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This research was made possible thanks to the free availability of a miriad of pieces of free software. The
least I can do in order to show my profound respect and admiration for the thousands of volunteers who
made them possible is to write down this (admittedly) incomplete list of software I used, in no particular
order: Gnu-Linux2 (the kernel and all thousands of tools, including gcc3, ls), Bash, Ubuntu4, Emacs5, Emacs
org-mode6, Vim7, LATEX, Java, Eclipse IDE for Java, Apache ActiveMQ8, Apache Maven9, Apache Log4J10,
Apache Commons11, JUnit, Inkscape Vector Graphics Editor12, GIMP Image Editor, Python (Jython13),
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1https://www.gnu.org/philosophy/free-sw.html
2http://www.linux.org/
3http://gcc.gnu.org/
4http://www.ubuntu.org
5http://www.gnu.org/s/emacs/
6http://orgmode.org
7http://www.vim.org/
8http://activemq.apache.org
9http://activemq.apache.org

10http://logging.apache.org/log4j/1.2/
11http://commons.apache.org/
12http://www.inkscape.org
13http://www.jython.org/
14https://www.gnome.org/
15https://wiki.gnome.org/Apps/Evince
16http://www.mysql.com/
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Introduction

There seems to exist a consensus over a shift, along the last decades, from expensive computers and relatively
cheap costs of programming to cheap computers and expensive developers.

This change was fueled by the reduction of the prices of hardware. More hardware performance at lower
costs fueled the popularization of the programming tools that required less effort from developers, even at
the expense of lowering the performance of programs. Usually optimization goes until a reasonable extend
in therms of cost effectiveness, therefore faster and cheaper hardware is capable of indirectly change which
are the challenges programmers will face.

Currently, each hour of a programmer salary is very expensive, comparing with the costs of hardware
that will execute the software he produces. The result is that programmers are becoming more and more
specialized on translating business logic into source codes of high level programming languages. In other
words, the recent trend is to insulate programmers from concerns unrelated to business logic.

Enabling this business logic to be executed in many scenarios is becoming more and more a responsibility
of programming language tools, pre-processors and compilers.

The same trend is also followed in the field of computation distribution, high performance computing, and
parallelism. For example, OpenMP presents a programming model in which programmers are encouraged
to leave thread management to the OpenMP libraries.

Clearly, a hand made management of threads may allow for a more flexible, and therefore potentially
more fit to the problem, software. For example, OpenMP is quite adequate to problems in which parallelism
may be obtained by splitting a task in similar pieces which are executed in parallel by many threads.

In general, those tools make development easier by introducing abstraction layers. The effect of those
layers of abstractions would be the reduction of final performance, as optimizations are harder whenever the
abstraction used is higher.

The same concern isolation for programming models observed in multi-core programming or local high
performance computing can also be seen for distributed computing.

Now an important trend for next generation systems is to create systems that are the result of a compo-
sition of services that may be made available in disjoint administrative domains that may be separated by
long distances.

In this research we aim to develop a development tool or style to address the problem to development of
service-based systems while keeping the development simple (with a high level of abstraction). We investigate
the possible uses of the methods enumerated above to those sorts of systems.

0.3 Goal

Our goal is to simply development of distributed applications based on services. A service, in our definition,
is some sort of procedure exposed utilizing an abstract interface. We do not want to create a development
environment adequate to a specific platform, but an idea that can adapted to a number of platforms. Here
we use Java simply as an illustration and because most of the more complex components of Java are freely
available and already mature enough for our needs.

0.4 Outline: Proposed components

In this section we outline the four components of our proposed environment.

xix
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0.4.1 DSL - programming abstraction

We propose a new Domain-Specific Language (DSL) that provides an abstraction around which programmers
can easily write complex distributed systems based on services. By using the DSL programmers will at the
same time have to care very little with the actual computation distribution details (such as network, message
exchange mechanisms and protocols), and provide the means for an automated tool to check the adherence
of generated programs with a previously defined contract. We will present what we mean by contract bellow.

0.4.2 Message domains - separation of concerns

A message domain is a partition that resembles the message exchange model of Java Message Service (JMS),
but that can have its structure dynamically defined by some of it participants. This allows us to create
at run time a new connection topology, which we will exploit to react to changes in the set of connections
between software agents. This need will become more clear when we introduce the process calculus we use
to define contracts.

0.4.3 Distributed Middleware - support for prototyping

In order to check the theoretical model we propose, we have developed a prototype middleware. We explain
the structure of this middleware in details on Chapter8.

0.4.4 Versioning model - support for service definition changes

Here we call a contract an abstract specification of how systems based on services should be composed
and behave. A confusion can be made between this concept of contract and the concept in Design by
Contract (DbC). While here a contract is a way to specify a behavior in terms of message exchange between
processes (which for us is roughly equivalent to software agents), in DbC, a contract is a set of restrictions
that aim at establishing rules used to validate data and this way avoid defensive programming, improving
source code readability, among other benefits for the daily routine of programmers. In contrast, our approach
for contract is one in which we provide a tool to check software correctness, which aims at allowing a number
of pieces of software created by different developers to interact.

Our approach for formal verifications also aims at allowing client agents to partially implement contracts.
This feature is important to allow for the same software client to interact with more than one server protocol
version.

0.5 Assumptions and simplifications

Here we did not try to build a complete implementation of the stack necessary to the execution of an actual
distributed service environment. Instead, we focused on the four aspects introduced in the previous section.
Therefore, we had to make a number of assumptions regarding the rest of the infrastructure and to apply
some simplifications.

0.5.1 Message Based

We assumed that all communication is message based. No direct connection between peers is implied17. A
peer could send a message and no guarantee of message delivery is given a priory. Therefore we implemented
a simple handshake when needed. In our model, such implementation details are not part of the Object-
Oriented Programming (OOP) abstraction layer, but part of the specific driver for the message exchange
mechanism.

There is a number of ways to implement message exchange. We could have designed a Web Service to
implement message exchange but utilizing JMS had the fortunate advantage of providing a more scalable
model. The tradeoff was interoperation, which is key to open systems such as Cloud Computing. Neverthe-
less, some message exchange services do not implement JMS as the sole interface to programming languages.
Instead, JMS is only the interface for Java and other programming languages may utilize other Application
Programming Interfaces (APIs) to communicate with the message exchange service.

The natural question that may rise is about the format of the messages. Can it be read by other
programming languages? In the case of our research we tried to circumvent this problem by using JSON,

17Although, as we will see on Chapter8, it is also possible that a JMS implementation uses direct peer-to-peer connection for
nodes to exchange messages.
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but we were not successful 18. In order to simplify development, we utilized serialized Java objects instead,
as we will introduce briefly in the following section.

0.5.2 Protocol

Our implementation aims at developing a translation method that takes OOP description of procedures and
makes it capable of being executed by the infrastructure without the need for the programmer to worry about
specific protocol details. For example, if a certain protocol requires long messages to be spluit into more
than one packet, the OOP abstraction will simply try to send a message, while the actual communication,
implemented by the messaging driver, will be the exchange of several packets.

Protocol independence was our motivation to utilize JMS, since JMS does not force us to utilize any
specific protocol, but can provide a pure OOP abstraction via the exchange of Object messages. Exchanging
Java objects as message contents made implementation of the middleware and DSL simpler, but limited the
utilization of the middleware for Java Virtual Machine (JVM) programming languages (such as Groovy and
Scala) or scripting that can be executed on top of Java (such as Jython and JRuby).

18To see more details about why JSON could not be used, please refer to the Chapter8.
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Chapter 1

Distributed OOP

Abstract

Recent studies in programming tools for grid computing have proposed the use of Aspect-Oriented Programming
(AOP) as a way to separate the business logic concerns from the grid processing distribution concerns. We
found that limitations in the design of current AOP languages restricted the capacity of the programming
tools to manipulate the programmer’s source code. Therefore, this paper proposes an extension of this
concept in which both AOP and OOP source codes are generated at compiling time to increase the lexicon
available for programmers to express advanced computation distribution. We also tested our proposal using
a distributed Apriori algorithm.

Introduction

With the popularization of computational grids execute scientific applications, scientists who were not used
to distributed computing programming are now having to deal with the complexities of the grids. Re-
cent developments, as in [52] and [53], propose a development model for grid systems that applies source
code transformation to make the grid complexities transparent to programmers who are not specialists in
distributed programming.

Traditionally, source codes of distributed applications created with the client-server paradigm will nor-
mally have calls to grid functions side by side with the actual implementation of the main algorithms.

In the new approach, on the other hand, programmers are supposed to create applications that are started
locally and that have some of their parts executed by the CPUs available in the grid. In this approach, AOP is
used to create a tool that receives the source code written by the programmer and performs transformations
in it to create a distributed application and deploy it at runtime to a set of remote servers on demand.

The use of AOP can separate these concerns in several disjoint entities that can be managed separately,
increasing the manageability of the system as a whole and allowing for source code to be adapted to situations
they were not designed for (obliviousness as defined in [27]).

A complex distributed infrastructure like a grid requires the calling system to deal with concerns such
as resource or service location and authentication. In grid computing, AOP can be used to automate the
repetitive coding necessary to create communication with the grid, as proposed in [38].

The mechanisms created so far are limited to the creation of bag-of-tasks [28], a class of distributed
programs in which the tasks do not have any relationship between each other during their execution.

In this paper we propose an extension of the AOP programming tool for grid computing in which we
apply a dynamic aspect and class generator to extend an object-oriented programming language, increasing
the vocabulary that a programmer can use to express his computation distribution strategy.

To illustrate our method, we implemented two programming constructs: (1) a mechanism for remote
procedures to exchange data with the process initiator node during the execution of these remote procedures,
and (2) an amelioration in the mechanism to instantiation of objects in remote nodes. The effectiveness of
our method was verified using a distributed data mining algorithm.

The rest of this chapter is organized as follows. The following section is aimed to present the related
works. Next, in section 3, we briefly discuss the limitations in previous proposals. The following section
presents our proposed amelioration. Section 5 presents a comparison between the expressiveness of our
mechanism and the previous implementations of code transformation tools for grids. In the last section we
present our conclusions.

3
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1.1 Related Work

Although several alternatives to execution of methods in remote objects already exist, such as Java RMI
(Remote Method Invocation) [6] for instance, the problem the research in AOP to program grids tries to
solve is not how to make remote method calls possible. Instead, research in this field aims to outline a
programming environment that allows for programmers to express computation distribution using a method
that requires minimum creation or alteration of OOP source code while using programming models similar
to standard non-distributed OOP.

Previous researches proposed different methods to automatically embed concerns about grid computing.
OurGrid 1 proposes that all run() methods in Java threads should be transformed in remote methods.

The approach is simple, but interferes with the normal operation of threads.
GridGain 2 is an open source project that proposes the use of marker annotations to add semantic to

methods that are executed remotely. In addition, it’s also possible to plugging schedulers or MapReduce [22]
processors.

Both implementations are similar, since both use AspectJ 3 as the base AOP language, both map OOP
source code to a respective grid implementations, and both are specially designed for Bag-of-Task creation.

1.2 Limitations in current AOP approaches

However, AspectJ cannot be used efficiently to create changes that are based on reflection over any source
code. This limitation is caused by the static nature of its aspect locators (join points) and inter-type
declarations. For example, using AspectJ it’s not possible, based on a method called getX, to create another
method called getXAndUpdateUI whatever is the value of the string X. What AspectJ can do is to trap all
the methods called getX, whatever the value of X, and add programming statements, before, after, around,
or instead of calls to getX. AOP locator signatures for this purpose are get*.

This limitation also has consequences in the extent until which the tools to transform OOP source code to
grids can contribute to class transformations. These tools are committed to offer an alternative to the simple
use o APIs to solve the distribution concern, but the static nature of AspectJ limits the transformations to
allow only remote method invocations in which each method call is equivalent to the remote execution of a
batch procedure and no optimizations regarding data movement or asynchronous communication between
nodes can be easily introduced.

This research is aimed precisely on exploring ways to minimize these limitations and on proposing new
idioms that can be used to enhance the expressiveness of grid client software without affecting source code
manageability.

1.3 Enhancements proposed

As already argued, AspectJ can basically trap calls and alter them arbitrarily. But AspectJ cannot be used
to generate new method signatures, which can be used to create a seamless way to do inversion of control,
or dependency injection into the source code, for example.

LogicAJ [70] is an AOP language that extends AspectJ to include the dynamic constructs missing in
AspectJ. Although LogicAJ could ease the construction of our transformations, we did not use LogicAJ
since our strategy is to restrict the application of AOP to source code transformation and to leave the actual
declaration of new class structures to a processor we wrote. In short, we chose to express the structures of
new classes and methods using an actual algorithm in Java instead of using a syntax provided by an AOP
language.

Our proposed mechanism for source code transformation is depicted in Figure 1.1.
The byte code creation process starts with a source code generation tool called Annotation Processing

Tool (APT) . This tool is part of Java since version 1.5 and can be plugged into the Eclipse Integrated
Development Environment (IDE) 4 to be activated every time any class is changed by the programmer.

The APT is designed not to change any source code provided by the programmer, but can generate
additional source code if necessary, which is the feature we used.

We defined a set of Java marker annotations that, when present in programmer’s source code, caused
the source code to be parsed by our annotation processor.

1OurGrid, http://www.ourgrid.org
2Grid Gain, http://www.gridgain.org
3AspectJ: http://www.eclipse.org/aspectj/
4Eclipse IDE, http://www.eclipse.org

http://www.ourgrid.org
http://www.gridgain.org
http://www.eclipse.org/aspectj/
http://www.eclipse.org
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Figure 1.1: Source Code Transformation Workflow

This annotation processor is in charge of detecting which sorts of transformations the programmer wants
in his source code and generating supporting classes and supporting aspects that will perform these changes.

As we already stated, annotation processors cannot change the source code written by the programmer.
So the aspects generated by our pre-processor, in conjunction with the pre-built aspects will be in charge of
altering the functioning of programmers’ classes on behalf of the annotation processors.

In the next step, the AspectJ pre-compiler will read all available aspects and apply them to all available
classes. Available aspects comprise both pre-built aspects and dynamically generated ones. And the classes
that are subject to change comprise the dynamically generated classes, the annotated source code written
by the programmer, and the pre-built class library.

Finally, the programmer’s source code weaved with additional source code is then passed to the Java
compiler which generates the bytecodes that can be then executed directly by any Java Virtual Machine.

Although the compilation process adds several steps to the standard compilation of Java classes, all
the compilation is incremental. Which means whenever a class is changed, only the class changed by the
programmer, and the dynamic entities related are affected.
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Figure 1.2: Flow of products during compilation step
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1 public interface RemoteContextReceiver {

2 void setRemoteContext (RemoteContext remoteContext);

3 }

Figure 1.3: A common approach to implement dependency injection

1.3.1 Feedback mechanism

As already stated, the AOP approach proposed in previous studies aims to distribute methods and respective
context to remote machines. Comparing it with the explicit way to distribute computation (by referencing
elements in a API, as is the approach of the Java Cog Kit [78] [43]), the AOP approach lacks of a certain
control over what is happening to tasks during their execution.

No information is given to the originator node about where and under which conditions a specific execu-
tion of a method is taking place. This separation was created in previous studies to keep the programming
model consistent, so no elements of the distribution itself would mix with the source code that implements
the algorithm. Nevertheless, there are situations in which programmers need to have more control (or at
least more knowledge) over tasks during their execution in order to decide, for example, whether the task
should continue or whether it should be aborted.

Also, simple exportation of methods to the grid does not allow these methods to interact with any other
object residing in the initiator node or other methods executing in other remote nodes. So in previous
proposals, each method execution was necessarily isolated, and the only way to share data with a method
was through the method parameters and values returned. In other words, interaction with a procedure
executed in a remote node was only possible during procedure initialization or termination.

So, to provide this more refined control, while keeping the same programming model, we introduced a
new marking annotation called @GLocal. This annotation, when applied to a method, causes the method
to be always executed in the initiator node N0. When a method marked with @GLocal (which we will call
from now on a GLocal method) is called from a method executing in N0, the annotation has no effect. But
when a GLocal method is called from a method executing in a remote node, the presence of the tag causes
the remote execution to halt and the GLocal method to be executed in N0.

To provide information about the remote conditions of the task execution, a remote context object is
supplied via dependency injection. The remote context object contains information about the amount of
memory available, the number of CPUs, the elapsed time since the start of the remote method and a unique
identification number automatically generated. This number can be used in N0 for several purposes, such
as controlling which remote node has which partition of data to be processed.

We avoided using a more invasive way to implement dependency injection, such as forcing a class to
implement a certain interface as illustrated in Figure 1.3. Implementing this interface forces the class to
have a setter method that will receive the injected object.

We chose not to follow this approach because we wanted to keep the injection of remote context objects
limited only to the GLocal methods. If we used the dependency injection as above, the setter method would
need to be backed up by a field that would be available to all the methods of the class. Since GLocal methods
are those methods that bring data from remote nodes to N0, we should avoid other parts of the class to have
access to remote context objects.

We created two different approaches to allow methods marked as GLocal to receive remote context
objects. The use of this injection is optional. So the programmer can choose not to change his original
source code if he doesn’t need to get detailed information about the remote context.

The first method to receive remote context objects is by adding a parameter to the GLocal method. This
extra parameter will receive an object of the class RemoteContext. So the GLocal method can explicitly read
the contents of the remote context object. This strategy allows for a very refined control over the execution
of the remote method, but also mix different responsibilities in the same class, because typically GLocal
methods will be placed in a class that has also remote methods. So the same class is resolving concerns
related to code distribution and the business logic. An example of the first injection approach is the method
progressReport in Figure 1.4.

In the second injection method the programmer should add a GContextHandler annotation to a GLocal
method. The GContextHandler annotation must have one parameter, which is a class that implements the
interface RemoteContextHandler. In Figure 1.4 we can see an example of this approach in the method
partialResult.

In this example, the pre-built classes will create an instance of the class MyRemoteContextReceiver and
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1 public void remoteMethod(int id) throws Exception {

2 for (int i = 0; i < 100; i++) {

3 // some time consuming processing

4 progressReport (id , i);

5 partialResult(partialResult);

6 }

7 }

8
9 // First injection method

10 @GLocal

11 public void progressReport (int id , int percentage , RemoteContext rc) ←֓
throws Exception {

12 // Some local procedure

13 // e.g.: use of rc to estimate the

14 // remaining time

15 }

16
17 // Second injection method

18 @GLocal

19 @GcontextHandler (MyRemoteContextReceiver .class)

20 public void partialResult(byte[] result) throws Exception {

21 // Some local procedure

22 // e.g.: storage of the partial

23 // result

24 }

Figure 1.4: Example showing how to use the GLocal methods

give to this instance a reference to the remote context object and a reference to the object from which the
method partialResult was called. This second injection method keeps the concerns between classes separated
but also gives limited information to the remote context handler objects.

In the example of Figure 1.4 there are actually two methods called progressReport. Their signatures are:
public void progressReport(int id, int percentage, RemoteContext rc)
public void progressReport(int id, int percentage)
The declaration of method m2 is explicit in Figure 1.4 while the method m1 is dynamically generated

by our annotation processor and inserted into a class by an AOP inter-type declaration. Attempts to call
the method m1 directly will result in a compilation error that tells the programmer to call the method m2
instead.

All compilation issues are shown directly in the programmer’s IDE a few seconds after the programmer
saved any source code file.

Behind the scenes, the newly created m2 is responsible for creating an instance of RemoteContext and
sending a message back to the initiator node asking this node to execute the method m1 with the parameters
supplied by the programmer.

The same process used to inject a RemoteContext to GLocal methods can also be used to inject a
RemoteContext to GRemote methods, to allow these methods to decide about their own progress without
the intervention of the initiator node.

The use of dependency injection in GRemote and GLocal methods could create a dependency with
our implementation of the grid infrastructure. To avoid this happening we used all types exposed for
programmers, such as RemoteContext, to be Java interfaces. So all elements of our implementation can be
replaced using our aspects to map to other implementing classes.

1.3.2 Remote objects

There are cases in which the same data transferred to a remote node needs to be used in more than one
remote method call. In the Bag-of-Task model, consecutive calls to remote methods don’t allow for reuse of
the same data between method calls since each call to a remote method should pass all the data the remote
method needs.
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1 @GridManaged

2 public class PatternFinder {

3 // constructor

4 public PatternFinder(int[] data) {

5 this.data = data;

6 }

7
8 // field

9 private int[] data;

10
11 public int findPattern(int[] pattern) {

12 // searches for pattern in data

13 // and returns the position

14 return position;

15 }

16 }

Figure 1.5: Example of a remote object class

1 Object around (): call( Class1.new (..)) {

2 return new Class2 ();

3 }

Figure 1.6: Example of advice declaration to replace a constructor

Therefore, the creation of a local memory for the remote methods to store data avoids unnecessary data
movement and can consequently increase the overall processing performance.

Also, in some class responsibilities it’s more natural for programmers to use private fields to store data
used by the object than passing the data in each method invocation. In the class depicted in Figure 1.5, the
findPattern method is clearly designed to be called several times with different patterns to be found inside
of the same data.

In such a case, creation of remote objects (an instance residing in a specific remote node) also implemented
in [73], can solve the problem elegantly while not breaking with the natural object-oriented design and
without forcing the programmer to use classes from a specific API to ensure the data location.

Attempts to implement such a behavior using AspectJ will fatally deal with a limitation in the way
AspectJ deals with constructors around advices. Figure 1.6 shows a declaration of such advice. In this case,
calls to any constructor of Class1 will receive an object of Class2, which necessarily should be a subclass of
Class1.

If the remote object class is called ROC and it was created by the programmer, by the time we created
our transformation tool we do not know which sort of initialization the constructor of ROC will conduct. So
we cannot allow the constructor of ROC to be executed locally to avoid wasting computation time.

Using only standard AOP and OOP, a better alternative would be to count with the programmer’s
cooperation to use a less natural design to allow for aspects to create a dynamic proxy, which are classes
that implement a certain interface in runtime.

A programmer would then need to create not only ROC but also an interface ROCInt that ROC should
implement. All references should refer to objects of the type ROCInt instead of the type ROC. Aspects
could create a dynamic proxy that implements ROCInt and make the local application to use the dynamic
proxy instead of an actual instance of ROC. The dynamic proxy would then forward all the method calls to
the actual remote object which was instantiated in a remote node.

Although this method works, it forces programmers to create an extra entity (ROCInt) to support the
remote object behavior. So in the final source code the concern about the remote object behavior is not
completely isolated in the aspects but also has impacts on the programmer’s choices over the structures of
his classes and interfaces.

In our implementation we could use the kind of advice of Figure 1.6 without forcing the programmer to
create compliant structures. The solution was a dynamic creation of a class ROCS that is subclass of ROC.

All explicit instantiations of ROC are replaced with instantiations of ROCS and all methods of ROC are
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1 Object around(int[] x): call( PatternFinder.new(int [])) && args(a){

2 // creation of an instance of PatternFinder

3 // in a remote node passing x as a parameter

4 return new PatternFinderSub ();

5 }

Figure 1.7: Dynamically generated advice declaration to replace a remote object constructor

overridden by methods of ROCS. The methods of ROCS take the method calls and forward them to the
actual remote object.

