
SEMANTIC SEARCH USING ANNOTATIONS BY

NATURAL LANGUAGE PROCESSING: PAPER SEARCH

BASED ON EVENTS IN BIOMEDICAL SCIENCE

（自然言語処理アノテーションを利用した意味検索: 生命医学

系論文に対する事象に基づく検索）

増田 勝也

博士論文

ABSTRACT

This dissertation aims to implement a high-accuracy semantic search system by in-
corporating various natural language processing (NLP) techniques, and we proposes a
retrieval framework for textbases which are tag-annotated with the result of natural
language processing (NLP) technique in order to achieve the semantic search system.
Basic NLP systems, such as part-of-speech taggers, named entity recognizers, syntac-
tic/semantic parsers, etc. has been developed in recent years, and the accuracy of these
systems is sufficient to use in more advance NLP applications. However, because there
is no effective and efficient frameworks for storing and using the results from these basic
NLP systems comprehensively, one usually applies linguistic processing on the fly to a
set of text after they are retrieved by simple method, such as keyword-based search. On
the other hand, there is an emerging trend of enriching text with various kinds of infor-
mation as annotations and using or sharing the annotations of information or knowledge
in various research area not only the NLP area.

This dissertation proposes a high-accuracy semantic search system incorporating NLP
technologies, and shows effectiveness of NLP technologies for information retrieval. As a
framework that implements the semantic search system, we propose a a semantic retrieval
framework which realized advanced retrieval as compared with existing keyword-based
retrieval system by specifying annotated information of the result of various types of
NLP modules. In order to realize a semantic retrieval system using annotations of NLP
results, we extend a region algebra and its algorithm, which is a search framework for
textbases structured with tag-annotations. The extended framework can be applied to
the annotations of NLP results which contain nesting structure in the annotations, and
enables us to search using references by variable. Moreover, we proposes ranking retrieval
for by extending the probabilistic model for keyword-based retrieval into a retrieval
framework in which direct dependency is supposed among a set of structured queries.

As a real world application, we implements a semantic retrieval system for MEDLINE
databases, which is a database of paper abstracts in the biomedical area. We apply a
deep parser and a named entity recognizer as a basic NLP modules, and recognizers of
events in biomedical research area, such as a protein-protein interaction recognizer, as
advanced NLP modules to the documents in MEDLINE in order to annotate the NLP
informations. By realizing semantic retrieval which using annotated information from
NLP modules, we construct a retrieval system which enables us to search events like
protein-protein interaction which is important in biomedical area, and demonstrate the
effectiveness of the proposing search framework.

In the experiments, we evaluated accuracy improvement of our semantic search system
on our own test data and the publically usable test collection, which is created in TREC
Genomic Tracks, and shows effectiveness of incorporating NLP technologies into search
systems. Moreover, we declare effectiveness of our framework by compare the framework
with existing XML databases and evaluate our framework and algorithms as a retrieval
framework for annotated documents.

論文要旨

本論文では自然言語処理技術を用いた高精度な意味検索システムの実現を目的として、

自然言語処理技術を用いてアノテーション情報が付与されたテキストに対し、そのアノテー

ション情報を検索時に統合的に利用するための意味検索枠組みを提案する。近年、品詞タ

ガーや構文解析器、固有表現認識器等の自然言語処理分野における基本的なシステムが開

発され、十分な精度でより高度な自然言語処理アプリケーションにおいて利用されている。

しかしながらそれらの基本的な自然言語処理システムの結果を統合的に利用・管理する効

果的な枠組みが存在しないため簡単な絞り込みによる検索の後に自然言語処理を行うとい

う手法が主流である。また一方でテキストに対し多種多様な情報をアノテーションとして

付与し、利用・共有を行うという動向が自然言語処理分野のみならず様々な分野において

存在する。

そこで本論文では、これらの種々の自然言語処理技術を統合的に利用した高度な意味検

索システムを実現し、情報検索に対する自然言語処理技術の有用性を示すことを目的とす

る。また実現するための手法として、自然言語処理モジュールを利用してテキストに対し

て言語的情報を付与し、その情報を利用して従来のキーワードベースの検索に比べより高

度な検索を実現する枠組みを提案する。アノテーションにより構造化されたテキストに対

する検索枠組である領域代数を拡張し、自然言語処理アノテーションの特徴である入れ子

構造に対応した検索アルゴリズム、および変数による参照を利用可能な検索枠組を構築す

る。また、従来のキーワードベースの検索で使用される確率的言語モデルを拡張し、依存

関係が存在する、構造を持つクエリ集合を利用した検索に対するランキング検索手法を提

案する。

提案システムの実世界への適用例として、生医学論文の要旨データベースであるMED-

LINEに対し検索システムを実装する。自然言語処理の基本的なモジュールとして、深い

構文解析器、固有表現認識器を利用し、さらにはより高度なモジュールとしてタンパク質

間相互作用等の生医学研究における eventの認識器を利用し、それらの処理結果をテキス

トにアノテーションとして付与する。付与されたアノテーション情報を利用した検索を可

能とすることで、生医学研究において重要とされる物質間の相互作用等の検索を可能とす

るシステムを構築し、本論文において提案する意味検索システムの有用性を示す。

実験において、提案する意味検索システムの検索精度の評価を独自に作成したテストデー

タ、および情報検索評価用のテストコレクションを用いて行い自然言語処理を利用した意

味検索システムの有効性を示す。また、既存の XMLデータベースとの比較や種々のクエ

リによる実験を行い、アノテーションが付与されたテキストを対象とした、検索枠組・ア

ルゴリズム自体の評価を行い、提案枠組の有用性を示す。

Contents

1 Introduction 1
1.1 Semantic Search . 2
1.2 Search Framework for Tag-Annotated Documents 3
1.3 Search Systems in Biomedical Science 4
1.4 Organization of The Dissertation 5

2 Background 7
2.1 Information Retrieval and Natural Language Processing 7
2.2 Structured Document Retrieval . 8

2.2.1 XML Database and XML Retrieval 10
2.2.2 Other Frameworks on Retrieval for Annotated Documents . 11

2.3 Region Algebra and Annotations 12
2.4 Ranking Retrieval Model . 16

2.4.1 Vector Space Model . 17
2.4.2 Probabilistic Retrieval Model for Keyword-based Search . . 18

3 Extended Region Algebra for Retrieval using Annotations by
NLP 21
3.1 Annotations by NLP and Semantic Retrieval 21
3.2 Retrieval of Nesting Annotations 24

3.2.1 Operations for Nested Regions 24
3.3 Variables . 29

3.3.1 Definition . 29
3.3.2 Algorithm . 29

3.4 Index Structure and Implementation 34
3.4.1 Depth and Position . 35
3.4.2 Implementation of Index Position Array 35

3.5 Algorithm for Searching Stand-Off Annotations 37
3.5.1 Stand-Off Annotations . 40
3.5.2 Search Algorithm for Stand-Off Annotation 40
3.5.3 Index for Stand-off Annotation 52

3.6 Probabilistic Retrieval Model for Structured Document Retrieval . 54
3.6.1 Query and Document Representation for Structured Doc-

ument Retrieval . 54
3.6.2 Extend BIM Model for Structured Document Retrieval . . 55
3.6.3 Ranking Algorithm . 59

4 MEDIE: Semantic Retrieval System for MEDLINE 60
4.1 MEDIE system . 60
4.2 Natural Language Processing Module 61
4.3 Databases for Retrieval . 67
4.4 Search and Browsing User Interface 68

iv

5 Experiments 72
5.1 Evaluation for Effectiveness of Incorporating NLP into Search . . . 72

5.1.1 Effectiveness of Specifying Parsing Results 72
5.1.2 Effectiveness of Incorporating Various NLP Techniques in

Search . 73
5.1.3 Evaluation on Public Test Collection 77

5.2 Evaluation of Search Algorithm . 89
5.2.1 Search Speed Compared with XML Database 89
5.2.2 Effectiveness of Algorithm 91
5.2.3 Effectiveness of Ordering Sub-Queries 92

5.3 Discussion . 92
5.3.1 Annotations . 92
5.3.2 Scalability . 94
5.3.3 Evaluation of Our Framework on TREC Test Collection . . 95
5.3.4 Search Accuracy and Results from NLP modules 96

6 Conclusion 98

References 100

v

List of Figures

2.1 Example of XML annotations . 9
2.2 τ and ρ functions for containing (>) and contained in (<)

operators . 13
2.3 τ and ρ functions for bothof (&) and one of (|) operators 14
2.4 τ and ρ functions for followed-by (−) 14
2.5 An example of text and positions of words 15
2.6 Example of the process finding the regions matching the query . . 15
2.7 Evaluating the function ‘τ(> A B,p)’ 16

3.1 Syntactic/semantic structure . 22
3.2 Tag annotation of Figure 3.1 . 23
3.3 Evaluating the function ‘τ(> A B,p)’ 24
3.4 The algorithm of the τ function for containing operator 26
3.5 The algorithm of the τ function for ‘contained in’ operator 27
3.6 Skipping regions using depth . 28
3.7 The algorithm for the evaluation order 32
3.8 The algorithm for query with variables 33
3.9 Position number of words in Figure 3.2 34
3.10 Inverted position index . 35
3.11 The algorithm to make array representation of B-tree 35
3.12 An example of B-tree structure and array representation 36
3.13 Example of inline XML annotations 38
3.14 Example of stand-off annotations for XML data in Figure 3.13 . . 39
3.15 τb and τn function for query (> A B). 42
3.16 ρb and ρn function for query (> A B). 43
3.17 τb and τn function for query (< A B). 45
3.18 ρb and ρn function for query (< A B). 46
3.19 τb and τn function for query (| A B). 48
3.20 ρb and ρn function for query (| A B). 49
3.21 τb and τn function for query (& A B). 50
3.22 ρb function for query (& A B). 51
3.23 ρn function for query (& A B). 52
3.24 τb and τn function for query (- A B). 52
3.25 ρb and ρn function for query (- A B). 53
3.26 Inverted position index for stand-off annotation in Figure 3.14 . . . 54

4.1 Overview of the pre-processing system of MEDIE 61
4.2 Event annotation . 66
4.3 Overview of the back-end database architecture of MEDIE 67
4.4 Example of stand-off annotation 68
4.5 MEDIE user-interface. top: query input form, bottom: search

results . 69

vi

5.1 Queries of extended region algebra for Query 2-TE (top: keyword
search, bottom: semantic search) 74

5.2 Queries for Topic 112 . 81
5.3 Queries for Topic 107 . 83
5.4 Queries for Topic 120 . 84
5.5 Queries for Topic 004 . 87
5.6 Example of XML data . 93
5.7 Example of data which express “modification” in in-line XML . . . 94

vii

List of Tables

2.1 Operators of Region Algebra . 12

3.1 Operators of Region Algebra . 27

4.1 Improvement of parsing accuracy by re-training (LP/LR/F1) . . . 63
4.2 Performance comparison with other systems of BioCreative 2 com-

petition. The Add. tech. column lists additional techniques used
for these systems (S: semi-supervised method, E: ensemble classi-
fier, G: gazetteer, P: post-processing, and A: abbreviation resolu-
tion). 64

4.3 Comparison of different PPI systems evaluated using AIMed . . . 65
4.4 Performance of GDA recognition 65

5.1 Queries for evaluating accuracy . 73
5.2 Number of retrieved sentences, search time, and accuracy 73
5.3 Queries used in the experiment . 74
5.4 Number of retrieved sentences, retrieval time, and accuracy for

Keyword Search . 75
5.5 Number of retrieved sentences, retrieval time, and accuracy for

Semantic Search . 76
5.6 Topics in TREC Genomic Track 2004, Title (T), Need (N) and

Context (C) . 78
5.7 Topics in TREC Genomic Track 2004 (cont.) 79
5.8 Queries for Topic Type 2 . 80
5.9 Average MAP, precision and recall for types of topics 85
5.10 MAP for topics of topic type 2 with different types of Scoring Queries 86
5.11 MAP for topics in TREC 2004 . 88
5.12 Search time of three systems . 90
5.13 A Query converted to XQuery form 90
5.14 Search time by changing order of queries 91
5.15 Search Time by using Our Algorithm and Baseline Algorithm

Searching All Combinations . 91

viii

Chapter 1

Introduction

Basic natural language processing (NLP) systems, such as part-of-speech taggers,

named entity recognizers, syntactic/semantic parsers, etc. has been developed,

and the accuracy of these systems is sufficient to use in other applications. Lin-

guistic information extracted by using these basic systems has been found useful

in many QA, IR and Text Mining applications. However, because there is no ef-

fective and efficient frameworks for storing and using the results from these basic

NLP systems comprehensively, one usually applies linguistic processing on the fly

to a set of text after they are retrieved by simple method such as keyword-based

search, or creates purpose-built database for each system.

The “retrieve-then-process” model is inevitable when one has to use a search

engine as black box to retrieve the initial relevant set from a huge collection of

text. However, the approach severely restricts linguistic processing that one can

apply, e.g. one cannot apply computationally expensive processing on the fly,

such as deep semantic parsers, etc, since a set of the documents retrieved with

the simple query condition is very huge. Although the expensive processing can

be executed in advance by using the purpose-built database, the database does

not have expandability. When new NLP systems are developed, the database has

to be rebuilt in order to incorporate the NLP systems into the search system.

On the other hand, there is an emerging trend of enriching text with various

kinds of information in XML-style tag annotations and using them for intelligent

information services [48, 18, 28]. The trend has opened up an interesting per-

spective in which sophisticated NLP technologies are applied to text in advance

to make high levels of linguistic representation such as syntactic and semantic

structures explicit, which in turn are to be used to deduce more user-oriented

information on the fly.

In this dissertation, we propose a semantic search system using natural lan-

guage processing. We constructed a framework of document search for tag-

annotated documents, and implemented a semantic search system for articles in

biomedical domain. In the system, the articles are processed with various types

of NLP systems and annotated with the results from these modules. Text and

annotations in the articles are indexed in advance, and the system searches arti-

1

cles matching to structured queries, which can specify the relationship between

keywords, by using the index in search process.

1.1 Semantic Search

Traditional retrieval systems are constructed based on keywords. These systems

construct index for keywords, the systems searches documents by calculating

the relevance between a query and a document. The query and the document

are considered as a set of keywords, and the relevance between a query and a

document is calculated as a relevance between the keyword sets. Although these

keyword-based search systems are very simple, it is difficult to specify search

intention of users in a query since the user cannot specify relationship among

keywords.

In recent years, some retrieval systems introduces relationship among key-

words in queries and indices [72, 17, 15, 12]. These systems are called “Seman-

tic Search” systems, which are defined as search concepts or technologies which

improve search accuracy by recognizing intention of users from the queries or

contexts and searching documents or information along the users’ intention. In

a semantic search system, we can specify complex condition by using relation-

ship among keywords in linguistic information, such as the subject-verb-object

relationship from syntactic/semantic parsers, the attributes of the keywords or

more complex representation from NLP systems. By incorporating linguistic in-

formation in the search process, we can acquire search results with high accuracy

which matches to our search intention.

These systems process target documents by various types of NLP systems,

mainly syntactic parsers, in advance, and construct indices for both keywords and

the results from NLP systems. In search process, these systems receives keywords

or a natural language sentence as a query and process the query in the same way

with documents. Then the system calculates the relevance between a document

and a query using the results from NLP systems. These systems recognize users’

intention by processing input keywords or sentences by using NLP systems. Our

system is one of Semantic Search systems. The target documents are processed in

advance by NLP systems, and annotated with XML-style tag annotations of the

result by these modules. We constructed a search framework for tag-annotated

documents, which constructs indices for keywords and annotations and searches

documents using the indices. Since our framework employed tag-annotation for

uniformed representation of the results from NLP systems, these NLP results

can be managed easily, for example, these result can be integrated in search

process. Moreover, since we adapted our framework to stand-off annotations, we

can introduce newly developed NLP systems into the system easily by adding the

stand-off annotations.

2

1.2 Search Framework for Tag-Annotated Documents

For documents structured with tags, effective and efficient access methods have

to be devised to exploit linguistic information computed in advance. The access

models for XML such as XPath [13] and XQuery [11] are neither effective nor effi-

cient for accessing relevant information through convoluted structures of syntactic

and semantic representations. Furthermore, significant revisions of XML-based

access models are necessary if one allows independently motivated annotations

to co-exist in the same text as envisioned in UIMA [18]. Even if each single layer

of annotation is conformant to XML such as non-cross border restriction on tags,

there is no guarantee that a group of autonomous annotations as a whole is XML

conformant.

We proposed a search framework which can use annotated information in

search process comprehensively [45]. In the framework, we employed XML-style

tag annotations for representing and storing linguistic information for target doc-

uments, and also employed region algebra and its algorithms [14] for querying

documents with specifying the annotated linguistic information in search process

comprehensively. In order to apply the region algebra into annotated linguistic

information, we extended an access method for tag-annotated documents based

on region algebra [14] which provides a conceptually simpler and more efficient

framework for convoluted structures of language and independently motivated

annotations. We extend the original region algebra in order to treat nested an-

notations, which are indispensable for dealing with the hierarchical nature of

linguistic representation. Unlike previous work of nested annotation [29], our ex-

tension preserves the efficiency of the original region algebra. Our extension also

allows using logical variables for denoting shared structures which are pervasive

in semantic representation. In the experiments, we evaluated the framework itself

by search speed by comparing with existing XML databases.

Moreover, we proposed a ranking retrieval for our semantic search system [44].

We extended a probabilistic model for keyword-based retrieval into our retrieval

framework, in which queries used in scoring are not keywords but structured

queries specifying annotations. Although we can suppose independency among

keywords in keyword-based retrieval, we cannot ignore dependency among struc-

tured queries because the dependency is directly expressed in the queries in our

framework. So we incorporated the dependency into a probabilistic retrieval

model, and derived a scoring function for retrieval using structured queries. In

the experiments, the ranking algorithm is evaluated as a accuracy of a whole

semantic search system in biomedical domain, since the accuracy of ranking is

depend on target data.

3

1.3 Search Systems in Biomedical Science

In biomedical science area, the number of journal articles is already numerous and

rapidly increasing. These articles are collected into a large database, MEDLINE.

The MEDLINE database has around 20 million of articles in biomedical area, and

these articles come from wide variety of research fields. Since the huge number

and variety of research area of articles, it is hard for researchers to find articles

themselves or knowledges written in articles concerning their fields. Computer-

assisted access for the articles are needed to acquire target articles or knowledges.

Although there is the official primary search service for MEDLINE, PubMed,

the search function is only keyword-based search, and the search results are or-

dered only in chronological order. In order to support researchers to find articles

or knowledges from the MEDLINE database, various types of search systems have

been developed for the database. Several systems outputs results with ranking

based on the relevance of articles to search intention of users by using information

retrieval techniques [76, 19, 3]. Some systems enriches search results by analysis

using NLP techniques, especially analysis of biological entities or relationships

between concepts [35, 61].

Our semantic search system, MEDIE [51, 56], constructed by implementing

our proposed search framework, is one of the sohpisticated search systems for the

MEDLINE database. In the MEDIE system, the target text from MEDLINE

were annotated with results from various kinds of NLP systems, such as a deep

semantic parser, named entity recognizer, and other advance NLP systems which

recognize biological events. The main search function of the MEDIE system is to

search “subject-verb-object” relation. Users can specify the “subject,” “verb,”

“object” as an input, and the system searches sentences or articles which contain

the relation specified in the input.

In the experiments, we evaluated our semantic search system from the several

point of view. First, we evaluated our system as a whole semantic search system,

that is, we evaluated the improvement of accuracy by incorporating linguistic

information into the search process. We evaluated the accuracy in two types of

data, which is constructed by us, which contains the queries and the judgment of

relevant documents assigned by specialists in biological domain by hand, and the

pubically usable test collection, which is constructed in TREC Genomic Track.

In the evaluation on originally constructed data, we evaluated accuracy of exact

match search of our semantic search system. In the evaluation on the test collec-

tion of TREC Genomic Track, we evaluated accuracy of semantic search system

with raking retrieval, and show the applicability of our system into general task.

4

1.4 Organization of The Dissertation

The remainder of this dissertation is divided into the following chapters. The

chapter 2 describes the background of our proposal. First, we explain about

the current status of researches in information retrieval with natural language

processing. Next, we explain about the retrieval for structured document, such

as XML databases, XML retrieval, and other frameworks. Finally, we shows

the researches which are the base of our research, a region algebra and its search

algorithm, which is a representation of queries for structured documents and basic

algorithm for our research, and the probabilistic retrieval model for keyword-

based search, which is extended for structured document retrieval in our research.

The chapter 3 describes main retrieval method in our research. We decries the

extension of the region algebra and its algorithm in order to search documents

with XML-style annotations of NLP results. We extended the region algebra and

its algorithm which can apply to textbases with annotations from NLP systems.

First, we describes the extension in search algorithm for nested regions. Next, we

proposes the incorporation of variables into the region algebra and an algorithm

to calculate values for variables and to search regions for the queries containing

variables. We explain the index structure and its implementation which enables

the above two extension for the region algebra, and we also proposes an extension

for the algorithm, which can be applied to the documents with stand-off annota-

tions. Finally, we proposes the ranking retrieval model for the structured query

in region algebra by extending the probabilistic model for keyword-based search

into the structured queries.

The chapter 4 shows the actual semantic search system, MEDIE, in which the

proposed framework is implemented. The MEDIE system is a semantic search

system for the MEDLINE database, which is a database of paper abstracts in

bio-medical domain. We shows the detail of the MEDIE system in the chapter.

We first describe the overview of the MEDIE system, and explain about the NLP

systems which is applied to the MEDLINE abstracts in indexing phase, such as

the syntactic/semantic parser, named entity recognizer, protein-protein recog-

nizer, event expression recognizer and sentence role classifier. We also describes

the database structure of the MEDIE system, in which our proposed retrieval

framework is implemented, and the interface of the MEDIE system.

The chapter 5 describes experiments on our semantic search system. We

conducted two types of experiments, the evaluation of our system as a semantic

search system, and the evaluation of our algorithms used in our system. In

the former experiment, we evaluated accuracy of our semantic search system,

on two types of search, the exact match retrieval and ranking retrieval. The

target documents of the experiment are the MEDLINE abstract databases, and

the documents are annotated by NLP systems used in MEDIE system. For

5

evaluation of the exact match retrieval, we used queries and relevant judgment

of documents created on our own. For evaluation of the ranking retrieval, we

used the publically usable test collection created by TREC Genomic Track. In

the latter experiments, we compared our framework and other existing XML

databases, MonetDB/XQuery [7] and eXist [46]. Since these XML databases

cannot store data invalid XML, in which the tag-annotated regions crosses with

each other, we apply only the syntactic/semantic parser to the target data in the

experiment. We discussed about the scalability of our system, test collection for

semantic search and search accuracy by using NLP results. The final chapter

concludes the dissertation with some future works for the problems discussed in

the previous chapter.

6

Chapter 2

Background

2.1 Information Retrieval and Natural Language Processing

Recently, various kinds of document retrieval system are developed. Google is

the most famous and powerful retrieval system for web pages. The web pages are

ordered based on the PageRank [58], which is calculated based on the number of

hyperlinks from the page and into the page. Lucene [22] and Solr are open source

full-text search systems developed by Apache Software Foundation. Although

these retrieval system are powerful, many of these retrieval systems can receive

only a set of keywords, or keywords with some attributes such as “the ‘title’ field

contains the word ‘retrieval’ ” as a query, and retrieve all the documents which

satisfy the query or a ranking list of documents in the order of the relevance of the

documents to the query, which is defined in each retrieval system. These retrieval

systems cannot specify the relationship among words because the system indexed

only words of the texts.

On the other hand, some retrieval systems introduce relationship among words

in search algorithm [72, 17, 15, 12] These systems are called “Semantic Search”

systems. Semantic search is defined as search concepts or technologies which

improve search accuracy by recognizing intention of users from the queries or

contexts and searching documents or information along the users’ intention. In

order to recognize the intent of users and search documents along the intention,

various types of NLP technologies are applied. For example, word sense dis-

ambiguation is applied in order to recognize the users’ intention in the query

correctly. Synonym or ontology is used to search documents in which the key-

words in queries are written in different representation. Moreover, by annotating

documents with meta-data, system can search the documents with enriched in-

formation. The concept of semantic search for Web is called “Semantic Web” [6].

In the Semantic Web, the contents in the web is written in XML and annotated

with meta-data by using RDF [36] or OWL [4]. Since the annotations considered

in the Semantic Web is a simple data containing attributes like meta-data, more

complex and huge annotations like annotations from NLP technologies is difficult

to applied to the Semantic Web framework.

Some of search systems incorporate NLP technologies into search process.

7

TSUBAKI [72], which is a search system for web pages in Japanese, is one of the

systems which include the relation between the keywords into scoring of pages.

The system parses the text in web pages by Japanese dependency parser KNP

[37], and constructs indices of words, synonym and dependency relation between

the words. In the search phase, the system receive a natural language sentence as

a input query, and analyze the input sentence with the same dependency parser

used in indexing. Then the relevance between the query and the documents are

calculated using the frequency of both words and dependency in the documents.

Powerset [15], which is already acquired by Microsoft, is a similar engine in

English. The target documents of Powerset are English Wikipedia pages. Users

can query not only keyword set but also a natural language sentence question

into the system, and the system searches documents relevant to the the query

using NLP technologies, such as paring and synonyms. These systems using NLP

technologies are very powerful to search not a document but a information which

is relevant to the query sentence or can be an answer to the question of a query.

In the area of researches whose target is texts, there is an emerging trend of

enriching text with various kinds of informations. The format commonly used is

XML-style annotation, which is specify the text region with a start tag and an

end tag, and expresses the annotated information with a tag name and attribute

values in start tags. Figure 2.1 shows an example of XML-style annotations.

Annotations for text are created by both automatically and manually. In the

natural language processing area, text are enriched by the annotations expressing

natural language processing results, for example the part-of-speech or named

entities, and the annotations are used as an input of other NLP systems [48,

18]. For the types of information which is difficult to create automatically, the

text are annotated by hand. This types of annotations are mainly used as a

training data for machine learning. In Digital Humanities area, which is an

area of research concerned with the intersection of computing and the disciplines

of the humanities, Text Encoding Initiative consortium [28] standardized the

annotation method of historical documents in humanities in order to share the

documents themselves and the knowledge about them, and the digitalizing and

annotating tools are developed. The trend of enriching text has opened up an

interesting perspective in which sophisticated NLP technologies are applied to

text in advance to make high levels of linguistic representation such as syntactic

and semantic structures explicit, which in turn are to be used to deduce more

user-oriented information on the fly.

2.2 Structured Document Retrieval

One of simple implementation of semantic search system is a structured document

retrieval. Text of target documents are enriched with structure of documents and

annotation of more detailed information by NLP.

