in ATiO3 samples
reduced with hydrogen gas, where the defect species and its valence states
are closely related to the experimental results. Due to the complexity of the
defect natures, many of these experimental results have not been clarified yet.
In this thesis, we employed several theoretical frameworks of the improved
XC functional, and studied their feasibility for the defect calculations in
perovskite-type oxides. By using the improved XC functional, we will discuss
the oxygen vacancy and hydrogen-related defects in ATiO3, and the effects
of these defect species on the physical properties, such as carrier-electron
density and ferroelectricity are discussed. The clarification of the diversity
of the hydrogen in transition-metal oxides is also an important issue in this
thesis.

1.5.2 Outline of the thesis

The thesis is composed of the following chapters. In this Introduction chap-
ter, we have explained the basic properties of the perovskite-type oxides and
overview of the effects of defects and impurities on material properties [41,91].
We have also discussed the failure of LDA and necessity of their improve-
ment. In Chapter 2, the basic formalism of DFT including the derivation
of Kohn-Sham (KS) equations are explained. As a standard XC functional,
concept and actual form of LDA and GGA are explained. We also explain
the treatment of the core electron with ultra-soft pseudo potential (USPP)
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and projector augmented wave (PAW) method, which are thoroughly used
in this thesis. This chapter also includes the theoretical backgrounds of
three improved XC functionals. The first one is the self-interaction correc-
tion (SIC) that is a direct subtraction of self-interaction (SI) energy from the
KS equations. We implemented “pseudo SIC” scheme into Tokyo ab-initio
programming package (TAPP). The second functional is DFT+U that is a
widely adapted method for the correction of LDA and GGA due to their sim-
ple and steady formalism. We employed the rotationally invariant formalism
of DFT+U and discussed the detail of the formalism and the effect of +U po-
tential. The last one is hybrid functional that is a XC functional composed of
the mixture of DFT XC and exact exchange (EXX) of Hartree-Fock method.
We will explain PBE0 and HSE hybrid functionals, which is a very simple
but has physically clear foundation. The effects of these three improved
XC functionals on the band gap values of several transition-metal oxides and
semiconductors are explained, and the reasons for the improvements by these
functionals are discussed. In Chapter 3, theoretical calculations for oxygen
vacancy (VO) in SrTiO3 are performed [91]. The main aim of this chapter is
the evaluation of the effectiveness of these improved XC functionals on the
defect calculations, as well as the clarification of the nature of isolated VO
in SrTiO3. Our results clearly show that the electronic structure of VO in
SrTiO3 greatly depends not only on the XC functional, but also on the lattice
relaxation around the defect species. By summarizing these results, we will
discuss the suitable approach for the problems of the defects and impurities
in perovskite-type oxide.

In Chapter 4, the role of the hydrogen (H) in ATiO3 is discussed [92–95].
Even though the oxygen vacancy (VO) and interstitial hydrogen (Hi) have
been considered to be generated under the hydrogen annealing, the relative
stability between VO and Hi has not been clarified yet in previous studies.
We calculated the relative stability between VO and Hi, and the results are
discussed. We will also show that various form of the hydrogen configurations
are possible in ATiO3, such as the replacement of an oxygen atom by one
or two hydrogen atoms. An important finding in this chapter is that the
hydrogen is not always a positively charged proton (H+), but they change
their character from H+ (interstitial H+

i ) to H− (negatively charged hydride
ion at oxygen vacancy site: H+

O) depending on their environments [93, 95].
We also calculated infrared (IR) absorption spectrum to predict experimental
results for these hydrogen related defect species, such as HO and (2H)O,
which is a proposal for the future experiments to confirm the existence of
these defect complexes. The diversity of hydrogen configuration and its role
in ATiO3 are discussed in this chapter.

In Chapter 5, relation between ferroelectricity in BaTiO3 and donor-type

28



1.5. Motivation and outline of the thesis

defects is discussed [96]. The disappearance of ferroelectricity in BaTiO3

by various donor-type dopants is experimentally confirmed, but the origin
of this phenomena has not been well understood yet. We separated the ef-
fects of experimental electron-doping into the effect of the carrier electron
and the dopant induced lattice deformation, and separately evaluated each
contribution to the elimination of the ferroelectricity. The series of anal-
yses also offer a new viewpoint of the origin of ferroelectricity in BaTiO3,
where the counterbalance of short-range Pauli repulsive force and long-range
Coulomb force determines the ferroelectric deformation potential. We also
found that the elimination of the ferroelectric phase of BaTiO3 is an intrinsic
effect of carrier-electron doping and the lattice deformation accelerates the
disappearance of the ferroelectricity in BaTiO3.

Chapter 6 is devoted to concluding remarks based on the results obtained
throughout the thesis work.
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Chapter 2

Density functional theory

Density functional theory (DFT) has proven to be a very powerful tool for the
prediction of material properties. The currently used formulation of DFT is
based on a concept proposed by P. Hoenberg and W. Kohn in 1964 [97, 98].
They formulated DFT as an exact theory of many-body particle systems,
where any property of a system of interacting many body electrons can be
treated as a functional of the grand state charge density n(r). However,
DFT itself does not provide an actual way to construct such a functional
of many body interacting particle system. The ansatz made by Kohn and
Sham replaces the interacting problem with an auxiliary independent-particle
problem, which provides a way to make approximated ground state func-
tional [98,99]. This approach enables us to calculate properties of many-body
systems using an independent-particle method with all many-body effects in-
cluded in an exchange-correlation (XC) functional. The approach is the basis
of most modern calculations called “first-principles” or “ab initio” for wide
variety of materials including solids and molecules. The present chapter is
devoted to the explanation of the basic formulation of the KS approach and
the XC energy functional.

2.1 Formalism

2.1.1 Kohn-Sham energy functional

The Kohn-Sham (KS) approach [99] replaces the complicated interaction of
many-body particle system with an independent and non-interacting parti-
cles of an auxiliary system that can be handled with actual numerical calcu-
lations. In the independent-particle equations for the non-interacting system,
the concept of exchange-correlation (XC) is naturally introduced to make all
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the difficulty in many-body effects to be incorporated into an XC functional
of the grand state charge density. The KS approach writes the ground state
energy functional in the form [98]:

EKS = Ts[n] +

∫
drVext(r)n(r) + EHartree + EXC + EEwald, (2.1)

where Vext(r) is the external potential due to the nuclei and EEwald is the
interaction between the nuclei. n(r) is the charge density given by a sum of
squares of the orbitals:

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|ψσ
i (r)|2. (2.2)

Ts is the kinetic energy given by

Ts = −1

2

∑
σ

Nσ∑
i=1

⟨ψσ
i |∇2|ψσ

i ⟩ = −1

2

∑
σ

Nσ∑
i=1

∫
dr|∇ψσ

i (r)|2, (2.3)

and EHartree is the Hartree energy defined by the Coulomb interaction energy
of the electron density interacting with itself:

EHartree =
1

2

∫
drdr′

n(r)n(r′)

|r− r′|
. (2.4)

The term EXC includes all many-body effects of exchange and correlation:

Exc =
∑
σ

∫
drn(r, σ)ϵσxc([n], r), (2.5)

where ϵσxc([n], r) is the exchange-correlation energy density that solely de-
pends on the electron density n(r, σ). If the correct EXC functional were
known, then the ground state energy (and density) of the many-body elec-
tron system can be obtained correctly by solving the KS equations.

2.1.2 Kohn-Sham equations

The approach solving the Kohn-Sham energy equation in Eq. (2.1) can be
viewed as a problem of minimization with respect to the electron density
n(r). Since the terms in Eq. (2.1) are considered to be functionals of the
density, variational principle can be applied to minimize Ω[ψi] with respect
to ψ∗

i :

Ω[ψi] = EKS −
∑
σ

N∑
i,j=1

εσij

∫
drψσ∗

i (r)ψj(r)
σ, (2.6)
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where εij are Lagrange multipliers for the orthonormal condition of the wave
functions:

⟨ψσ
i |ψσ′

j ⟩ = δi,jδσ,σ′ . (2.7)

By using the chain rule, the variation of EKS with respect to ψ∗
i is

δEKS

δψσ∗
i

=
δT

δψσ∗
i (r)

+

[
δEext

δn(r, σ)
+
δEHartree

δn(r, σ)
+

δExc

δn(r, σ)

]
δn(r, σ)

δψσ∗
i (r)

=

[
−1

2
∇2 + Vext(r) + VHartree + V σ

xc

]
ψσ
i (r), (2.8)

where Vext(r) is external potential due to nuclei, and VHartree is Hartree po-
tential expressed by

VHartree =

∫
dr′

n(r′)

|r− r′|
. (2.9)

V σ
xc is exchange-correlation potential, and the actual form of the potential is

explained in Sec. 2.1.3. The minimization of Ω[ψi] with respect to ψ∗
i leads

to the following equations:

Hσ
KSψ

σ
i −

N∑
j=1

εσijψ
σ
j = 0, (2.10)

where Hσ
KS is the Kohn-Sham effective hamiltonian:

Hσ
KS = −1

2
∇2 + Vext(r) + VHartree + V σ

xc. (2.11)

Since the Hσ
KS is a Hermitian operator, εσij is a Hermitian matrix that can

be diagonalized by a unitary transformation, which leaves the physical ob-
servables invariant. Thus, the Kohn-Sham Schrödinger-like equations are
obtained as follows:

Hσ
KSψ

σ
i = εσi ψ

σ
i . (2.12)

The total energy can be alternatively expressed in terms of the eigenvalues
of the Kohn-Sham equations. The actual form is as follows:

Etotal =
∑
σ,i

εσi + Exc −
∑
σ

∫
drn(r, σ)V σ

xc(r)− EHartree + EEwald.

(2.13)
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2.1.3 Exchange correlation energy functional

The accuracy of DFT is limited by the approximation for the exchange-
correlation (XC) functional. The XC term is composed of exchange and
correlation terms.

Exc = Ex + Ec. (2.14)

Local density approximation (LDA)

DFT has been very successful with local density approximation (LDA) that
has been most commonly applied to the electronic structure calculation of
solids. In LDA, the exchange-correlation term is a simple integral of the
exchange-correlation energy density all over the space:

ELDA
XC =

∫
drn(r)ϵhomXC ([n], r)

=

∫
drn(r)

{
ϵhomX ([n], r) + ϵhomC ([n], r)

}
. (2.15)

The exchange-correlation potential V σ
XC is obtained by the functional deriva-

tive of (2.15).

V LDA
XC =

δELDA
XC

δn
=

[
ϵhomXC + n

∂ϵhomXC

∂n

]
r,σ

. (2.16)

The exchange term of the LDA is based on the exact expression for the
Hartree-Fock exchange of the homogeneous gas that is exactly obtained. The
expression of the exchange energy density is:

ϵhomX ([n], r) = − 3

4π
kF = − 3

4π
(3π2n)

1
3 , (2.17)

where kF = (3π2n)
1
3 is the Fermi wave vector corresponding to the density

n of homogeneous electron gas. The form of exchange potential in LDA is
very simple:

V LDA
X =

δELDA
X

δn
=

4

3
ϵhomX ([n], r). (2.18)

On the other hand, the form of the correlation term is not known ex-
actly, because the correlation energy of a homogeneous electron is already
a many-body problem of itself. Various approximations and fitting to nu-
merical calculations has been proposed for the correlation energies for the
homogeneous gas. The widely used functional made by Perdew and Zunger
(PZ) is based on quantum Monte Carlo (QMC) calculations by Ceperley and
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Alder (CA) [98,100]. The correlation ϵc is fitted by polynomial. For example
the form of PZ is:

ϵhome
c ≡ ϵPZc

=

{
−0.0480/(1 + 1.0529r

1/2
s + 0.3334rs) rs ≥ 1

0.031 ln rs − 0.0480 + 0.0020rs ln rs − 0.0116 rs < 1

(2.19)

The correlation potential is given by [98,100]

V LDA
C = ϵC(rs)−

rs
3

dϵC(rs)

drs
. (2.20)

where rs is defined as the radius of a sphere containing one electron on average
(4π/3)r3s = Ω/Ne, namely:

rs =

(
3

4πn

) 1
3

, (2.21)

where n is density defined as n = Ne/Ω.

Gneralized-gradient approximation (GGA)

For the construction of various generalized-gradient approximations (GGAs),
the magnitude of the gradient of the density |∇nσ| is required in addition
to the value of n at each point. The addition of the gradient correction for
the density n improves some of the drawbacks of the LDA, such as molecular
binding energies, and some aspects of structural properties of solids. The
form of the GGA exchange functional is:

EGGA
X =

∫
drn(r)ϵhomX ([n], r)FX(s), (2.22)

where FX(s) is a dimensionless function of enhancement factor including
gradient of the density, and s denotes m-th order dimensionless reduced-
density gradients that is defined by

sm =
|∇mn|
(2kF )mn

. (2.23)

For exchange term, various forms for FX(s) have been proposed, such as
Becke(B88), Perdew-Wang (PW91), and Perdew–Burke–Ernzerhof (PBE)
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functionals, which denote a variety of ways for the gradient corrections [98].
For example, FX(s) of widely used PBE [101] has a form:

FX(s) = 1 + κ− κ/(1 + µs2/κ), (2.24)

where s is the 1st order of the density gradients s ≡ s1 = |∇n|/(2kFn). κ
and µ are parameters (κ = 0.804, µ = 0.21951). The form in Eq. (2.24)
recovers LDA with FX(s = 0) = 1.

The form for GGA correlation is also expressed with local density plus
gradient term.

EPBE
C =

∫
dr
[
ϵhomC +H(rs, ζ, t)

]
, (2.25)

where ζ = (n ↑ −n ↓)/n denotes spin polarization, rs is the local Seitz
radius (n = 3/4πr3s = k3F/3π

2) , and t = |∇n|/2ϕksn is a dimensionless
density gradient. Here, ϕ(ζ) =

[
(1 + ζ)2/3 + (1− ζ)2/3

]
/2 is a spin-scaling

factor, and ks =
√
4kF/πa0 is the Thomas-Fermi screening wave number

(a0 = ℏ2/me2). H is written with (e2 = a0 = 1) as follows:

HPBE = γϕ3 ln

{
1 +

β

γ
t2
[

1 + At2

1 + At2 + A2t4

]}
, (2.26)

where β = 0.066725, γ = 0.031091 and A = β
γ

[
exp{−ϵunifc /γϕ3} − 1

]−1
.

2.1.4 Ultrasoft pseudopotentials and PAW

The concept of pseudopotential is the replacement of the bare Coulomb po-
tential of the nuclei and the core electrons by an effective Coulomb potential
acting only on the valence electrons. Pseudopotentials are generated on the
basis of atomic calculation, and the core states are unchanged in the calcula-
tion of molecules or solids. The scheme is called “frozen core”, which relies on
the fact that the properties of materials are mainly characterized by valence
orbital around the Fermi level. The idea of pseudopotential is also applied
in the new formalism of self-interaction correction (SIC) method described
in the sequential section.

Ultrasoft pseudopotentials

The cost of the plane-wave calculation depends on the number of Fourier
components needed in the calculation, therefore the pseudo wave functions
created with the pseudopotentials are desired to be as smooth as possible, and
yet accurate. The approach of ultrasoft pseudopotential (USPP) proposed
by D. Vanderbilt [102] involves a smooth function of pseudo wave function
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ϕ̃. The augmentation charge that is a difference in the norm from norm-
conserving wave function (or true all electron wave function) is given by

Qτ
ij =

∫ Rc

0

Qτ
ij(r)dr, (2.27)

where Qτ
ij(r) are augmentation functions for atom τ :

Qτ
ij(r) = ϕτ∗

i (r)ϕτ
j (r)− ϕ̃τ∗

i (r)ϕ̃τ
j (r). (2.28)

Here, ϕτ
i are true all electron (AE) atomic orbital, and ϕ̃τ

j are pseudo-wave
function inside a core radius. The advantage of ultrasoft pseudopotentials,
which does not satisfy the norm conserving condition (Qτ

ij = 0), is that each

smooth pseudo-wave function ϕ̃τ
j can be formulated with only the matching

constraint of the functions ϕ̃τ
i (Rc) = ϕτ

i (Rc) at the core radius Rc. The
flexibility of the pseudo-wave function makes the generation of extremely
soft pseudopotentials possible in the USPP formalism.

The generalized eigenvalue equation for the ultrasoft pseudopotential is:

Hσ |ψσnk⟩ =
[
−1

2
∇2 + V σ

loc + V σ
NL

]
|ψσnk⟩ = εσnkS |ψσnk⟩ , (2.29)

where S is the overlap operator,

S = 1 +
∑
τ,i,j

|βτ
i ⟩Qτ

ij ⟨βτ
j | , (2.30)

which is different from 1 only inside the core radius. In the calculation
with ultrasoft pseudopotentials, the obtained pseudo wave function ψi are
orthonormalized according to

⟨ψi|S|ψj⟩ = δi,j. (2.31)

|βτ
i ⟩ are projectors that satisfy the relation ⟨βτ

i |ϕ̃τ
j ⟩ = δij,

|βτ
i ⟩ =

∑
j

(B−1)τij |χτ
j ⟩ , (2.32)

where Bτ
ij = ⟨ϕ̃τ

i |χτ
j ⟩, and |χτ

i ⟩ is a fanction vanishing for r > rc,i:

|χτ
i ⟩ = (εi − T − Vloc) |ϕ̃τ

i ⟩ . (2.33)

The non-local part VNL is written as:

VNL =
∑
τ

∑
i,j

|βτ
i ⟩Dτ

ij ⟨βτ
j | , (2.34)
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where the definition of Dτ
ij is

Dτ
ij = Bτ

ij + εjQ
τ
ij. (2.35)

V σ
loc is defined by

V σ
loc = V ion

loc + VH + vσxc, (2.36)

where V ion
loc is the local part of the pseudopotential located at atom-center

position.
The valence charge density with USPP is defined to be

n(r) =
occu.∑
n,k

⟨ψσnk|K(r)|ψσnk⟩2 , (2.37)

K(r) = |r⟩ ⟨r|+
∑
τ,i,j

|βτ
i ⟩Qτ

ij ⟨βτ
j | . (2.38)

The form of the total energy with USPP is

Etotal =
∑
σnk

⟨ψσnk| −
1

2
∇2 + V

(0)
NL |ψσnk⟩+

∫
drn(r)V loc

ion (r)

+EHartree[n] + Exc[n
↑, n↓] + EEwald. (2.39)

Here, V
(0)
NL is defined by

V
(0)
NL =

∑
τ

∑
i,j

|βτ
i ⟩D

(0),τ
ij ⟨βτ

j | , (2.40)

where D
(0),τ
i,j is

D
(0),τ
ij = Dτ

ij −
∫
drQτ

ij(r)V
σ
loc(r). (2.41)

PAW method

The projector augmented wave (PAW) method is a general approach simi-
lar to the ultrasoft pseudopotential method at the point that it introduces
projectors and auxiliary localized functions. Here, we only briefly explain
the basic ideas of the definition of PAW method [103]. In the PAW method,
the all electron (AE) wave function ψn is derived from the pseudo (PS) wave
function ψ̃n with a linear transformation:

|ψn⟩ = |ψ̃n⟩+
∑
i

(|ϕi⟩ − |ϕ̃i⟩) ⟨p̃i|ψ̃n⟩ , (2.42)

38



2.1. Formalism

where the index i denote the atomic site R and angular momentum numbers
L = l,m. ϕi are the AE wave function of isolated reference atom, and their
PS waves functions are denoted by ϕ̃i The projector functions p̃i that are
dual to the partial waves fulfill the following relation:

⟨p̃i|ϕ̃j⟩ = δij. (2.43)

Starting from Eq. (2.42), the AE charge density in the PAW formalism is
given by:

n(r) = ñ(r) + n1(r)− ñ1(r), (2.44)

where ñ(r) is soft pseudo-charge density expressed as follows:

ñ(r) =
∑
n

fn ⟨ψ̃n|r⟩ ⟨r|ψ̃n⟩ . (2.45)

n1(r) and ñ1(r) are onsite charge densities:

n1(r) =
∑
ij

ρij ⟨ϕi|r⟩ ⟨r|ϕj⟩ , (2.46)

ñ1(r) =
∑
ij

ρij ⟨ϕ̃i|r⟩ ⟨r|ϕ̃j⟩ , (2.47)

where ρij are the occupation matrix of each augmentation channel (i, j) that
are expressed by

ρij =
∑
n

fn ⟨ψ̃n|p̃i⟩ ⟨p̃i|ψ̃n⟩ . (2.48)

Due to the expression of the full wave function, the final expression of the
total energy is composed of the sum of three terms similar to the expression
of density as shown in Eq. (2.44). The form of the total energy in PAW
method becomes: 1

E = Ẽ + E1 − Ẽ1, (2.49)

where Ẽ denotes the energy due to the smooth functions calculated in Fourier
space or on a regular grid that extends throughout space, whereas E1 and

1The actual form of Ẽ is Ẽ =
∑

n fn ⟨ψ̃n| − 1
2∇

2|ψ̃n⟩+EXC[ñ+ n̂+ ñc] +EH[ñ+ n̂] +∫
vH[ñZc

](ñ(r) + n̂(r))dr + UEwald(R, Zion), where n̂ is compensation charge, and ñc is

component of core charge. The expressions of E1 and Ẽ1 are similar to this expression,
expect for the selection of corresponding wave function and charge components. See
ref. [103] for more detailed explanation.