Obviously, ROC cannot be a final class to allow for the creation of ROCS as a subclass of it. To avoid
this mistake we raise a compilation error whenever a class marked as a remote object class is declared as
final. We understand this last limitation as a trade-off.

To mark a class to be used as a remote object class, we introduced the annotation @GridManaged, shown
in Figure 1.5. It can be noticed that the only difference between a remote object class and an ordinary class
is the presence of the @GridManaged annotation in the class declaration.

Figure 1.7 shows an example of an advice created by our annotation processor specifically to replace
the instantiation of the class PatternFinder. PatternFinderSub is a subclass of PatternFinder that was also
created by our annotation processor.

1.4 Method verification

To test the effectiveness of our proposal, we implemented a parallel Apriori [69] algorithm to data mining.
The algorithm was implemented both with and without a feedback method. For our tests we used a small
implementation of a grid that is based on reliable multicast messages. The programming environment was
composed by our tool installed in a Elipse IDE 3.4.1, AJDT 1.6.3 5, AspectJ 1.6.4, and Java 1.6.0_11.

To take advantage from parallel processing in data mining, we split the data to be analyzed in n pieces
and sent one of each pieces to each of the n remote nodes used. The algorithm searches for frequent item
sets in a large collection of item sets. Each round of the the algorithm uses a distinct set of item sets. The
goal of each round is to exclude infrequent item sets. In the end of each round the infrequent item sets are
excluded and new larger item sets are built using the remnant item sets. The new set of item sets is used to
the next round. When the frequency of a certain item set surpasses a certain preset value, the item set can
be already considered frequent and there is no use to keep searching for new occurrences of it in the data
provided.

Then a simple optimization of the algorithm would require each of the n nodes to inform the initiator
node in case an item set was already found to be frequent in one of the n pieces in which the data was split.

It’s not possible to determine the set of item sets for a certain round before the previous round is over.
So the end of each round requires the new set of item sets to be broadcasted to the n nodes.

In the implementation that uses only remote methods, all the remote methods should terminate to allow
for N0 to start a new round. Also, the termination of the remote methods implies that the whole data needs
to be retransmitted in each round, which for large amounts of data makes the algorithm unusable.

Table 1.1 summarizes the results obtained. We compared the use of simple remote methods (RM column)
with the use of remote methods combined with feedback methods and remote objects (RM+FB+RO column).

The results show that the new behaviors offered by our approach can easily allow programmers for using
the initiator node as a central point that is responsible for task synchronization and data sharing.

1.5 Conclusions

In this paper we propose a compiling workflow that is able to create dynamic signatures and classes as
a result of an analysis done by a procedure written in Java. This feature allowed us for providing more
sophisticated system behavior at a very little cost to the programmer in therms of source code bindings.
We demonstrated the capabilities of our source code alteration schema to add two computation distribution
behaviors, namely, feedback methods and remote object instantiation.

5AspectJ Development Tools, http://www.eclipse.org/ajdt/

http://www.eclipse.org/ajdt/


10 CHAPTER 1. DISTRIBUTED OOP

RM RM+FB+RO
Early frequent item
discovery

Not shared Shared asynchronously

Next round Requires method termina-
tion and new method call

Method termination not
required

Data movement Redundant (all data is
transferred in each round)

Optimized (only once per
remote node)

Table 1.1: Implementation comparison for a distributed Apriori algorithm

On the other hand, the main limitation of our approach, and other similar programming methods, is the
lack of control over objects that cannot be managed by our aspects. Some classes, for instance those that
follow the singleton design pattern (as introduced in [34]), may have static objects to centralize data. Static
objects are not shared among different nodes. In other words, we could not synchronize or copy the whole
local environment to the remote nodes, which is a feature left for a future implementation.

Nevertheless, our results show that it’s possible to provide a rich programming interface that is able to
show distribution misuse in the programmer’s IDE using our code transformation tool. We have also shown
that such a tool allows programmers to create advanced distribution strategies, while writing source code
naturally with almost no new API to learn.



Chapter 2

Message Domains

Abstract

Effectiveness of message passing as the means to provide communication in distributed computing motivates
the use of such strategy in highly distributed service environments such as grid and cloud computing. Grids
and clouds share some important features such as multiplicity of administrative domains and complexity to
create applications to be executed over these platforms. In this paper we argue that fine control over which
nodes are accessible for message exchange can ease programming in those scenarios by allowing for partition
of concerns in well-defined boundaries. Additionally, message domains may provide simplicity to split layers
to implement security and define user and agent roles within a layer.

2.1 Introduction

Highly distributed computing models such as grid and cloud computing are becoming popular as companies
and organizations realize that specialization can be achieved without compromising quality of service. Or-
ganizations can have part of their software, platform, or infrastructure as a service and have more of their
human resources dedicated to their core business.

But computation as a commodity comes at a price. As systems scale, so the complexity to keep them
working and evolving increases. Popular systems tend to have a large number of customers, therefore,
developers of those systems are expected to receive constant requests for enhancements.

Although message passing is largely used to create distributed applications in a more controlled scenario,
the principles of message passing can be also applied to grids and clouds. Adaptations to address the new
questions introduced by global scale system distribution must be done.

When computational resources are dynamically provisioned, exchanged messages are not only about data
and execution control, but also, for instance, about resource finding, reservation, and payment. When nodes
are separated by continents, multicasting must be used wisely. If public networks are utilized to transport
the messages, extra care should be taken with security. If more than one organization is exchanging messages
in the same grid, message exchange within nodes that belong to the same organization should be isolated
from messages that provide communication between organizations. As customer expectations increase due
to a high offer of remote services, so does the struggle of development teams to keep the costs of software
development and software change under control.

To address these problems, we advocate that global scale distributed systems should be based on reliable
multicast domains. Those domains should be flexible to allow for application designers to create custom
configurations that will support decisions over module partitioning, user roles, secrecy of data, and division
of concerns into independent layers.

The next section will present our argument for the adoption of multicast domains to address those issues.
Section 2.3 presents an organization to provide layer modularity using message domains. Section 2.4 presents
related research. Finally, we present our conclusions in section 2.5.

2.2 Message domains

Within a message domain, all connected nodes are able to send and receive both multicast and point to
point messages to and from all other nodes. Multicast is necessary since, by definition, there is no central

11
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Layer Section a b c d e f g

Data mining app.
client rw r rw ×
data bus r rw rw ×
data sync r rw ×

Sensor data app.
collection rw r × × rw
data sync r × × rw

Service market rw r rw rw

Resource brokerage
location rw rw r
availability rw rw

Monitoring w r w w w

Authentication
consumer w r w w
provider r w r r

Table 2.1: Example of a message domain structure. Rows are message domains and columns are software
agents or nodes. (a) service consumer; (b) resource broker; (c) monitoring agent; (d) certificate server; (e)
data mining service; (f) database; (g) sensor. Access to message domains are marked as r for read, and w
for write. The symbol ‘×’ means that the message domain does not provide access to the node since access
in these cases are considered an architectural error.

control in grids. Limitations in multicast coverage are necessary in grids and clouds due to the large scale of
such networks, the presence of more than one administrative domain, and the existence of multiple service
providers, implementations, and service instances.

If, on one hand, limiting messages to specific domains forces the existence of bridges between domains,
on the other hand, this separation makes it possible for system architects to partition distributed systems
horizontally, into stacked layers, and vertically within each layer, into subdivisions that represent distinct
roles of software components.

Table 2.1 shows an example of a message domain partition to support two distributed applications
(a data mining application and a sensor data collection application) and some accessory services (service
market, resource location, monitoring, and authentication). This partition does not define service cardinality,
resource location, neither whether the services are written, provided, or maintained by a single or by several
organizations.

Each line represents a message domain. Participants of message domain should exchange messages freely,
therefore ideally they should share the same protocol. Conversely, different domains could adopt different
protocols and translation may be necessary.

Each layer is supposed to offer a specific service to the stack. To organize its internal structure and to
protect message buses that should be private to its components, layers may also be divided into sections.
For example, in Table 2.1, service consumers (a) cannot access the availability section, since this section
should be used only for resource brokers and monitoring agents to communicate.

The resource brokerage layer is used to support for replicas of the same service and dynamic service
location. Resource brokers are commonly utilized to optimize access to resources in grids [26]. If, for the
sake of high availability or to optimize performance, a set of resource brokers is used as in [26], these brokers
need to keep a database of resources synchronized among all of them. As resource availability in a grid is
expected to be dynamic and unpredictable, this resource database is also expected to change frequently.

Message traffic used to keep synchronization of the distributed resource database should be kept away
from non-resource broker nodes to minimize network traffic and to simplify development of agents. Also,
data about resources should be kept among authorized hosts only, as paid service providers could use access
to those messages to cheat in the competition for service consumers.

In this example, the design decision was that distributed databases do not need to verify the identity of
consumers, since databases are only reachable through the ‘data bus’ section. Also, it was decided that it
is not a threat to secrecy or security if all data mining service instances receive data from databases. These
assumptions reflect into simpler source code for the database nodes.

Structure of processes can influence the design of those domains. For instance, participating in service
bidding may be a complex task as it involves several steps until the negotiation is done. Service consumers
should not have to know how to participate in service bidding since having to do so would create a dependency
between consumers and resource providers. So instead of having direct access to the service market layer,
a service consumer needs to indirectly utilize the service market via communication with a resource broker.
A resource broker will then intermediate the negotiation and use the service market message domain to
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client

α

β γ
data bus
data sync

Sensor data app.
collection
data sync
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Service market

δ ǫ
Resource brokerage

location
availability

Monitoring

Authentication
consumer
provider

Table 2.2: Partitions of Table 2.1. (α) entry point; (β) requirements; (γ) application organization; (δ)
supporting infrastructure organization; (ǫ) infrastructure services

exchange messages with the data mining services and the sensors.
From the view point of the data mining service (e), it is necessary to participate on six message domains.

If data received from one of the message domains needs to be fed into another message domain, and the two
message domains do not use the same protocol, translation may be necessary.

2.3 Modularity

Design of message domains should provide a framework for distributed software construction. Commu-
nication constraints reinforced by the message domains should serve to outline the degrees of liberty the
developers of each layer have. For example, in our example a constraint could be that layers declared by
applications should enable the monitoring agent to read the messages exchanged.

For example, a domain can be used by replicas of the same agent to communicate. This is the case of
the ‘data sync’ domains, which are used by databases to synchronize their data. Because other nodes do
not need to receive messages regarding data synchronism, there should be a section in which only databases
participate. Since the two applications should be independent, each of them can declare its own data sync
domain. An alternative solution would be to provide a common database agents and layer.

There is a fundamental difference between domains that provide services for the infrastructure as a whole
(e.g. the monitoring layer), and domains that provide services for a specific application (e.g. the data sync).
In face of these differences, the cells in Table 2.1 can be categorized according with the architectural role
they play. Table 2.2 shows the map of Table 2.1 into those roles. The motivation to create such map is to
define rights and responsibilities for each component.

2.3.1 (α) Entry point

Message domains in this partition are interfaces with service clients. Infrastructure nodes can be used by
distributed applications as a distributed middleware container if the application does not allow clients to
connect in α and if the application delegates the interface with clients to the infrastructure layers.

2.3.2 (β) Requirements

The supporting infrastructure can use this partition to force applications to comply with a certain set of
requirements. In the example, it is required that all message domains in the application layers should allow
the monitoring agent to listen to the multicast messages. Obviously, this requirement does not guarantee that
the monitoring agent will be able to understand the traffic in the application layers. Therefore, requirements
declared in this partition should be considered only communication capability requirements.
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2.3.3 (γ) Application organization

Applications may require the existence of private message buses to work. This is the case of the data mining
application in Table 2.1. Message domains in this partition aim to provide this sort of intra-application
message exchange. As the internal functioning of applications should be not exposed to neither other
applications nor to the infrastructure, each application has its own sub-partition inside of γ, and sub-
partitions do not overlap.

The symbol ‘×’ in Table 2.1 marks the situations in which message domains should not exist since they
would be used to provide direct application to application communication. This is considered a design flaw,
since it creates internal dependencies between applications. If one application needs to utilize another as a
service, this communication should occur in an entry point.

2.3.4 (δ) Supporting infrastructure organization

This partition is invisible to applications and can be used by infrastructural services to exchange messages.

It is common that infrastructure layers have intrinsic relations with other infrastructure layers. This is
the case, in our example, of the dependencies between the resource brokerage and the monitoring layers. In
contrast with γ, infrastructure layers are allowed to directly communicate (and therefore have dependencies)
in δ.

2.3.5 (ǫ) Infrastructure services

A partition for the supporting infrastructure to provide services to the applications. Designers of application
layers are free to utilize those services or not. For example, in Table 2.1, the sensor service utilizes the
authentication service, but not the monitoring service.

2.4 Related work

In global-scale environments, it is expected that message senders and message receivers could be two pieces of
software developed and/or maintained by different teams. Service-orientation is used as a solution to decouple
dependent software components, but wrapping message passing in service calls adds an abstraction whose
consequence is the impoverishment of distributed algorithms. Fine control over data flow and execution,
operations such as receiving buffers from participants, and sending messages to more than one node, are all
features not present in standard service orientation.

Although in the past some versions of Message Passing Interface (MPI) to grid computing were created
[31] [18] [3], the objective of these libraries is to make message passing programming style available to grid
computing, which allows for the construction of distributed parallel machines, instead of an infrastructure
of distributed services.

Here, we assume that a library for message passing is already available. Instead of a version of a message
passing interface to grid, we propose an additional control over the messages that are transferred by the
grid infrastructure. This control can be used to enhance component organization in development using an
underlying message passing mechanism.

In a previous paper [55] we investigated some methods to translate local OOP into grid-enabled local
applications. During translation, OOP statements are translated into routines that utilize message passing
to data transfer and execution control. We expect to apply message domain partitioning to define visibility
between software components in OOP. For instance, a service that is not visible to application layers should
be represented by OOP classes that are not accessible by application classes. This cohesion between message
exchange framework and programming constructs can be ensured by applying special pre-processors in a
general purpose OOP language or by using a domain-specific programming language created for this purpose.

The configuration for message exchange we presented should work in cooperation with, or be part of a
infrastructure for governance, as discussed in [23]. For example, policies that control access to resources or
services can be reinforced by creating classes of clients. Each class could be represented by a column in the
entry point partition. The model in [23] also suggests that tools should be used to retrieve meta-information
about service infrastructures, which can be implemented using directory services such as Universal De-
scription, Discovery, and Integration (UDDI) [4] . In addition, the model we propose can also benefit
the development of services similar to those currently in use in grid computing, such as the grid resource
allocation management (GRAM) [32].
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2.5 Conclusions

The structure of grid and cloud computing requires complex message deliver systems in which message
recipients should be carefully selected to provide scalability and protection against data stealing, abusive
behavior, and attacks. Nevertheless, message passing can be utilized in highly distributed systems, if correct
adaptations are made to ensure that it supports dynamic and unpredictable server availability, long latency,
and cross-administrative domain issues.

We propose a process in which first the outline of a distributed system architecture is created using
message domains (e.g. by a consortium that decides how the grid will be managed). Next, infrastructure
layers can be designed and implemented to support applications. Finally, this structure will be utilized to
free applications from having to implement base services.

From the perspective of network usage, it can control complexity and can be used to minimize network
traffic. Also, partitioning multicast message domains can simplify the design of service-oriented applications
since they can be used to guide data flow. For these reasons, we argue that message passing should be a
fundamental building block of grid and cloud computing environments.
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Chapter 3

Versioning for highly distributed
services

Abstract

Distributed service contracts have been used as a way to allow for independent evolution of clients and service
implementations. As grid and cloud services become more popular, and as service composition becomes
common place, so one can expect that the life cycle of service contracts to become more dynamic. This
scenario presents new challenges to service and client evolution. More precisely, detection of compatibility
becomes a more critical aspect of service specification management. Compatibility is specially hard to assess
when it depends on aspects others than the signatures of service methods. Composites of services may also
be externalized as services themselves, then creating a manageability problem to service developers that has
impacts in the whole service project life cycle. We argue that client-service contract compatibility is more
complex than simple service method signature verification, but, for the best of our knowledge, no supporting
model was yet created to tackle this issue. We propose a method to allow for FSMs inside of services to
be used to enhance compatibility verification. We propose that FSMs should be utilized as an additional
element to describe which sort of service contract clients require from servers, and which service contract
each service offer to clients. In this paper we introduce our method to assess compatibility between a generic
client source code and legal sequences of service methods calls. Finally, we exemplify our method utilizing
a remote data mining service.

3.1 Introduction

The complexity of highly distributed service environments, such as grid and cloud computing, present several
management challenges. Among the neglected questions is the problem concerning the evolution of such
systems along time. As the complexity of service composites increases, so the manageability to evolve such
services becomes harder to achieve. The same service specification may have several implementations, may
be available in several organizations, and may be consumed by several different clients. In this scenario, we
need a method to quantify compliance between clients, service specifications, and service implementations.
While compliance between service implementation and service specification is usually trivial, compliance
between clients and service specifications may be much more difficult, or even impossible, to determine.

In this paper, we present a method to verify client source code compliance based on FSMs in the server
side. We do not aim to eliminate the compatibility problem, as we believe compatibility issues are the result
of the natural evolution of distributed services. There is a number of constraints in software creation (such as
cost, design mistakes, and technology momentum change) that leads components to become incompatible as
versions evolve. Instead of offering a solution, our model aims to provide additional information for developers
to detect and manage compatibility problems. Our method only guarantees that the incompatibilities are
accurately found, but cannot guarantee that all incompatibilities were detected. Nevertheless, the strength
of our method is that it can be easily applied to any section of source code in isolation to perform a best-effort
to search for invalid method call sequences.

The rest of this paper is organized as follows. The next section will present work related to this topic.
Next, Sections 4.3 and 3.4 we will breafly present, respectively, the distributed services model we utilize
and the intermediate representation we utilize to represent source code. Section 3.5 presents our method to
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analyze compatibility. Section 3.6 illustrates our method using a remote data mining service as an example.
The last section concludes our discussion.

3.2 Related Work

The questions about distributed service versioning were identified by Vinoski [76]. A specific analysis for
versioning in Service-Oriented Architecture (SOA) focusing on decoupling of service and clients was presented
by Lublisky [50]. Both papers analyze the problem from the perspective of the mechanisms responsible for
service and client decoupling, but no attention was given to the role of clients’ source codes.

Service states were recognized as an important feature of distributed systems. According to an in-
formational document [30] about Open Grid Service Architecture (OGSA), published by the Global Grid
Forum (GGF), the Web Services Resource Framework (WSRF) standard [20] was created by the Organization
for the Advancement of Structured Information Standards (OASIS) consortium 1 to meet the requirements
for state representation and manipulation in grid services.

The problem of having derivation from an original service was investigated by Ponnekanti and Fox [68].
This paper proposes a model to deal with compatibilities between web services from distinct vendors that
are originated from the same root web service. In contrast, here we deal with problems originated from
successions of versions of the same service contract. Besides the differences, in both cases detecting service
compatibilities is identified as an important factor to the maintenance of services. Their compatibility model
is based on Web Service Description Language (WSDL) comparisons but here we propose a new and more
detailed service contract to identify changes in service implementation internals, that could present impacts
in service compatibility.

Weinreich et al. [79] propose a model in which products are defined as a set of clients and services, and both
may evolve independently. In our model there is a separation between service implementation and service
specification (service interface), which allows for multiple providers to offer alternative implementations of
the same service contract.

In their proposal, the concept of compatibility is based on comparisons between different versions of the
same service interface. This simplicity is motivated by the control offered by the concept of ‘product’, in
which both clients and services participate. In this model, version numbers are used by clients to choose
between utilizing the latest version of the service that follows the same compatible interface or to select a
specific minor implementation.

In our model we do not specify whether a client wants to follow the latest version of a service or not,
since we focus on compatibility detection based on non-functional aspects of services and clients. We do not
propose strategies to service evolution and version branches as defined by Weinreich et al., since we assume
that multiple service implementations may be provided by a number of development teams. In our model
we assume that the number of client applications can be too large for compatibility analysis to be conducted
manually.

A service change model was proposed by Leitner et al. [49], but their proposed model only comprehends
functional characteristics of services, while here we precisely try to include internal behaviors of remote
services that are relevant for compatibility analysis.

Versioning models for SOA generally discuss versioning of Web Services but, according to Vogels [77],
Web Services should not be understood as distributed objects. Therefore we argue that versioning in the
context of distributed objects (as an abstraction that can be concretized by Web Services or other un-
derlying distribution technology) may support more robust compatibility detections embedded in the very
programming tools utilized to build and validate clients.

Finally, compatibility between two web services was defined in [14]. Compatibility is based on comparisons
between FSMs in each web service. While in their model the transitions are messages exchanged between
the services, here we modeled state transitions as method calls. An earlier work [13] related to [14] proposed
that compatibility analysis could ultimately allow for automatic service composition. While in our work
the service-side is similar, in behavior, to the web services as modeled in [13] and [14], our model for the
client-side is more complex, as we accept a generic client source code, even if it cannot be translated into an
FSM.

1OASIS consortium website: http://www.oasis-open.org/

http://www.oasis-open.org/
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3.3 Distributed services model

Here we assume that a service is represented by a contract that may evolve along time. A contract C(M,F ) is
composed of a list M of method prototypes, and a set F of P FSMs which express relationships of precedence
between methods, when such relationships exist. Each FSM φ(S, S0, T ) is composed by a list of states S,
a set of initial states S0 ⊆ S, and a list of transitions T . Each transition t is associated with zero or more
methods of M . Then, we denote t(sa → sb, X ⊆M), where sa → sb means a transition from the state sa to
the state sb, and X is the set of methods associated with t. In short:

M = {m1,m2, . . . ,mN} (3.1)

F = {φ1, φ2, . . . , φP } (3.2)

S = {s1, s2, . . . , sQ} (3.3)

T = {t1, t2, . . . , tR} (3.4)

A transition sa → sb being associated with a method m means that if m is called when the current state
is sa, then either the termination of m, or an asynchronous process started by m, is able to change the state
to sb. If a method is associated with more than one transition, decision about which transition to perform
will be made by the service. A state being associated with a set transitions automatically means that the
method cannot be called when a state is such that none of these transitions can be performed. In other
words, when the current state is not the initial state of any of the transitions the state can perform, a state
cannot be executed. States that are not related to any transition are supposed to tolerate any current state.

FSMs do not change their states unless a client calls a service method, to ensure that service-side states
are in accordance with the contract specification that the client expects. Each remote service behaves, then,
as a non-shared object, from the client’s perspective.

Nevertheless, the decisions of which state transition to execute may depend on factors others than those
visible to the client, such as other clients competing to utilize a shared resource concurrently.

In our examples we assume that a remote service is presented to the client as a local object. Client source
code will then utilize service methods by simply calling methods of the local object.

