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Abstract 

Genomic sequences contain various types of genomic elements such as genes, their 

regulatory elements, transposable elements, and so on. For better understanding of the 

genome, it is important to discover these genomic elements as thoroughly as possible. 

Although biological experiments are reliable to identify these elements, they are too 

costly and labor intensive to be applied to the entire genome. To narrow down genomic 

regions to be investigated, a number of computational methods have been developed. 

Although sometimes not entirely accurate, computational methods have an advantage 

over biological experiments in that they are generally fast enough to be applied to the 

whole genome and are therefore indispensable for the investigation of genomic 

sequences. 

In this thesis, we propose two computational methods for predicting specific genomic 

elements. The first method, miRRim2, predicts microRNA (miRNA) genes, which are 

important genomic elements belonging to non-protein-coding genes. They are suggested 

to regulate the expression of several thousand protein-coding genes and have been 

shown to be involved in several human diseases including cancer. Therefore, the 

discovery of novel miRNA genes has both biological and clinical importance. As 

transcribed miRNAs have a unique secondary structure that is in most cases 

evolutionarily conserved, their accurate detection requires the integration of both 

structural and evolutionary features. In our method, these features are expressed by 

multi-dimensional vectors. The known miRNAs, represented by sequences of the 

multi-dimensional feature vectors, were used to train a probabilistic model. To evaluate 

the accuracy of miRRim2, we designed a cross-validation test in which the whole 

genome was evaluated. miRRim2 could detect miRNA hairpins more accurately than 

the other computational prediction methods used previously on the human genome. 

Furthermore, miRRim2 can infer the location of a mature miRNA sequence, which is 

useful for deducing the function of predicted miRNAs. In our cross-validation test, 

miRRim2 has successfully detected the position of the 5′-end of mature miRNAs with a 

sensitivity and positive predictive value greater than 0.4. 

The second method, TSDscan, predicts pseudogenes, which are non-functional copies of 

functional genes and are one of the prominent genomic elements of mammalian 

genomes. The detection of pseudogenes not only contributes to the correct annotation of 

genomic sequences but also provides valuable insights into the expression patterns of 

the parent genes. For example, genes that have their pseudogenes should be expressed 

in germ line cells (or cells that develop into germ line cells), because only the 
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pseudogenes occurring in these cells are heritable to the descendant genomes. TSDscan 

detects pseudogenes based on the surrounding sequence signature. TSDscan clearly 

differs from existing methods in that it does not rely on commonly used features such as 

the number of exons and the presence of in-frame stop codons, and hence has the 

potential to detect novel pseudogenes. Indeed, by applying TSDscan to the human 

genome, we found 654 short (≤300 bp), previously unknown pseudogenes derived from 

protein-coding genes. In addition, a comprehensive analysis of the identified 

pseudogenes and their parent genes revealed an interesting tendency, that short 

pseudogenes are generated more frequently from long parent genes. On the basis of this 

observation, we propose a new hypothesis for the generation of pseudogenes. 

 In summary, we developed two computational methods for predicting specific types of 

genomic elements. The first method, miRRim2, not only predicts miRNA genes 

accurately but also infers the location of their mature forms. The second method, 

TSDscan, predicts pseudogenes based on their surrounding sequence signature. By 

using TSDscan, we identified a novel type of pseudogenes in the human genome. These 

prediction results provide a more accurate and comprehensive view of these two 

genomic elements and contribute to a better understanding of the genome. 
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Chapter 1 

Introduction 

The genome of an organism contains essential information for the development and 

maintenance of cells, tissues, and organs. It contains various types of genomic elements, 

such as genes, promoters, enhancer elements, pseudogenes, repetitive elements, and 

transposable elements. Among them, genes are especially important genomic elements 

because they encode the information needed to produce proteins and functional RNA 

molecules, which play a central role in various biological processes, such as the cell cycle, 

metabolism, and immune response. Promoters and enhancer elements control where 

and when genes are activated; therefore, they can be considered as a switch that turns 

genes on or off. Transposable elements, such as long interspersed nuclear elements 

(LINEs) and Alu elements, occupy a significant portion of the genomes of higher 

eukaryotes. They are considered to have important evolutionary roles by giving 

diversity to the genome (Deininger et al. 2003; Batzer and Deininger 2002). 

Pseudogenes are one of the prominent genomic elements of mammalian genomes. 

Although they were considered to be the non-functional copies of genes, several studies 

suggested that they are involved in the birth of novel functional genes (see below). To 

understand the genome, it is important to identify these genomic elements as 

thoroughly as possible and elucidate their biological roles. 

 

Protein coding and non-protein-coding genes 

Genes are transcribed into RNA molecules, which are in many cases translated into 

proteins. Proteins consist of chains of any of the 20 amino acids coded for by the genome 

and have a great variety of biochemical activities, such as enzymatic reactions, 

nucleotide polymerization, and chemical modifications. At present, approximately 

30,000 protein-coding genes have been found in the human genome (Claverie 2001; 

Lander et al. 2001; Venter et al. 2001). The RNA molecules that are translated into 

proteins are called messenger RNAs (mRNAs). 

The other transcribed RNA molecules exert their function without undergoing 

translation. Such RNA molecules are commonly called non-coding RNAs (ncRNAs). 

Transfer RNAs and ribosomal RNAs are classic and well-known examples of ncRNAs. 

At present, various types of ncRNAs have been found in the human genome, some of 

which play essential biological roles. For example, the Xist RNA coats one of the two X 

chromosomes in female mammalian cells and causes transcriptional inactivation, 
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resulting in dosage compensation of genes on the X chromosome between the sexes 

(Lyon 1961). Another important example is microRNAs (miRNAs). They are suggested 

to regulate more than 50% of the protein-coding genes in humans (Lewis et al. 2005; 

Friedman et al. 2009) and are expected to be involved in virtually all biological 

processes (Ambros 2001). It is now increasingly recognized that ncRNAs are key players 

in a broad range of biological processes (Mercer et al. 2009; Ponting et al. 2009; 

Prasanth and Spector 2007). 

 

Reverse transcription of gene transcripts and its potential roles 

In some cases, transcribed RNA molecules are reverse-transcribed and integrated into 

genomic DNA, giving rise to copies of functional genes. The copies of genes thus 

generated are commonly called pseudogenes, which were named after the common 

belief that they are non-functional genomic elements. However, several studies have 

suggested that the generation of pseudogenes has resulted in the birth of novel 

functional genes. For example, the Xist RNA described above appears to have originated 

from Alu elements and a pseudogene of the Lnx3 gene (Elisaphenko et al. 2008). The 

TRIMCyp gene in the owl monkey, which is responsible for HIV resistance, was 

generated by a fusion of the TRIM5 gene and the CypA pseudogene (Sayah et al. 2004). 

Some endogenous small interfering RNAs (siRNAs), which negatively regulate 

functional genes, are expressed from pseudogenes (Watanabe et al. 2008). Therefore, the 

generation of pseudogenes may be important for the evolution of functional genes. 

 

1.1 Problem statement and our contribution 

Among the various types of ncRNAs, miRNAs are especially important molecules 

whose discovery can have a significant biological and clinical impact. Therefore, much 

effort has been devoted to their detection by both computational methods (e.g., 

Berezikov et al. 2005; Hertel et al. 2006; Lim et al. 2003a) and biological experiments 

(e.g., Lagos-Quintana et al. 2002; Landgraf et al. 2007; Cummins et al. 2006). In this 

thesis, we present: 

 

- A new method for predicting miRNA genes and their mature forms 

 

 Pseudogenes are one of the prominent elements of the human genome. Their detection 

contributes to the correct annotation of the genome. Many studies have been conducted 

for the detection of pseudogenes (e.g., Torrents et al. 2003; Zhang et al. 2003; Ohshima 

et al. 2003). In many cases, pseudogenes lack introns because reverse transcription of 
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transcribed RNA molecules occurs after their introns are spliced out. Existing methods 

for detecting pseudogenes rely heavily on this lack of introns; however, this strategy is 

not applicable to pseudogenes derived from genes without introns. In this thesis we 

present: 

 

- A method for predicting pseudogenes that does not rely on the lack of introns 

 

We also performed comprehensive analysis between the pseudogenes we identified and 

their parent genes. From this analysis, we found a tendency that short pseudogenes are 

generated more frequently by long genes. On the basis of this observation we present: 

 

- A hypothetical model for the generation of pseudogenes 

 

Overview of this thesis 

 In this introductory chapter, we start with an overview of the biogenesis of 

miRNAs and the molecular mechanism for generating pseudogenes. In the second 

chapter, we present miRRim2, a method for predicting miRNA genes and their 

mature forms. The third chapter presents TSDscan, a method for predicting 

pseudogenes. A hypothetical model for the generation of pseudogenes, which was 

deduced from our comprehensive analysis of pseudogenes and their parent genes, is 

also presented in this chapter. The final chapter summarizes this thesis and gives 

an outlook for future work. 

 

1.2 Biogenesis of miRNAs and generation mechanism of pseudogenes 

Biogenesis of miRNAs 

 A miRNA gene is transcribed initially as a long RNA molecule, called pri-miRNA, in 

the nucleus (Fig. 1.1a). It contains one or more hairpin structures that are processed by 

the enzyme Drosha (Lee et al. 2003). In this study, we refer to the hairpin structure as 

an “miRNA hairpin.” A miRNA hairpin is processed into a shorter (c.a. 60-bp) hairpin, 

called pre-miRNA, by Drosha (Fig. 1.1b). Then, it is exported to the cytoplasm by an 

enzyme called Exportin-5 (Fig. 1.1c; Lund et al. 2004). It is further processed into a  

double-stranded RNA molecule of approximately 22-nucleotides (nt), which is called a 

miRNA duplex by the enzyme Dicer (Fig 1.1d; Hutvagner et al. 2001). In general, either 

strand of the miRNA duplex is loaded into the RISC protein complex and functions as a 

mature miRNA (Fig. 1.1e; Gregory et al. 2005). The other strand of the miRNA duplex, 

which we refer to as the “passenger strand,” is degraded rapidly (Fig. 1.1f; Gregory et al. 
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2005). Although a novel type of miRNA gene that bypasses Drosha processing has been 

reported (Berezikov et al. 2007), to date, most of the identified miRNAs are subject to 

Drosha processing. 

In various eukaryotes, miRNA hairpins can be located in the introns of protein-coding 

genes. In human, approximately 40% of miRNA hairpins are found in introns. It is not 

clear whether such intronic miRNAs are processed after or before introns are spliced 

out. In either way, miRNA hairpins in intronic miRNAs are processed into pre-miRNA 

and enter into the maturation pathway illustrated in Figure 1.1. 

 

Generation mechanism of pseudogenes 

Most pseudogenes are generated by a process called retrotransposition, which is a 

series of in vivo processes involving the reverse transcription of RNA molecules and the 

integration of the transcripts into the genome. Retrotransposition in eukaryotes can be 

divided into two types: the long terminal repeat (LTR) type and the non-LTR type. The 

latter accounts for the majority of retrotransposition events in human (Ostertag and 

Kazazian 2001). Various types of RNA molecules, including Alu RNAs, LINE RNAs, 

mRNAs, and small ncRNAs, are copied via non-LTR retrotransposition (Dewannieux et 

al. 2003; Moran et al. 1996; Esnaul et al. 2000; Buzdin et al. 2003; Perreault et al. 2005). 