39



Chapter 2. Density functional theory

Ẽ1 are calculated individually on a radial sphere grid. The basic Kohn-
Sham equations are obtained from the variational principles on the energy
functional shown in Eq. (2.49) [103].

The main difference between the USPP and the PAW is that the PAW
method keeps the full all-electron wave function in a form shown by Eq.
(2.42). It is especially noted that the expressions for the total energy of PAW
are closely related to that in the ultrasoft formalism, where only difference
is the choice of auxiliary functions and mathematical deformation aspects.
Thus, other derived properties, such as force and stress, are essentially the
same.

2.1.5 Density of states (DOS)

Density of states (DOS) for a given band n is defined as:

D(E) =

∫
dk

4π3
δ(E − En(k)), (2.50)

where En(k) is the dispersion of the band, and the integral is performed
over Brillouin zone. The total density of states D(E) is obtained by summa-
tion over all bands. For the calculation of the DOS, the simplest method is
based on the sampling for energy levels of each band with Gaussian smear-
ing. Even though the Gaussian smearing does not reproduce the detail of
electronic structure, such as the broad metallic conduction bands, it satis-
factorily reproduce the general shape of the electronic structure, especially
with dense k-point sampling. More accurate methods are based on linear
interpolations of band energies between two points in the Brillouin zone, and
the most popular technique is the tetrahedron interpolation. However, the
tetrahedron method is unfortunately not well suited to the Monkhorst-Pack
k-point special sampling.

Partial density of states (PDOS) is useful for qualitative analysis of the
electronic structure. The PDOS calculations are based on Mulliken popula-
tion analysis, which allows evaluation for the contribution from each energy
band to a given atomic orbital. PDOS can qualify the DOS results by re-
solving the contributions according to the angular momentum (s, p, or d
characters) of specified atomic orbitals. By using DOS and PDOS, we can
analyze qualitative nature of the electronic structure, such as the orbital
hybridization in the system.
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2.2. Improved exchange-correlation functional

2.2 Improved exchange-correlation functional

The accuracy of the local density approximation (LDA) or various generalized-
gradient approximations (GGAs) is extremely degraded for strongly corre-
lated cases. For example, transition metal mono oxides NiO and CuO are
antiferromagnetic insulators, whereas LDA or GGA functionals find them to
be metals. The difficulty of the correct calculation for the band gap has been
discussed as a serious problem inhered in LDA.

The Kohn-Sham eigenvalues have no physical meaning in the extended
system of solids. The only exception is the highest eigenvalue in a finite
system, where the highest-occupied eigenvalue is minus the value of the ion-
ization energy −I, which are known as Slater-Janak theorem.

εi =
dEtotal

dni

=

∫
dr
dEtotal

dn(r)

dn(r)

dni

, (2.51)

where the eigenvalue is the derivative of the total energy with respect to the
occupation of a state. As shown in Eq. (2.16), the effective potential VXC(r)
in the derivative in Eq. (2.51) has a form:

VXC = ϵXC([n], r) + n(r)
δϵXC([n], r)

δn(r)
, (2.52)

where VXC(r) contains a “response part” that is the derivative of ϵ with
respect to n(r). The important point is the discontinuity of this part between
states. J. P. Perdew and M. Levy pointed out that the Kohn-Sham band
structure underestimates the gap width by an amount equal to the derivative
discontinuity C [104]:

C =
δEXC

δn(r)

∣∣∣∣
N+δ

− δEXC

δn(r)

∣∣∣∣
N−δ

, (2.53)

where N is the total number of electrons. Accordingly, in principle, the
ground state Kohn-Sham potential should not be the correct gap. This is a
critical problem of the gap in insulator calculated with Kohn-Sham equations.

The expression of the kinetic energy as a function of the independent-
particle orbital ψi is of essential importance in the improvement of the Kohn-
Sham approach. The derivative of kinetic energy (dTs/dn) are discontinues
at filled state in insulator. Suggested by the discontinuous properties of the
kinetic energy, the improvement of EXC functional that explicitly depends
on the independent-particle orbital ψi has been discussed. These approaches
are known as optimized effective potential method (OEP), where the key
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point is the definition of the OEP energy functional EOEP (and potential
VOEP) that includes orbitals ψi determined by the potential from the usual
independent-particle Schrödinger equation [98]:

EOEP[V ] = E[{ψi[V ]}]. (2.54)

The Hartee-Fock exchange functional is straightforward to be written in
terms of the orbitals, and it has been applied to the OEP method. The
method is called exact exchange (EXX). In this chapter, we introduce a
fixed amount of the (screened) Hartree-Fock exchange into GGA, which is
so-called hybrid functionals. By applying the hybrid functionals, a significant
improvement over the GGA description of electronic structure is expected.
We also introduce other types of orbital-dependent functionals through the
introduction of occupancy ni, which are the SIC and the LDA+U explained
in the following subsections.

2.2.1 Self-Interaction Correction (SIC)

The SIC-LDA (or SIC-LSDA) that is originally proposed by Perdew and
Zunger [100] is based on a direct subtraction of self-interaction (SI) contri-
bution from the LDA (or LSDA) KS potential (PZ-SIC):

VHXC[n,m] → VHXC[n,m]− VHXC[ni], (2.55)

where n and m are the total charge and magnetization densities. ni is charge
density of the i-th orbital. Despite the simplicity of its formalism, the SIC-
LDA gives a much better agreement between modified KS eigenvalues and
experimental ionization potentials (IP) and electron affinities (EA), and suc-
cessfully applied to the calculation of atomic properties [100]. On the other
hand, in the crystal where the eigenvectors of the KS equation are Bloch
states, the SI of the Bloch state becomes an ill-defined quantity that de-
pends on the normalization of the wave function, and the SI vanishes in the
thermodynamic (delocalized) limit of a Bloch state [100]. Moreover, the wave
functions obtained from Eq. (2.55) are no longer orthogonal because of the
introduction of orbital-dependent spatially-localized SIC potential. There-
fore, the direct application of SIC-LSDA in Eq. (2.55) has some difficulties
in actual calculation in crystal system.

An efficient way to avoid the difficulty is the utilization of SIC operator
with a form of nonlocal projector generated from free atom. The idea is
initially suggested by Vogel et al. as SIC-PP [105], where atomic SIC are
incorporated within the nonlocal projectors in pseudopotential. The scheme
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is further improved by Filippetti et al. as pseudo SIC [106]. Within pseudo-
SIC, the SIC term incorporated in the pseudopotential is separated into to
an isolated SIC potential operator, which is composed of a nonlocal projector
resembling the nonlocal part of the pseudopotential. Then, SIC-KS potential
in Eq. (2.55) becomes:

VHXC[n,m] → VHXC[n,m]−
∑
i

|Pi⟩VHXC[ni] ⟨Pi| , (2.56)

where n and m are total charge and magnetization densities of crystal. The
i is cumulative index written in terms of atomic quantities (i = [(li,mi),Ri])
VHXC[ni] is atomic SIC potential composed of Hartree, exchange and correla-
tion of isolated atom. Pi are projector functions, such as spherical harmonics.
ni are the charge densities of the i-th atomic orbital ϕi,

ni(r) = pi|ϕi(r)|2, (2.57)

where pi are fractional occupation numbers calculated from the projection of
atomic orbital at each atomic site onto the occupied wave functions,

pi =
∑
n,k

fn,k ⟨ψn,k|ϕi⟩ ⟨ϕi|ψn,k⟩ . (2.58)

In the construction of pseudo SIC potentials, a linear dependence of the SI
potential on the occupation numbers are assumed:

VHXC[ni] = piVHXC[ni; pi = 1]. (2.59)

Once VHXC[ni; pi = 1] is calculated from atomic orbitals, the value is kept
constant and only the pi is updated during the self-consistent calculations.
The procedure greatly reduces computational costs, which makes the SIC
possible for the actual calculations of solid state materials [106]. The SIC
potential in Eq. (2.56) recovers its original formula of PZ-SIC in atomic limit
shown in Eq. (2.55) without introducing dependence of the KS Hamiltonian
on the wave function in solids.

The pseudo SIC operator is a modification of SIC potential in Eq. (2.56)
into a fully nonlocal, Kleinman-Bylander projector:

V̂SIC = α
∑
i

|VHXC[ni]ϕi⟩ pi ⟨VHXC[ni]ϕi|
⟨ϕi|VHXC|ϕi⟩

, (2.60)

where α is a screening factor. The selection of α = 1 correctly reproduces the
proper atomic limit of the SIC potential. In particular for molecules, both
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ionization potential (IP) and electron affinity (EA) can be obtained with good
accuracy from HOMO and LUMO eigenvalues of the SIC-KS equations [107].
On the other hand, the band gaps of solids are greatly overestimated with
α = 1. Filippetti et. al [106] suggested α = 1/2 from the consideration
of eigenvalue relaxation, which corrects the band gaps of III-V and II-VI
semiconductors surprisingly well. We will refer the SIC implementation with
α = 1/2 to pseudo SIC here after. Finally, the Pseudo-SIC KS equation that
should be solved is a slight modification of original KS equation as follows:

[ĤLDA − V̂SIC] |ψn,k⟩ = εn,k |ψn,k⟩ . (2.61)

In SIC-LSDA, the general energy functional is:

ESIC[n,m] = E[n,m]−
∑
i,σ

EHXC[n
σ
i ], (2.62)

where E[n,m] is the LSDA energy functional and EHXC[n
σ
i ] is Hartree exchange-

correlation energy for i-th orbital charge.

EHXC[n
σ
i ] =

∫
dr

(
1

2
VH[n

σ
i (r)] + EXC[n

σ
i (r)]

)
. (2.63)

A serious drawback for the SIC-KS equation is that a physically mean-
ingful energy functional by a variational principle is not available, which
means, in principle, the total energy cannot be obtained within the theo-
retical framework of SIC approach. 2 It is a general failure for SIC-LSDA
approaches [106]. Within the first-order perturbation, the shift of pseudo
SIC eigenvalues from LDA is:

∆εi = −⟨ψi| V̂SIC |ψi⟩
= −pi

2
⟨ψi|VHXC[ni] |ψi⟩ . (2.65)

2However, in the pseudo-SIC formalism, auxiliary form of the total-energy functional
has been proposed based on the Eq. (2.61) [106]. In terms of eigenvalues, the SIC-KS
energy can be written as follows:

ESIC[n,m] =
∑
i,σ

fσn,kεnkσ −
∑
σ

∫
drnσ(r)V σ

HXC[n(r),m(r)]

+ EHXC[n,m] + Eion

+
∑
n,k,σ

fσn,k ⟨ψσ
n,k|V̂SICσ |ψσ

n,k⟩ −
∑
i,σ

EHXC[n
σ
i ], (2.64)

where the first three terms are expressions of the total energy in DFT, and the last two
terms are corrections based on pseudo SIC theoretical framework.
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The VHXC[ni] is always positive because the Hartree potential (positive) is
always stronger than exchange correlation potential (positive or negative).
Therefore the shift of SIC eigenvalues from LDA eigenvalues always has a
negative sign.

We implemented the pseudo SIC method in Tokyo ab inito programming
package (TAPP) that is an electronic-structure calculation code based on
DFT. The actual implementation is slightly different from the above expla-
nation, because our implementation and calculation of materials are based
on ultrasoft pseudopotential (USPP). The formulation of the pseudo SIC for
the USPP is explained in Appendix section.

2.2.2 DFT+U

The expression of DFT+U energy functional is derived from model Hamil-
tonian, originally Hubbard model [108]. The inclusion of a natural represen-
tation of strongly correlated materials has allowed to study a large variety of
strongly correlated materials with considerable improvement over L(S)DA or
GGA results. The successes of the method have led to further developments
of DFT+U theoretical framework, which have produced sophisticated and
efficient numerical formula. In DFT+U , some localized orbitals that rep-
resent the localization of electrons are selected, and they are used to treat
the electronic correlation in a special way. In its original definition, the +U
functional was not invariant under rotation of the localized orbitals that are
used to calculate the occupancies ni. The problem was solved by rotationally
invariant formalisms proposed later [109–111]. In this subsection, we explain
the rotationally invariant LDA+U formalism [111], which are used in our
calculations. 3

The LDA+U energy functional is:

ELDA+U = ELDA + EU , (2.66)

where EU is the rotational invariant on-site correction:

EU [{nτσ
mm′}] =

Ueff

2

∑
τ

∑
mσ

(
nτσ
mm −

∑
m′

nτσ
mm′nτσ

m′m

)

=
Ueff

2

∑
τσ

Tr[nτσ (1− nτσ)]. (2.67)

3We implemented the rotationally invariant LDA+U in TAPP according to the imple-
mentation explained in Ref. [111].
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nτσ is occupation matrix (on-site density matrix) defined as: 4

nτσ
mm′ =

∑
n,k

fn,k ⟨ψσ
n,k|Φτ

m⟩ ⟨Φτ
m′|ψσ

n,k⟩ , (2.68)

where Φτ
m is localized (atomic) orbitals. ψn,k are the pseudo-wave functions

and fn,k are the occupation numbers.
The +U operator is obtained by derivative of EU by ψσ∗

n,k:
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2

∂
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∑
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. (2.69)

The first and second terms in Eq.(2.69) becomes∑
τ,m

∂nτσ
mm
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and
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Hence, Eq.(2.69) becomes

∂EU

∂ψσ∗
n,k

=
Ueff

2

∑
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(
|Φτ
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m| − 2

∑
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m|

)
|ψσ
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(2.72)

4This is a representation with norm conserving pseudopotential (NCPP), whereas ac-
tual calculations are performed with ultrasoft pseudopotential (USPP). The formulation
of LDA+U under USPP is explained in Appendix.
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Therefore, the potential V̂ σ
U acting on KS equations is

V̂ σ
U =

Ueff

2

∑
τ

(∑
m

|Φτ
m⟩ ⟨Φτ

m| − 2
∑
mm′
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m|

)
. (2.73)

In the atomic limit for atom τ , where nτσ
mm ≡ nσ

m, the +U term can be
simplified as

EUatomτ =
Ueff

2

∑
mσ

(
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∑
m

(nσ
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2

)
. (2.74)

The one-electron potential is given by the derivative of Eq. (2.74)

vσl =
∂EUatomτ

∂nσ
l

=
∂

∂nσ
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2
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(
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m −

∑
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(nσ
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2
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= −Ueff

(
nσ
l −

1

2

)
. (2.75)

The relation shown in Eq. (2.75) denotes the general effect of DFT+U on
the expected shift of eigenvalues as a result of +U potential. The shifts of the
eigenvalues are determined by the occupation nσ

l , where n
σ
l > 1/2 (generally

occupied states) bring about the downward shift, and the upward shift with
nσ
l < 1/2 (generally unoccupied states). When nσ

l = 1/2, the one-electron
potential vanishes and no changes are induced. The behavior of the +U
potential for occupied and unoccupied states bring about the improvement
of calculated gaps. However, the improvement is restricted to the material
which satisfy the special condition of the occupation, therefore great care is
needed for the selection of the localized orbital Φτ and Ueff value in the actual
calculations.

2.2.3 Hybrid Functional

Hybrid functionals are explicit orbital-dependent functionals in which frac-
tional portion of Fock exchange (exact exchange, EXX) is introduced into
DFT exchange-correlation (XC) functional. While the hybrid functionals
have rapidly grown as a standard tool in quantum chemistry, their applica-
tion to the electronic-structure calculation of solid is much more recent due
to the high-computational cost required for the calculation of nonlocal EXX
term with plane-wave basis set. Even though the way for the mixture of these
two different XC terms is a nontrivial issue, non-empirical calculations can
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be performed under the defined mixture of the hybridization ratio. A simple
model for the hybrid of DFT and HF has been proposed as follows [112]:

Ehybrid
XC = EDFT

XC +
1

n
(EHF

X − EDFT
X ), (2.76)

where EDFT
X and EDFT

XC are the exchange and the exchange-correlation of DFT
(XC of GGA-PBE) and n is an integer number. In the above expression, n =
1 incorporates 100% exact exchange with PBE correlation, n = 4 corresponds
to PBE0, and n → ∞ results in GGA-PBE. In PBE0, the exchange term
of the functional is constructed by a mixing of 25% Fock exchange and 75%
PBE exchange in PBE0, where the electron correlation is treated within the
PBE formalism. The resulting expression for the exchange-correlation energy
for “parameter-free” PBE0 takes the following form:

EPBE0
XC =

1

4
EHF

X +
3

4
EPBE

X + EPBE
C . (2.77)

The Fock exchange energy EHF
X is written as

EHF
X = − 1

2

∑
kn,qm

2wkfkn × 2wqfqm

×
∫∫

d3rd3r′
ψ∗
kn(r)ψkn(r

′)ψqm(r)ψ
∗
qm(r

′)

|r− r′|
, (2.78)

where the terms are calculated in terms of the set of one-electron Bloch
state {ψkn(r)}, and corresponding set of occupation numbers {fkn}. The
sums over k and q must be performed over all k points sampled in the
Brillouin zone (BZ) with weights wk specified by Monkhorst-Pack scheme.
The factors 2 account for the spin multiplicity of the system with doubly
occupied one-electron states. The nonlocal HF exchange potential obtained
by the derivative of EX by ψ∗

kn(r) is:

VX(r, r
′) = −2

∑
qm

wqfqm
ψ∗
qm(r

′)ψqm(r)

|r− r′|
. (2.79)

One of the difficulties in evaluating the Fock exchange arises from the slow
decay of the exchange interaction with distance. Heyd etal. [113] addresses
the problem by separating the exchange interaction into a short- and a long-
range part, and only the short-range Fock exchange are mixed with DFT
exchange, leaving the DFT correlation unchanged, which are called Heyd–
Scuseria–Ernzerhof (HSE) screened Coulomb hybrid DFT [113, 114]. Since
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2.2. Improved exchange-correlation functional

the computational cost for Fock exchange scales quadratically with the num-
ber of k mesh, the HSE functional considerably reduces the computational
costs. The starting point of the HSE hybrid functional is the PBE0 hybrid
functional. In the formalism of HSE, the HF exchange are divided into short-
range (sr) and long-range (lr) parts to avoid the slow convergence of the HF
exchange interaction with distance, and the slowly decaying long-rage part
of the HF exchange are neglected:

EHSE
XC =

1

4
Esr, HF

X +
3

4
Esr, PBE

X + Elr, PBE
X + EPBE

C , (2.80)

and the separation is accomplished through a decomposition of the Coulomb
kernel:

1

r
= Sµ(r) + Lµ(r) =

erfc(µr)

r
+

erf(µr)

r
, (2.81)

where erfc(µr) is complementary error function: erfc(µr) = 1−erf(µr). It has
been empirically established that the optimum range-separation parameter
is 0.207 Å−1.

Now, it is useful for us to consider the effects of the Fock exchange on
the shift of the eigenvalues. Within the first-order perturbation, the shift of
eigenvalues by the Fock exchange potential is:

⟨ψ(r)l|VX(r, r′) |ψ(r)l⟩

= −2
∑

m:occupied

∫∫
d3rd3r′

ψl(r)ψ
∗
m(r

′)ψm(r)ψ
∗
l (r)

|r− r′|
. (2.82)

In Eq. (2.82), the component of the occupied state has a larger value than
the unoccupied state, because the summation over m is performed only for
the occupied states, which indicate large downward shift of the eigenvalues
of the occupied states. Thus, the introduction of fractional portion of Fock
exchange into XC of GGA is expected to improve the gap that is originally
underestimated by GGA.
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2.3 Effects of improved XC functionals

By applying the improved XC functionals that we have already introduced,
the improvement of the overall electronic structures is expected compared
to the ones calculated with LDA or GGA. The improvement of the basic
electronic structure is of great importance as a first step for the calculation
of defect in solid, because the stability of the defect states strongly depends
on the basic electronic structure, such as band gap value, of the host crystal.
This section is devoted to the explanation how these beyond LDA function-
als, such as LDA+U , SIC, and hybrid functionals modify the eigenvalues of
the KS equations, which lead to the improvement of calculated band struc-
tures. Calculations are performed mainly for the SrTiO3 unitcell, and the
improvements of the band gap values are discussed. For the deep under-
standing, some reference materials are also calculated and the effects of XC
functional on the electronic structures are discussed.

2.3.1 Band structures of SrTiO3

Figure 2.1 shows the band structure of SrTiO3 calculated with various XC
functionals described in the above section. In all the band structures, con-
duction band minimum (CBM) is at Γ point, whereas X point is very close
in energy. The valence band maximum (VBM) is located at R point. The
overall natures of the band structures are not so much different from each
other. The large difference is the calculated gap values; LDA shows the un-
derestimated band gap value of 1.75 eV, whereas the experimental value is
3.2 eV. This is the well-known drawback of the LDA (and also GGA whose
gap value is 1.86 eV), which can be corrected by improved XC functionals.