As for the transparency of service-side FSMs, we do not assume that the service keeps the client updated
about which is the current state of each FSM, since the process described here is a validation that can be
performed during the process to build a client. However, as we will discuss later, compatibility assessment
may be inaccurate during client build. Therefore, there are benefits to satisfactory client-server cooperation
if the client knows which are the states in the service side during the execution of the distributed system.

If it is the case that the client is aware of the states in service-side, the same method we introduce here
can be utilized during client execution to detect a service behavior that differs from the expected by the
client.

3.4 AST intermediate representation

ds

METHOD_CALL

ARGUMENTS

7

m2

METHOD_CALL

x m4

Figure 3.1: AST for ‘ds.m2(7, x.m4());’ containing imaginary nodes METHOD CALL and ARGUMENTS

Although we will utilize Java as the concrete OOP language for our examples, we will utilize an abstract
syntax representation of source code during our argumentation, as our proposal is not specific to Java, but
generic to any programming language that can be translated into the same intermediate representation. We
will utilize Abstract Syntax Trees (ASTs) as the intermediate source code representation that abstracts a
concrete syntax. Figure 3.1 is a graphical representation of the AST of the source code fragment ds.m2←֓
(7, x.m4());.
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1 (METHOD_CALL ds m2 (ARGUMENTS 7 (METHOD_CALL x m4)))

Figure 3.2: Textual representation of the AST from ‘ds.m2(7, x.m4());’

Table 3.1: Syntax of the EBNF used

Syntax Meaning
x : y Declaration of the rule x
x | y | z x, y, and z are mutually excluding alternatives
x? x is optional (may appear once or do not appear)
x* x may appear zero or more times
x+ x may appear one or more times
^(X y z) X is a tree node. y and z are children of X
(x y) parenthesis, as in ordinary mathematics

The equivalent textual representation of this tree is shown in Figure 3.2. The first word inside of a
parenthesis is a node and the following elements are child nodes or leafs. DECLARATION, METHOD_CALL, and
ARGUMENTS are called imaginary nodes, since they do not have an immediate correspondent representation
in the source code. A programmer knows that the source a source code fragment refers to a declaration
since there is a type modifying a variable name. Relationships between tokens, and not a specific token,
allows us to draw such a conclusion. But tree manipulation is easier when nodes are explicitly represented
by imaginary nodes that specify their function.

We will represent imaginary nodes with all capital letters, and leafs as they appear in the original source
code.

1 cMethodCall : ^( METHOD_CALL id+ cArguments ?)

2 cArguments : ^( ARGUMENTS (literal | id | cMethodCall)+)

Figure 3.3: Partial tree grammar for client source code

Finally, to describe the structure of our ASTs, we will utilize the Extended Backus-Naur Form (EBNF)
[29] , which is used to describe context-free languages. There are several notations for the EBNF. The
notation we will utilize is derived from regular expressions and is used in ANTLR [67], which is a language
tool to create lexers and parsers, among other applications to manipulate and analyze source code. The
notation is roughly the same as the one utilized to describe the XML syntax [1], and the syntax is summarized
in Table 3.1.

The grammar of METHOD_CALL imaginary node is described in Figure 3.3 using EBNF. Based on Figure
3.3, a METHOD_CALL imaginary node should therefore necessarily have at least one identifier and may have
one ARGUMENTS node. The words cMethodCall and cArguments are rule names. The prefix ‘c’ stands for
‘client’, in contrast with two other grammars we will introduce later.

Here we do not want to provide a complete specification of AST structures, as these specifications are
too big for this text. For example, in Figure 3.3, we not specify the structure of id and literal. Along the
text, we will omit these declarations as their meanings can be inferred.

3.5 Compatibility assessment process

For the sake of clarity, we will separate the compatibility assessment process in two parts: simple sequences
of method calls (Section 3.5.1), and method calls within loops and conditionals (Section 3.5.2).

Compatibility assessment is a three-step process. The first step is parsing a client source code (e.g.:
Figure 4.1) to retrieve its AST representation (e.g.: Figure 4.2), that conforms to the grammar in Figure
3.3. The second step is transforming the AST representation into a reduced AST (e.g.: Figure 4.3) that
contains only the elements that are relevant to compatibility analysis. The third part is to verify the reduced
AST against the service contract. The algorithm for this third part utilizes a string to represent the current
step in the assessment process. Each of these three steps will utilize its own grammar.
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1 int i = 0;

2 DS ds = serviceFactory (parameters);

3 ds.m1(i);

4 String s = ds.m2();

5 ds.m3();

Figure 3.4: Simple client source code in Java.

1 (VARIABLE_DECLARATION i int 0)

2 (VARIABLE_DECLARATION ds DS (METHOD_CALL serviceFactory (ARGUMENTS ←֓
parameters)))

3 (METHOD_CALL ds m1 (ARGUMENTS i))

4 (VARIABLE_DECLARATION s String (METHOD_CALL ds m2))

5 (METHOD_CALL ds m3)

Figure 3.5: AST of the source code in Figure 4.1

When naming the grammar rules, we will utilize the prefix ‘c’ for the client grammar (step 1), the prefix
‘r’ for the reduced AST grammar (step 2), and the prefix ‘a’ for the grammar to describe the string used
in the assessment process (step 3).

3.5.1 Simple sequences of method calls

We will start by analyzing the simplest case of client source code: a simple sequence of method calls without
any execution flow control block (IF or LOOP blocks, for instance). Let’s take the client source code depicted
in Figure 4.1. The object ds is a reference to a remote service whose class is DS.

Step 1 - Construction of client source code AST

The actual process to generate an AST from the source code involves parsing algorithms that are out of the
scope of this paper. Besides, each client programming language will specific parsing strategies and parsing
rules [67]. As an example, a complete AST for the source code in Figure 4.1 could be as in Figure 4.2.

Step 2 - Construction of a reduced AST

Not all elements of this AST interest us when we want to check compatibility. We can then reduce the AST
to only the elements that are relevant for the role of a remote service client. A reduced AST is depicted in
Figure 4.3. We can see that the first line in Figure 4.2 can be ignored since it does not have any call to ds.
Also, we can notice in the second line in Figure 4.3 that the argument i was replaced by it’s type int since
signature verifications only compare types. Objects ds where replaced by their type DS. Figure 3.7 shows
the grammar for the reduced AST.

Method signature verification utilizing the AST in Figure 4.3 against the method signature definition of
a service interface is a straightforward process.

In summary, to create the reduced AST, we will:

• ignore the statements that are unrelated to the remote service,

• replace initializations of remote service references with an INITIALIZATION node. As we do not base
our method on any specific service technology, ow references to remote services are actually created
(and therefore how creation is detected) is out of the scope of this paper.

• replace object references with remote service types,

• replace method calls with signature-like subtrees, and

• extract method call subtrees from other statements (in our example, we extracted (METHOD_CALL ←֓
DS m2) from (VARIABLE_DECLARATION s String (METHOD_CALL ds m2)))



24 CHAPTER 3. VERSIONING FOR HIGHLY DISTRIBUTED SERVICES

1 (INITIALIZATION DS)

2 (METHOD_CALL DS m1 (ARGUMENTS int))

3 (METHOD_CALL DS m2)

4 (METHOD_CALL DS m3)

Figure 3.6: A reduced AST derived from the one shown in Figure 4.2

1 rInitialization : ^( INITIALIZATION remote_service_type )

2 rMethodCall : ^( METHOD_CALL remote_service_type method_name rArguments ?)

3 rArguments : ^( ARGUMENTS type+)

Figure 3.7: Grammar of METHOD CALL and ARGUMENT in reduced AST

Step 3 - Compatibility assessment through equivalent linear transformation matrices

Let us consider an FSM φ(S, S0, T ) with Q states as in (4.3). Each state will be represented by a unit vector
in a Q-dimensional space. The set of initial states S0 will be represented by a matrix in which the diagonal
has a value 1 in the positions equivalent to each of the initial states, and all other entries contain zeros.
For instance, for an FSM in which S = {s1, s2, s3, s4, s5} and the initial states are s1 and s3, S0 will be
translated into S0 = diag(1, 0, 1, 0, 0). In the extreme case in which S0 = S, the equivalent matrix will be
the identity matrix IQ.

Each method will be represented by an Linear Transformation Matrix (LTM) from N
Q to N

Q, that will
have a number 1 placed at each state transition the method is able to perform, according with the following
map:








s1 → s1 s1 → s2 · · · s1 → sQ
s2 → s1 s2 → s2 · · · s2 → sQ

...
...

. . .
...

sQ → s1 sQ → s2 · · · sQ → sQ








(3.5)

For instance, let’s consider a service contract in which there is one FSM with two states s1 and s2. A
method that could cause the transitions s1 → s1 or s1 → s2 will be represented by

(
1 1
0 0

)
. Methods that are

not related to any state transition will be represented by the identity matrix IQ.
A sequence of method calls is equivalent to applying a composite linear transformation. Then, for a

simple sequence of w method calls, where m(i) represents the i-th method called, the equivalent linear
transformation m′ is simply the product of the linear transformations of the methods called:

m′ =

w∏

i=0

m(i) (3.6)

For example, the equivalent linear transformation of the AST in Figure 4.3 is given bym′ = S0·m1·m2·m3.
The value of each entry of a composite linear transformation represents the number of ways each transition

can be made. For example, if the composite linear transformation m1 ·m2 ·m3 is capable of leading s1 to s2
using the paths s1

m1−−→ s3
m2−−→ s3

m3−−→ s2 and s1
m1−−→ s4

m2−−→ s5
m3−−→ s2, then the entry that corresponds to

the position s1 → s2 will have a value 2.
Therefore, a composite linear transformation equals to a zero matrix 0Q means that the sequence of

method calls that generated the linear transformation cannot lead any state to any other state. In other
words, the sequence of method calls is invalid for the contract. The point, in the successive multiplications,
in which the matrix becomes 0Q is where a remote service method is called over a state that it cannot
accept as an input state. In other words, the statement that causes a matrix to become 0Q is the statement
responsible for the incompatibility.

The application of an INITIALIZATION after the execution of some methods will reset the FSM to
one of the initial states. The consequence for the calculation of the equivalent linear transformation is
that the current LTM will be simply replaced by S0. We will translate the application of a subtree (←֓
INITIALIZATION X) over the current LTM m into the operation
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1 (METHOD_CALL DS m1)

2 (METHOD_CALL DS m2)

3 (INITIALIZATION DS)

4 (METHOD_CALL DS m3)

5 (METHOD_CALL DS m4)

Figure 3.8: An example of an initialization surrounded by method calls

1 rLoop : ^(LOOP rBlock)

2 rCond : ^(COND rBlock rBlock +)

3 rBlock : ^( BLOCK id rStatement +)

4 rIdentity : IDENTITY

5 rStatement : rLoop | rCond | rMethodCall | rIdentity

Figure 3.9: Reduced AST grammar rules of LOOP and COND imaginary nodes

m · 0Q + S0 ≡ m⊙ S0

We will utilize the symbol ‘⊙’ to represent this operation, and will consider this operation atomic. I.e.,
we will not interpret the 0Q obtained before the addition as an incompatibility.

For instance, the equivalent linear transformation to the reduced AST in Figure 3.8 will be

m′ = m1 ·m2 · 0Q + S0 ·m3 ·m4 = m1 ·m2 ⊙ S0 ·m3 ·m4

The calculation process will find an incompatibility if (m1 ·m2), (S0 ·m3), or (S0 ·m3 ·m4) are equal to
0Q.

3.5.2 Method calls within loops and conditionals

Step 1 - Construction of client source code AST

At this point it should be clear that the actual process to build an AST from a programmer’s source code is
irrelevant as long as we can obtain a reduced AST according with our specification. Therefore, we will skip
this explanation.

Step 2 - Construction of a reduced AST

We cannot expect to be feasible to inspect loops and conditionals created by a programmer to try to predict
how many times or if the statements within them will be executed. Instead, we will simply assume that
loops may repeat zero or more times and that all the blocks enclosed by conditionals can be executed.

In reduced AST, all loops (for, while, do-while, etc) will be represented by the imaginary node LOOP and
all conditionals (if, if-else, switch, etc) will be replaced by the imaginary node COND. If a conditional has
no default block (for example, an if without an else), we will add a default block containing the identity
matrix IQ (the IDENTITY node in Figure 3.9), which will make calculations simpler. The grammar of both
imaginary nodes is shown in Figure 3.9. BLOCK is an auxiliary imaginary node that groups statements. Each
block will have a unique identification that is sequentially created to simplify the step 3, as we will see later.
A statement may be LOOP, COND, METHOD_CALL, or IDENTITY. A loop must have exactly one block, while a
conditional may have two or more blocks 2.

Each Execution Control Subtree (ECS) (LOOP and COND) should contain at least one METHOD_CALL←֓
, otherwise the ECS should be eliminated. ECSs may contain other nested subtrees. In all cases, there will
be a terminal subtree without child ECSs, but only one or more METHOD_CALL nodes.

2Multiple blocks may happen, for instance, in successive if-elseif-elseif-. . . , or in switch blocks



26 CHAPTER 3. VERSIONING FOR HIGHLY DISTRIBUTED SERVICES

1 aLTM: ’[’ number+ (’;’ number +)* ’]’

2 aVagueLTM: ’?[’ number+ (’;’ number +)* ’]’

3 aBlock: ’(’ id aBlockContent+ ’)’ aPendingMult?

4 aLoop: ’<’ id aBlockContent+ ’:’ aBlockContent+ ’>’ aPendingMult?

5 aPendingMult: ’*’ aLTM

6 aBlockContent: aLTM | aVagueLTM | aBlock | aLoop

Figure 3.10: Grammar rules of assessment strings

Table 3.2: Assessment string initialization

Outermost element Initialization
(BLOCK A) (A IQ)
(COND (BLOCK A) (BLOCK B) ...) (A IQ) (B IQ) ...
(LOOP (BLOCK A)) <A IQ : IQ >

Step 3 - Compatibility assessment through equivalent linear transformation matrices

As we already stated, in this step we will utilize a string to represent our solution to find transformation
matrices. The grammar for this string is shown in Figure 3.10.

This step is composed of three sub-steps: (3.1) initialization, (3.2) application of each child, and (3.3)
reduction to a set of LTMs.

(3.1) Initialization is how the assessment string is created. We take the outermost element (a BLOCK, a
COND, or a LOOP), and create the string according to Table 4.1.

(3.2) Application of each child combines a block A with its children A1, A2, ... according to Table
4.2. When all children of A were applied, and A does not have any inner blocks to be reduced, we can reduce
A to a set of LTMs, which is the next step.

(3.3) Reduction to a set of LTMs utilizes Table 4.3. The meaning of M ′(A) will be explained later.
To clarify the meanings and usage of Tables 4.1, 4.2, and 4.3, let us consider the reduced AST in Figure

4.5, derived form the source code in Figure 4.4. In Figure 4.5, block are identifiers as A, B, C, and D. The
column on the left represents children identification. The symbol ‘--’ means ‘no child in this line’, while
letters are the parent name and numbers are the child order. For instance, A2 means ‘the second child of the
block A’. The IDENTITY node was added to the reduced AST (line D1) since the conditional does not have
an else block.

Figure 4.6 shows the sequence of values of the assessment string. The column on the left shows child
application or block reduction. Child application is marked by a letter followed by a number (e.g.: B1), while
block reduction is marked by the block identifier followed by an exclamation mark (e.g.: C!). The grammar
in Figure 3.10 states that matrices should be represented as a string, but for generality and clarity we will
utilize a symbolic notation (e.g: I3 instead of [1 0 0; 0 1 0; 0 0 1]).

Table 3.3: Application of a child node to its parent node

Parent Child Result
(A A1 A2 ... ) (INITIALIZATION X) (A A1⊙ S0 A2⊙ S0 ... )
(A A1 A2 ... ) (METHOD CALL X m) (A A1 ·m A2 ·m ... )
(A A1 A2 ... ) (COND (BLOCK X) (BLOCK

Y) ...)
(A (X A1 A2 ... ) (Y A1 A2 ... ) ...)

(A A1 A2 ... ) (LOOP (BLOCK X)) (A <X A1 A2 ... : IQ >)
<A A1 A2 ... : B1 B2 ... > (INITIALIZATION X) <A A1 A2 ... : B1⊙ S0 B2⊙ S0 ... >
<A A1 A2 ... : B1 B2 ... > (METHOD CALL X m) <A A1 A2 ... : B1 ·m B2 ·m ... >
<A A1 A2 ... : B1 B2 ... > (COND (BLOCK X) (BLOCK

Y) ...)
<A A1 A2 ... : (X B1 B2 ...) (Y B1
B2 ...) ... >

<A A1 A2 ... : B1 B2 ... > (LOOP (BLOCK X)) <A A1 A2 ... : <X B1 B2 ... : IQ >>
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Table 3.4: Reduction to LTMs

Element Reduction
(A m1 m2 ... ) m1 m2 ...
(A m1 m2 ... ) * mx m1mx m2mx ...
<A b1 b2 ... : i1 i2 ... >* p M ′(A) = all possible outcomes of equations (7)

1 ds.m1(); ds.m2();

2 if(theDayIsSunny){

3 ds.m3();

4 ds.m4();

5 }

6 elseif(itIsSnowing)

7 ds.m5();

8 m6(); m7();

Figure 3.11: Example of client source code containing a conditional

1 -- (BLOCK A

2 A1 (METHOD_CALL DS m1)

3 A2 (METHOD_CALL DS m2)

4 A3 (COND

5 -- (BLOCK B

6 B1 (METHOD_CALL DS m3)

7 B2 (METHOD_CALL DS m4)

8 -- )

9 -- (BLOCK C

10 C1 (METHOD_CALL DS m5)

11 -- )

12 -- (BLOCK D

13 D1 IDENTITY

14 -- )

15 -- )

16 A4 (METHOD_CALL DS m6)

17 A5 (METHOD_CALL DS m7)

18 -- )

Figure 3.12: Reduced AST of the source code in Figure 4.4

We start with the outermost block A and initialize it with IQ (first line in Figure 4.5). Next we apply
each of the children of this block. Application of a matrix to a block will distribute the multiplication to
each of the elements inside of the bock (second rule of Table 4.2). In the example, we apply the child A1 to
the first line and obtain the line A1 in Figure 4.5. We repeat the same process and apply A2 to obtain the
line A2 in Figure 4.5. In line A3 we need to apply a COND child. The effect will be the creation of three inner
blocks with the contents of the parent (third rule of Table 4.2). Next, we apply A4 to the current string.
Now we have three inner elements in A, therefore we need to multiply each of the three elements by m6.

A multiplication of a matrix by a block will add the matrix to the pending multiplications slot of the
block represented by an asterisk followed by the method name (rule aPendingMult in Figure 3.10). In other
words, the multiplication is marked to be executed in the future. The last child of A is A5. Again, we will
distribute the multiplication to the three inner blocks B, C, and D. But, this time, as the blocks already
have a pending matrix to multiply, we can simply replace m6 with m6m7.

Until this point (line A5 in Figure 4.6) we know that we have at least three alternative method sequences,
and that all method sequences will necessarily start with m1m2 and end with m6m7. Therefore, if we find
m1m2 or m6m7 to be equal to 0Q, we can immediately abort the process and declare the source code to be



28 CHAPTER 3. VERSIONING FOR HIGHLY DISTRIBUTED SERVICES

1 (A IQ)
2 A1: (A m1)

3 A2: (A m1m2)

4 A3: (A (B m1m2) (C m1m2) (D m1m2))

5 A4: (A (B m1m2)*m6 (C m1m2)*m6 (D m1m2)*m6)

6 A5: (A (B m1m2)*m6m7 (C m1m2)*m6m7 (D m1m2)*m6m7)

7 B1: (A (B m1m2m3)*m6m7 (C m1m2)*m6m7 (D m1m2)*m6m7)

8 B2: (A (B m1m2m3m4)*m6m7 (C m1m2)*m6m7 (D m1m2)*m6m7)

9 B!: (A m1m2m3m4m6m7 (C m1m2)*m6m7 (D m1m2)*m6m7)

10 C1: (A m1m2m3m4m6m7 (C m1m2m5)*m6m7 (D m1m2)*m6m7)

11 C!: (A m1m2m3m4m6m7 m1m2m5m6m7 (D m1m2)*m6m7)

12 D1: (A m1m2m3m4m6m7 m1m2m5m6m7 (D m1m2IQ)*m6m7)

13 D!: (A m1m2m3m4m6m7 m1m2m5m6m7 m1m2m6m7)

14 A!: m1m2m3m4m6m7 m1m2m5m6m7 m1m2m6m7

Figure 3.13: Assessment string sequence of the AST in Figure 4.5

1 if(itIsRaining){

2 ds.m8();

3 }

4 while (! userPressedCancel){

5 ds.m9(); ds.m10();

6 }

7 ds.m11();

Figure 3.14: Example of client source code containing a COND and a LOOP

incompatible. This is the reason why the algorithm was chosen to traverse the tree in a breadth-first way.

At this point we already applied all children of A and the next step would be to try to reduce A to a set
of matrices. But we cannot reduce A since this block has inner blocks that need to be reduced before A.

Therefore we start the same process with block B. Now we should apply B1 to the contents of B. It is
important to notice that this time we are applying m3 to the parent node B. Therefore, m3 should multiply
the current matrix of B, not its pending matrix. The same process is repeated with the child B2. Now, at
line B2, all the children of B were applied to this block and, since B does not have any inner block, we can
calculate the linear transformation that is equivalent to B (second rule of Table 4.3) and eliminate this block
(line B!).

The same process is repeated for blocks C and D until they are both reduced to matrices (lines C! and
D!). Finally, we can reduce the A block and have as a final result that the possible method sequences are
m1m2m3m4m6m7, m1m2m5m6m7, and m1m2m6m7.

LOOP subtrees should follow a similar process, but, as the number of iterations can’t be determined in
the general situation, we are forced to iterate the contents of the LOOP subtree, collect all possible outcomes
and analyze them.

As the grammar in Figure 3.10 shows, the structure of a LOOP assessment string is an identification
(randomly generated), a series of elements (let us call it the ‘before loop section’), a colon sign, another
series of elements (let us call it the ‘iteration section’), and an optional pending multiplication. In other
words, we could represent the structure of the assessment string of a loop as: <identification (before←֓
loop section): (iteration section)> *(pending multiplication).

When applying a LOOP to a parent, all the contents of the parent will be placed in the before loop section,
and the iteration section will be initialized with IQ (fourth rule of Table 4.2). Just as the COND block, when
a LTM is applied to a LOOP, the LTM will change the pending multiplication section. The iteration section
behaves as the contents of the COND block, receiving the LTMs within the block. LOOP reduction can also
be done only when its contents are only LTMs. Unlike COND subtrees, LOOP subtrees cannot be reduced
symbolically, but only numerically, since we need to collect the possible outcomes of iterations.

Let us consider the source code in Figure 3.14. The equivalent reduced AST is in Figure 3.15 and the
sequence of assessment strings is in Figure 3.16.