Non-LTR retrotransposition is mediated by a protein encoded by the second open 

reading frame of LINE-1 (hereafter L1-ORF2p), which has both reverse transcriptase 

and endonuclease activity (Feng et al. 1996). L1-ORF2p can bind to the 3′-end of RNA 

molecules and promotes their retrotransposition (Fig. 1.2a). The endonuclease activity 

of L1-ORF2p creates a cleavage site in genomic DNA (Fig. 1.2 b); this cleavage site is 

used as a primer, and reverse transcription of the template RNA begins (Fig. 1.2c). The 

resultant cDNAs are integrated into genomic DNA (Fig. 1.2d). This integration process 

is called target-site-primed reverse transcription (Luan et al. 1993; Cost et al. 2002).  
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Figure 1.2. Schematic view of retrotransposition. (a) RNA molecules are recognized 

by L1-ORF2p. (b) The endonuclease activity of L1-ORF2p creates a cleavage site in 

genomic DNA. (c) Reverse transcription of the template RNA begins using the 

cleavage site as a primer. (d) The resultant cDNAs are integrated into genomic 

DNA. 

Figure 1.1. Processing of miRNA genes. (a) A miRNA gene is transcribed as a long RNA molecule, 

called pri-miRNA. (b) Some of the hairpin structures in pri-miRNA are processed into 

pre-miRNA by Drosha. (c) Pre-miRNAs are exported to the cytoplasm by Exportin-5. (d) 

Pre-miRNAs are processed into miRNA duplexes by Dicer. (e) One of the two strands is loaded 

into the RISC complex and functions as a mature miRNA. (f) The other strand, which we refer to 

as the passenger strand, is degraded rapidly. 
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Chapter 2 

Prediction of miRNA based on position-specific 

structural features 

 

2.1 Introduction 

MicroRNA (miRNA) is a well characterized non-coding RNA family that has important 

roles in various biological processes such as development (Wienholds et al. 2005), cancer 

(Esquela-Kerscher et al. 2006), and immune response (Lindsay 2008). Therefore, 

miRNA identification and functional analysis are necessary for the understanding of 

many biological phenomena. A miRNA is initially transcribed as a long RNA molecule 

called pri-miRNA which contains one or more hairpin structures that are processed by 

the enzyme Drosha (Fig. 1.1; Lee et al. 2003). In this study, we refer to the hairpin 

structure as a “miRNA hairpin”. After a miRNA hairpin is processed into a shorter 

hairpin, called pre-miRNA, by Drosha, it is further processed into a ~22-nucleotide (nt) 

double-stranded RNA molecule called a miRNA duplex by the enzyme Dicer (Hutvagner 

et al. 2001). Figure 2.1 illustrates the location of a miRNA duplex as well as the Drosha 

and Dicer cleavage sites in a putative miRNA hairpin. In general, either strand of the 

miRNA duplex is loaded into the RISC protein complex and functions as a mature 

miRNA (Gregory et al. 2005). Another strand of the miRNA duplex, which we refer to as 

“passenger strand”, is rapidly degraded (Gregory et al. 2005).  

Previous biochemical and computational studies have revealed several important 

features that are specific or necessary for miRNA hairpins. For example, miRNA duplex 

regions within miRNA hairpins generally form stable base pairs (Ambros et al. 2003) 

and often have an internal small bulge in the middle (Krol et al. 2004; Han et al. 2006). 

The 5′-end position of mature miRNA is predominantly composed of uracil and tends to 

be energetically unstable (Krol et al. 2004; Khvorova et al. 2003). Drosha was shown to 

recognize the outermost base pair in miRNA hairpins (Han et al. 2006) and cleave the 

molecule at ~13 nt and ~11 nt from the Drosha recognition base pair (DRB; Fig. 2.1). 

Therefore, the positions around the DRB have unique secondary structural (Han et al. 

2006; Saetrom et al. 2006) and evolutionary features, as shown in Results and 

Discussion. The length between the Drosha cleavage sites is ~60 nt with a small 

variation (SD = 4.9) for human miRNA hairpins (Saetrom et al. 2006), although it can 

be longer (~80 nt) in Drosophila (Ruby et al. 2007). 
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The features described above can be useful for identifying conserved miRNA hairpins, 

and several methods have been proposed that take these features into account. In 

miRScan (Lim et al. 2003a) and Berezikov et al. (2005), evolutionary and structural 

features in each part of miRNA hairpins were used for detecting miRNA hairpins. 

RNAmicro (Hertel et al. 2006) used the support vector machine (SVM) for 

discriminating miRNA hairpins and other ncRNAs. SSCprofiler (Oulas et al. 2009) and 

miRRim (Terai et al. 2007) used a hidden Markov model (HMM) to model evolutionary 

and secondary structural features of miRNA hairpins. The above methods focus on the 

detection of miRNA hairpins, and cannot infer the location of mature miRNAs. 

More recently, several groups report new methods for detecting miRNA hairpins 

based on detailed structural and nucleotide features. MiRPred (Brameier and Wiuf 

2007) detects miRNA hairpins based on ensemble of secondary structural motifs. 

Agrawal et al. (Agarwal et al. 2010) used context-sensitive HMM to model sequence and 

structure of miRNA hairpins. MiPred (Jiang et al. 2007) used the Random Forest 

algorithm to integrate local structural characteristics and global structural stability of 

miRNA hairpins. Liu et al. (2012) extracted sequence-structure motifs from miRNA 

hairpins and used them to distinguish true and non-miRNA hairpins. These methods, 

however, do not take evolutionary features into account. To use these methods to detect 

conserved miRNA hairpins, an additional screening procedure based on the 

evolutionary features has to be developed, which is not a simple task because, as shown 

Figure 2.1 Schematic view of a putative miRNA hairpin. Cleavage sites by Drosha 

and Dicer are indicated by black and gray arrowheads, respectively. A miRNA 

duplex is represented by black circles. An arrow at the left side indicates the 

Drosha recognition base pair (DRB) (see text). The 5'-arm and 3'-arm indicate the 

5'- and 3'-sides of a stem region in a miRNA hairpin, respectively. 
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below, miRNA hairpins have a unique and complex pattern of evolutionary 

conservation. 

In this study, we developed a new method, miRRim2, which can not only detect 

conserved miRNA hairpins, but also infer their mature forms. In miRRim2, each 

position of a miRNA hairpin is expressed as a multidimensional feature vector to detect 

position-specific features; therefore, a miRNA hairpin is expressed as a sequence of the 

feature vectors. miRNA hairpins, expressed by sequences of feature vectors, are 

modeled using conditional random fields (CRFs) (Lafferty et al. 2001), which optimize 

feature weights so that a trained model can most probably discriminate between 

miRNA hairpins and background data. The probabilistic model used in miRRim2 has 

several sub-components, each of which corresponds to a specific component of miRNA 

hairpins, such as mature miRNA, passenger strand, and terminal loop regions; 

therefore, the position-specific features of each component are appropriately modeled. 

Recently, many miRNA hairpins have been identified that are not evolutionarily 

conserved. A recent study shows that the expression level of these non-conserved 

miRNA hairpins are very low, and that they are almost free of selective pressure (Liang 

et al. 2009). Another recent study has suggested that non-conserved miRNA hairpins 

may disappear quickly during the course of evolution (Lu et al. 2008). Because the 

biological relevance of non-conserved miRNA hairpins remains elusive, we focus on the 

detection of conserved miRNA hairpins, of which the biological importance is 

evolutionarily supported. 

 

2.2 Methods 

2.2.1 Evolutionary and secondary structural features of miRNA hairpins 

Before entering technical details, we show the position-specific features of miRNA 

hairpins which we would like to model with probabilistic framework. Figure 2.2 shows 

the evolutionary and structural features of 306 conserved miRNA hairpins in human, 

which we refer to “core miRNA hairpins” (see Materials and Details). In this figure, both 

of the PhastCons and PhyloP score represent the degree of evolutionary conservation in 

each position, which are calculated based on multiple alignment between species (Siepel 

2005; Siepel 2006). The base pair potential represents the likelihood of forming a base 

pair in each position, which is calculated from the predicted secondary structure (see 

below). The position 0 in the x-axis indicates to 5'-ends of miRNA duplexes in the 5'-arm. 

Overall, the PhastCons, PhyloP, and base pair potential are highly correlated, 

indicating that highly conserved regions tend to form base pairs in miRNA hairpins. 



10 

 

Especially, the miRNA duplex regions are more strongly conserved and form more 

stable base pairs than their surrounding regions. The outside regions of the miRNA 

hairpin (position -20 or less, and 80 or more) are generally less conserved than the 

internal regions, as has been already reported (Berezikov et al. 2005; Terai et al. 2007). 

The Drosha recognition base pair (DRB; Fig. 2.1) in the 5'-arm of the miRNA hairpin 

is located around position -13, where the base pair potential drops sharply, as previously 

reported (Han et al. 2006; Saetrom et al. 2006). Interestingly, PhastCons and the 

PhyloP scores also drop at the same position. The same propensity was observed around 

the DRB in the 3'-arm (position +11), when we adjusted position 0 to the 3′-ends of the 

miRNA duplex regions in the 3'-arm (Fig. S2.1). 
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Next we focused on the difference between the mature miRNA and passenger strand. 

Mature miRNAs are more strongly conserved than passenger strands (Fig. 2.3a), and 

the 5′-ends of mature miRNAs are less likely to form a base pair than passenger strands 

(Fig. 2.3b). These differences were only found for mature miRNAs in the 5'-arm. For 

mature miRNAs in the 3'-arm, these propensities were very weak (Fig. S2.2). 

 

Figure 2.2. PhastCons scores, PhyloP scores, and base-pair potential averaged in 

each position. Position 0 indicates to 5' ends of miRNA duplexes in the upper 

strand of miRNA hairpins. Dotted rectangles indicate the approximate location of 

the miRNA duplex. 
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2.2.2 Features used in our method 

To utilize the evolutionary and structural features described above, we expressed each 

genomic position i as a 7-dimensional vector o(i). Dimensions 1–4 represent evolutionary 

conservation, which are calculated from multiple alignments between species. 

Dimensions 5 and 6 represent secondary structural features, which are calculated from 

the predicted secondary structure. Dimension 7 represents a nucleotide in each position. 

Below, we summarize the content of a feature vector o(i). Details of the calculation of o(i) 

are described in Materials and Details. 

Dimension 1 of o(i) is the PhastCons score (Siepel et al. 2005) of position i, which is 

calculated from multiple alignment between species. Dimension 2 and 3 is the 

PhastCons score in position i-20 and i+20, respectively. Dimension 4 is the PhyloP score 

(Siepel et al. 2006) which is another measure of evolutionary conservation. The 

important difference between the PhyloP and PhastCons scores is that the PhyloP score 

is calculated independent of neighboring positions; therefore, the PhyloP score is more 

appropriate for evaluating the degree of evolutionary conservation at each position. In 

contrast, the PhastCons score is more sensitive for detecting continuous conserved 

regions (Fujita et al. 2011). 

Dimension 5 is the base pair potential which represents the likelihood of forming a 

base pair in each position. The base pair potential is calculated as the maximum value 

Figure 2.3. Difference between mature miRNA and passenger strand. Median values of (a) 

PhyloP scores and (b) base pair potentials are plotted in each position. Position 0 indicates 

the 5'-ends of mature miRNA or passenger strand. 
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of base pair probabilities assigned to each position. The base pair probabilities can be 

calculated by McCaskill's algorithm (McCaskill 1990). Dimension 6 is the base pair 

distance which represents the distance between a predicted base pair. For example, if 

position i is predicted to form a base pair with position j, the base pair distance of 

position i is j – i. 