LDA+U

The partial density of states (PDOS) for each orbital, that is the projection
of the total density of states (total DOS) on the isolated atomic orbitals,
are the key to understand the behavior of LDA+U (and pseudo SIC) whose
theoretical framework is based on the occupation ni for i-th atomic orbital.
Figure 2.2 shows the PDOS of Ti-3d in SrTiO3 calculated with LDA, which
indicates that the conduction band minim (CBM) of SrTiO3 is mainly com-
posed of Ti-3d t2g orbitals with widely spreading eg orbitals at higher energy
region. The valence band (VB) is mainly composed of O-2p, and there is
a small hybridization between O-2p and Ti-3d. Even though the nominal
valence charge is Ti-3d0, the occupation nTi,3d has non zero value due to the
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2.3. Effects of improved XC functionals

Figure 2.1: Crystal structure of SrTiO3 and the series of band structures cal-
culated with (a) LDA, (b) LDA+U , (c) pseudo SIC and (d) hybrid functional
HSE along k-point path shown in the figure. In each figure, the vertical axis
is the shift of eigenvalues from LDA result.
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Figure 2.2: Partial density of states (PDOS) of SrTiO3 calculated with LDA.
Red and blue lines indicate two components of Ti-3d orbitals: t2g and eg,
respectively. The Fermi level position is at EF = 0.

hybridization with occupied O-2p band. The occupation is important be-
cause it determine the improvement of the gap value in LDA+U as shown in
Eq. (2.75).

Figure 2.1(b) shows the band structure of SrTiO3 calculated with LDA+U .
The vertical axis is the difference of the eigenvalues from LDA calculation.
On-sight +U correction is imposed only on Ti-3d state with UTi,d

eff = 5.0 eV,
which leads to the upward shift of the three bands (Ti-3d t2g state) com-
posing CBM . The change of O-2p band is very small, because no explicit
correction is applied for these states. As a result, +U correction brings about
slight improvement of the band gap value (2.4 eV), which are still smaller
than the experimental value (3.2 eV). Figure 2.3 shows the change of band
gap and occupation on the Ti-3d states as a function of applied UTi,d

eff , where
the occupation slightly decreases (0.08 < nTi

3d,t2g
< 0.13, 0.24 < nTi

3d,eg
< 0.26)

as the increase of UTi,d
eff value. The figure also indicates that the further im-

provement of the band gap is difficult to be achieved with an appropriate
range of UTi,d

eff that is reported to be UTi,d
eff = 4.0-5.0 eV.

One of the serious drawbacks of the +U method is the determination of
the Ueff value. Theoretical approaches to obtain the Ueff value in the frame-
works of DFT+U has been proposed based on several concepts, such as linear
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2.3. Effects of improved XC functionals

Figure 2.3: Relation between band gap of SrTiO3 and occupation for Ti-3d
eg and t2g states in LDA+U calculation. Dotted line shows the experimental
band gap value (3.2 eV).

change of total energy for fractional occupation of a state i (d2E/dn2
i = 0)

[111, 115] or total energy difference between addition/removal of an elec-
tron into/from the atomic orbital [116]. However, manually adjusted Ueff

value is often suitable for the calculation of actual materials compared to
the theoretically obtained Ueff value. Moreover, there is a large dependence
of Ueff value on the choice of the local orbital that are used for the occu-
pancy calculation (See Eq. (2.68)); this is the local orbital dependence of
LDA+U [117, 118]. For instance, the evaluated U values with neutral Fe0

and positively ionized Fe2+ atomic orbitals result in 4.6 and 7.8 eV to obtain
identical results [118]. In the pseudopotential framework, the un-screening
procedure of the potential (removal of the valence electron from one-electron
potential) leads to small dependence of the obtained band structures on the
atomic valence state used for the construction of the pseudopotential. On the
other hand, the atomic orbitals are directly used in LDA+U , which unavoid-
ably introduces the strong dependence on the valence state of the isolated
atomic calculations. Even though the DFT+U is a successful approach for
the correction of DFT, these drawbacks hinder the application of DFT+U
for more wide variety of materials.

SIC (self interaction correction)

Figure 2.1(c) shows the band structure of SrTiO3 calculated with pseudo
SIC [106]. The SIC band-gap value is 2.81 eV that is closer to the experi-
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Figure 2.4: Schematic diagram of the effect of +U and pseudo SIC operators
on the eigenvalues of LDA band structure of SrTiO3. In LDA+U , on-sight
coulomb potential is applied only for the d band. The pd and pp is the
occupations for d and p orbitals, respectively.

mental gap than the LDA+U gap. As shown in Eq. (2.59), the SIC potential
is constructed based on the occupation ni. Therefore, the pseudo SIC and
+U operators are similar to the point that both methods are based on the oc-
cupation, whereas their behaviors are completely different from each other.
In DFT+U , i-th eigenvalue increases (ni < 1/2) or decreases (ni > 1/2)
depending on the occupation ni, whereas the eigenvalues in pseudo SIC al-
ways decreases as explained in Eq. (2.65). In pseudo SIC, the shift of the
eigenvalue has linear dependence on the occupation (pi) within first-order
perturbation as shown in Eq. (2.65); therefore the eigenvalues of the occu-
pied bands tend to shift more rapidly compared to the empty bands. As a
result, the band gap is improved as shown in Fig. 2.1(c). Figure 2.4 summa-
rizes the effect of +U and pseudo SIC operators on the eigenvalues of LDA
band structure. 5

As stated for LDA+U , there is a similar localized orbital dependence
in the pseudo SIC formalism, because both methods are basically based on
the same occupation. In addition, the atomic orbital of an isolated atom
that is used for the subtraction of SI in solid in pseudo SIC framework is

5Note that the change of the eigenvalue does not directly related to the shift of electron
affinity (EA) and work functions (WF). For these physical quantities, the VBM and CBM
must be evaluated from the vacuum level.
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Figure 2.5: Shift of the eigenvalues and change of the band gap values cal-
culated with GGA-PBE, PBE0 and HF for SrTiO3.

an approximation for the wave function in solid and NOT the true charge
distribution of itself included in the total change density. The definition of
SI in solids is an important issue for the general SIC procedure, and some
extension with other local orbitals such as Wanner functions [119] has been
proposed. However, some problems are reported in these approaches, such
as a great overestimation of the band gap probably due to the lack of proper
treatment of dielectric screening [119]. The problems of the localized orbitals,
as well as the definition of the SI in the solid remain as a critical issue in the
SIC approaches.

Hybrid functional (HSE)

Band structure calculated with hybrid functional HSE is shown in Fig. 2.1(d).
The obtained band gap value is 3.3 eV, which is very close to the experimental
gap. The improvement of the band gap in the hybrid functional calculation is
due to the fractional portion of the EXX (EHF

X ). The effects of the EXX ratio
n in Eq. (2.76) are shown in Fig. 2.5, where the series of band structures and
gaps calculated with different value of n (PBE, PBE0 and HF with PBE cor-
relation) are schematically shown. In the figure, the increase of the band gap
value is confirmed as the increase of EXX ratio n. Figure 2.5 (and also Fig.
2.1(d)) clearly indicates that the increase of the band gap value is brought
about by the downward shift of the occupied states (valence band) and up-
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ward shift of the empty states (conduction band). A general explanation for
the improvement of gap value in the hybrid functional is the correction of
self-interaction error (SIE) due to insufficient GGA exchange by adding a
fractional portion of EXX. The downward shift of the occupied-state eigen-
values is well explained by the explanation. However, the upward shift of the
empty-state eigenvalues would be difficult to be explained in terms of this
explanation, because the first-order perturbation of Fock exchange potential
shown in Eq. (2.82) always induces the downward shift of the eigenvalues.

For the explanation of the situation, we define three Hamiltonians. First
one is an independent electron system without many-body effects, which is
defined by:

H0
KS = HGGA

KS − V GGA
XC , (2.83)

where H0
KS includes kinetic, external and Hartree potentials (without XC

potential). Second and third Hamiltonians are defined by adding exchange
terms of PBE and HF into H0

KS:

HX, GGA
KS = H0

KS + V GGA
X , (2.84)

HX, HF
KS = HEXX

KS = H0
KS + V HF

X . (2.85)

HX, HF
KS corresponds to exact exchange (EXX) approach, where full exchange

of Hartree-Fock is included. The eigenvalues calculated with these three
Hamiltonians are shown in Fig. 2.6. The eigenvalues of H0

KS show very high
value compared to the original PBE-KS equations because of the strong self-
interaction in Hartree term which cannot be compensated by any exchange
terms. On the other hand, the GGA exchange induces almost monotonous
downward shift of eigenvalues irrespective of the occupation of the states.
The exchange of GGA (and LDA) does not make no distinction for the oc-
cupation, 6 which would be the cause of the monotonous shift of the eigen-
values. On the other hand, the Hartree-Fock exact exchange term explicitly
considers the occupancy of states as shown in Eqs. (2.79) and (2.82), which
selectively and greatly lowers the eigenvalue of the occupied state. Therefore,
the upward shift of unoccupied states in the hybrid functional calculations
is the simultaneous effects related to the decrease of GGA exchange and the
increase of Hartree-Fock exchange rather than the direct effect of the Hartree-
Fock exchange term. The contribution of GGA correlation to the gap value
is about 0.3 eV, which indicate that the general tendency is governed by the
ratio of the exchange terms.

6In LDA exchange, the monotonous shift of the eigenvalues is easily understood from
the form of exchange potential in Eq. (2.18). Event though the form of GGA exchange is
slightly complicated, the situation is the same because there are no explicit consideration
for the occupation.
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KS , which are defined by Eqs. (2.83)–(2.85). The shift of eigenvalues

for these Hamiltonians reflect the characteristics of GGA and HF exchange
terms.

2.3.2 Other band structure examples

From the discussions for the band structures of SrTiO3 calculated with
LDA+U , pseudo SIC and hybrid functional (PBE0), we can understand the
general behavior of these three different beyond LDA functionals. In this
subsection, band structures of other oxides (ZnO, TiO2, SiO2) and semi-
conductor Si are calculated to check the applicability of these improved XC
functional as well as to obtain further insights on their behavior.

Band structure of ZnO

ZnO is a famous II-VI wide-gap semiconductor whose crystal structure is
shown in Fig. 2.7. The behavior of oxygen vacancy and hydrogen impurity
in ZnO has been widely discussed as a possible source of carrier electron
which bring about the n-type conductivity. The band gap of ZnO is 3.4 eV
with CBM and VBM characterized by Zn-4s and O-2p, respectively. The
characteristic of the ZnO band structure is the occupied 3d10 band, whose
position is below the O-2p valence band with an explicit gap between them.

The band structure calculated with LDA, LDA+U , pseudo SIC and hy-
brid HSE are shown in Fig. 2.7. In the LDA band structure, the band gap
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Figure 2.7: Series of band structures of ZnO calculated with (a) LDA, (b)
LDA+U , (c) pseudo SIC and (d) hybrid functional HSE along k-point path
shown in the figure. In LDA+U calculation, only UZn,3d

eff are imposed. In
each figure, the vertical axis is the shift of eigenvalues from LDA result.
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Figure 2.8: Shift of the eigenvalues and change of the band gap values of
ZnO calculated with LDA, LDA+U and pseudo SIC.

(0.9 eV) is smaller than experimental value, and the Zn-3d band is within
the O-2p band. On the other hand, in LDA+U with UZn,3d

eff , the band gap
is hardly improved (1.4 eV) due to the Zn-4s character of CBM, but the
localized Zn-3d band shows great downward shift due to the effects of UZn,3d

eff .
In the band structure of pseudo SIC, strong downward shift of the occupied
band is calculated, which leads to almost the same band gap value (3.4 eV)
compared to the experimental values. On the other hand, the hybrid func-
tional HSE gives a slightly small band gap (2.6 eV), and there are almost no
gap between Zn-3d and O-2p bands. The band structure of ZnO with HSE
suggests that a much more portion of EXX would be necessary to obtain
consistent results with the experiment. The impact of the hybrid ratio in
HSE functional on the band structure of ZnO has already been discussed by
Oba et al. [69], where they pointed out about 37.5% instead of original 25%
EXX ratio is required to obtain the consistent band gap value compared to
experimental value.

Figure 2.8 schematically shows the shifts of the eigenvalues of ZnO cal-
culated with LDA, LDA+U and pseudo SIC. The general effects of these
functionals on the ZnO band structure can be explained in terms of the
occupation as already explained in the band structure of SrTiO3. Figure
2.9 indicates the ZnO eigenvalues calculated with GGA-PE and hybrid HSE
functional, which can be understood from the already discussed general be-
havior of the fractional portion of EXX incorporated into GGA exchange.
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Figure 2.9: Shift of eigenvalues in the band structure of ZnO calculated with
GGA-PBE and hybrid HSE functionals.

Band structure of TiO2 rutile

TiO2 is also an important transition metal oxide that attracts much atten-
tion for various applications due to their characteristic physical properties,
such as high-k property, catalytic property and electron conductivity. Ru-
tile TiO2 is a wide-gap semiconductor whose band gap is 3.1 eV, and their
n-type conductivity is extensively studied both from experimentally and the-
oretically [68]. Figure 2.10 shows the band structures calculated with LDA,
LDA+U , pseudo SIC and hybrid HSE functional. The band gap value cal-
culated with LDA (1.9 eV) is smaller than the experimental value reflecting
a typical error of LDA. The band structure of TiO2 and SrTiO3 is very sim-
ilar; the main character of CBM and VBM are Ti-3d and O-2p, respectively.
Therefore, the effects of the improved functionals on the TiO2 band structure
are also similar to that of SrTiO3 as shown in Figs. 2.4 and 2.5. In LDA+U
band structure, the application of UTi,3d

eff lifts up the empty Ti-3d conduction
band, but the improvement of the gap value (2.4 eV) is insufficient compared
to the experimental value. In pseudo SIC, large downward shifts of the occu-
pied states bring about the improved band gap, and the value is 2.5 eV. The
pseudo SIC gives a slightly better band gap than LDA+U , but the gap is
still underestimated. On the other hand in hybrid functional HSE, the band
gap value (3.3 eV) is slightly over estimated, but the value is closer to the
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Figure 2.10: Series of band structures of TiO2 rutile calculated with (a) LDA,
(b) LDA+U, (c) pseudo SIC and (d) hybrid functional HSE along k-point
path shown in the figure. In each figure, the vertical axis is the shift of
eigenvalues from LDA result.
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experimental value compared to other functionals.

Band structure of Si and SiO2

The last examples are the band structures of SiO2 alpha quartz and Si, both
of which have a large impact on the modern economy as most frequently
used insulator/semiconductor materials. Unlike the previous examples of
transition metal oxides, the Si and SiO2 have much more strong covalent
bonding character. In these cases, the LDA+U method is not preferable for
the improvement of electronic structure because this method is basically a
correction for a specified band with localized atomic characters. Although
the pseudo SIC is based on the occupancy of the localized orbitals, unlike
the LDA+U method, all of the electronic states are corrected by the pseudo
SIC operator without considering the determination of atom species and
angular momentum that should be corrected; it is hence interesting to see
what kind of change is induced by the pseudo-SIC method. We calculated the
band structure with LDA, pseudo SIC and hybrid HSE functional, and the
calculated band structures of SiO2 alpha quartz are shown in Fig. 2.11 (a).
The experimental band gap of SiO2 quartz is 8.8 eV, whereas the LDA gap is
5.7eV. The band gap values calculated with pseudo SIC and hybrid HSE are
8.8 and 8.0 eV, respectively, which are sufficiently close to the experimental
value.

The band structures of Si calculated with different functionals are shown
in Fig. 2.11 (b). The experimental band gap of Si is about 1.2 eV, whereas the
calculated gap with LDA is 0.5eV, which is about one half the experimental
value. We found that both calculated band gap with pseudo SIC and hybrid
HSE is 1.2 eV, which is just the experimental value. However, as for the band
width of valence band of Si, LDA gives sufficiently close band width (12.0 eV)
to the experimental value (12.5 eV), whereas pseudo SIC greatly overestimate
the band width of Si (15.2 eV). Hybrid HSE also slightly overestimate the
band width (13.2 eV), but the value is slightly better than the result of
pseudo SIC. Considering the overall improvements for the band gap value
and band width, the hybrid functional HSE would be better selection for the
improvement of the band structure of Si and SiO2.

2.3.3 Summary of the improved functionals

We have explained several band structures calculated with different XC func-
tional: LDA (GGA), LDA+U , pseudo SIC and hybrid HSE. The obtained
band gaps are summarized in Fig. 2.12. The LDA always underestimates the
band gap value in wide range materials. Although the LDA+U , which is a
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2.3. Effects of improved XC functionals

Figure 2.11: Series of band structures of (a) SiO2 and (b) Si calculated with
LDA, pseudo SIC and hybrid functional HSE along k-point path shown in
the figure. In each figure, the vertical axis is the shift of eigenvalues from
LDA result.
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Figure 2.12: Experimental and calculated band gaps of several insulators.
Calculations are performed with LDA, LDA+U , pseudo SIC and hybrid HSE.
The good agreement of band gap values are achieved with SIC and HSE
functionals.

frequently used beyond LDA functional, improves the LDA band structure,
the improvement of the band gap values is very limited. The improvement of
the LDA+U gap greatly depends on the nature of electronic structure of tar-
get material, and the appropriate choice of atom species, angular momentum
and +Ueff value is particularly important. On the other hand, both pseudo
SIC and hybrid HSE give greatly improved band gap values. Pseudo SIC has
almost negligible increase of computational load from LDA, which makes the
pseudo SIC method especially attracting for calculations with large super-
cell model that is necessary for the defect calculation in solid. However, the
SIC-KS equation does not satisfy the variational principles, which indicate
that the SIC approach in principle cannot calculate the total energy and
force. This is a crucial fault of SIC method to apply the calculations of de-
fect and impurity in perovskite-type oxides, because the relaxation around
the defect species are of fundamental importance in these materials; the
large effects of geometry optimization on the electronic structure of defects
in perovskite-type oxides are explained in the following chapter. Therefore,
we concluded that the best theoretical framework for the calculation of de-
fects in perovskite-type oxides is hybrid (HSE) functional. Especially, the
calculation of the defect and impurity in solids inevitably treat large scale
supercell models, hence the HSE functional that has a more speedy conver-
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gence against the k-mesh sampling number compared to PBE0 (and other
hybrid approaches with non-screened EXX) is suitable to reduce the high
computational cost of EXX term under plane-wave basis set. Even though
the increase of the computational cost for the EXX term under plane wave
basis is still a serious problem especially for a large scale calculations, the
problems are gradually reducing by the recent development of the computa-
tional hardware power.

2.4 Evaluation of defect in solid

In this thesis work, we will discuss the stability of defect species in perovskite-
type oxides based on formation energies. In this section, we will explain the
basic procedure of the evaluation of the defect formation energy in insulators,
which is necessary for the discussion in the following chapters.

2.4.1 Formation energy

Defect formation energy is basically defined by total energy difference be-
tween reactants and products, where a certain number of atoms and electrons
are exchanged between host crystal and atomic and electronic reservoirs. The
formation energy for a defect of atom α in charge state q can be represented
by using the expression [93,120]:

Ef (Dq) =
{
Et(D

q)− Et(perfect
0)
}
+
∑
i

∆niµi + q(µVBM + EF). (2.86)

For the calculation with q ̸= 0, a homogeneous background charge is intro-
duced to prevent the divergence of coulomb energy term in a periodically-
arranged charged system. In the first term of Eq. (2.86), Et(D

q) and
Et(perfect

0) are the total energies of a supercell with and without defect
D, respectively. The second term in Eq. (2.86) represents the exchange of
atoms with the chemical reservoirs, where the notation ∆ni denotes the dif-
ference in the number of constituent atom i, and µi is chemical potential for
the atom. For example, when we evaluate the formation energy of oxygen va-
cancy in an oxide material, the removal of an oxygen atom is represented by
∆n1 = +1 and an appropriate chemical potential µ1 = µO. Under oxidizing
atmosphere, a selection for the chemical potential is µO = µO2(molecule)/2.
Under reducing atmosphere, such as H2 gas, an appropriate selection is
µO = µH2O(molecule) − µH2(molecule). In the latter condition, the formation
energy is reduced by the amount of heat of formation for water, which rep-
resents the experimental trends that the generation of the oxygen vacancy
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Chapter 2. Density functional theory

is promoted in the reduced atmosphere. The third term in Eq. (2.86) rep-
resents the energy for the exchange of electrons (and holes) with the carrier
reservoir. In defect-free perfect insulators, the Fermi energy lies within the
band-gap energy region. It is, therefore, convenient to treat the Fermi energy
as a parameter 0 ≤ EF ≤ Eg. The Fermi energy is measured from µVBM that
represents the energy of electron reservoir defined at the VBM of defect-free
host crystal.