At this point, how the sequence of strings in Figure 3.16 is generated should be clear, except for reduction
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1 -- (BLOCK E

2 E1 (COND

3 -- (BLOCK F

4 F1 (METHOD_CALL DS m8)

5 -- )

6 -- (BLOCK G

7 G1 IDENTITY

8 -- )

9 -- )

10 E2 (LOOP

11 -- (BLOCK H

12 H1 (METHOD_CALL DS m9)

13 H2 (METHOD_CALL DS m10)

14 -- )

15 -- )

16 E3 (METHOD_CALL DS m11)

17 -- )

Figure 3.15: Reduced AST of the source code in Figure 3.14

1 (E IQ)
2 E1: (E (F IQ) (G IQ))
3 E2: (E <H (F IQ) (G IQ) : IQ>)

4 E3: (E <H (F IQ) (G IQ) : IQ>*m11)

5 F1: (E <H (F m8) (G IQ) : IQ>*m11)

6 F!: (E <H m8 (G IQ) : IQ>*m11)

7 G1: (E <H m8 (G IQ) : IQ>*m11)

8 G!: (E <H m8 IQ : IQ>*m11)

9 H1: (E <H m8 IQ : m9>*m11)

10 H2: (E <H m8 IQ : m9m10>*m11)

11 H!: (E M ′(H))
12 E!: M ′(H)

Figure 3.16: Assessment string sequence of the AST in Figure 3.15

of the H block (line H!). M ′(H) means the collection of all matrices that can be generated by the H subtree.
Given that a LOOP assessment string has the structure <id b1 b2 ... bx : i1 i2 ... iy>*p, the possible
outcomes should be calculated based on the expressions

b1i
n
1p b1i

n
2p · · · b1i

n
yp

b2i
n
1p b2i

n
2p · · · b2i

n
yp

...
...

. . .
...

bxi
n
1p bxi

n
2p · · · bxi

n
yp

(3.7)

Where n ∈ N. We start with n = 0. When one of these expressions generates an LTM that was already
generated we discard this expression. We increment n until we discarded all expressions and finally we have
M ′ for the loop.

In the example of Figure 3.16, line H2, to generate M ′(H) we need to calculate all possible outcomes of
expressions m8(m9m10)

nm11 and IQ(m9m10)
nm11.

The output of a LOOP can only be said to be incompatible for sure if the only possible outcome is 0Q. It
is expected then, that the presence of a LOOP will cause the compatibility assessment to be less precise. The
collection of possible outcomes will generate ‘vague’ matrices that are represented with a leading question
mark (grammar rule aVagueLTM). All operations with vague matrices are identical to operations with
ordinary matrices, but the resulting matrix is also marked as being vague. I.e., the uncertainty added by a
LOOP subtree will be propagated.
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Table 3.5: Descriptions of methods in the DM service

Method Description
m1 Upload file chunk
m2 Start data mining
m3 Download data mining result
m4 Erase file (and cancel data mining)
m5 Erase data mining result
m6 Cancel data mining

Regarding compatibility assessment, the difference between a vague matrix and an ordinary matrix is
that finding a vague 0Q as an outcome of an element does not guarantee that an incompatibility was found.
Actually, having one of its outcomes as a vague 0Q will only determine that a certain element is incompatible
if all other outcomes are also vague 0Q matrices.

3.6 Example - A data mining service

To demonstrate the process, let us consider a data mining service called DM .

3.6.1 First version of the data mining service: DM0.1

A first version of DM will be called DM0.1. In this version, data mining is performed over data provided
by the client. Then, service utilization is a two-step process. In the first step, a client must upload a big file
containing all data to data mine to the server, and in the second step the client can request one data mining
to the service.

The two FSMs of this service are depicted in Figure 5.1. This state machine operates over two state
variables sα and sβ .

m1

m1

m3

m2

m2
m4 m5

2

m6

m1

m1

m4

m2

Figure 3.17: A composite state machine of DM0.1, the first version of the DM service

This service begins in the composite state (sα,A, sβ,A). A client is then supposed to call the method
m1 several times to upload a file to the server. After the file is completely transferred, the client is able
to call the method m2 that will start a data mining process. This method does not block waiting for the
data mining to finish, since this process may take a long time to complete. Instead, the method m2 returns
immediately after being called and starts a thread in the service-side. This thread is invisible to the client,
but affects the state machine β, causing the transition sβ,B → sβ,C asynchronously, which is marked with
‘m2 +∆t’ in Figure 5.1.

Tables 5.1 and 3.6 summarize the service contract. Table 5.1 shows the meanings of each of the methods,
while Table 3.6 shows the meanings of each state. The method m4 will cancel a data mining if there is one
in process. So the transition sβ,B → sβ,A may be executed by either m4 or m6.

The service may have separated buffers to store the file and the data mining results. Then, method
m3 can be called to retrieve a previous data mining result even when a new file is being uploaded. Let’s
represent the states as
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Table 3.6: Meanings of the states in DM0.1

State Meaning
αA No data file
αB Data file partially received
αC Data file completely received
βA No data mining result
βB Data mining in process
βC Data mining result available

sα,A = sβ,A =
[
1 0 0

]

sα,B = sβ,B =
[
0 1 0

]

sα,C = sβ,C =
[
0 0 1

]

Also, let’s represent the method transformations for the state machine α as

m1,α =





0 1 1
0 1 1
0 0 0



 m2,α =





0 0 0
0 0 0
0 0 1





m4,α =





0 0 0
0 0 0
1 0 0





and the transformations for the state machine β as

m2,β =





0 1 1
0 0 0
0 1 1



 m3,β =





0 0 0
0 0 0
0 0 1





m4,β = m6,β =





0 0 0
1 0 0
0 0 0



 m5,β =





0 0 0
0 0 0
1 0 0





For instance, the operator m2,β means that the operation is capable of causing the transitions sβ,A →
sβ,B , sβ,A → sβ,C , sβ,C → sβ,B , and sβ,C → sβ,C . Transitions sβ,A → sβ,C and sβ,C → sβ,C use the state
sβ,B as intermediate and depend on the help of the internal thread. Methods that do not cause transitions
in a state will be represented by the identity matrix:

m1,β = m3,α = m5,α = m6,α = I3

In some cases the transition will depend on conditions verified by the method. This is the case of m1

operating over the state sα,B , for instance. Whether the transition will be to sα,B itself or to sα,C will
depend on whether the file transfer terminated or not.

Let us consider the client source code in Figure 3.18. The equivalent reduced AST structure is shown in
Figure 3.19, and the sequence of assessment strings is shown in Figure 3.20.

Let the linear transformations for each of the three outcomes (last line in Figure 3.20) be ma, mb, and
mc, respectively. Using m1,α, m2,α, m4,α, m1,β , m2,β , and m4,β as defined before, we have as a result,

ma,α = 03,3

mb,α = m1,α

mc,α = m1,α

ma,β = m2,β

mb,β = I3

mc,β = I3
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1 ds.m1();

2 if(/* condition */) {

3 ds.m1(); ds.m1();

4 if(/* condition */) { ds.m2(); }

5 else { ds.m4(); }

6 }

7 else {

8 print(ds.m1() + someNumber);

9 }

10 ds.m1();

Figure 3.18: Example of IF blocks in client source code

1 -- (BLOCK A

2 A1 (METHOD_CALL m1)

3 A2 (COND

4 -- (BLOCK B

5 B1 (METHOD_CALL m1)

6 B2 (METHOD_CALL m1)

7 B3 (COND

8 -- (BLOCK C

9 C1 (METHOD_CALL m2)

10 -- )

11 -- (BLOCK D

12 D1 (METHOD_CALL m4)

13 -- )

14 -- )

15 -- )

16 -- (BLOCK E

17 E1 (METHOD_CALL m1)

18 -- )

19 -- )

20 A3 (METHOD_CALL m1)

21 -- )

Figure 3.19: Reduced AST extracted from the client code in Figure 3.18

1 (A IQ)
2 A1: (A m1)

3 A2: (A (B m1) (E m1))

4 A3: (A (B m1)*m1 (E m1)*m1)

5 B1: (A (B m1m1)*m1 (E m1)*m1)

6 B2: (A (B m1m1m1)*m1 (E m1)*m1)

7 B3: (A (B (C m1m1m1) (D m1m1m1))*m1 (E m1)*m1)

8 C1: (A (B (C m1m1m1m2) (D m1m1m1))*m1 (E m1)*m1)

9 C!: (A (B m1m1m1m2 (D m1m1m1))*m1 (E m1)*m1)

10 D1: (A (B m1m1m1m2 (D m1m1m1m4))*m1 (E m1)*m1)

11 D!: (A (B m1m1m1m2 m1m1m1m4)*m1 (E m1)*m1)

12 B!: (A m1m1m1m2m1 m1m1m1m4m1 (E m1)*m1)

13 E1: (A m1m1m1m2m1 m1m1m1m4m1 (E m1m1)*m1)

14 E!: (A m1m1m1m2m1 m1m1m1m4m1 m1m1m1)

15 A!: m1m1m1m2m1 m1m1m1m4m1 m1m1m1

Figure 3.20: Assessment strings sequence of the reduced AST in Figure 3.19
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Table 3.7: Meanings of states in DM0.2

State Meaning
αA No data file
αB Data file partially received
αC Data file completely received
βA Processor idle
βB Data mining in process
γA Empty data mining result queue
γB Non-empty data mining result queue

Therefore, there is an error in the sequence ma, in the FSM α. During the process illustrated in Figure
3.20, the 03 is found during the execution of the line B!, when we multiply m1 ·m1 ·m1 ·m2 by m1 (originated
from the last line of Figure 3.18, and that was reduced to the line A3 of Figure 3.19).

3.6.2 Second version of the data mining service: DM0.2

Let us analyze now an example of new version DM0.2 of the same service, that has a different state transition
diagram as depicted in Figure 5.9. Table 3.7 has the meanings of each state inDM0.2. InDM0.2, all methods
have the same signatures and the same meanings as in DM0.1 (Table 5.1), but now there is a new state
machine called γ. The initial state is (sα,A, sβ,A, sγ,A), and this new specification of the service requires the
data mining to have a FIFO queue to store results of data mining requests. This queue is manageable by
the client using the methods m3 and m5.

Let’s assume that the designers of DM0.2 considered the state sβ,C unnecessary since a processor may
be idle or doing data mining independently on the existence or not of data mining results to download. The
transition sγ,A → sγ,B can be caused by m2 but not instantly. Instead, the transition is done by the same
hidden thread that causes the transition sβ,B → sβ,A, which may happen long after the method m2 finished
(marked with ‘m2 +∆t’ in Figure 5.9).

m3

m2

m6

m4

m1

m1

m2

m4

m1

m1

m2

m5

m2

m52

Figure 3.21: FSMs of DM0.2, a new version of DM service

So despite of having the same method signatures, and no extra or missing methods, a client designed to
work with DM0.2 may be incompatible with DM0.1. So DM0.2 is not backward compatible.

For instance, let’s consider a sequence p = mx
1 ·m

y
2 ·m

y
3 ·m

y
5 where x is the number of chunks of the file

to be uploaded and y is the number of data mining executions. The sequence p is legal in DM0.2 and will
generate the transformations:

pα =





1 0 1
0 0 1
0 0 0



 pβ =

[
1 1
0 0

]

pγ =

[
1 1
1 1

]

Matrices pα, pβ , and pγ are all different from 0Q, therefore p is compatible with DM0.2. But verifications
using DM0.1 will find that my

5 = 0N,N for any y > 1, which means the sequence p is only valid in DM0.1
for y = 1. I.e., DM is not backward compatible from DM0.2 to DM0.1.

On the other hand, a client made to utilize DM0.1 will be compatible with DM0.2, since DM0.2 has less
restrictions about the methods m3 and m5. The result of a client made for DM0.1 utilizing DM0.2 is the
wastage of the result queue, but the design of the interface guaranties forward compatibility from DM0.1.
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3.7 Conclusion

We have shown that version compatibility analysis can be enhanced if we expand the functional properties
of service contracts to contain FSM specifications. The method is robust to be applied to complex client
source code since we eliminate all blocks that are not relevant to the remote service and we can apply the
method to any isolated sequence of method calls. On the other hand, every time we apply an LTM mN to
the current equivalent LTM m′, it is possible that we discard some non-zero entries of m′. If, at run time,
the discarded entry is chosen by the service to be the next transition, a client may not be able to call mN .
Although this does not characterize an incompatibility, it is a potential risk at run time.

All incompatibilities found by our method are actual illegal sequences of method calls (no false positives),
assuming that a remote service is not utilized concurrently by more than one client-side process. Nevertheless,
our method does not guarantee that a client is free from incompatibilities. This happens because, depending
on how the client was built, client behavior may be only determined at execution time.

False negatives is precisely the weakness of our method. I.e., not finding incompatibilities does not
completely prevent client source code to try from calling service methods in illegal sequences. The only
way to avoid false negatives is to have client source codes that are clear about how it intends to utilize
the remote service. As a consequence, the reliability of our process is heavily dependent on how much a
programmer understands how the compatibility verification works. We will address these limitations in our
future research.



Chapter 4

Client handling of service-side FSMs
and versioning

Abstract

In a service-oriented environment, service contracts play an important role to provide interoperation between
clients and services. As contracts are the de facto insulation layer between clients and services, we argue
that contracts should not only present specifications of method formats, but also pre and post-conditions
that could provide more sophisticated client-service interactions. We have proposed that service contracts
should contain specifications of service-side finite state machines (FSM). The immediate benefits of pre and
post-conditions in distributed services are less defensive source codes in both sides, and avoidance to execute
remote service with invalid parameters, which translates into rationalization of resources. But we argue that
FSMs can also be used to provide client-service synchronization and advanced compatibility assessment, if
the client source code is specially prepared to support these features. In other words, if the client source
code contains contructs that are specific to deal with distributed services that follow this format. In this
paper, we provide a framework for such extensions and present details about our implementation.

4.1 Introduction

Distributed computing is getting more popular and complex. The momentum of interconnection technology
enables distribution to reach more clients, locality to be virtualized, and new markets to emerge.

In service-oriented architectures, contracts have a very important role. Not only they specify how services
should be called but, if correctly designed, also allows for independent evolution of clients and services.
Service contract design should therefore be considered a key component to control service project life cycles.
A contract may be utilized as a standard implemented by several vendors.

Externalizing state information was the motivation to create the WSRF [20], which deprecated the older
Open Grid Services Infrastructure (OGSI) specification. In a distributed environment, resources are shared
and therefore clients need interact with service-side states to manage resource usage (allocation, release,
service instance life-cycle management, etc).

In a previous work [57], we introduced an algorithm to test compatibility between a client source code
and a service contract, based on FSMs on the service side. FSMs in service-side define legal sequences of
method calls. So we could check if a client is compatible with a certain service by checking if the sequences
of method calls that the client may produce are in fact legal sequences according to the contract.

In this paper we extend that idea. Here we propose a set of client-side programming language constructs
to interact with service-side FSMs. We will also analyze how compatibility analysis can be enhanced in
presence of these constructs. For the best of our knowledge, there are no previous methods to verify client
compliance when states in the service are referenced explicitly. As we will see in Section 4.5, each reference
to a service-side FSM may reduce uncertainty in compatibility assessment.

We start the paper by analyzing the related work in Section 4.2. As we will show, for the best of our
knowledge, there is little research trying to analyze client source code and most of concern is on interaction
between web services. Next, in Section 4.3, we will define which distributed services we target with our
algorithm. Before we introduce the special client-side constructs for FSM interaction, we will introduce the
basic algorithm to client source code verification in Section 4.4. Section 4.5 contains the contribution of this

35
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paper, and will present the client side constructs that reference service-side FSMs. Section 4.6 will compare
our proposal with other methods and, finally, Section 4.7 will conclude this paper.

4.2 Related work

The questions about distributed service versioning were identified by Vinoski [76]. A specific analysis for
versioning in SOA focusing on decoupling of service and clients was presented by Lublisky [50]. Both papers
analyze the problem from the perspective of the mechanisms responsible for service and client decoupling,
but no attention was given to the role of clients, or more specifically, the roles of client software developers,
to detect compatibility problems.

The importance of method invocation order in grids and clouds has its roots in their objectives. Ulti-
mately, grids and clouds aim to virtualize remote resources, and offer them to clients as remote services.
Therefore, remote resources should be allocated, reserved, and released in a certain order. Also, system
distribution requires transactions to be created, which translates into additional restrictions on method
execution order. For instance, in a typical transaction, ‘commit’ must be the last method called.

Service states were recognized as an important feature of distributed systems. According to an infor-
mational document [30] about OGSA, published by the GGF, the WSRF standard [20] was created by the
OASIS consortium 1 to meet the requirements for state representation and manipulation in grid services.

The problem of having derivation from an original service was investigated by Ponnekanti and Fox [68].
This paper proposes a model to deal with compatibilities between web services from distinct vendors that
are originated from the same root web service. In contrast, here we deal with problems arisen from the
version progression of the same service when a single team is responsible for the evolution of the service
specification. Besides the differences, in both cases detecting service compatibilities was identified as an
important factor to the maintenance of services. Their compatibility model is based on WSDL comparisons
but here we propose a new and more detailed service contract to identify changes in service implementation
internals, that could present impacts in service compatibility.

Weinreich et al. [79] propose a model in which products are defined as a set of clients and services, and both
may evolve independently. In our model there is a separation between service implementation and service
specification (service interface), which allows for multiple providers to offer alternative implementations.

In their proposal, the concept of compatibility is based on comparisons between different versions of the
same service interface. This simplicity is motivated by the control offered by the concept of ‘product’, in
which both clients and services participate. In this model, version numbers are used by clients to choose
between utilizing the latest version of the service that follows the same compatible interface or to select a
specific minor implementation.

In our model we do not specify whether a client wants to follow the latest version of a service or not,
since we focus on compatibility detection based on non-functional aspects of services and clients. We do not
propose strategies to service evolution and version branches as defined by Weinreich et al., since we assume
that multiple service implementations may be provided by a number of development teams. In our model
we assume that the number of client applications can be too large for compatibility analysis to be conducted
manually.

A service change model was proposed by Leitner et al. [49], but the proposed model only comprehends
functional characteristics of services, while here we precisely try to include non-functional characteristics or
internal behaviors of remote services that are relevant for compatibility analysis.

Versioning models for SOA generally discuss versioning of Web Services but, according to Vogels [77], Web
Services should not be understood as distributed objects. Therefore we argue that versioning in the context of
distributed objects (as an abstraction that can be mapped to Web Services or other underlying distribution
technology) may support more robust compatibility detections embedded in the very programming tools
utilized to generate and utilize the distributed objects.

Although we argue that adding aspects others than method signatures can enhance compatibility eval-
uation, we do not try to propose a concrete infrastructure to support how contract specifications should
be shared. A proposal for such a infrastructure was presented in [9]. They evaluated how non-functional
properties could be implemented utilizing web services .

Compatibility in terms of service contracts is also analyzed in [63]. But their focus is on message
exchange sequences and service termination recognition. Instead of checking client routines, they analyze
client contracts.

1OASIS consortium website: http://www.oasis-open.org/

http://www.oasis-open.org/
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Finally, our approach to extend an OOP language and to create a DSL to support evolvable systems was
also used by Lee et al. [48]. While here we propose to externalize aspects of service behavior that influence
the way clients should be built (and ultimately can be a factor that causes client-service compatibility
issues), Lee et al. propose an extension of the Java programming language grammar to allow for automated
manipulation of the messages exchanged between client and service via pattern matching.

4.3 Distributed services model

Here we assume that a service is represented by a contract that may evolve along time. A contract C(M,F ) is
composed of a list M of method prototypes, and a set F of P FSMs which express relationships of precedence
between methods, when such relationships exist.

As here we focus on the client side, functional unities of service will be understood as methods, but all
argumentation is also valid if ”method” is ”replaced” by message.

Each FSM φ(S, S0, T ) is composed by a list of states S, a set of initial states S0 ⊆ S, and a list
of transitions T . Each transition t is associated with zero or more methods of M . Then, we denote
t(sa → sb, X ⊆ M), where sa → sb means a transition from the state sa to the state sb, and X is the
set of methods associated with t. In short:

M = {m1,m2, . . . ,mN} (4.1)

F = {φ1, φ2, . . . , φP } (4.2)

S = {s1, s2, . . . , sQ} (4.3)

T = {t1, t2, . . . , tR} (4.4)

A transition sa → sb being associated with a method m means that if m is called when the current state
is sa, then either the termination of m, or an asynchronous process started by m, is able to change the state
to sb. If a method is associated with more than one transition, decision about which transition to perform
will be made by the service. A state being associated with a set transitions automatically means that the
method cannot be called when a state is such that none of these transitions can be performed. In other
words, when the current state is not the initial state of any of the transitions the state can perform, a state
cannot be executed. States that are not related to any transition are supposed to tolerate any current state.

FSMs do not change their states unless a client calls a service method, to ensure that service-side states
are in accordance with the contract specification that the client expects. Each remote service behaves, then,
as a non-shared object, from the client’s perspective.

Nevertheless, the decisions of which state transition to execute may depend on factors others than those
visible to the client, such as other clients competing to utilize a shared resource concurrently.

In our examples we assume that a remote service is presented to the client as a local object. Client source
code will then utilize service methods by simply calling methods of the local object.

As for the transparency of service-side FSMs, we do not assume that the service keeps the client updated
about which is the current state of each FSM, since the process described here is a validation that can be
performed during the process to build a client. However, as we will discuss later, compatibility assessment
may be inaccurate during client build. Therefore, there are benefits to satisfactory client-server cooperation
if the client knows which are the states in the service side during the execution of the distributed system.

If it is the case that the client is aware of the states in service-side, the same method we introduce here
can be utilized during client execution to detect a service behavior that differs from the expected by the
client.

4.4 Background information - code compatibility assessment

Before introducing how explicit FSM references in the client side can influence client-contract compatibility
assessment, we need to introduce a simpler scenario: compatibility assessment between a client that simply
calls methods of the contract. For a detailed discussion about this process, we recommend referring our
previous paper [57]. Here we just present the outline of the algorithm for clarity.

Consider the client source code of Figure 4.1. A possible equivalent AST is shown in Figure 4.2. The
object ds is a reference to a remote service. This AST contains elements that do not interest us to analyze
client-service compatibility. For instance, although the variable i is passed as a parameter to a service
method, we will ignore the declaration of this variable when we check compatibility.
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1 int i = 0;

2 DS ds = serviceFactory (parameters);

3 ds.m1(i);

4 String s = ds.m2();

5 ds.m3();

Figure 4.1: Simple client source code in Java.

1 (VARIABLE_DECLARATION i int 0)

2 (VARIABLE_DECLARATION ds DS (METHOD_CALL serviceFactory (ARGUMENTS ←֓
parameters)))

3 (METHOD_CALL ds m1 (ARGUMENTS i))

4 (VARIABLE_DECLARATION s String (METHOD_CALL ds m2))

5 (METHOD_CALL ds m3)

Figure 4.2: AST of the source code in Figure 4.1

1 (INITIALIZATION DS)

2 (METHOD_CALL DS m1 (ARGUMENTS int))

3 (METHOD_CALL DS m2)

4 (METHOD_CALL DS m3)

Figure 4.3: A reduced AST derived from the one shown in Figure 4.2

Therefore, we will reduce the AST of Figure 4.2 to the AST shown in Figure 4.3. To obtain reduced
ASTs, we will:

• ignore the statements that are unrelated to the remote service, or that do not control execution flow
(loops, etc),

• replace initializations of remote service references with an INITIALIZATION node. As we do not base
our method on any specific service technology, how references to remote services are actually created
(and therefore how creation is detected) is out of the scope of this paper.