8

<sentence>
<phrase id="0" cat="S" head="4" lex_head="6">
<phrase id="1" cat="NP" head="2" lex_head="3">
<phrase id="2" cat="NP" head="3" lex_head="3">
<word id="3" pos="NN" cat="NP" base="p53">p53</word>

</phrase>
</phrase>
<phrase id="4" cat="VP" head="5" lex_head="6">
<phrase id="5" cat="VP" head="6" lex_head="6">
<word id="6" pos="VBZ" cat="VP" base="is" arg1="1" arg2="7">
is
</word>

</phrase>
<phrase id="7" cat="VP" head="8" lex_head="9">
<phrase id="8" cat="VP" head="9" lex_head="9">
<word id="9" pos="VBN" cat="VP" base="phosphorylate"

arg2="1" arg1="-1" arg3="10"
rel_type="phosphorylation">

phosphorylated
</word>

</phrase>
<phrase id="10" cat="VP" head="11" lex_head="12">
<phrase id="11" cat="VP" head="12" lex_head="12">
<word id="12" pos="TO" cat="VP" arg1="1" arg2="13">
to
</word>

</phrase>
<phrase id="13" cat="VP" head="14" lex_head="15">
<phrase id="14" cat="VP" head="15" lex_head="15">
<word id="15" pos="VB" cat="VP" base="activate" arg1="1"

arg2="16">
activate

</word>
</phrase>
<phrase id="16" cat="NP" head="17" lex_head="18">
<phrase id="17" cat="NP" head="18" lex_head="18">
<word id="18" pos="NN" cat="NP" base="cd25" arg1="1">
CD25

</word>
</phrase>
</phrase>

</phrase>
</phrase>

</phrase>
</phrase>

</sentence>

Figure 2.1: Example of XML annotations

9

2.2.1 XML Database and XML Retrieval

The most commonly used framework for annotating or structuring documents is

XML. The access methods for the well-formed XML are defined as query lan-

guages, XPath[13] or XQuery[11]. XPath is a query language which point a

specific element in XML documents. For example, the query

/sentence/phrase[@id=’0’]/phrase[@id=’1’]/phrase[@id=’2"]/word

in XPath expresses the element of “word” tag for the word “p53” in Figure 2.1.

The query specify the elements of “word” tag, which is contained in three “phrase”

tags whose value of id attribute is “2,” “1” and “0”, and the sentence tag. The

containment relation of “phrase” tags is also specified in the expression, The

“phrase” tag whose id is “2” is contained in the “phrase” tag whose id is “1,”,

and the “phrase” tag whose id is “1,” is contained in the “phrase” tag whose id is

“0.” The “phrase” tag whose id is “0” is contained in the “sentence” tag. XPath

expression can specify the element in the XML documents by the containment

relation of tags.

XQuery is a query languages for XML documents to extract and manipulate

data in XML documents. By XQuery, we can not only search elements in the

XML Documents but create a formalized data from retrieved elements by using

SQL-like expressions such as For, Let, Where and Return. For example, the

XQuery expression

For $i in document("sample.xml")//word

Let $a := $i[@id]

Return $a

output the “id” attribute of “word” tags in the XML document. Many XML

databases in which XPath or XQuery can be used as a query language have been

implemented [7, 46].

One of the free XML databases is MonetDB [7]. MonetDB itself is not a XML

databases but a column-oriented database management system. But the exten-

sion for XQuery, MonetDB/XQuery, can store XML data in column-oriented

databases, and users can query stored XML data with XQuery language. The

XPath and XQuery are query languages for accessing XML documents, by re-

garding the documents as databases. On the other hand, some researches for

XML document search have been proposed, which regards the XML documents

as a text documents with annotations of document structure. This type of search

for XML documents is called structured document retrieval. For the structured

document retrieval, INEX (Initiative for the Evaluation of XML retrieval) [5]

have created test collections of retrieval for XML documents. In INEX, the par-

ticipants assign judgment for a element of XML documents whether the element

is relevant to the information need expressed in queries.

10

Although the XML databases or XML retrieval systems are very effective and

efficient to search structured documents, it is difficult to apply these systems to

the documents with NLP annotations. The main reason is the characteristics

of NLP annotations, such as the nesting of tag annotations and overlapping of

annotated regions. For example, the paring results of the text have a nesting

structure of “phrases” as shown in Figure 2.1, and when the results of different

types of NLP modules, such as parsing results and named entities, are annotated

to the same texts, there are no guarantee that the annotated regions from two

modules are never crossed each other.

Text that are linguistically annotated by XML tags is neither typical of a

data-oriented XML, which is typified by the XML documents accessed by using

XPath or XQueries, or of a document-oriented XML, which is typified by the

target documents in INEX. It does not have the homogeneity of data elements,

which XML schema in data-oriented XML assume, while it has a much richer

structure than those that a normal document-oriented XML can handle. As

a result, the functionality provided for general XML databases [7, 46] are over

specified for the specific use for large linguistically annotated text bases, and is

thus inefficient. on the contrary, the functionality of full-text search engines with

tags such as that of Lucene [22], is not expressive enough.

2.2.2 Other Frameworks on Retrieval for Annotated Documents

Some retrieval systems for structured documents which does not suppose well-

formed XML structure have been proposed. These systems suppose only the

documents are structured or annotated with some informations. Indri [47, 2] is

a search system for structured documents based on the inference network. The

Indri system does not suppose the well-formed XML, and can handle partially

structured documents such as HTML documents. The results of Indri is ranking

list of documents which are relevant to a query. The query language of Indri

can specify the terms, proximity of terms, synonyms, context that words appear

and weighting method of the terms etc. Although the language can specify the

context of words, for example, “the word ‘dog’ appears in the ‘title’ ” and the

system enables a ranking retrieval, the query cannot specify the detailed context

for the words, and the relation between words except for proximity.

The Region Algebra [14, 10] is a framework for specifying the structure of

documents by operating sets of text fragments, which are called as “regions” in

the framework, in the documents. The efficient algorithm for search documents

or the matched regions in a document is also proposed. We employ the frame-

work of the Region Algebra because the retrieval by operation of sets of regions

is directly matches to our targets, which are documents structured with data-

structure tags and annotated with results from NLP applications. Although this

framework search documents or part of documents efficiently, the query language,

11

Name(Expression) Description
Containing (> AB) ‘A’ regions containing a ‘B’ region.
Contained In(< AB) ‘A’ regions contained in a ’B’ region.
Followed By(−AB) Regions beginning with a ‘A’ region

and ending with a ‘B’ region.
Both Of (&AB) Regions beginning with a ’A’ region and

ending with a ’B’ region and the reverse.
One Of(|AB) Regions of ’A’ regions or ’B’ regions.

Table 2.1: Operators of Region Algebra

i.e. region algebra itself, cannot specify a relation between words except for the

relation that words are in the same regions, for example, “the words ‘information’

and ‘retrieval’ appear in the same sentence.” We incorporated several aspects to

search documents annotated with results from NLP modules specifying the rela-

tion between words expressed in the annotations.

2.3 Region Algebra and Annotations

In a tag-annotated text that is a linear sequence of words and tags, a position is

attached to each appearance of words and tags, or characters, and a continuous

sub-sequence is named “region”. A region r is represented by a tuple (r.b, r.e), in

which r.b and r.e are the begin and end positions of the region in the sequence.

A region expressed by the tags can be any meaningful units such as title, section,

or sentence, or more detailed informations.

Region Algebra by [14] defined a set of algebraic operators on the sets of

regions. Operators in the original algebra are shown in Table 2.1. The input

for the operators are supposed a set of regions in which no region contains other

regions, that is, an input set of regions S is expressed as {r| 6 ∃r′ s.t. r.b < r′.b <

r′.e < r.e}. Operator − (followed-by), for example, takes two sets of regions, SA

and SB, and produces a set of new regions (SA−B), each of which starts with a

region in SA and ends with one in SB. More precisely, there are no intervening

regions of SA or SB inside a new region in sA−B. That is,

(- A B) = {(rA.b, rB.e) | rA ∈ SA, rB ∈ SB, s.t. rA.e < rB.b,

and 6 ∃r′A ∈ SA s.t. rA.b < r′A.b and r′A.e < rB.b,

and 6 ∃r′B ∈ SB s.t. rA.e < r′B.b < rB.b}.

The operations of the other for operators are also defined in a similar way as

follows:

(> A B) = {rA | rA ∈ SA, rB ∈ SB, s.t. rA.b < rB.b < rB.e < rA.e,

and 6 ∃r′A ∈ SA s.t. rA.b < r′A.b < rB.b < rB.e < r′A.e < rA.e}
(< A B) = {rA | rA ∈ SA, rB ∈ SB, s.t. rB.b < rA.b < rA.e < rB.e,

and 6 ∃r′A ∈ SA s.t. rB.b < rA.b < r′A.b < r′A.e < rA.e < rB.e}

12

(& A B) = {(min(rA.b, rB.b),max(rA.e, rB.e)) | rA ∈ SA, rB ∈ SB,

s.t. 6 ∃r′A ∈ SA s.t. min(rA.b, rB.b) < r′A.b < r′A.e < max(rA.e, rB.e),

and 6 ∃r′B ∈ SB s.t. min(rA.b, rB.b) < r′B.b < r′B.e < max(rA.e, rB.e)}
(| A B) = {r | r ∈ SA ∪ SB s.t. 6 ∃r′ ∈ SA ∪ SB s.t. r.b < r′.b < r′.e < r.b}.
Note that there is no nesting region, which means a region containing other

regions in a set, in a result set of region by all operations.

A set of tag-annotated regions is expressed by using the followed by operator.

Let us denote the set of regions of the start tag <A>, and one of the end tag

, by S<A>, and S, respectively. Then, the set of tag-regions enclosed

by <A> and , is expressed by (- <A>), which is abbreviated as [A]

in the followings. When the start tag contains attributes, that is, the start tag

is <A attr_1=val1 attr2=val2 ...>, a set of tag-regions enclosed by the tag

is expressed by (- <A attr1=val1 attr2=val2 ...>), where attri ex-

presses an attribute name and vali expresses the corresponding attribute value,

and we also abbreviated this expression as [A attr1=val attr2=val2 ..].

Since the operators are algebraic, query formulas may be recursively embed-

ded in arguments. The query (> [S] (& activate CD25)) represents a query

to retrieve all “S” regions in which both the words “activate” and “CD25” appear.

When the meaning of tag <s> is “sentence” in the definition of the annotation,

this expression means “sentences containing the words ‘activate’ and ‘CD25’. ”

τ((> AB), p)
r = τ(A, p)
return ρ((> AB), r.e)

ρ((> AB), p) =
r = ρ(A, p)
r′ = τ(B, r.b)
if r′.e ≤ r.e then
return r

else
return ρ((> AB), r′.e)

τ((< AB), p) =
r = τ(A, p)
r′ = ρ(B, r.e)
if r′.b ≤ r.b then
return r

else
return τ((< AB), r′.b)

ρ((< AB), p)
r = ρ(A, p)
return τ((< AB), r.b)

Figure 2.2: τ and ρ functions for containing (>) and contained in (<) operators

The major attraction of the framework of region algebra proposed by [14]

is in its efficient algorithms for finding regions one by one that satisfy a query

formulated in an algebraic formula. The algorithms consists of combination of

four functions, τ , ρ, τ ′ and ρ′. The definition of the τ , ρ in the following:

τ(A, p): Return the first region of A beginning at or after p.

ρ(A, p): Return the first region of A ending at or after p.

τ ′(A, p): Return the last region of A ending at or before p.

ρ′(A, p): Return the last region of A beginning at or before p.

13

τ((&AB), p)
r = τ(A, p)
r′ = τ(B, p)
r′′ = τ ′(A, max(r.e, r′e))
r′′′ = τ ′(B,max(r.e, r′e))
return (min(r′′.b, r′′′.b),

max(r′′.e, r′′′.e))

ρ((&AB), p) =
r = τ ′((&AB), p − 1)
return τ((&AB), r.b + 1)

τ((|AB), p)
r = τ(A, p)
r′ = τ(B, p)
if r.e < r′.e then
returnr

elseifr.b > r′b then
returnr′

else
return(max(r.b, r′.b), r.e)

ρ((|AB), p)
r = ρ(A, p)
r′ = ρ(B, p)
if r.e < r′.e then
returnr

elseifr.b > r′b then
returnr′

else
return(max(r.b, r′.b), r.e)

Figure 2.3: τ and ρ functions for bothof (&) and one of (|) operators

τ((−AB), p)
r = τ(A, p)
r′ = τ(B, r.e + 1)
r′′ = τ ′(A, r′.b − 1)
return (r′′.b, r′.e)

τ((−AB), p)
r = τ ′((−AB), p − 1)
return τ((−AB), r.b + 1)

Figure 2.4: τ and ρ functions for followed-by (−)

where p is a position, and A is a query. The algorithms of function τ and ρ

for each operator are shown in Figure 2.2, 2.3 and 2.4. The algorithms for τ ′

and ρ′ functions is defined in a similar way since the tau′ and rho′ functions are

symmetry of τ and ρ function respectively.

Figure 2.5 shows a simple example of text annotated with tags expressing

document structure. Index number is attached to each word appearance. In the

case of the text of Figure 2.5, when the query is ‘(> [title] retrieval)’, the process

to find the regions matching to the query is shown in Figure 2.6 (we omit the

process to find the regions matching the query ‘[title]’ from the process).

Because the algorithm operates only a set of non-nested regions, these func-

tions can find the region incrementally. The time complexity of the algorithm is

linear to the number of the query nodes and the frequency of the word whose

frequency is lowest in the query except for the “One Of” (|) operation. In the case

of the “One Of” operation, the time complexity is linear to the sum of the size

14

〈book〉 〈title〉 ranking retrieval 〈/title〉 〈chapter〉
1 2 3 4 5 6

〈title〉 tf and idf 〈/title〉 ranked
7 8 9 10 11 12

retrieval 〈/chapter〉 〈/book〉 〈book〉 〈title〉 structured
13 14 15 16 17 18

text 〈/title〉 〈chapter〉 〈title〉 search for
19 20 21 22 23 24

structured text 〈/title〉 retrieval 〈/chapter〉 〈/book〉
25 26 27 28 29 30

Figure 2.5: An example of text and positions of words

τ((> [title] “retrieval”), -)
(pb, pe) = τ([title], -) = (2,5)
ρ((> [title] “retrieval”), 5)

(pb, pe) = ρ([title] , 5) = (2,5)
(p′b, p

′
e) = τ(“retrieval”, 2) = (4,4)

p′e < pe is true
return (2,5)

τ((> [title] “retrieval”), 6)
(pb, pe) = τ([title], 6) = (7,11)
ρ((> [title] “retrieval”), 11)

(pb, pe) = ρ([title], 11) = (7,11)
(p′b, p

′
e) = τ(“retrieval”, 7) = (13,13)

p′e < pe is false
ρ((> [title] “retrieval”), 13)

(pb, pe) = ρ([title], 13) = (17,20)
(p′b, p

′
e) = τ(“retrieval”, 17) = (-, -)

return (-, -)

Figure 2.6: Example of the process finding the regions matching the query

of the frequency of the words. This is because the number of the exact matches

is linear to the frequency of the least frequent word, and calls of access functions

(τ, ρ, τ ′, ρ′) in the process to search a exact match is linear to the number of nodes

in the query as shown in Figure 2.6.

Figure 2.7 illustrates how a region of ‘> A B’ can be found efficiently in the

algorithm. In Figure 2.7, the horizontal axis represents the position in the text.

ra1 , ra2 ... ran are regions of ‘A,’ and rb1 is a region of ‘B.’ k is the starting

position of the search. First, the algorithm finds the first region of ‘A,’ ra1 . Next,

the algorithm finds the first region of ‘B,’ rb1 , from the beginning of ra1 . The

15

������� ���	��

�
�� ������������� � ���

� �	� !� "#� �%$&� ' (���)*� ������� ���	+	, -!�

� . �%�/� "#� 01�
2 � 3	� ������4#"5�6�7� �98 �	:	' -1;�<%�

=�> . =�> + ? �

= ��+

= $&�

=�>%@ =�> + ? @A6A6A

Figure 2.7: Evaluating the function ‘τ(> A B,p)’

algorithm outputs ra1 if ra1 contains rb1 . If ra1 does not contain rb1 (as in the

case of Figure 2.7), it looks for another region of ‘A,’ where the end is nearest

among ‘A’ regions after the end of rb1 ; that is, ran in Figure 2.7. The algorithm

then checks whether ran contains rb1 . For the case illustrated in Figure 2.7, since

ran contains rb1 , it outputs ran , and repeats the same process until no region of

‘A’ or ‘B’ exists after the present position.

The above algorithm searches only one region nearest to the input position.

In order to finds all the regions satisfying the query, once it finds the (i − 1)-

th region of A in the answer set, the algorithm repeats the same process with

rAi−1 .b + 1 as p to find the i-th region. That is,

1. Find the first region rA1 by τ(A, 0), where 0 is the beginning of the textbase.

2. Find the region rAi by τ(A, rAi−1 .b+1) while the result region of τ(A, rAi−1 .b+

1) exists.

The algorithm is efficient since it can skip ‘A’ regions ra2 ... ran−2 in Figure 2.7.

Since the algorithm is symmetrical for the two arguments, the order of complexity

is proportional to the cardinality of the smaller set of the two argument sets. In

particular, it is highly efficient when the cardinality of one of the two sets is very

small. Note also that the algorithm computes regions from the beginning to the

end of the textbase, and that the argument sets A and B are simultaneously

computed from the beginning to the end by the algorithms for the corresponding

algebraic operators.

However, the efficiency of the original algorithms in [14] are based on the

assumption that the regions are never nested in the argument sets for operators.

This assumption, which is invalid for linguistic annotation, makes skipping the

regions of ra2 , ... ran−2 possible.

2.4 Ranking Retrieval Model

The users would like to find only the documents which is especially relevant to the

users’ information request. The ranking retrieval systems calculate the relevance

16

of documents and users’ requests, and rank the documents in the order of the

relevance. The modeling of queries and documents, and the relevance functions

for ranking documents have been studied.

2.4.1 Vector Space Model

The traditional standard model for modeling the documents and queries is vector

space model [69, 16], which model the documents and queries with the vector of

weights of words appeared in the document and queries,

vd = (wd
1 , w

d
2 , ..., w

d
n)

vq = (wq
1, w

q
2, ..., w

q
n)

where d is a document, q is a query, wd
i is a weight of the word wi in the document

d, and wq
i is a weight of the word wi in the query q.

The most standard value for the weight of words is TF-IDF weighting [32, 70].

TF (Term Frequency) is a weighting method of words based on the frequency

of words in the documents or query. The motivation of the TF weighting is

that “the words appeared many times in the documents or query are impor-

tant in them,” that is, the TF value expresses the local importance of words

in documents or queries. The TF weighting have some variations, such as the

boolean value, the frequency of words itself(fw), the logarithmically scaled fre-

quency (1+log(fw)), the normalized frequency(fw

maxw fw
), and so on. IDF (Inverse

Document Frequency) is a weighting method os words based on the document

frequency of words, which means the number of documents in which the words

appear, in the whole target document set. The motivation of the IDF weighting

is the “the words appeared only the small number of documents are important in

the document set,” the IDF value expresses the global importance of words in the

whole document set, that is different from the TF value. The IDF weighting also

have some variations, such as the inverse number of document frequency (1
dfw

),

inverse number of normalized document frequency (N
dfw

) or logarithmically scaled

these values (log 1
dfw

, log N
dfw

). TF-IDF weighting combined these two weight, TF

and IDF weighting, by multiplying the two values.

In the vector space model, the relevance between a document d and a query q

is defined as a similarity of two vectors. The similarity of two vectors is defined

as the cosine measure,

Sim(d, q) =
vd · vq

|vd||vq|
The TF-IDF weighting is used in various retrieval systems and based on

the empirical assumption, but this weighting method have only little theoretical

grounding. On the other hand, probabilistic model, which is constructed based

on the assumption that whether the document is relevant or not is determined

stochastically, are proposed [43, 20].

17

2.4.2 Probabilistic Retrieval Model for Keyword-based Search

The ranking retrieval is modeled as follows:

For a query q and a document d, R is defined as a variable that expresses whether

the document d is relevant to the given query q. R take a binary value, i.e,

R takes 1 when the document d is relevant and R takes 0 otherwise. In the

probabilistic model, the ranking should be created by ranking documents in the

order of the estimated probability P (R = 1|d, q). This is a basis of Probability

Ranking Principle, which is proposed in [62, 63].

One of the probabilistic model traditionally used for keyword-based retrieval

is the Binary Independent Model [75, 64, 65]. In this model, the document d and

query q are modeled by a vector whose elements is a binary value, whether the

word appears or not in the document or query. That is,

d = (wd
1 , w

d
2, ..., w

d
n)

q = (wq
1, w

q
2, ..., w

q
n)

where wd
i and wq

i are binary values which express the appearance of a word ti in

the document d and the query q respectively, that is, wd
1 = 1 when the term ti

appears in the document d and wd
1 = 0 when the term does not appear.

This model supposes two assumptions. One is the independency of words,

that is, the words appears in a document independently of the other words. The

other is the independency of relevance, that is, the relevance between a document

and a query is determined independently of the other documents.

In order to make ranking list based on the Probability Ranking Principle, we

would like to calculate the probability that the document d is relevant to the

query q, P (R = 1|d, q). The probability that the document d is relevant to the

query q (P (R = 1|d, q)) and that the document is not relevant (P (R = 0|d, q))

can be deformed by using Bayes rules,

P (R = 1|d, q) =
P (d|R = 1, q)P (R = 1|q)

P (d|q)

P (R = 0|d, q) =
P (d|R = 0, q)P (R = 0|q)

P (d|q)
.

In order to ranking the documents based on the relevance to the query, we have

to calculate the probability (P (R = 1|d, q)). However, since only the order of

documents is important for the ranking list of documents, the odds of relevance,

O(R|d, q) =
P (R = 1|d, q)
P (R = 0|d, q)

is used for making ranking list in order to simplify calculation. The probability

that the documents and the odds of relevance give the same ordering of the

18

documents and the calculation of the value became easier because the common

denominator can be ignore:

O(R|d, q) =
P (R = 1|d, q)
P (R = 0|d, q)

(2.1)

=
P (d|Rd,q=1,q)P (R=1|q)

P (d|q)
P (d|Rd,q=0,q)P (R=0|q)

P (d|q)

(2.2)

=
P (R = 1|q)
P (R = 0|q)

· P (d|R = 1, q)
P (d|R = 0, q)

(2.3)

Moreover, in the above formula, the left term P (R=1|q)
P (R=0|q) is a constant for a query

q, only the right term,
P (d|R = 1, q)
P (d|R = 0, q)

should be estimated for each document in order to create ranking results.

This value is deformed by using the Naive Bayes conditional independence

assumption, which is the assumption that the appearance of a word is independent

of the appearance of other words:

P (d|R = 1, q)
P (d|R = 0, q)

=
n∏

i=1

P (wd
i |R = 1, q)

P (wd
i |R = 0, q)

Since wd
i is a binary value, the above formula can be deformed as follows:

P (d|R = 1, q)
P (d|R = 0, q)

=
n∏

i:wd
i =1

P (wd
i = 1|R = 1, q)

P (wd
i = 1|R = 0, q)

·
n∏

i:wd
i =0

P (wd
i = 0|R = 1, q)

P (wd
i = 0|R = 0, q)

Here, let pi = P (wd
i = 1|R = 1, q), which is the probability of a term appearing

in a document relevant to the query, and ui = P (wd
i = 1|R = 0, q), which is the

probability of a term appearing in a nonrelvant document. With the simplifying

assumption that the terms not appearing in the query appear in relevant and

non-relevant documents in the same probability, that is, pi = ui when wq
i = 0,

the above formula can be transformed,

n∏
i=wi−d=1

P (wd
i = 1|R = 1, q)

P (wd
i = 1|R = 0, q)

·
n∏

i:wd
i =0

P (wd
i = 0|R = 1, q)

P (wd
i = 0|R = 0, q)

=
∏

i:wd
i =wq

i =1

pi

ui
·

∏
i:wd

i =0,wq
i =1

1 − pi

1 − ui

=
∏

i:wd
i =wq

i =1

pi(1 − ui)
ui(1 − pi)

·
∏

i:wq
i =1

1 − pi

1 − ui

Since the right product term,
∏

i:wq
i =1

1−pi
1−ui

, is a constant when a query is given,

only the left product term should be estimated in order to make ranking list of

documents. Retrieval status value (RSV) is defined by the logarithm of the term,

RSVd = log
∏

i:wd
i =wq

i =1

pi(1 − ui)
ui(1 − pi)

=
∑

i:wd
i =wq

i =1

log
pi(1 − ui)
ui(1 − pi)

.

19

Here, we define the value ci for a term ti as follows:

ci = log
pi(1 − ui)
ui(1 − pi)

= log
pi

1 − pi
+ log

1 − ui

ui
.

This value can be calculated using the number of documents in the collections as

follows:

ci = log
pi(1 − ui)
ui(1 − pi)

= log
s

S−s
dfti−s

(N−dfti)−(S−s)

where N is the number of documents in the collections, dfti is the number of

documents in which appears the term ti, S is the number of documents rele-

vant to the query q and s is the number of documents which are relevant to the

query q and in which the term ti appears. In practice, since the relevant docu-

ments account for only a small percentage in a document collection, statistics for

non-relevant documents can be estimated by statistics for the whole document

collections. Under this assumption, the probability ui that the term ti appears

in non-relevant documents for a query can be estimated dfti
/ N , and the left term

in ci definition becomes as follows:

log
1 − ui

ui
= log

(N − dfti)
dfti

≈ log
N

dfti

This formula can provide a theoretical justification for IDF weighting.

Although Binary Independent Model supposes the assumption that appear-

ance of words is independent from the appearance of words, this assumption is

not true in actual documents. For example, the words “information retrieval”

are frequently cooccured in documents because the words are compound words.

Some researches have been studied incorporating dependency between words into

a probabilistic retrieval model [74, 39, 67].

20

Chapter 3

Extended Region Algebra for Retrieval using

Annotations by NLP

This chapter proposes the model and algorithms for the retrieval of tag-annotated

documents. Before we propose the model and algorithms, we explain characteris-

tics of semantic retrieval using NLP results and functions required to realize the

semantic retrieval. Then we describes the extension of a region algebra and its

algorithms, and probabilistic model for retrieval of documents with annotations

of NLP results.

3.1 Annotations by NLP and Semantic Retrieval

Consider the following sentences in the biological domain.

1. ... requires p53 which is ... to activate CD25

2. P53 does ... by activating CD25.

3. CD25 can be activated ... by p53

Although they contain the same essential pieces of information which biol-

ogists would like to search, “p53 activates CD25,” the surface sequences of the

words are very dissimilar. We cannot formulate a query in terms of the sequences

of words or regular expressions. A proximity search with the words, “P53”, “ac-

tivate” and “CD25,” will result in either a very low recall or a very low precision,

depending on the width of the window, because of the lack of the specification of

relations between the words.

In order to capture the fact that these three sentences contain the same piece of

information, we need to go beyond even the simple constituent structure. For ex-

ample, the parser Enju[50], which is based on HPSG(Head-Driven Phrase Struc-

ture Grammar), produces deeper representations (predicate-argument structure,

PAS), as well as constituent structure. Figure 3.1 illustrates an example of Enju’s

output with a tree structure for the sentence “P53 is phosphorylated to activate

CD25.” S, NP, and VP in Figure 3.1 are called phrase markers, which characterize

the syntactic units (phrases) under them. S, NP, and VP mean Sentence, Noun

Phrase, and Verb Phrase, respectively. The syntactic structure is expressed by

the tree structure, and the semantic structure is expressed by arrows with “arg1”

21

is

phosphorylated

activate CD25

to

P53

S

VP

VP

VP

VP

NPVP

VP

VP

VP

NP

arg2

arg2

arg1

Figure 3.1: Syntactic/semantic structure

or “arg2” label. The three arrows in Figure 3.1 explain that “the subject of the

verb ‘phosphorylated’ is ‘P53’,” “the subject of the verb ‘activate’ is ‘P53’ ” and

“the object of the verb ‘activate’ is ‘CD25’.“ By using these parsing results for

the sentences, we can search above three sentences by one query specifying the

semantic structure “the subject of ‘activate’ is ‘p53’ and the object is ‘CD25’.”

Although the difference of expression can be absorbed by using the parsing

results, the difference of words, such as synonyms, cannot be absorbed by paring.