An important point in Eq. (2.86) is the way of the determination of
µVBM [93, 120]. The energy per electron required to remove some amount of
electron from the pure host crystal is defined as:

∆E =
EH(0)− EH(q)

q
, (2.87)

where q is the number of removed electrons. In insulators and semiconduc-
tors, where the highest-occupied state is at VBM, the removal of an electron
leaves a hole at VBM. The energy of the VBM corresponds to that of a dilute
limit for the hole, therefore one has to take:

µVBM = lim
q→0

∆E. (2.88)

The operation equivalently correspond to increasing the supercell size to
infinity with q = 1. The Eq. (2.88) is just the Slater-Janak theorem shown
in Eq. (2.51), which indicates that the µVBM corresponds to the highest-
occupied eigenvalue. Thus, in the diluted limit of Eq. (2.88), ∆E converges
into the eigenvalue at VBM (εVBM), and we can adopt εVBM as µVBM.

7

Figure 2.13 shows the relation between ∆E and the amount of removed
electron from band-insulator SrTiO3, where the asymptotic behavior of ∆E
to εVBM is confirmed.

2.4.2 Electronic transition energy

The transition energy ε(D, q/q′) is defined as the Fermi energy at which the
charge state of defect D transforms from q into q′. ε(D, q/q′) can be obtained
from the relation Ef (Dq) = Ef (Dq′), which leads to the following formula:

ε(D, q/q′) =
Et(D

q)− Et(D
q′)

q′ − q
− µVBM. (2.89)

7It is especially noted that “NOT” all DFT program codes satisfy the Janak theorem.
Therefore, the check of the converged value in Fig. 2.13 is strongly recommended before
using εVBM as µVBM.
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2.4. Evaluation of defect in solid

Figure 2.13: Total energy difference per hole between charge neutral- and hole
(q)-contained SrTiO3 unit cell. εVBM is the eigenvalue of VBM in SrTiO3.
The calculations are performed with VASP code [103].

The transition energy defined by Eq. (2.89) is closely related to the position
of defect level within the band gap, where the electrons are released or cap-
tured at the in-gap states. Usually, these transition energies are consistent
with the in-gap state in band structure or density of states (DOS), namely
relative eigenvalues of Kohn-Sham Hamiltonian. The transition energy is
based on total energy of the system; therefore the transition energy enables
us the specification of the defect levels only with the total energy information.

2.4.3 Potential alignment

The charged supercell calculation violates the charge neutrality condition,
which leads to the divergence of the Coulomb potential term in KS equa-
tion. Usually, the problems are solved by setting the electrostatic potential
at G = 0 component VH(G) = 0 [120]. As a consequence, all eigenvalues of
the KS equation have constant arbitrariness. Generally, the value of the off-
set constant depends on pseudopotentials and is not known [120]. The total
energy that is originally derived for a charge neutral system is also subject to
the same arbitrariness. Accordingly, the total energies (and the eigenvalues)
obtained under charged state calculations need to be corrected to obtain con-
sistency between neutral and charged systems for the evaluation of formation
energy in Eq. (2.86). Furthermore, point defects and impurities in solids can
take multiple charge states, and their stability depend on Fermi level (EF),
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as shown in Eqs. (2.86) and (2.89). The long-range nature of the Coulomb
potential inherent in these charged defects gives rise to a constant shift in the
electrostatic potentials, which affects the total energy and the band structure
of the supercell. The shift cannot be evaluated supercell calculations alone
since there is no absolute reference in the defect incorporated supercells.

The practical way of the correction for these arbitrariness is the potential
alignment [120, 121], where electrostatic potentials are aligned between per-
fect neutral supercell and supercell with charged defect incorporation. The
correction for the total energy of a charged defect is [120]:

∆E(Dq) = q ·∆V q
R = q · [VR(Dq)− VR(Perfect)] , (2.90)

where ∆V q
R = [VR(D

q)− VR(Perfect)] is the difference of the electrostatic
potential at reference point R in the defect-incorporated and perfect super-
cells. The reference point R should be preferably selected at the point far
from the defect species in supercell. Hence, the actual form of µVBM in Eq.
(2.86) used for the evaluation of the formation energy is:

µVBM = µUncorrected
VBM +∆V, (2.91)

where µUncorrected
VBM is the chemical potential of VBM without the potential

alignment.
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Chapter 3

Calculation of oxygen vacancy
in SrTiO3

As already explained in the Introduction chapter, the oxygen vacancy (VO) in
perovskite-type titanate, whose general formula is ATiO3−δ is of fundamental
importance, because it is easily generated in the fabrication process and
gives significant impact on material properties. Previous theoretical studies
indicate the significant XC functional dependence of the electronic structure
of VO in ATiO3−δ. However, the explanation for the reason of the great XC
functional dependence is very little in these previous studies. The purpose
of this chapter is the clarification of the nature of VO in SrTiO3−δ based on
the results of first-principles calculation with various XC functionals. We
will discuss the reason of the significant XC-functional dependence of the
calculated electronic structure of VO in SrTiO3, and the possible explanation
for the experimentally confirmed V +

O stability of the oxygen vacancy. We
will also discuss the suitable XC functionals for the calculation of defects
and impurities in perovskite-type oxides.

3.1 Introduction

The electronic structure calculation of defects in solids, especially shallow
donor states are very challenging topic in current DFT calculation, because
both band-gap value and defect levels must be properly calculated. Fur-
thermore, the defect calculation in solids usually requires a large supercell
model that contain more than ∼100 atoms depending on the concentration
of the defect species, which hinders the application of high-cost and high-
accuracy theoretical framework. The oxygen vacancy (VO) in BaTiO3 and
SrTiO3 is a typical example of a shallow donor in transition metal oxide.

69



Chapter 3. Calculation of oxygen vacancy in SrTiO3

As already mentioned in Introduction chapter, the VO is of fundamental im-
portance among the defect species in ATiO3, because it is easily generated
and give a great impact on various physical properties of the perovskite-type
oxides. The DFT calculation with LDA- or GGA-XC functional contains sev-
eral problems such as small band gap value and self-interaction error (SIE),
which must be solved by more sophisticated XC functional to obtain accu-
rate electronic structure of an isolated VO in perovskite-type oxides. In this
section, we will explain the results of DFT calculation for VO in SrTiO3 with
several improved XC functional and discuss the suitable XC functional for
the calculation of defects in perovskite-type oxides.

3.2 Nature of the oxygen vacancy

The nature of the oxygen vacancy (VO) in SrTiO3 can be understood from
the ligand field theory for TiO6 octahedra. As denoted in the introduction
chapter, the 5-fold degenerate states of the Ti-d orbitals split into eg and t2g
states due to the six ligand oxide ions as shown in Fig. 1.6. The eg states
have higher energy levels than the t2g states, because the eg states receive
strong Coulomb potential from the ligand ions. Figure 3.1 shows the effect
of oxygen anion removal from TiO6 octahedra on the ligand-field splitting
of Ti-3d orbitals in SrTiO3. The calculations are performed with GGA-PBE
exchange-correlation functional for an isolated Sr8TiO6H6 (perfect TiO6) and
Sr8TiO5H5 (oxygen deficient TiO5) cluster models in a large supercell (16 Å).
In the cluster models, Ti ion is surrounded by six ligand ions (OH) with Ti-
O distances fixed at experimental value of cubic phase SrTiO3 (acubic/2 =
3.904/2 = 1.952 Å). Several numbers of electrons are removed from the
cluster models to achieve the electron occupation similar to the bulk SrTiO3;
14 electrons for Sr8TiO6H6 and 15 electrons for Sr8TiO6H6 are removed. Any
lattice relaxations are not included in these calculations except for the O-H
distance (1.001 Å).

Figure 3.1 shows the calculated Ti-3d levels, where one of the energy
levels of the doubly degenerated eg states (denoted by e′g in Fig. 3.1) greatly
decreases by the formation of VO because of the disappearance of the strong
Coulomb potential that pushes up the eg orbital energy. The three fold
degeneracy of the t2g states are solved by the formation of oxygen vacancy,
and two of three states (denoted t′2g) show lower energy shift as shown in
Fig. 3.1. However, the influence of VO on the t2g states is smaller than
that on eg states, because the t2g orbitals extend avoiding the oxide anions.
Consequently, the defect levels of the oxygen vacancy can be considered to be
the bonding and anti-bonding states between these e′g and t′2g states, which
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3.2. Nature of the oxygen vacancy

Figure 3.1: The effect of oxygen anion removal from TiO6 octahedra on the
ligand-field splitting of Ti-3d orbitals. The calculations are performed with
small cluster models: Sr8TiO6H6 and Sr8TiO5H5. These calculations are
performed with GGA-PBE exchange-correlation functional.

is schematically shown by Fig. 3.2. The figure implies that there are six
isolated defect levels formed by the oxygen vacancy. The lowest defect level
is the σ bonding state between two e′g orbitals, and their anti-bonding state
is the highest energy level. Four defect states are formed between the highest
and lowest defect levels, which has a nature of bonding and anti-bonding of
t′2g states. Among these defect levels, the lowest defect level has a possibility
to appear within the gap. When the lowest defect state appears within the
gap, the two electrons released from the missing of O2− anion are trapped at
the defect state, which leads to the formation of the neutral oxygen vacancy
(V 0

O). On the other hand, when the lowest defect state is very shallow or
above the CBM, the oxygen vacancy becomes a donor with empty defect
level (V 2+

O ), which lead to the generation of two carrier electrons. This is a
discussion for the nature of the oxygen vacancy in perovskite-type SrTiO3

based on simple cluster models, and the positions of the defect states in bulk
SrTiO3 depend on the band width of the conduction band, band gap, etc.
Furthermore, the σ bonding nature of the defects states imply strong atomic
configuration dependence of the position of defect levels. In the next section,
we will discuss actual VO levels in bulk SrTiO3 based on the calculations with
different XC functionals.
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Figure 3.2: Schematic diagram of the formation of oxygen vacancy levels in
SrTiO3. Gray circles on the σ bonding state is trapped electrons at the defect
state.

3.3 XC functional dependence of defect level

We calculated VO levels in SrTiO3 with different XC functionals. Defect
calculations are performed with a supercell composed of 4 × 4 × 4 SrTiO3

unit cells, where two oxygen vacancies are introduced at the body center
position of the supercell (318 atoms). The actual calculations are performed
with the primitive cell of the defect-incorporated supercell (79 atoms). We
also confirmed the effect of the lattice relaxation on the defect state of VO
in SrTiO3 by using fixed-lattice supercell (any lattice relaxation does not
performed) and relaxed lattice supercell (inner atomic coordinates are fully
relaxed). The calculations are performed with several different XC function-
als: GGA, GGA+UTi,3d

eff , HSE and Hartree-Fock (HF or EXX), where the
pseudo SIC calculations are not performed because the force (and the total
energy) cannot be obtained with the functional as explained in Sec. 2.2.1.
In HSE calculations, we employed exchange mixing ratio of 25 % HF and 75
% GGA with the value of range separation parameter µ = 0.207 Å−1 as sug-
gested for HSE06 functional. Calculations are performed by using projector
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augmented-wave (PAW) method 1 as explained in Sec. 2.1.4. The atomic
reference configuration of PAW potentials are 3s23p63d24s2 for Ti, 2s22p4 for
O, 4s24p65s2 for Sr. The cutoff energy for the plane-wave basis is 500 eV.

The lowest defect levels of the oxygen vacancy calculated with various
XC functionals are summarized in Fig. 3.3. The defect levels are calculated
with different charge state of the supercells; neutral (with two black circles),
+1 charged (with a black and white circles) and +2 charged (with two white
circles) states. The spin polarization is explicitly included for +1 charged
supercell with odd number of valence electron. Calculations are performed
with/without the lattice relaxation. In the fixed-lattice calculations shown
in Fig. 3.3, the defect states appear in all XC functionals and all carrier
electrons are trapped by the in-gap states (neutral oxygen vacancy V 0

O), which
shows that the natures of the oxygen vacancy (V 0

O) calculated with different
XC functionals are almost identical in the fixed-lattice calculations. On the
other hand, when the lattice relaxations are included, the defect states show
upward shifts, which induces the change of the valence state of the vacancy.
In GGA, GGA+U (UTi,3d

eff = 3eV) and HSE, the defect level is always above
the CBM, thus the two carrier electrons are generated due to the doubly
charged oxygen vacancy (V 2+

O ). On the other hand, GGA+U with (UTi,3d
eff =4-

5eV) and HF calculations show partial and total localization of electron at
the in-gap defect state, which indicate the oxygen vacancy has a possibility
to take V 1+

O and V 0
O states.

The large effects of the lattice relaxation around VO on the defect level can
be understood from the nature of oxygen vacancy in SrTiO3−δ. As shown in
Fig. 3.2, the lowest defect level is the σ-bonding state between two e′g states
that extend toward the direction of the vacancy site; therefore, the distance
between two Ti ions adjacent to VO greatly modifies the overlapping of e′g
states. As a result, the energy level of the bonding state moves down when
the distance between these two Ti ions decreases and moves up when the
distance increases as shown in Fig. 3.4.

It would be very difficult to conclude which valence state is the true
picture of the isolated VO in SrTiO3. The essential cause of the controversy
is the large dependence of the defect level on the XC functional and the
lattice relaxation around the vacancy. One of the measures of the validities
for the calculation would be the calculated band gap value, which is very
important for the evaluation of the defect-formation energy defined by Eq.
(2.86). Among the XC functionals used in the present calculations, only the
hybrid HSE gives the gap value sufficiently close to the experimental value.
We calculated some basic properties of SrTiO3, such as band gap, lattice

1The calculations are performed with VASP code. [103]
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Figure 3.3: VO levels in SrTiO3 calculated with different XC functionals:
GGA, GGA+U , HSE and HF. The calculations are performed with fixed
(upper) and relaxed (lower) conditions. Number of electrons are changed
(neutral, +1 and +2 charged states) by changing the number of electron
in the supercell. Open and filled circles indicate empty and filled states,
respectively.
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Figure 3.4: Schematic figures of the effects of neighboring Ti-Ti distance
adjacent to VO on the position of defect levels. The lowest defect level shows
upward and downward shifts depending on the occupation of the state. These
results are due to the nature of the defect level that is a bonding state of two
e′g.
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constant and bulk modulus of SrTiO3 unit cell with PBE and HSE, and the
results are summarized in Table 3.1. The HSE functional improves not only
the band gap but also the lattice constant of SrTiO3 compared with PBE
as shown in Table 3.1. Eventually, the HSE functional is on the verge of
becoming suitable method for the calculation of defects and impurities in
solids within the framework of first-principles calculation [64,68,69]. Hence,
the results of HSE that is V 2+

O would be a promising candidate as a valence
state of the oxygen vacancy in SrTiO3. The stability of V 2+

O calculated with
HSE is also reported for BaTiO3 [64] and for TiO2 [68]; therefore, the V 2+

O

nature of the oxygen vacancy in SrTiO3 agrees with these previous HSE
calculations for the other titanates.

3.4 Formation energy

The formation energy of the VO in SrTiO3 is evaluated with GGA-PBE and
HSE. Defect calculations are performed based on supercells composed of
3× 3× 3 SrTiO3 unit cells (135 atoms), and the k-point mesh is scaled down
to 2 × 2 × 2 according to the dimension of the supercell size. The lattice
constant of the supercell is fixed at the optimized lattice of the perfect SrTiO3

crystal, and the inner atomic coordinates are relaxed. The chemical potential
of oxygen used for the evaluation of formation energy is µO = µH2O(molecule)−
µH2(molecule), which corresponds to the hydrogen annealing condition.

Figure 3.5 shows the formation energy of VO calculated with GGA-PBE
and HSE functionals. The defect-formation energy greatly depends on the
width of the band gap, because the formation energy of a charged defect
linearly depends on the Fermi energy (EF) in Eq. (2.86). Therefore, the
accurate band gap value is indispensable for the proper evaluation of defect
formation energy. In Fig. 3.5, the oxygen vacancy calculated with PBE
and HSE always takes 2+ valence stability at any EF region within the
band gap, as indicated by the defect level shown in Fig. 3.3. The Fig. 3.5

Table 3.1: Optimized lattice constant a0, band gap Eg and bulk modulus B
for bulk SrTiO3 calculated with GGA-PBE and HSE.

Functional a0 (Å) Eg (eV) B (GPa)
PBE 3.943 1.80 168
HSE 3.901 3.31 192

Experimental 3.905 3.25 179
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Figure 3.5: Defect formation energies of the oxygen vacancy in SrTiO3 eval-
uated with GGA-PBE and HSE functionals. The supercell used for the
calculations are composed of 3× 3× 3 unit cells. The chemical potential of
oxygen used for the calculations are µO = µH2O(molecule) − µH2(molecule), which
reflects the H2 annealing condition.
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also indicates the spontaneous generation of V 2+
O defect species at around

EF ∼ 0, which is suggested by the negative value of the formation energy.
The results indicates the stable formation of V 2+

O defect species in SrTiO3

under H2 annealing experiments. The main difference between the PBE and
HSE calculations is the width of the formation energies reflecting values of
the calculated gaps; apparently, only the result of HSE with correct gap can
be directly compared to experiments.

The formation energy indicates that the stable charge state of the oxygen
vacancy is V 2+

O , and V +
O never appears within possible EF range. However,

the result is inconsistent with previous experimental results that indicate V +
O

stability of isolated oxygen vacancy in SrTiO3 [31,58]. This is a inconsistency
already reported for the isolated oxygen vacancy in BaTiO3, where the cal-
culated V 2+

O stability with HSE cannot explain the experimentally confirmed
V +
O stability [64]. In the next chapter, we will explain that the hydrogen

(H) is closely related to the apparent V +
O stability of the oxygen vacancy in

ATiO3.

3.5 Summary

From the calculation of the oxygen vacancy in SrTiO3, we have pointed out
some important features that must be satisfied in the theoretical framework
for the calculation of defects and impurities in perovskite-type oxides.
i) Correct band-gap value is necessary to obtain appropriate formation en-
ergy for charged-defect species.
ii) Lattice relaxation must be performed, which indicates that the force act-
ing on each atom must be derived in the theoretical framework.
iii) Self-interaction error must be appropriately removed.
Considering these requirements, we concluded that the hybrid HSE func-
tional would be the most preferable approach for the clarification of defects
and impurities in the perovskite-type oxides. Our results of HSE calculation
indicate that the V 2+

O is stable in SrTiO3 for a wide range of Fermi level (EF)
within the gap. However, the V 2+

O stability is inconsistent with previous ex-
perimental results, where the valence state of the isolated oxygen vacancy are
reported to be V +

O . Our results indicates that the experimentally confirmed
V +
O stability of the oxygen vacancy is difficult to be explained by a simple

picture of an isolated oxygen vacancy in SrTiO3.
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Roles of hydrogen in
perovskite-type oxides

The hydrogen in perovskite-type oxides is usually considered as proton (H+)
at an interstitial site of TiO6 network, whereas we found that the hydrogen
stably occupies oxygen-vacancy (VO) site in ATiO3 (A = Ba, Sr) [92–94].
Our remarkable finding is that the hydrogen replacing oxygen is a negatively
charged hydride (H−) [92, 93]. The hydride in ATiO3 is contrary to the
common belief that the hydrogen is proton (H+) in this material group, and
the existence of the H− has not been discussed in detail so far. However, our
results clearly indicate that the hydride at the oxygen site is a major defect
species in ATiO3 annealed under hydrogen gas [95], which can clearly explain
the apparent 1+ stability of the oxygen vacancy V 2+

O by the stable formation
of H+

O defect species. Our study further clarified that up to two hydride
ions are weakly trapped at the oxygen-vacancy site [95], where a deep in-gap
state due to the formation of (2H)O traps all free-carrier electrons and the
system becomes an insulating state. Based on the results of first-principles
calculation, we will discuss the diversity of hydrogen configurations and its
roles in perovskite-type ATiO3 oxides.

4.1 Introduction

Perovskite-type oxides are potential candidates for applications in wide va-
riety of electrochemical applications [13]. Acceptor-doped perovskites-type
oxides (ABO3) show good proton conductivity as well as sufficient chemical
and thermal stability over a wide range of chemical conditions, which are suit-
able for the application for solid oxide fuel cell (SOFC) [13]. The hydrogen
in perovskites has been regarded as proton forming O-H bond at the inter-
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stitial site of BO6 octahedral network (H+
i ). Experimental evidence for the

existence of the O-H bond is O-H stretching vibrational mode that is clearly
observed at around 3,500 cm−1 in Raman scattering or infrared (IR) absorp-
tion spectrum experiments in BaTiO3 thin films [122] and ceramics [123], and
broad spectrum range of the stretching mode frequency (2, 500-3, 500 cm−1)
is observed in indium (In) doped BaTiO3 ceramics (BaInxZr1−xO3−x/2) [124].
The first-principles calculation well describes these experimental O-H vibra-
tional peaks [124–127], and the O-H vibrational frequencies in acceptor doped
perovskites, such as SrTiO3 with Sc3+ dopant at Ti4+ site [125] and BaZrO3

with In3+ at Zr4+ site [124], have been extensively studied. Furthermore,
the effect of Sr vacancy on the O-H vibrations has been studied from experi-
mentally [126] and theoretically [127]. However, the interaction between the
oxygen vacancy (VO) and H has hardly been discussed, even though both VO
and H impurities are major defect species generated under H2 annealing.