Dimension 7 simply represents the nucleotide (A, U, G, or C) in each position. 

 

2.2.3 The probabilistic model used in this study 

Because each genomic position is expressed by a 7-dimensional vector, a long genomic 

region is represented by a sequence of 7-dimensional vectors, and each miRNA hairpin 

is a sequence segment hidden in it. To detect miRNA hairpins from a long genomic 

region, we used a probabilistic model called a conditional random field (CRF) (Lafferty 

et al. 2001), which is recently beginning to be used in biological sequence analyses and 

achieves better performance than existing methods (Do et al. 2006a; Do et al. 2006b; 

Sato et al. 2005; DeCaprio et al. 2007). 

The probabilistic model employed here consists of 12 sub-models (Fig. 2.4). The left and 

right sides of the Flanking sub-model represent the upstream and downstream regions 

of the miRNA duplex, respectively. The Loop sub-models represent the regions between 

miRNA duplexes. The Mature and Passenger sub-models represent the mature miRNA 

and passenger strand, respectively. The Non-miRNA sub-model represents regions that 

are not miRNA hairpins. As described above, either strand of the miRNA duplex can 

become mature miRNA; however, in some cases, both strands become mature miRNA. 

Therefore, there are 3 types of mature miRNA location in miRNA hairpins. Our 

architecture has 3 paths, each of which corresponds to one of the 3 types of mature 

miRNA location. A given sequence segment is considered a miRNA hairpin if it is 

derived from 1 of these 3 paths with a high probability. Similarly, a sequence segment 

that is expected to be derived from the Mature sub-model is considered a mature 

miRNA sequence. 
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Scores for detecting miRNA hairpins and mature miRNAs 

Using the above CRF model, we calculated the probability that each genomic position i 

is a miRNA hairpin, which we denoted as Pmi
i , using the Forward-Backward algorithm 

(see Materials and Details). We considered a continuous sequence segment of 80 base 

pairs (bp) or more with a Pmi
i > T as a predicted miRNA hairpin, where T is a 

probabilistic threshold from 0 to 1. 

We also calculated the probability of position i being the 5′-end position of a mature 

miRNA region, which we denoted as P5end
i. The position with P5end

i > T is considered to 

be the 5′-end of a mature miRNA. 

 

2.3 Results and discussion 

2.3.1 Accuracy for predicting miRNA hairpins 

To evaluate the accuracy of miRRim2, we designed a genome-wide cross-validation, in 

which the whole human genome was used for training and test data. Briefly, we selected 

a particular human chromosome and scanned it using miRRim2 that was trained using 

the core miRNA hairpins on the remaining chromosomes. To mimic a realistic situation, 

Figure 2.4. Architecture of the Model. Each sub-model is represented by an oval. The circled 

"s" and "e" represent a start and end state, respectively. Dotted rectangles indicate 

sub-models corresponding to a miRNA duplex. 
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miRNA hairpins were excluded from training data if they were homologous to miRNA 

hairpins on the chromosome to be scanned. This procedure was repeated for all 

chromosomes. So the whole human genome was used for evaluation. Further details 

were described in Materials and Details. 

The accuracy of miRRim2 is shown in Figure 2.5a. When the number of predicted 

miRNA hairpins was 216, miRRim2 could detect 180 core miRNA hairpins, indicating 

that miRRim2 was highly accurate at this threshold. For comparison, we obtained four 

publically available prediction results, and evaluated them using the same core miRNA 

hairpins (Figure 2.5a). miRRim2 could detect more core miRNA hairpins when the 

number of predicted miRNA hairpins was adjusted to be the same. The genomic 

coordinates of miRNA hairpins predicted by berezikov (Berezikov et al. 2005), miRscan 

(Lim et al. 2003b), and miRRim (Terai et al. 2007) were obtained from supplemental 

data of these articles. Predicted miRNA hairpins of RNAmicro were obtained from the 

"Predicted miRNA track" of our fRNA database (Mituyama et al. 2009). 
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In order to evaluate the contribution of each type of feature to the prediction accuracy, 

we excluded 1 or more dimension(s) from the feature vector o(i) and investigated changes 

of the prediction accuracy. The result is shown in Figure 2.5b. The exclusion of 

PhastCons scores (dimensions 1–3) caused significant reduction of the prediction 

accuracy. The PhyloP score (dimension 4), on the other hand, had only a small effect on 

Figure 2.5. Accuracy for detecting the core miRNA hairpins. (a) The accuracy of miRRim2 

together with four previously performed computational predictions is shown. (b) The change 

of the accuracy when one type of features is excluded. BPP: base-pair potential, BPD: 

base-pair distance. 
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the prediction accuracy, indicating that only the PhastCons scores are almost sufficient 

for capturing the conservation pattern of miRNA hairpins. 

Two types of secondary structural features (base pair potential and distance: 

dimensions 5 and 6) individually contribute to the prediction accuracy, although these 

features were dependent on each other. When the two types of secondary structural 

features (dimensions 5 and 6) were simultaneously excluded, the prediction accuracy 

was greatly reduced, indicating that not only conservation but also secondary structural 

features were discriminative. The nucleotide (dimension 7) had a slightly bad effect on 

the prediction accuracy. 

 

2.3.2 Accuracy for predicting mature miRNAs 

Figure 2.6a shows the accuracy for detecting the 5′-end of a mature miRNA based on 

the cross-validation described above.  Inferring the 5′-end of a mature miRNA is 

important because the first 8 bp from the 5′-end is so called “seed region” and plays a 

pivotal role in the recognition of target genes. 

The prediction accuracy was measured by sensitivity and positive predictive value 

(PPV), which were defined as: 

FN)+TP/(TPySensitivit =  

FP)+TP/(TPPPV=  

where TP, FP, and FN are the number of true positives, false positives, and false 

negatives, respectively. In this evaluation, the 5′-ends of true mature miRNAs within 

the core miRNA hairpins were defined as positive sites, and the other positions within 

the core miRNA hairpins were defined as negative sites. If the predicted 5′-ends were (or 

were not) positive sites, they were considered as true (or false) positives. Positive sites 

that were not detected were considered as false negatives. 

Our method achieved sensitivity and PPV slightly above 0.4, which is better than our 

null model. In the null model, all the uracils are considered as 5’-end of mature miRNA. 

Each uracil has a penalty score, which is designed such that uracils in plausible 

positions have low penalty score (for details, see supplemental Methods S2.1). When we 

consider the predicted sites that were 1 bp different from positive sites as true positives, 

sensitivity and PPV increased to about 0.55. Similarly, when we allowed a 2 bp 

difference, sensitivity and PPV increased to about 0.65. 
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Mature miRNAs in the 5'-arm of miRNA hairpins were more accurately predicted than 

those in the 3'-arm (Fig. S2.3) because the differences between mature miRNA and 

passenger strand are only found in the 5'-arm (see Fig. 2.3 and Fig. S2.2). 

There are several methods that can identify mature miRNAs (Nam et al. 2005; Yousef 

et al. 2006; Helvik et al. 2007; Sheng et al. 2007; Gkirtzou et al. 2010). Among them, 

only one tool MatureBayes (Gkirtzou et al. 2010) is specifically designed for predicting 

5'-end of mature miRNA. In the other tools, the main purpose is to identify miRNA 

hairpins (Nam et al. 2005; Yousef et al. 2006; Sheng et al. 2007) or the Drosha cleavage 

sites (Helvik et al. 2007), not the location of mature miRNAs. Therefore, we compared 

our results with MatureBayes. The prediction results of MatureBayes were obtained 

using the web server of MatureBayes. We used the nucleotide sequences of the core 

miRNA hairpins as input data of MatureBayes. The sensitivity and PPV of 

MatureBayes was 0.30 and 0.18, respectively. The main reason for the lower accuracy of 

MatureBayes than that of miRRim2 may be the difference of training data. 

MatureBayes was trained using both conserved and non-conserved miRNA hairpins. On 

the other hand, miRRim2 was trained using only conserved miRNA hairpins which                                  

were probably more uniform in terms of nucleotide contents and hairpin length than 

non-conserved ones.  

Figure 2.6b shows the feature contribution to the prediction accuracy of mature 

miRNA. The feature that contributed the most was nucleotide (dimension 7), which may 

Figure 2.6. Accuracy for detecting the 5'-end of mature RNAs. (a) Sensitivity-PPV plot 

for mature miRNA prediction. (b) The change of the accuracy when one type of features 

is excluded. BPP: base-pair potential, BPD: base-pair distance. 
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be mainly due to the fact that the 5′-ends of mature miRNAs are predominantly 

composed of uracil. The second most important feature was the base pair distance 

(dimension 6). The base pair distance was useful for identifying the approximate 

positions of the Drosha cleavage sites (Fig. 2.1) because the distance between a pair of 

Drosha cleavage sites in a miRNA hairpin is ~60 bp on average with a small variation 

(Helvik et al. 2007). Therefore, it may also help to identify the 5′-end of a mature 

miRNA. The small contribution of the PhyloP score (dimension 4) may be due to the 

difference in evolutionary conservation between mature miRNA and passenger strand 

(Fig. 2.3a). 

 

2.3.3 Accuracy for predicting miRNA hairpins not used in the cross-validation 

The latest version of miRBase (v.18) contains 142 conserved miRNA hairpins (mean 

PhastCons score > 0.5) that are not included in the core miRNA hairpins. About a half of 

them are not included because they are newly discovered after the release of miRBase 

version 14.0 from which the core miRNA hairpins were constructed, and another half 

were excluded because they were supported by only a single literature (see Methods and 

Details). We investigated whether miRRim2 could detect these miRNA hairpins (Fig 

2.7). Several of the 142 miRNA hairpins could be accurately detected. For example, 8 of 

them were included in the top 11 candidates predicted by miRRim2. Overall, however, 

miRRim2 as well as the other four methods could not detect many of the 142 miRNA 

hairpins. We found that the pattern of evolutionary conservation of the 142 hairpins 

was considerably different from that of the core miRNA hairpins (Fig. S2.4). The latest 

version of miRBase contains many miRNA hairpins discovered by using the 

deep-sequencing technology. The innovation of the deep-sequencing technology may 

have greatly enhanced the discovery of miRNA hairpins. We, however, speculate that 

the deep-sequencing is too sensitive, so that it can sometimes detect miRNA-like 

molecules that are accidentally processed by the Drosha and Dicer. At any rate, 

miRRim2 seems superior to, or at least comparable with, the other computational 

predictions in the detection of the 142 miRNA hairpins. 
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2.3.4 Application to the Ciona intestines genome 

To assess the effectiveness of miRRim2 on independent data, we applied it to the 

Ciona intestinalis genome, which was recently demonstrated to contain miRNA genes 

(Norden-Krichmar et al. 2007; Hendrix et al. 2010). For Ciona intestinalis, only Ciona 

savignyi is suitable for a comparative study because the other sequenced chordates are 

evolutionarily too distant (data not shown); therefore, the PhastCons and PhyloP scores 

were not available. We propose that alternative conservation scores can be calculated 

from pairwise genomic comparisons. As an alternative to the PhyloP score, we used the 

following simple score: we assigned a score = 1 to the positions with a matched 

nucleotide in pairwise genomic alignments, and 0 for the other positions. As an 

alternative to the PhastCons score, we used the alignment probability, which is a 

measure of the correctness of a given alignment column. Although the meaning of the 

alignment probability and PhastCons score is fundamentally different, they are similar 

in that both of them take higher values in continuous conserved segments, even if 

nucleotides in a certain alignment column do not coincide. Therefore, we used the 

alignment probability instead of the PhastCons score. These alternative scores were 

calculated using the Last program (Kiełbasa et al. 2011), which can not only perform 

fast genome-wide pairwise alignments, but can also calculate the alignment probability 

for each alignment column. 