• replace object references with remote service types,

• replace method calls with signature-like subtrees, and

• extract method call subtrees from other statements (in our example, we extracted (METHOD_CALL ←֓
DS m2) from (VARIABLE_DECLARATION s String (METHOD_CALL ds m2)))

Let us consider an FSM φ(S, S0, T ) with Q states as in (4.3). Each state will be represented by a unit
vector in a Q-dimensional space. The set of initial states S0 will be represented by a matrix in which the
diagonal has a value 1 in the positions equivalent to each of the initial states, and all other entries contain
zeros. For instance, for an FSM in which S = {s1, s2, s3, s4, s5} and the initial states are s1 and s3, S0 will
be translated into S0 = diag(1, 0, 1, 0, 0). In the extreme case in which S0 = S, the equivalent matrix will
be the identity matrix IQ.

Each method will be represented by an LTM from N
Q to N

Q, that will have a number 1 placed at each
state transition the method is able to perform, according with the following map:








s1 → s1 s1 → s2 · · · s1 → sQ
s2 → s1 s2 → s2 · · · s2 → sQ

...
...

. . .
...

sQ → s1 sQ → s2 · · · sQ → sQ








(4.5)

For instance, let’s consider a service contract in which there is one FSM with two states s1 and s2. A
method that could cause the transitions s1 → s1 or s1 → s2 will be represented by

(
1 1
0 0

)
. Methods that are

not related to any state transition will be represented by the identity matrix IQ.
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Table 4.1: Assessment string initialization

Outermost element Initialization
(BLOCK A) (A IQ)
(COND (BLOCK A) (BLOCK B) ...) (A IQ) (B IQ) ...
(LOOP (BLOCK A)) <A IQ : IQ >

A sequence of method calls is equivalent to applying a composite linear transformation. Then, for a
simple sequence of w method calls, where m(i) represents the i-th method called, the equivalent linear
transformation m′ is simply the product of the linear transformations of the methods called.

The value of each entry of a composite linear transformation represents the number of ways each transition
can be made. For example, if the composite linear transformation m1 ·m2 ·m3 is capable of leading s1 to s2
using the paths s1

m1−−→ s3
m2−−→ s3

m3−−→ s2 and s1
m1−−→ s4

m2−−→ s5
m3−−→ s2, then the entry that corresponds to

the position s1 → s2 will have a value 2.

Therefore, a composite linear transformation equals to a zero matrix 0Q means that the sequence of
method calls that generated the linear transformation cannot lead any state to any other state. In other
words, the sequence of method calls is invalid for the contract. The point, in the successive multiplications,
in which the matrix becomes 0Q is where a remote service method is called over a state that it cannot
accept as an input state. In other words, the statement that causes a matrix to become 0Q is the statement
responsible for the incompatibility.

The application of an INITIALIZATION after the execution of some methods will reset the FSM to
one of the initial states. The consequence for the calculation of the equivalent linear transformation is
that the current LTM will be simply replaced by S0. We will translate the application of a subtree (←֓
INITIALIZATION X) over the current LTM m into the operation

m · 0Q + S0 ≡ m⊙ S0 (4.6)

We will utilize the symbol ‘⊙’ to represent this operation, and will consider this operation atomic. I.e.,
we will not interpret the 0Q obtained before the addition as an incompatibility.

In reduced AST, all loops (for, while, do-while, etc) will be represented by the imaginary node LOOP

and all conditionals (if, if-else, switch, etc) will be replaced by the imaginary node COND. If a conditional
has no default block (for example, an if without an else), we will add a default block containing the
identity matrix IQ, which will make calculations simpler. BLOCK is an auxiliary imaginary node that groups
statements. Each block will have a unique identification that is sequentially created to simplify the step 3,
as we will see later. A statement may be LOOP, COND, METHOD_CALL, or IDENTITY. A loop must have exactly
one block, while a conditional may have two or more blocks 2.

After the reduced AST was created, we will utilize a tree data structure to find all equivalent LTMs that
are equivalent to the interaction between client and service. Again, what we search for is a zero matrix,
which represents an incompatibility. We will represent the tree data structure as an AST, which we will
call assessment string. The algorithm has three steps (1) initialization, (2) application of each child, and (3)
reduction to a set of LTMs.

(1) Initialization is how the assessment string is created. We take the outermost element (a BLOCK, a
COND, or a LOOP), and create the string according to Table 4.1.

(2) Application of each child combines a block A with its children A1, A2, ... according to Table 4.2.
When all children of A were applied, and A does not have any inner blocks to be reduced, we can reduce A
to a set of LTMs, which is the next step.

(3) Reduction to a set of LTMs utilizes Table 4.3. The meaning of M ′(A) will be explained later.

To clarify the meanings and usage of Tables 4.1, 4.2, and 4.3, let us consider the reduced AST in Figure
4.5, derived form the source code in Figure 4.4. In Figure 4.5, block are identifiers as A, B, C, D, and E.
The column on the left represents children identification. The symbol ‘--’ means ‘no child in this line’, while
letters are the parent name and numbers are the child order. For instance, A2 means ‘the second child of the
block A’. The IDENTITY node was added to the reduced AST (line D1) since the conditional does not have
an else block.

2Multiple blocks may happen, for instance, in successive if-elseif-elseif-. . . , or in switch blocks
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Table 4.2: Application of a child node to its parent node

Parent Child Result
(A A1 A2 ... ) (INITIALIZATION X) (A A1⊙ S0 A2⊙ S0 ... )
(A A1 A2 ... ) (METHOD CALL X m) (A A1 ·m A2 ·m ... )
(A A1 A2 ... ) (COND (BLOCK X)

(BLOCK Y) ...)
(A (X A1 A2 ... ) (Y A1 A2 ... ) ...)

(A A1 A2 ... ) (LOOP (BLOCK X)) (A <X A1 A2 ... : IQ >)
<A A1 A2 ... : B1
B2 ... >

(INITIALIZATION X) <A A1 A2 ... : B1⊙ S0 B2⊙ S0 ... >

<A A1 A2 ... : B1
B2 ... >

(METHOD CALL X m) <A A1 A2 ... : B1 ·m B2 ·m ... >

<A A1 A2 ... : B1
B2 ... >

(COND (BLOCK X)
(BLOCK Y) ...)

<A A1 A2 ... : (X B1 B2 ...) (Y B1
B2 ...) ... >

<A A1 A2 ... : B1
B2 ... >

(LOOP (BLOCK X)) <A A1 A2 ... : <X B1 B2 ... : IQ >>

Table 4.3: Reduction to LTMs

Element Reduction
(A m1 m2 ... ) m1 m2 ...
(A m1 m2 ... ) * mx m1mx m2mx ...
<A b1 b2 ... : i1 i2 ... >* p M ′(A) = all possible outcomes of equations (7)

1 ds.m1(); ds.m2();

2 if(theDayIsSunny) {

3 ds.m3();

4 ds.m4();

5 }

6 elseif(itIsSnowing) {

7 ds.m5();

8 while(! userPressedCancel) {

9 ds.m8(); ds.m9();

10 }

11 }

12 ds.m6(); ds = new DS(); ds.m7();

Figure 4.4: Example of client source code containing a conditional

Figure 4.6 shows the sequence of values of the assessment string. The column on the left shows child
application or block reduction. Child application is marked by a letter followed by a number (e.g.: B1), while
block reduction is marked by the block identifier followed by an exclamation mark (e.g.: C!).

We start with the outermost block A and initialize it with IQ (first line in Figure 4.5). Next we apply
each of the children of this block. Application of a matrix to a block will distribute the multiplication to
each of the elements inside of the bock (second rule of Table 4.2). In the example, we apply the child A1

to the first line and obtain the line A1 in Figure 4.5. We repeat the same process and apply the line A2 in
Figure 4.5 to obtain the line A2 in Figure 4.5. In line A3 we need to apply a COND child. The effect will be
the creation of three inner blocks with the contents of the parent (third rule of Table 4.2). Next, we apply
A4 to the current string. Now we have three inner elements in A, therefore we need to multiply each of the
three elements by m6.

A multiplication of a matrix by a block will add the matrix to the pending multiplications slot of the
block represented by an asterisk followed by the method name. In other words, the multiplication is marked
to be executed in the future. Next, we apply the initialization of line A5. The last child of A is A6. Again,
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1 -- (BLOCK A

2 A1 (METHOD_CALL DS m1)

3 A2 (METHOD_CALL DS m2)

4 A3 (COND

5 -- (BLOCK B

6 B1 (METHOD_CALL DS m3)

7 B2 (METHOD_CALL DS m4)

8 -- )

9 -- (BLOCK C

10 C1 (METHOD_CALL DS m5)

11 C2 (LOOP

12 -- (BLOCK E

13 E1 (METHOD_CALL DS m8)

14 E2 (METHOD_CALL DS m9)

15 -- )

16 -- )

17 -- )

18 -- (BLOCK D

19 D1 IDENTITY

20 -- )

21 -- )

22 A4 (METHOD_CALL DS m6)

23 A5 (INITIALIZATION DS)

24 A6 (METHOD_CALL DS m7)

25 -- )

Figure 4.5: Reduced AST of the source code in Figure 4.4

we will distribute the multiplication to the three inner blocks B, C, and D. But, this time, as the blocks
already have a pending matrix to multiply, we can simply replace m6 ⊙ S0 with m6 ⊙ S0m7.

1 (A IQ)
2 A1: (A m1)

3 A2: (A m1m2)

4 A3: (A (B m1m2) (C m1m2) (D m1m2))

5 A4: (A (B m1m2)*m6 (C m1m2)*m6 (D m1m2)*m6)

6 A5: (A (B m1m2)*m6 ⊙ S0 (C m1m2)*m6 ⊙ S0 (D m1m2)*m6 ⊙ S0)

7 A6: (A (B m1m2)*m6 ⊙ S0m7 (C m1m2)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

8 B1: (A (B m1m2m3)*m6 ⊙ S0m7 (C m1m2)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

9 B2: (A (B m1m2m3m4)*m6 ⊙ S0m7 (C m1m2)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

10 B!: (A m1m2m3m4m6 ⊙ S0m7 (C m1m2)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

11 C1: (A m1m2m3m4m6 ⊙ S0m7 (C m1m2m5)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

12 C2: (A m1m2m3m4m6 ⊙ S0m7 (C <E m1m2m5 : IQ>)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

13 E1: (A m1m2m3m4m6 ⊙ S0m7 (C <E m1m2m5 : m8>)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

14 E2: (A m1m2m3m4m6 ⊙ S0m7 (C <E m1m2m5 : m8m9>)*m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

15 E!: (A m1m2m3m4m6 ⊙ S0m7 M ′(E)m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

16 C!: (A m1m2m3m4m6 ⊙ S0m7 M ′(E)m6 ⊙ S0m7 (D m1m2)*m6 ⊙ S0m7)

17 D1: (A m1m2m3m4m6 ⊙ S0m7 M ′(E)m6 ⊙ S0m7 (D m1m2IQ)*m6 ⊙ S0m7)

18 D!: (A m1m2m3m4m6 ⊙ S0m7 M ′(E)m6 ⊙ S0m7 m1m2m6 ⊙ S0m7)

19 A!: m1m2m3m4m6 ⊙ S0m7 M ′(E)m6 ⊙ S0m7 m1m2m6 ⊙ S0m7

Figure 4.6: Assessment string sequence of the AST in Figure 4.5

Until this point (line A5 in Figure 4.6) we know that we have at least three alternative method sequences,
and that all method sequences will necessarily start with m1m2 and end with m6 ⊙ S0m7. Therefore, if we
find m1m2 or m6 ⊙ S0m7 to be equal to 0Q, we can immediately abort the process and declare the source
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code to be incompatible. This is the reason why the algorithm was chosen to traverse the tree breadth-first.

At this point we already applied all children of A and the next step would be to try to reduce A to a set
of matrices. But we cannot reduce A since this block has inner blocks that need to be reduced before A.

Therefore we start the same process with block B. Now we should apply B1 to the contents of B. It is
important to notice that this time we are applying m3 to the parent node B. Therefore, m3 should multiply
the current matrix of B, not its pending matrix. The same process is repeated with the child B2. Now, at
line B2, all the children of B were applied to this block and, since B does not have any inner block, we can
calculate the linear transformation that is equivalent to B (second rule of Table 4.3) and eliminate this block
(line B!).

Application of C2 will follow the fourth line of Table 4.3. During compliance verification time, we do
not know how many times a loop will be repeated. Therefore, we need to numerically calculate the possible
LTMs that can be generated from repetitions of the LOOP contents. The structure of the assessment
string of a loop is: <identification (before loop section): (iteration section)> *(pending ←֓
multiplication).

M ′(E) means the collection of all matrices that can be generated by the E subtree. Given that a LOOP

assessment string has the structure <id b1 b2 ... bx : i1 i2 ... iy>*p, the possible outcomes should
be calculated based on the expressions

b1i
n
1p b1i

n
2p · · · b1i

n
yp

b2i
n
1p b2i

n
2p · · · b2i

n
yp

...
...

. . .
...

bxi
n
1p bxi

n
2p · · · bxi

n
yp

(4.7)

Where n ∈ N. We start with n = 0. When one of these expressions generates an LTM that was already
generated we discard this expression. We increment n until we discarded all expressions and finally we have
M ′ for the loop.

To generate M ′(E) we need to calculate all possible outcomes of the expressions m1m2m5(m8m9)
n.

The same process is repeated for blocks C and D until they are both reduced to matrices (lines C! and
D!). Finally, we can reduce the A block and have as a final result that the possible method sequences are
m1m2m3m4m6 ⊙ S0m7, M

′(E)m6 ⊙ S0m7, and m1m2m6 ⊙ S0m7.

4.5 Explicit FSM references in client-side

We just saw an algorithm to analyze client source code and to find compatibility problems related to service-
side FSMs. So far, the way clients utilize a service does not differ from the way local objects are utilized.
In general, remote service APIs are built to provide local objects that represent remote services, which feels
natural for programmers. The main differences will be how this object is obtained, and the behavior during
run time. For instance, a remote object may throw exceptions that are simply consequent to distribution:
the interruption of a network connection, or a server process that freezes.

Nevertheless, there are cases in which client developers may want to interact with service-side FSMs
explicitly. For instance, as we saw above, state transitions may happen after a service method finished, as a
result of some process that is being executed in the service-side. Also, a client may want to use a service-side
FSM as a semaphore.

We propose that the reduced AST could contain information about how the client wants to interact with
service-side FSMs. Besides allowing for a more sophisticated cooperation between client and service, we
argue that analyzing how clients utilize service-side FSMs can be used to enhance accuracy in compatibility
assessment.

As we saw, our compatibility assessment process is based on finding zero LTMs. A non-zero LTM does
not mean that client and service are compatible, but only that no incompatibility was found. A method call
sequence may be valid according to the service contract FSMs, but the execution of client and service may
lead the service to a state that the client does not want.

When the execution of a method can cause more than one transition, the context in which the service is
executed (current service-side states, service-side data, data provided by the client, random variables, etc.)
will determine which will be the next state. At client-service contract assessment time, these conditions
cannot be determined. Therefore, the assessment process can only calculate whether there is a chance that
the method call sequence will generate any valid state or not.
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But, if the client specifies which state it expects the service to reach, compatibility assessment can verify
whether or not the expected state is among the potentially reachable ones. The more clients and services
are explicit about how these states are expected to transit from value to value, the more accurate can be a
compatibility assessment.

Having an equivalent linear transformation containing several non-zero values means that the client
procedure can be applied to several initial states and lead to several initial states. But it may also be a
symptom that the client procedure is vague or not specific enough about under which assumptions the client
procedure was written. A vague description of client expectations towards service behavior may make the
client appear to be more flexible than it actually is. As a consequence, compatibility assessment processes
may erroneously evaluate clients to be compatible with versions of the service that actually do not behave
as expected by the clients.

Contracts also play an important role to minimize vagueness related to client source code, since uncer-
tainty towards state transitions can easily appear if the same method is capable of making more than one
state transition, depending on the circumstances in which the method was called.

Contracts that allows the same method to execute several kinds of transitions will leave state transition
decision as responsibility of the service. Consequently, client-contract compatibility is hard to assess.

On the other hand, contracts that map state transitions to a single method will leave the state transition
decision in the hands of clients. As a consequence, client-contract compatibility assessment usually has no
ambiguities.

Here we focus on the former kind of contract, the one that makes it hard to assess client compatibility.

We saw that, in client-side, the presence of loops cause the equivalent LTM to be vague, and the presence
conditionals multiply the number of equivalent LTMs. Nevertheless, programmers may want to make sure
that the version assessment process will be accurate. In this way, a client application programmer can try
to minimize the effects of a vague or too flexible contract.

Not only explicit references to service-side FSMs can be used to access compatibility, but they can also
(1) make source code easier to comprehend and, (2) during the execution of the client, verify if the behavior
of state machines is as expected.

(1) Source code comprehension can be improved as assumptions regarding the service-side states
are explicit. Then the reader of the source code does not need to guess what the programmer expected from
the service-side states.

(2) State behavior assessment during the execution of the client application allows for the client to
catch exceptions in case the service does not execute the transition the client expected. During the client
construction process, version checking processes can only verify if the structure of method calls is consistent,
which ultimately means that they can generate valid states. Nevertheless, eventual misconducts of services
will be not found during this process, which makes run time state behavior verifications important to ensure
that client applications do not need to be built to have defensive code to respond to defects or run time
errors in the service-side.

Here we will describe new language constructs in terms of imaginary nodes for clarity and to keep our
discussion independent from concrete syntax.

Table 4.4 is an extension of Table 4.2, containing the application of each extension. t(sa → sb) stands for
the LTM that contains a 1 at the sa → sb cell and zero in all other cells. In order to have a concise notation,
we will utilize:

t(sx) ≡ t(s1 → sx) + t(s2 → sx) + . . .+ t(sQ → sx) (4.8)

t(sx) ≡ t(sx → s1) + t(sx → s2) + . . .+ t(sx → sQ) (4.9)

t(sx, sy) ≡ t(sx) + t(sy) (4.10)

t(sx → sy, sz → sw) ≡ t(sx → sy) + t(sz → sw) (4.11)

At follows, we will present each of the constructs for the client-side programming. For each construct,
we will present

• AST structure - the AST grammar rules, represented using the XML EBNF [1] [29] 3.

• an example of syntax, utilizing standard OOP. We will use Java in our examples.

3In short, in the EBNF notation, the symbol ˆ marks a tree node, ? marks the preceding item to be optional, + marks the
preceding item to be repeatable one or more times, and * marks the preceding item to be repeatable zero or more times
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Table 4.4: Extension of Table 4.2 to include client-side FSM references

Expected State Transition
Parent (A A1 A2 ... )
Child (METHOD CALL (EST (TRANSITION s1 s2) | (TRANSITION s3 s4) | ...) X m)
Result (A A1 ·m · ∗t(s1 → s2, s3 → s4, . . .) A2 ·m · ∗t(s1 → s2, s3 → s4, . . .) ... )

Parent (A A1 A2 ... )
Child (METHOD CALL (EST (TRANSITION s1 s2) & (TRANSITION s3 s4) & ...) X m)
Result (A A1 ·m · ∗t(s1 → s2) · ∗t(s3 → s4) · ∗ . . . A2 ·m · ∗t(s1 → s2) · ∗t(s3 → s4) · ∗ . . . ... )

Parent <A A1 A2 ... : B1 B2 ... >
Child (METHOD CALL (EST (TRANSITION s1 s2)) X m)
Result <A A1 A2 ... : B1 ·m · ∗t(s1 → s2) B2 ·m · ∗t(s1 → s2) ... >

State Assertion / Wait for
Parent (A A1 A2 . . . )
Child (WAIT FOR X (STATE LIST s1 s2 . . . )) or (STATE ASSERT X (STATE LIST s1 s2 . . . ))
Result (A A1 · ∗t(s1, s2, . . .) A2 · ∗t(s1, s2, . . .) . . .)

Parent <A A1 A2 . . . : B1 B2 . . .>
Child (WAIT FOR X (STATE LIST s1 s2 . . . )) or (STATE ASSERT X (STATE LIST s1 s2 . . . ))
Result <A A1 A2 . . . : B1 · ∗t(s1, s2, . . .) B2 · ∗t(s1, s2, . . .) . . . >

If-state
Parent (A A1 A2 . . . )
Child (IF STATE X s1 s2 . . . (BLOCK B1) (BLOCK B2) . . . )
Result (A (B1 A1 · ∗t(s1, s2, . . .) A2 · ∗t(s1, s2, . . .) . . .) (B2 A1 · ∗t(s1, s2, . . .) A2 · ∗t(s1, s2, . . .) . . .) . . . )

Parent <A A1 A2 . . . : B1 B2 . . .>
Child (IF STATE X s1 s2 . . . (BLOCK C1) (BLOCK C2) . . . )
Result <A A1 A2 . . . : (C1 B1 ·∗t(s1, s2, . . .) B2 ·∗t(s1, s2, . . .) . . .) (C2 B1 ·∗t(s1, s2, . . .) B2 ·∗t(s1, s2, . . .)

. . .) . . .>
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• an example of syntax, extending the syntax of Java. Other programming languages could have been
utilized as well, and Java was chosen arbitrarily.

• the ASTs of the examples - The transformation of the example of syntax into an AST form, according
to the AST structure.

• compatibility assessment - how compatibility assessment is affected by construct utilization

4.5.1 Expected State Transition

This construct can be utilized for client applications to specify which state transition they expect to happen
when a certain method is called.

AST structure

methodCall: ^( METHOD_CALL IDENTIFIER est? ARGUMENTS)

est: ^(EST IDENTIFIER? transition (transitionOperation transition)*)

transition: ^( TRANSITION ’!’? ’*’ IDENTIFIER) | ^( TRANSITION ’!’? ←֓
IDENTIFIER ’*’) | ^( TRANSITION ’!’? IDENTIFIER IDENTIFIER)

transitionOperation : ’|’ | ’&’

reference: ^( REFERENCE referenceToken *)

Example of syntax - OOP

ds.m1(7, new EST(ds.s1 , ds.s2).or(ds.s2 , ds.s3));

ds.m2(9, new EST(ds.ANY , ds.s2).and().not(ds.s3 , ds.ANY));

Example of syntax - DSL

ds.m1[s1=>s2 | s2=>s3](7);

ds.m2[*=>s2 & !s3= >*](9);

AST of the examples

(METHOD_CALL (REFERENCE ds m1) (EST (TRANSITION s1 s2) ’|’ (TRANSITION ←֓
s2 s3)) (ARGUMENTS 7))

(METHOD_CALL (REFERENCE ds m2) (EST (TRANSITION ’*’ s2) ’&’ (TRANSITION ←֓
’!’ s3 ’*’)) (ARGUMENTS 9))

Linear transformation

The effect of this construct will be to select certain transitions from the state transition matrix of the
method. We start by defining the matrix that is equivalent to the Expected State Transition (EST) subtree
and then we utilize this matrix as a mask to select transitions from the method matrix.