The existence of the hydrogen as proton (H+
i ) indicates that the hydrogen

acts as a donor impurity that gives an electron (e−) to the host crystal. How-
ever, several recent experimental results suggest another form of hydrogen;
for example, oxygen deficient blue-black colored SrTiO3−δ with metallic con-
ductivity is transformed into transparent insulating state by annealing under
H2 containing atmosphere [59, 77]. These experimental results indicate that
the hydrogen acts as an acceptor dopant that reduces the carrier electron
concentration, which cannot be explained by the picture of H+

i . Therefore,
reconsideration for the role of the hydrogen in this material group is necessary
to understand these experimental results.

The main purpose of this chapter is the clarification of the nature of H
in ATiO3 based on the results of first-principles calculation, where funda-
mental property of Hi and interaction between H and VO are discussed. In
section 4.2, the general property of Hi, such as electronic structure, migra-
tion barrier and vibrational property in ATiO3 are explained. In section
4.3, the possibility of the replacement of O by H in perovskite-type ATiO3

is explained based on the results of first-principles calculation. Contrary to
the well-known picture of the Hi, we found that H is stabilized at VO site in
ATiO3 [92–94]. Remarkable point in this phenomenon is that the hydrogen
replacing oxygen is a negatively charged hydride (H−), which can account
for the apparent 1+ stability of the oxygen vacancy (V +

O ) by the formation
of 1+ charged H+

O defect species. Electronic structure and stability of H+
O

are discussed in this section. In section 4.4, the stability of multiple H at VO
site is discussed. Our calculations indicate that additional H atom can be
weakly trapped by the HO in SrTiO3 [95]. The two H atoms trapped by VO
form a deep in-gap state [95] that traps all of the free carrier electrons. This
phenomenon indicates that H can change the metallic SrTiO3−δ single crys-

80



4.2. Interstitial hydrogen

tal into completely insulating state by forming (2H)O defect complex, which
can account for the previous experimental results of forming gas annealing
for oxygen deficient SrTiO3−δ [59,77]. We already discussed the possible way
to improve the exchange-correlation functionals in Chap. 2 and explained
the problems in the calculation of defects in perovskite-type oxide in Chap.3.
Our conclusion is that the hybrid functional is suitable for the calculation
of VO in SrTiO3; therefore the results of GGA-PBE are checked with hybrid
HSE functional when the validity of GGA calculations is unclear.

4.2 Interstitial hydrogen

The hydrogen in the perovskite-type oxides is usually referred as proton at
interstitial site of perovskite lattice (H+

i ); therefore, we will begin discussing
the interstitial hydrogen (Hi) in ATiO3. Figure 4.1 shows optimized struc-
ture of Hi in SrTiO3 calculated with GGA-PBE, where the internal atomic
positions are fully optimized except for the outermost fixed ions to prevent
the transformation into anti ferrodistorttive (AFD) tetragonal phase shown
in Fig. 1.2. The H atom is stabilized in the vicinity of an O atom in TiO6 net-
work, where the calculated O-H distance between H and nearest O is 1.00 Å,
which is very close to the value of O-H distance of H2O molecule (Exp. 0.957
Å, Our calc. 0.977 Å). These geometric configuration of hydrogen suggests
the formation of O-H bond at the interstitial site of SrTiO3.

4.2.1 Electronic structure of Hi

There are so many theoretical studies for Hi in perovskite-type oxides in terms
of vibrational [124, 127] and transport [125, 128–131] property. However,
detailed analysis for the electronic structure of Hi is hardly found in these
previous studies. Therefore, we calculated density of states (DOS) and partial
density of states (PDOS) of Hi in SrTiO3 to understand the nature of the
O-H bond in perovskite-type oxides. Figure 4.2 shows total DOS and PDOS
calculated with the supercell model composed of Sr8Ti8O24H shown in Fig.
4.1. The PDOS of Sr, Ti, and O in Fig. 4.2 are the sum of all atomic
contributions over the supercell. The valence band is composed of O-2p with
small hybridization with Ti-3d. The calculated band gap value (1.85 eV)
is smaller than the experimental value (3.25 eV [132] ), reflecting the well-
known drawback of GGA. There are two characteristic peaks around −7.2
eV (peak I) and −19.6 eV (peak II) as indicated by allows in Fig. 4.2. The
PDOS of O and H indicate that these peaks are due to hybridization between
H-1s and O-2s, 2p.
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Chapter 4. Roles of hydrogen in perovskite-type oxides

Figure 4.1: Optimized atomic configuration of hydrogen at interstitial site
(Hi) in SrTiO3. The supercell used for the calculation is composed of 2×2×2
cubic phase SrTiO3 unit cells (Sr8Ti8O24H). The calculations were performed
with GGA-PBE.
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Figure 4.2: DOS and PDOS calculated for Sr8Ti8O24H supercell model shown
in Fig. 4.1. The calculations are performed with GGA-PBE exchange-
correlation functional. In the PDOS of H, two characteristic peaks denoted
by peak I and II appear just below the O-2p and O-2s bands.
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We compared the electronic structure of the O-H bond in SrTiO3 with
water molecule (H2O) to confirm similarity of the OH hydroxyl group in oxide
crystal and in typical molecule. The general explanation for the electronic
structure of H2O molecule is based on sp3 hybridized orbital of oxygen atom;
the sp3 hybridization is expressed by a linear combination of one O-2s and
three O-2p orbitals, and the resultant four orbitals form tetrahedral geome-
try. The bond angle of sp3 hybrid orbitals is 109.5◦, which are close to the
experimental 105◦ H-O-H bond angle in water molecule. However, the sp3

hybrid is less convenient to explain the peaks I and II that are just below O-
2p and 2s bands, because the idea of sp3 hybrid assumes the same (or close)
eigenvalues for the O-2s and 2p orbitals for their starting point. Therefore,
we tried to explain the electronic structure of H2O molecule in another way
based on the hybridization between H-1s and O-2s, 2p. Figure 4.3(a) shows
the shift of the eigenvalues of water molecule as a function of O-H distance.
At the O-H bond length more than 250 % of initial distance, there are three
eigenvalues corresponding to O-2s, 2p and H-1s states of ionized O and H
atoms; the O atom attracts 0.33 and the H atom loses 0.16 electrons based
on Mulliken population analysis with neutral atomic orbitals. The decrease
of the O-H bond length brings about the hybridization between O (2s and
2p) and H (1s) orbitals, and finally the electronic structure of a water forms
at 100 % O-H bond length as shown in Fig. 4.3(a). Thus the formation of
water molecule can be expressed by an energy diagram shown in Fig. 4.3(b).
In the electronic structure of water, the lowest state is composed of O-2s
with a weak hybridization with H-1s, and three filled states are formed by
the hybridization between O-2p and H-1s states: one non-bonding state and
two bonding states as shown in Fig. 4.3(b). The energy diagram of water
molecule indicates that the H-1s hybridizes with both O-2s and 2p. In the
PDOS of Sr8Ti8O24H shown in Fig. 4.2, Peak I and II appear just below O-2s
and 2p bands, which is very similar to the State I and II in water molecule.
Figure 4.4 shows the orbital shapes of the Peak I and II shown in the PDOS in
Fig. 4.2. The orbital shape of the Peak I has a node just on O atom, whereas
Peak II has no node. These wavefunctions are very similar to the characters
of State I and II in the water molecule shown in Fig. 4.3. Therefore, the O-H
bond in SrTiO3 is very similar to the OH hydroxyl group of water molecule
in terms of atomic and electronic structure. In SrTiO3, it is especially noted
that the H-1s orbital interacts not only with nearest O-2p orbital, but also
with next neighboring O-2p orbital as clearly observed in the orbital shape of
Peak I in Fig. 4.4. This is a clear sign of hydrogen-bond formation, which is
essentially important to understand vibration and diffusion property of the
interstitial H in SrTiO3, which are discussed in the following section.
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Figure 4.3: (a) Change of eigenvalues of H2O molecule as a function of O-H
distance. The O-H distance is changed from 100 to 250 % of calculated O-H
distance (0.977 Å). Calculations are performed with GGA-PBE exchange-
correlation functional. (b) The energy diagram of H2O-molecule formation
from O-2s, 2p and H-1s orbitals.
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Figure 4.4: The shapes of the orbitals for the deep state due to Hi in SrTiO3

denoted by Peak I and II in Fig. 4.2.

4.2.2 Diffusion process of Hi

The proton diffusion process in perovskite-type oxide is of great interest in
their applications, and there have been intensive experimental and theoret-
ical studies for this topic. In liquid water, the diffusion process of a proton
occurs based on Grotthuss mechanism [133] that is proton hopping over wa-
ter molecules connected with hydrogen bond network as shown in left-hand
side figure in Fig. 4.5(a). The direction of the proton diffusion is changed
by rotation of the O-H bond in H2O molecule. The Grotthuss mechanism is
observed in water, ice and solid acid salts (CsHSO4), etc [134]. The proton
diffusion in perovskite-type oxide is based on proton hopping between two
oxygen atoms with breaking and formation of both O-H and hydrogen bonds
during their diffusion as shown in Fig. 4.5(b). The diffusion is similar to
the elementary process Grotthuss conduction; therefore, the proton diffusion
in perovskite-type oxides is also refereed as Grotthuss mechanism [130,134].
The predominant diffusion process in perovskite-type oxides occurs as a se-
quence of proton transfer (T) between neighboring oxygen, and rotation (R)
of hydroxyl group, which is shown in Fig. 4.5 (b). The behavior of the proton
migration is determined by migration-barrier height (activation energy) and
frequency of the related vibrational modes.

We calculated these fundamental properties related to the proton transfer
in perovskite-type ATiO3. Two characteristic vibrational modes are closely
related to the proton diffusion process; O-H stretching mode for T, and O-H
rotational mode for R. Figure 4.6 shows the stretching vibrational mode of
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Figure 4.5: (a) Schematic figure of proton diffusion process in water, which is
explained by Grotthuss mechanism. (b) Proton diffusion in perovskite-type
oxide. The transfer process denoted by “T” is proton hopping between two
neighboring oxygen, and “R1” and “R2” show the rotation and wag modes
around the oxygen, respectively. Proton conduction in perovskites is also
referred to as Grotthuss mechanism.
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Figure 4.6: Stretching vibrational mode of OH hydroxyl group in SrTiO3 and
stretching-mode potential as a function of O-H distance with relaxed and
fixed lattice. The calculations are performed with GGA-PBE functional.

the O-H bond and the stretching-mode potential in SrTiO3. The calcula-
tions are performed with supercell models composed of 2× 2× 2 cubic-phase
SrTiO3 unit cells (41 atoms) with relaxed and fixed lattices. In the fixed
lattice calculation, the framework of TiO6 octahedra and the positions of Sr
atoms are fixed to the perfect SrTiO3 crystal, and only the H position is al-
lowed to locate the stable position. In the relaxed lattice calculation, atomic
positions in the supercell are relaxed to achieve the most stable structure
except for the outermost atoms to prevent the unexpected transition to low
temperature phase of SrTiO3. Main structural difference between fixed and
relaxed lattices is the distance between H and second neighboring oxygen
atom O2nd shown by arrows in Fig. 4.6. In the relaxed lattice, the dis-
tance of O2nd-H is 1.72 Å, whereas the distance becomes 2.20 Å in the fixed
lattice atomic configuration. The short O2nd-H distance after the geome-
try optimization is due to the formation of the hydrogen bond between H
and O2nd. We found that the geometry optimization sensitively changes
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the shape of stretching mode potential, as shown in Fig. 4.6. The lat-
tice relaxation induces the lowering of the potential barrier height around
O-H distance ∼ 1.5 Å, which leads to the lowering of the vibrational fre-
quency in the relaxed lattice. We evaluated the vibrational frequencies for
the stretching mode within anharmonic approximation with Morse potential
fitting: U(x) = D

(
e−2a(x−x0) − 2e−a(x−x0)

)
. The anharmonic-vibration fre-

quency with the Morse potential is ω = a
√

2D/m, where m is the reduced
mass of the H atom forming the O-H bond. The results of the calculations
are summarized in Table 4.1, where the table includes vibrational frequen-
cies of O-H stretching and rotational motions for SrTiO3 and BaTiO3. The
calculated O-H stretching vibrational frequencies with relaxed lattice are
lower than the experimental value, while the fixed lattice calculations result
in slightly higher frequencies compared to the experiments. Intermediate
vibrational frequency between fixed and relaxed lattice is close to the experi-
mental value, which suggests that the proton and host lattice under thermally
excited states has an intermediate state between these two fixed and relaxed
atomic coordinates in perovskite-type oxides.

The delicate balance between two bonding characters between oxygen
and hydrogen; O-H bond (O1st-H) and hydrogen bond (O2nd-H) determines
the atomic configuration around Hi and the shape of the stretching mode
potential. In the relaxed lattice configuration, the proton transfer along the
direction of O-H stretching vector easily forms a new O-H bond with 2nd
neighbor oxygen due to the reduced potential barrier height. On the other
hand, the proton transfer in fixed lattice does not directly form a new O-H
bond yielding the steep shape of the O-H stretching potential. Therefore,
not only the vibrational frequency but also the energy-barrier height for
the proton transfer is expected to be greatly affected by the host lattice
conditions. We further calculated the energy-barrier heights for the proton
transfer and rotation processes.

Table 4.1: Vibrational frequencies (ν) of O-H stretching and rotational mo-
tion in SrTiO3 and BaTiO3 with fixed and relaxed lattice configurations.

ν(SrTiO3) (cm
−1) ν(BaTiO3) (cm

−1) Ref.
Relaxed Fixed Relaxed Fixed (Exp.)

Transfer 3,145 3,657 3,184 3,726 ∼3,500 1

Rotation 993 1,125 952 1,046 -
1 Reference [122,123]
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The barrier height can be defined by total energy difference between
stable atomic geometries and the geometry of transition states (TS). Sev-
eral methods have been proposed to determine the energy of TS, such as
nudged elastic band (NEB) [135, 136], and LST/QST [137, 138]. We evalu-
ated the barrier heights of proton transfer and rotation processes in SrTiO3

and BaTiO3 by using LST/QSTmethod implemented in CASTEP code [138].
Table 4.2 summarizes the calculated barrier heights with fixed and relaxed
lattices. Our results indicate that the energy barriers greatly depend on the
lattice relaxation during the proton transfer processes; the barrier heights
for the proton transfer with fixed lattice are 0.78 (SrTiO3)-0.90 (BaTiO3)
eV, whereas the lattice relaxations greatly reduce the barrier heights: 0.14
(SrTiO3)-0.22(BaTiO3) eV. The experimentally determined barrier heights
for H in perovskite oxides are 0.4-0.6 eV [11,130,139]; for examples, 0.41 eV
for Sc-doped SrTiO3 [130] and 0.43 eV for Y-doped BaZrO3 [11] and 0.48
eV for Y-doped BaCeO3 [130] ceramics. Apparently, the relaxed lattice cal-
culations underestimate and the fixed lattice calculations overestimate the
experimental values, which has also been confirmed in BaZrO3 [128] 1.

Previous studies for LaAlO3 [131] and BaZrO3 [128] have clarified that
the activation energies of H between two oxygen ions are closely related to
the O1st-O2nd distances, and the dynamics of the oxygen lattice has a great
impact on the proton diffusion by modulating the activation energies [130],
which indicate phonon-assisted transfer of interstitial proton in perovskite-
type oxides. A direct way to include the lattice dynamics is molecular dynam-
ics (MD) simulation, and previous studies based on nonself-consistent tight-
binding density functional approach [130] for H in SrTiO3 gives 0.50 ± 0.22
eV. The activation energy was calculated from the simulated diffusion co-

Table 4.2: Energy-barrier heights (Eb) for transfer and rotation modes of
proton in SrTiO3 and BaTiO3 calculated with fixed and relaxed lattice con-
figurations.

Eb(SrTiO3) (eV) Eb (BaTiO3) (eV) Ref.
Relaxed Fixed Relaxed Fixed (Exp.)

Transfer 0.14 0.78 0.22 0.90 0.4-0.6 1

Rotation 0.25 0.50 0.31 0.45 -
1 Reference [11,130,139]

1Previous theoretical study for BaZrO3 [128] shows 0.21 eV for relaxed- and 1.27 eV
for fixed-lattice calculations (exp. 0.4 eV [11]).
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efficients with different temperatures. However, due to the small number
of proton-transfer events, the error can be very large in these MD simula-
tions [130].

4.2.3 Formation energy of Hi

Both VO and Hi are considered to be generated under hydrogen annealing
process. However, it is very ambiguous which defect species is dominant
in these experiments. Therefore, we evaluated the formation energy of the
Hi based on Eq.(2.86) in Sec. 2.4.1, and the results are compared with the
formation energy of VO. As explained in Sec. 2.3.1, the band gap value
calculated with GGA is greatly underestimated; therefore, we compared the
results obtained with GGA-PBE and HSE. Figure 4.7 shows the formation
energies of Hi (solid lines) calculated with (b) GGA-PBE and (c) HSE. The
dotted lines in the figures are the formation energy of the oxygen vacancy.
The stable valence state of Hi is 1+ at any EF position within the band gap
(Eg). At around EF ∼ 0, the stable defect species is V 2+

O , while H+
i becomes

the stable defect at around EF ∼ Eg. The crossover of the stable defect
species from V 2+

O to H+
i occurs at EF = EHSE

1 = 1.70 eV (EPBE
1 = 0.68 eV).

The results indicate that the stable defect species under hydrogen annealing
greatly depends on the Fermi level; the stable defect species in the range
of 0 < EF < E1 is V 2+

O , whereas H+
i tale places the main defect species in

E1 < EF < Eg.

4.3 Exchange of Oxygen by Hydrogen

Even though the effects of acceptor dopings on the vibration frequency and
activation energy have been extensively studied, the effect of VO has hardly
been studied yet. The effect of VO on the nature of H in perovskite-type
oxides is of great importance because both VO and Hi are typical defect
species generated under hydrogen annealing.

4.3.1 Diffusion of hydrogen into oxygen-vacancy

During the study of the proton migration around the oxygen vacancy, we
found that the Hi easily migrates into VO site in SrTiO3 and BaTiO3 [93,
95]. Interestingly, the migration of Hi into VO occurs only with free-carrier
electrons, and the removal of the electron hinders the migration of Hi into VO
site. Figure 4.8(a) shows the supercell model and two diffusion paths (C4-C1
and C7-C1) examined in our study. The supercell models are composed of
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Figure 4.7: (a) Schematic figures of interstitial hydrogen (Hi) and oxygen
vacancy (VO) in SrTiO3. Formation energies of Hi calculated with (b) PBE
and (c) HSE are shown by solid lines. The formation energies of oxygen
vacancy (VO) are simultaneously shown by dotted lines in each figure.
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Figure 4.8: (a) Diffusion paths of H from an interstitial site (C4) to a VO
site (C1) in SrTiO3, where only a TiO2 plane is depicted. Defect formation
energies of H in SrTiO3 along the diffusion path (C4-C1) with different Fermi
energies; (b) EF = Eg and (c) EF = 0. Note that there are metastable
states around C2 position in charge neutral and 1+ charged supercells, and
the diffusion barrier heights are greatly reduced via the metastable state as
shown in dotted lines in Figs. (b) and (c).
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2 × 2 × 3 unit cells of SrTiO3 (Sr12Ti12O35H) and BaTiO3 (Ba12Ti12O35H).
Diffusion barrier heights for two different diffusion paths (C4-C1 and C7-C1)
were evaluated with fully relaxed internal atomic coordinates. In BaTiO3, the
migration barrier height from C2 to C1 is very small (∼ 0.02 eV) compared to
that from C5 to C1 (1.4 eV); therefore, the C1-C4 path is preferable for the
H diffusion into VO site in BaTiO3. In SrTiO3, the diffusion barrier height
from C2 to C1 (0.36 eV in charge neutral state) is also smaller than that
from C5 to C1 (0.52 eV in charge neutral state), which indicates the C1-C4
path is also preferable for SrTiO3.

Figure 4.8 (b) and (c) show series of defect formation energies of H in the
Sr12Ti12O35H supercell along C1-C4 path, where the stable and transition
states are plotted with filled and open marks, respectively. We confirmed
almost the same behaviors for Ba12Ti12O35H supercell [93]. The defect for-
mation energies in Fig. 4.8 are calculated according to Eq. (2.86), where a
half of the total energy of H2 molecule is used for the chemical potential of
hydrogen: µH = E(H2)/2. The difference between Fig. 4.8(b) and (c) is the
value of Fermi level (EF) in Eq. (2.86), where (b) EF = Eg and (c) EF = 0
are selected for each figure, respectively. From C4 to C2 positions, the H is
always positively charged proton (H+) and oxygen vacancy is always doubly
charged (V 2+

O ) defect species; therefore the 3+ charged supercell denoted by
[VO+H]3+ is the most stable charged state. In Fig. 4.8(b) with EF = Eg, the
stable charge state changes from +3 into +1 between C2 and C1 positions,
and the +1 charged state denoted by [VO+H]+ becomes the most stable state
around C1 position. The reaction energy of H at the VO site, which is defined
by the total energy difference between the lowest energy at the C2 and C1
positions is about 1.4 eV; therefore H is stably trapped by VO in SrTiO3

with EF = Eg. On the other hand, in Fig. 4.8(c) with EF = 0, the system
becomes unstable by 2.5 eV due to the migration of H into VO site, which
indicates that the H does not move into VO when the n-type carriers from
V 2+
O and H+ are completely compensated. These results are consistent with

previous first-principles MD calculations for proton diffusion in acceptor (Sc)
and oxygen vacancy (V 2+

O ) simultaneously doped SrTiO3 performed by Shi-
mojo et al. [125], where a proton diffuses around the edge of the VO and will
not move into the vacancy site. In the MD calculations, acceptor dopant
(Sc3+ replacing the Ti4+) eliminates free carrier electrons, which hinders the
migration of Hi into VO site as shown in Fig. 4.8(c).