Figure 2.7. Accuracy for detecting the miRNA 

 hairpins other than core miRNA hairpins. 
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We trained miRRim2 using the core miRNA hairpins in human and used it to scan the 

Ciona intestinalis genome. Hendrix et al. (2010) identified 380 miRNA hairpins in 

Ciona intestinalis using deep-sequencing experiments. We compiled miRNA hairpins 

identified by Hendrix et al. and those included in miRBase v.18, and obtained 419 

miRNA hairpins in Ciona intesinalis. The detection/prediction performance is shown in 

supplemental Figure S2.5a. Briefly, miRRim2 detected 47 and 73 miRNA hairpins when 

the number of predicted miRNA hairpins was 115 and 649, respectively. We found that 

the low sensitivity (73/419) was derived from the fact that only about 80 of miRNA 

hairpins in Ciona intestinalis were conserved in Ciona savignyi (data not shown). 

Because our method was designed to detect conserved miRNA hairpins, it could not 

detect non-conserved miRNA hairpins. In the 73 miRNA hairpins detected by miRRim2, 

it correctly predict the 5'-end of mature miRNA with sensitivity and PPV about 0.4 

(Figure S2.5b). 

Among the predicted miRNA hairpins, we found 10 candidates in which the locations 

of predicted mature miRNAs were in good agreement with deep-sequencing results. 

Table 2.1 shows the genomic coordinates of the 10 candidates. Cand_1–Cand_4 have the 

same nucleotide sequence. Cand_5 and Cand_6 also have the same nucleotide sequence. 

Therefore, they may have been generated by very recent genomic duplications, although 

we cannot exclude the possibility that some of them are artifacts generated by the 

misassembly of the genomic sequence. Figure 2.8 shows 5’-end positions of predicted 

mature miRNAs and those identified the deep-sequencing experiments by Hendrix et al. 

(2010). In many cases, predicted 5’-ends (coloured nucleotides) are located near the 

5’-ends identified by the deep-sequencing results (black arrows). Cand_1–Cand_4 were 

not reported by Hendrix et al. (2010), because they were located on recently sequenced 

genomic regions. Cand_8 and Cand_9 also were not reported by Hendrix et al. (2010) 

possibly due to the small number of sequencing reads. 
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Table 2.1. Promising candidates  

Name Genomic coordinatea) 

Clustered 

miRNA 

Cand_1 chr13p:43397-43483 cand_2 

Cand_2 chr13p:46031-46118 cand_1 

Cand_3 scaffold_121:338389-338465 cand_4 

Cand_4 scaffold_121:340167-340242 cand_3 

Cand_5 scaffold_280:34403-34489 None 

Cand_6 chr10q:2147938-2148025 cin-mir-4054 

Cand_7 chr10q:2150133-2150203 cin-mir-4091 

Cand_8 chr04q:5406744-5406831 None 

Cand_9 chr03q:5428973-5429063 cin-mir2235 

Cand_10 chr02q:7039737-7039806 None 

a) Genomic coordinate of ci2 genome (Mar. 2005 Assembly). 

 

 

Cand_7

Cand_5 and Cand_6

TGTTGAAATGTTGGTTGTTTAATTAGTTCAGCAGTGCCACTAAATAATGCACTCTGTGTGGAGAACAAGCATTCAATGTT

1
Cand_9

Cand_10

Cand_8

GCGCGTTTGAAGTCTGCTGATGCGCTAATTAGGGAATGGCTGGCGGCCACTAATTGGTGCTTTGGTAGATTTAGCGGT

1 2

TGCTATGATTTGGCAGTGAGTTGAGTTTGTTGCCCTGTTTATGACGTAACACAGGGGCTCAATCCAATGCCTCATGAT

94 109

TGGGTATGGCAGTGAGTCTCTTGTAGCAGGCTGTTTCAAAACCAAAACAGCCTCTACCTCAACGCCTTGCCGATTACA

8 55 3

GGTTTCGTAGTCGTTGTGGCCGAGTGGTTAAGGCGACATTCTAGAAATCTCTGCCCGCACAGGTTCGAATCCTGTCG 

26

31 8 1

51

GACCACCTTGTGTGAGTACCATCACGCGCCATGCCACCCCTTATATGGGCATGGCACATGATAGTACGATACACTGG 

2575 272 112 3 9 Cand_1~Cand_4

1 11 1 11 2 5 11 1

 

Figure 2.8. Comparison of 5'-ends of mature miRNAs predicted by miRRim2 and 

those identified by deep-sequencing. The probability of a predicted 5'-end (P5endi) is 

indicated by colours; Black, blue, orange, and red means 0≤ P5endi<0.05, 0.05≤ 

P5endi<0.1, 0.1≤ P5endi<0.4, and 0.4≤ P5endi, respectively. Arrows indicate the 5'-ends 

identified by deep-sequencing experiments by Hendrix et al. The number 

associated with an arrow indicates the number of reads. 
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2.4 Conclusions  

In this study, we developed the miRRim2 method for detecting miRNA hairpins and 

their mature forms by integrating evolutionary, secondary structural, and nucleotide 

features in each position of miRNA hairpins. Our method achieved better prediction 

accuracy than genome-wide computational screenings previously performed by other 

groups. By investigating the contribution of each type of feature to the prediction 

accuracy, it was shown that evolutionary and secondary structural features, but not 

nucleotide features, are important for detecting miRNA hairpins. For the prediction 

accuracy of mature miRNAs, it was shown that nucleotide and secondary structural 

features were more important than evolutionary features. When miRRim2 was applied 

to the Ciona intestinalis genome, several promising candidates were detected. The 

prediction results for miRNA hairpins, miRNA duplexes, and 5′-ends of mature miRNAs 

in humans and Ciona intestines are available from http://mirrim2.ncrna.org. 

 

 

2.5 Materials and Details 

2.5.1 Materials 

Construction of core miRNA hairpins and non-miRNA regions 

From the 731 human miRNA hairpins in miRBase version 14.0 (Kozomara et al. 

2011) that could be mapped on the human genome (version hg18), we selected 398 

conserved miRNA hairpins with a mean PhastCons score > 0.5. From these 398 miRNA 

hairpins, we selected 307 instances that were validated by at least two independent 

experimental evidences. We checked the presence of experimental evidences for each 

miRNA hairpin by surveying the literatures listed in miRBase version 14.0. Finally, we 

excluded the mirtron-type miRNA hairpins (Berezikov et al. 2007). The remaining 306 

miRNA were used as training and test data, which we referred to “core miRNA 

hairpins”. We made the length of core miRNA hairpins to be 200-bp by extending 

upstream and downstream regions. 

For some of the core miRNA hairpins, the location of the passenger strand was not 

annotated. The locations of passenger strands, however, were needed for training the 

model parameters (see below). In such cases, they were deduced from the location of a 

mature miRNA assuming the 2-bp 3′-overhang illustrated in Fig. 2.1. 

Non-miRNA regions were randomly selected from non-conserved and conserved 

genomic regions. We selected 10000 instances from non-conserved sequence segments 

http://mirrim2.ncrna.org/
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(mean PhastCons score < 0.4) and another 10000 from conserved segments (mean 

PhastCons score > 0.6). The length of the non-miRNA regions was 200-bp. 

 

2.5.2 Details 

Definition of a feature vector 

In our method, each genomic position i was expressed by a 7-dimensional vector o(i). 

Dimension 1 of o(i) is the PhastCons score (Siepel et al. 2005) of position i. Dimension 2 

and 3 is the PhastCons score in position i-20 and i+20, respectively. Dimension 4 is the 

PhyloP score (Siepel et al. 2006) which is another measure of evolutionary conservation. 

In this study, we used the PhastCons and PhyloP score calculated based on multiple 

alignment across 44 vertebrates. The PhastCons and PhyloP score in each position of 

the human genome were obtained from the USCS genome browser (Fujita et al. 2011). 

Dimension 5 is the base pair potential which represents the likelihood of forming a 

base pair in each position. The base pair potential at position i, BPPi, is calculated as: 

)(max
120120

BPP ijp
j

i



  

where pij is a base pair probability between positions i and j that can be calculated by 

McCaskill's algorithm (McCaskill 1990). We used the Rfold program (with the option L 

= 120) (Kiryu et al. 2008) for calculating base pair probabilities in a genome-wide 

manner. 

Dimension 6 is the base pair distance which represents the distance between a 

predicted base pair. The base pair distance of position i, BPDi, is calculated by the 

following equation: 













otherwise

0.5)<(BPP ifBPD

iJ

= ii  

where )(maxarg
120120

ijJ p
j 

 . 

 

Conversion of continuous values into symbols 

Dimensions 1–6 of a 7-dimensional vector o are represented by continuous values. We 

converted them into 5 (or 6) distinct symbols, and this conversion was performed in each 

dimension. First, continuous values of a given dimension were obtained from the core 

miRNA hairpins. Continuous values belonging to the 20% or lower percentile were 
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converted into symbol “A.” Similarly, the 20–40%, 40–60%, 60–80%, and 80% or higher 

percentiles were converted into “B”, “C”, “D”, and “E”, respectively. Dimension 6, which 

contains negative infinities, was converted into 6 distinct symbols. We converted 

negative infinities into symbol “F”, and the other continuous values into “A”–“E” using 

the same procedure as for dimensions 1–5. For dimension 7, we simply assigned “A”, “B”, 

“C”, and “D” to nucleotides A, U, G, and C, respectively, in order to limit the number of 

symbols used in our method. Therefore, the feature vector o is converted to a symbol 

vector such as (E, B, E, E, B, C, A). 

 

The architecture of each sub-model 

The probabilistic model employed here consists of 12 sub-models (Fig. 2.4). The 

architecture of the Mature and Passenger sub-models consists of 25 connected states 

(Fig. S2.6a). Each state has an emission function, e(o), that assigns a “weight” to the 

feature vector o. As each state has its own emission function, the sub-models can 

capture the features in each position of mature miRNAs and passenger strands. Each 

connection between states has a transition parameter by which the length preference of 

mature miRNA regions can be modeled. For example, the propensity that mature 

miRNAs are 22 nt is expressed by assigning a positive large weight to the transition 

parameter between state 21 and 25 (the broad line in Fig. S2.6a). The Loop sub-model 

consists of 8 states, each of which is connected to itself (Fig. S2.6b). By using this simple 

architecture, we can roughly model the length and position-specific features of terminal 

loop regions without using a large number of states. For the Flanking sub-model, we 

used 20 linearly connected states (Fig. S2.6c) to capture the features around the DRB, 

which is located ~11 or 13 nt from the Drosha cleavage sites (Fig. 2.1). The Non-miRNA 

model consists of a single state with a self transition (Fig. S2.6d). 