Consider the another example:

4. TP53 activates CD25

Although this sentence also contains the same fact as above three sentences,

the word corresponding to “p53” in above three sentences is expressed with the

synonymous word “TP53.” In order to recognize the fact that this sentence also

contains the same piece of information with the above three sentences, we have

to combine results from two kinds of NLP modules, a deep parser which outputs

the subject-verb-object relations and a named entity recognizer or a dictionary,

which recognized the words “p53” and “TP53” express the same object.

For more advanced retrieval using results of natural language processing like

the above example, we will have to incorporate results of various types of natural

language processing modules. In order to enable the incorporation of NLP results,

we employed a method that expanding target documents with XML style anno-

22

raw text
p53 is phosphrylated to activate CD25.

⇓ annotating the text with parsing results

tag-annotated text
<sentence>

<phrase id="0" cat="S" head="4" lex_head="6">

<phrase id="1" cat="NP" head="2" lex_head="3">

<phrase id="2" cat="NP" head="3" lex_head="3">

<word id="3" pos="NN" cat="NP" base="p53">p53</word>

</phrase>

</phrase>

<phrase id="4" cat="VP" head="5" lex_head="6">

<phrase id="5" cat="VP" head="6" lex_head="6">

<word id="6" pos="VBZ" cat="VP" base="is" arg1="1" arg2="7">

is

</word>

</phrase>

<phrase id="7" cat="VP" head="8" lex_head="9">

<phrase id="8" cat="VP" head="9" lex_head="9">

<word id="9" pos="VBN" cat="VP" base="phosphorylate"

arg2="1" arg1="-1" arg3="10"

rel_type="phosphorylation">

phosphorylated

</word>

</phrase>

<phrase id="10" cat="VP" head="11" lex_head="12">

<phrase id="11" cat="VP" head="12" lex_head="12">

<word id="12" pos="TO" cat="VP" arg1="1" arg2="13">

to

</word>

</phrase>

<phrase id="13" cat="VP" head="14" lex_head="15">

<phrase id="14" cat="VP" head="15" lex_head="15">

<word id="15" pos="VB" cat="VP" base="activate" arg1="1"

arg2="16">

activate

</word>

</phrase>

<phrase id="16" cat="NP" head="17" lex_head="18">

<phrase id="17" cat="NP" head="18" lex_head="18">

<word id="18" pos="NN" cat="NP" base="cd25" arg1="1">

CD25

</word>

</phrase>

</phrase>

</phrase>

</phrase>

</phrase>

</phrase>

</sentence>

Figure 3.2: Tag annotation of Figure 3.1

tations, which express the results from NLP modules, and retrieve the expanded

documents with the query specifying the annotations. Figure 3.2 represents an

example of expanded documents with annotations of NLP results.

By annotating text with the PAS information and synonyms, we can search

above four sentences with one query by specifying the annotated information. In

the example annotations of parsing results in Figure 3.2, all phrases and words

are assigned unique identifiers, and a relation between the phrases and words

is expressed by using them. The relation “ ‘p53’ is a subject of ‘activate’ ”

is expressed by the “arg1” attribute value in “word” tag containing the word

“activate.” The attribute value is ‘1,’ which is the id number of ‘phrase’ tag

containing the word ‘p53.’ Note that, these tag-annotated texts do not have

fixed formats of structures and have a large number of annotations unlike XML

data that existing XML databases suppose.

Consider another example:

23

������� ���	��

�
�� ������������� � ���

� �	� !� "#� �%$&� ' (���)*� ������� ���	+	, -!�

� . �%�/� "#� 01�
2 � 3	� ������4#"5�6�7� �98 �	:	' -1;�<%�

=�> . =�> + ? �

= ��+

= $&�

=�>%@ =�> + ? @A6A6A

Figure 3.3: Evaluating the function ‘τ(> A B,p)’

5. The combination of p53 induction and IR cooperated

to activate CD25

To capture the relationship between ’P53,’ and ’to activate’, proximity search

based on constituent structures must be used. That is, one has to express a query

which says ‘retrieve all sentences in which “P53” appears in the scope of a NP,

which is linked in PAS with “to activate” as arg1, and in which “CD25” appears

in the scope of another NP that fills in the role of arg2 of the same “to activate”

must be expressed.

Such a query can be formulated in terms of the relation between three tag-

regions, the region or the scope of the NP in which “P53” appears, the region of

the word, ”to activate,” and the tag-region in which the NP contains “CD25.”

In the following sections, we discuss how we have extended the original region

algebra to construct an efficient and effective search system.

3.2 Retrieval of Nesting Annotations

The annotation of NLP results contains nesting structure in a set of annotations,

such as the phrase structure in parsing results shown in Figure 3.2. In order

to search over documents with XML-style annotations of NLP results, especially

parsing result, the algorithm for region algebra must be able to search a set of

nested-region, which means a set of regions in which the region contains another

region. The original search algorithm for region algebra searches target regions in

short time on the assumption that no nesting structure exists in a set of regions

in search process, and the algorithm cannot be applied to nested regions. We

extend the algorithm in order to search for a set of nested regions.

3.2.1 Operations for Nested Regions

Figure 3.3 depicts how the original algorithm for the ‘containing’ operation fails

when applied to a set of nested tag regions. The cause of the failure is that, once

24

it finds the first region of A (ran) containing a region of B (rb1), it proceeds to the

next A-region whose begin position is after the beginning position of ran . This

skipping is possible only when ran is not contained in another larger region of A.

In this example, it fails to recognize ran−1 which properly contains ran and rb1 ,

but whose begin position is before ran .

In order to resolve this difficulty, we introduce ‘depth’ to distinguish between

the different levels of the regions with the same tag in a nested construction,

and we extended the algorithm to introduce the depth to handle nested regions

efficiently.

Functions for region algebra with nested tag annotations

The depth of a region rt of [t], where t is a name of a tag, is defined as follows:

When rt is not contained in r′t ∈ [t] and not overlapped by r′′t ∈ [t] such that

r′′t .b < rt.b, rt.depth = 0.

Otherwise, rt.depth = max(r′t.depth) + 1 where r′t ∈ [t] is a region such that

rt.b > r′t.b and rt.b < r′t.e, which means that the region r′t contains the region rt

or r′t overlaps rt.

The depth defined by the above definition has the following characteristics:

1. A region r never contains or overlaps another region r′ such that r.depth =

r′.depth.

2. Only one or no region in the regions whose depth is d contains or overlaps

r such that r.depth 6= d.

By using the depth value, the algorithm searches a region efficiently.

Moreover, we extended the definition of the basic functions τ , ρ, τ ′, and ρ′

with adding two arguments, a depth condition and a region condition as follows:

τ(A, p, d, rr): Return the ’first’ region of A, beginning at or after p, whose depth

is d and contained in rr.

ρ(A, p, d, rr): Return the ’first’ region of A, ending at or after p, whose depth is

d and contained in rr.

τ ′(A, p, d, rr): Return the ’last’ region of A, ending at or before p, whose depth

is d and contained in rr.

ρ′(A, p, d, rr): Return the ’last’ region of A, beginning at or before p, whose depth

is d and contained in rr.

The order of the region used in the above definition is in the following:

τ , ρ′: r < r′ ⇔ r.b < r′.b ∨ (r.b = r′.b ∧ r.e > r′.e)

ρ, τ ′: r < r′ ⇔ r.e < r′.e ∨ (r.e = r′.e ∧ r.b > r′.b).

The first and second arguments, which represent the query expression and the be-

gin position of search respectively, are the same with the corresponding functions

in the original region algebra. The third argument is the depth which the output

region must be, and the fourth argument is for the region restriction in which

25

Input: p: starting position, d: depth restriction, rr: region restriction,
(> AB): input query
Output: the first region satisfying the input conditions
Variables: rx: region, px: position
τ((> AB), p, d, rr) =

ra1 = τ(A, p, d, rr)
if ra1does not exist then

return (−,−)
rb = ρ(B, ra1 .b,−, (ra1 .b, rr.e))
if rbdoes not exist then

return (−,−)
if ra1 contains rb then

return ra1

else
ra2 = ρ(A, rb.e, d, (ra1 .b, rr.e))
pnext = ra2 .b
if ra2 contains rb then

routput = ra2

if d is not specified
for depth = ra2 .depth − 1 to 0

ra3 = ρ′(A, ra2 .b, depth, (ra1 .b, rr.e))
pnext = ra3 .b
if ra3 contains rb then

routput = ra3

if routput exists then
return routput

else
return τ((> AB), pnext, d, rr)

Figure 3.4: The algorithm of the τ function for containing operator

the output region must be contained. When the depth and region restriction are

unspecified, the functions are exactly the same as for the corresponding functions

in the original version.

Algorithms for Nested Regions

We propose the extended algorithms which can search nested regions for operators

of region algebra shown in Figure 3.1. Figure 3.4 and 3.5 show the algorithms for

the two operators: containing and contained in, for the nested regions. The first

step of the function τ((> AB), p, d, rr) is similar to the original algorithm. The

algorithm searches the first region ra1 of A with τ function and the first ending

region rb of B from ra1 .b. It outputs ra1 if ra1 contains rb, since no region of A

exists whose begin position is between p and ra1 .b. When ra1 does not contain rb,

the algorithm searches for the next candidate region ra2 , which is the first ending

region of A from rb.e. The algorithm checks if ra2 contains rb, and stores ra2 as

a candidate of the output routput if ra2 contains rb. Then, the algorithm searches

26

Input: p: starting position, d: depth restriction, rr: region restriction,
< AB: input query
Output: the first region satisfying the input conditions
Variables: rx: region, px: position
τ((< AB), p, d, rr) =

ra = τ(A, p, d, rr)
if ra does not exist then

return (−,−)
rb1 = ρ(B, ra.e,−,−)
if rb1 does not exist then

return (−,−)
pnext = rb1 .b
if rb contains ra then

return ra

for depth = rb.depth − 1 to 0
rb2 = ρ′(B, rb.b, depth,−)
if rb2 contains rathen

return ra

if pnext < rb2 .b then
pnext = rb2 .b

rb3 = ρ(B, ra.b,−,−)
if rb3 .e < ra.e then

pnext = ra.b + 1
return τ((< AB), pnext, d, rr)

Figure 3.5: The algorithm of the τ function for ‘contained in’ operator

Name(Expression) Description
Containing (> AB) ‘A’ regions containing a ‘B’ region.
Contained In(< AB) ‘A’ regions contained in a ’B’ region.
Followed By(−AB) Regions beginning with a ‘A’ region

and ending with a ‘B’ region.
Both Of (&AB) Regions beginning with a ’A’ region and

ending with a ’B’ region and the reverse.
One Of(|AB) Regions of ’A’ regions or ’B’ regions.

Table 3.1: Operators of Region Algebra

a larger region of A (ra3), whose begin position is before ra2 .b and the nearest to

ra2 , with changing the depth restriction from the ra2 .depth − 1 to 0, and stores

ra3 as routput if ra3 contains rb. If routput exists after the search of larger region

ra3 is finished, routput is returned as an output. Otherwise, the algorithm searches

the next region for (> AB) from the position pnext. In this case, no region r′ for

(> AB) such that p < r′.b < pnext exists because no region r′b of B such that

p < r′b.e < rb.e and no region of A contains rb.

In this algorithm, we can skip some regions of A by using the depth restriction.

Figure 3.6 shows an example of skipping. In this example, the algorithm searches

27

A

A
A

A
AA
A A

A

B

�

Figure 3.6: Skipping regions using depth

only regions of heavy line because the algorithm just has to search only one region

in each depth. Because only one region can contain the region of B in the regions

which have the same depth at most, the algorithm does not need to check other

regions of A.

The first step of the algorithm for the function τ((< AB), p, d, rr) , which

is show in Figure 3.5, is also similar for the original algorithm. The algorithm

searches the first region ra of A, and the first ending region rb1 of B from ra,

and outputs ra if ra is contained in rb1 . If ra is not contained in rb1 , it searches

for a region rb2 of B whose begin position is before and the nearest to rb.b, with

changing depth restriction and checks whether rb2 contains ra. When the region

rb2 that containing ra exists, the algorithm outputs ra. If no region of B contains

ra, the algorithm searches the next region for (< AB). In the case there are

regions of A contained in ra, the next search starts from the next position of

ra.b to check these regions of A. Otherwise, the next search starts from pnext

calculated while the loop because if there is a region r′b of B containing a region

r′a of A such that r′b.b < pnext, r′a is contained in ra or r′b should be searched as

rb or rb2 in the algorithm. Algorithms for the other functions is also constructed

in a similar way.

We developed algorithms for the operators ’followed-by’ (-) and ’both of’ (&)

to search innermost regions which satisfy the description in Table 3.1.

Because the above τ functions output the region whose beginning position is

nearest to the search start position in regions that satisfy the query condition, we

can calculate all regions satisfying the query condition by the same algorithm in

the case of the non-nested regions except for the case that the regions expressed

with ’-’ or ’&’ contains other regions in the query.

28

3.3 Variables

3.3.1 Definition

In tag-annotation of sentential structure as in Figure 3.2, identifiers are assigned

to tags for expressing a relation between tag regions. For example, the relation,

“a phrase is the deep subject of a verb,” is expressed by the equality of the value

of the attribute arg1 in a word tag for the verb with the value of the attribute id

in the phrase in Figure 3.2. When we search the relation, we need to express and

confirm the equality of the two values. By using the variables, we can express

the equality easily in queries such as:

(> [sentence]

(& [word arg1=$x base="activate"]

([phrase id=$x] "p53"))

where $x is a variable. We suppose that variables appear only in an attribute

value. The re-entrancy indicates that single nodes in a syntactic tree can be

pointed by an arbitrary number of nodes in different positions in the tree as their

semantic arguments.

To express the instantiation of variables simply, we express the query con-

taining variables as Q(x1, ..., xn), where xi is a variable. For example, the above

query can be simplified to Q(x).

We define the result of search with the query Q(x1, ..., xn) as

S(Q(x1, ..., xn)) =
∪

a1∈A

...
∪

an∈A

S(Q(a1, ..., an)),

which means a set of the results retrieved by the query Q(a1, ..., an), which is the

query Q(x1, ..., xn) instantiated with an instantiation {a1/x1, ...an/xn}.
The straightforward treatment of variables leads to either non-deterministic

algorithms for complex variable binding, or to a kind of unrestricted joins between

independently computed sets of regions. Either of these approaches results in

inefficient algorithms. This result is because the use of variables destroys the

restricted interdependency between the sub-queries, which the original algorithms

of the region algebra cleverly exploit. In other words, sub-queries in the original

version only need to communicate the position k from which they start to search.

3.3.2 Algorithm

Main algorithm

The main algorithm to search all regions of S(Q(x1, ..., xn)) is in the following

description. Here, we assume that a textbase is a collection of texts and that the

texts are annotated by tags. All variables have the same region of scope. This

means that all variables are local, in the sense that their scopes are inside the

same text, and that the re-entrancy by the same ID is only valid in the scope.

29

For example, the scope region will be “sentence” when the algorithm searches

“sentences.”

[Step 1] Enumeration of Scope Regions

Search a scope region from the current position of the textbase. The current

position is initially set to the beginning of the textbase. When no scope regions

are left at the end of the text collection, terminate.

[Step 2] Generation of Instantiations

Generate an instantiation {a1/x1, ...an/xn} for the variables for the scope region

chosen at [step 1] and go to [step 3].

If there are no instantiations left, move the current position to the next position

of the beginning of the current scope region chosen at [Step 1], and return to

[Step 1].

[Step 3] Evaluation of Instantiated Queries

Compute S(Q(a1, ..., an)) in the scope region, add them to the solution set, and

return to [Step 2].

The generator of an instantiation at [Step 2] works as a co-routine with the

main routine, and when it is called, generates the next instantiation. The basic

generator generates all possible assignments of values in the domain. However,

more efficient algorithms choose a set of sub-queries that generate effective in-

stantiations for the set in succession when called.

Enumeration of scope regions

Since the equality of the value of a variable is only valid in its scope, the enu-

meration of effective instantiations should be carried out inside a scope region.

Therefore, effective instantiations are to be computed in a scope region, and

S(Q(x1, ..., xn)) is to be computed inside the same region. [Step 1] enumerates

all scope regions, and passes them to [Step 2] one by one.

Nevertheless, it is inefficient to evaluate an original query against all scope

regions in a textbase. Most of the scope regions in a textbase can be easily filtered

out by approximated queries, which can be derived from an original query. We

used keyword search query as an approximated query in the current implemen-

tation. The query is constructed by connecting the words in the original query

with Both Of(&) and One Of(|) with retaining the condition of words that a

scope region should contain.

Generation of instantiations

We can compute S(Q(x1, ...xn)) by computing S(Q(a1, ..., an)) for all possible

instantiations of {a1/x1, ..., an/xn}. However, we do not need to consider all

possible instantiations, but rather only the instantiations that are consistent with

instantiations for a given set of sub-queries. In practice, we can enumerate a set

of instantiations to be considered systematically, by choosing a set of appropriate

30

sub-queries.

By definition, variables appear only as the values of attributes in tags such

as, [tag attr_1=$x_1,...,attr_m=$x_m]. We can create an instantiation for

all variables by picking up some sub-queries in the form of the above query as

all variables appears in at least one sub-query and calculating the variable value

from the queries.

From a sub-query [tag attr_1=$x_1,...,attr_m=$x_m], we can create an

instantiation {a1/x1, ..., am/xm} by the following algorithm:

1. Create a query [tag] by removing attributes containing variable from the

sub-query [tag attr_1=$x_1,...,attr_m=$x_m].’

2. Calculate a region r from the query [tag] 3. Extract the value aj for xj from

the corresponding text for r.

In the above, sub-queries are in the form of

[tag attr_1=$x_1,...,attr_m=$x_m]

However, the above algorithm can be applied to more general form of sub-queries.

We call such queries as value determining query and define recursively as follows:

1. [tag attr_1=$x_1,...,attr_m=$x_m]

2. (> Qv Q)

3. (< Qv Q)

where Qv is a value determining query, and Q is a query that contains no variable.

By adding the condition of Q in the above definition, the number of candidate

instantiations decreases because the number of regions retrieved with the query

decreases.

Evaluation order of sub-queries

Consider the following query:

(> [sentence]

(& [word arg1=$x1, arg2=$x2]

(& (> ([phrase id=$x1]

p53)

(> [phrase id=$x2]

cd25)))

This query retrieves all sentences in which p53 and cd25 appear in the phrases

of the deep subject, and the deep object of a predicate, respectively. Actual

predicates are not specified. The following five sub-queries can be chosen as

value determining sub-queries:

31

Input: Q: query
Output: the ordered list of query to calculate variable values
Variables: SubQ: sub-query, X: variable set, Qmin: query
function queryorder(Q)

Qlist = ()
while no variable exist in Q

{SubQ} = value determining query(Q)
Qmin = argminSubQi∈{SubQ}(efreq(SubQi))
{X} = variables(Qmin)
add(Qmin,Qlist) :add Qmin at the end of Qlist
Q = assign word({X},Q,efreq(Qmin))

return Qlist

value determining query(Q): Output the sub-queries of Q that satisfy
the condition of the value determining query.
assign word(X,Q,f): Output a query in which a word whose frequency
is f is assigned temporarily into a variable of query Q in the variable set
X.

Figure 3.7: The algorithm for the evaluation order

1. [phrase id=$x1]

2. [phrase id=$x2]

3. [word arg1=$x1 arg2=$x2]

4. (> [phrase id=$x1] p53)

5. (> [phrase id=$x2] cd25)

Any sets of sub-queries containing at least one occurrence of each of the two vari-

ables can be used by the generator of effective instantiations. However, the sub-

queries (1) and (2) generate instantiations for the variables from all the phrases,

while the sub-queries (4) and (5) generate far less instantiations, leading to an

efficient evaluation of Q. The sub-query (3) may also generate many instantia-

tions, since it can be matched with all predicative words in a sentence, and since

it is less restrictive than (4) and (5). Once either (4) or (5) is used to produce an

instantiation, it can be used to partially instantiate (3). Then, (3) will become

more restrictive.

In practice, as the first value determining sub-query, we choose the query that

is estimated as most restrictive. Then, the first sub-query is used to produce an

effective instantiation. By using the instantiation, we partially instantiate the

original query, and choose the next value determining sub-query. The process is

repeated to obtain an effective interpretation for all the variables in the original

query.

32

Input: Q: query, p: start position of search
Output: the first region matched the query Q
Variables: Qs: query, Qlist: list of queries, r: region
function retrieve(Q, p)

Qs = calcScopequery(Q)
Qlist = queryorder(Q)
while r = τ(Qs, p,-,-) exists

p = r.b + 1
determine(Q,Qlist,r,p)

Input: Q: query, Qlist: query list, r: region, p: start position of search
Output: the first region matched the query Q
Variables: Qfirst, Ql, Q

′: query, pnext: position, r, r′: region,
{a1/x1, ..., an/xn}: instantiation
function determine(Q, Qlist, r, p)

pnext = r.b
Qfirst = Qlist.first
Q′

first = remove variable(Qfirst)
while r′ = τ(Q′

first, pnext,−, r) exists
pnext = r′.b + 1
{a1/x1, ..., an/xn} = calc value(Qfirst,r′)
Q′ = instantiate(Q,{a1/x1, ..., an/xn})
if variables do not exist in Q′

if routput = τ(Q′,p,−,r) exists then output routput

else
Qlist′ = remove first(Qlist)
foreach Ql in Qlist′

Ql = instantiate(Ql,{a1/x1, ..., an/xn})
determine(Q′,Qlist′,r, p)

remove variable(Q): Output a query Q in which the attributes containing
a variable are removed.
calc value(Q,r): Output a instantiation calculated in the region r.
instantiate(Q,{a1/x1, ..., an/xn}): Return a query instantiated with
{a1/x1, ..., an/xn}.

Figure 3.8: The algorithm for query with variables

However, since it takes time to determine the order for each instantiation, we

estimate the frequency of the instantiated value for each variable as

efreq(SubQi) = min
w∈SubQi

freq(w)

, where SubQi is a sub-query which is evaluated to determine the value for x

and freq(w) is the frequency of word w in the textbase. By this estimations, we

can determine the evaluation order of sub-queries from the frequency of words in

advance. Figure 3.7 shows the algorithm for determining the order of sub-queries.

The entire main algorithm is shown in Figure 3.8.

33

1: <sentence>
2: <phrase>, id=“0”, cat=“S”, head=“4”, lex head=“6”
3: <phrase>, id=“1”, cat=“NP”, head=“2”, lex head=“3”
4: <phrase>, id=“2”, cat=“NP”, head=“3”, lex head=“3”
5: <word>, id=“3”, pos=“NN”, cat=“NP”, base=“p53”
6: p53
7: </word>
8: </phrase>
9: </phrase>

10: <phrase>, id=“4”, cat=“VP”, head=“5”, lex head=“6”
11: <phrase>, id=“5”, cat=“VP”, head=“6”, lex head=“6”
12: <word>, id=“6”, pos=“VBZ”, cat=“VP”, base=“is”, arg1=“1”,
arg2=“7”
13: is
14: </word>
15: </phrase>
16: <phrase>, id=“7”, cat=“VP”, head=“8”, lex head=“9”
17: <phrase>, id=“8”, cat=“VP”, head=“9”, lex head=“9”
18: <word>, id=“9”, pos=“VBN”, cat=“VP”, base=“phosphorylate”,

arg2=“1”, arg1=“-1”, arg3=“10”, rel type=“phosphorylation”
19: phosphorylated
20: </word>
21: </phrase>
22: <phrase>, id=“10”, cat=“VP”, head=“11”, lex head=“12”
23: <phrase>, id=“11”, cat=“VP”, head=“12”, lex head=“12”
24: <word>, id=“12”, pos=“TO”, cat=“VP”, arg1=“1” arg2=“13”
25: to
26: </word>
27: </phrase>
28: <phrase>, id=“13”, cat=“VP”, head=“14”, lex head=“15”
29: <phrase>, id=“14”, cat=“VP”, head=“15”, lex head=“15”
30: <word>, id=“15”, pos=“VB”, cat=“VP”, base=“activate”,
arg1=“1”

arg2=“16”
31: activate
32: </word>
...

Figure 3.9: Position number of words in Figure 3.2

3.4 Index Structure and Implementation

The algorithm we proposed requires mainly two types of data to search regions

matching queries containing variables. One is a list of positions and depths in

which words, tags and attributes appear, and the other is a set of attribute-

values which appears in a position. The former data are used in execution of the

functions τ, ρ, τ ′, ρ′ to search regions, and the latter data are used in computation

of a value for variables.

34

<sentence> 1-0, ...
<phrase> 2-0, 3-1, 4-2, 10-1,...
phrase:id=“0” 2-0, ...
phrase:cat=“S” 2-0, ...
phrase:head=“4” 2-0, ...
phrase:lex head=“6” 2-0, 10-1, 11-2, ...
phrase:id=“1” 3-1, ...
phrase:cat=“NP” 3-1, 4-2, ...
... ...
<word> 4-0, ...
word:id=“3” 4-0, ...
word:pos=“NN” 4-0, ...
... ...
p53 6-0, ...
</word> 7-0, ...
</phrase> 8-2, 9-1, ...
... ...

Figure 3.10: Inverted position index

function makearray(T)
while NodeQueue 6= φ

Node = NodeQueue.pop()
for i is 1 to # of position number in Node

PositionArray.push(pi)
for j is 1 to # of child of Node

NodeQueue.push(childi)

Figure 3.11: The algorithm to make array representation of B-tree

3.4.1 Depth and Position

A position number is attached for each appearance of words, tags and their

attributes and the position list is constructed. In this implementation, we divide

a tag into attributes and the tag without attributes to enable partial match of

attributes. The position of the attributes is defined as the position of the tag

which contains the attributes.

Figure 3.10 shows a list of tuple of a position and a depth. In the exam-

ple, the depth of the tag region of ‘phrase’ (4, 8)(id=“2”) is 2 because regions

(3, 9)(id=“1”) and (2, 45) (id=“0”) contain it.

3.4.2 Implementation of Index Position Array

We implemented the list of positions for each word by use of an array representa-

tion of a B-tree structure, which the basic functions (τ, ρ, τ ′, ρ′) access in order to

search a position of words. We can obtain the result for the functions in O(logn)

time, where n is the size of the list.

35

20 35 6 15 23 27 36 39 1 3 7 8

0 1 2 3 4 5 6 7 8 9 10 11

20 356 15 23 27 36 391 3 7 8

20 35

6 15 23 27 36 39

1 3 7 8

Figure 3.12: An example of B-tree structure and array representation

Array representation of B-tree structure

Figure 3.12 shows an example of the array representation of the B-tree structure.

The B-tree structure we implemented have the following restriction.

• All nodes have n children except leaf nodes.

• All nodes have n − 1 records, which are tuples of a position and a depth

except the last node in breadth-first order.

By these restrictions, we can implement the B-tree structure in an array of records

by placing records of each node in breadth-first order from the root node. The size

of the array representation is only the size of records themselves. The list of the

position is converted to the B-tree structure, and then the array representation

of the B-tree structure is constructed by placing records in each node in breadth-

first order from the root node. Figure 3.11 shows an algorithm to construct array

representation for the B-tree structure. In the array representation, the move to

a child node in the B-tree, is implemented by arithmetic operations of the suffix

of the array. The formula to calculate a suffix number of the first element of the

leftchild icl
and the right child icr of the ith record is as follows:

icl
= n × i + n − r − 1

icr = n × i + n − r − 1 + n − 1

where first suffix of the array representation is 0, i is a present suffix, n is a

number of children each node has and r is remainder of i ÷ (n − 1).

Because the edges of the tree structure are expressed with relations of suffix

number and the record data exist not only in leaf nodes but also in inner nodes,

the size of the space that the array representation of tree structure requires is

only the total size of record data.