A remarkable point in these calculations is the valence state of the hydro-
gen during the migration process into the VO site; the [VO+H]3+ stability at
C2-C4 indicates the stable formation of V 2+

O and H+
i , whereas the [VO+H]+

cannot be explained with the stable charge state of the isolated defects.
Eventually, the hydrogen at the oxygen vacancy site is a negatively charged
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hydride (H−), which indicates that the hydrogen changes its character from
H+ to H− absorbing two free-carrier electrons during the migration process
into the VO site.

4.3.2 Charge density difference

The H+ and H− characters of H can be directly confirmed by calculating
charge density difference [93]: ∆ρ = ρ[host + H]−ρ[host]−ρ[H atom], where
ρ[host], ρ[H atom] and ρ[host + H] are charge densities of SrTiO3 host crys-
tal, isolated H and host crystal with H incorporation, respectively. We used
4×4×4 SrTiO3 supercell as a host crystal (320 atom) for these analysis. Cal-
culations are performed with GGA-PBE exchange correlation with Γ-point
only k-point sampling. The calculated charge density differences ∆ρ for Hi

and HO are shown in Fig. 4.9(a) and (b), respectively. In Fig. 4.9(a), the
charges are strongly perturbed around the intercalated Hi, and increase of
charge density of d (t2g) orbital shape on Ti atoms far from Hi is clearly
observed. The increased charge density is the character of CBM of SrTiO3,
which indicates the released carrier electron from Hi widely spread on the
CBM in the whole supercell. On the other hand, in Fig 4.9(b), the charge
density far from the incorporated HO clearly decreases with the same char-
acter, which indicates that the number of free carrier electron released from
V 2+
O is reduced by the incorporation of HO. The electrons gathered by HO

form spherical charge density whose radius is about 1.2 Å. The radius of
the electron cloud is very close to the ionic radii of hydride (1.5 Å), which
indicates the formation of hydride (H−) at VO site. These results indicate
that the hydrogen can act as both donor/acceptor behavior depending on
its position in SrTiO3−δ. The hydrogen has been considered to be proton
in perovskite-type oxides, but our results clearly indicate that the negatively
charged hydride (H−) is also a stable species in the oxygen deficient SrTiO3−δ

and BaTiO3−δ [93, 95].

4.3.3 Formation energy of HO

The formation energies of H calculated with GGA-PBE shown in Fig. 4.8
suggest that H stably occupies VO site in oxygen deficient ATiO3−δ. The main
drawback of GGA-PBE is the underestimation of band gap value, which
disturbs accurate response of the formation energy to the extra charges.
Therefore, we evaluated the formation energy of HO in SrTiO3 with hybrid
HSE that correctly reproduces the band gap value, and compare the obtained
results to the GGA-PBE results. The optimized structures of the HO in
SrTiO3 with PBE and HSE are shown in Fig. 4.10(a) and (b), respectively.
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Figure 4.9: Charge-density differences due to H intercalation in SrTiO3. (a)
Intercalation of H at interstitial site in perfect Sr64Ti64O192 supercell and (b)
H intercalation at the center of VO site in Sr64Ti64O191 supercell. The red
and blue areas indicate increases and decreases in charge density before after
the H incorporation, respectively.
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We found that the overall nature of the optimized structures with GGA-PBE
and HSE are almost the same; H is stabilized at the center of the VO site in
both functionals. Compared to the Ti-VO-Ti distances in VO incorporated
SrTiO3−δ (the distances are 4.20 and 4.21 Å for HSE and PBE, respectively),
the distance of Ti-HO-Ti (4.01 and 4.09 Å for HSE and PBE, respectively)
becomes smaller due to the formation of HO.

Defect formation energies are evaluated according to Eq. (2.86). Here,
we recall the formula:

Ef (Dq) = Et(D
q)− Et(host

0) +
∑
i

∆niµi + q(µVBM + EF), (4.1)

The detailed explanations for the notations are given in section 2.4.1. In the
present calculations, the chemical potentials µi are selected so as to satisfy the
hydrogen annealing conditions; that is, µH = µH2(molecule)/2, µO = µH2O(gas)−
µH2(molecule). We evaluated the Ef (HO) in two manners: Ef (HO)Perfect and
Ef (HO)VO

, where the Ef (HO)Perfect is the formation energy of HO in perfect
SrTiO3 host crystal (∆n1 = 1, µ1 = µO, ∆n2 = −1, µ2 = µH in Eq. (4.1)),
and Ef (HO)VO

is calculated with VO incorporated SrTiO3−1/27 supercell as
a host (∆n1 = 0, ∆n2 = −1, µ2 = µH). The Ef (HO)VO

represents the
annealing experiment for SrTiO3−δ under H2 atmosphere. The defect forma-
tion energies of HO calculated with PBE and HSE functionals are shown in
Fig. 4.10(c) and (d), respectively. Although the band gap value is greatly
improved in HSE calculation, the overall nature of the defect formation en-
ergies of HO calculated with PBE and HSE are almost the same. In Figs.
4.10(c) and (d), the hydrogen atom is not likely to substitute the oxygen
atom in perfect SrTiO3 under the annealing with H2 atmosphere, because
Ef (Hi) shown in Fig. 4.7 is slightly lower than Ef (HO)Perfect. On the other
hand, the formation energy of Ef (HO)VO

is greatly lower than Ef (Hi) and
the value shows negative sign with EF value within entire band-gap range.
Therefore, the H atom stably occupies the VO site in the oxygen vacancy site
in SrTiO3−δ.

4.3.4 Partial density of states (PDOS) of HO

The results of first principles calculation indicates that the hydrogen at the
oxygen-vacancy site is negatively charged hydride (H−). The H− character of
the hydrogen indicates fully occupied H-1s sate, which should be explained in
terms of the electronic structure of HO. Therefore, we calculated the partial
density of states (PDOS) of HO in SrTiO3. The PDOS of HO calculated
with GGA-PBE and HSE are shown in Fig. 4.11 (a) and (b), respectively.
The calculations are performed with Sr8Ti8O23H supercell in charge neutral
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Figure 4.10: Optimized atomic configurations of hydrogen at oxygen site
(HO) calculated with (a) GGA-PBE and (b) HSE functionals. The struc-
tures are optimized with charge neutral supercells. Only a TiO2 layer that
includes defect is depicted in each supercell model. The lower figures are
defect formation energies Ef (HO) calculated with (c) GGA-PBE and (d)
HSE. H+

O (Perfect) is the formation energy in perfect crystal, and H+
O (VO) is the

formation energy in host crystal with the oxygen vacancy.
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Figure 4.11: Total DOS (dashed line) and partial DOS (PDOS) of HO (solid
line) in Sr8Ti8O23H supercell calculated with (a) HSE and (b) GGA-PBE.
Calculations are performed with charge neutral state. Supercell size of 2 ×
2× 2 SrTiO3 unit cells, and dense k-point mesh (3× 3× 3) are used for the
calculations. The origin of horizontal axis is set at the top of O-2p band
(VBM). Vertical axis of the total DOS is scaled down to 1/50.
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state. In the PDOS of HO, there is a sharp peak due to H-1s orbital just below
VBM with wide distribution of H-1s character over O-2p band; therefore, the
H-1s orbital is fully occupied, which indicate that the H is in a negatively
charged H− state. The H− character of hydrogen is also confirmed by Bader
charge analysis, which shows nHO

= 1.67 (HSE), while the value for Hi is
nHi

= 0.37(HSE). Therefore, the electronic structure of H− can be simply
explained by the fully occupied H-1s orbital whose position is just below the
VBM.

4.4 Replacement of O by multiple H

Our calculations indicate that H+
O is the source of the apparent 1+ stability

of the oxygen vacancy in SrTiO3. On the other hand, previous theoretical
calculations and experimental results for ZnO indicate the stability of H2

molecule at VO site [70, 75, 76]. Furthermore, the experimentally confirmed
metallic-insulator transition of SrTiO3−δ under H2 annealing [59, 77] cannot
be explained by the replacement of O2− by H−, and two H− are needed to
completely compensate the carrier electrons from O2−. Therefore, we tried
to find possible defect structures composed of the VO and several hydrogen
atoms, and found several (meta-)stable structures as shown in Fig. 4.12(a),
(b) and (c). The simplest structure is a H2 molecule at the VO site ((H2)O)
shown in Fig. 4.12(a). We also found two additional structures containing
two hydrogen atoms at the VO site: asymmetric (2H)O and symmetric (2H)′O,
which are shown by Figs. 4.12(b) and 4.12(c), respectively. These two (2H)O
and (2H)′O structures can be obtained by optimizing asymmetrically and
symmetrically aligned initial atomic configurations in the supercell models.

The defect levels due to the incorporation of two H atoms at VO site are
confirmed by PDOS calculations. The results obtained with GGA-PBE and
HSE are shown in Fig. 4.13. We found that a deep in-gap state appears
for (2H)O and (2H)′O structures, where all carrier electrons are trapped by
the in-gap state and the Fermi level position is just on the defect level. On
the other hand, a deep level below O-2p band appears in (H2)O structure.
The shape of the wave function for the defect levels are calculated to confirm
the nature of the defect levels. Figure 4.14 shows band decomposed change
density for these defect states shown by ii), v) and vii) in Fig. 4.13.

From the defect levels confirmed by PDOS calculation and the shape of
the wave function for the defect states, the formation of the hydrogen related
defect species can be summarized with a diagram shown in Fig. 4.15. The
energy level related with the (H2)O can be regarded as a simple H2 molecule
that has bonding and anti-bonding states as shown in Fig. 4.15(e). There are
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Figure 4.12: Optimized defect structures composed of (a) H2 molecule-like
structure at VO site, two (b) asymmetrically and (c) symmetrically trapped
H atoms at VO site. All structures are optimized with charge neutral state.
The H-H bond lengths shown by (i) and (ii) are 1.67 and 1.64 Å, and the
Ti-H bond lengths shown by (iii), (iv) and (v) are 1.75, 2.46, and 2.01 Å,
respectively. The calculations are performed with HSE functional.
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Chapter 4. Roles of hydrogen in perovskite-type oxides

Figure 4.13: Partial density of states (PDOS) of H for (2H)O, (2H)
′
O and

(H2)O shown in Fig. 4.12. A deep in-gap state appears in (2H)O, (2H)
′
O and

all carrier electrons are trapped at the deep-defect level, whereas there are
no in-gap state in (H2)O .
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(a) (b) (c)
(2H)O (2H)'O (H )O2

Figure 4.14: Band decomposed charge density for occupied defect states in
(2H)O, (2H)

′
O and (H2)O indicated by ii), v) and vii) in Fig. 4.13. The color

in these contour plots are in proportion to the charge density.

Figure 4.15: Chemical bonding scheme for H that occupies VO site in SrTiO3.
(a) Perfect SrTiO3 crystal. (b) Asymmetrically and (c) symmetrically intro-
duced two H atoms that passivate dangling-bond of Ti-3d orbitals at VO
site. (d) One hydrogen atom that simply replaces an oxygen atom. (e) H2

molecule-like structure at VO site.
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Chapter 4. Roles of hydrogen in perovskite-type oxides

no in-gap state due to the hydrogen molecule at VO site, which brings about
two carrier electrons located at CBM from the doubly charged V 2+

O . On
the other hand, the electronic structure of (2H)O and (2H)′O are completely
different from (H2)O; a deep in-gap state appears and all carrier electrons are
trapped by the defect state due to (2H)O and (2H)′O. There are no free carrier
electrons around the CBM and the system becomes an insulating state as
shown in Figs. 4.15(b) and (c). The deep in-gap state related to (2H)O and
(2H)′O can be regarded as a bonding state of Ti-3d orbitals composing CBM
of host SrTiO3 crystal (Fig. 4.15(a)) and anti-bonding state of two weakly
bonded hydrogen at VO site (shown by “virtual” in Fig. 4.15). The situation
can be regarded as a passivation of Ti-3d dangling bonds by H atoms.

The evaluations of the formation energies are important for discussing
the reality of these defect complexes; therefore, the formation energies of
Ef ((H2)O), E

f ((2H)O) and Ef ((2H)′O) are evaluated, and these formation
energies are compared with the sum of the other hydrogen incorporation: 2×
Ef (Hi) and E

f (Hi) +Ef (HO). The calculation of the formation energies are
based on oxygen vacancy incorporated host SrTiO3−1/27 crystal composed of
3×3×3 SrTiO3 unit cells except for the E

f (Hi) where perfect SrTiO3 crystal
is used as a host. The formation energies calculated with HSE are shown in
Fig. 4.16 (a), where the sum of the formation energies Ef (Hi) + Ef (HO) is
the stable defect combination over wide EF range, except for around EF = Eg

where the most stable defect species is (2H)0O. Furthermore, the value of the
formation energy of (2H)0O shows a negative sign, which indicates that two
H can be stably trapped at the VO site when the oxygen vacancy containing
SrTiO3−δ are subject to the H2 atmosphere. The defect formation energies
also indicate that the (2H)0O defect structure is unstable against the removal
of the electron from the supercell, and the (2H)0O is easily converted into
(H2)

2+
O . The (2H)

′0
O defect structure shows almost the same tendency, thus

the defect-formation energies of (2H)O and (2H)′O converge into that of (H2)
2+
O

other than the charge-neutral state. The formation energies of H+
O +H+

i and
(2H)0O has a cross point at EF = 3.22 eV, which is very close to Eg = 3.31
eV. In addition to the instability of (2H)0O against the Fermi level, the energy
difference between Ef (HO)+E

f (Hi) and E
f ((2H)O) at EF = Eg is only 0.185

eV. Therefore, the (2H)O state would easily dissociates into HO + Hi due to
the kinetics of H in a thermally excited state. The weak stability of (2H)O
indicates that very specific experimental conditions are required for VO to
be filled with two H−. The speculation is consistent with the experimental
results for VO-incorporated SrTiO3−δ single crystals, where a transparent
insulating state is recovered by H2 annealing, whereas O2 annealing does not
lead to the recovery of the complete transparent state [59].

Note that the stability of (2H)O never appears in GGA-PBE calculations,
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4.4. Replacement of O by multiple H

Figure 4.16: Formation energies calculated with (a) HSE and (b)
PBE exchange-correlation functionals. Formation energies of Ef ((H2)O),
Ef ((2H)O), E

f ((2H)′O) are compared with Ef (VO) + 2Ef (Hi) and E
f (HO) +

Ef (Hi). The (2H)O and (2H)′O defect structures becomes (H2)O when an elec-
tron is removed; therefore, there are two branches in the formation energies
of (H2)O.
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as shown in 4.16(b). In the PBE calculations, the stable defect species around
EF = Eg is H+

O + H+
i , and the formation energy of (2H)O is always higher

than that of H+
O + H+

i irrespective of the position of the Fermi level. The
stability of (2H)O obtained in the HSE calculation would be partially due to
a deeper in-gap state compared to the results of the PBE calculation (17%
of Eg from VBM for HSE, and 29% for PBE).

These results indicate that the Hydrogen can modify the carrier-electron
density in the oxygen-deficient SrTiO3 by forming various defect complexes.
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4.5 Vibrational property of H at O site

Vibrational frequencies of hydrogen atoms positioned at the oxygen vacancy
site are useful information for the experimental verification. We calculated
the infrared absorption (IR) spectrum for HO and (2H)O with linear response
formalism [140–142]. The infrared spectrum is described based on Hessian
matrix (also known as dynamical matrix) and Born effective charges. Hessian
matrix is second derivatives of the total energy E over Cartesian coordinate
of periodic system, and they are used to determine harmonic vibrational
frequencies. The important factor for the infrared spectrum calculation is
the Hessian matrix at Γ point: k = 0, where k is the vector in the first
Brillouin zone. The Born effective charge tensor (Z∗) is the partial derivative
of the macroscopic polarization with respect to a periodic displacement of all
the periodically arranged ions at zero macroscopic electric field, which can be
calculated within the linear response formalism proposed by Gonze [140,141].
The intensities of infrared-active modes are given by the Born effective charge
tensor and mass-weighted Hessian. Hessian Hi,j are calculated as follows:

Hi,j =
∂2E

∂qi∂qj
, (4.2)

where qi is a Cartesian coordinate of a system with N atoms (1 < i < 3N).
The mass-weighted Hessian is obtained by dividing the Hessian elements by
the square roots of the atomic masses:

Fi,j =
Hi,j√
mimj

. (4.3)

The intensities of infrared-active modes are given by the corresponding os-
cillator strengths defined as follows [142]:

Ii =

(∑
j,k

F ′
i,jZ

∗
j,k

)2

, (4.4)

where F ′ are vibrational eigenvectors of normal mode i for mass-weighted
Hessian F . According to the harmonic approximation, the square roots of
the eigenvalues of F are the vibrational frequencies and the eigenvectors of F
are the normal modes. Under periodic boundary condition in solid crystal,
there is an infinite number of atoms. However, the infinite Hessian matrix
can be Fourier transformed into an infinite set of 3N × 3N matrices due
to the periodicity of the Hessian (Hi,j = Hi+Tj+T), where T is the lattice
translations vector.
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Chapter 4. Roles of hydrogen in perovskite-type oxides

Figure 4.17: Infrared absorption spectrum of SrTiO3 calculated with linear
response based on density functional perturbation theory (DFPT). The cal-
culations were performed with GGA-PBE exchange correlation functional.
Three vibrational peaks are calculated: 515, 154 and −57 (not shown in the
spectrum).

The calculated infrared absorption spectrum for SrTiO3 unit cell (5 atoms)
with GGA-PBE are shown in 4.17, where the frequency of two vibrational
modes (517 and 154 cm−1) well agree with experimentally confirmed vi-
brational modes in SrTiO3 single crystal: 546 and 178 cm−1, respectively
[143]. The experimentally confirmed lowest-mode frequency (87.7 cm−1)
[143], which are closely related to ferroelectric displacement has negative
value (−57 cm−1) in the above calculation. Therefore, the ferroelectric dis-
placement (tetragonal phase with P4mm symmetry) observed in ferroelectric
BaTiO3 makes the total energy of SrTiO3 slightly lower (∆E = 1.34 meV
for 5 atom unit cell). Unfortunately, these results are not consistent with
experimental fact that the SrTiO3 does not show the ferroelectricity.

The ferroelectric deformation is closely related with the volume of the unit
cell, and shrinkage/expansion of the volume suppress/enhance the ferroelec-
tric deformation. For example, hydrostatic pressure (2-3 GPa) [144, 145]
makes the ferroelectric tetragonal phase of BaTiO3 into paraelectric cubic
phase with shrinkage of lattice constant by 0.023 Å [144]. We confirmed
that the lowest mode frequency becomes positive (110 cm−1) in local density
approximation (LDA) and the ferroelectric displacement does not appears
in SrTiO3. The experimental lattice constant of SrTiO3 is 3.904 Å, whereas
lattice constant calculated LDA is 3.838 Å and that of GGA is 3.917 Å. The
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difference of the lattice constant between LDA and GGA is 0.079 Å, which is
sufficiently larger than the experimentally confirmed critical lattice shrinkage
(0.023 Å) induced by hydrostatic pressure; therefore, the unexpected emer-
gence of ferroelectricity in SrTiO3 would be due to the volume expansion of
GGA-PBE exchange-correlation functional. Nevertheless, we will use GGA-
PBE for the calculation of vibrational modes of hydrogen atoms in SrTiO3

hereafter, because GGA can correct the failure of LDA such as overestimate
of the binding energies of molecules and solids [146]. Furthermore, a more
realistic description of energy barriers in the dissociative adsorption of hydro-
gen on metal and semiconductor surfaces has been reported as an advantage
of GGA [147,148].

Figure 4.18 (a) shows calculated infrared spectrum of H at O site (HO).
The calculations were performed with a supercell composed of 2 × 2 × 2
SrTiO3 unitcells (Sr8Ti8O23H). In the calculation of the infrared absorption
spectrum, the supercell is single positively charged (+1e) to remove the free
carrier electron shown in Fig. 4.11. The characteristic peaks of the vibra-
tional modes of H is at 1,259 cm−1 and 810 cm−1, whose vibrational modes
are simultaneously shown in Fig. 4.18 (a). The frequency region is much
lower than that of typical O-H stretching vibrational mode for an interstitial
hydrogen Hi (∼ 3, 500 cm−1), and little attention has been paid for this fre-
quency range. Figure 4.18 (b) indicates the vibrational modes for the most
stable atomic configuration of the two hydrogen atoms positioned at the oxy-
gen vacancy site: (2H)O. The supercell used for the calculation is composed
of Sr8Ti8O23H2. Contrary to the HO defect species, the (2H)O traps all of the
free carrier electrons and the system becomes an insulating state; hence the
charge neutral supercell with (2H)O is used for the calculation. The typical
four vibrational modes related to the movement of hydrogen are illustrated in
these figures, and their frequencies are 1, 056, 1, 157, 1, 468 and 1, 561 cm−1,
respectively. These vibrational modes have also considerably low frequencies
than the O-H stretching vibrational mode.