 

The emission function 

Each state in our CRF model has an emission function e(o), which is defined as follows: 




7

1

)(ow=)e(
d

ddo  

where o is a 7-dimensional feature vector, do  is a symbol in dimension d of o, and 

)(ow dd is a weight assigned to the symbol do  in dimension d. For example, the vector 

o = (E, B, E, E, B, C, A) has a total weight = (E)w1 + (B)w 2 + (E)w3 + (E)w 4 + (B)w5  

+ (C)w6 + (A)w 7 . The emission parameter, dw , was optimized from the training data. 
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Training emission and transition parameters 

In CRFs, the conditional probability distribution P(y|x;m) can be directly trained 

from training data, where, in our case, x is a feature vector sequence, y is a sequence of 

“labels” assigned to x which reveals the location of certain sequences such as mature 

miRNA and the terminal loop, and m is a vector of emission and transition parameters. 

Intuitively, the parameters are optimized such that the predicted labels agree with the 

true labels as much as possible. This is achieved by iteratively maximizing the 

conditional log-likelihood of observing true labels. 

For training the model parameters m, we used feature vectors corresponding to 

miRNA hairpins and non-miRNA regions. According to the annotation of miRBase, we 

assigned the labels “M”, “L”, “P”, “F”, and “N” to each position of the mature miRNA, 

terminal loop, passenger strand, flanking, and non-miRNA region, respectively. All the 

parameters m = (m1,m2…mJ) were initially set to be 0 and were iteratively optimized 

using the limited-memory quasi-Newton method (L-BFGS) (Liu et al. 1989), which is a 

general purpose convex optimization algorithm. To prevent over-fitting, we penalized 

the conditional log-likelihood with the Gaussian prior  2

jjj mC . In this study, we set Cj 

= c for j = 1, 2, …, J. The constant c is determined based on the prediction accuracy for a 

part of training data (see below). 

 

Determining penalty parameter c 

In our method, the training data are divided into two groups. The first group was used 

to optimize transition and emission parameters, and the second one was used to 

determine an appropriate penalty parameter c. The penalty parameter is chosen from c 

= 0.1, 1, 10, 50, 100 based on the prediction accuracy for the second group. The 

prediction accuracy is measured based on F-score, which is a harmonic mean of 

sensitivity and positive predictive value (PPV). We calculate F-scores at various 

probabilistic thresholds, Pmi
i, and the maximum F-score is used as a measure of the 

prediction accuracy. 

 

Genome-wide cross validation 

We evaluated the accuracy of miRRim2 based on a genome-wide cross validation as 

follows. First, we selected a particular human chromosome, which we referred to as a 

“test chromosome”. Then, we trained miRRim2 using the core miRNA hairpins and 

non-miRNA regions on the remaining chromosomes, and used it to scan the test 
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chromosome. To mimic a realistic situation, the core miRNA hairpins were excluded 

from training data if they were homologous to the core miRNA hairpins in the test 

chromosome. The information on homologues was obtained from the miFam.dat file in 

miRBase v.14. The training data are divided into two groups. The first group consists of 

randomly selected 80% of miRNA hairpins, and the same number of non-miRNA data. 

The second group consists of the remaining miRNA hairpins and non-miRNA data. The 

first group was used to optimize transition and emission parameters, and the second 

one was used to determine an appropriate penalty parameter c. This procedure was 

repeated for all the 24 human chromosomes. So the whole human genome was used for 

evaluation. 

In the genome-wide cross validation, the penalty parameter c was determined for 

each of the 24 human chromosomes. For 16 of the 24 chromosomes, the prediction 

accuracy for the training data was highest when c = 10. Although we can use different c 

for each of the 24 chromosomes, we used c = 10 for all the 24 chromosomes. 

 

Definition of the miRNA hairpin probability and mature miRNA probability 

To detect miRNA hairpins, we defined the probability that each genomic position i is a 

miRNA hairpin, Pmii, as: 



mirna
Sk

ki,
i

mi
p=P  

where Smirna is a set of states belonging to the Flanking, Mature, Passenger, and Loop 

sub-models, and pi,k is a posterior probability that position i is derived from state k, 

which can be calculated by the Forward-Backward algorithm (Baum and Egon 1967). 

We considered a continuous sequence segment of 80 base pairs (bp) or more with a Pmii > 

T as a predicted miRNA hairpin, where T is a probabilistic threshold from 0 to 1. 

Predicted miRNA hairpins of 150 bp or more were discarded. 

The probability of position i being the 5′-end position of a mature miRNA region, P5endi, 

is defined as: 

i
mi

end
Sk

ki,
i

end
Pp=P /

5

5




 

where S5end is a set of the first states in all the Mature sub-models. The position with 

P5endi > T is considered to be the 5′-end of a mature miRNA. 
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Training of miRRim2 for the Ciona intestinalis genome 

We used the core miRNA hairpins to train miRRim2 and used it to scan the Ciona 

intestinalis genome. The core 306 miRNA hairpins were divided into two groups. The 

first group consists of randomly selected 80% of miRNA hairpins, and the same number 

of non-miRNA data. The second group consists of the remaining miRNA hairpins and 

non-miRNA data. The first group was used to optimize transition and emission 

parameters, and the second one was used to determine an appropriate penalty 

parameter c. In this case, c = 10 was appropriate. 
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Chapter 3 

Predicting pseudogenes based on their 

surrounding sequence signature  

 

3.1 Introduction 

 Pseudogenes are one of the prominent genomic elements of mammalian genomes. 

Therefore, the identification of pseudogenes can make a significant contribution to the 

correct annotation of the human genome. In eukaryotes, pseudogenes can be classified 

into two major types according to their generation mechanism. One is those resulting 

from genomic duplication; such pseudogenes are therefore called duplicated 

pseudogenes. The other type comprises those pseudogenes generated by 

retrotransposition, which is a series of in vivo processes involving the reverse 

transcription of RNA molecules and the integration of the transcripts into the genome. 

It is known that most pseudogenes in humans are generated by retrotransposition (Pei 

et al. 2012). Hereafter, we refer to retro-pseudogenes simply as pseudogenes. 

Retrotransposition in eukaryotes can be divided into two types; the long terminal 

repeat (LTR) type and the non-LTR type. The latter accounts for the majority of 

retrotransposition events in human (Ostertag and Kazazian 2001). Various types of 

RNA molecules, including Alu RNAs, LINE RNAs, mRNAs, and small noncoding RNAs  

are copied via non-LTR retrotransposition (Dewannieux et al. 2003; Moran et al. 1996; 

Esnaul et al. 2000; Buzdin et al. 2003; Perreault et al. 2005). An increasing number of 

versatile roles for retrotransposition have been recognized, such as the generation of 

novel functional genes and modulation of gene expression. Insertion of LINE-1 and Alu 

in a 3’ UTR may reduce gene expression (Faulkner et al. 2009). Retrotransposition may 

have expanded regulatory elements in the promoter region (Bourque et al. 2008), and 

some endogenous siRNAs are derived from mRNA pseudogenes (Watanabe et al. 2009). 

Retrotransposition of LINE-1 may mediate exon shuffling (Moran et al. 1999). 

Retrotransposition of mRNA is one mechanism for generating functional genes 

(Babushok et al. 2007). 

Non-LTR retrotransposition is mediated by the protein encoded by the second open 

reading frame of LINE-1 (hereafter L1-ORF2p). This protein has both reverse 

transcriptase and endonuclease activity (Feng et al. 1996) and promotes 
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retrotransposition of LINE-1 RNAs themselves (Moran et al., 1996). The endonuclease 

activity of L1-ORF2p creates a cleavage site in genomic DNA (Feng et al. 1996); the 

cleavage site is used as a primer, and reverse transcription of template RNAs and 

integration of the resultant cDNAs into the genome occur simultaneously. This 

integration process is called target-site-primed reverse transcription (TPRT) (Luan et al. 

1993; Cost et al. 2002). In addition to LINE-1 RNAs, L1-ORF2p recognizes Alu RNAs 

(Dewannieux et al. 2003) and the mRNAs of protein-coding genes and promotes their 

retrotransposition, although its recognition efficiency for protein-coding genes is much 

lower than for LINE-1 and Alu (Dewannieux et al. 2003; Esnault et al. 2000; Wei et al. 

2001). 

In many LINE-1 and pseudogenes observed in the human genome, the 5’-end region of 

the template transcript has been truncated (Ostertag and Kazazian 2001; Torrents et al. 

2003; Zhang et al. 2003). This has long been explained by the inability of L1-ORF2p to 

copy the entire length of the template RNA during retrotransposition, or degradation of 

the template RNA before completion of reverse transcription (Ostertag and Kazazian 

2001). However, full-length (nontruncated) LINE-1 are also frequently observed 

(Boissinot et al. 2000; Pavlícek et al. 2002; Myers et al. 2002; Salem et al. 2003). The 

mechanism for the preferential generation of full-length LINE-1 has not been 

explained. 

In mammals, there are three types of sequence signatures around a sequence element 

generated by non-LTR retrotransposition (Figure 3.1). The first is a poly-A tract found 

immediately downstream of the 3’-end of a retrotransposed element. The second is a 

pair of duplicated sequences surrounding the retrotransposed element, called target site 

duplications (TSDs). The third is the TTAAAA consensus sequence, which overlaps with 

the 5’-end of the 5’-TSD. This consensus sequence is recognized by L1-ORF2p 

endonuclease to create the cleavage site in genomic DNA, but is not always present 

(Cost et al. 2002; Jurka et al. 1997). The mechanisms generating the poly-A tract and 

TSD are not fully understood, but the presence of these sequence signatures is an 

established phenomenon and can be used to detect retrotransposed elements. 

In this study, we developed a novel algorithm for detecting pseudogenes based on the 

presence of the poly-A tract and TSDs and implemented this algorithm as the TSDscan 

program. Because TSDscan uses general sequence signatures surrounding 

retrotransposed elements, it is able to detect any type of sequence element generated by 

non-LTR retrotransposition. TSDscan detected many previously unknown short 

pseudogenes generated by retrotransposition of mRNA. TSDscan also allows us to 

analyze detailed characteristics of pseudogenes, such as the length distribution of TSDs 
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Figure 3.1 Signature sequences of a retroposed element. Several features can be used to 

identify a retroposed element. A poly-A tract (usually 5–30 bp) is located downstream of 

the retroposed element and a pair of duplicated sequences, the target site duplications 

(TSDs), are located at either side of the retroposed element–poly-A structure. The TSD is 

usually also 5–30 bp. We denote the upstream and downstream TSD sequences as u-TSD 

and d-TSD, respectively. The AAAA in the TTAAAA consensus sequence overlaps with the 

u-TSD (Jurka et al. 1997). Reverse transcription of an RNA starts from its 3’-end and does 

not always copy the entire length (the reverse-transcribed region is indicated with 

arrows). Therefore, a retroposed element often lacks the 5’ region of its parent RNA. 

 

 

 

 

retrotransposed element poly-A d-TSDu-TSD

TTAAAA

5' 3'

3’5’

RNA 

AAAAAAAAAAA

Reverse transcribed part of RNA

and 

poly-A tracts, which are useful for further study of the molecular mechanisms of 

pseudogenes generation. From this analysis, we found that short pseudogenes are more 

frequently generated from long mRNAs than from short mRNAs. In order to explain 

this phenomenon in the context of events previously reported to be associated with 

retrotransposition, we propose that two in vivo processes generate pseudogenes: short 

parent mRNAs use template-jumping to generate a full-length pseudogene, whereas 

long parent mRNAs are more likely to be truncated and degraded, after which 

microhomology generates a short pseudogenes of the mRNA. The findings we presented 

here provide new insights into the mechanism of retrotransposition. 