In the case of Figure 3.12, since the root node contains the records 20 and 35,

the algorithm first adds these two numbers to the position array. Next, it evalu-

ates the child nodes of the root node and adds 6, 15, 23, 27, 36, 39 to the position

36

array. Finally, the algorithm evaluate the rest of the nodes and adds 1, 3, 7, 8

to the array. Then the position array is {20, 35, 6, 15, 23, 27, 36, 39, 1, 3, 7, 8} as

shown in Figure 3.12.

Cache effect

When we operate a search system with this implementation, the retrieval speed

will be improved by cache effect. The root node of the position list tree is,

by necessity, accessed in each position search. When one user performs some

query, and the system searches the regions, the data which are accessed while

the search are loaded into a memory from the database. Further, another query

containing the same words or tags from the previous query was performed; since

the data in the root node corresponding to the words or tags in the previous

query already exist in a memory, the retrieval time decreases. When the system is

actually operated, the cache will have an effect to some degree, since the position

list of tags will be accessed to an evaluation of many queries. In the following

experiments, we show the performances of our system with cache and without

cache. The one with cache is the one when a query is issued after the same query

is processed. The one without cache means the one in which the system does

not use cache at all. The performance in the actual environment, where different

queries are issued in succession, would be between these two extremes.

3.5 Algorithm for Searching Stand-Off Annotations

37

<sentence>
<phrase id="0" cat="S" head="4" lex_head="6">
<phrase id="1" cat="NP" head="2" lex_head="3">
<phrase id="2" cat="NP" head="3" lex_head="3">
<word id="3" pos="NN" cat="NP" base="p53">p53</word>

</phrase>
</phrase>
<phrase id="4" cat="VP" head="5" lex_head="6">
<phrase id="5" cat="VP" head="6" lex_head="6">
<word id="6" pos="VBZ" cat="VP" base="is" arg1="1" arg2="7">
is
</word>

</phrase>
<phrase id="7" cat="VP" head="8" lex_head="9">
<phrase id="8" cat="VP" head="9" lex_head="9">
<word id="9" pos="VBN" cat="VP" base="phosphorylate"

arg2="1" arg1="-1" arg3="10"
rel_type="phosphorylation">

phosphorylated
</word>

</phrase>
<phrase id="10" cat="VP" head="11" lex_head="12">
<phrase id="11" cat="VP" head="12" lex_head="12">
<word id="12" pos="TO" cat="VP" arg1="1" arg2="13">
to
</word>

</phrase>
<phrase id="13" cat="VP" head="14" lex_head="15">
<phrase id="14" cat="VP" head="15" lex_head="15">
<word id="15" pos="VB" cat="VP" base="activate" arg1="1"

arg2="16">
activate

</word>
</phrase>
<phrase id="16" cat="NP" head="17" lex_head="18">
<phrase id="17" cat="NP" head="18" lex_head="18">
<word id="18" pos="NN" cat="NP" base="cd25" arg1="1">
CD25

</word>
</phrase>
</phrase>

</phrase>
</phrase>

</phrase>
</phrase>

</sentence>

Figure 3.13: Example of inline XML annotations

38

012345678901234567890123456789012345678
P53 is phosphorylated to acrivate CD25

0 38 sentence
0 38 phrase id="0" cat="S" head="4" lex_head="6"
0 3 phrase id="1" cat="NP" head="2" lex_head="3"
0 3 phrase id="2" cat="NP" head="3" lex_head="3"
0 3 word id="3" pos="NN" cat="NP" base="p53"
4 38 phrase id="4" cat="VP" head="5" lex_head="6"
4 6 phrase id="5" cat="VP" head="6" lex_head="6"
4 6 word id="6" pos="VBZ" cat="VP" base="is" arg1="1"

arg2="7"
7 38 phrase id="7" cat="VP" head="8" lex_head="9"
7 21 phrase id="8" cat="VP" head="9" lex_head="9"
7 21 word id="9" pos="VBN" cat="VP" base="phosphorylate"

arg2="1" arg1="-1" arg3="10"
rel_type="phosphorylation"

22 38 phrase id="10" cat="VP" head="11" lex_head="12"
22 24 phrase id="11" cat="VP" head="12" lex_head="12"
22 24 word id="12" pos="TO" cat="VP" arg1="1" arg2="13"
25 38 phrase id="13" cat="VP" head="14" lex_head="15"
25 33 phrase id="14" cat="VP" head="15" lex_head="15"
25 33 word id="15" pos="VB" cat="VP" base="activate"

arg1="1" arg2="16"
34 38 phrase id="16" cat="NP" head="17" lex_head="18"
34 38 phrase id="17" cat="NP" head="18" lex_head="18"
34 38 word id="18" pos="NN" cat="NP" base="cd25" arg1="1"

Figure 3.14: Example of stand-off annotations for XML data in Figure 3.13

39

3.5.1 Stand-Off Annotations

The stand-off annotations is a kind of XML-style annotations. In a usual XML-

style annotations, which is called inline XML or inline annotation, the XML-

style tags of annotations are embedded into the target text. In contrast, in

the stand-off annotations, the annotations are separated from the target text.

Figure 3.14 shows an example of stand-off annotations for the example of inline

XML annotations in Figure 3.13. Each line of stand-off annotations corresponds

to a tag-annotation of inline XML. The first and second column expresses a

begin position and end position of tag-annotated text region respectively. The

third column is a tag name, and the fourth column expressed attribute values.

The stand-off annotations can express all inline XML data, and also express

annotations which intersect with each other.

The stand-off annotations have substantial advantage over in-line annotations

in points of annotations and indexing for search systems. By using the stand-off

annotations, the management of the annotations, such as addition and deletion

of annotations, becomes easier than using in-line annotations because the target

text and annotations are separated in stand-off annotations. In the search indices

in region algebra, which consist of inverted indices, that is, list of positions in

which words or tags appear, reconstruction of whole indices will be needed when

new annotation is added in in-line annotations, since addition of new annotation

will change the position of words in the target text and tags in existing other

annotations. Since reconstruction of whole indices require very long time for a

huge document collection, the in-line annotations cannot be applied to a huge

document collection when addition of various types of annotations are supposed.

By stand-off annotations, in which offset position in the target text is used as a

position in search, when the new annotations are added to or deleted from the

index databases, the system creates indices for only newly added annotations,

and does not have to change the indices for the target text and other existing

annotations. The target text, existing annotations and newly added annotations

are incorporated in search phase.

3.5.2 Search Algorithm for Stand-Off Annotation

Although the stand-off style annotations makes it easier to manage the anno-

tations, the algorithm cannot be applied to the stand-off annotations without

change because a number of annotations will be placed in the same offset. Since

the original algorithm uses positions of regions to search annotation regions, the

algorithm cannot be applied to the stand-off annotations. In the improved algo-

rithm, we extend the algorithm by incorporating “depth” information in order

to apply the algorithm for a set of nested annotations. This improvement seems

to be able to be applied to stand-off annotations. But since the “depth” infor-

mation should be unique in a set of a type of annotations, the reconstruction

40

of “depth” information will be needed when a new annotations are added to a

search database.

We improve the algorithm in order to resolve this problem for stand-off an-

notations. First, we introduce an Iterator in order to store the search status,

such as the region searched previously, the search condition and the iterator of

sub-queries. For example, for a basic word query, such as “p53,” the iterator for

the query contains:

• search condition (search start position, depth and region limitation)

• the region previously retrieved,

and for a query (> A B), the iterator for the query contains:

• search condition (search start position, depth and region limitation)

• the iterator for the query A

• the iterator for the query B

• the region previously retrieved.

Next, we extend the access functions τ, ρ, τ ′, ρ′ to use the iterator. For example

for the function τ , we introduce two types of function, τb and τn. The function

τb searches a region from the position condition, and the function τn searches a

next region of the region search previously in the same condition. The algorithm

first searches a region for a query using τb functions with the begin position for

search and a condition for search, the depth and region condition. When the

algorithm searches the next region after the first search in the same condition,

the function τn is called without any arguments because the search start position

and other search condition is already stored in the iterator. For example, when

the query is “[phrase]” and the list of position in which the tag “[phrase]” appears

is {(0,38), (0,3), (4,38)}, the algorithm searches the first region by the function

itr[phrase].τb(0,−,−), which means “search the first region of [phrase] whose

begin position is after the position 0,” and the result regions is (0,38). In the

same time, this region is stored in the iterator itr[phrase] as a region previously

searched, and the search conditions, although there is no restriction of depth and

regions, are stored in the iterator. Then the algorithm searched the next region

of (0,38) by the function itr[phrase].τn(). In this case, the previous search result

(0,38) is stored in the iterator, the algorithm searches “the next region of (0,38)”

from the list of positions, and output the region (0,3). In the original algorithm,

since the algorithm uses only the position of the regions and “the next region”

means “the region begin/end at the next position,” this region (0,3) is skipped

in the algorithm.

Figure 3.15 shows an algorithm of τb and τn functions, and Figure 3.16 shows

an algorithm of ρb and ρn functions for containing operator. The difference

41

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (> A B) satisfying the input conditions
itr(>AB).τb(p, d, rr) =

itr(> A B).itrL.τb(p, d, rr)
returnτs()

Output: the next region of (> A B) which is stored in itr(> A B) satis-
fying the input conditions
itr(> A B).τn() =

itr(> A B).itrL.τn()
returnτs()

itr(> A B).τs() =
rA = itr(> A B).itrL.r
while rA exists

rB = itr(> A B).itrR.ρb(rA.b,−, (rA.b,−))
if rB doesnotexists then

return(−,−)
if rA contains rB then

if rA! = itr(>AB).itrL.r then
return rA

rA2 = itr(> A B).itrL.ρb(rB.e, d, (rA.b + 1,−))
if rA2does not∃ then

return (−,−)
if rA2 contains rB then

ro = rA2

else
rn = rA2

rA3 = itr(> A B).itrL.ρ′b(rA2.b, d, (rA.b + 1,−))
itr(> A B).τloop(rA3, rb, ro, rn)
if roisvalid then

itr(> A B).r = itr(> A B).itrL.r
returnitr(> A B).itrL.r

rA = rn

itr(> A B).r = invalid
returnitr(> A B).r

itr(> A B).τloop(rA, rB, ro, rn) =
while rA exists

itr(> A B).d = rA.d − 1
rA = itr(> A B).itrL.ρ′n()
if rA exists then

if rA contains rB then
ro = rA

else
rn = rA

Figure 3.15: τb and τn function for query (> A B).

42

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (> A B) satisfying the input conditions
itr(> A B).ρb(p, d, rr) =

itr(> A B).itrL.ρb(p, d, rr)
return ρs()

Output: the next region of (> A B) which is stored in itr(> A B) satis-
fying the input conditions
itr(> A B).ρn() =

itr(> A B).itrL.ρn()
return ρs()

itr(> A B).ρs() =
rA = itr(> A B).itrL.r
while rA exists

rB = itr(> A B).itrR.ρb(rA.b,−, (rA.b,−))
if rB does not exist then

return (−,−)
if rA contains rB then

return rA

itr(> A B).itrL.rr = (−, rB.e)
ro = itr(> A B).ρloop(rA, rb, d, rr)
if ro exists then

return ro

rA = itr(> A B).itrL.ρb(rB.e, d, rr)

itr(> A B).ρloop(rA, rB, d, rr) =
while rA exists

itr(> A B).d = rA.d − 1
rA = itr(> A B).itrL.ρn()
if rA exists then

if rB contains rA then
return rA

rB2 = itr(> A B).itrR.τb(rA.b,−, rA.b, rA.e)
if rB2 exists then

return rA

Figure 3.16: ρb and ρn function for query (> A B).

between the functions τb and τn for containing operator is the first step of search.

For τb function, the algorithm searches the first region of A based on the position

in the first step. On the other hand, the algorithm of τn function searches the

first region of A by searching the next region of the region searched in previous

search process. By using the τn function, the algorithm can search all regions

of (> A B) which are indistinguishable by only the position information, that is,

the regions start in the same position. Search algorithm for τb and τn functions

after the first step, which searches the first region of A(rA), is as follows: The

43

algorithm searches the first B region (rB) by ρb function from the begin position

of rA, which searches the region whose end position is nearest to the the begin

position of rA. When the region rA contains the region rB, the algorithm output

rA region as the result region, since the is no region of A whose begin position is

nearest to the search start position. When the region rA does not contains the

region rB, the algorithm searches another region of A, which contains the region

rB. The algorithm searches the first region of A (rA2) by ρb function from the end

position of rB, which searches the the region whose end position is nearest. In

this search, the algorithm adds region condition that the begin position of result

region is after the begin position of rA, since there is no region of A whose begin

position is before the begin position of rA and contains the region rB. When the

region rA2 contains rB, the region rA2 is a candidate of the output of this function.

However, another region of A whose begin position is located between the begin

position of rA and rA2 can contains rB, the algorithm searches another region of

A with decreasing the depth condition. The τloop function in Figure 3.15 searches

such regions of A by using ρ′n function, with checking whether the searched region

contains the region rB. After the search in τloop is finished, the latest region which

contains rB and searched in τloop functions is output. When no such region exist,

the algorithm searches the next region from the begin position of the last region

searched in the τloop function. The algorithm for ρb and ρn function is similar to

that for τb and taun functions. After the first step, which searched the first region

of A (rA), the algorithm searches the first region of B (rB) by the ρb function

from the begin position of rA, which searches the region whose begin position

is nearest. The algorithm output the region rA when the searched region rB is

contained in rA. When the region rB does not contained in the region rA, the

algorithm searches another region of A by ρloop function in Figure 3.16, which

searches regions of A with decreasing the depth condition. In the ρloop function,

the algorithm checks the searched region of A contains the region rB and also

checks the region contains another region of B (rB2). After the search in τloop

is finished, the latest region which contains rB and searched in ρloop functions is

output. When no such region exists, the algorithm searches the next region from

the begin position of the region of A that is searched by ρb function from the end

position of rB.

Figure 3.17 and Figure 3.18 shows an algorithm of functions for “contained

in” operator. This algorithm is similar to the “containing” operator in that the

difference of algorithm between τb and τn, and difference between ρb and ρn is

the first step in the algorithm. The algorithm after the first step, which searches

the first region of A (rA), is as follows: The algorithm for τb and τn functions

first searches the region of B by ρb function from the end position of rA, which

searched the first region of B (rB) whose end position is nearest after the end

position of rA. When the region rB contains the region rA, the algorithm output

44

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (< A B) satisfying the input conditions
itr(< A B).τb(p, d, rr) =

itr(< A B).itrL.τb(p, d, rr)
return τs()

Output: the next region of (< A B) which is stored in itr(< A B) satis-
fying the input conditions
itr(>AB).τn() =

itr(< A B).itrL.τn()
return τs()

itr(< A B).τs() =
rA = itr(< A B).itrL.r
while rA exists

rB = itr(>AB).itrR.ρb(rA.e,−, (−,−))
if rB does not exist then

return itr(< A B).τn()
if rB contains rA then

return rA

pnext = rB.b
whilerB exists

itr(< A B).itrR.d = rB.d − 1
rB = itr(< A B).itrR.ρn()
if rB exists

if rB contains rA

return rA

if rB.b < pnext

pnext = rB.b
rB2 = itr(< A B).itrR.ρb(rA.b,−, (−,−))
if rB2.e > rA.e

rA = itr(< A B).itrL.τb(pnext, itr(< A B).d, itr(< A B).rr)
else

rA = itr(< A B).itrL.τn()

Figure 3.17: τb and τn function for query (< A B).

the rA as the region of the function since there is no region of A whose end

position is before the begin position of rA. When the region rB does not contain

the region rA, the algorithm searched regions of B which contains the region rA

by using ρn functions, which searched the next region of B, with decreasing the

depth condition. When at least one region of B searched in the loop contains the

the region rA, the algorithm output the region rA as the result of the function.

When there is no region of B contains rA, the algorithm searches next output

candidate region of A. In order to skip region of A which never contained in a

region of B, the algorithm searches the region of B (rB2) by ρb function from the

begin position of rA. When the end position of the region rB2 is after the end

45

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (< A B) satisfying the input conditions
itr(< A B).ρb(p, d, rr) =

itr(< A B).itrL.ρb(p, d, rr)
return ρs()

Output: the next region of (< A B) which is stored in itr(< A B) satis-
fying the input conditions
itr(< A B).ρn() =

itr(< A B).itrL.ρn()
return ρs()

itr(< A B).ρs() =
rA = itr(< A B).itrL.r
while rA exists

rB = itr(< A B).itrR.ρb(rA.e,−, (−,−))
if rB does not exist then

return (−,−)
if rB contains rA then

return rA

pnext = rB.b
while rB exists

itr(>AB).itrR.d = rB.d − 1
rB = itr(>AB).ρn()
if rB is valid then

if rB contains rA then
returnrA

if rB.b < pnext then
pnext = rB.b

rA = itr(< A B).itrL.ρb(max(rA.e + 1, pnext),
itr(< A B).d, itr(< A B).rr)

Figure 3.18: ρb and ρn function for query (< A B).

position of rA, there is no region of B whose begin position is before the begin

position of rB since the region rA is not contained in any region of B. In that

case, the algorithm searches the next region of A from the smallest begin position

of regions of B which are used to check whether the region rA is contained in

rB. Otherwise, the algorithm searches the next region by using the τn function,

because the regions of B whose begin position is before the begin position of rA

will contains the region. The algorithm for ρb and ρn functions is similar to that

of τb and τn. After the first step which searches the first region of A (rA), the

algorithm searches the region of B (rB) by the ρb function from the end position

of rA. When the region rB contains the region rA, the algorithm outputs rA as

the result of the function. When the region rB does not contains the region rA,

the algorithm searched regions of B which contains the region rA by using ρn

46

functions with decreasing the depth condition as the same with the algorithm for

τb and τn functions. When at least one region of B contains the the region rA, the

algorithm output the region rA. When there is no region of B contains rA, the

algorithm searches next output candidate region of A by using ρb function from

the larger position in the next position of the end position of rA and the smallest

begin position of regions of B which are used to check whether the region rA is

contained in rB. In the case of these ρb and ρn functions, the algorithm can skip

regions of A which is not contained in any region of B by using the region of B

which is searched in order to check whether the region rA is contained in a region

of B, that is, the next candidate region of A is searched from the smallest begin

position in such regions of B (pnext). However, although the end position of the

next candidate region of A should be placed after the end position of rA, the begin

position pnext can placed before the end position of rA. In order to avoid the loop

that the algorithm searched rA as the next candidate region again, the candidate

region is searched from the larger position of pnext and the next position of the

end position of rA.

Figure 3.19 and 3.20 show an algorithm of functions for the “one of” operator.

The algorithm of τb and ρb first searches a region for each query of argument by

using τb and ρb respectively. The the algorithm selects a region from two regions

whose begin position is closer to the search start position in τb function, and

whose end position is closer to the search start position in ρb function. On the

other hand, the algorithm of τn and ρn searches the next region of an argument

query from the argument from which the previous search result is derived, and the

region stored in the iterator is selected as a candidate region from the argument

from which the previous search result is not derived. Then the algorithm select

a region from the two regions as the same with the algorithm in τb and ρb.

Figure 3.21, 3.22 and 3.23 show algorithm of access functions for the “both

of” operator. Since the definition of a result region set for the “both of” operator

is the inner-most regions in a set, that is, the result regions does not contain

other regions, there is no region pair that the begin positions are the same. So

the search algorithm for τn and ρn functions is the same with the algorithm for τb

and ρb, and the search start position is the next position of the begin position of

previously retrieved region. The algorithm for τb and τe functions first searches

the first regions for A and B (rA and rB) by using the ρb function from the

input search start position. The following algorithm branches by the positional

relations between the end positions of regions rA and rB. When the end position

of the region rA is placed before that of rB, the algorithm searches a new region

of A (rA1) from the end position of rB by using ρ′b function, which searches the

region whose end position is nearest. The algorithm searches the region rA1 in

order to construct the inner-most region by search the region of A nearest to

the region rb and construct a region whose begin position is the smaller position

47

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (| A B) satisfying the input conditions
itr(| A B).τb(p, d, rr) =

rA = itr(| A B).itrL.τb(p, d, rr)
rB = itr(| A B).itrR.τb(p, d, rr)
return itr(| A B).τs(rA, rB)

Output: the next region of (| A B) which is stored in itr(| A B) satisfying
the conditions
itr(| A B).τn() =

if itr(| A B).r == itr(| A B).itrL.r then
rA = itr(| A B).itrL.τn()

else
rA = itr(| A B).itrL.r

if itr(| A B).r == itr(| A B).itrR.r then
rB = itr(| A B).itrR.τn()

else
rB = itr(| A B).itrR.r

return itr(| A B).τs(rA, rB)

itr(| A B).τs(rA, rB) =
if rA does not exist then

return rB

if rB dose not exist then
return rA

if rA.b < rB.b or rA.b == rb.b and rA.e ≥ rB.e then
return rA

else
return rB

Figure 3.19: τb and τn function for query (| A B).

in the begin position of rA1 and that of rB as the start position and the end

position is the end position of the region rB. When the region rA is the region

of A nearest to the region rb, rA1 is equal to rA. In the contrary, when the end

position of rB is placed before that of rA, the algorithm searches another region

of B and construct a new region as an output in similar way of the previous case.

In other cases, which mean that the end position of two regions, rA and rB, is

placed in the same position, the algorithm output the region which contains the

other region as an output.

The algorithm for ρb and ρe functions also searches the first regions for A and

B (rA and rB) by using the ρb function, and the following algorithm branches by

the positional relations between the regions rA and rB. When the end position

of rA and that of rB are the same position, the calculation of the output region

branches by the relation of the begin position of the regions rA and rB and

the search start position. The begin position of the output region is basically the

48

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (| A B) satisfying the input conditions
itr(| A B).ρb(p, d, rr) =

rA = itr(| A B).itrL.ρb(p, d, rr)
rB = itr(| A B).itrR.ρb(p, d, rr)
returnitr(| A B).ρs(rA, rB)

Output: the next region of (| A B) which is stored in itr(| A B) satisfying
the conditions
itr(| A B).ρn() =

if itr(| A B).r == itr(| A B).itrL.r then
rA = itr(| A B).itrL.ρn()

else
rA = itr(| A B).itrL.r

if itr(| A B).r == itr(| A B).itrR.r then
rB = itr(| A B).itrR.ρn()

else
rB = itr(| A B).itrR.r

returnitr(| A B).ρs(rA, rB)

itr(| A B).ρs(rA, rB) =
if rA does not exist then

return rB

if rB does not exist then
return rA

if rA.e < rB.e or rA.e == rb.e and rA.b ≥ rB.b then
return rA

else
return rB

Figure 3.20: ρb and ρn function for query (| A B).

smaller position in both of the begin positions when both the begin position of rA

and that of rB is placed after the search start position. However, when the begin

position of rA is placed before the search start position, the regions of A nearest

to the region rB can exists before the search start position. So the algorithm

searches the first region of A from the search start position by ρ′b functions, and

construct an output region from the nearest regions. When the begin position of

rB is placed before the search start position, the algorithm searches a new region

of B and construct an output region.

In the case the end position of rA is larger than that of rB, the algorithm

searches the region of A (rA2) nearest to the region rB, and then searches the

region of B (rB2) nearest to the region rA2 and output a new region constructed

with rA2 and rB2. In the opposite case, which is the case that the end position

of rB is larger than that of rA, the algorithm also construct a new region with

the nearest two regions in similar way in the previous case.

49

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (& A B) satisfying the input conditions
itr(& A B).τb(p, d, rr) =

rA = itr(& A B).itrL.ρb(p,−, (p, rr.e))
ifrA does not exist then

return (−,−)
rB = itr(& A B).itrR.ρb(p,−, (p, rr.e))
ifrB does not existthen

return (−,−)
if rA.e < rB.e then

rA1 = itr(& A B).itrL.ρ′b(rB.e,−, (p, rB.e))
return (min(rA1.b, rB.b), rB.e)

elsif rA.e > rB.e then
rB1 = itr(& A B).itrR.ρ′b(rA.e,−, (p, rA.e))
return (min(rB1.b, rA.b), rA.e)

else
return (min(rA.b, rB.b), rA.e)

Output: the next region of (& A B) which is stored in itr(& A B) satisfying
the input conditions
itr(& A B).τn() =

return itr(& A B).τb(itr(& A B).r.b + 1, itr(& A B).d, itr(& A B).rr)

Figure 3.21: τb and τn function for query (& A B).

The algorithm for access functions for the “followed by” operator, which is

shown in Figure 3.24 and 3.25, is similar to the algorithm for the “both of”

operator. The definition of a result region set for the “followed by” operator is

also a set of inner-most regions like “both of” operator. The algorithm for τn

and ρn functions is search the next region from the next position of the previous

result by τb and ρb functions. The algorithm for τb and τn functions first searches

the region of A (rA) by using the ρb function from the search start position, and

then searches the region of B (rB) by using ρb function from the end position

of rA. In order to search the region of A nearest to rB, the algorithm searches

again the region of A (rA2) from the begin position of rB by using ρ′b function.

Then, the algorithm output the region from the begin position of rA2 to the end

position of rB.

The algorithm for ρb and ρn functions first searches a region of B (rB) by

using the function ρb. Then the algorithm check whether rB contains another

region of B, which is placed before the search start position, and the algorithm

searches the next region of B when rB contains another region. When the region

rB does not contains another region of B, the algorithm searches a region of

A (rA) nearest to the region rB. When such region of A, rA, does not exists,

the algorithm searches another region of A (rA1) from the begin position of B,

50

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (& A B) satisfying the input conditions
itr(& A B).ρb(p, d, rr) =

pb = p
whilepb exists

rA = itr(& A B).itrL.ρb(p,−, rr)
rB = itr(& A B).itrR.ρb(p,−, rr)
if rA.e == rB.e then

if rA.b ≥ p and rB.b ≥ p then
return (min(rA.b, rB.b), rA.e)

elsif rA.b ≥ p and rB.b < p then
rB2 = itr(& A B).itrR.ρ′b(p − 1,−, (rr.b, p − 1))
return (min(rB.b, rB2.b), rA.e)

elsif rA.b < p and rB.b ≥ p then
rA2 = itr(& A B).itrL.ρ′b(p − 1,−, (rr.b, p − 1))
return (min(rA.b, rA2.b), rB.e)

else
rA2 = itr(& A B).itrL.ρ′b(p − 1,−, (rr.b, p − 1))
rB2 = itr(& A B).itrR.ρ′b(p − 1,−, (rr.b, p − 1))
if rA2.b > rA.b and rB2.b > rB then

pb = rA.e + 1
elsif rA2.b > rA.b ≥ p then

return (min(rA2.b, rB.b), rA.e)
elsif rA2.b ≥ p and rB2.b ≥ p then

return (min(rA.b, rB2.b), rA.e)
elsif rA2.b ≥ p and rB2.b ≥ p then

return (min(rA.b, rB.b), rA.e)
elsif rA.e > rB.e then

rA2 = itr(& A B).itrL.ρ′b(p,−, (rr.b, p))
if rA2 exists then

if rB contains rA2 then
return rB

else
rB2 = itr(& A B).itrR.ρb(rA2.b,−, (rA2.b, rr.e))
if rB2 == rB then

return(min(rA2.b, rB.b), rB.e)
else

pb = rA.e
else

rB2 = itr(& A B).itrR.ρ′b(p,−, (rr.b, p))
ifrB2 exists then

ifrA contains rB2then
return rA

else
rA2 = itr(& A B).itrL.ρb(rB2.b,−, (rB2.b, rr.e))
if rA2 == rA then

return (min(rA.b, rB2.b), rA.e)
else

pb = rA.e

Figure 3.22: ρb function for query (& A B).

51

Output: the next region of (& A B) which is stored in itr(& A B) satisfying
the input conditions
itr(& A B).ρn() =

return itr(& A B).fρb(itr(& A B).r.e + 1, itr(& A B).d, itr(& A B).rr)

Figure 3.23: ρn function for query (& A B).