4.6 Summary

In conclusion, we performed first-principles calculations based on GGA-PBE
and hybrid HSE functionals to identify the defect complexes generated under
H2 annealing for ATiO3 (A = Sr, Ba). Our results indicate that the hydrogen
can change its character from H+ into H− during the diffusion from inter-
stitial site into oxygen vacancy cite by absorbing two electrons into H-1s
orbital. The formation energy indicates that the H+

O is actually possible in
H2 annealing experiments for SrTiO3, which can account for the experimen-
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Figure 4.18: Infrared absorption spectrum of (a) HO with a supercell com-
posed of Sr8Ti8O23H and (b) (2H)O with a supercell composed of Sr8Ti8O23H2

calculated with linear response based on density functional perturbation the-
ory (DFPT). The charge states of the supercell used for the calculation of
HO and (2H)O is +1e charged and charge neutral state, respectively.
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tally observed apparent 1+ stabilities of the oxygen vacancy in SrTiO3. It is
generally believed that the incorporation of the hydrogen increases the n-type
carrier electron in SrTiO3. However, our results indicate that the hydrogen
can decrease the carrier electron density by the formation of H+

O. These re-
sults strongly indicates that the experimentally confirmed V +

O valence state
is due to the stable formation of H+

O. The speculation is also supported by
the experimental results of hydride oxygen exchange in BaTiO3 [149], where
they confirmed that the replacement of O2− by H− is actually possible from
the analysis of neutron diffraction and NMR for BaTiO3 samples reduced
with alkaline earth hydrides.

Furthermore, we found that H+
O weakly captures an additional H− and

forms the (2H)0O complex defect species, which completely neutralizes V 2+
O .

The results indicate that careful H2 annealing experiments can change the
oxygen-deficient n-type conducting SrTiO3−δ samples into insulating trans-
parent state. The results are consistent with previous experimental results
that the VO incorporated SrTiO3−δ single crystal recovers transparent insu-
lating state by the H2 annealing, whereas O2 annealing cannot recover the
complete transparent state [59].

The negatively charged nature of hydrogen has been previously pointed
out for ZnO [70, 72] and other semiconductors [73, 74]. Even though the
nature of H− in perovskite-type oxides has hardly been discussed, our results
indicate that the replacement of O2− by H− is a general phenomenon observed
in a wide variety of transition metal oxides. The H2 gas is commonly used as
reducing agent for ATiO3, and many previous experiments assume a simple
oxygen vacancy (V 2+

O ) (or interstitial Hi) as a source of carrier electron.
An important suggestion from the results is that the n-type conductivity
experimentally confirmed for H2 annealed SrTiO3 is not due to the simple
oxygen vacancies, but all of the oxygen vacancies are filled with negatively
charged hydride ion (H−). This is an important suggestion from theoretical
calculations because many previous studies of oxygen vacancy in ATiO3 (A =
Ba, Sr, Ca) assume simple picture of the oxygen vacancy (or oxygen-vacancy
clustering), and the replacement of O by H has not been considered [30–
33, 58, 60–64, 66, 67]. Therefore, the effects of the hydrogen occupying the
V 2+
O site by one (or two) H− are extremely important, because it requires

reconsideration for previous experiments, and contributes to the development
of hydrogen-based carrier electron control in transition metal oxides.
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Chapter 5

Relation between donor-type
defect and ferroelectricity

In this chapter, we concentrated on the ferroelectricity in BaTiO3, and dis-
cuss the effect of donor-type impurities on the suppression of the ferroelectric
phase based on the results of first principles calculation. We studied the pure
effects of electron doping in BaTiO3 with uniform background charge com-
pensation, and found that the free carrier electron intrinsically eliminates the
ferroelectric displacement in BaTiO3 [96, 150]. The critical electron concen-
tration for the T -C phase transition is calculated to be nelec. = 0.085 e/(unit
cell)(1.36× 1021 cm−3) [96]. We further clarified that the lattice deformation
around the defect accelerates the disappearance of the ferroelectric phase of
BaTiO3 [96,150]. These results explain the experimentally observed relation
between the ferroelectricity and the donor-type dopants in ferroelectric phase
of BaTiO3.

5.1 Introduction

Ferroelectricity is a typical property inherent in some perovskite-type oxides,
which makes the perovskites particularly useful for various electronic device
applications as shown in Table 1.1. However, the ferroelectricity is known
to easily disappear via various factors. The influence of the carrier-electron
doping on the disappearance of the ferroelectricity has been explained in
Chap. 1, therefore we mainly discuss the results of our calculations in this
chapter. In section 5.2, we will briefly explain the computational details. In
section 5.3, the pure effects of carrier electron on the ferroelectric phase of
BaTiO3 are discussed. The pure effect of the carrier-electron doping can be
studied only from theoretical approach, because the experimental electron
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doping is inevitably followed by lattice deformations around donor-type de-
fects and dopants; therefore, theoretical study of the carrier doping effects is
of great importance. We found that component analysis for the total energy
of DFT can well explain the disappearance of ferroelectric phase due to the
carrier-electron doping. We also show that the approach can be used for the
explanation for the origin of the ferroelectricity in BaTiO3. In section 5.4,
the effects of lattice deformation induced by lattice defects are explained.
Several typical donor-type defect species are included in our study, such as
oxygen vacancy (V 2+

O ), Nb5+ at Ti4+ site and H+
O. Especially, the effects of

H+
O is interesting because we found that the H+

O is one of major defect species
in BaTiO3 annealed under H2 gas. Finally, the results are summarized in
section 5.5.

5.2 Computational details

The c/a ratio of tetragonal (T ) phase BaTiO3 is very accurately reproduced
by local density approximation (LDA) (calc. 1.009, exp. 1.010 [1]), whereas
generalized gradient approximation (GGA) greatly overestimate the value
of c/a (calc. 1.050 [1]). These behaviors are qualitatively explained by the
optimized volume with each functional (calc. 61.9 (LDA) and 67.2 (GGA),
exp. 64.4 Å3 [1]); the large volume in GGA induces the lattice instability of
BaTiO3, which brings about the large c/a ratio in BaTiO3 [151]. Therefore,
we adopted LDA in the present calculations. The calculations are performed
with the ultrasoft pseudo-potential (USPP) implemented in CASTEP code
[138]. The USPPs are constructed with the atomic reference configurations
of 5s25p66s2 for Ba, 3s23p63d24s2 for Ti, 4s24p64d45s1 for Nb and 2s22p4

for O. A Plane-wave basis set with a cutoff energy of 500 eV was used in
all calculations. The cell parameters were relaxed under isobaric conditions
with a convergence tolerance of 10 MPa. Our calculations gave c/a = 1.010
and volume v = 61.40Å3 in T phase BaTiO3, which agrees well with previous
reports. [1, 152]

5.3 Electron-induced phase transition

Figure 5.1(a) shows the crystal structure of the T -phase BaTiO3 unit cell
with P4mm symmetry. We found that the electron doping in the T -phase
BaTiO3 changes the positions of the inner atomic coordinates into more
high-symmetry states as shown in Fig. 5.1(b). The tetragonality (c/a ratio)
decreases with increasing electron doping, and finally reaches c/a = 1.000 at
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5.3. Electron-induced phase transition

Figure 5.1: (a) Crystal structure of BaTiO3 tetragonal phase. (b) Shifts of
c-axis atomic positions of Ba, Ti, OI, and OII in the BaTiO3 unit cell induced
by electron doping. (c) The c/a ratio and unit cell volume of BaTiO3 as a
function of carrier-electron doping.
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a critical electron concentration of nelec. = 0.105 e/(unit cell) (1.68 × 1021

cm−3) as shown in Fig. 5.1 (c), which indicates that the electron doping
induces tetragonal-cubic (T -C) phase transition. In these calculations, over-
all charge neutrality is maintained by uniform background charges without
the effects of lattice disorder induced by donor dopants; hence, the results
shown in Figs. 5.1 indicate that the T -C phase transition is an intrinsic ef-
fect of carrier-electron doping in BaTiO3. The volume of the electron-doped
BaTiO3 increases according to the increase of the electron concentration with
a slight anomaly occurring at the electron concentration at which the carrier-
induced phase transition occurs, as shown in Fig. 5.1(c). We also calculated
the effects of the electron doping for other ferroelectric phases in BaTiO3:
orthorhombic (O) and rhombohedral (R) phases and confirmed that a similar
cubic phase transitions occur with almost the same critical-electron concen-
tration for T phase, which indicates that the disappearance of the ferroelec-
tric phases is an intrinsic result of electron doping in BaTiO3. It should be
noted that the disappearance of the ferroelectric phase due to the carrier
electron remarkably depends on the number of k-point sampling grids. The
calculations in Fig. 5.1 are performed with 8× 8× 8 k-point sampling grids.
Even though the c/a ratio is well converged with 8×8×8 grids in insulating
BaTiO3 as shown in Fig. 5.2 (a), the c/a ratio in electron doped system is
not sufficiently converged at the number of the grids. We checked the con-
vergence of the critical-electron concentration for the T -C phase transition
up to 14× 14× 14 k-point grids, and found that the converged value of the
critical carrier electron concentration is 0.085 e/(unit cell) (1.36×1021 cm−3)
as shown in Fig. 5.2 (b).

There would be several explanations for the disappearance of the electron
induced paraelectric phase transition of the ferroelectric phase of BaTiO3. R.
E. Cohen has pointed out that the hybridization of Ti-3d and O-2p is crucial
for the ferroelectricity in BaTiO3, and the ferroelectric instability vanishes if
3d variational freedom is removed [49,90]. Even though the p-d hybridization
is reported to be greatly changed by the ferroelectric atomic displacements
[153], we confirmed that the difference in the hybridization between T and
C phases of BaTiO3 is not so large when the lattice constant and inner-
atomic coordinates are simultaneously optimized, as shown in Fig. 5.3(a).
We also confirmed that the same feature is preserved under electron doping,
and it is therefore very unclear whether the change in the p-d hybridization is
responsible for the electron-induced T -C phase transition. The effects of the
p-d hybridization on the ferroelectricity has also been discussed based on the
difference between SrTiO3 and BaTiO3 [46]. SrTiO3 is a typical paraelectric
perovskite-type oxide that differs from BaTiO3 only in the size of the alkaline-
earth A-site ion, and the p-d hybridizations in both materials are very similar
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Figure 5.2: (a) k-point dependence of c/a ratio of BaTiO3 tetragonal phase
in charge neutral unit cell. (b) The change of c/a ratio induced by electron
doping calculated with different k-point sampling meshes.
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Figure 5.3: Partial density of states (PDOS) of (a) Ti-3d and O-2p in T and
C phases of BaTiO3 and (b) C phase SrTiO3 in charge neutral unit cell (5
atoms). The lattice constant and inner-atomic coordinates of crystal struc-
tures are optimized. In both figures, O-2p states are the sum of contributions
from all three oxygen atoms in the unit cell.
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Figure 5.4: Distribution of 0.1 e/(unit cell) carrier electron in BaTiO3 tetrag-
onal crystal structure.

as shown in Figs. 5.3(a) and 5.3(b). Therefore, the discussion based on the
p-d hybridization is difficult to be used for the explanation of the electron
induced T -C phase transition in BaTiO3 and another explanation would be
required.

Analysis based on the ratio of ionic radii that comprise the perovskite
lattice is a well-known approach for the explanation of the ferroelectric lattice
instability [43, 44, 46], which is conventionally described by the tolerance
factor tATiO3 = (rA + rO)/

√
2(rTi + rO) as explained in section 1.2.2. The

distribution of doped carrier-electron is a key to understand the change of the
ionic radii composing perovskite lattice. As shown in Fig. 5.4, doped carrier
electron mainly distributes over Ti-3d orbital with weak hybridization on
the O-2p orbital, reflecting the characteristic of the conduction-band bottom
of BaTiO3. The distribution indicates that the introduced electrons mainly
reduce the valence of the Ti ions, which leads to a selective increase in rTi.
Therefore, one qualitative explanation for the carrier-electron induced T -C
phase transition in BaTiO3 is decrease of the t value caused by the increase
in rTi.

The origin of ferroelectricity is frequently discussed in terms of the long-
and short-range forces based on the knowledge obtained from non-empirical
model calculation [49, 154]. We found that a similar discussion is possible
based on the component analysis of DFT total energies, and the analysis
well explains the electron induced T -C phase transition. Furthermore, the
carrier-electron doped BaTiO3 is an ideal system to investigate the origin of
ferroelectric lattice instability, because the difference between the cubic (elec-
tron doped) and the tetragonal (undoped) systems is only a slight difference
in electron number, which enables us to study very small energy gains caused
by the ferroelectric lattice deformation.
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Figure 5.5: (a) ∆Etotal (Neutral) is ferroelectric deformation potential that is
total energy differences as a function of soft-mode displacement in charge
neutral BaTiO3. ∆Ekinetic and ∆ECoulomb are kinetic and Coulomb energy
contributions to ∆Etotal (Neutral), respectively. ∆Etotal (Charged) is the result for
BaTiO3 doped at 0.15 e/(unit cell). All values are set to zero at Ti position =
0.50. (b) Contribution of kinetic (δEkinetic) and Coulomb (δECoulomb) energy
terms to the change in the deformation potential between charged and neutral
states (δEtotal)

The DFT total energy Etotal can be divided into two parts:

Etotal = Ekinetic + ECoulomb, (5.1)

Ekinetic =
∑
nk

⟨ϕnk|−
1

2
∆|ϕnk⟩, (5.2)

ECoulomb = EHartree + Exc + Eext + EEwald, (5.3)

where Ekinetic is kinetic energy denoted by Eq. (5.2) and ECoulomb is Coulomb
energy composed of Hartree (EHartree), exchange-correlation (Exc), external
(Eext) and Ewald (EEwald) energies, as shown by Eq. (5.3). The contributions
of the kinetic (∆Ekinetic) and Coulomb (∆ECoulomb) energies to the ferroelec-
tric deformation potential ∆Etotal that is the energy gain due to soft-mode
atomic displacement [90] is evaluated, and the results are shown in Fig. 5.5.
Fig. 5.5(a) indicates that the local minimum in ∆Etotal that induces ferro-
electric deformation arises from the stronger energy gain in ∆ECoulomb com-
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pared to that in ∆Ekinetic, which indicates that the Coulomb energy favors
the ferroelectric deformation in BaTiO3, as expected from previous model
calculations [49, 154]. The potential depth of ∆Etotal at the local minimum
is about two orders of magnitude smaller than the variations in ∆ECoulomb or
∆Ekinetic, which indicates that the ferroelectric deformation is based on a very
delicate balance between the Coulomb- and the kinetic-energy contributions
to the total energy.

The local minimum in ∆Etotal disappears when electrons are introduced
into the lattice, as shown in Fig. 5.5(a) (dashed line); that is, T -C phase
transition occurs due to the electron doping. We divide the total energy dif-
ference δEtotal = ∆Etotal (charged) − ∆Etotal (neutral) into Coulomb (δECoulomb)
and kinetic (δEkinetic) parts and individually evaluate each contribution to
δEtotal to clarify the contribution of the kinetic and Coulomb energies to
the disappearance of the local minimum in ∆Etotal. The results shown in
Fig. 5.5(b) indicate that electron doping mainly increases δECoulomb, which
implies that screening of the Coulomb energy induced by doped carrier elec-
trons crucially contributes to the disappearance of the ferroelectric lattice
instability. The sharp increase in the kinetic energy around Ti position 0.525
would be related to the minimum distance allowed between ions, which is
typically called Pauli repulsion. From the results obtained from the first-
principles calculation, it is obvious that the ferroelectric phase of BaTiO3

is stabilized by the Coulomb energy contributions, which is consistent with
the speculation from classical model simulation (long-range Coulomb energy
favors ferroelectric distortion, whereas shot-range repulsions stabilize the cu-
bic phase [49, 154]). The effects of the electron doping in ferroelectric phase
BaTiO3 is the weakening of the Coulomb energy contributions by screening
the Coulomb forces, which results in the disappearance of the ferroelectric
phase in BaTiO3.

5.4 Defect-induced phase transition

We further performed supercell calculations to clarify the role of the lattice
disorder induced by donor-type defect and dopant in doping-induced T -C
phase transition. Several defect species are considered in our calculations:
Nb5+, oxygen vacancy (V 2+

O ) and hydrogen at oxygen site (H+
O) as typical

donor-type defect species. The range of dopant concentration was varied
by changing the supercell size and geometry as shown in Fig. 5.6. The
concentration of defect species rages from ndefect = 0.0185 to 0.125 per unit
cell as explained in Table 5.1. The accuracy of the k-point sampling grids is
maintained as same as 8 × 8 × 8 for unit cell, which enables us to compare
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Figure 5.6: Supercell models composed of n×n×n BaTiO3 unit cells used in
the defect calculations. The notations bc (body center) and fc (face center)
denote the defect positions within the supercells. Primitive cells are adopted
in the calculations with fc and bc supercells.

the effects of dopant-induced lattice disorder and electron doping on the
ferroelectric displacement of BaTiO3 shown in Fig. 5.1. We also confirmed
that reduction of the k-point grids down to the accuracy of 6 × 6 × 6 have
little influence on the obtained results, which indicates the strong influence
of the lattice disorder on the ferroelectric displacements.

The change in the c/a ratio induced by Nb doping at Ti site in BaTiO3 is
shown in Fig. 5.7(a). Generally, Nb is considered to be Nb5+ occupying Ti4+

site, therefore the number of carrier electrons is equal to the concentration
of doped Nb5+ [80, 82]. We confirmed that the band structure of an Nb-
doped supercell calculated with LDA agrees with this commonly accepted
viewpoint. In Fig. 5.7(a), the c/a ratio decreases faster than that in the
electron-only calculation. The critical-electron concentration for Nb5+ dop-
ing is nNb ≈ 0.05 e/(unit cell) (8.1× 1020 cm−3), which is about one half the
critical concentration of pure electron only doping. In terms of the lattice
deformation, the larger ionic radius of Nb5+ compared with that of Ti4+ is
responsible for the rapid reduction of the c/a ratio, which is confirmed by the
smaller local c/a ratio around the Nb5+ dopant shown at position A in Fig.

Table 5.1: Defect concentrations with the supercell models shown in Fig. 5.6.

Supercell Atom number Concentration (/(unit cell))

222 40 0.1250

444 (fc) 80 (primitive) 0.0625

333 135 0.0370

444 (bc) 160 (primitive) 0.0313

666 (fc) 260 (primitive) 0.0185
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5.4. Defect-induced phase transition

Figure 5.7: (a) The change of c/a ratio induced by Nb5+ doping at Ti4+ site
in BaTiO3. The inset shows the position of doped Nb atom in 3 × 3 × 3
supercell model. (b) The changes in averaged volume induced by Nb doping.
The averaged volume is obtained by dividing the supercell volume by the
number of unitcells within the supercells.
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Figure 5.8: c/a ratios and unit cell volumes at local positions A, B, C, and
D in the cross-sectional view of the relaxed supercell that contains Nb5+.
The supercell size is 444 (bc), which corresponds to a Nb5+ concentration of
0.031 per unit cell.

5.8. Figure 5.7(b) shows the changes in the averaged volume obtained by di-
viding the supercell volume by the number of unit cells within the supercells.
An unexpected finding is that the averaged volume of the Nb-doped super-
cell increases slower than that found in the electron-only calculation, despite
the large ionic radius of the incorporated Nb5+ dopant. This result can be
understood from the change in local unit cell volumes in Fig. 5.8. Even
though the local unit cell volume around the Nb5+ impurity is sufficiently
large (61.92 Å3 at position A) reflecting the large ionic size of Nb5+, local
volumes far from Nb5+ (61.19 Å3 at position D) are even smaller than the
calculated volume of the perfect tetragonal BaTiO3 (61.40 Å

3). The behavior
of volume change is intrinsic to the phase transition of BaTiO3. The thermal
expansion coefficient of BaTiO3 decreases sharply at each phase transition
temperature from lower- to higher-symmetry phases [58], which indicates
that the volumes of the higher-temperature phases are intrinsically smaller
than those of the lower-temperature phases at least near phase transition
temperatures. The tendency is also confirmed in in our calculations; the unit
cell volume of C phase is smaller than that of T phase, as plotted in Fig.
5.7(b), reflecting the nature of the phase transition in BaTiO3. Therefore,
the averaged volumes tend to become smaller when the phase transition to
C phase becomes faster as the increase of the electron concentrations. The
calculated volume changes of Nb doped supercell agree well with previous
experiments with BaTi0.875Nb0.125O3 (BTNO) [82], where the crystal struc-
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5.4. Defect-induced phase transition

Figure 5.9: Supercell models of BaTiO3 with oxygen vacancy at different
symmetry sites denoted with VO type I and II.

ture is cubic (Pm3m) at room temperature with a small expansion of the
cell parameter and the cubic phase remains down to 15 K.