Each TRANSITION subtree is translated into a matrix utilizing the following rules:

• A transition ‘* => sx’ containing an asterisk at the left side is translated into the matrix t(sx).

• A transition ‘sx => *’ containing an asterisk at the right side is translated into the matrix t(sx).

• A transition ‘sx => sy’ containing no asterisk sign is translated into the matrix t(sx → sy).
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Table 4.5: Operations used in expected transitions declarations

Operation Cell value
CM,N = AM,N · ∗BM,N ci,j = ai,j · bi,j
CM,N = AM,N ∧BM,N ci,j = ai,j ∧ bi,j
CM,N = AM,N ∨BM,N ci,j = ai,j ∨ bi,j
CM,N = ¬AM,N ci,j = ¬ai,j

Operations ‘|’, ‘&’, and ‘!’ utilizing matrices should be executed cell by cell according to the Table 4.5.
Finally, when all the TRANSITION subtrees are reduced to a single matrix mEST , the linear transfor-

mation m′ equivalent to the METHOD CALL subtree m will be given by

m′ = m · ∗mEST (4.12)

Where ‘·∗’, a dot product, is a simple multiplication cell by cell, as defined in Table 4.5.
For example, the ESTs in the examples above are translated into m1 · ∗(t(s1 → s2) ∨ t(s2 → s3)) and

m2 · ∗(t(s2) ∧ ¬t(s3)).

4.5.2 State Assertion

ESTs are specific to a certain method call but there are situations in which a client programmer may want
to make sure what is the current state at a certain source code line. This could be the case, for example, at
the end of a loop. We introduce the state assertion construct for this purpose.

At design time, state assertions can only be used to reduce the number of possible states at a certain
source code statement. At execution time, a state assertion is used to interrupt client procedure execution
if the expected state is not the actual one.

AST structure

^( ASSERT_STATE IDENTIFIER IDENTIFIER? (STATE_LIST IDENTIFIER +))

Example of syntax - OOP

ds.assertState(ds.alpha.S1, ds.alpha.S2);

Example of syntax - DSL

[ds.alpha: S1 | S2];

AST of the examples

(ASSERT_STATE ds alpha (STATE_LIST S1 S2))

Linear transformation

In terms of linear transformation, an assertion about the state s will only lead to non-zero matrices if
the current LTM can produce s. In other words, we will apply the dot product of t(s) to the current LTM.
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4.5.3 Waitfor

A waitfor statement will cause the client to halt the execution of a procedure and wait until a service sends
a message informing the client that a certain state was reached in the service-side. Waitfor statements are
useful for situations in which the client needs the service to be in a certain state, but this state cannot be
reached as the result of the termination of any method.

This situation happens when the service requires the implementations to reach a certain state not at the
end of a method execution but by means of a process that is asynchronous with the client (a parallel thread
or process, or an external system).

AST structure

^( WAIT_FOR IDENTIFIER IDENTIFIER +)

Example of syntax - OOP

ds.waitfor(ds.S2, ds.S3);

Example of syntax - DSL

waitfor(ds:S2|S3);

AST of the examples

(WAIT_FOR ds S2 S3)

Linear transformation

Applying a waitfor is equivalent to applying a state assertion. In other words, if the statement waits for
states sx or sy, we should apply a dot product with t(sx, sy) to the current LTM.

4.5.4 If-state

For cases in which a programmer wants to control execution flow based on service state, we propose the
if-state construct. If-state blocks can only refer to service states while ordinary COND blocks can not refer to
service states. This is important to ensure that compatibility assessment can utilize if-state blocks to make
the correct changes in the equivalent linear transformation.

AST structure

^( IF_STATE IDENTIFIER IDENTIFIER+ BLOCK)

Example of syntax - OOP

if(ds.isState(S1)) { }
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Example of syntax - DSL

ifstate(ds:S1) { }

AST of the examples

(IF_STATE ds S1 BLOCK)

Linear transformation

An if-state subtree will affect the assessment data structure similarly to a COND block. The difference
is that an if-state subtree that refers to the states s1, s2, . . . , sN will perform a dot product between the
current LTM and t(s1, s2, . . . , sN ).

4.5.5 If-version

There are cases in which the programmer wants the client to be compatible with more than one service
contract. An if-version block allows a programmer to specify which block of code will be executed in
presence of which service version.

If-version blocks are similar to the if-state blocks. If-version blocks also accept only boolean expressions
that refer to states. This construct is used to allow for clients to be built in a way that they are compatible
with a range of service contract versions.

AST structure

^( IF_VERSION IDENTIFIER VERSION_ID+ BLOCK)

^( VERSION_ID IDENTIFIER)

^( VERSION_ID IDENTIFIER ’+’)

^( VERSION_ID IDENTIFIER ’-’)

Example of syntax - OOP

if(ds.getVersion ().atLeast (1) && ds.getVersion ().lessThan (2)) { }

Example of syntax - DSL

ifversion(ds: 1+ & 2-) { }

AST of the examples

(IF_VERSION ds (VERSION_ID 1 ’+’) (VERSION_ID 2 ’-’) BLOCK)

Linear transformation

During compatibility analysis, the contents of an if-version block will considered if the contract version
matches the IF VERSION imaginary node. Otherwise, the if-version block will be simply ignored.
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Table 4.6: Qualitative comparison between compliance assessment methods

(a) method signa-
ture

(b) message order (c) client source
code

(d) client source
code with FSM ref-
erences

service con-
tract

yes yes yes yes

client con-
tract

– yes – –

client-service
conversation

– yes yes yes

service-side
FSMs

– yes yes yes

client-side
FSMs

– yes – –

analysis
of client
fragments

yes – yes yes

service ter-
mination

– detection by design by design

client struc-
ture

general general general specific

independence
from pro-
grammer’s
ability

high moderate moderate low

compliance
accuracy

low moderate moderate high

4.6 Proposal evaluation

In this section we present a qualitative comparison between four processes to compliance assessment. Table
4.6 presents a comparison between four client-service contract compliance verification processes. The ‘method
signature’ process (a) simply checks whether all method calls follow the basic contract specification. The
‘message order’ column (b) refers to [63], in which client-service message exchange is analyzed. The ‘client
source code’ column (c) refers to the procedure introduced in Section 4.4. Finally, ‘client source code with
FSM references’ (d) stands for the process of Section 4.5.

Process (a) offers just a basic compliance accuracy, and is a very simple process whose accuracy does not
depend on programmer’s ability.

Process (b) specifically analyzes client-service conversations, detects service termination, and utilizes
client contracts. It needs some programmer’s ability to correctly design client contracts. Client fragments
cannot be analyzed, since a client is represented by the client contract.

Process (c), in this context, is a mere simplified version of (d). Finally, (d) can be the most accurate but
is also the process whose accuracy is more reliant on programmer’s ability to utilize special programming
language constructs that remove vagueness in service contract usage. Service termination is not detected,
but should be modeled as final states.

4.7 Conclusions

In this paper we introduced an extension of the process to analyze a client source code in face of a service
contract. All constructs are translated into requirements for the current state in the service-side, which can
be both utilized to check compatibility and to detect errors during execution time.

One of the big limitations of previous approaches was the inability to allow for client programmers to
express information that could remove uncertainty in the compatibility assessment. For instance, we saw
that the presence of loops create vague conclusions about compatibility. A programmer can easily remove
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vagueness utilizing the assert state construct.
Our process can take any portion of client source code as input, as long as we can extract the reduced

ASTs we need, but it requires services to be able to expose FSM in their contracts. Although there are
some standards to expose service-side FSMs, these standards are yet to be popularized, as much as grid
and cloud computing for instance. As our process is specially suitable for complex, hard to debug systems,
the current reality of service computing restricts the process to be applicable in specific niches such as grid
computing (in which virtual organizations can adopt its own standards) or private service clouds (in which
service orientation does not translate directly into systems that run across organizations).



Chapter 5

Service-side constructs

5.1 Fundamental constructs

5.1.1 return

A state transition is an event similar to the completion of a method call as it marks the end of the procedure,
and as it is directly related to the method contract. For these reasons, we propose that a return statement
should not only give the result of the method execution, but also perform one of the state transitions the
method can execute.

AST structure

^( RETURN ^( TRANSITION IDENTIFIER? IDENTIFIER) value?)

Example of syntax - OOP

alpha.doTransitionAfterReturn (alpha.S2);

return 30;

Example of syntax - DSL

return [alpha:S2]30;

AST of the examples

(RETURN (TRANSITION alpha S2) 30)

Linear transformation

Text

5.1.2 Thiscall

AST structure

THIS_CALL

51
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Example of syntax - OOP

thiscall.getESTSet ();

Example of syntax - DSL

thiscall.getESTSet ();

AST of the examples

(METHOD_CALL THIS_CALL getESTSet)

Linear transformation

Text

5.2 Proposed features for a DSL

In OOP, semantics of service contracts frequently cannot be expressed by means of traditional method
signatures (a collection of argument types, a return type, and possible exceptions). Some semantic fea-
tures, however, may have direct impact on the flow of conversations between service and client. Differently
from aspects of contracts regarding data format, for example, aspects related to method sequences can be
checked during compilation of each side. Also, programmers could provide explicit clues on which sort of
conversational behavior (which pattern of method calls) each side expect. That allows programmers to tune
how strict are the required compatibility verifications. In this section we will present our assumptions for
distributed application environments and our proposal for compatibility verification.

Services may declare zero or more finite state machines. Those machines are described as a set of states
and transitions between states. Each method may be declared to be capable of executing zero or more of
these transitions.

During service programming, a finite state machine object is made available to the programmer’s classes
and will check if the conditions of state transition are followed.

From the client-side programming perspective, such finite state machine information is useful to detect
changes in the contracts, and to verify the consistency of method request order before actually calling the
service. This verification can be conducted both during compilation and run times.

We argue that service extensibility with backward compatibility cannot be always guaranteed by only
adding new methods to a service. Let’s take, for instance, an example of a database service called DB,
which provides remote access to a database. Let’s assume that in the first version of this DB service,
DB1, clients have access to two methods whose signatures are String[ ] [ ] query(String sql) and
void update(String sql).

For simplicity, let’s assume the query method simply returns a two-dimensional array containing the
data obtained from the sql query parameter.

A second version of the same service could simply add another method with the signature ‘int ←֓
getDatabaseSize()’, which is just a convenience method.

After some time operating, the service design team in charge of the DB interface specification decides
that the service should not immediately write the changes in an ‘update’ call since, for some applications,
the caller may want to control when actual database writing should occur.

The third version of the DB service, DB3 could contain a fourth method called commit(). And clients
should, by default, explicitly call this method in order to write data to the database.

Although the signatures in DB3 are a superset of the signatures in DB1, a client written to work with
DB1 will be not compatible with DB3, since an internal behavior of the service changed. On the other
hand, it’s expected that clients written to work with DB1 are compatible with DB2, since DB2 just adds
an utility method.
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Table 5.1: Descriptions of methods

Method Description
m1 Upload file chunk
m2 Start data mining
m3 Download data mining result
m4 Erase file (and cancel data mining)
m5 Erase data mining result
m6 Cancel data mining

Therefore, although the sole inspection of service interfaces would make us conclude otherwise, there is
an important difference between the version changes DB1 → DB2, DB1 → DB3, and DB2 → DB3. This
difference relies on an internal state of the service, which should be known by the client to command the
server correctly.

In our example, the functions DB1.update and DB2.update are not related to any state while DB1.update
may change an internal state called ‘writing buffer’ from the value ‘empty’ to the value ‘non-empty’.

Let us define a finite state machine as a collection of N states {s1, s2, . . . , sN} and M state transition
methods {m1,m2, . . . ,mN}. Each state is an N -dimensional unit vector and each method is a linear trans-
formation from N to N . Methods may generate and operate upon linear combinations of the states. A
linear combination zA,B = pA · sA + pB · sB of two states sA and sB denotes the possible outcomes of the
application of one or more successive operations. Scalars pA and pB denote the number of ways each state
can be reached. Here we are only interested on whether these scalars are equal to zero or not. A zero means
that the state cannot be reached through the application of the sequence of operations.

For example, let’s consider the state machine depicted in Figure 5.1, a first version DM0.1 of a service
DM that receives large files and performs some sort of data mining on it. This state machine operates over
two state variables sα and sβ . State transitions are related to zero or more methods m1,m2, . . . ,m6.

m1

m1

m3

m2

m2
m4 m5

2

m6

m1

m1

m4

m2

Figure 5.1: A composite state machine of DM0.1, the first version of the DM service

Once created, this service starts in the composed state (sα,A, sβ,A). A client is then supposed to call the
method m1 several times to upload a file to the server. After the file is completely transferred, the client
is able to call the method m2 that will start a data mining process. This method does not block waiting
for the data mining to finish, since this process may take a long time to complete. Instead, the method m2

returns immediately after being called and starts a thread in the service-side. This thread is invisible to the
client, but affects the state machine β, causing the transition sβ,B → sβ,C asynchronously.

5.1 shows the meanings of each of the methods. The method m4 will cancel a data mining if there is one
in process. So the transition sβ,B → sβ,A may be executed by either m4 or m6.

Transitions between states can either happen as a result of method execution or some internal service
process that is not visible to the client.

The service may have separated buffers to store the file and the data mining results. Then, method
m3 can be called to retrieve a previous data mining result even when a new file is being uploaded. Let’s
represent the states of the state machines as

sα,A = sβ,A =
[
1 0 0

]
(5.1)

sα,B = sβ,B =
[
0 1 0

]
(5.2)
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sα,C = sβ,C =
[
0 0 1

]
(5.3)

Also, let’s represent the method transformations for the state machine α as

m1,α =





0 1 1
0 1 1
0 0 0



 (5.4)

m2,α =





0 0 0
0 0 0
0 0 1



 (5.5)

m4,α =





0 0 0
0 0 0
1 0 0



 (5.6)

and the transformations for the state machine β as

m2,β =





0 1 1
0 0 0
0 1 1



 (5.7)

m3,β =





0 0 0
0 0 0
0 0 1



 (5.8)

m5,β =





0 0 0
0 0 0
1 0 0



 (5.9)

m6,β =





0 0 0
1 0 0
0 0 0



 (5.10)

For instance, the operator m2,β means that the operation is capable of causing the transitions sβ,A →
sβ,B , sβ,A → sβ,C , sβ,C → sβ,B , and sβ,C → sβ,C . Transitions sβ,A → sβ,C and sβ,C → sβ,C use the state
sβ,B as intermediate and depend on the help of the internal thread. Methods that do not cause transitions
in a state may be defined as the identity matrix. Therefore:

m1,β = m3,α = m5,α = m6,α = I3 (5.11)

In this example, the application of m2,β on the same state sβ,A can cause a transition to either sβ,B or
sβ,C depending on how long one waits to read the state.

In other cases the transition will depend on conditions checked by the method. This is the case of m1

operating over the state sα,B , for instance. Whether the transition will be to sα,B itself or to sα,C will
depend on whether the file transfer terminated or not.

5.3 Client-side programming

Transformation matrices can be used to verify if method calls in the client-side follow a legal order. Illegal
application of sequences of transformations will lead to a zero matrix 0N,N , which means, the sequence can
not lead to any state. For instance, let us consider the method call sequence of Figure 5.2, which is also
represented in Figure 5.3 (a).
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1 m1();

2 if(/* condition */) {

3 m1(); m1();

4 if(/* condition */) { m2(); }

5 else { m4(); }

6 }

7 else {

8 m1();

9 }

10 m1();

Figure 5.2: Example of IF blocks in client code

In presence of an IF block, the pre-compilation of such source code should fork the sequence in two
sequences, as in Figure 5.3 (b). Finally, we will have:

Ma = m1 ·m1 ·m1 ·m2 ·m1 (5.12)

Mb = m1 ·m1 ·m1 ·m4 ·m1 (5.13)

Mc = m1 ·m1 ·m1 ·m1 (5.14)

Using m1,α, m2,α, and m4,α as defined before, we have as a result:

Ma,α = 03,3 (5.15)

Mb,α = 01,α (5.16)

Mc,α = 01,α (5.17)

Therefore, there is an error in the sequence Ma. The error is easily detectable by checking at which point
the value of the multiplication became 03,3, which is the call m2. The programmer’s IDE or compiler may
then show an error in the line 6.

m m m

(a) (b)

m1

m1 m1

m1

m2 m4

m1

(1)

(3) (13)

(4)

(6) (9)

(15)

m1 (1)

m1 (3)

m1 (4)

m2 (6) m4 (9) m1 (13)

m1 (15) m1 (15) m1 (15)

a b c

Figure 5.3: (a) sequence of method calls and (b) equivalent execution outcomes. Number in parenthesis are
source code line numbers

The presence of loops in the client procedures may also be analyzed. Different numbers of iterations in
a loop may generate different transformations and each of the possible transformations in a loop must be
analyzed to check for consistency with methods that may come after the loop.

Let’s consider the source code of Figure 5.4. Whatever the transformation generated in the end of the
loop, the transformation needs to be necessarily compatible with m5. If the loop cannot generate any of
these compatible transformations, compiling such source code should result in a syntax error. Absence of
syntax errors in this case does not guarantee that the client source code has no defects.
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1 m1();

2 for(/* for statements */){

3 m2();

4 if(/* boolean expression */){ m3(); }

5 else{ m4(); }

6 }

7 m5();

Figure 5.4: Example of a loop in client source code

Given that σ(a, b) is equal to either a or b randomly, passing the compilation verification just guaranties
that there is at least one combination that follows the pattern

m = m1 · (m2 · σ(m3,m4))
x ·m5 (5.18)

in which x is a natural number, for which m 6= 0N,N .
Figure 5.5 illustrates the tree that should be traversed to verify the syntax of the source code of Figure

5.4. Each iteration generates 2i (where i is the iteration number) new transformations that should be checked
against m5.

m1

m5

m2

m4m3

m2

m4m3
m2

m4m3

...

no iterations

1 iteration

2 iterations

Figure 5.5: Method invocation tree for the source code of Figure 5.3

Transformations already checked should be kept in memory and if a certain transformation was already
checked, it should not be considered in the next iteration. For instance, let’s say m1 ·m2 ·m3 generates a
certain transformation that is equals to the one obtained by m1 ·m2 ·m4 ·m2 ·m4. In this case, the rightmost
branch of Figure 5.5 should be ignored when the process applies the third iteration. In other words, the
sequences m1 ·m2 ·m4 ·m2 ·m4 ·m2 ·m3 and m1 ·m2 ·m4 ·m2 ·m4 ·m2 ·m4 do not need to be considered.

The process should be repeated until there are no more transformations to check or until it finds a certain
transformation that, when applied to m5, result in a transformation different from 0N,N .

As we already mentioned, methods can be defined to be capable of executing several transitions (which
is the case of m1 in both versions of our example). Clients may find it convenient to declare which of the
possible transitions they expect to happen in the service-side for the following reasons:

1. Client source code readability may be improved if method calls show clearly which service-side state
should be reached.

2. Giving specific requirements to the service during runtime may allow for the service to cancel the
execution if the requirements given by the client application cannot be met.

3. As in programming languages that use design-by-contract, such as Eiffel 1, declaring such requirements
frees the client application from having to verify service state or guess which is the service state. In
other words, it avoids defensive programming in the client-side.

4. Incompatibility detection may be improved. Because clients are specifying exactly which transitions
they expect from a certain method, if the transition used is not present in a certain version, such
incompatibility can be easily detected.

1Eiffel Software website: http://www.eiffel.com/

http://www.eiffel.com/
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1 m1[alpha :*=>B | B=>C](argument1 , argument2);

Figure 5.6: Example of a syntax for expected transitions declaration

We argue that declaration of EST should be checked for syntax and consistency with the state machines
as defined in the service interface. Therefore, such declarations of EST should be included as part of the
DSL grammar and read during the source code verification step.

Figure 5.6 shows an example of syntax for a DSL based on Java. The declaration between square brackets
means that the EST refers to the state alpha, and accepted transitions are any transition that leads to the
state B or a transition from B to C.

In therms of matrices such declarations should be applied as a mask that selects some cells of a trans-
formation matrix. Let’s use the characters ‘.*’ to denote such operation. The result CM,N of an application
of mask between two matrices AM,N and BM,N is depicted in the second row of 4.5. Boolean operations
should be performed analogously.

An asterisk in the left side of a transition is translated into a column of ones. Then the strings *=>B and
B=>C should be translated, respectively, into the matrices





0 1 0
0 1 0
0 1 0



 (5.19)





0 0 0
0 0 1
0 0 0



 (5.20)

Applying (5.19) and (5.20) in (5.4) we have

[s]m′

1,α = m1,α · ∗





0 1 0
0 1 0
0 1 0



 ∨m1,α · ∗





0 0 0
0 0 1
0 0 0





m′

1,α =





0 1 0
0 1 0
0 0 0



 ∨





0 0 0
0 0 1
0 0 0



 =





0 1 0
0 1 1
0 0 0



 (5.21)

The transformationm′

1,α is more selective thanm1,α, sincem
′

1,α does not have the transition sα,A → sα,C .
When applying a mask, the selectiveness of the original method can be unchanged or increased. If, in a
new version of the service DM , the new definition of m1,α generates m′

1,α = 0N,N , this new version is
incompatible with the declaration of Figure 5.6. Analogously to *=>B, strings with an asterisk in the right
side should be translated into a matrix with a row of ones.

The use of ESTs can be specially useful when declared in consecutive method calls, or inside of FOR
loops. Figure 5.7 shows an example containing both cases. In case of loops or conditional blocks, a state may
become ambiguous, as in the end of the FOR loop, in Figure 5.7. For these cases, a client may also declare
an EST unbounded to a method invocation (line 5). This EST does not necessarily send any message to the
service side. Instead, it may check at runtime if the state is compliant with the EST and raise an exception
in case the check does not pass.

Verification errors may happen (1) while applying ESTs to method calls if the mask operation generates
a zero matrix, or (2) if unbounded ESTs require an unreachable state. In both cases, loop and conditional
blocks expansion trees should be used to search for inconsistencies.

Also, warnings can be shown whenever a certain EST does not eliminate any transition. So programmers
will know that removing an EST does not have any effect in the execution.

In (5.21) we can see that *=>B did not filter any possible transition of m1,α. Therefore, *=>B can be
marked as unnecessary in the programmers’ IDE.

5.4 Service-side programming

State transitions in service-side programming source code, on the other hand, are easier to ensure because
service containers can be used to control the behavior of services.
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1 m1[alpha:A=>B](arg1 , arg2);

2 for(/*for statements */){

3 m1[alpha:B=>B|B=>C](arg1 , arg2);

4 }

5 [alpha:C];

6 m2();

7 m3();

8 m4();

Figure 5.7: Example of a syntax for expected transitions declaration

1 public class m1Alpha {

2 public void toB(){ /* transition to state B */ }

3 public void toC(){ /* transition to state C */ }

4 public boolean isA(){ /* returns true if the state is A */ }

5 public boolean isB(){ /* returns true if the state is B */ }

6 public boolean isC(){ /* returns true if the state is C */ }

7 public Set <EST > getESTSet (){ /* returns the EST set defined by the ←֓
client */ }

8 }

Figure 5.8: Example of state object class for the method m1

We propose that service methods should receive state objects as an extra argument. These objects should
be built based on the service interface definition and only have valid state transition operations. For example,
Figure 5.8 shows the outline of a class for state objects referring to α, given to the method m1.