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (− A B) satisfying the input conditions
itr(− A B).τb(p, d, rr) =

rA = itr(− A B).itrL.ρb(p,−, (p, rr.e))
if rA does not exist then

return (−,−)
rB = itr(− A B).itrR.ρb(p,−, (rA.e, rr.e))
if rB does not exist then

return (−,−)
rA1 = itr(− A B).itrL.ρ′b(rB.b,−, (rr.b, rB.b))
return(rA1.b, rB.e)

Output: the next region of (− A B) which is stored in itr(− A B) satisfying
the input conditions
itr(− A B).τn() =

return itr(− A B).τb(itr(− A B).r.b + 1, itr(− A B).d, itr(− A B).rr)

Figure 3.24: τb and τn function for query (- A B).

and searches next region of (−AB) from the begin position of rA1 with the τb

function. When rA exists, the algorithm searches the region of B (rB1) from the

end position of rA, and output the result region from the begin position of rA to

the end position of rB1.

3.5.3 Index for Stand-off Annotation

The list of position and depth value for search are created as the same with

the inline annotations. The stand-off annotation contains begin position and end

position of annotation regions, these positions are directly indexed, and the depth

information is calculated as the same with the inline annotations. Moreover, in

order to reduce the number of access times for index list, we constructed a list of

position of regions instead of that of token.

Figure 3.26 shows an example of the position list for stand-off annotations

in Figure 3.14. For each word, tag and attribute of tag, a list of the region, a

pair of begin and end position, and depth value is created. In Figure 3.26, each

value in triplex expresses the two position values and depth value respectively.

For words, the depth value is always 0, and the position is the offset value for the

52

Input: p: start position, d: depth restriction, rr: region restriction
Output: the first region of (− A B) satisfying the input conditions
itr(− A B).ρb(p, d, rr) =

pb = p
while pb exists

rB = itr(− A B).itrR.ρb(p,−, rr)
if rB.b < pb.b then

rB1 = itr(− A B).itrR.ρb(rB.b,−, rB)
if rB1 exists then

pb = rB.e − 1
if pb! = rB.e − 1

rA = itr(− A B).itrL.ρ′b(rB.b,−, (rr.b, rB.b))
if rA exists then

rA1 = itr(− A B).itrL.ρb(rB.b,−, (rB.b, rr.e))
return itr(− A B).τb(rA1.b, d, rr)

else
rB1 = itr(− A B).itrR.ρb(rA.e,−, (rA.e, rr.e))
if rB1 == rB then

return (rA.b, rB1.e)
else

pb = rB.e − 1

Output: the next region of (− A B) which is stored in itr(− A B) satisfying
the input conditions
itr(− A B).ρn() =

return itr(− A B).ρb(itr(− A B).r.e + 1, itr(− A B).d, itr(− A B).rr)

Figure 3.25: ρb and ρn function for query (- A B).

begin and end position of the words. For tags, the depth value is calculated in the

same way with the case of in-line annotations, and the positions are begin and

end position of tag regions, which are the value in stand-off annotations. Since

a position list is created based on regions, the list for begin tag and that for end

tag are merged in the position list of tag. For attributes of tags, the depth value

and the positions are the same with the tag which the attribute appears.

Although the list in Figure 3.26 is sorted in the order of the begin position,

or depth value in the case that the begin positions are the same, we constructed

two types of lists of regions, one is the list in the order of the begin position, and

the other is the list in the order of the end position. The list in the begin position

order is accessed by the functions τ, τ ′ in the algorithm, and the list in the end

position order is accessed by the functions ρ, ρ′.

53

p53 0-3-0, ...
is 4-6-0, ...
phosphorylated 7-21-0, ...
to 22-24-0, ...
activate 25-32-0, ...
cd25 34-38-0, ...
...
<sentence> 0-38-0, ...
<phrase> 0-38-0, 0-3-1, 0-3-2, 4-38-1,...
phrase:id=“0” 0-38-0, ...
phrase:cat=“S” 0-38-0, ...
phrase:head=“4” 0-38-0, ...
phrase:lex head=“6” 0-38-0, 4-38-1, 4-6-2, ...
phrase:id=“1” 0-3-1, ...
phrase:cat=“NP” 0-3-1, 0-3-2, ...
... ...
<word> 0-3-0, 4-6-0, ...
word:id=“3” 0-3-0, ...
word:pos=“NN” 0-3-0, ...
... ...

Figure 3.26: Inverted position index for stand-off annotation in Figure 3.14

3.6 Probabilistic Retrieval Model for Structured Document Re-
trieval

3.6.1 Query and Document Representation for Structured Document
Retrieval

In traditional vector space model, queries and documents are represented by a

vector of weight of keywords,

q = (wq
1, w

q
2, ..., w

q
n)

d = (wd
1 , w

d
2, ..., w

d
n)

where wq
i is a weight of a word wi in the query q and wd

i is a weight of a word wi

in the document d. Various value is used as a weight of a word wi, such as binary

value, i.e. wd
i = 1 when wi appears in the document d, pure frequency or tf*idf

value, and so on. The similarity between a query and a document is calculated

by the cosine value,

cos(q, d) =
q · d
|q||d|

where |q| is the length of query vector, that is, |q| =
√

Σiw
q
o. The Binary Inde-

pendent Model [75, 64, 65], which is one of the probabilistic model for retrieval,

also models a query and a document with a vector, but the element of the vector

is a binary value.

We extended the vector models to apply to the structured document retrieval.

When the user would like to search about the relation “p53 activates CD25,” the

query for structured document retrieval in the form of region algebra is,

54

(> [sentence]

(& [tok arg1=$s arg2=$o base="activate"]

(> [cons id=$s] "p53")

(> [cons id=$o] "cd25")))

The documents contains whole the relation “p53 activates CD25,” which means

that the documents containing the region matches to the above query of re-

gion algebra, are relevant to the query of course, but the documents containing

the relation “p53 activates” or “activates CD25” can be useful for the users,

and the documents containing these relations will be more relevant to the users’

queries than the documents containing only the keywords “p53,” “activates” and

“CD25.” So we extended the element of vectors from simple keywords to the

structured queries. In this example, a set of queries will be as followings:

"p53"

"cd25"

[tok base="activate"]

(& [tok arg1=$s base="activate"] (> [cons id=$s] "p53"))

(& [tok arg2=$o base="activate"] (> [cons id=$o] "cd25"))

Although we can simply define the similarity between a structured query and

a document by the cosine value, we have to consider the dependency between the

sub-queries. We derive the similarity function by extending Binary Independent

Model for structured retrieval with considering the dependency between sub-

queries.

3.6.2 Extend BIM Model for Structured Document Retrieval

The Binary Independent Model assumed the independency of keywords in a query.

We extend the model for the structured queries and documents.

We will estimate the probability function P (R = 1|d, q), where d is a docu-

ment, q is a query and R is a relevance The query q is represented by a vector of

sub-queries, Q = (q1, q2, ..., qn) where qi is a word or a structured query. When

the sub-queries are only keywords, we can suppose that the sub-queries re in-

dependent. But when some sub-queries have a structure, we cannot ignore the

dependency among the sub-queries. For example, when the given query q is

(& [tok arg1=$s arg2=$o base="activate"]

(> [cons id=$s] "p53")

(> [cons id=$o] "cd25"))

the sub-queries qi are as followings:

"p53"

"cd25"

55

[tok base="activate"]

(& [tok arg1=$s base="activate"] (> [cons id=$s] "p53"))

(& [tok arg2=$o base="activate"] (> [cons id=$o] "cd25"))

There is obvious dependency in these queries. When a document contains regions

matching the query

(& [tok arg1=$s base="activate"]

(> [cons id=$s] "p53")),

the region contains regions matching the query [tok base="activate"] and

"p53" by necessity, that is, the document contains the relation “ ‘p53’ is the

subject of ‘activate’ ” also contain the word “p53” and “activate” inevitably. Since

there is dependency among the sub-queries, the score calculation for some queries

are duplicated when the scoring model for traditional keyword-based retrieval are

applied to the structured document retrieval.

The document d is also represented by a vector of appearance of regions,

Xd = (x1, x2, ..., xn) where xi = 1 if a region matched the query q1 exists in the

document d. We assume here that the relevance of a document is independent of

the relevance of the other documents.

As the binary independent model, we will derive a ranking function with

calculating odds of relevance, that is

O(R|X,Q) =
P (R = 1|X,Q)
P (R = 0|X,Q)

for making things easier. By using Bayes rule, we can have

P (R = 1|X,Q) =
P (X|R = 1, Q)P (R = 1|Q)

P (X|Q)

P (R = 0|X,Q) =
P (X|R = 0, Q)P (R = 0|Q)

P (X|Q)
.

Then the above formula is derived as

O(R|X,Q) =
P (R = 1|X,Q)
P (R = 0|X,Q)

=
P (X|R=1,Q)P (R=1|Q)

P (X|Q)

P (X|R=0,Q)P (R=0|Q)
P (X|Q)

=
P (R = 1|Q)
P (R = 0|Q)

˙P (X|R = 1, Q)
P (X|R = 0, Q)

The left term of the last expression, P (R=1|Q)
P (R=0|Q) , is a constant for a given query. In

the Binary Independent Model for keyword-based retrieval, we can suppose the

assumption that appearance of a word is independent from the other words. But

in the structured document retrieval, we cannot suppose the assumption because

of the dependency among the queries.

56

We incorporate the dependency into the model. Here, we suppose a simple

example, Q = (q1, q2, q3) and q3 = (&q1q2). For these queries, when a docu-

ment contains regions matching the query q3, the document inevitably contains

regions matching q1 and q2. By considering the dependency, the probability of

the document can be expressed as following:

P (X) = P (x1) · P (x2) · P (x3|x1, x2)

= P (x1) · P (x2) ·
P (x1, x2, x3)

P (x1, x2)

By incorporating the dependency among the sub-queries, we can transform

the formula for this example as follows.

P (X|R = 1, Q)
P (X|R = 0, Q)

=
P (x1|R = 1, Q)
P (x1|R = 0, Q)

· P (x2|R = 1, Q)
P (x2|R = 0, Q)

· P (x3|x1, x2, R = 1, Q)
P (x3|x1, x2, R = 0, Q)

=
P (xi|Xi, R = 1, Q)
P (xi|Xi, R = 0, Q)

where Xi is a set of variables {xji
1
, ..., xji

n
} which have a dependency to variable

xi. In the above example, X1 = {}, X2 = {} and X3 = {x1, x2}. As is the case

of the original Binary Independent Model, since xi is a binary value, the terms

can be separated.

P (X|R = 1, Q)
P (X|R = 0, Q)

=
∏
i

P (xi = 1|Xi, R = 1, Q)
P (xi = 1|Xi, R = 0, Q)

·
∏
i

P (xi = 0|Xi, R = 1, Q)
P (xi = 0|Xi, R = 0, Q)

Here, let pi = P (xi = 1|Xi, R = 1, Q) be the probability of a term appearing

in a document relevant to the query, and ui = P (xi = 1|Xi, R = 0, Q) be the

probability of a term appearing in a nonrelevant document. With the simplifying

assumption that the terms not appearing in the query appear in relevant and

non-relevant documents in the same probability, that is, pi = ui when xi = 0, the

above formula can be transformed,

∏
i

P (xi = 1|Xi, R = 1, Q)
P (xi = 1|Xi, R = 0, Q)

·
∏
i

P (xi = 0|Xi, R = 1, Q)
P (xi = 0|Xi, R = 0, Q)

=
∏

i:xi=qi=1

pi

ui
·

∏
i:xi=0,qi=1

1 − pi

1 − ui

=
∏

i:xi=qi=1

pi(1 − ui)
ui(1 − pi)

·
∏

i:qi=1

1 − pi

1 − ui

Since the right product term is a constant when a query is given, only the left

product term should be estimated in order to ranking the documents. Retrieval

status value (RSV) is defined by the logarithm of the term,

RSVd = log
∏

i:xi=qi=1

pi(1 − ui)
ui(1 − pi)

=
∑

i:xi=qi=1

log
pi(1 − ui)
ui(1 − pi)

.

57

Here, we define the value ci for a query qi as follows:

ci = log
pi(1 − ui)
ui(1 − pi)

= log
pi

1 − pi
+ log

1 − ui

ui
.

In Binary Independent Model, the idf value can be derived from the right

term of the above formula, log 1−ui
ui

. We would like to corresponding value in the

model including dependency between the queries. From the definition, the value

ui for the sub-query q3 is derived as follows:

u3 = P (x3 = 1|x1, x2, R = 0, q)

= P (x3 = 1|x1 = 1, x2 = 1, R = 0, q)

+P (x3 = 1|x1 = 1, x2 = 0, R = 0, q)

+P (x3 = 1|x1 = 0, x2 = 1, R = 0, q)

+P (x3 = 1|x1 = 0, x2 = 0, R = 0, q)

By the definition of query q3, x3 = 1 only if x1 = 1 ∧ x2 = 1, that is,

P (x3 = 1|x1 = 1, x2 = 0, R = 0, q) = 0,

P (x3 = 1|x1 = 0, x2 = 1, R = 0, q) = 0 and

P (x3 = 1|x1 = 0, x2 = 0, R = 0, q) = 0.

Then, the u3 is,

u3 = P (x3 = 1|x1 = 1, x2 = 1, R = 0, q)

+P (x3 = 1|x1 = 1, x2 = 0, R = 0, q)

+P (x3 = 1|x1 = 0, x2 = 1, R = 0, q)

+P (x3 = 1|x1 = 0, x2 = 0, R = 0, q)

= P (x3 = 1|x1 = 1, x2 = 1, R = 0, q)

=
P (x1 = 1, x2 = 1, x3 = 1|R = 0, q)

P (x1 = 1, x2 = 1|R = 0, q)

As the same with Binary Independent Model for keywords, the statistics for

non-relevant documents can be estimated by statistics for the whole document

collections since the relevant documents account for only a small percentage in a

document collection. Let N is the number of documents and dfqi is the number

of documents containing the region matching qi. The probability u3 is derived as

follows:

u3 =
P (x1 = 1, x2 = 1, x3 = 1|R = 0, q)

P (x1 = 1, x2 = 1|R = 0, q)

=
dfq3
N

df(&q1q2)

N

=
dfq3

df(&q1q2)
.

58

Then, the weighting value corresponds to IDF in keyword-based search is,

log
1 − u3

u3
= log

1 − dfq3
df(&q1q2)

dfq3
df(&q1q2)

= log
df(&q1q2) − dfq3

dfq3

.

Generalizing this formula, when there is a query set {qi|i = 1, ..., n} and a query

qj contains a qj1 , ..., qjn as sub-queries, the weighting factor for q query qj cor-

responds to IDF value in Binary Independent Model is log
df(&qj1

...qjn)−dfqj

dfqj
. We

called this value as relative IDF value.

3.6.3 Ranking Algorithm

The algorithm to construct a ranking list for each query is as follows:

The inputs of the algorithm are two types of queries, Filtering Query and a list

of Scoring Query. The Filtering Query is a keyword-based query, which is used

to decreasing the number of documents in which relevance score is calculated in

the next step. The Scoring Query is used to calculate relevance score. First,

the algorithm searches documents with the Filtering Query. Then, a score is

calculated for each document based on the frequency of regions matching to the

Scoring Query in the document. Finally, a ranking list is constructed based on

the scores. Given a list of Scoring Queries q1, ..., qn, the score of a document D is

calculated with Okapi BM25 [66, 31] with replacing the IDF value into relative

IDF and replacing the frequency of terms into the frequency of regions matching

to the query, that is,

S(D, q1, ..., qn) =
n∑

i=1

RIDF (qi) ·
rfqi · (k1 + 1)

rfqi + k1 · (1 − b + b · |D|
DLave

)

where rfqi is the number of regions matching to the query qi in the document

D, k1 and b are parameters, (we used k1 = 2.0 and b = 0.75 in the experiments),

|D| is the length of the document D, DLave is the average length of documents

in the collection and RIDF (qi) is the relative IDF value for the query qi, which

is defined as

RIDF (qi) = log
(df(&qi1

...qin) − dfqi) + 0.5

dfqi + 0.5
.

where dfqi is the number of documents which contain at least one region matching

the query qi in the document set, and qi1 ...qin are the sub-queries of qi in Scoring

Queries.

59

Chapter 4

MEDIE: Semantic Retrieval System for

MEDLINE

The number of journal articles in the biomedical science area is numerous and

rapidly increasing. The articles in MEDLINE, around 20 million of references

in biomedical area, are mutually related and the research fields of articles are

wide-ranging. Although researchers would like to follow articles in their field,

it is hard to find articles or knowledges written in articles concerning their field

without any support for accessing. Computer-assisted access for the articles are

needed to acquire target articles or knowledges from the huge textbase.

The main-stream technology used to assist researchers for accessing the huge

textbase has been classical keyword-based search. Although the keyword-based

search is simple and useful for simply searching or filtering articles, researchers

demand to search with more complex queries, which can specify relational con-

cepts. These relational concepts have a wide variety. Well-established concepts,

like protein-protein interaction, can be extracted from articles in advance as struc-

tured data and searched by querying in, e.g., a relational database. More vaguely

defined concepts, which are difficult to capture in advance, can be extracted by

searching the texts by specifying conditions on BioNLP results annotated to the

texts in advance.

We constructed a search system, MEDIE, which is a real-time search system

over richly NLP-annotated textbase. The target data of the system is MEDLINE,

which contains approximately 19 million references to journal articles in biomed-

ical sciences. This system is based on a search for semi-structured text, which

can search document fragments in textbases with queries specifying relational

concepts extracted from articles in advance or expressed with the integration of

several types of NLP annotations.

4.1 MEDIE system

MEDIE system is a semantic retrieval system for MEDLINE, a database of pa-

per abstracts in biomedical area. MEDLINE contains around 20 million of paper

abstracts, and the number of them is rapidly increasing. Although researchers

60

������� ���
	�� 	�
�	����

���������������
����� � � ���� !�"$#&%�'�()(�*,+

!�'-+�.�*/+0�1-2

3�3�4 ����5�6�� � 7 �� 8�9
�����

��: � � �;��� 5-�
��<�6�6���

�����������
���
��= � �
��<�6�6
��

>/?,@ �
��5�6�� � 7 ��

AB1)CED�F 0�1

Figure 4.1: Overview of the pre-processing system of MEDIE

would like to follow articles in their own field, it is hard to find articles or knowl-

edges written in articles concerning their field without any support for accessing.

Computer-assisted access for the articles are needed to acquire target articles or

knowledges from the huge textbase.

In order to enable a search system in which user can query the advanced

search request beyond a set of keywords or can retrieve not a whole document

but a requested information itself, we constructed semantic retrieval system for

MEDLINE by using our framework and NLP modules. We processed documents

by various kind of NLP modules, annotate the target documents with the result

from NLP modules and indexed the documents with annotations in our search

framework of tag-annotated text search. Users can write an advanced search

condition by specifying the annotations by NLP modules in the documents. For

example, the relation among two substances can be specified by using the results

from a parser, that is, two substances are combined by a verb in subject-verb-

object relation. Some sorts of terms are recognized as a term with a type and

the terms are connected to the actual object by using dictionaries. In the search

process, the system regards the terms which are connected to the same object,

that is the synonyms, as the same term, and the system can treat words in

conceptual level, such as “gene,” “disease,” and so on, by using the annotations

from named entity recognizer.

We first explain the NLP modules used in constructing annotations for target

data, and then we explain about the whole MEDIE system.

4.2 Natural Language Processing Module

We pre-processed MEDLINE articles by many NLP modules. Figure 4.1 shows

an overview of the pre-preprocessing system, which consisting of three layers. In

61

the first layer, the biomedical text in MEDLINE articles is split into sentences,

and then the sentences are tokenized and POS-tagged. as well as the high-level

tools, were tuned for the biomedical text genre.

In the second layer, syntactic analysis of the text is done by a parser, and

technical terms, such as gene/protein names and disease names, are recognized

by a named entity recognizer (NER). The syntactic and terminological analyses

made in this stage are especially important because they are directly queried in

the search system and also utilized in the NLP modules in the next layer.

The NLP modules in the third layer do specialized processing on the biomed-

ical text; namely, recognition of protein-protein interactions (PPI) and gene-

disease associations (GDA) mentioned in the text, recognition of the rhetorical

roles of the sentences (e.g., object, method, conclusion etc.), and recognition of

biological “events” described in the text.

In the followings, we will introduce the NLP modules pre-processed in MEDIE

systems.

Enju HPSG Parser and its Adaptation to Biology and Medical Text
Domains

A parser receives a sentence and returns some kinds of analyzed structures for

it such as phrase structures. Syntactic parsers are fundamental tools for various

NLP tasks including information extraction and text mining. A parser receives

a sentence and returns its syntactic structure represented in a certain formal-

ism. Phrase structures and dependency structures have been widely used as the

representational formalism for many NLP applications. Many types of parsers

have been used in various NLP tasks including IE and text mining, and Recently,

parsers that compute deeper analyses have become available for the processing

of real-world text, and our parser Enju, [52, 55], is such a parser.

Our parser, Enju [52, 55], is a deep parser that produces the syntactic and

semantic structure of a sentence in one shot The parser is based on the head-

driven phrase structure grammar (HPSG) formalism [59] and outputs predicate

argument structures (PAS) that explicitly express the semantic relations among

words. Such a deep representation is beneficial for the purpose of the present

study because this representation represents relational concepts in an abstract

manner, while ignoring the differences in the surface level, such as differences in

voices (active/passive).

An important sub-component of a syntactic parser is the disambiguation

model, which is used to find a correct interpretation of an input sentence. Since

most of natural language sentences have many grammatically admissible, but

often strange, interpretations, the disambiguation model is crucial for accurate

syntactic/semantic analysis of the text. The disambiguation model of Enju was

trained using the Wall Street Journal portion of the Penn Treebank (PTB) corpus

62

Text genre (corpus)
Model News article (PTB) Biomedical (Genia)
Enju (original) 89.99/89.63/89.81 86.71/86.08/86.39
Enju (re-trained) - 90.23/90.08/90.15

Table 4.1: Improvement of parsing accuracy by re-training (LP/LR/F1)

[42], whereas our target text consists of biomedical articles.

Due to the difference in the text genres, the original disambiguation model of

Enju provided numerous incorrect analyses of the MEDLINE text. This kind of

problems is called domain portability and is known to damage the performance

of NLP applications severely. Therefore, there has been much research on adapt-

ing parsers or other NLP tools to a specific domain. This kind of problems is

called domain portability and is known to damage the performance of NLP ap-

plications severely. We developed an effective method for re-training the model

in another domain [23, 24]. By re-training the model, the parser could maintain

high performance in the target domain.

We evaluated the impact of re-training the model of Enju. The original parser,

Enju, was trained using Sections 02-21 of PTB [55]. For re-training in the target

domain, we used the GENIA treebank [33], which consists of 1,200 abstracts

extracted from MEDLINE. We divided the GENIA treebank into three sets of

900, 150, and 150 abstracts (resp. 8,127, 1,361, and 1,360 sentences), and used

these sets as training, development, and final evaluation data. For evaluating the

parsing performance, we measured the labeled precision (LP), recall (LR), and

the harmonic-mean (F1-score) on the predicate-argument dependencies produced

by the parser. The experimental results revealed that the re-trained model could

improve the parsing accuracy for the biomedical domain by 3.84 F1-score points

(Table 4.2.

Named Entity Recognition

The named-entity recognition module, referred to hereinafter as NERsuite, is a

machine-learning-based NER toolkit that uses a conditional random field machine

learning toolkit referred to as CRFsuite [57]. The NERsuite exploits diverse fea-

tures proposed in previous studies [38, 40, 54]. We pre-processed the biomedical

text with the GENIA sentence splitter[1], a fine-grained tokenizer, the GENIA

tagger [73] and dictionaries, EntrezGene[41], and the UMLS Metathesaurus[71],

in order to extract feature values. For recognizing entities, the system uses the

IOBES chunk label set because this set provides better discrimination results, as

mentioned in a previous study [60]. We evaluated the NERsuite in the BioCre-

ative2 Gene Mention Recognition task. The performance was ranked between

the second and third systems in the original shared task, as shown in Table 4.2.

63

Rank Precision Recall F1-score Add. tech.
1 88.48% 85.97% 87.21% S, G, P
2 89.30% 84.49% 86.83% E, G, P

NERsuite 90.12% 83.41% 86.64% G
3 84.93% 88.28% 86.57% E
4 87.27% 85.41% 86.33% E, P
5 85.77% 86.80% 86.28% G
6 82.71% 89.32% 85.89% G, P
7 86.97% 82.55% 84.70% G, A

Table 4.2: Performance comparison with other systems of BioCreative 2 competi-
tion. The Add. tech. column lists additional techniques used for these systems (S:
semi-supervised method, E: ensemble classifier, G: gazetteer, P: post-processing,
and A: abbreviation resolution).

Protein-Protein Interaction (PPI) recognition

The PPI module brings together all other components from the NLP pipeline to

perform PPI extraction. This includes sentence splitting, part-of-speech (POS)

tagging, protein name recognition, protein database-identifier mapping, syntactic

parsing with different language models, and machine learning with tree and graph

kernels.

The PPI module reads stand-off annotations that include outputs from the

above-mentioned modules, together with the original text file, and performs two

tasks. The PPI module first extracts features from the parsers and then runs

the support vector machine with kernels (SVM-TK [30, 53]). We trained the

SVM on 225 PPI-annotated MEDLINE abstracts in the AIMed corpus [8]. The

AIMed corpus and the syntactic features used for machine learning are described

in greater detail in [68].

A prototype of the proposed PPI system was used for the BioCreative2 PPI

challenge. This prototype did not include the SVM machine learning function-

ality. However, even without this extra module, the prototype still achieved an

F1-score of 18.7% on the SwissProt IPS test set, making it the 6th best system

among 16 participants. We also evaluated the PPI extraction module by 10-fold

cross-validation on the AIMed corpus, and the results are shown in Table 4.2.

The comparison of the different PPI systems is based on the precision and recall

of the predicted PPIs and the harmonic mean (F1-score). Even though Giuliano

et al.’s system [21] appears to be 10%-points better than the proposed system,

an attempt at reproducing their results did not provide results that were as good

as those that were reported. The reason for this is a subject for future research.

Recognition of gene-disease associations

Gene and disease name pairs co-occurring in a sentence have some potential

important associations. However, these co-occurring pairs also have numerous

64

Precision(%) Recall(%) F1(%)
Our system 61.3 40.7 48.6
[9] 73.9 35.2 47.7
[49] 54.2 42.6 47.7
[21] 60.9 57.2 59.0

Table 4.3: Comparison of different PPI systems evaluated using AIMed
F

Precision(%) Recall(%) F1-score(%)
Baseline 84.6 97.6 90.6
GDA without NER 88.0 95.1 91.4
GDA with NER 95.8 99.8 97.8

Table 4.4: Performance of GDA recognition

incorrect associations. In order to filter out these incorrect associations, we used

a machine learning technique. Various context features have been used to train

the filter, including candidate gene and disease names, one or two adjacent words

of candidate gene and disease names, the order of candidate gene and disease

names, the distance between candidate gene and disease names, and bags of

words in sentences.

In order to evaluate the GDA recognition system, a GDA annotated corpus

has been constructed. A total of 3,999 co-occurrences have been selected from

among 2,939 MEDLINE abstracts by biologists. Six biologists annotated the

existence of associations with reference to the original abstracts that include

co-occurrences. The inter-annotator agreement among the six annotators had an

F1-score of 0.930, and 3,099 (77.5%) co-occurrences were found to contain correct

associations.