As a different types of donor-type defects, we calculated the effects of
oxygen vacancies on the T -C phase transition in BaTiO3. There are no in-
gap states from oxygen vacancies in LDA (and also in GGA) calculations,
which indicates that the vacancies are in a doubly charged state (V 2+

O ). As
explained in Chap. 3, the stable valence state of the oxygen vacancy is
consistent with the results of HSE calculations; therefore, we assume here
that two electrons are released from a V 2+

O vacancy. Due to the P4mm crystal
symmetry of the tetragonal phase BaTiO3, there are two different equivalent
oxygen positions in the T -phase BaTiO3, which are denoted by OI and OII

in Fig. 5.1(a), respectively. Therefore, two different types of supercell should
be included in the same oxygen vacancy concentrations as shown by VO type
I and II shown in Fig. 5.9. The optimized crystal structures are shown in the
Fig. 5.9, which indicates that the two adjacent Ti atoms around V 2+

O move
away from each other. Due to the characteristic shifts of the two Ti cations
around VO as shown in Fig. 5.9, the lattice of the supercell is elongated in
the direction of the shift of the two Ti atoms. As a result, the c/a ratio for
V 2+
O type I does not decrease monotonically, but begins to increase around

carrier electron concentrations greater than 0.06 e/(unit cell) as shown in
the inset of Fig. 5.10(a). On the other hand, the c/a ratio of V 2+

O type
II becomes less than 1 around the same carrier concentration, which means
that the a axis replaces c axis as the longest axis due to the strong lattice
disorder around V 2+

O . In terms of the formation energies, we found that the
V 2+
O type I vacancy is slightly more stable than V 2+

O type II vacancy, but the
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Figure 5.10: (a) The change of c/a ratio induced by V2+
O doping in BaTiO3.

The inset shows the effects of V2+
O at different positions (Type I and II). (b)

The changes in averaged volume induced by V2+
O doping. The averaged vol-

ume is obtained by dividing the supercell volume by the number of unitcells
within the supercells.
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Figure 5.11: c/a ratios and unit cell volumes at different local positions
denoted with E, F ,G and H in the relaxed structure of 444 (bc) supercell
with V 2+

O type I vacancy.

difference of the total energies between these two oxygen vacancies is about
two orders of magnitude smaller than the calculated formation energies of
the oxygen vacancy (6.3−5.3 eV, depending on the supercell size of 39−259
atoms). Consequently, we can assume the uniform distribution of V 2+

O type
I and II vacancies in T phase BaTiO3. We adopted a simple average of the
c/a ratio to approximate the uniform distribution of two types of oxygen
vacancies: c/aaverage = (c/atype I + c/atype II + c/btype II)/3. The change in the
average tetragonality c/aaverage is shown in Fig. 5.10(a), which indicates that
the critical-electron concentration where the tetragonal distortion disappears
is 0.06 e/(unit cell) (9.8 ×1020 cm−3). On the other hand, the average unit
cell volume remains almost constant independent of the V 2+

O concentration,
as shown in Fig. 5.10(b). Although the local unit cell volume around V 2+

O

increases significantly as shown at position E in Fig. 5.11, decreases in
volume at other areas far from the vacancy counteract the increase of the
total supercell volume, which results in almost no increase in the oxygen
incorporated supercell volumes. A sharp decrease in volume at the critical-
charge density is a sign of T -C phase transition, because the volume of C
phase is intrinsically smaller than the T phase.

In Chap. 4, we explained the importance of the hydride ion (H−) that
occupies oxygen site in BaTiO3, which results in the formation of H+

O. Even
though the H+

O has hardly been discussed in previous studies, our results
clearly show that this is one of major defect species in reduced BaTiO3 fab-
ricated under H2 gas annealing. Therefore, we calculated the effects of H+

O
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Figure 5.12: Supercell models of BaTiO3 with HO at different symmetry sites
denoted with HO type I and II.

on the ferroelectric tetragonal phase of BaTiO3. Since the possible crys-
tallographic site of HO in BaTiO3 tetragonal phase is identical to that of
oxygen vacancy, there are two equivalent positions of HO similar to that of
the oxygen vacancy. Figure 5.12 shows the supercell models with HO type
I and II. Compared to the lattice deformation induced by VO, the deforma-
tion induced by HO is slightly smaller, which indicates that the HO corrects
the lattice deformation induced by VO. The inset in Fig. 5.13(a) shows the
changes in tetragonality induced by H+

O type I and II. As explained for the
VO, the lattice of the supercell is elongated in the direction of Ti-H-Ti atom
arrangement; therefore, the change of the c/a ratio is very similar to that
of VO shown in the inset of Fig. 5.10(a). The main difference between the
V 2+
O and H+

O is the stable valence state of the defect species. In addition, the
smaller lattice deformation around HO compared to VO permits the existence
of the ferroelectric phase in BaTiO3 under high concentration of HO. As a
consequence, much higher concentration of HO (0.05 /(unit cell)) is allowed
in the ferroelectric phase of BaTiO3 compared to VO (0.03/(unit cell)) as
shown in Fig. 5.13. On the other hand, the critical carrier electron density
induced by HO is 0.05 e/(unit cell) (8.2× 1020 cm−3), which is very close to
the critical density induced by Nb5+ at Ti4+ site and V 2+

O .

The Nb5+, V 2+
O and H+

O doped supercell calculations show that the dopant-
induced lattice disorder reduces the critical-electron concentration where the
T phase vanishes in BaTiO3. Although the critical-electron concentrations in
BaTiO3 induced by donor-dopants are very similar [0.05-0.06 e/(unit cell)],
the concentration of V 2+

O for the phase transition (0.03 e/(unit cell)) is much
smaller than that of Nb5+ and H+

O (0.05 e/(unit cell)). The oxygen vacancy
strongly perturbs the BaTiO3 lattice, as shown in Fig. 5.11, which causes
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Figure 5.13: (a) The change of c/a ratio induced by H+
O doping in BaTiO3.

The inset shows the effects of H+
O at different positions (Type I and II). (b)

The changes in averaged volume induced by H+
O doping. The averaged volume

is obtained by dividing the supercell volume by the number of unitcells within
the supercells.
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phase transition at a lower concentration compared to other dopants.
The calculated critical-electron density for the V 2+

O supercell is 0.06 e/(unit
cell) (9.8 ×1020 cm−3), which is about a half the experimental value for re-
duced BaTiO3−δ (1.9 ×1021 cm−3) [78]. Even if we suppose the possibility
that the experimental carrier-electron doping is achieved by H+

O, the differ-
ence is too large to be explained by the H+

O. We should carefully reconsider
the difference between the theoretical and experimental results. In Ref. [78],
the experimental critical density was evaluated from changes in phase transi-
tion temperature caused by V 2+

O (or H+
O). In these experiments, the critical-

electron density should be the electron concentration where all ferroelectric
phases disappear. However, there is a serious problem in actual experiments
that the critical-electron density is difficult to be achieved due to the irre-
versible transformation into hexagonal polymorph caused by VO in heavily
reduced BaTiO3−δ [78]. Therefore, the electron density reported in Ref. [78]
is evaluated from a linear extrapolation of the C-T transition temperature
around very low electron concentrations (1.0-3.5 ×1020 cm−3). However,
there is no guarantee that the phase transition temperature decreases in
proportion to electron concentration within such a wide range of electron
doping. The disappearance of the ferroelectric distortion shown in Fig. 5.1
is definitely not proportional to electron concentration, which suggests that
more higher-order fitting is required to evaluate the critical-electron density.
Therefore, the experimental critical density should be much smaller than the
reported value.

5.5 Summary

The effect of electron doping on the disappearance of the ferroelectric phase,
namely the low- to high-symmetry phase transition in BaTiO3 was studied
with first-principles calculation. From the calculation with electron doping
with uniform-background charge, the disappearance of the ferroelectric phase
is shown to be an intrinsic nature of electron doping in BaTiO3. The critical-
electron concentration for the T -C phase transition with pure-electron doping
is calculated to be nelec. = 0.085 e/(unit cell)(1.36×1021 cm−3). The compo-
nent analysis for the total energy shows that the screening of the Coulomb
energy by carrier electrons is a main factor behind the disappearance of the
ferroelectric lattice instability. Furthermore, we performed calculations to
clarify the effects of lattice deformation due to typical donor dopants Nb5+,
V 2+
O and H+

O with supercell models containing these defect structures. The
series of calculations clarified that that dopant-induced lattice disorder ac-
celerates the disappearance of the ferroelectric distortion in BaTiO3 and the
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critical-electron concentration becomes about one half the critical concentra-
tion of the pure electron doping. Interestingly, the calculated critical electron
densities with Nb5+, V 2+

O and H+
O defect structures is 0.05-0.06 e/(unit cell)

(8.2− 9.8× 1020 cm−3), which is about one half the experimental value [78].
This result suggests that more detailed research is necessary, including an
experimental procedure to determine the critical electron density.
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Concluding remarks

6.1 Summary of the thesis

In this thesis, we have investigated the nature of defects and impurities in
perovskite-type ATiO3 (A = Sr, Ba) oxides based on the first-principles cal-
culation. The aim of our study is the clarification of various experimental
results observed in reduced ATiO3 with hydrogen gas (H2). The essential
problem in the theoretical calculation is the difficulty of the accurate eval-
uation of shallow donor states in wide-gap insulators, which is a very hard
task for current first-principles calculation based on density functional theory
(DFT). We introduced several improved exchange-correlation (XC) function-
als: DFT+U , pseudo SIC, and hybrid functional to overcome the problems
in local density approximation (LDA). In Chap. 2, theoretical framework
of these improved XC functionals are explained followed by a derivation of
Kohn-Sham equations. One of serious drawbacks of LDA is the underesti-
mation of band gap, and the mechanism of the improvement of the gap value
due to these improved XC functionals are discussed.

For the evaluation of defects in perovskite-type oxides, our first subject is
the selection of appropriate XC functional suitable for these calculations. We
took up an isolated oxygen vacancy (VO) in SrTiO3−δ as a typical shallow-
donor defect, and performed a series of calculations with various XC function-
als (Chap. 3). As a result, we found that the defect state of VO depends not
only on the XC functional but also on the atomic configuration around the
VO, which suggests the importance of the geometry optimization around the
vacancy. Considering the requirements for the defect-state calculations, we
concluded that the hybrid functional especially HSE would be a reasonable
choice for the calculations of defect and impurity in perovskite-type oxides.
The HSE calculation indicates that V 2+

O is the stable valence state in SrTiO3.
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However, the result is inconsistent with the experimentally confirmed V +
O sta-

bility in ATiO3. Thereby, we concluded that the experimentally confirmed
V +
O stability cannot be explained by a simple isolated VO model in SrTiO3

and another atomistic models are required.
We also investigated the effects of hydrogen (H) impurities on the elec-

tronic structure of perovskite-type oxides (Chap. 4). The H atom has been
considered as proton (H+) in this material group. Contrary to the previous
general knowledge, we found that the H atom changes its character from H+

to H− (negatively charged hydride) depending on the environment around H
in ATiO3. The H− in ATiO3 stably occupies V 2+

O site, which leads to the
stable formation of H+

O defect species. Our results clearly suggest that the
formation of H+

O is the cause of the apparent V +
O stability in ATiO3 under

hydrogen annealing condition. Our results also suggest that an additional
H− can be weakly trapped by H+

O, which leads to the passivation for the Ti-
3d dangling bonds. As a results, all carrier electrons from V 2+

O are trapped
by a very deep bonding level composed of H-1s and Ti-3d, and the donor-
like property of the oxygen vacancy is completely disappeared. Our results
clearly show that the wide variety of H incorporations in oxygen deficient
ATiO3−δ can greatly modify the carrier electron density. The H2 gas is com-
monly used as a reducing agent for ATiO3, and many previous experiments
assume a simple oxygen vacancy (V 2+

O ) or interstitial hydrogen (H+
i ) as a

source of carrier electron. Therefore, the hydrogen occupying the V 2+
O site as

hydride (H−) are extremely important, because it requires reconsideration for
previous experiments, and contributes to the development of defect control
in solid state materials.

We further clarified the effects of donor-type defects on the ferroelectric-
ity in perovskite-type BaTiO3 (Chap. 5). As a first step, we divided the
effects of donor-defect incorporation into two aspects: pure electron doping
and lattice deformation due to the defect, and evaluated each contribution
to the disappearance of the ferroelectricity. We found that pure electron
doping intrinsically suppress the ferroelectric phase of BaTiO3 with criti-
cal carrier-electron density of nelec. = 0.085 e/(unit cell)(1.36 × 1021 cm−3).
From the component analysis of the total energy, we clarified that Coulomb
energy favors the ferroelectric deformation, whereas kinetic energy favors
non-ferroelectric lattices, and that the screening of the Coulomb force by
the doped free electron is of essential importance for the disappearance of
the ferroelectric phase in BaTiO3. We explained that the component anal-
ysis can also explains the origin of the ferroelectricity. We further clarified
that the lattice deformation due to the defects (H+

O, V
2+
O and Nb5+) acceler-

ate the disappearance of the ferroelectricity and the critical carrier-electron
concentration becomes almost a half value of that in pure electron doping.
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6.2 Future work

In this thesis work, we studied the relation between macroscopic phenom-
ena (conductivity, color, spontaneous polarization, etc.) and defect species
generated under H2 annealing for perovskite-type oxides. The defect species
studied are mainly related with oxygen vacancy and hydrogen, and several
unrevealed phenomena are clarified through the work. However, there are
several experimental results that are still unclear, such as an annealing exper-
iment for Nb doped SrTiO3 single crystal, where the decrease of conductivity
was observed by the hydrogen doping [71]. The experimental result obviously
indicates that the hydrogen does not act as a donor-type impurity (H+

i ) in
Nb doped SrTiO3 and there would be another defect complex model that is
different from the ones we discussed in this thesis. The clarification of the
role of hydrogen in these complicated experimental results is an interesting
subject as a future work of the thesis.
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Appendix

A.1 USP formalism of pseudo SIC

We implemented the pseudo SIC method in a first-principle calculation code:
Tokyo ab initio programming package (TAPP) that is an ultrasoft pseudo
potential programing package. The formalism of the pseudo SIC explained
in Chap. 2 is based on norm-conserving pseudo potential (NCP). However,
we implemented with NCP and also with ultrasoft pseudo potential (USPP),
and actual calculations are performed with the USPP implementation. In
the appendix, we will explain the implementation of the pseudo SIC with the
framework of the USPP.

The SIC-KS equations are written as follows:

[ĤLDA − V̂SIC] |ψn,k⟩ = εn,k |ψn,k⟩ , (A.1)

where, V̂SIC is the SIC operator. In NCP, it is expressed by:

V̂SIC =
1

2

∑
i

|VHXC[ni]ϕi⟩ pi ⟨VHXC[ni]ϕi|
⟨ϕi|VHXC|ϕi⟩

, (A.2)

where ϕi is wave function of isolated atom and VHXC[ni](r) is HXC potential
calculated only from the density of isolated atom, and pi is the occupation.
In NCP, the pi defined by:

pi =
∑
n,k

fn,k ⟨ψn,k|ϕi⟩ ⟨ϕi|ψn,k⟩ , (A.3)
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whereas in USP, the pi should be: 1

pi =
∑
n,k

fn,k ⟨ψn,k|Ŝ|ϕi⟩ ⟨ϕi|Ŝ|ψn,k⟩ , (A.4)

where Ŝ is the overlap matrix defined by:

Ŝ = 1 +
∑
τ,i,j

|βτ
i ⟩Qτ

ij ⟨βτ
ij| . (A.5)

The variation of SI energy ESIC against Ψ∗ is:

δESIC[ni]

δΨ∗
i

=
δESIC[ni]

δni

δni

δΨ∗
i

=
δESIC[ni]

δni

(1 +
∑
τ,i,j

|βτ
i ⟩Qτ

ij ⟨βτ
ij|) |Ψi⟩ , (A.6)

where the first term is (formally) describes SIC potential, and the second
term is additional USP operator which are described by:

V̂ US
SIC =

∑
i

1

2
pi
∑
αα′

|βα⟩
(∫

drVHXC[ni(r); 1]Qαα′(r)

)
⟨βα′| . (A.7)

The pseudo SIC KS equations are:

ĤSIC,USP |ψnk⟩ =

[
−1

2
∇2 + V̂loc + V̂NL −

(
V̂SIC + V̂ US

SIC

)]
|ψnk⟩

= εnkŜ |ψnk⟩ . (A.8)

The form of the (approximated) total energy is:

ESIC[n,m] =
∑
i,σ

fσ
n,kεnkσ −

∑
σ

∫
drnσ(r)V σ

HXC[n(r),m(r)]

+ EHXC[n,m] + Eion

+
∑
n,k,σ

fσ
n,k ⟨ψσ

n,k|V̂SICσ + V̂ σ,US
SIC |ψσ

n,k⟩ −
∑
i,σ

EHXC[n
σ
i ].(A.9)

1The definition of the occupation in Eq. (A.4) is different from original paper by
A. Filippetti, et al., where they defined pi =

∑
nk fnk ⟨Ψnk|ϕi⟩ ⟨ϕi|Ψnk⟩Satom, where

Satom is the expectation value of the overlap matrix calculated with atomic wave function:
Satom = 1 +

∑
αα′ ⟨ϕi|βα⟩Qαα′ ⟨βα′ |ϕi⟩ .
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A.2 USP formalism of LDA+U

In our work, the LDA+U calculations are performed with USPP. Here, we
briefly explain the basic formulation of LDA+U under USPP formalism.

The total energy functionals is:

ELDA+U = ELDA + EU , (A.10)

where EU is the rotational invariant on-site correction:

EU [{nτ ′σ
mm′}] =

Ueff

2

∑
τ ′

∑
mσ

{
nτ ′σ
mm −

∑
m′

nτ ′σ
mm′nτ ′σ

m′m

}

=
Ueff

2

∑
τ ′σ

Tr[nτ ′σ
(
1− nτ ′σ

)
]. (A.11)

nτ ′σ is occupation matrix (on-site density matrix) defined as

nτ ′σ
mm′ =

∑
n,k

fn,k⟨ψσ
n,k|Ŝ ′|Φτ ′

m⟩⟨Φτ ′

m′|Ŝ ′|ψσ
n,k⟩, (A.12)

where Ŝ ′ is overlap operator defined for localized (atomic) orbitals Φτ ′
m, and

we can select Ŝ ′ = Ŝ when we recalculate the Φτ ′
m using Vanderbilt USP

with overlap operator Ŝ. ψn,k are the pseudo-wave functions and fn,k are the
occupation numbers.

Derivative of EU by ψσ∗
n,k is

∂EU

∂ψσ∗
n,k

=
Ueff

2

∂

ψσ∗
n,k

∑
τ ′

∑
mσ

{
nτ ′σ
mm −

∑
m′

nτ ′σ
mm′nτ ′σ

m′m

}

=
Ueff

2

∑
τ ′m

{
∂nτ ′σ

mm

ψσ∗
n,k

− ∂

ψσ∗
n,k

∑
m′

nτ ′σ
mm′nτ ′σ

m′m

}
. (A.13)

First and second term in Eq.(A.13) becomes

∑
τ ′,m

∂nτ ′σ
mm

ψσ∗
n,k

=
∑
τ ′,m

∂

ψσ∗
n,k

∑
n,k

fn,k⟨ψσ
n,k|Ŝ|Φτ ′

m⟩⟨Φτ ′

m|Ŝ|ψσ
n,k⟩

=
∑
τ ′,m

Ŝ|Φτ ′

m⟩⟨Φτ ′

m|Ŝ|ψσ
n,k⟩, (A.14)
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∑
τ ′,m

∂

∂ψσ∗
n,k

∑
m′

nτ ′σ
mm′nτ ′σ

m′m =
∑
τ ′,m

∑
m′

(
∂nτ ′σ

mm′

∂ψσ∗
n,k

nτ ′σ
m′m + nτ ′σ

mm′
∂nτ ′σ

m′m

∂ψσ∗
n,k

)

= 2
∑
τ ′,m

∑
m′

nτ ′σ
mm′

∂nτ ′σ
m′m

∂ψσ∗
n,k

= 2
∑
τ ′,m

∑
m′

Ŝ|Φτ ′

m′⟩nτ ′σ
mm′⟨Φτ ′

m|Ŝ|ψσ
n,k⟩. (A.15)

Hence, the potential V̂ σ
U acting on KS equations is

V̂ σ
U =

Ueff

2

∑
τ ′

(∑
m

Ŝ|Φτ ′

m⟩⟨Φτ ′

m|Ŝ − 2
∑
mm′

Ŝ|Φτ ′

m′⟩nτ ′σ
mm′⟨Φτ ′

m|Ŝ

)
. (A.16)

where, the overlap operator Ŝ is:

Ŝ = 1 +
∑
τ ′,ij

|βτ ′

i ⟩Qτ ′

ij ⟨βτ ′

j |. (A.17)
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