 

3.2 Materials and Methods 

3.2.1 TSDscan: an algorithm to detect pseudogenes 

TSDscan is an algorithm that not only detects pseudogenes but can also predict the 

length and boundaries of sequence signatures surrounding the pseudogenes. In 

TSDscan, upstream and downstream sequences of a pseudogene are aligned and scored 

with a specific scheme. To detect the sequence signatures shown in Figure 3.1, we need 

to consider that the lengths of poly-A tracts and TSDs are variable and that random 

mutations accumulate in these sequence signatures. Because the upstream TSD 

(u-TSD) and downstream TSD (d-TSD) are similar, TSDs can be detected by assigning 

positive scores to a base match and assigning negative scores to a base mismatch or 
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gaps, analogous to the usual alignment technique for detecting similar regions in genes 

(Durbin et al. 1998). The poly-A tract is detected by assigning positive scores to the 

insertion of a poly-A sequence immediately before the d-TSD. Figure 3.2a is an example 

of the alignment and the scores assigned to each alignment column. For alignment 

columns corresponding to TSDs (dotted rectangles), a pair of aligned nucleotides has a 

score defined in the HOXD matrix (Schwartz et al. 2003). The first gap and gaps 

following it have scores of –400 and –30, respectively. In a poly-A tract located before a 

d-TSD, insertion of nucleotide A and of other nucleotides (G, T, and C) have scores of 

+100 and –100, respectively. The total score is the sum of scores assigned to each 

alignment column. In the case of Figure 3.2a, the total score is 1129. 

Figure 3.2b is an example of an alignment containing the TTAAAA consensus sequence. 

Alignment columns corresponding to the TTAAAA consensus are shown in the gray area. 

In the first two columns of the gray area, insertion of nucleotide T and of other 

nucleotides (A, G, and C) have scores of +200 and –200, respectively. In the last four 

columns, an A-A nucleotide match and the other aligned nucleotide pairs have scores of 

+200 and –200, respectively (see supplemental Methods S3.1 about the reason for using 

these scores). Scores assigned to columns outside the gray area are the same as in 

Figure 3.2a. In the case of Figure 3.2b, the total score is 1352. 
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Figure 3.2 Examples of how scores are assigned to each 

potential pseudogene. Examples of alignments containing (a) a 

poly-A tract and TSD and (b) containing a TTAAAA consensus 

sequence, poly-A tract, and TSD. See text for details. 



31 

 

Next, we consider the positions of the poly-A tract and TSDs. The poly-A tract and 

TSDs are inserted immediately outside of a retrotransposed element (Figure 3.1). 

Therefore, poly-A tracts and TSDs that are distant from a pseudogene should be 

penalized. In TSDscan, each nucleotide insertion between u-TSD and the 5’-end of the 

pseudogene, and between the 3’-end of the pseudogene and a poly-A tract, has a score of 

–50. 

In TSDscan, the alignment maximizing the total score is detected with a dynamic 

programming algorithm. Details of the algorithm are provided in supplemental 

Methods S3.2. In addition, the source code of TSDscan (perl and C++ versions) is 

available at http://www.ncrna.org/software/tsdscan/, which may help with 

understanding the algorithmic details. 

 

3.2.2 A pipeline for the detection of pseudogenes 

Deleting repeats from a genomic sequence 

If Alu or LINE-1 were inserted within a pseudogene, the pseudogene would be 

disrupted. Determining both ends of such a pseudogene becomes a bit complicated, and 

we needed a way to cope with this complexity, because, in our method, both ends of 

pseudogenes need to be determined fairly precisely. To circumvent the complexity, we 

created a genomic sequence from which Alu and LINE-1 are deleted. In addition, 

tandem repeat sequences detected by tandem repeats finder (TRF) (Benson 1999) were 

masked by ‘N’. Hereafter, the genomic sequence thus created is called the “processed 

genome”. 

 

Searching homologous regions of mRNAs 

We obtained the nucleotide sequences of all human mRNAs from the ‘Human mRNAs’ 

track of the human genome (version hg17) in the UCSC genome browser (Kuhn et al. 

1990). mRNAs with 3’ UTR annotation were excluded from further study. Then we 

deleted Alu and LINE-1 from the mRNA sequences and masked tandem repeat 

sequences detected by TRF. Using these mRNAs as queries, we searched the processed 

genome using blastz with the default parameters. Among blastz hits, we excluded those 

that did not contain the 3’ UTR of query mRNAs, because a pseudogene of an mRNA 

should contain the 3’ UTR. 

 

Excluding overlap with known genes 

http://www.ncrna.org/software/tsdscan/
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We converted positions of blastz hits in the processed genome into positions in the 

original genome. Then we excluded blastz hits that overlapped with exons of human 

mRNAs. 

 

Excluding redundancy of blastz hits 

Blastz hits often overlap with each other. In such cases, we excluded the blastz hit with 

the lower score. 

 

Applying TSDscan 

We applied TSDscan to the regions 100 bp upstream and downstream of blastz hits. 

Then we extracted blastz hits with a TSDscan score of 1100 or more. Among 10,000 

genomic regions that we randomly selected, only about 3% had a score of 1100 or more 

(Figure S3.1). We excluded blastz hits having TSDs or poly-A tracts of more than 30 bp 

even if the score was at least 1100 because such long TSDs and poly-A tracts were rarely 

seen for LINE-1 and Alu (Figures S3.2 and S3.3), and thus they may be false positives. 

 

3.2.3 Evaluating the accuracy of TSDscan 

Because TSDscan uses general sequence signatures surrounding retrotransposed 

elements, it is able to detect not only mRNA pseudogenes but also sequence elements 

such as LINE-1 and Alu. For our evaluation study, we designated two types of LINE-1 

subfamilies (L1P: primate specific LINE-1 and L1M: mammalian-wide LINE-1) and 

three types of Alu subfamilies (AluY, AluS, and AluJ) as positive samples, and randomly 

selected genomic regions as negative samples. The detection accuracy is measured by 

the ACC score, which is the average of sensitivity and specificity. Sensitivity and 

specificity are defined as:  

Sensitivity = TP/(TP+FN) 

Specificity = TN/(FP+TN), 

where TP, FP, TN, and FN are the number of true positives, false positives, true 

negatives, and false negatives, respectively. 

TSDfinder (Szak et al. 2002) is a program that defines the boundaries of a 

retrotransposed element based on the presence of TSDs. The TSDfinder program 

consists of several steps, including merging and determining the boundaries of a 

retrotransposed element, obtaining sequences surrounding the retrotransposed element, 

detecting potential TSDs, and scoring TSDs. To evaluate TSDfinder using exactly the 
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same test data as we used for TSDscan, we modified the TSDfinder program such that 

we could input sequence data directly. 

 

Sequence data of Alu, LINE-1, and random genomic regions 

We used RepeatMasker (http://www.repeatmasker.org/) to detect sequence data for Alu 

and LINE-1. RepeatMasker often detects poly-A tracts in the 3’-end of Alu and LINE-1 

as a part of repetitive sequences. To avoid this, we excluded poly-A tracts from the 

3’-end of the consensus sequences of LINE-1 and Alu, and ran RepeatMasker using the 

truncated consensus sequences as queries. Among the Alu and LINE-1 sequences 

detected by RepeatMasker, we excluded those which lacked 5 bp or more of the 3’-end, 

because Alu and LINE-1 should contain the 3’-end of their original transcripts at the 

time when they were retrotransposed. We also excluded Alu and LINE-1 if their 

upstream and downstream 100 bp contained other repetitive sequences detected by 

RepeatMasker. Among the remaining Alu and LINE-1 sequences, we randomly selected 

1000 samples for each Alu and LINE-1 subfamily (L1P, L1M, AluY, AluS, and AluJ). 

Data for random genomic regions were generated by sampling 10,000 genomic regions 

that did not overlap with repetitive sequences identified by RepeatMasker and TRF. 

 

3.3. Results and Discussion 

3.3.1 Comprehensive detection of pseudogenes in the human genome 

We obtained 84,332 mRNA sequences with a 3’ UTR annotation from the ‘Human 

mRNAs’ track in the UCSC genome browser, human genome version hg17 (Kuhn et al. 

2009). Using these mRNA sequences as queries, we performed homology searches 

against the human genome by using blastz (Schwartz et al. 2003). We excluded blastz 

hits that did not have homology to the 3’ UTR, because, as shown in Figure 3.1, reverse 

transcription starts from the 3’ end of the mRNA, and an mRNA pseudogene should 

contain the 3’ UTR. After also excluding overlapping blastz hits, we obtained 27,465 hits, 

which we considered candidate pseudogenes. We applied TSDscan to the 100-bp 

upstream and downstream regions of these pseudogene candidates and extracted those 

with a score of 1100 or higher. Among 27,465 candidate pseudogenes, 6,982 passed the 

score threshold. Then, we excluded candidate pseudogenes having TSDs or poly-A tracts 

of more than 30 bp even if the score was at least 1100. Among the 6,982 high scoring 

candidates, 4,464 passed the poly-A tract and TSD length threshold, and we considered 

these to be mRNA pseudogenes. 

http://www.repeatmasker.org/
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3.3.2 Discovery of short pseudogenes 

Most of the novel pseudogenes, that is, pseudogenes that did not overlap with the 

existing pseudogene annotations (Torrents et al. 2003, Zhang et al. 2003), were short 

(Figure 3.3a). Median length of the novel pseudogenes is 356 bp, which is much shorter 

Figure 3.3 Length distribution of pseudogenes and their TSDs. (a) Length distribution of 

pseudogenes newly found in this study. The median length is 356 bp (mean 533.2 with 

s.d. 562.6 bp). (b) Comparison of length distributions of previously identified 

pseudogenes and all pseudogenes identified with TSDscan. Previously identified 

pseudogenes are the pseudogenes identified by TSDscan that overlap with the existing 

pseudogene annotation (Torrents et al. 2003; Zhang et al. 2003). The median length of 

previously identified pseudogenes is 877 bp (mean 1096.7 with s.d. 756.9 bp) and that of 

all pseudogenes are 691 bp (mean 911.0 with s.d. 747.3 bp). (c) Length distributions of 

TSDs of the 654 short pseudogenes and all pseudogenes identified with TSDscan. 
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than that of all pseudogenes identified in this study (691 bp). By discovering the novel 

pseudogenes, the length distribution of pseudogenes in the human genome changed 

significantly (Figure 3.3b). Our results contained 645 new pseudogenes with lengths of 

300 bp or less. To verify that the new short pseudogenes were not caused by a limitation 

of the TSDscan algorithm, we investigated the length distribution of TSDs for short 

pseudogenes. The TSD length distribution of the 645 short pseudogenes, as well as that 

of all pseudogenes detected in this study, had a peak around 15 bp (Figure 3.3c). The 

TSD length distribution peak is consistent with that of LINE-1 and Alu (Jurka et al. 

1997; Szak et al. 2002; Zingler et al. 2005; Figure S3.2), supporting the validity of the 

short pseudogenes we detected. 