Since m1 is not supposed to make transitions to the state sα,A, there is no method called toA().

As we already said, ESTs declared in the client-side may also be used by the service. A service may use a
received EST to evaluate, at runtime, the feasibility to reach the state expected. If m1 concludes that none
of the expected states can be reached, the service may choose to send a remote exception back to the client
instead of executing its instructions properly.

ESTs, if declared by the client, can be provided as part of the state object, as in the line 7 of Figure 5.8.

After a method finishes, the container must check the state object to make sure one of the legal transitions
(as defined in the service interface, and potentially narrowed by a client EST) was performed. In case a
transition was not performed, the service container must return an error message to the client. Also, if the
container is responsible for managing transactions, it can try to rollback the operations executed by the
service method.

5.5 Service Specification Evolution

A new version DM0.2 of the same service may have a different state transition diagram as depicted in Figure
5.9. In DM0.2 all methods have the same signatures and the same meanings as in DM0.1, but now there is
a new state machine called γ. This new specification of the service requires the data mining to have a FIFO
queue manageable by the client using the methods m3 and m5.

Let’s assume that the designers of DM0.2 considered the state sβ,C unnecessary since a processor may
be idle or doing data mining independently on the existence or not of data mining results to download. The
transition sγ,A → sγ,B can be caused by m2 but not instantly. Instead, the transition is done by the same
hidden thread that causes the transition sβ,B → sβ,A, which may happen long after the method m2 finished.

So despite of having the same method signatures, and no extra or missing methods, a client designed to
work with DM0.2 may be incompatible with DM0.1. So DM0.2 is not backward compatible.

For instance, let’s consider a sequence p = mx
1 ·m

y
2 ·m

y
3 ·m

y
5 where x is the number of chunks of the file

to be uploaded and y is the number of data mining executions. The sequence p is legal in DM0.2 and will
generate the transformations:
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m3

m2

m6

m4

m1

m1

m2

m4

m1

m1

m2

m5

m2

m52

Figure 5.9: A new version DM0.2 of the same service

pα =





1 0 1
0 0 1
0 0 0



 (5.22)

pβ =

[
1 1
0 0

]

(5.23)

pγ =

[
1 1
1 1

]

(5.24)

But verifications using DM0.1 will find that my
5 = 0N,N for any y > 1, which means the sequence p is

only valid in DM0.1 for y = 1.
On the other hand, a client made to utilize DM0.1 will be compatible with the second version since the

second one has less restrictions in the methods m3 and m5. The result of a client made for DM0.1 utilizing
DM0.2 is the underuse of the result queue, but the design of the interface guaranties forward compatibility
from DM0.1.
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Part III

π-calculus approach for contracts
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Chapter 6

A Contract-Centric Approach to
Compatibility

Abstract

Distributed computing has reached the big audiences. From mobile devices that can access user’s photo
collections stored in the cloud, to on line cooperation between scientific institutions, distributed computing
has become part of the daily life of an expressive amount of people. It is, then, important to rethink the way
we express compatibility between systems. This paper proposes a mechanism to check service compatibility
based on contracts. We propose that a contract should be specified in terms of a process calculus and that
interacting services should have their algorithms verified against such process calculus to see if they can
reach a target state, meaning, they can successfully interact. In order to guide the compatibility check we
propose a variation of the Java programming language to create a domain specific language (DSL). This
DSL, along with a run time model, was specially designed to allow for an automated formal verification of
behavior. This section is based on [59].

6.1 Introduction

Distributed services are fast increasing in importance. With the advent of cloud computing, nowadays users
can enhance their mobile gadgets with remote services provided through the network. Currently, what we
are seeing is the multiplication of rich client applications that run inside of the mobile devices and usually
communicate with a number of services that provide capabilities to the devices, such as additional storage,
additional processing power, and domain-specific algorithms such as the ones in geographic information
systems.

In this scenario, it is important to analyze how developers create clients and services. In an environment
in which services are expected to be composed easily as software components provided by more than one
vendor, application developers do not have the luxury to fully understand the internals of the remote services
they use as part of their applications. Likewise, developers of such services can hardly completely foresee
all client implementations. So trying to come out with service interfaces that prevent misuse by clients can
be tricky. In cloud computing, a service is usually provided by a company for a fee. This is one of the key
differences between computing clouds and computer grids, according to [33]. So the same client application
may interact with a range of service providers that are chosen based on a number of factors, including the
price of the service.

Ideally, client applications should be checked before a remote service is hired and the same client should
be able to successfully interact with any service that implements a certain contract to avoid vendor lock-in.
One of the problems we need to address is then how to allow for the developers of the client application to
formally verify if their client applications can successfully interact with a service specification rather than
with a specific service implementation. We also assume that the selection of the right service provider can be
done in an automated fashion, for instance, using some scheme in which services compete to serve a certain
client (as in the Grid economy model [16]), so the actual software composition cannot be determined during
coding.

We propose that service specifications should contain state dynamics, which tells the clients in which
circumstances each service method can be called. Also, we need to take into account object mobility in

63
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order to allow for computation to be placed close to data without impacts in contracts. Both mobility
and interaction between services are aspects addressed by the π-calculus [71], which we apply to be part of
contracts. The π-calculus is build around the concept of bisimulation or mutual simulation, a formalization
that provides a criteria to tell if a process emulates the behavior of another one.

The rest of this paper is organized as follows. The following section introduces related research. Sec-
tion 6.3 introduces our model for service contracts, while Section 6.4 introduces a DSL we created on top
of the Java programming language to support advanced contract verification. In section 8.7 we discuss our
contributions. Finally, we conclude this paper on section 8.8.

We also provide two appendices at the end of this paper: Appendix ?? provides a brief introduction of the
π-calculus, while Appendix 6.7 defines a special π-calculus context we use to check client implementations
of contracts. This context provides remote service state inspection, which is needed by the DSL.

6.2 Related research

Interoperability between old and new code based on types was proposed by [72]. It also uses π-calculus, but
as a means to define a type system, instead of trying to check imperative code against a contract.

Papers [57] and [58] propose that internal finite state machines should be added to the service definition
in order to enable the service contract to describe legal sequences of method calls. An approach using finite
state machines was proposed in [19], which is similar to [57]. Verifications based on finite state machine allow
us to identify wrong patterns of service methods, but they do not take into account behavior equivalence
by means of simulation, they do not offer a way to represent channels, and they do not allow us to easily
represent unobservable transitions. The π-calculus we are using here includes those missing features.

Service compatibility is an issue addressed both in [14] and [13]. Both address the problem from the point
of view of message types and termination protocols. Termination is an important feature also addressed here
(a termination can be modeled as both interacting services reaching a zero state), but we also tackle the
problem of message sequences, especially in cases in which states are time dependent (which we model using
the π-calculus τ).

In this paper, we claim that exposing service state can improve client-service cooperation and formal
verification of compatibilities. This approach is similar to “design by contract” [61], which is the idea behind
some programming languages such as Eiffel 1. Design by contract defines pre-conditions and post-conditions
respectively as conditions that the caller of a function should comply with in order to call the function,
and the promise made by the called function regarding the result of the function execution. A contract
in a design by contract is intended to simplify development of applications in general, not only distributed
applications. As a result, a contract aims at reducing defensive coding, which is source code that tries to
check pre-conditions within the execution of a method. Also, the caller of a method needs to check if the
post-conditions were observed by the method called.

Analyzing Web service compatibility using graphs and protocols was addressed in [17], [12], and [25]. A
formalization of compatibility was also proposed in [36].

OurGrid also proposes using transformations over an OOP language to create distributed systems [52] [53].
The strategy of OurGrid is to allow programmers to mark certain Java threads as points to be exported
for the grid to execute. AOP aspects will identify those explicit marks and replace calls to the execution of
threads, by procedures that will request the execution of the threads in a remote node. The model is quite
simple, but can easily improve performance of programs written to be executed locally, by offering memory
and CPUs that reside in a remote node without the programming costs usually required in distributed
execution of tasks defined locally. AOP is based on the idea that standard OOP design does not allow
for correct mapping of crosscutting concerns, which are addressed by aspects (an AOP primitive similar
to a class). In contrast, in our design, we propose a model in which interactions with external services
should be located at a special layer. Restricting interactions to a layer is what allowed us to check contract
compatibility as we will present on the next section.

On [63] it is proposed that Web Service Business Activity (WS-BA) [65] termination protocols (coordi-
nator initiated or participant initiated completion) should be applied to web services as a set of constraints.
Such declared constraints allows for formal verification of algorithms to ensure that a compatibility criteria
is met. This criteria is one in which both services should reach an acceptable state. To avoid deadlocks
and race conditions, the paper proposes to use SOAP Service Description Language (SSDL) as the way to
express those constraints. SSDL constraints are then translated into Process Meta Language (PROMELA)
source code, which is in turn execute by the SPIN model checker [2,41]. The idea is that interaction between

1http://www.eiffel.com/
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services should be grouped into activities that take place sequentially. Each activity should complete in a
consistent state. Our compatibility criteria is different from [63] in that we propose that compatible services
are those that can interact based on a process expressed in terms of π-calculus. Our model allows for what
would be equivalent to parallel activities taking place.

Our proposal is also related to DbC. The Java Modeling Language (JML) [46, 47] is perhaps the most
widely used approach for DbC in Java. JML is an already well-established language and has many tools [15]
to support its usage by programmers. The idea behind JML (as is the approach of other DbC languages
such as Eiffel [6]) is that contracts should be written as part of the source code. In JML, contract constraints
are expressed by annotations that are added in especially formatted comments. Here we also exploit DbC
in the sense that what we call “a contract” can be the same as the concept in DbC. In other words, our
contracts can also express pre-conditions, post-conditions, and invariants.

But our contracts aim at describing behavior rather than providing legal conditions of data to avoid
defensive programming. For instance, our contracts are able to specify that a certain agent should be able
to spawn more agents and pass a reference to such newly-created agents over the network. After those
references are made available to remote nodes, they allow for new interactions to take place.

Another difference is that our concept of contract is one in which the contract describes an abstraction
in which interaction events are described. In Java, those interaction events are mapped to method calls. In
web services, interaction events could be web service calls. Our approach is that, once interfaces have been
defined for distributed agents to interact in a particular programming language such as Java, it is possible
to describe behavior of interactions using π-calculus not as a means to ensure data validity but rather to
judge if the possible multiple implementations of the contract can simulate the contract. A “simulation” in
π-calculus terms, as we will see later, is a relation that ensures that the behavior of a process P ′ remains
confined in the limits imposed by another process P . In our case, P is the contract, while P ′ is one of the
implementations of agents that are subject to the contract.

6.3 A model for service contracts

In this section we describe our model for service contracts. Because introducing the π-calculus is beyond
the scope of this paper, we provide a brief introduction to it on Appendix ??. We discuss an extension of
the π-calculus to conveniently represent object mobility on Appendix ??.

Before we describe our model, it is important to explain our naming conventions. The WS-BA naming
defines that one of the services should be called the “coordinator” (the party that initiated a termination)
and the other should be called “participant”. Services may switch roles during interaction.

We are aiming to develop a programming model for both parties based on a single contract, so we need
to define fixed roles for each party. Hereinafter we will call “client” the software agent that requests a remote
service instance, and the “service” the software agent that is instantiated or allocated to serve a client. After
being contacted by a client, services may initiate communication with the client asynchronously (therefore
playing the role of a coordinator in WS-BA terms) and send data through this communication.

A contract C := (CC , CS) is a pair of π-calculus expressions that represent, respectively, the service from
the standpoint of clients, and a family of clients that can interact with the service. We say that CC defines a
family of clients, instead of a single client, since services should implement the whole contract, while clients
can implement only part of the contract.

6.3.1 Compatibility criteria

The expression of the client implementation is obtained from the client source code. We discuss the extraction
of these expressions on the next section. As we will see, we allow for the DSL source code to interact with
the service and to query about the availability of methods. For this to be possible, the client implementation
is put on a context that differs from the one in that the client contract expresses.

We call such a context Θ. We use Θ(CC,i, CC) to represent a client implementation CC,i in the context
Θ created based on the client contract CC . In the Θ context, CC,i can call some special channels called ϑx

to query for the availability of method x. The caller of ϑx should pass two reply channels. One for TRUE,
and another for a FALSE response.

For example, let us assume a contract implementation Cimpl that calls a method called m1 and then
checks if the method m2 becomes available. If m2 is available, the implementation will call m3. If not, the
implementation will make m4 callable instead. The equivalent expression is:

Cimpl = m1.ϑm2〈ϑT , ϑF 〉.(ϑT .m3 + ϑF .m4) (6.1)
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Interactions with ϑx channels are not observable from a process put in parallel with Θ, but interactions
with methods in the client contract are visible. In the example above, a process X put in parallel with
Θ(Cimpl, CC) would be able to observe a call to m1, and then either a call to m3 or m4 becoming available
to be called. But X could not observe interactions involving ϑm2, ϑT , or ϑF .

Our compatibility criteria is that a client implementation CC,i is considered to be compatible with the
client contract CC if Θ(CC,i, CC) simulates CC .

In other words, if there is a relation R such that Θ(CC,i, CC)RCC is a simulation. When R is not a
bisimulation, CC,i implements the client only partially, which is still considered a compatibility relation.
A more forgiving definition of compatibility accepts all Θ(CC,i, CC) that are weak simulations of CC . We
will use both criteria, which we will call strong compatibility and weak compatibility respectively. A formal
definition of Θ is too long for the body of this paper, so we left it for Appendix 6.7.

Fig.6.1 shows the relationships between contracts and implementations. The pair C1C | C1S represents
the first version of the contract while C2C | C2S represents the second version. Two client implementations
and two service implementations are represented in the figure. A client implementation may simulate one
or more client side expressions. While CC,i5 simulates both C1C and C2C , CC,i2 simulates only C2C . In
Fig.6.1 all four implementations (CC,i5, CC,i9, CS,i12, and CS,i20) were identified with arbitrary IDs (5, 9,
12, and 20) in order to clearly show that implementations are not directly connected with a single version
of the contract.

C1C | C1S CS,i12
CC,i5

C2C | C2S CS,i20

contract v1

contract v2

CC,i9

Figure 6.1: Example of relationships between contract expressions and implementations. Dashed arrows
mean simulations.

6.3.2 Example of compatibility checking

In order to illustrate this concept, let us analyze an example. Let us say we want to implement a frequent
item set data mining service, such as a priori [69] or fp-growth [37]. Our service will consist of the functions:
“upload chunk of data” (for instance, a list of item sets), “start data mining”, “cancel data mining”, and
“deliver result”. To simplify notation we will call these functions, respectively, m1, m2, m3, and m4.
Functions m2 can only be called after function m1 was called at least once. Also, the completion of m2

causes the function m4 to be called on the client, which needs to implement a listener interface. So m4 is the
channel through which the service can send an asynchronous message to the client. During the execution of
the data mining, a client may call m3 to cancel a previously issued data mining task, allowing for the client
to add more data. The contract is expressed by:

C1C = S1C,1
def
== m1.S1C,2

S1C,2 = m2.S1C,3 +m1.S1C,2

S1C,3 = m3.S1C,2 +m4.0

C1S = S1S,1
def
== m1.S1S,2

S1S,2 = m2.S1S,3 +m1.S1S,2

S1S,3 = τ.S1S,4 +m3.S1S,2

S1S,4 = m4.0

(6.2)

The internal action τ above represents the time it takes for the data mining to complete. In other words,
the completion of the method m2 does not imply that the server immediately becomes ready to execute m4.
Instead, the end of the execution of m2 puts the server in a state in which the only externally observable
action is m3 (“cancel data mining”) and only after an unknown delay (the time that is takes for the server
to process the request, represented by the τ) the service will make a transition to S1S,4 and the input action
m4 will be ready. It is also important to note that we need a sum on state S1S,3 in order to implement an
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exclusive OR between two options: either the system will make a transition back to S1S,2 or the service will
advance to S1S,4. If the service makes a transition to S1S,2, the τ transition becomes unavailable, meaning
the result of τ , the call of m4 on the client, will be not observed by the client.

The behavior of τ shows that the π-calculus expression of the service contract does not completely
specify how the service works internally. Instead, it provides constraints to which sort of state transitions
the system can make. Service terminations are marked with a 0 (zero), as in S1S,4. In general, services
require a termination from the client side to ensure that the service can release resources allocated to serve
the client.

It is also worth noting that both the a priori and the fp-growth algorithms are based on at least one
pass over the data to determine most frequent items. This list is later used to find the most frequent item
sets. Since there is not function to remove data, a call to m3 during the data mining processing does not
necessarily mean that the service should delete the partial item counting results, or even that the service
should actually stop counting items. Adding more items can happen in parallel with counting the items
already added. On the contract above, it is up to each service implementation to provide its own concrete
interpretation of what m3 does. Therefore the contract neither completely specifies how the service works
internally, nor exposes all the internal states of the service.

Obviously, splitting the process above into states is merely a convenience to match service state with
π-calculus expressions. The service contract above is equivalent to the following one:

C1S = new{s2, s2L, s3} (m1.s2) | !(s2.(m2.s3 +m1.s2L)) |

!(s2L.s2) | !(s3.(τ.m4.0 +m3.s2)
(6.3)

In (6.3) we had to introduce new bound variables to represent transitions between states. We also needed
three replications in order to represent the arbitrary repetitions of the same state according to commands
issued by the client. We also had to add some tricks to make the process behave as expected: an invisible
state (s2L.s2) to allow for the loop caused on m1. As we can see on this example, using states as in (6.2)
usually leads to more readable contracts.

Now let us analyze the compatibility between this contract and a client implementation:

CC,i1 = m1.m2.m3.m2.m4.0 (6.4)

Because there are no references to ϑ channels, the behavior inside of the context Θ(CC,i1, CC) and outside
is the same. So on this first example we will analyze CC,i1 alone. It is not hard to see that CC,i1 simulates
C1C through the following binary relation CC,i1RC1C :

R = {(m1.m2.m3.m2.m4.0, S1C,1), (m2.m3.m2.m4.0, S1C,2),

(m3.m2.m4.0, S1C,3), (m2.m4.0, S1C,2),

(m4.0, S1C,3), (0, 0)}

(6.5)

The existence of R above is enough for us to consider the client CC,i1 compatible with any service that
implements C1S . The inverse of R is not a simulation because the pair (S1C,3,m4.0) (the inverse of the

penultimate pair in R) cannot be in any simulation, since S1C,3
m3−−→ S1C,2 but there is no process P such

that m4.0 | P
(m3)
−−−→. Therefore, R is not a bisimulation. Event if there is another client implementation

CC,i2 such that CC,i2 ∼ C1C , we cannot say that CC,i2 is more compatible with C1C than CC,i1.
Naming states makes it easier not only to understand the contract, but also to debug it and program

clients. It is easier to debug a service as the run time environment is able to log a state transition (which
happens whenever a name such as S1C,4 is replaced by its expression, in this case m4.0). Programming the
client side is easier since exposure of server state allows the client to make decisions based on the server
reactions and narrow the expectancies a client has about the service behavior, which are concepts that we
introduce on the next section.

A contract is the client’s perspective towards the service behavior. For example, the contract above also
fits in a situation in which data mining is actually performed by a resource that is external to the service.
Such external resource could asynchronously notify the service that it completed processing the data mining
and this asynchronous notification would make the service make a transition to the S1S,4 state. From the
client point of view, the internal and non-observable structure of the service is irrelevant as long as the
service follows the contract.
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For the S1S,4 state to work, the output action m4 should be callable on the client. So m4 represents a
requirement that the client should comply with. What the contract does not explicitly shows is that the
internal client dynamics should be such that the client is ready to have m4 called when the server tries to
call it. The source code of the client can be checked to have such a property, as we will explain on the next
section.

6.3.3 Method signatures and object reference passing

So far, our contract only defines names for functions (or methods), but an actual contract needs also to
specify what are the received data and returned result. We model such aspect of contracts not as π-calculus
expressions, but as a list of required and optional arguments and a return type. The list of arguments may
contain mandatory channels. Method names and channels are the only elements represented using π-calculus
expressions. For instance, let us consider a service method whose signature is void m1(T x, int y), in
which T is a class defined by the client. The equivalent expression should ignore the argument y as it is a
primitive, so it does not reflect a change in the structure of reachable references to objects. Therefore, the
equivalent expression of this method would be simply m1(x). The object x should also comply with the later
use made of it.

For instance, let us assume that the complete service contract is CS
def
== m1(x).x:a(b), in which a client

receives an object 2. Then whatever comes as x should have a channel called a that is able to receive a
channel b. For a more detailed example, we refer the reader to Appendix 6.4.7. As we will see on the next
section, references passed through channels should point to objects within a protected layer that insulates
these objects from external factors that could change the behavior of objects at run time.

Verification of compatibility based on method signatures is trivial, so we will not cover this topic here.

Our method can be used to check for simultaneous termination, which can be modeled as both client
and service processes reaching a zero state (also called stop state). We show two examples of reaching zero
states on appendices 6.7.1 and 6.7.2.

6.4 A domain specific language for process calculus-based con-
tracts

Now that we already established what our compatibility criteria, in this section we introduce the treatment
we have created to translate source code into π-calculus expressions. We then take the obtained π-calculus
expression and check if there is a simulation from this π-calculus expression on a Θ context and the expression
of the client. A similar process is used to check compatibility between service implementation and service
contract.

Both client and service implementations should be a compilation unit written using the DSL we describe
in this section. Fig. 6.2 summarizes our programming model. Objects in the client are divided into three
layers: a business layer that contains business logic objects from Java classes, a client layer that contains
objects specified using our DSL, and the object proxy layer that contains local objects that are proxies for
remote services.

Business objects are ordinary Java classes that can only indirectly interact with services through client
objects. Business objects may have a behavior that is hard if ever possible to predict. For instance, some of
these objects may respond directly to user input. So compatibility with a service contract is only checked on
classes that were specified using our DSL: those on the client and service layers. Our strategy is to restrict
the entities that we need to check compatibility to those entities that are in those two layers.

Each client object provides one or more public methods (marked as “c1m1” etc in Fig. 6.2). Those
methods are accessed by business objects under conditions specified by the declaration of client object
classes, as we will see later. Each client object interacts with one or more proxy objects.

A proxy objects is an implementation of the remote proxy design pattern, which were also applied by [75].
Each proxy object is a reference to a remote service and encapsulates a connection. Calls to methods in a
proxy object start a process that uses the network to call the equivalent method on the server.

On the server side there is one service instance (a service object) for each proxy object. Each such object
should behave as specified in the contract.