We performed 10-fold cross validation and measured the precision, recall, and

F1-score of the system for all experiments. Table 4.2 describes the experimental

results for baseline, GDA without NER, and GDA with NER. In a baseline ex-

periment, we assumed that the co-occurrence of gene and disease names by NER

in a sentence indicates an association. These results clarify the effectiveness of

machine learning-based named entity recognition (NER) and GDA recognition

methods.

Event expression recognition

Biological molecular events (bio-events) are important in understanding the dy-

namics of biological systems. In order to detect in text locations in which bio-

events are discussed, we developed a dictionary of event expression patterns. The

patterns are extracted from the GENIA event annotations, which were made to

65

������� ��� 	
��

�������������������
�� 	 � ����� ��!�"�#%$&	 �('*)+$,� � 	 - .�� ��� ����/�0�132(����� � ��4

������� ��� 	
��

�������������������
�� 	 � ����� ��!�"�#%$&	 �('*)+$,� � 	 - .�� ��� ����/�0�132(����� � ��4

5 6 7�8 9 :�;�8=< >�8 ?@8
6 A B�C�9�>�8 ?@8

5 6 7�8 9 :�;�8< >�8 ?D8 5 E 7�F 8
6 A B�C�G�E 7�F 8

Figure 4.2: Event annotation

1,000 Medline abstracts [34]. Since the annotations are based on the GENIA

event ontology, which is a simplified version of the gene ontology, the dictionary

also contains patterns of event expressions based on event classification in the

ontology.

Figure 4.2 shows two instances of GENIA event annotation of an example sen-

tence. The first identifies the bio-event “secretion of TNF”, which is classified as

a protein catabolism event, according to the GENIA ontology. The second iden-

tifies a negative regulation of the secretion event. The textual expressions, which

take part in the event expressions, are marked up in the GENIA event annota-

tion. In this example, “secretion” and “abolished” are textual expressions that

indicate a localization and a negative regulation event, respectively (clueType).

The terms “TNF” and “secretion” are the themes of the two respective events.

Note that “secretion” is simultaneously the clueType of the first event and theme

of the second event. The term “BHA” is the cause of the second event. The term

“of” links the theme and the clueType in the first event (linkTheme), and the

term “by” links the cause and the clueType in the second event (linkCause).

The dictionary of event expression patterns is a collection of these event an-

notation instances. Based on the above example, the following two patterns are

extracted and stored in the dictionary:

Localization: secretion/NN (of/IN THEME)
Negative regulation: abolish/VBN (THEME) (by/IN CAUSE)

In order to raise the specificity of the event patterns, the POS label predicted by

the GENIA tagger is attached to each word.

Sentence Role Classification

Scientific abstracts tend to share a similar rhetorical structure. Namely, an ab-

stract usually begins with a description of background information, followed by

the target problem, a proposed solution to the problem, an evaluation of the

solution, and, finally, the conclusion of the paper. Prior knowledge of the rhetor-

ical structure of abstracts is useful for improving the performance of information

66

�����������
	��

���� � ����� � ���

�����
�����! #" $&%

�����
�&�#�! �" $('

�����
�����! #" $*)

+

� � �,��-,�,. .
���,����� �
� � ���0/

13254
687:9&;,<0=
7?>*@&A�>:7

B ��-,�
	���-
���,���,� �
��� ���C/

D:�FE -GB ��-,�
	

� � ����-,��. .
���,����� �
� � �F��H

B ��-���	���-
���,����� �
� � �F��H

� � ����-,��. .
���,����� �
� � ���JI

B ��-,�
	���-
�,�����,� �
��� ����I

K8L8M!N O�P QSR
T�UVUXW R U#T O�P YZM

Figure 4.3: Overview of the back-end database architecture of MEDIE

retrieval systems by, for example, assigning more weight to sentences that re-

fer to a purpose or conclusion. We developed a system called Abstruct [27],

which categorizes sentences in scientific abstracts into four categories: objective,

methods, results, and conclusions. Formalizing the task as a sequence labeling

problem, we modeled the conditional probability of a sequence of section names

y = (y1, . . . , yn), given an abstract consisting of sentences x = (x1, . . . , xn). The

conditional probability distribution was modeled by conditional random fields

(CRFs). Trained on 50,000 MEDLINE abstracts with section names annotated,

the system achieved a per-sentence accuracy of 95.5% and a per-abstract accu-

racy of 68.8%. The system showed a more than 10% improvement in per-abstract

accuracy, as compared with conventional approaches.

4.3 Databases for Retrieval

Figure 4.3 shows an overview of the back-end database architecture of MEDIE.

The NLP modules are applied to texts, and the results are converted to the

form of stand-off annotations. The inverted index for the regions of stand-off

annotations is constructed in order of the begin and end positions. The inverted

indexes are constructed independently for the results of each NLP module, and

the evaluation of queries in which various types of NLP modules are integrated is

implemented by run-time aggregation of the inverted index in the search phase.

The independent construction of inverted indices for the annotations enables easy

management of annotations in the database, the addition of annotations from new

NLP modules, or the deletion of a type of annotations from the database, without

having to reconstruct the entire database. This mechanism is essential for the

ever-extending nature of the annotated textbase, to which we continue to add

new annotations produced by novel NLP technologies.

67

0 38 sentence id="s1"
0 38 cons id="0" cat="S" head="4"
0 3 cons id="1" cat="NP" head="2"
0 3 cons id="2" cat="NP" head="3"
0 3 tok id="3" cat="N" base="p53"
4 37 cons id="4" cat="VP" head="5"
4 6 cons id="5" cat="VP" head="6"
4 6 tok id="6" cat="V" base="be" arg1="1" arg2="7"
7 37 cons id="7" cat="VP" head="8"
7 20 cons id="8" cat="VP" head="9"
7 20 tok ...

Figure 4.4: Example of stand-off annotation

The results given by the NLP modules are associated to the text through a

stand-off annotation scheme. Figure 4.4 shows a snippet of the stand-off annota-

tions. The first and second columns are respectively the begin and end position

of the tag-annotated text span. The third is the name of the tag, and the rest is a

list of attributes. Stand-off annotations enable easy management of text and an-

notations because the text and corresponding annotations are stored separately.

The text and annotations are stored in the MEDIE database, with an index data

structure that facilitates fast structural search in the annotated text. The rest of

this section gives a more detailed description of the NLP tools.

4.4 Search and Browsing User Interface

MEDIE [51] is an intelligent search system for the MEDLINE database. It gives

easy access to the very flexible search functionality based on the structure search

engine and the extensive off-line processing of the whole MEDLINE database by

the various NLP tools described in the previous sections. The user-interface is

implemented as a WEB-application that works in web-browsers.

Snapshots of the MEDIE user-interface is shown in Figure 4.5. In the example,

the user inputs ‘p53’ and ‘activate’ respectively in the subject and the verb field.

Note that the subject/object field is for specifying not a syntactic subject/object

but a semantic subject/object; hence, sentences like “protein X is activated by

p53” or even “p53 affects X by activating protein Y ” will be retrieved for the

query. The search results are shown as a list of articles where each item includes

the title and other bibliographic information of the article, and a snippets from

the abstract in which the queried relation is found.

The user-interface of the MEDIE system creates a search query expressed in

the region algebra formula from a few input fields given by the user, and then

it shows the retrieved results. In the example session shown in Figure 4.5, the

user input subject=“p53” and verb=“activate” and this was translated to the

following query:

68

Figure 4.5: MEDIE user-interface. top: query input form, bottom: search results

[article] >> (

([sentence sentence_id="$sentence"] >> (

[event_expression

event_type="Positive_regulation"

arg1=$subject arg2=$object id=$verb]

& ([phrase id="$subject"] > (

[entity_name gena_id="GDM017078"] |

[entity_name gena_id="GMM053612"] |

[entity_name gena_id="GRN004619"])))))

In the query, the subject “p53” is normalized (and expanded) to three [entity name]

tags with different protein IDs (gena id attributes), connected with OR-operators

(‘|’). This OR-ed expression will match many different expressions, such as

“p53”, “P53” or “P-53,” given that the expressions in the text have been recog-

nized as referring to one of the three protein concepts “GDM017078”, “GMM053612”,

or “GRN004619.” Any synonyms of the protein name “p53” can thus be matched

as the subject of the relation, given that the named entity recognizer have an-

notated the synonym as an entity name with It means that the protein name

“p53” is represented as a set , each of which is a possible concept of the named

protein “p53.” Note also that the verb “activate” is translated to a type of

69

biological event, Positive regulation, in the query. The subject-verb rela-

tion is represented by a shared variable $subject in the arg1 attribute of the

[event expression] tag and the id attribute of the [phrase] tag, the latter

tag specified to contain the text region mentioning the OR-ed [entity name]

tags. By using the automatic query-creation mechanism, the users can enjoy the

above complex functionalities without knowing the data structure in the anno-

tated textbase or the syntax of the query language, while an expert user can

devise and submit his/her own query directly to the search engine. In certain

cases, one may wish to search for only those sentences with a specific syntactic

structure, in addition to the semantic structure. One may also wish to combine a

query specifying the semantic/syntactic structure with a condition on the role of

the sentence in the abstract text (e.g., objective, method, or result). The flexibil-

ity of the extended region algebra allows a query that simultaneously represents

several layers of structures, e.g., semantic structure and syntactic structure, by

combining sub-queries for each layer with &-operator and tying them together

by using variables

The search functionality offered by the MEDIE system is summarized as fol-

lows:

• Semantic search: users can search for a semantic relations described in

MEDLINE. Since a biological fact can be represented by various natural

language expressions, more accurate and high-recall search results can be

obtained by the semantic search, compared to the traditional keyword-based

search.

• Terminology normalization: the names of biological entities (protein, gene,

disease) in the queried semantic relations are automatically treated as bio-

logical concepts, not merely the name given by the user.

• Event expression normalization: similarly to the terminology normaliza-

tion, some verbs and nouns commonly used for expressing biological event

(e.g, “activate” or “bind”) are automatically treated as biological relational

concepts. Since a single biological concept appears in many different forms

in the literature, the normalization from expressions to concepts enhances

the coverage of the retrieved results.

• Complex querying with additional conditions: users can narrow down the

retrieved results by combining their semantic query with filters on biblio-

graphic information (author name, journal title etc.) or on the information

added by the NLP tools (e.g, whether the specified semantic relation is

described as a conclusion of a paper).

The semantic search, the terminology normalization, and the event expression

normalization are based on the annotations given by the parser, the named entity

70

recognizer, and the event expression recognizer, respectively. Although users can

switch on/off these functionalities freely, the default behavior of the UI system is

to use a combination of the first three functionalities.

71

Chapter 5

Experiments

We developed a semantic search system and evaluated from two point of view,

effectiveness of using NLP in search, that is, accuracy of search, and efficiency of

our algorithm, which is expressed by search time. In the experiments for effective-

ness, we evaluated two types of data. First, we evaluated exact match retrieval in

our semantic search system with the queries and judgment of relevance created

by us. Next, in order to evaluate the raking retrieval and show applicability of

our semantic search system, we evaluated our system on the existing test col-

lections in biomedical area, the test collection of TREC Genomic Track. In the

experiments for the efficiency of our algorithm, we compared our system with

existing XML Databases in the point of search time, and show the efficiency of

our algorithm in detail. Target data of the experiments are the documents used

in MEDIE system, which are MEDLINE abstracts annotated with the results of

various NLP modules.

5.1 Evaluation for Effectiveness of Incorporating NLP into Search

In order to show the effectiveness by incorporating NLP into search in our seman-

tic search system, we evaluated our system with two types of data, our original

data and publically usable test collection. The target documents are the MED-

LINE abstract in both data. In the former data, the queries are created by a

biologist, and searched documents are judged whether the documents are relevant

to the documents by the biologist. On the other hand, in the latter data, the

queries and the judgment of relevant document are created by the participants

of conference, Text REtrieval Conference (TREC).

5.1.1 Effectiveness of Specifying Parsing Results

We evaluated the effectiveness of specifying the predicate argument structure

from the parser, which means the “subject-verb-object” relations by comparing

the accuracy of “keyword search” with that of “semantic search,” which executes

queries specifying predicate argument structure. Table 5.1 shows the queries

used in the experiments. These queries were created by biologists, and these

queries express relational concepts that biologists want to find. “something”

72

Query No. User input
1 something inhibit ERK2
2 something trigger diabetes
3 adiponectin increase something
4 macrophage induce something
5 something suppress MAP phosphorylation
6 something enhance p53 (negative)

Table 5.1: Queries for evaluating accuracy

Query Keyword search Semantic search
results time (first/all) precision # results time (first/all) precision

1 252 0.00s/ 1.5s 74/100 (74%) 143 0.01s/ 2.5s 96/100 (96%)
2 125 0.00s/ 1.8s 45/100 (45%) 27 0.02s/ 2.9s 23/ 27 (85%)
3 287 0.00s/ 1.5s 20/100 (20%) 30 0.05s/ 2.4s 23/ 30 (80%)
4 10698 0.00s/ 42.8s 14/100 (14%) 1559 0.01s/3014.5s 65/100 (65%)
5 87 0.04s/ 2.7s 34/ 87 (39%) 15 0.05s/ 4.2s 10/ 15 (67%)
6 1812 0.01s/ 7.6s 19/100 (19%) 84 0.20s/ 29.2s 73/ 84 (87%)

Table 5.2: Number of retrieved sentences, search time, and accuracy

indicates that any word can appear. The system output sentences containing

the relations of the query in a “semantic search,” and outputs the sentences

containing all words of the query in “keyword search.” In “semantic search,” the

system converts the query into a expression like

(> [sentence]

(& [word arg1=$subject arg2=$object base="verb"]

(& (> [phrase cat="np" id=$subject]

(> [word] subject))

(> [phrase cat="np" id=$object]

(> [word] object)))

in the same way as converting the queries in Table 5.1. At most, 100 sentences

were retrieved for each query, and the results of two types of search were merged

and shuffled. A biologist judged whether these sentences contain an expression

that represents all of the relations described in the query, and the accuracy was

measured by the judgment. Table 5.2 shows the precision attained by semantic

and keyword search. The results show that semantic search exhibited impressive

improvements in precision, thus indicating that specifying the predicate argument

structure is an effective way to retrieve relations in the document.

5.1.2 Effectiveness of Incorporating Various NLP Techniques in Search

Our search system is evaluated with respect to accuracy and speed on documents

which are annotated with various types of NLP modules described in the previous

chapter. Speed is indispensable for a real-time search system and accuracy the

73

Query No. User input
1 something inhibit ERK2
2 adiponectin increase something
3 TNF activate IL6
4 dystrophin cause disease
5 macrophage induce something
6 something suppress MAP phosphorylation

Table 5.3: Queries used in the experiment

(> [sentence]
(& (| [entity_name gena_id="GHS034354"]

[entity_name gena_id="GMM092596"])
[event_expression

event_type="Positive_regulation"]))

(> [sentence]
(& [event_expression

event_type="Positive_regulation"
arg1="$subject"]

(> [phrase id=$subject]
(| [entity_name gena_id="GHS034354"]

[entity_name gena_id="GMM092596"]))))

Figure 5.1: Queries of extended region algebra for Query 2-TE (top: keyword
search, bottom: semantic search)

need for more accurate search is the motivation of semantic search. That is, our

motivation for employing semantic search was to provide a device for the accurate

identification of relational concepts. In particular, high accuracy is desired in text

search from huge texts because users want to extract only relevance informations.

We varied two parameters in this experiments. One is specification of se-

mantic relations, and the other is the use of ontological identification by term

normalization. The effect by specifying semantic relations is evaluated by com-

paring the results of search without specification of semantic relations (“Keyword

Search”) and with the specification (“Semantic Search”). The former is a tradi-

tional search technique, in which the query is given to the framework as a set of

keywords and the results are searched by matching of the keywords in the query

and in documents. The latter is a new feature of our system, in which the query

contains not only a set of keywords but the relations among the keywords, and

the results are searched using the relations with which the documents are anno-

tated. The effect of using ontological identification is evaluated by comparing the

results of search with queries using keywords themselves and queries in which the

keywords are replaced with corresponding ontological identifiers in both keyword

search and semantic search. When we use the term ontology, the nominal key-

words in queries are replaced with ontological identifiers. When we use the event

74

Query Keyword search
No. # ans. time (first/all) precision
1-1 338 0.01/ 3.0 75/100 (75%)
1-2 576 0.02/ 3.8 60/100 (60%)
1-3 4965 0.01/ 8.6 16/100 (16%)
2-1 1527 0.01/ 3.6 33/100 (33%)
2-2 1355 0.01/ 3.6 20/100 (20%)
2-3 2226 0.01/ 4.0 31/100 (31%)
3-1 4 0.89/ 2.3 0/ 4 (0%)
3-2 485 0.01/ 8.2 6/100 (6%)
3-3 9376 0.11/ 39.9 10/100 (10%)
4-1 460 0.02/ 2.8 90/100 (90%)
4-2 714 0.03/ 4.6 61/100 (61%)
4-3 4839 0.19/ 23.4 12/100 (12%)
5-1 4070 0.05/ 20.9 12/100 (12%)
5-3 24492 0.40/185.1 17/100 (17%)
6-1 76 0.05/ 5.7 45/ 76 (59%)
6-3 1010 0.04/ 8.9 48/100 (48%)

Table 5.4: Number of retrieved sentences, retrieval time, and accuracy for Key-
word Search

expression ontology, verbal keywords in queries are replaced with event types.

Table 5.1.2 lists the queries used in the experiments. Words in italic indicates

a class of words: “something” indicates that any words can appear, and “disease”

indicates that any disease names can appear. These queries were selected by a

biologist, and express typical relational concepts that a biologist may wish to

find.

For example, Query 3 attempts to search sentences that mention the protein-

protein interaction “TNF activates IL6.” This query is converted into queries of

the region algebra given in Figure 5.1. The top query is for keyword search and

the bottom query is for semantic search. The query for keyword search only spec-

ifies the appearance of the three keywords, and the keywords are translated into

the ontological identifiers, “GHS034354,” “GMM092596” (for “adiponectin”) and

“Positive regulation” (for “increase”). The query for semantic search specifies the

appearance of the three keywords and the relation of the keywords is indicated

by the variables “$subject,” which means “GHS034354” or “GMM092596” is

the subject of “Positive regulation.” The class of words, such as disease in Ta-

ble 5.1.2, is translated into the class name in the similar way to the ontological

identifier, like [entity name type="disease"].

Table 5.1.2 and Table 5.1.2 shows the results of the experiments. The postfixes

of query numbers denote whether ontological identifiers are used. X-1 used no

ontologies, X-2 used only the term ontology and X-3 used both the term and

event expression ontology. Comparison of the results of X-1 and X-2 shows the

effect of using the term ontology, and comparison of the results of X-2 and X-

75

Query Semantic search
No. # ans. time (first/all) precision relative recall
1-1 189 0.05/ 3.0 98/100 (98%) 61/75 (81%)
1-2 290 0.09/ 6.4 86/100 (86%) 40/60 (66%)
1-3 1404 0.01/ 15.0 56/100 (56%) 10/16 (62%)
2-1 23 0.09/ 12.8 18/ 23 (78%) 2/33 (6%)
2-2 38 0.16/ 11.0 24/ 38 (63%) 1/20 (5%)
2-3 295 0.01/ 16.6 49/100 (49%) 6/31 (19%)
3-1 0 2.79/ 2.9 0/ 0 (-) 0/ 0 (-)
3-2 7 7.82/ 29.1 7/ 7 (100%) 1/ 6 (16%)
3-3 311 1.79/110.9 78/100 (78%) 5/10 (50%)
4-1 78 0.13/ 11.6 78/ 78 (100%) 16/90 (17%)
4-2 118 0.22/ 10.1 96/100 (96%) 22/61 (36%)
4-3 233 0.31/ 34.0 69/100 (69%) 4/12 (33%)
5-1 611 0.15/ 13.2 30/100 (30%) 4/12 (33%)
5-3 1691 0.36/288.0 16/100 (16%) 2/17 (11%)
6-1 34 0.09/ 14.6 30/ 34 (88%) 29/45 (64%)
6-3 389 0.06/ 16.7 76/100 (76%) 30/48 (62%)

Table 5.5: Number of retrieved sentences, retrieval time, and accuracy for Se-
mantic Search

3 shows the effect of using the event expression ontology. Since no ontological

expansion for terms for the query 5 and 6, the query 5-2 and 6-2 does not exist.

Accuracy is calculated by judgements of biologists. At most 100 results were

searched for each query, and the results of 6 queries, varied with keyword search

or semantic search and whether terms and event ontologies are used to expand

the queries, were shuffled to hide which query searches the results for biologists

who judged the results. The criterion of the judgements is whether the intended

information in the query are expressed in the results, that is, whether the results

contains the relation expressed in the query. The modality of the sentences

was not distinguished in the judgements, that is, the negation or certainty of

the relation is ignored. These criteria may be disadvantageous for the semantic

search because its ability to recognize the participants of relational concepts is

not evaluated.

We evaluated our framework with respect to accuracy with two metrics, pre-

cision and relative recall calculated from the judgements of a biologist. Precision

is calculated as ratio of the results judged relevant to the query in all results.

Relative recall is fraction of the correct search results returned by the semantic

search which are also found by the keyword search, against all the correct result

returned by the keyword search: |Skey∪Ssem|/|Skey|, where Skey is a set of correct

results searched in keyword search and Ssem is a set of correct results searched

in semantic search. Although relative recall is no the true recall, it suffices to

compare between keyword search and semantic search.

The results show that the semantic search exhibited impressive improvements

76

in precision, from 37% to 72%, 35 percentage points up on average, by the spec-

ification of semantic relations. The relative recalls are varied by queries, from

10 % to 70%, and the average is 38%. This results show that the precision was

increased significantly by specification of semantic relations with some recall de-

creases by the specification. This indicates that specification of semantic relation

is effective for searching relational concepts precisely.

Comparison among the results of queries X-1, X-2 and X-3 shows that the

ontology expansion exhibited impressive improvements in recall, that is, the ex-

pansion increased the number of search results with little deterioration in the

precision. For example, the keyword search without ontology expansion in Query

3 could not search correct results. Ontology expansion enable us to search more

results corresponds to the search aims by considering synonyms of “TNF” and

“IL6” and the relation of “activate” described by other expressions. Time to

search the first or all results shows the system is sufficiently fast as a human UI.

5.1.3 Evaluation on Public Test Collection

We evaluated our semantic search on the test collection constructed in TREC

Genomics Track, in order to show how our semantic search system can be applied

into general search task, in which the queries are written in natural language and

the search results are the documents relevant to the queries. We employed the

test collection in TREC Genomis Track for the experiments.

TREC Genomics Track

TREC Genomics Track, which ran from 2003 to 2007, is one of the tracks in Text

Retrieval Conference(TREC), which providing the infrastructure for large-scale

of text retrieval methodologies. The target area of the track is biomedical area.

We evaluated our framework on the test collection constructed from Ad Hoc

Retrieval Task on TREC 2004 Genomic Track [26] and TREC 2005 Genomic

Track [25]. The target document collection for the task is a 10-year subset of the

MEDLINE, from 1994 to 2003, which contains 4,591,008 abstracts in biomedical

area. The test collection contains 50 topics, which indicate “queries” in both

TREC 2004 and 2005, which derived by biologists as real information needs. In

TREC 2004, the topics consists 3 parts of text written in natural sentences, title

(abbreviated statement of information need), information need (full statement

of information need), and context (background information to place information

need in context). Figure 5.6 and 5.7 show a part of topics for TREC 2004. In

TREC 2005, the topics are categorized into 5 templates:

1. Articles describing standard methods or protocols for doing some sort of

experiment or procedure.

2. Articles describing the role(s) of a gene invoked in a disease.

77

Topic No. Type Query sentences

002 T Generating transgenic mice
N Find protocols for generating transgenic mice.
C Determine protocols to generate transgenic mice having a single copy of

the gene of interest at a specific location.

003 T Time course for gene expression in mouse kidney
N What is the time course of gene expression in the murine developing

kidney?
C Relevant articles describe genes involved in kidney development.

004 T Gene expression profiles for kidney in mice
N What mouse genes are specific to the kidney?
C What genes are expressed only in the mouse kidney and not in other

tissues?

005 T Protocols for isolating cell nuclei
N Articles are relevant if they describe methods for subcellular fractiona-

tion of nuclei.
C Laboratory preparations can be enriched for certain kinds of proteins if

the cellular compartment in which they reside is purified away from the
rest of the cell contents.

007 T DNA repair and oxidative stress
N Find correlation between DNA repair pathways and oxidative stress.
C Researcher is interested in how oxidative stress effects DNA repair.

011 T Carcinogenesis and hairless mice
N Find articles regarding carcinogenesis induced in hairless mice.
C Researching genes and proteins (pathways) common to DNA repair,

oxidative diseases, skin-carcinogenesis, and UV-carcinogenesis.

012 T Genes regulated by Smad4
N Find articles describing genes that are regulated by the signal transduc-

ing molecule Smad4.
C Project is to characterize Smad4 knockout mouse in skin (specifically

skin) to establish signaling network. Identify all Smad4 targets to com-
pare gene expression patterns of the knockout mouse to the normal
mouse.

014 T Expression or Regulation of TGFB in HNSCC cancers
N Documents regarding TGFB expression or regulation in HNSCC can-

cers.
C The laboratory wants to identify components of the the TGFB signaling

pathway in HNSCC, and determine new targets to study HNSCC.

021 T Role of p63 and p73 in relation to DNA damage
N Do p63 and p73 cause cell cycle arrest or apoptosis related to DNA

damage?
C DNA damage may cause cell cycle arrest or apoptosis. p63 and p73 may

play a role in mediating these sequelae of DNA damage.

025 T Cause of scleroderma
N Identify studies that include genome-wide scans and microarray analysis

in the investigation of scleroderma.
C New information about experiments and genes involved in scleroderma.

030 T Regulatory targets of the Nkx gene family members
N Documents identifying genes regulated by Nkx gene family members.
C The laboratory needs markers to follow Nkx family-member expression

and activity.

Table 5.6: Topics in TREC Genomic Track 2004, Title (T), Need (N) and Context
(C)

78

Topic
No. Type Query sentences

031 T TOR signaling in neurofibromatosis
N Reports that provide possible links between neurofibromatosis and TOR

signaling.
C TOR is a serine-threonine kinase in a pathway involved in the control

of cell growth and proliferation, and it is the target of the signaling
inhibitor rapamycin.

033 T Mice, mutant strains, and Histoplasmosis
N Identify research on mutant mouse strains and factors which increase

susceptibility to infection by Histoplasma capsulatum.
C The ultimate goal of this initial research study, is to identify mouse genes

that will influence the outcome of blood borne pathogen infections.

034 T Gene products of Cryptococcus important to fungal survival
N Articles reporting experiments allowing annotation of gene products of

Cryptococcus.
C Information needed to contribute to the development of a standardized

annotated database of Cryptococcus neoformans genome.

035 T WD40 repeat-containing proteins
N What is the function of proteins containing WD40 repeats?
C Need to understand the variety of functions that involve this domain.

038 T Risk factors for stroke
N Information concerning genetic loci that are associated with increased

risk of stroke, such as apolipoprotein E4 or factor V mutations.
C Candidate gene testing within a large Scottish case-control study of

genetic risk factors for stroke. Future research includes investigations
into other ethnically distinct populations.

039 T Hypertension
N Identify genes as potential genetic risk factors candidates for causing

hypertension.
C A relevant document is one which discusses genes that could be consid-

ered as candidates to test in a randomized controlled trial which studies
the genetic risk factors for stroke.

040 T Antigens expressed by lung epithelial cells
N To identify the antigens expressed by lung epithelial cells and the anti-

bodies available.
C Information gathering to design assays to determine the nature of donor

cells in tissues of chimaeric animals.