 

3.3.3 Relationship between parent gene and pseudogene length 

Because our method could accurately predict the boundaries of a pseudogene, we could 

investigate the relationship between parent gene and pseudogene length. Figure 3.4a is 

a two-dimensional plot of parent mRNA length (X-axis) versus pseudogene coverage, i.e., 

the length of the pseudogene relative to that of the parent mRNA (Y-axis). A cluster can 

be seen along the line of pseudogene coverage = 100%, indicating that full-length 

pseudogene are frequent. Another cluster of plots can be seen in the lower right area, 

suggesting that short and truncated pseudogenes are frequently generated from long 

mRNAs. The fraction of full-length pseudogene gradually decreased as the length of the 

parent mRNA became longer, and conversely, the fractions of short and truncated 

pseudogenes gradually increased as the length of the parent mRNAs became longer. In 

addition, it can be seen that 1) most pseudogenes derived from short mRNAs are 

full-length; 2) most pseudogenes derived from long mRNAs are short and truncated; and 

3) for medium-to-long mRNAs, both full-length and short and truncated pseudogenes 

are frequent. Therefore, the length distribution of pseudogenes of medium-to-long 

mRNAs has two peaks, similar to the bimodal length distribution already reported for 

LINE-1 elements (Boissinot et al. 2000; Pavlícek et al. 2002; Myers et al. 2002; Salem et 

al. 2003; Babushok et al. 2006). 

To explicitly show the relationship between the fractions of short (≤300 bp) 

pseudogenes and parent mRNA length, we divided parent mRNA length into categories 

and calculated the fraction of the short pseudogenes for each mRNA length category 

(Figure 3.4b). The boundaries of the categories are shown by the vertical dotted lines in 

Figure 3.4a. As can be seen in Figure 3.4b, short pseudogenes were generated more 

frequently from long mRNAs than from short mRNAs, and the longer a parent mRNA 
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was, the more frequently short pseudogenes were generated. Reverse transcription of 

template RNAs by L1-ORF2p is an essential step of retrotransposition, but poor 

processivity of L1-ORF2p alone cannot explain why long mRNAs more frequently 

generate short pseudogenes. Here, we hypothesize that most long mRNAs are truncated 

before they are reverse transcribed. Details are described later in this section. 

 

3.3.4 Comparison of TSDscan with existing methods 

Two other software packages, RTanalyzer (Lucier et al. 2007) and TSDfinder (Szak et 

al. 2002), are available to detect retrotransposed elements. RTanalyzer detects 

retrotransposed elements based on the presence of a poly-A tract and TSDs. Potential 

TSDs are first identified by local alignment, and the final score is calculated based on 

the presence of the poly-A tract and the TTAAAA consensus sequence. However, because 

RTanalyzer is available only through a web interface, we could not evaluate its accuracy 

using our large test data set and therefore could not include RTanlyzer in our 

comparison. 

TSDfinder is a program that defines the boundaries of a retrotransposed element 

based on the presence of TSDs. In TSDfinder, potential TSDs are identified by aligning 

Figure 3.4 (a) Relationship between parent mRNA length and pseudogene coverage. 

Parent mRNA length (X-axis) is shown in a logarithmic scale. Pseudogene coverage 

(Y-axis) is the length of a pseudogene divided by that of its parent mRNA. (b) Fraction of 

short pseudogenes (≤300 bp) calculated for each mRNA length category. 
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the upstream and downstream regions of a retrotransposed element and detecting those 

that have perfect nucleotide matches in at least 9 consecutive base pairs (Szak et al. 

2002). The final score is calculated by considering both the TSD position and alignment 

score. To compare TSDscan with TSDfinder, we measured the detection accuracy by 

using the ACC score, an average of sensitivity and specificity scores (see Materials and 

Methods). Table 3.1 shows the detection accuracy of TSDscan and TSDfinder for five 

types of retroposons (L1P, L1M, AluY, AluS, and AluJ). In all five types, the ACC score 

of TSDscan was higher than that of TSDfinder; therefore, for the purpose of detecting 

retrotransposed elements, TSDscan is superior to TSDfinder. The sensitivity of 

TSDfinder was relatively low (Table 3.1), which may be due to the stringent criterion of 

at least 9 perfect nucleotide matches for detecting TSDs. In contrast, our method has 

greater sensitivity because of its flexible requirement for detecting TSDs. 

 

 

Table 3.1 Comparison of the detection accuracy of TSDscan and TSDfinder 

    TSDscan       TSDfinder   

  ACCmax
a) sensitivity specificity   ACCmax

a) sensitivity specificity 

L1P 0.926  0.914  0.937   0.628  0.263  0.994  

L1M 0.834  0.821  0.848   0.525  0.056  0.995  

AluY 0.991  0.991  0.991   0.788  0.582  0.994  

AluS 0.975  0.968  0.981   0.679  0.365  0.994  

AluJ 0.949  0.941  0.957    0.596  0.198  0.994  

a) The ACC score is the average of sensitivity and specificity, and ACCmax is the maximum ACC score. 

 

3.3.5 A proposed model for generating short pseudogenes 

This is the first large-scale analysis of short pseudogenes derived from mRNAs in the 

human genome. In previous studies, retropseudogenes were detected mostly based on 

their lack of introns and the accumulation of random mutations in their protein-coding 

sequences (Torrents et al. 2003; Zhange et al. 2003; Ohshima et al. 2003). However, 

these methods cannot be applied to short pseudogenes, because most short pseudogenes 

are derived from last exons that lack protein-coding sequences, where homology 

searches do not work effectively. Therefore, short pseudogenes have escaped detection in 

previous studies. In addition to discovering novel short pseudogenes, our method 

accurately predicts the boundaries of pseudogenes. This enabled us to closely 

investigate the essential characteristics of pseudogenes. 
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Using TSDscan, we made the novel discovery that long mRNAs tend to produce a 

higher percentage of short pseudogenes than do short mRNAs. Although 

target-site-primed reverse transcription (TPRT) is the currently accepted mechanism of 

retrotransposition (Ostertag et al. 2001), it does not explain this length-dependent 

phenomenon. Here, we propose that two in vivo processes generate pseudogenes in a 

length-dependent manner. We hypothesize that most long mRNAs are truncated before 

they are reverse transcribed (Figure 3.5a). Because RNAs without a 5' cap are rapidly 

digested (Newbury et al. 2006), the template RNA may be removed during reverse 

transcription. If the template RNA is digested before the completion of reverse 

transcription, a single-stranded cDNA is exposed, which is integrated into the genome 

by the microhomology-mediated mechanism proposed by Zingler et al. (2005). If reverse 

transcription is completed before digestion of the template RNA, L1-ORF2p moves to a 

genomic 3’ overhang via template jumping (Bibillo et al. 2004). After the genomic 3’ 

overhang region is reverse transcribed, removal of the template RNA and synthesis of 

the remaining strand occur. In contrast, when mRNAs are short, they are rarely 

truncated (Figure 3.5b). The 5' cap of an mRNA protects it from digestion, giving 

L1-ORF2p a good chance to complete reverse transcription. Subsequently, L1-ORF2p 

moves to a genomic 3’ overhang via template jumping (Bibillo et al. 2004). After the 

genomic 3’ overhang region is reverse transcribed, removal of the template RNA and 

synthesis of the remaining strand occur to generate a full-length pseudogene. Although 

the role of the 5’ cap structure in retrotransposition has not been studied, it has been 

strongly suggested that LINE-1 RNAs also have the 5’ cap structure because of the 

frequent guanines at the 5’-end of full-length LINE-1 elements (Lavie et al. 2004). Our 

hypothesis (Figure 3.5) can explain the bimodal length distribution of LINE-1 elements, 

which has been reported by many researchers (Boissinot et al. 2000; Pavlícek et al. 

2002; Myers et al. 2002; Salem et al. 2003;, Babushok et al. 2006), and which cannot be 

explained by the TPRT mechanism alone. 

If our hypothesis is true, how are RNAs truncated in a length-dependent manner? We 

infer that each nucleotide in all RNAs is cleaved with roughly equal probability, and 

thereby long mRNAs are more likely to be truncated. Assuming that the cleavage of 

each nucleotide is a rare event and occurs with the same probability, λ, the number of 
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Figure 3.5 Hypothetical mechanism for the generation of short pseudogenes. (a) Generation 

of short truncated pseudogenes from long mRNAs. 1) Most long mRNAs are truncated before they are reverse 

transcribed. 2) After first strand cleavage (indicated by a black arrowhead), truncated mRNAs are annealed at 

the nick. 3) Reverse transcription of truncated mRNAs by L1-ORF2p proceeds. 4) Truncated mRNAs are 

digested before the completion of reverse transcription. 5) After second-strand cleavage (indicated by a gray 

arrowhead), a single-stranded cDNA is exposed, and 6) it base-pairs with a genomic 3’ overhang 

(microhomology-mediated end joining) (Zingler et al. 2005). Finally, 7) the remaining DNA synthesis is 

completed. 8) If reverse transcription is completed before digestion of the template RNA, 9) the L1-ORF2p 

jumps from the template mRNA onto a genomic 3’ overhang. 10) After the genomic 3’ overhang region is 

reverse transcribed, 11) removal of the template RNA and 12) synthesis of the remaining strand occur. (b) 

Generation of full-length pseudogenes from short mRNAs. 1) Full-length mRNAs are annealed at the nick. 2) 

Reverse transcription of full-length mRNAs by L1-ORF2p proceeds. 3) After reverse transcription is completed, 

the L1-ORF2p jumps from the template mRNA onto a genomic 3’ overhang. 4) After reverse transcription of the 

genomic 3’ overhang is completed, 5) the template mRNA is removed, and 6) the remaining DNA synthesis is 

completed. 
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cleaved nucleotides in each RNA molecule should follow a Poisson distribution. The 

probability that there is no cleaved nucleotide in a given RNA is expressed as follows: 

 
LlengthFull eLP  )( , 

where L is the length of the RNA. By taking logarithms on both sides, we obtain the 

following simple equation: 

 

LY  , 

where Y is loge[Pfull-length(L)]. The fractions of full-length pseudogenes we found are well 

fitted by the above expression (P = 1.95 ∙ 10-5 by F-test; Figure 3.6), supporting our 

inference of equiprobable nucleotide cleavage in the RNAs being retrotransposed. 

 

3.4 Conclusions 

In this study, we developed a novel method for detecting pseudogenes and found that 

the human genome contains many previously unidentified short pseudogenes generated 

by retrotransposition of mRNAs, which gives more complete view of pseudogenes in the 

human genome. By utilizing our findings, we performed comprehensive analyses of 

pseudogenes and their parent mRNAs, which presented interesting propensities: short 

pseudogenes are more likely sourced from long mRNAs than short mRNAs. Importantly, 

this length dependent phenomenon cannot be explained by the currently accepted 

mechanism of retrotransposition alone. Therefore, in order to explain this phenomenon, 

we propose a novel mechanism in which two different in vivo processes, previously 

reported to be associated with retrotransposition, are involved in the generation of 

pseudogenes. The findings we presented here provide important insights into the 

mechanism of retrotransposition.  
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Figure 3.6 Relationship between the fraction 

of full-length pseudogenes and parent mRNA 

length. White boxes represent natural 

logarithms of the fractions of full-length 

pseudogenes. Pseudogenes were considered 

to be full-length if they were longer than 90% 

of the parent mRNA length. Black 

arrowheads at the bottom of the figure 

indicate mean lengths of mRNAs in each 

mRNA length category. The regression line 

was obtained by the least squares method. 
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Chapter 4 

Conclusions and future directions 

Conclusions 

In the research presented in this thesis, we developed two methods for predicting 

specific types of genomic elements. The first one, miRRim2, detects conserved miRNA 

genes. It was shown that, in humans, the genome-wide prediction result obtained by our 

method was more accurate than other existing prediction methods. Moreover, by 

applying miRRim2 to the less well-characterized species Ciona intestinalis, we found 

several promising candidates, indicating that this method can also be useful for species 

for which only a small amount of comparative genomic resources are available. 

The second method presented here, TSDscan, detects pseudogenes. By using this 

method, it was determined that the human genome contains many previously 

unidentified short pseudogenes. Comprehensive analyses of the identified pseudogenes 

and their parent genes revealed that pseudogene length depends on the length of the 

parent gene, where long genes generate more short pseudogenes than do short genes. 

This observation led to a new hypothesis: Most long gene transcripts are truncated 

before they are reverse-transcribed. Truncated gene transcripts would be degraded 

rapidly during reverse transcription, resulting in the generation of short pseudogenes. 

Our prediction results provide a more accurate and comprehensive view of these two 

types of genomic elements and contribute to a better understanding of the genome. 

 

Future directions 

 The recent innovation of deep-sequencing technology prompted the discovery of novel 

miRNA genes in many eukaryotes. While extremely useful, this technology often 

produces noisy data. Therefore, the task of identifying miRNAs from deep-sequencing 

data is not straightforward and computational methods that can detect miRNAs in 

deep-sequencing data need to be developed. It is important to modify miRRim2 in this 

direction. By using the mapping results for short reads as an additional feature, 

miRRim2 can naturally integrate deep-sequencing data. This modification will make 

miRRim2 more valuable for the study of miRNA genes. 

At present, miRRim2 is not provided as a downloadable or web-based program. For 

miRRim2 to be used widely, it should be provided as easy-to-use software. We are 

planning to develop a software pipeline, in which genomic sequences and 
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deep-sequencing data are used as input and the prediction results of miRRim2 are 

generated as output. 

 In Chapter 3, we used TSDscan to detect pseudogenes derived from known 

protein-coding genes. It should be noted that TSDscan can detect pseudogenes even 

when their parent genes are not known. For example, suppose a particular genomic 

region G1 is similar to another region G2. If G2 has sequence signatures of pseudogenes, 

G2 may be a pseudogene of G1. In this case, G1 is not necessarily a known gene. It may 

be possible to find a novel gene based on the presence of its pseudogenes because the 

presence of pseudogenes is evidence that their parent gene was surely transcribed. We 

are now exploring the feasibility of this pseudogene-driven approach to identify novel 

genes. The target of this approach does not have to be restricted to protein-coding genes 

because it is known that many ncRNA genes have pseudogenes. 
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Figure S2.2. Difference between mature miRNA and passenger strand in the 3'-arm of 

miRNA hairpins. Median values of the (a) PhyloP score and (b) base-pair potential are 

shown in each position. Position 0 indicates the 5'-ends of mature miRNA or passenger 

strands.  

 

Figure S2.1. PhastCons scores, PhyloP scores, and base-pair potential averaged in each 

position. Position 0 indicates the 3' ends of miRNA-duplexes in the 3'-arm of miRNA 

hairpins. The DRB in the 3'-arm is located around position +11, where the base pair 

potential and PhyloP score sharply decrease. 
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Figure S2.4. The difference of a conservation pattern between the core miRNA hairpin and 

non-core miRNA hairpin. Position 0 indicates the 5' ends of mature or passenger miRNAs in 

the 5'-arm of miRNA hairpins. 

Figure S2.3. Prediction accuracy of the 5'-end of mature miRNAs. The detection accuracy of 

mature miRNAs in the 5'-arm is higher than in the 3'-arm strand. 
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Figure S2.6 Architecture of each sub-model. 

Figure S2.5. The prediction performance for the Ciona intestinalis genome. (a) The 

detection/prediction performance of miRNA hairpins. (b) Sensitivty-PPV plot for mature 

miRNA prediction. 

 



57 

 

Supplemental methods S2.1 

The null model for predicting 5'-end of mature miRNAs. 

In our null model, all the Us are considered as 5’-end of mature miRNA. Each U has a 

penalty score, which is designed such that Us in a plausible position have low penalty 

score. The penalty is defined as P = |S - l|, where l is the length between a pair of 

Drosha cleavage sites, p1 and p2, and S is a typical length between Drosha cleavage 

sites. In this study, S = 60 was used. 

The p1 and p2 were determined based on the position of U. When a given U is located 

on 5'-arm (Fig. A1(a)), p1 is the position of the U, and p2 is deduced from predicted 

hairpin structures assuming the 2-bp 3′-overhang. When a given U is located on 3'-arm 

(see, Fig. A1(b), p1 is a 21-bp downstream position from the position of the U. Then, p2 

is deduced from predicted hairpin structures assuming the 2-bp 3′-overhang. 

 

 

 

 

 

5' 

3' 

U 

p1 

p2 

5' 

3' U 

p2 

p1 

(a) 

(b) 

Figure  A 1 Position of Drosha cleavage sites (p1 and p2) 

A given U is located on (a) 5' - arm and (b) 3 ‘ - arm. Red arrows indicate the position of  
the U. Black arrows indicate the position of deduced Drosha clea vage sites (p1 and  

p2). 

21 
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Figure S3.1 Score distributions for LINE-1, Alu, and randomly selected regions. (A) The 

TSDscan scores of 2 forms of LINE-1, mammalian-wide (L1M) and primate-specific (L1P), 

were compared with randomly selected regions (Random). The gray arrow indicates the 

score threshold used to identify pseudogenes derived from mRNA (see, text). (B) The 

TSDscan scores of 3 forms of Alu (AluJ, AluS, and AluY) were compared. 
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Figure S3.3 Length distribution of poly-A tract. L1P: 

primate-specific LINE-1, L1M: mammalian-wide LINE-1, Random: 

randomly selected regions. 

 

Figure S3.2 Length distribution of TSD. L1P: primate-specific LINE-1, 

L1M: mammalian-wide LINE-1, Random: randomly selected regions. 
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Supplemental methods S3.1 

The reason of using the scores of +200/-200 as default parameters for 

alignment of the TTAAAA sequence. 

The default scoring parameters for the TTAAAA sequence is as follows: For the first 

two positions, nucleotide T and other nucleotides (A, G, and C) have scores of +200 and 

-200, respectively. In the last four positions, an A-A nucleotide match and the other 

aligned nucleotide pairs have scores of +200 and -200, respectively. 

Because chromosomal target sites are only 6-bp, they easily become undetectable if 

only a few mutations are accumulated. To avoid this, we enlarged scoring parameters 

used for alignment of target sites. This is why the positive/negative scores for the 

TTAAAA sequence have +200/-200, which is about twice as the positive/negative scores 

for poly-A tail and TSDs. 

By using the default parameters, TSDscan can detect the TTAAAA sequence in about 

82% and 66% of AluY and L1P insertions, respectively, which seems consistent with 

previously reported (Jurka 1997; Babushok et al., 2006). If we make these scores to be 

one half (that is, T and non-T nucleotides in the first two positions have scores of +100 

and -100, respectively, and an A-A nucleotide match and the other aligned nucleotide 

pairs in the last four positions to be +100 and -100, respectively), TSDscan can detect 

the target site only in 53% and 24% of AluY and L1P insertions, respectively, which 

seems smaller than the previous reports. 

 

Supplemental methods S3.2 

The TSDscan algorithm 

The TSDscan algorithm is designed by adopting a pattern recognition algorithm with 

hidden Markov model to detect pseudogenes. For explanation, upstream and 

downstream sequences of a pseudogene is denoted by x and y, respectively. Because 

TSDs in x and y (hearafter xTSD and yTSD) are similar, they can be detected by 

performing a local alignment between x and y. To detect poly-A tract, we assigned 

positive scores to insertion of A-nucleotides immediately before yTSD. Figure T1A is an 

automaton for detecting both poly-A tract and TSD. Sequences corresponding TSD and 

poly-A is emitted from the M and Ay state, respectively. If we delete the Ay state from 

this automaton, the resultant automaton is the same as an automaton for simple local 

alignment. 
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Ay

LFx LFy RFx RFyM

Ix

Iy
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LFx LFy RFx RFyM

Ix

Iy

R1x R2x R3xy R4xy R5xy R6xy

A

B

Figure T1 Automatons for alignment between upstream and downstream sequences of retrocopies.

Upstream and downstream sequence is denoted as x and y, respectively. State M emits two letters to be

aligned, which correspond to TSD. State Ix (Iy) emits a letter in sequence x (y) that is aligned to a gap.

States LFx and LFy (RFx and RFy) emit unaligned flanking subsequences on the left (right) of the

alignment. (a) an automaton that consider Poly-A tract. State Ay emits a letter in poly-A tract in sequence y

that is aligned to a gap. (b) an automaton used in TSDscan. R1x and R2x emit the first two bases of the

TTAAAA in sequence x that are aligned to gaps. R3xy–R6xy emit two aligned letters one for each

sequence, which correspond to the last four bases in the TTAAAA. For simplicity, the start and end

state are omitted from the figure.

 

 

Recursion equations detecting the optimal alignment using the automaton in Figure 

T1A is as follows: 
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, where s(xi,yi) is match/mismatch score in alignment of TSD, ‘g’ and ‘e’ are a gap open 

and extension penalty, respectively, and polyA(yi) is a score of nucleotide yi in the Ay 

state. The polyA(yi) is positive when yi = ‘A’. Equations written in bold letters are 

related to the Ay state. By deleting these equations, we get the same recursion equations 

used in a simple local alignment (Durbin et al., 1998). 

The automaton shown in Figure T1B is made by adding the R1~R6 states, which 

emits TTAAAA consensus sequence, to the automaton shown in Figure T1A. The first 

two letters of the consensus, TT, is detected by assigning positive scores to the insertion 

of TT di-nucleotide immediately before xTSD. This can be done by assigning a positive 

score to T nucleotide in the R1x and R2 x state. The AAAA followed by the TT 

di-nucleotide is detected by assigning a positive score to the A:A match followed by the 

TT insertion. This can be done by assigning positive scores to the A:A match in the R3 xy 

~R6 xy state. 

Next, we consider positions of poly-A tract and TSD. The poly-A tract and TSD are 

inserted at immediately outside of a pseudogene. Therefore, the poly-A tract and TSD 

which are distant from a pseudogene should be penalized. We penalize nucleotide 

insertions between xTSD and a 5’-end of pseudogene, and those between 3’-end of a 

pseudogene and poly-A tract. This can be done by assigning negative scores in any 

nucleotide insertion in the LFy and RFx state in Figure T1B. Recursion equations 

detecting the optimal alignment using the automaton in Figure T1B is a bit complicated, 

which is shown below.  
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Initialization:

for (i = 0; i <= Length(x); i++){
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, where s(xi,yi) is match/mismatch score in state M, ‘g’ and ‘e’ are a gap open and 

extension penalty, respectively, and the polyA(yi) is a score of yi-nucleotide in the state 

Ay. The ‘b’ is a penalty of any nucleotide in the state LFy or RFx. The tt(xi) is a score of 

xi-nucleotide in R1x and R2x. The aaaa(xi, yi) is match/mismatch scores in state 

R3xy~R6xy. The scoring parameters used in TSDscan are summarized below: 

e = -30

g = -400
polyA(yi) -100   otherwise

+100  if yi = A

b = -50
tt(xi) -200   otherwise

+200  if xi = T

aaaa(xi, yi) -200   otherwise

+200  if xi = A, yi = A

s(xi,yi) is the HOXD matrix (Chiaromonte et al., 2002) shown bellow:

91-114-31-123T

-114100-125-31G

-31-125100-114C

-123-31-11491A

TGCA

91-114-31-123T

-114100-125-31G

-31-125100-114C

-123-31-11491A

TGCA

 