042 T Genes altered by chromosome translocations
N What genes show altered behavior due to chromosomal rearrangements?
C Information is required on the disruption of functions from genomic

DNA rearrangements.

050 T Low temperature protein expression in E. coli
N Find research on improving protein expressions at low temperature in

Escherichia coli bacteria.
C The researcher is not satisfied with the yield of expressing a protein in

E. coli when grown at low temperature and is searching for a better
solution. The researcher is willing to try a different organism and/or
method.

Table 5.7: Topics in TREC Genomic Track 2004 (cont.)

79

Query ID Gene Disease
110 Interferon-beta Multiple Sclerosis
111 PRNP Mad Cow Disease
112 IDE gene Alzheimer’s Disease
113 MMS2 Cancer
114 APC(adenomatous polyposis coli) Colon Cancer
115 Nurr-77 Perkinson’s Disease
116 Insulin receptor gene Cancer
117 Apolipoprotein E (ApoE) Alzheimer’s Disease
118 Transforming growth factor-beta 1 Cerebral Amyloid Angiopathy

(TGF-beta1) (CAA)
119 GSTM1 Breast Cancer

Table 5.8: Queries for Topic Type 2

3. Articles describing the role of a gene in a specific biological process.

4. Articles describing interactions (e.g., promote, suppress, inhibit, etc.) be-

tween two or more genes in the function of an organ or in a disease.

5. Articles describing one or more mutations of a given gene and its biological

impact or role.

For each topics, 10 sets of specific words for underlined words in template are

given. Figure 5.8 shows the list of specific words for Query Type 2. For example,

for the topic ID 110, “Interferon-beta” and “Multiple Sclerosis” are given as a

gene and a disease respectively. So the query becomes “Articles describing the

role(s) of a Interferon-beta invoked in a Multiple Sclerosis.”

For each topic, around 1,000 documents are judged whether the document

is relevant to the topic or not. The relevance has three levels, definitely rele-

vance, possibly relevant and not relevant. These relevance are annotated by the

participants of the conference.

Query Transformation

Because the topics in the TREC Data are written as natural language sentences,

we need to transform the topics into a set of queries in the form of region algebra

in order to evaluate our system on the TREC Genomics Track test collection.

We transformed these topics by hands, based on the results of NLP modules. We

first process the sentences by the same NLP modules used in the preprocess for

the target documents, and we constructed queries in the region algebra manu-

ally. The results of NLP modules mainly used to create queries are results from

the syntactic/semantic parser and the named entity recognizer. The queries are

created with focusing mainly on predicate-argument structure. The most basic

type of queries are words themselves and the results of named entity recognizer,

and the more structured queries contains on predicate-argument structure.

80

Filtering query

(> [MedlineCitation]
(& [entity_name facta_id="UMLS:C0002395"]

(| [entity_name uniprot_id="Q24K02"]
[entity_name uniprot_id="P14735"])))

Scoring queries
Query 1

[entity_name facta_id="UMLS:C0002395"]

Query 2

(| [entity_name uniprot_id="Q24K02"]
[entity_name uniprot_id="P14735"])

Query 3

(> [setence]
(& [GDA entity1=$gene entity2=$disease]

(& [entity_name id=$disease
facta_id="UMLS:C0002395"]

(| [entity_name id=$gene uniprot_id="Q24K02"]
[entity_name id=$gene uniprot_id="P14735"]))))

Figure 5.2: Queries for Topic 112

Evaluation Measure

We evaluated the result of ranking retrieval with MAP (Mean Average Precision),

which is used as a standard evaluation measure in the TREC community. The

average precision is calculated in the following formula.

AP (q) =
1
n

n∑
k=1

k

rk

where q is a query, n is the number of relevant documents for the query q, This

value expresses the average of precision at the rank where the relevant documents

appears. The MAP value takes an average of the average precision, that is,

MAP (Q) =
1
|Q|

|Q|∑
i=1

AP (qi)

where Q is a set of queries q1, q2, ..., q|Q|.

Experiments on TREC 2005 Test Collection

First, we evaluated our system in topics of TREC 2005. Figure 5.2 shows an

example of queries for Topic 112, ‘Articles describing the role of ‘IDE gene’ in-

volved in ‘Alzheimer’s Disease’. ” Since the articles relevant to the topic should

mention to ‘IDE gene’ and ‘Alzheimer’s Disease,’ we filtered out the documents

not including them by the Filtering Query in Figure 5.2. Thus the Filtering

81

Query for this topic type expresses the condition “Documents contains both the

target gene and the target disease.” Note that in the Filtering Query for topic

112, ‘IDE gene’ and ‘Alzheimer’s Disease’ are converted to the query on anno-

tations [entity_name] with the UniProt IDs for ‘IDE gene’ and UMLS IDs for

‘Alzheimer’s Disease,’ ‘Q24K02’ or ‘P14735’ and ‘C0002395’ respectively by us-

ing the dictionary constructed in advance. We used three queries to calculate a

score for this topic. First and second queries are the expansion of keywords ‘IDE

gene’ and ‘Alzheimer’s Disease’ respectively. The last query expresses the gene-

disease associations (GDA) between ‘IDE gene’ and ‘Alzheimer’s Disease,’ which

are recognized in advance and annotated to target documents as [GDA] annota-

tions. In the score calculation, Scoring Query 1, 2 and 3 are evaluated in each

document searched with Filtering Query, and the number of searched regions for

the queries are counted. The number of searched regions expresses the number

of appearances of synonymous expressions for ‘IDE gene’ and ‘Alzheimer’s Dis-

ease’ for Scoring Query 1 and 2, and expresses the number of sentences including

the expression of gene-disease association between ‘IDE gene’ and ‘Alzheimer’s

Disease’ for Scoring Query 3. The score for each document are calculated by the

formula,

S(D, q1, ..., qn) =
n∑

i=1

RIDF (qi) ·
rfqi · (k1 + 1)

rfqi + k1 · (1 − b + b · |D|
DLave

)

where rfqi is the number of regions matching to the query qi in the document

D, k1 and b are parameters, (we used k1 = 2.0 and b = 0.75 in the experiments),

|D| is the length of the document D, DLave is the average length of documents

in the collection and RIDF (qi) is the relative IDF value for the query qi, which

is defined as

RIDF (qi) = log
(df(&qi1

...qin) − dfqi) + 0.5

dfqi + 0.5
.

where dfqi is the number of documents which contain at least one region matching

the query qi in the document set, and qi1 ...qin are the sub-queries of qi in Scoring

Queries. The queries for other topics of topic type 2 were constructed by the

same way. with the queries for Topic 112 in the above examples except for the

target gene and disease expanded with the the UniProt IDs and UMLS IDs. In

this type of topics, we narrowed down the documents by the Filtering Query

expressing the condition and we used 3 Scoring Queries, 1) a query for the target

gene, 2) a query for the target disease and 3) a query for gene-disease association.

For other topic types, we used queries described in the following: For topic

type 1, “Articles describing standard methods or protocols,” we used subject-

verb-object relations from the parsing results and keywords expansions with NER

result when the topic include a gene name or a disease name. Figure 5.3 shows an

example of queries for Topic 107, “Articles describing about ‘normalization pro-

cedures that are used for microarray data’. ” Scoring Queries 1, 2 and 3 expresses

82

Filtering query

(> [MedlineCitation]
(& (| [word base="normalization"]

[word base="normalize"])
[word base="microarray"])))

Scoring queries
Query 1

(- [word base="microarray"] [word base="datum"])

Query 2

(| [word base="normalization"] [word base="normalize"])

Query 3

(| [word base="method"]
(| [word base="procedure"]

(| [word base="technique"]
(| [word base="protocol"] [word base="process"]))))

Query 4

(> [sentence]
(& (| [word cat="V" base="normalize" arg2=$data]

(& (> [phrase id=$n]
[word base="normalization"])

[word cat="P" base="of" arg1=$n arg2=$data]))
(> [phrase id=$data cat="NP"]

(& [word base="microarray"] [word base="datum"]))))

Figure 5.3: Queries for Topic 107

the keywords, and Query 4 specifies the expression such as ‘normalize microarray

data’ or ‘normalization of microarray data’ using the parsing results. The re-

lation between ‘normalize’ or ‘normalization’ and ‘microarray data’ is expressed

with the variable $data. For each topic in topic type 3, “Articles describing the

role of gene in a specific biological process,” because currently there is no annota-

tions in the database that directly expressed the notion of ‘biological process,’ we

used various types of annotations such as the results of parsing, NER, GDA and

event recognizer to specify a biological process. For example, Figure 5.4 shows

an example of queries for Topic 120, “Articles describing the role of ‘NM23’ in a

‘tumor progression’.” Filtering Query show the condition that “Documents con-

tains both ‘NM23’ and ‘tumor’.” The relation ‘NM23’ and ‘tumor’ are expressed

in two types of annotations, [GDA] (Scoring Query 3) and [event_expression]

(Scoring Query 4). For topic type 4, “ Articles describing interactions between

two genes in the function of an organ or in a disease,” we constructed a query ex-

pressing the interactions between the target genes with results of event recognizer

with additional keywords of ‘function of organ’ and ‘disease’ expanded with NER

83

Filtering query

(> [MedlineCitation]
(& (| [entity_name uniprot_id="P15531"]

[entity_name uniprot_id="P15532"])
(| [word base="tumor"]

[entity_name facta_id="UMLS:C0006826"])

Scoring queries
Query 1

(| [entity_name uniprot_id="P15531"]
[entity_name uniprot_id="P15532"])

Query 2

(| [word base="tumor"]
[entity_name facta_id="UMLS:C0006826"])

Query 3

(> [sentence]
(& [GDA entity1=$gene entity2=$disease]

(& [entity_name id=$disease
facta_id="UMLS:C0006826"]

(| [entity_name id=$gene uniprot_id="P15531"]
[entity_name id=$gene uniprot_id="P15532"]))))

Query 4

(> [sentence]
(& [event_expression event_type="Positive_regulation"

arg1=$1 arg2=$2]
(& (> [phrase id=$1]

(| [entity_name uniprot_id="P15531"]
[entity_name uniprot_id="P15532"]))

(> [phrase id=$2]
(| [word base="tumor"]

[entity_name facta_id="UMLS:C0006826"])))))

Figure 5.4: Queries for Topic 120

results. For topic type 5, “ Articles describing mutations of a given gene and its

biological impact,” we used the results of event recognizer expressing ‘mutation’,

and added expanded keywords in ‘biological impact.’

Table 5.9 shows the mean average precision (MAP), precision in top 10 results

and recall averaged over each topic type. MAP and precision are calculated

ignoring the documents not judged in the test collection. Recall is calculated in

documents searched by Filtering Query. When the number of articles searched

by Filtering Query is less than 10, the total precision is used as P10. The results

show that MAP of the proposed framework is higher than average MAP of the

runs in TREC 2005 Genomics Track in topic type 1, 2 and 3, but lower in topic

84

Topic Topic Topic Topic Topic
type 1 type 2 type 3 type 4 type 5

MAP 0.190 0.301 0.295 0.138 0.179
P10 0.480 0.530 0.470 0.400 0.300
Recall 0.405 0.434 0.418 0.313 0.323
searched documents 1287 291 738 467 463
judged documents 145 162 165 83 147
Judged percentage 0.445 0.834 0.510 0.748 0.630
Ave. MAP in TREC 2005 0.160 0.236 0.202 0.193 0.192
Ave. P10 in TREC 2005 0.368 0.428 0.377 0.295 0.315

Table 5.9: Average MAP, precision and recall for types of topics

type 4 and 5. The precision in top 10 results is significantly higher than that

of runs in TREC 2005. One of reasons for low MAP is the Filtering Query. As

shown in Table 5.9, the recall of the Filtering Queries is lower than 0.5 for all

topic types, that is, more than half of relevant documents are filtered out with

the Filtering Queries. For example, in Topic 111 “Articles describing the role

of ‘PRNP’ involved in ‘Mad Cow Disease’, ” the recall for search with Filtering

Query “Documents containing both ‘PRNP’ and ‘Mad Cow Disease’ ” is only

0.163 despite a query expansion with the result of named entity recognition.

Some of the relevant results contain other ‘prion diseases’ such as ”Creutzfeldt-

Jakob disease,” which is similar disease with ”Mad Cow Disease,” or does not

contain the corresponding disease name. Our current system have annotations

which enables the system to regard different expressions of a disease or a gene as

the same object, but does not contain annotations for ‘knowledge’ such that these

different diseases can be considered as the same disease. In order to satisfy both of

the search speed and the accuracy, improvement of Filtering Query with addition

of other types of annotations are required to search more relevant documents in

the filtering step in order to improve the accuracy.

Table 5.10 shows MAP for topics of topic type 2 with different types of queries

used in scoring. The queries Qgene, Qdisease and QGDA correspond to Scoring

Query 1, 2 and 3 in Figure 5.2 respectively. This results show that calculating

score considering not only the expanded keywords but the structured relation

of keywords, GDA in this case, is effective to improve the accuracy of retrieval.

However, the MAP scores of the results by using all Scoring Queries are lower

than that in scoring without GDA query in some queries. We suspect this is

caused by the fact that the implicit assumption made in BM25 scoring, namely

the independence of the keyword occurrence, does not hold in our case. For

example, when a document includes a gene name and a disease name in a topic

definition, the probability that the document also includes a [GDA] annotation is

generally higher than one under the independence assumption.

85

Qgene
√ √ √ √

Qdisease
√ √ √ √

QGDA
√ √ √ √

110 0.008 0.012 0.008 0.008 0.015 0.015 0.008
111 0.031 0.034 0.032 0.033 0.033 0.031 0.032
112 0.388 0.278 0.356 0.388 0.139 0.248 0.373
113 0.460 0.460 0.460 0.375 0.466 0.375 0.416
114 0.295 0.292 0.292 0.290 0.310 0.288 0.310
115 0.200 0.200 0.200 0.200 0.200 0.200 0.200
116 0.150 0.158 0.158 0.145 0.121 0.155 0.112
117 0.695 0.711 0.711 0.669 0.701 0.655 0.648
118 0.000 0.000 0.000 0.000 0.000 0.000 0.009
119 0.778 0.775 0.775 0.782 0.719 0.779 0.778
AVR 0.301 0.292 0.297 0.297 0.270 0.275 0.287

Table 5.10: MAP for topics of topic type 2 with different types of Scoring Queries

Experiments on TREC 2004 Test Collection

In order to capture the effectiveness of specification of NLP annotations in detail,

we conducted the experiments of the TREC 2004 test collection. We selected 20

topics from the whole 50 topics in TREC 2004 test collection by the criteria

that specification of annotations seems to be effective for accuracy, that is, the

relation which can be captured by using the parsing result, such as the subject-

verb-object relation or modification relation of nouns, is written in the topic

sentences directly. For example, in the topic 002, the relation ‘the object of

the verb “generate” is “mice” ’ and ‘ “transgenic” modify the noun “mice”,’ is

directly written in TITLE and NEED field.

In order to see the effectiveness of specifying each type of annotations, we

compared five types of query set, All, Keyword + NE, Keyword, Structure and

Structure+NE. The query set All is a base set of queries created by hand using the

topic and the results from NLP modules. The query set Keyword is a set of basic

form of keywords. The query set NE is a set of results from the named entity

recognizer. Keyword + NE uses both the queries in the Keyword query set and the

NE query set. The query set Structure is a set of queries containing the structure,

which is mainly the predicate-argument structure from the syntactic/semantic

parser. Structure + NE uses both the queries in the Structure query set and the

NE query set. In this definition, the query set All is the same with the query set

Keyword + NE + Structure.

Figure 5.5 shows an example of queries for the topic 4. The original sentences

in topic 4 are followings:

TITLE Gene expression profiles for kidney in mice

NEED What mouse genes are specific to the kidney?

86

Query 1
[word base="gene"] Query 2
[word base="expression"] Query
3
[word base="profile"] Query 4
[word base="kidney"] Query 5
[word base="mouse"] Query 6

(| [entity_name facta_id="UMLS:C0496892"]
[entity_name facta_id="UMLS:C0496927"]
[entity_name facta_id="UMLS:C0812426"])

Query 7

(| [entity_name type="species" ncbi_id="10095"]
[entity_name type="species" ncbi_id="10090"])

Query 8

(> [sentence]
(& [word base="gene" arg1=$a1]

[word base="expression" arg1=$a2]
(> [phrase id=$a1]

(> [phrase id=$a2] [word base="profile"]))))

Query 9

(> [sentence]
(& [word base="in" arg2=$arg2 arg1=$arg1]

(> [phrase id=$arg2] [word base="mouse"])
(> [phrase id=$arg1]

(| [word base="kidney"]
[entity_name facta_id="UMLS:C0496892"]
[entity_name facta_id="UMLS:C0496927"]
[entity_name facta_id="UMLS:C0812426"]))))

Query 10

(> [sentence]
(& [word base="for" arg2=$arg2 arg1=$arg1]

(> [phrase id=$arg2]
(| [word base="kidney"]

[entity_name facta_id="UMLS:C0496892"]
[entity_name facta_id="UMLS:C0496927"]
[entity_name facta_id="UMLS:C0812426"]))

[word base="gene" arg1=$a1]
[word base="expression" arg1=$a2]
(> [phrase id=$arg1]

(> [phrase id=$a1]
(> [phrase id=$a2] [word base="profile"])))))

Query 11

(> [sentence] (& [word base="mouse" arg1=$a] (
> [phrase id=$a] [word base="gene"])))

Figure 5.5: Queries for Topic 004

87

Topic All Keyword Keyword Structure Structure
No. +NE +NE
002 0.1584 0.155 0.1718 0.1463 0.1478
003 0.1884 0.1817 0.123 0.1717 0.2521
004 0.0448 0.044 0.0566 0.0251 0.0409
005 0.1883 0.1761 0.1761 0.073 0.073
007 0.4023 0.4117 0.3461 0.243 0.2662
011 0.4603 0.4579 0.2906 0.3446 0.459
012 0.7647 0.7637 0.3002 0.349 0.8334
014 0.0283 0.0284 0.0232 0.0222 0.0281
021 0.5409 0.5305 0.1083 0.2238 0.5632
025 0.0411 0.0421 0.0256 0.0279 0.0407
030 0.156 0.1591 0.1591 0.1526 0.1526
031 0.2216 0.2193 0.2475 0.1798 0.1768
033 0.3824 0.385 0.0603 0.205 0.3219
034 0.1066 0.1083 0.0665 0.0398 0.0468
035 0.7346 0.7337 0.7258 0.5479 0.7249
038 0.3593 0.3712 0.4563 0.3386 0.3059
039 0.5987 0.5902 0.4146 0.2956 0.3634
040 0.3769 0.3957 0.3957 0.2303 0.2303
042 0.7487 0.7513 0.7336 0.6849 0.7059
050 0.3399 0.325 0.335 0.488 0.4685
AVR 0.3421 0.3415 0.2608 0.2395 0.3101

Table 5.11: MAP for topics in TREC 2004

CONTEXT What genes are expressed only in the mouse kidney and not in

other tissues?

Queries from the Query 1 to Query 5 are keyword-based queries. These key-

words are selected from the words in original sentences by using the stopword

list. The stopword list consist of the function words, such as prepositions, auxil-

iary verbs and pronouns, which are regarded as stopwords in general, and words

used to describe search requests, such as “search,” “find,” “relevant,” “describe,”

“article,” and “document.” Query 6 and Query 7 is a query created from the

results from named entity recognizer. Query 6 is a expansion of “kidney” by IDs

in UMLS, and Query 7 is a expansion of “mouse.” The other queries are cre-

ated by using the result from the parser. Query 8 is a query searching sentences

containing “gene expression profile.” Since the query expresses the modifica-

tion relation that “expression” modifies “profile” and “gene” modifies “profile”

modified by “expression”, the search results by this query is not necessarily ex-

act string “gene expression profile”, but other words can be appear between the

words if the modification relation in the query is retained. Query 9 expresses

sentences containing the expression“kidney in mouse.” Synonyms of “kidney”

and “mouse” can be retrieved by this query since these words are expanded with

the results of named entity recognizer. The results also are not necessarily ex-

88

act string “kidney in mouse” as the same with the case of Query 8. Query 10

searches sentences containing “gene expression profiles for kidney.” “kidney” is

expanded with synonyms, and the result also are not necessarily exact string as

the same with the above queries. Query 11 expresses sentences containing the

relation “mouse” modifies “gene”, the simplest result of this queries is the sen-

tence containing the string “mouse gene.” In the case of these queries, five types

of query set in the experiments is defined as follows:

All 1,2,3,4,5,6,7,8,9,10,11

Keyword 1,2,3,4,5

Keyword+NE 1,2,3,4,5,6,7

Structure 8,9,10,11

Structure+NE 6,7,8,9,10,11

Table 5.11 shows the result of experiments, MAP value for each selected

topic, on the TREC 2004 test collection. The results show that specification of

results from NLP modules in retrieval is effective, especially the result from named

entity recognizer is effective. However, the accuracy decreased by incorporating

annotations in ranking retrieval in some queries.

5.2 Evaluation of Search Algorithm

In the previous section, we evaluated our system as the whole semantic search sys-

tem, that is, in the point of improvement of accuracy by using NLP technologies.

In this section, we evaluated in the point of efficiency of algorithm in our search

system, that is, the speed of search by using our algorithm. We compared our

system with the existing XML Databases, and the effectiveness of our algorithm

for searching regions for the query containing variables.

5.2.1 Search Speed Compared with XML Database

We evaluated our framework in point of efficiency. The efficiency search time is

compared with that of other XML databases, MonetDB [7] and eXist [46]. Since

these XML databases cannot be applied to the data used in the MEDIE system,

which is not a well-formed XML, that is, the annotations from NLP modules

intersect one another in the documents, we used the documents annotated with

only the paring results in the experiments.

Table 5.12 show the search times for three queries in our system, and existing

XML databases, MonetDB/XQuery [7] and eXists [46]. Our(Cache) denotes that

search time of our system when the data concerning to the query is cached on

memory. We indexed 150,000 MEDLINE articles in all systems for this experi-

ment. We converted the queries into a form of region algebra like

89

Search time in each # abstracts
System 30,000 60,000 90,000 120,000 150,000

Query subject:p53 verb:activate(b)
Our(Cache) 0.018s 0.036s 0.047s 0.065s 0.082s

Our 2.085s 4.233s 6.680s 8.978s 10.711s
MonetDB 6.409s 21.728s 32.334s 62.431s 83.044s

eXist 10.996s 24.841s 39.398s 53.137s 68.417s
Query verb:activate(b) object:p53
Our(Cache) 0.016s 0.030s 0.042s 0.059s 0.073s

Our 2.164s 4.182s 6.561s 8.903s 10.449s
MonetDB 6.431s 20.354s 30.601s 60.011s 83.349s

eXist 12.729s 25.537s 39.118s 52.758s 68.989s
Query verb:cause(b) object:cancer
Our(Cache) 0.058s 0.114s 0.164s 0.219s 0.278s

Our 8.175s 11.794s 21.087s 27.083s 40.152s
MonetDB 7.871s 26.063s 36.396s 56.050s 90.315s

eXist 17.171s 35.631s 61.673s 84.562s 119.122s

Table 5.12: Search time of three systems

Query XQuery
verb:activate(b), for $s in //sentence[.//word = “p53”]
subject:p53 [.//word[@base=“activate”]],

$w in $s//word[@base=“activate”],
$p in $s//phrase[.//word = “p53”]

[@id=$w/@arg1]
return $s

verb=“cause” for $s in //sentence[.//word = “cancer”]
(b), [.//word[@base=“cause”]],
object=“cancer” $w in $s//word[@base=“cause”],

$p in $s//phrase[.//word = “cancer”][@id=$w/@arg2]
return $s

Table 5.13: A Query converted to XQuery form

(> [sentence]

(& [word arg1=$subject arg2=$object base="verb"]

(& (> [phrase cat="np" id=$subject]

(> [word] subject))

(> [phrase cat="np" id=$object]

(> [word] object)))

for the experiments in our framework, and also converted the query into XQuery

form as shown in Table 5.13 for two XML Databases. (In the experiments on

eXist, we used the “contain” function to express that tag regions contain a word.)

The results showed that the search time of all systems was nearly linear to the

number of abstracts, and that our system could search documents in a shorter

90

Query descending ascending
verb:cause(b), object:cancer 6.418s 6.182s
verb:cause(b), object:cancer 16.363s 11.433s
+modifier:not
subject:stress, object:cancer 10.594s 8.426s
verb:interact with(b), object:CD4 2.494s 1.859s

Table 5.14: Search time by changing order of queries

Topic No. Our Baseline
002 48.675s 120.241s
003 25.317s 151.619s
004 24.952s 116.457s
005 24.350s 134.712s
007 18.551s 101.974s
011 20.087s 103.500s
012 18.276s 48.644s
014 20.021s 64.642s
016 23.050s 106.542s
021 14.998s 81.388s

Topic No. Our Baseline
025 22.079s 93.054s
030 24.968s 153.753s
031 17.556s 69.831s
034 15.545s 77.966s
035 19.021s 71.394s
038 23.873s 115.908s
039 31.125s 37.294s
040 27.714s 142.869s
042 21.630s 116.678s
050 21.990s 142.704s

Table 5.15: Search Time by using Our Algorithm and Baseline Algorithm Search-
ing All Combinations

amount of time than existing XML databases in our tasks.

5.2.2 Effectiveness of Algorithm

To see the effectiveness of our algorithm of searching regions, especially for a query

containing variables, we compared search time by using our algorithm with that

by a simplest baseline algorithm, which searches all regions of sub-queries and

creates combination of all regions. For example, when the query is

(> [sentence]

(& [word arg1=$subject base="activate"]

(& (> [phrase id=$subject]

(> [word] "p53"))

the algorithm searches all regions of the following sub-queries in order to create

all combination of regions.

[word arg1=$subject base="activate"]

[phrase id=$subject]

[word]

"p53"

After the algorithm creates all combinations, it retrieves combinations in which

values for the same variables are idential as result regions. In the example of the

91

above query, the algorithm retrieves combinations in which values for the variable

$subject in the first and second queries are identical. In the experiments, we

used the queries in the TREC 2004 test collection in Table 5.6 and Table 5.7,

converted to the expression of region algebra. Target documents are the set of

documents which have relevance judgement in the TREC 2004 test collection.

Table 5.15 shows search time by using our algorithm and that by searching all

combinations. The result show that our algorithm is very efficient compared

with the algorithm creating all combinations. In the case of this experiment,

since the number of the annotations [phrase] from the parser was very huge,

our algorithm, which skips annotations which are not related to the target query,

was very effective.

5.2.3 Effectiveness of Ordering Sub-Queries

To see the effectiveness of ordering value determining queries, we compared our

system with the system in which the value determining queries are evaluated

in the reverse order, or in the descending order of estimated frequency. Table

5.14 illustrates the search time of the two systems. When all queries for the tag

regions containing variables are conditioned with some words in the query, there

is no large difference between the search time of two systems. However, when

some queries for the tag region containing variables are not conditioned with

any words e.g. [phrase id=$vp0 lex_head=$verb], such queries are evaluated

first. Then, the search time becomes longer because the algorithm has to search

almost all of the tag regions matching the query.

5.3 Discussion

5.3.1 Annotations

In our semantic search system, we annotated the documents with large amount of

annotations for NLP modules, but it seems to be too many annotations to retrieve

documents for querying only “subject-verb-object” relation. In the example of

data in Figure 5.6, the “subject-verb-object” search system do not need the phrase

tag of ‘id=“2”,’ because this phrase does not correspond to the “subject-verb-

object” relation. In the same reason, the phrase tags whose id number is 2, 4, 5,

7, 8, 11, 13, 14 and 17 can be eliminated. the phrase tags whose id number is

2, 4, 5, 7, 8, 11, 13, 14 and 17 can be eliminated because these phrases does not

correspond to the “subject-verb-object” relation. Furthermore, the attributes

‘head’ and ‘lex head’ also can be eliminated in the same reason. By eliminating

such tags and attributes, the size of data will decrease, and the search time will

be also reduced.

But our system supports not only the “subject-verb-object” retrieval but also

other type of queries, and some users will use these annotation in some queries and

92

<sentence>
<phrase id="0" cat="S" head="4" lex_head="6">
<phrase id="1" cat="NP" head="2" lex_head="3">
<phrase id="2" cat="NP" head="3" lex_head="3">
<word id="3" pos="NN" cat="NP" base="p53">p53</word>

</phrase>
</phrase>
<phrase id="4" cat="VP" head="5" lex_head="6">
<phrase id="5" cat="VP" head="6" lex_head="6">
<word id="6" pos="VBZ" cat="VP" base="is" arg1="1" arg2="7">
is
</word>

</phrase>
<phrase id="7" cat="VP" head="8" lex_head="9">
<phrase id="8" cat="VP" head="9" lex_head="9">
<word id="9" pos="VBN" cat="VP" base="phosphorylate"

arg2="1" arg1="-1" arg3="10"
rel_type="phosphorylation">

phosphorylated
</word>

</phrase>
<phrase id="10" cat="VP" head="11" lex_head="12">
<phrase id="11" cat="VP" head="12" lex_head="12">
<word id="12" pos="TO" cat="VP" arg1="1" arg2="13">
to
</word>

</phrase>
<phrase id="13" cat="VP" head="14" lex_head="15">
<phrase id="14" cat="VP" head="15" lex_head="15">
<word id="15" pos="VB" cat="VP" base="activate" arg1="1"

arg2="16">
activate

</word>
</phrase>
<phrase id="16" cat="NP" head="17" lex_head="18">
<phrase id="17" cat="NP" head="18" lex_head="18">
<word id="18" pos="NN" cat="NP" base="cd25" arg1="1">
CD25

</word>
</phrase>
</phrase>

</phrase>
</phrase>

</phrase>
</phrase>

</sentence>

Figure 5.6: Example of XML data

93

<phrase id="50" cat="NP" head="53" lex_head="54">
<phrase id="51" cat="NP" head="52" lex_head="52">

<word id="52" pos="NN" cat="NP" base="colon"
mod="53">

colon
</word>

</phrase>
<phrase id="53" cat="NP" head="54" lex_head="54">

<word id="54" pos="NN" cat="NP" base="cancer">
cancer

</word>
</phrase>

</phrase>

Figure 5.7: Example of data which express “modification” in in-line XML

new valuable queries will be constructed by combining two types of information

when other type of information is annotated to the same document. For example,

when users want to search sentences containing “colon cancer”, users can send a

query

(> [sentence] (& colon cancer))

which expresses sentences containing both “colon” and “cancer.” But users can

also specify the relation ‘ “colon” modifies “cancer” ’ by a query like

(> [sentence]

(& [word base="colon" mod=$mod]

(> [phrase id=$mod] cancer))

because such relation is expressed by “mod” attribute in the data as shown in

Figure 5.7.

5.3.2 Scalability

As shown in the experiments, search time in our system is linear to the number of

documents and complexity of query, that is, the number of operators in the query.

In the case of the exact match retrieval, since the system filters the documents by

using the keyword-based queries, the number of documents in which a structured

query is evaluate is the minimum document frequency in the words appeared in

the structured query. In the case of the ranking retrieval, since the idf value

for structured queries is calculated, the system need to search all documents in

which the words in the query appear. By calculating the df values in advance

or estimating the idf values for the structured queries based on the values which

94

can be calculated preliminary, such as df or tf values of words, the system will

calculate ranking of document efficiently.

Search time will be reduced by parallelization or decentralization of algorithm

and indices, which is generally used in many search systems. For the exact match

retrieval, the search process can be parallelized easily by separating regions in

which each parallelized process searches. The search algorithm can be separated

into two steps, the document search step, in which the algorithm searches doc-

uments by using the keyword-based queries, and the structured search step, in

which the algorithm searches regions matching to the structured queries. Since

the former step is only a keyword-based search, the search process can be paral-

lelized by existing method for keyword-based search. The latter step also can be

parallelized easily since the process to search matching regions can be executed

independently in each document searched in the former step. Moreover, since the

latter step can be executed as long as the target documents searched, the former

step and the latter step will be also parallelized. For the ranking retrieval, the

calculation of idf value for structure queries is needed in the current algorithm,

that is, the algorithm have to search whole database to count the document fre-

quency of the regions matching to the structure query. Pallarelization of search

process is very effective for the current algorithm of the ranking retrieval. De-

centralization of search process also can be applied to our framework easily. The

index structure of our search framework is very simple, which is the inverted in-

dex of positions for words, tags and their attributes on the assumption that the

documents are expressed as the stream of characters. However since the search

process can be evaluated independently in each document, the indices, the list of

positions, can be separated unless the unit of documents is broken.

The index size is reduced in comparison with original documents size. In this

experiments, as is explained above, we create indices for all annotated information

in the results from NLP modules. However the index size can be reduced by

eliminating the annotated information in advance which is never used in search

process.

5.3.3 Evaluation of Our Framework on TREC Test Collection

Currently, there is no test collection for semantic retrieval which directly matches

to the scope of our framework. Although the INEX provides the test collections

for XML retrieval, these test collections are different from the scope of our frame-

works because the text is structured by document structure, such as chapter, sec-

tion, title and author and so on. The target of our system is a set of documents

containing more detailed structure annotated with results of NLP modules, such

as syntactic/semantic parser and named entity recognizer and so on. In order

to evaluate the our framework in existing test collections, we used test collection

of TREC Genomic track since the target data of the test collection is the same

95

with the target data of our MEDIE system and some of the search topic is the

same with the search topic in our system, such as search of the relation between

a gene and a disease.

The TREC test collection is constructed by using keyword-based search sys-

tem. First, the participants of TREC competition retrieved documents from a

document set by these own retrieval system, and the result documents are col-

lected. The collected documents are distributed to the participants and then they

assign a relevance judgement to documents whether a document is relevant to

the topic or not.

For the topics in the TREC test collection, which are written as natural

language sentences, we needed to convert the sentences in topics into the query for

our search framework. We applied NLP modules which is also applied to target

documents to the topic sentences, and construct structured queries using the

results from NLP modules by hand. Since the queries are constructed by hand,

comparison of accuracy in this experiments to that of search systems which join

the TREC competition means little. However, automatic construction of queries

effective to accuracy of search from the natural language sentences is very difficult.

Structured queries can be constructed straightforwardly by using the NLP results,

for example, words in the query are expanded by using the results from the

named entity recognizer or the structure of queries is constructed from the parsing

result, especially predicate-argument structure. But the queries constructed by

such process contains many meaningless queries for searching documents which

contains the information which users would like to search. Determination of the

importance of queries based on the analysis of sentence or elimination of such

meaningless queries is very advanced task. As shown in the experimental results

on the test collection in TREC 2004 (Table 5.11), even the queries created by

hands decrease accuracy in some queries. However, when topic sentences are

converted to queries automatically in high accuracy, we will be able to evaluate

our framework not only in the TREC test collection, but in other task such as

Question Answering.

In our current system including NLP modules used to annotate text, it is

difficult to specifying the relation over sentence boundary, such as anaphoric re-

lation, since the annotation of the corresponding NLP module does not exist.

When the information need written in topics is expressed in multiple sentences,

the specification of structure such as the result from the parser is not effective.

However, the experimental results show a certain amount of possibility of accu-

racy improvement by using the result of NLP modules.

5.3.4 Search Accuracy and Results from NLP modules

The experimental results on the test collection in TREC 2004 (Table 5.11) shows

that the results of named entity recognition largely improve the accuracy of re-

96

trieval when compared to keyword search. This is the same with the traditional

query expansion in keyword based search. The documents not containing origi-

nal words in topics but containing the different expression of the object in topic

are retrieved by the expansion with the results of named entity recognition. The

difference between traditional query expansion and our expansion it that the

traditional methods expand only queries, but our framework expands not only

queries but also documents by annotating them with the results from name entity

recognizer. By expanding the documents, the matching of expanded queries and

documents becomes easy by matching the system only matches the expanded

form of words in queries and documents.

The specification of predicate argument structure is effective in some queries.

Especially, specification of modification relation between the words is effective.

These queries increase the score of documents containing the words and the mod-

ification relation among the words, which cannot be captured in the traditional

keyword-based retrieval.

In the case of specification of more complex structure, such as the subject-

verb-object relation by predicate argument structure, when the document con-

tains the relation the document is relevant the original topics in high probability.

But the number documents matching to such queries is very small or zero. For

example, in the case of the subject-verb-object relation, documents do not match

to the query because the verb is expressed in different verbs whose meaning is

similar to the query verb, or the relation itself is expressed in different expression

to predicate argument structure, such that the relation is described by verbal

noun or the relation is described across multiple sentences. Although some ex-

pressions can be resolved by the result of the event recognizer, these description

variation of relation is beyond the current system since the expansion for such

variation cannot be produced by results of NLP modules in current system. In

some queries, the specification of the structure decreases accuracy. When the

queries used in search is not related to the central theme of topics, the system

may wrongly increase score of irrelevant documents. Therefore, in order to search

documents in high accuracy for the information need written in natural language

sentences, the system has to recognize the important part of the information

need, and determine the importance of queries in the input sentences separately

from the importance calculated based on the frequency in target documents. This

types of recognition is beyond the current framework.

97

Chapter 6

Conclusion

This thesis proposed a semantic search system incorporating various NLP sys-

tems. The semantic search system is constructed based on a search framework

for tag-annotated textbases. We constructed a search framework for documents

in which text are annotated with various types of annotations, such as results

from NLP modules or manual annotations. In order to search documents using

these annotations, we extended the framework of region algebra and construct

an algorithm to search over annotations. In order to apply region algebra into

documents with annotations from NLP systems, we extended the region algebra

and its search algorithm to deal with the nested annotations properly. Moreover,

we incorporated variables into the region algebra and the efficient algorithm to

calculate value matching, in order to search relations that annotations refer an-

other annotations, which is used to represent the relationships among words,

such as “subject-verb-object” relations from a syntactic/semantic parser. We

also proposed a method for raking retrieval using annotated informations. We

incorporated dependency among queries into Binary Independent Model, which

is a traditional probabilistic model for keyword-base search on the assumption

that no dependency exists among words.

We constructed a semantic search system, MEDIE, for the a set of paper

abstracts in biomedical area, the MEDLINE databases. The target documents

of the MEDIE system are annotated with the annotations from several NLP

modules, such as paring, named entity recognition, event recognition and GDA

recognition, and construct indices for search across these annotations. In the

experiments, we evaluated our system on our own data and publically usable test

collection, which is created in TREC Genomic Tracks. We showed the effective-

ness of incorporating NLP systems into search systems. The expansion of terms

with the result from named entity recognizer is especially effective in the current

system, but the specification of NLP results in ranking retrieval decreases the

accuracy for some queries.

However, several functionalities are lacking in the current framework. One

of the future works is an estimation of weighting for ranking retrieval. In the

current framework, the IDF values for structured query is calculated on the

98

fly. Since the DF values for all variation of structured queries cannot be cal-

culated in advance, unlike the DF values for words, we will need to estimate

the DF values for structured queries by using values for words. Another is the

automated construction of queries from natural language sentences. In the ex-

periments, we constructed queries from natural language sentence manually, and

we showed a certain amount of effectiveness of using annotations of NLP results

in retrieval. However, the system should recognize users’ search intention from

the input sentences to the system and create effective queries automatically for

searching information which matches the users’ request.

99

References

[1] Genia sentence splitter. http://www-tsujii.is.s.u-tokyo.ac.jp/ y-

matsu/geniass/.

[2] Nasreen Abdul-jaleel, James Allan, W. Bruce Croft, O Diaz, Leah Larkey,

Xiaoyan Li, Donald Metzler, Mark D. Smucker, Trevor Strohman, Howard

Turtle, and Courtney Wade. Umass at trec 2004: Notebook. In In TREC

2004, pages 657–670, 2004.

[3] Alex S Ade, Zachary C Wright, Aaron V Bookvich, Brian D Athey, et al.

Misearch adaptive pubmed search tool. Bioinformatics, 25(7):974–976, 2009.

[4] Sean Bechhofer. Owl: Web ontology language. In Encyclopedia of Database

Systems, pages 2008–2009. Springer, 2009.

[5] P. Bellot, T. Chappell, A. Doucet, S. Geva, S. Gurajada, J. Kamps, G. Kazai,

M. Koolen, M. Landoni, M. Marx, A. Mishra, V. Moriceau, J. Mothe,

M. Preminger, G. Ramı́rez, M. Sanderson, E. Sanjuan, F. Scholer, A. Schuh,

X. Tannier, M. Theobald, M. Trappett, A. Trotman, and Q. Wang. Report

on inex 2012. SIGIR Forum, 46(2):50–59, December 2012.

[6] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web.

Scientific american, 284(5):28–37, 2001.

[7] Peter Boncz, Torsten Grust, Maurice van Keulen, Stefan Manegold, Jan

Rittinger, and Jens Teubner. MonetDB/XQuery: A Fast XQuery Processor

Powered by a Relational Engine. In Proceedings of the 2006 ACM SIGMOD

international conference, pages 479–490, June 2006.

[8] Razvan Bunescu, Ruifang Ge, Rohit J. Kate, Edward M. Marcotte, Ray-

mond J. Mooney, Arun Kumar Ramani, and Yuk Wah Wong. Comparative

experiments on learning information extractors for proteins and their inter-

actions, 2005.

[9] Razvan C. Bunescu and Raymond J. Mooney. Subsequence kernels for rela-

tion extraction. In NIPS, 2005.

[10] Forbes J. Burkowski. An algebra for hierarchically organized text-dominated

databases. Information Processing and Management, 28(3):333–348, 1992.

100

[11] Don Chamberlin. XQuery: An XML query language. IBM Systems Journal,

pages 597–615, 2002.

[12] Rashmi Chauhan, Rayan Goudar, Robin Sharma, and Atul Chauhan.

Domain ontology based semantic search for efficient information retrieval

through automatic query expansion. In Intelligent Systems and Signal Pro-

cessing (ISSP), 2013 International Conference on, pages 397–402. IEEE,

2013.

[13] J. Clark and S. DeRose. XML Path Language (XPath) Version 1.0, 1999.

[14] Charles L. A. Clarke, Gordon V. Cormack, and Forbes J. Burkowski. An

algebra for structured text search and a framework for its implementation.

The computer Journal, 38(1):43–56, 1995.

[15] Tim Converse, Ronald M. Kaplan, Barney Pell, Scott Prevost, Lorenzo

Thione, and Chad Walters. Powerset’s natural language Wikipedia search

engine. In Wikipedia and Artificial Intelligence: An Evolving Synergy, Pa-

pers from the 2008 AAAI Workshop, 2008.

[16] David Dubin. The most influential paper gerard salton never wrote. Library

Trends, page 2004.

[17] Sébastien Ferré and Alice Hermann. Semantic search: Reconciling expressive

querying and exploratory search. In The Semantic Web–ISWC 2011, pages

177–192. Springer, 2011.

[18] David Ferrucci and Adam Lally. UIMA: an architectural approach to un-

structured information processing in the corporate research environment.

Natural Language Engineering, 10(3-4):327–348, 2004.

[19] Jean-Fred Fontaine, Adriano Barbosa-Silva, Martin Schaefer, Matthew R

Huska, Enrique M Muro, and Miguel A Andrade-Navarro. Medlineranker:

flexible ranking of biomedical literature. Nucleic acids research, 37(suppl

2):W141–W146, 2009.

[20] Norbert Fuhr. Probabilistic models in information retrieval. The Computer

Journal, 35(3):243–255, 1992.

[21] Claudio Giuliano, Alberto Lavelli, and Lorenza Romano. Exploiting shallow

linguistic information for relation extraction from biomedical literature. In

EACL, 2006.

[22] Brian Goetz. The Lucene search engine: Powerful, flexible, and free. In

JavaWorld, 2000.

101

[23] Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii. Adapting a probabilistic

disambiguation model of an HPSG parser to a new domain. In Robert Dale,

Kam-Fai Wong, Jian Su, and Oi Yee Kwong, editors, IJCNLP 2005, volume

3651 of LNAI, pages 199–210, Jeju Island, Korea, October 2005. Springer-

Verlag. ISSN 0302-9743.

[24] Tadayoshi Hara, Yusuke Miyao, and Jun’ichi Tsujii. Evaluating impact of

re-training a lexical disambiguation model on domain adaptation of an hpsg

parser. In Proceedings of IWPT 2007, Prague, Czech Republic, June 2007.

[25] William Hersh, Aaron Cohen, Jianji Yang, Ravi Teja Bhupatiraju, Phoebe

Roberts, and Marti Hearst. Trec 2005 genomics track overview. In In TREC

2005 notebook, pages 14–25, 2005.

[26] William R. Hersh, Ravi Teja Bhuptiraju, Laura Ross, Phoebe Johnson,

Aaron M. Cohen, and Dale F. Kraemer. Trec 2004 genomics track overview.

In In Proc. of the 13th Text REtrieval Conference, 2004.

[27] Kenji Hirohata, Naoaki Okazaki, Sophia Ananiadou, and Mitsuru Ishizuka.

Identifying sections in scientific abstracts using conditional random fields. In

Proceedings of the Third International Joint Conference on Natural Language

Processing (IJCNLP 2008), pages 381–388, 2008.

[28] Nancy Ide and C. M. Sperberg-McQueen. The text encoding initiative –

its history, goals and future development. Computers and the Humanities,

(29):5–16, 1995.

[29] Jani Jaakkola and Pekka Kilpelainen. Nested text-region algebra. Technical

Report C-1999-2, University of Helsinki, 1999.

[30] Thorsten Joachims. Advances in Kernel Methods: Support Vector Learning,

chapter 11 - Making Large-scale SVM Learning Practical. MIT Press, 1999.

[31] K. Sparck Jones, S. Walker, and S. E. Robertson. A probabilistic model of

information retrieval: development and comparative experiments. In Infor-

mation Processing and Management, pages 779–840, 2000.

[32] Karen Sparck Jones. A statistical interpretation of term specificity and its

application in retrieval. Journal of Documentation, 28:11–21, 1972.

[33] Jin-Dong Kim, Tomoko Ohta, Yuka Teteisi, and Jun’ichi Tsujii. GENIA

corpus - a semantically annotated corpus for bio-textmining. Bioinformatics,

19(suppl. 1):i180–i182, 2003.

[34] Jin-Dong Kim, Tomoko Ohta, and Jun’ichi Tsujii. Corpus annotation for

mining biomedical events from literature. BMC Bioinformatics, 9(1):10,

2008. ISSN 1471-2105.

102

[35] Jung-jae Kim, Piotr Pezik, and Dietrich Rebholz-Schuhmann. Medevi: re-

trieving textual evidence of relations between biomedical concepts from med-

line. Bioinformatics, 24(11):1410–1412, 2008.

[36] Graham Klyne and Jeremy J Carroll. Resource description framework (rdf):

Concepts and abstract syntax. 2006.

[37] Sadao Kurohashi and Makoto Nagao. A syntactic analysis method of long

japanese sentences based on the detection of conjunctive structures. Comput.

Linguist., 20(4):507–534, December 1994.

[38] Robert Leaman and Graciela Gonzalez. Banner: an executable survey of

advances in biomedical named entity recognition. Pacific Symposium on

Biocomputing, pages 652–663, 2008.

[39] Changki Lee and Gary Geunbae Lee. Probabilistic information retrieval

model for a dependency structured indexing system. Inf. Process. Manage.,

41(2):161–175, March 2005.

[40] Ki-Joong Lee, Young-Sook Hwang, Seonho Kim, and Hae-Chang Rim.

Biomedical named entity recognition using two-phase model based on svms.

J. of Biomedical Informatics, 37(6):436–447, 2004.

[41] D Maglott, J Ostell, K D Pruitt, and T Tatusova. Entrez gene: gene-centered

information at ncbi. Nucleic Acids Res, 33(Database issue):54–58, January

2005.

[42] M. Marcus, G. Kim, M. A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Fergu-

son, K. Katz, and B. Schasberger. The Penn Treebank: Annotating predicate

argument structure. In ARPA HLT Workshop, 1994.

[43] M. E. Maron and J. L. Kuhns. On relevance, probabilistic indexing and

information retrieval. J. ACM, 7(3):216–244, July 1960.

[44] Katsuya Masuda, Takuya Matsuzaki, and Jun’ichi Tsujii. Semantic search

based on the online integration of nlp techniques. Procedia-Social and Be-

havioral Sciences, 27:281–290, 2011.

[45] Katsuya Masuda and Jun’ichi Tsujii. Tag-annotated text search using ex-

tended region algebra. Number 12, pages 2369–2377, 2009.

[46] Wolfgang Meier. exist: An open source native xml database. In Web-

Services, and Database Systems, NODe 2002 Web and Database-Related

Workshops, pages 169–183. Springer, 2002.

[47] Donald Metzler and W. Bruce Croft. Combining the language model and

inference network approaches to retrieval. Inf. Process. Manage., 40(5):735–

750, September 2004.

103

[48] H. Mima, S. Ananiadou, G. Nenadic, and J. Tsujii. A Methodology for

Terminology-based Knowledge Acquisition and Integration. In Proceedings

of Coling 2002, pages 667–673, 2002.

[49] Tomohiro Mitsumori, Masaki Murata, Yasushi Fukuda, Kouichi Doi, and

Hirohumi Doi. Extracting protein-protein interaction information from

biomedical text with svm. IEICE - Trans. Inf. Syst., E89-D(8):2464–2466,

2006.

[50] Y. Miyao and J. Tsujii. Probabilistic disambiguation models for wide-

coverage HPSG parsing. In Proceedings of ACL 2005, pages 83–90, 2005.

[51] Yusuke Miyao, Tomoko Ohta, Katsuya Masuda, Yoshimasa Tsuruoka,

Kazuhiro Yoshida, Takashi Ninomiya, and Jun’ichi Tsujii. Semantic retrieval

for the accurate identification of relational concepts in massive textbases. In

Proceedings of COLING-ACL 2006, pages 1017–1024, Sydney, Australia,

July 2006.

[52] Yusuke Miyao and Jun’ichi Tsujii. Probabilistic disambiguation models for

wide-coverage HPSG parsing. In Proceedings of ACL 2005, pages 83–90,

2005.

[53] Alessandro Moschitti. Making tree kernels practical for natural language

learning. In EACL, 2006.

[54] David Nadeau and Satoshi Sekine. A survey of named entity recognition

and classification. Linguisticae Investigationes, 30:3–26, 2007.

[55] Takashi Ninomiya, Takuya Matsuzaki, Yoshimasa Tsuruoka, Yusuke Miyao,

and Jun’ichi Tsujii. Extremely lexicalized models for accurate and fast HPSG

parsing. In Proceedings of EMNLP 2006, pages 155–163, 2006.

[56] Tomoko Ohta, Yusuke Miyao, Takashi Ninomiya, Yoshimasa Tsuruoka,

Akane Yakushiji, Katsuya Masuda, Jumpei Takeuchi, Kazuhiro Yoshida,

Tadayoshi Hara, Jin-Dong Kim, Yuka Tateisi, and Jun’ichi Tsujii. An intel-

ligent search engine and GUI-based efficient MEDLINE search tool based on

deep syntactic parsing. In Proceedings of the COLING/ACL 2006 Interactive

Presentation Sessions, pages 17–20, Sydney, Australia, July 2006.

[57] Naoaki Okazaki. Crfsuite: a fast implementation of conditional random fields

(crfs), 2007.

[58] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The

pagerank citation ranking: Bringing order to the web. Technical Report

1999-66, Stanford InfoLab, November 1999. Previous number = SIDL-WP-

1999-0120.

104

[59] Carl Pollard and Ivan A. Sag. Head-Driven Phrase Structure Grammar.

University of Chicago Press and CSLI Publications, 1994.

[60] Lev Ratinov and Dan Roth. Design challenges and misconceptions in named

entity recognition. In Proceedings of the 13th Conference on CoNLL, pages

147–155, 2009.

[61] Dietrich Rebholz-Schuhmann, Harald Kirsch, Miguel Arregui, Sylvain Gau-

dan, Mark Riethoven, and Peter Stoehr. Ebimed窶付 ext crunching to gather

facts for proteins from medline. Bioinformatics, 23(2):e237–e244, 2007.

[62] S. E. Robertson. The probability ranking principle in ir. Journal of Docu-

mentation, 33(4):294–304, 1977.

[63] S. E. Robertson. Readings in information retrieval. chapter The probability

ranking principle in IR, pages 281–286. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA, 1997.

[64] S. E. Robertson and Sparck K. Jones. Relevance weighting of search terms.

Journal of the American Society for Information Science, 27(3):129–146,

1976.

[65] Stephen E. Robertson and Karen Sparck Jones. Document retrieval systems.

chapter Relevance weighting of search terms, pages 143–160. Taylor Graham

Publishing, London, UK, UK, 1988.

[66] Stephen E. Robertson, Steve Walker, Susan Jones, Micheline Hancock-

Beaulieu, and Mike Gatford. Okapi at trec-3. In Overview of the Third

Text REtrieval Conference (TREC-3), pages 109–126, 1996.

[67] Thomas Roelleke and Jun Wang. Probabilistic logical modelling of the bi-

nary independence retrieval model. In Proceedings of the 1st International

Conference on Theory of Information Retrieval (ICTIR 07) - Studies in

Theory of Information Retrieval, 2007.

[68] Rune Sætre, Kenji Sagae, and Jun’ichi Tsujii. Syntactic features for protein-

protein interaction extraction. In The 2nd International Symposium on Lan-

guages in Biology and Medicine (LBM) 2007 - SHORT PAPERS, volume 319

of ISSN 1613-0073, pages 6.1–6.14. CEUR Workshop Proceedings, January

2008.

[69] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic

indexing. Commun. ACM, 18(11):613–620, November 1975.

[70] Gerald Salton and Chris Buckley. Term-weighting approaches in automatic

text retrieval. Information Processing and Management, 24(5):513–523,

1988.

105

[71] P. L. Schuyler, W. T. Hole, M. S. Tuttle, and D. D. Sherertz. The UMLS

Metathesaurus: representing different views of biomedical concepts. Bull

Med Libr Assoc, 81(2):217–222, April 1993.

[72] Keiji Shinzato, Tomohide Shibata, Daisuke Kawahara, and Sadao Kuro-

hashi. Tsubaki: An open search engine infrastructure for developing infor-

mation access methodology. Journal of Information Processing, 20(1):216–

227, 2012.

[73] Yoshimasa Tsuruoka and Jun’ichi Tsujii. Bidirectional inference with the

easiest-first strategy for tagging sequence data. In Proceedings of the con-

ference on HLT and EMNLP, pages 467–474, 2005.

[74] H. Turtle and W. B. Croft. Inference networks for document retrieval. In

Proceedings of the 13th annual international ACM SIGIR conference on Re-

search and development in information retrieval, SIGIR ’90, pages 1–24, New

York, NY, USA, 1990. ACM.

[75] C. T. Yu and G. Salton. Precision weighting – an effective automatic indexing

method. J. ACM, 23(1):76–88, January 1976.

[76] Hwanjo Yu, Taehoon Kim, Jinoh Oh, Ilhwan Ko, Sungchul Kim, and Wook-

Shin Han. Enabling multi-level relevance feedback on pubmed by integrating

rank learning into dbms. BMC bioinformatics, 11(Suppl 2):S6, 2010.

106