2The syntax x:a means a channel a that is associated with the name x. Whenever the name x is passed, all associated
channels are also implicitly passed. This is not part of the standard π-calculus, but an extension we created in order to make
it easier for us to represent object reference passing, as we explain on Appendix ??
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On the top of Fig. 6.2 there are (database-like) cardinality relations. When a client object is instantiated
this object receives one of more service references through inversion of control. Service references are not
shared with other client objects, so client objects have a one-to-many cardinality with service proxies and
service objects. Each service proxy represents a single instance of a service object, so the cardinality is
one-to-one.

business
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object 1

Client

object 2
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Figure 6.2: Programming model for client and service

Fig. 6.3 shows an example of a client object class. The InitialState(A) annotation decorating the
client class sets the initial state of this object to be A. The two State annotations specify which should be
the current state in order for each method to be called. If any business object tries to call any of these two
methods while the client object is on the wrong state, an exception is thrown for the caller and the method
does not get invoked.

The Scope annotation in the m4 method makes this method available only for the service identified by
s. So no object in the business layer and no other service can call this method.

1 @InitialState(A)

2 clientclass Client1 {

3 Service s;

4 @State(A)

5 public void sendDataAndRequestDM(DataSource d) {

6 s.m1(d); s.m2();

7 System.out.println("Canceling ...");

8 s.m3(); s.m2();

9 to(B); // state transition to B

10 }

11 @State(B)

12 @Scope(s)

13 public void m4(DataSource d) {

14 // use data from service ...

15 to(C); // state transition to C

16 }

17 }

Figure 6.3: Example of client object class

From the perspective of the service s, the source code in Fig. 6.3 translates into CC,i1, as defined in
equation (6.4). Note that the call to System.out.println() is ignored as it does not affect the execution
flow, neither interacts with the service.

The service s is represented by a generic Service type, instead of a reference to any particular service
type. The type Service simply states that s in fact should be checked against a yet to be specified service
contract.

Fig. 6.4 shows another client object class Client2 that interacts with two remote services. This class
is translated into two distinct expressions, one for each service. The interaction with s1 is translated into
CC,i3 = m4.m3, while the interaction with s2 is translated into CC,i4 = τ.m6.
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CC,i3 means that s1 has the opportunity to call m4 and then some unknown event may trigger the call
to m3 on s1. It is unknown by s1 that an interaction with s2 is responsible for such call to m3.

The expression of CC,i4 shows a different perspective towards the Client2 class. Although the method
m4 has no reference to s2, the state dependency adds a τ to CC,i4. If, for instance, CC = m3.0, then Cc,i4

simulates CC , but only weakly, since CC,i4 →
m3−−→ 0. In other words, CC,i4

m3==⇒ 0.

1 @InitialState(A)

2 clientclass Client2 {

3 Service s1;

4 Service s2;

5 @State(A)

6 @Scope(s1)

7 public void m4(DataSource d) {

8 System.out.println("x");

9 to(B);

10 }

11 @State(B)

12 @Scope(s2)

13 public void m6(DataSource d) {

14 s1.m3();

15 to(C);

16 }

17 }

Figure 6.4: A client object class interacting with two services

It is important to note that we do not need the contract in order to extract the equivalent π-calculus
expression. Once we have obtained such expression we are able to check the compatibility of this client with
one or more service contracts.

The field s gets instantiated and set by inversion of control when the client object is instantiated. This
field will point to a remote proxy, a local object that represents the remote service and encapsulates all the
complexity related to network communication.

Besides the extensions to the Java syntax that we introduce in this section, client objects also have some
additional restrictions:

• External observation – A client method should not be called from another client method on the
same client object. This avoids having a recursive call to the same method. The rationale is that
recursion may lead to the execution flow of a single client method to include other client methods.

• Controlled interaction domain – A service reference cannot leave the client object. If a reference
to a service leaves the client object, other objects in the client may call service methods, so from the
point of view of the service, the client is not only what the client object represents. Coming up with
the equivalent π expression is impossible in the general case, as we cannot predict which classes will
end up having access to the service.

• Opacity – Fields of client objects should not be directly accessible from other objects.

Methods of objects in the client layer are all synchronized, which is a limitation added to ensure that the
beginning and end of methods happen in a way that is consistent with the state dynamics.

At follows we present how control flow blocks and some DSL-specific features we have created are trans-
lated into π-calculus expressions.

6.4.1 Generic if-blocks

If-blocks are replaced by a sum in which internal actions control execution flow. All internal actions will be
restricted to the context of the expression and represented by the Greek letter κ.

new{κ1, κ2} (m1.κ1 | κ1.m2.κ2 + κ1.m3.κ2 | κ2.m4) (6.6)
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1 public void x(boolean condition) {

2 s.m1();

3 if (condition) { s.m2(); } else { s.m3(); }

4 s.m4();

5 }

Figure 6.5: Simple if-block

An if-block without an else-block is modeled the same way with the exception of else part which is not
present. If-blocks with many if-else conditions (which are equivalent to switch-case blocks) are modeled as
many items in the summation, each of them starting with κ1 and ending with κ2. Note that the condition
on Fig. 6.5 was simply replaced by a sum, as the general case is that the condition cannot be evaluated from
the perspective of the service contract. For instance, the values referenced by the test condition may come
from outside the class, as a method argument.

Clearly, such execution flow controlled by something unrelated to the contract impoverishes all analysis
that can be made using equivalent process calculus expressions such as (6.6). We offer a better construct on
the next subsection.

6.4.2 Contract-based if-blocks

Our DSL allows for contract entities to be used as if block conditions. For instance, consider the following
source code:

1 sm1();

2 if (s.m2 callable) { s.m2(); } else { s.m3(); }

3 s.m4();

Figure 6.6: Simple if-block

The main difference from the previous source code is that this one verifies if the method m2 is available.
The actual difference is on the equivalent π-calculus expression:

new{κ2, ϑT , ϑF } (m1.ϑm2〈ϑT , ϑF 〉 | ϑT .m2.κ2 + ϑF .m3.κ2 | κ2.m4) (6.7)

The call ϑm2 represents a test that interacts with the current service state to check what is the current
state, while ϑT and ϑF stand for a true or false responses respectively. Interaction is provided by the Θ
context we briefly introduced on the previous section and that we describe in details on appendix 6.7.

Let us now assume that the service contract is as follows:

S1 : m1.S2 +m1.S3

S2 : m2.S4

S3 : m3.S4

S4 : m4.0

(6.8)

Clearly, the source code in Fig. 6.5 is not guaranteed to be compatible with the contract above since the
Boolean condition in the if clause is unknown during the verification step, and in the general case unrelated
to the service state. So, in principle, nothing mandates that the call to m2 will be placed only if m2 is ready
to be called. On the other hand, the source code in Fig. 6.6 is without a doubt compatible with the contract.
In fact, it can be even argued that the contract suggests a client as in Fig. 6.6. An if-block is necessary in
order to react to an arbitrary choice of state transition made by the service. This choice is represented by
the plus sign in the expression of S1 above.

If-blocks that interact with a reflection over the current state of the service can also be used to make
a single client compatible with a range of contracts. In order to show that, we need to analyze a second
version C2 of the data mining service. The main difference is that C2 allows for the client to add new item
sets even during data mining processing using m1. C2 contract is:
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C2C = S2C,1
def
== m1.S2C,2

S2C,2 = m2.S2C,3 +m1.S2C,2

S2C,3 = m3.S2C,2 +m4.0 +m1.S2C,3

C2S = S2S,1
def
== m1.S2S,2

S2S,2 = m2.S2S,3 +m1.S2S,2

S2S,3 = τ.S2S,4 +m3.S2S,2 +m1.S2S,3

S2S,4 = m4.0

(6.9)

1 @InitialState(A)

2 clientclass Client3 {

3 @State(A)

4 public void loadDataAndStartMining (Data d) {

5 s.m1(d);

6 s.m2();

7 to(B);

8 }

9
10 @State(B)

11 public void addDataDuringMining (Data d) {

12 if (s.m1 callable) {

13 s.m1(d);

14 } else {

15 s.m3(); // Cancels the data mining

16 s.m1(d); // then we adds data

17 s.m2(); // and finally restarts data mining.

18 }

19 }

20
21 @State(B)

22 @Scope(s)

23 public void m4(Result r) {

24 // Some use of r, for example , save data locally.

25 to(C);

26 }

27 }

Figure 6.7: A client class compatible with both C1 and C2

Fig. 6.7 shows a more complex client class that is compatible with both C1 and C2. A formal verification
is provided on appendices 6.7.1 and 6.7.2. The equivalent π-calculus expression is:

Ci = A = m1.m2.B

B = ϑm1〈ϑT , ϑF 〉.(ϑT .m1 + ϑF .m3.m1.m2).B +m4.C

C = 0

(6.10)

The easiest way to implement a client that is simultaneously compatible with both C1 an C2 would be
to refrain from calling m1 while the data mining process is executing, but this would underuse a capability
of version C2. The client on Fig. 6.7 adapts to each version. Boolean statements in if-blocks cannot be
written based on both service states and local variables. A local variable adds uncertainty to the Boolean
expression, that prevents us from creating an equivalent π-calculus expression of the source code.

Despite of what the expressions above may suggest, verifying the service state during run time does not
necessarily imply sending a message to the server. If the current state is deterministic from the client’s point
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of view, there is no need to communicate with the service in order to determine the current state. Sources
of non-determinism are τ and sums. For instance, let us say that the current service state is the following:

m2.m3 +m2.m4 | m1.τ.m2 (6.11)

This state is stable, i.e., will not change in a way that does not require interaction with the client and
there is no possible internal reaction. This state has three observable actions: two m2 actions and one m1

action. If the client observes m2 (by calling it), then the contract states that either m3 or m4 will become
observable. So either the server can inform the client which of these two paths it took, or the client can
request such data from the server right after observing m2. Therefore, although the client cannot determine
the next state, it is guaranteed that the next state will be available immediately after the completion of m2.

The situation is quite different if the client chooses to call m1. Firstly, a τ starts to execute, which puts
the service in a state in which the service can make a transition to another state any time without the client
being aware of this change. Secondly, this unobservable transition can lead to two possible states: one in
which m3 is observable, and another in which m4 is observable. Again, the client has no way to foresee in
which of these three states the server currently is.

6.4.3 Generic loop blocks

Loops are translated into more complex structures. Again, we need restrictions in order to create internal
reactions.

1 s.m1();

2 for (String a : collection) {

3 s.m2();

4 s.m3();

5 }

6 s.m4();

Figure 6.8: Loop block

new{κ1S , κ1E , κ2S , κ2E} (m1.κ1S .κ1E .m4) |

!(κ1S .κ2S + κ1S .κ1E) | !(κ2S .m2.m3.κ1S)
(6.12)

Each of the three expressions in parallel as an equivalence in the source code. The first expression is
the routine that contains the loop. A loop call and return point are emulated by κ1S and κ1E respectively.
The first replication is equivalent to the loop control. Note that from the perspective of the contract, the
decision to continue or stop the loop (represented by the plus sign) is simply non-deterministic. The second
replication is the content of the loop block.

So we do not try to interpret the control of the loop since the number or iterations can be dependent on
data that is provided externally. Because we model loop controls as a non-determinism (therefore the usage
of the plus sign), we use the same process to model while-loops.

6.4.4 Java Threads

1 s.m1();

2 s.m2();

3 new Thread () { public void run() {

4 s.m5();

5 s.m6();

6 }}. start ();

7 s.m3();

8 s.m4();

Figure 6.9: Java thread
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new{κ1} (m1.m2.κ1.m3.m4) | (κ1.m5.m6) (6.13)

Modeling a Java thread using the π-calculus is trivial since parallel computation is a central mechanism
in the π-calculus.

6.4.5 Fork-join blocks

Java does not provide support for fork-join blocks in its syntax, but since here we are extending the syntax
of the Java language, we are free to add this feature, which is both a syntactic sugar which compiles into
standard Java source code, and a feature that allows for refined verification. Fig. 6.10 shows the syntax of
fork-join blocks. The word “fork” becomes a reserved word and marks the beginning of a list of Java blocks.
Each block is translated into a new thread and all blocks execute in parallel. The end of the list of blocks
represent a synchronization point that waits for all blocks to finish (a join point).

1 s.m1();

2 s.m2();

3 fork {

4 s.m3(); s.m4();

5 } {

6 s.m5(); s.m6();

7 }

8 s.m7();

9 s.m8();

Figure 6.10: A fork-join example

The π-calculus expression that represents the source code in Fig. 6.10 is:

new{κf , κj , κ1S , κ1E , κ2S , κ2E} (m1.m2.κf .κj .m7.m8) |

(κf .κ1S .κ2S + κf .κ2S .κ1S) |

(κ1S .m3.m4.κ1E) |

(κ2S .m5.m6.κ2E) |

(κ1E .κ2E .κj + κ2E .κ1E .κj)

(6.14)

In this equation, κf is the fork call and κj is the synchronization (the join point). Actions κnS and κnE

are respectively the start and the end of the n-th parallel block. Sums represent the uncertainty of the order
in which each thread starts and ends.

6.4.6 Monitor object

Another aspect that should be taken into account when extracting a π-calculus expression from a source
code is whether methods in the client objects can be called in parallel or if there is anything synchronizing
their execution. A monitor object design pattern [45] is a technique aiming at creating an exclusion zone
for concurrency. Arguably, this design pattern is native in the Java programming language, in the form of
synchronized methods. Two synchronized methods in Java cannot be called at the same time on the same
object. For our purposes, this effect is important, as it is capable of changing the way we translate client
processes to a π-calculus expression.

For instance, let us consider a client object that has only two synchronized methods: M1 and M2. Here
each method is modeled as a π-calculus process (using capital letters) since they may not be equivalent to
actions. We can represent the interaction between this client with a service S1 using:

!(M1 +M2) | S1 (6.15)

We use mutually exclusive options (plus signs) instead of non-mutually exclusive options (a pipe sign) to
represent the fact that only one of these methods is running at a time. The benefits of having non-concurrent
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methods can be easily illustrated if we consider the service to be S1 := a.b.c and the client to be M1 := a.b.c
M2 := b.a.c. So a variant of the client that allows concurrent calls of its methods may lead to a deadlock:

!(M1 | M2) | S1
(a)
−−→

(b)
−−→ (b.c | a.c)!(M1 | M2) | c (6.16)

The contract may specify that a service has sets of methods that cannot run simultaneously. For instance,
if a service consists only of m1, m2, m3, m4, and m5, the service contract may define that the pairs m1 and
m2, and m3 and m4 are mutually exclusive. The expression of such contract would be:

S1 :=!(m1 +m2) | !(m3 +m4) | !(m5) (6.17)

6.4.7 Object mobility

We also allow for contracts to represent object mobility. An object may be passed from client to service
during an interaction, as an argument. We will present this concept using an example.

On yet another version C3 of the contract, the client is be able to attach a stream data mining agent a
to the service using the service method m5. After the service accepts the agent, the service calls the method
a : m1 on the agent, which initializes the agent. One of the arguments passed with this method call is
a channel c for the agent to initiate an asynchronous communication with the service in which the agent
algorithm informs the service that the stream data mining is over. The algorithm may make this decision
based on some goal provided by the client.

The agent receives all item sets that are sent to the service (even those item sets that are generated by
third party remote nodes) through method a:m2. The server hosts the agent for a limited period of time.
After this period, the service asks the agent to terminate via the method a:m3. This call to a:m3 can be
used by the agent to send to the client a list of the most frequent item sets that arrived in the service during
the time in which the agent was attached. The client can also obtain a partial result of the stream data
mining from the agent using the a:m4 method, while the agent is attached to the service. The agent can
asynchronously send the list of frequent item sets to the client using the client method m6, which is private
between the client and the agent.

C3C
def
==!(S1C,1 | SCA,1)

SCA,1
def
== new{m6, a:m4}(m5〈a〉.(!m6 | PA))

PA
def
== new{x1}a:m1(c).(τ.c.m6.x1 | !(a:m2 + x1.0) |

a:m3.m6.x1 | !(a:m4.m6))

(6.18)

PA represents the agent’s behavior. Since the agent is defined by the client, the client can share with the
agent some channels that are made private using restrictions. As we can see in the contract above, m6 is
visible only to client and agent by means of a restriction. The agent may also have its own private channels.
In the example above, the bound variable x1 represents the termination of the agent. The service contract
C3S is given by:

C3S
def
== S3S,1

def
== m1.S3S,2 | m5(x).S3SA,2

S3SA,2
def
== x:m1〈c〉.!(m1.x:m2 + x:m2 + c.0 + τ.0).

x:m3.0

(6.19)

The S3SA,2 state represents the beginning of service operation in agent attachment mode. Here is what
each term in the sum mean:

• m1.x:m2 – The service receives an item set from the client and forwards it to the agent.

• x:m2 – The service receives an item set from another client and forwards it to the agent.

• c.0 – The agent sends a notification to the service to declare that the agent will shut down.
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• τ.0 – The service shuts down the agent for a reason not known by the agent. The service may ask the
agent to shutdown because the service itself will shutdown, or because the lease time in the service is
over, among other reasons.

Programmers should assign a class to play the role of a (which is called x in C3S), so this class should
have all methods described in the contract. Also, the service should have a method c available for the agent
to call.

Agent mobility raises questions regarding security and context transfer. Although we do not address
those questions here, we argue that contracts can be used as a way to describe limitations imposed by the
remote environment to address security. Context can also be modeled using contracts to specify what the
agent can access.

6.5 Discussion

Other researches [52] [53] propose the use of AOP as a means to create a pre-processor that can make a grid
version of a local software. The idea is based on the assumption that programmers find it more natural to
program local systems, which is also our assumption here. The main difference between our approach and
approaches based on AOP is that we have chosen to concentrate interactions between service and client in
a single class on the client side. This allows us to isolate compatibility analysis from possible complexities
arising from a multi-threaded client.

Applying AOP makes sense in cases in which a concern is spread across several classes, orthogonally to
responsibilities or roles, which are usually mapped into classes. Although it can be argued that adherence to
a contract –especially one that is based on parallelism constraints, as in our model– may be a cross-cutting
concern, we will be hardly able to come out with any conclusive examination if we analyze several classes
in order to extract service usage patterns. That is the reason why we created a separation into layers as in
Fig. 6.2.

For the best of our knowledge, this research is the first to propose a DSL specifically to enable formal
verification of contracts expressed as a process calculus. We have demonstrated that our method is capable
of providing guidelines for programmers to create clients that can be checked to correctly interact with a
family of services, grouped by their service contracts. Also, we provided details about our DSL, which was
build on top of Java, but could have been implemented based on other similar programming languages. In
fact, the limitations we imposed on the references that can be accessed by client layer makes it possible to
use one programming language on this layer while choosing other programming languages for other layers.

Although our method is specific to service contracts that are specified in terms of a process calculus
equivalent to the π-calculus, our results can be easily used in other contexts. With the help of the for-
malization we developed, it is possible to create prototypes of complex clients and services and check them
formally.

Our proposed architecture exposes service state, which is not compatible with the generally accepted
level of opacity for services. It is desirable that contracts are designed in a way that prevents services from
having to expose their states. When a service state changes as a result of some internal action inside of the
service (for instance, when a thread inside of the process finishes, or as a result of the interaction between
the service and a resource within the server), it is a good practice to notify the client using a message from
the server, so the client can keep track of the service state without having to explicitly access it.

However, client notifications leave complexity for the client to deal with. The π-calculus, on the other
hand, uses the idea of observation. Interaction between complementary channels a and a, together with
invisible actions τ are the way in which process execution advances. Here we use an imperative programming
model, in which interaction happens not because an opportunity of interaction presented itself, but as a result
of active execution of a coordinator. Therefore, we need an imperative for an active way for active processes
to evaluate the possibility of interaction. The Θ context offers such feature.

Also, we do not suggest that all details about the service should be exposed to the client side, but only
the states that are part of the contract. So the service is still opaque regarding all information that is not
necessary to the client.

6.6 Conclusions

On this paper we presented an outline for service contracts that aims at allowing formal verification of service
and client interaction. We also propose a DSL specifically designed to provide a concise programming model
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for clients and services. At the same time, features of the DSL (more specifically, the limitations it imposes
to programmers and special syntax that refers to service state) make it possible to translate source code into
π-calculus expressions for formal verification. A general purpose source code could not be analyzed the same
way, as elements that are unrelated to the service contract (such as variables in if clauses and concurrency
added by the use of threads) usually disrupts verifications. Our main contribution is an architecture to make
these analyzes possible. With little adaptation, our contribution can be directly applied to the general case
of distributed services, by allowing developers to reason their distributed systems in terms of the layers we
propose on this paper. Although our implementation is based on the Java programming language, if mobile
agents are not used, it is possible to adapt our approach to the interaction of heterogeneous systems (in
which client and service are based on different platforms).

6.7 Appendix – A formalization of the equivalent expression to
verify simulations: Θ

In this appendix we formally define Θ to offer a rationale to support the claim that Θ is an application of
π-calculus, rather than a proper extension of it. The π-calculus defines very primitive building blocks, so
describing an algorithm using it requires a long expression, which we will define by parts. We will also omit
some details when presenting examples of usage of Θ to check compatibility between the pairs (Ci, C1C)
and (Ci, C2C). Ci was defined in (6.10), C1C in (6.2), and C2C in (6.9).

First we define the linking operator that connects two processes P and Q, which is based on the one
defined in [71], Section 4.4:

P ⌢ Q
def
== {new x}({x/right}P | {

x/left}Q) (6.20)

Channels right and left are made private to the link. We now define a linked list that represents the
number of copies of a certain channel available to be called. This list is also based on a construct defined
in [71], Section 7.5.

Empty(c, i, d)
def
== i.(Cell(c, i, d) ⌢ Empty)+

c(ϑT , ϑF ).ϑF .Empty(c, i, d)

Empty
def
== left(c, i, d).Empty(c, i, d)

Cell(c, i, d)
def
== i.(Cell(c, i, d) ⌢ Cell)+

d.right〈c, i, d〉.0 + c(ϑT , ϑF ).ϑT .Cell(c, i, d)

Cell
def
== left(c, i, d).Cell(c, i, d)

(6.21)

Empty(c, i, d) is a list that stores the value zero. Calling the channel i causes the list to increase one
Cell. Calling d removes one Cell until the list is only the Empty element.

The channel c is used to query if the list has any element or not. The list reacts by calling either ϑT or
ϑF to respond with a true or false, respectively. For a short notation, we use:

ϕ(0)
x = Emptyx(ϑx, σx,INC , σx,DEC)

ϕ(n)
x = Cell(ϑx, σx,INC , σx,DEC) ⌢ Cellx ⌢ . . .

︸ ︷︷ ︸

n times

⌢ Emptyx (6.22)

Now we can define a context for a contract implementation, which differs from a contract in that an
implementation may interact with a reflection of the current service state. An implementation may use the
current state of a service to control its execution flow. We need to model this behavior using the π-calculus.
A context Θ(Ci, CC) for a contract implementation Ci, based on a client contract CC is given by:
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Θ(Ci, CC)
def
== new{~m, ~m′′} Ci | U(CC) | Trans(Ci) | Φ(CC)

Trans(Ci)
def
== m1.m1′.m1′′ | . . . | mn.mn′.mn′′

Φ(CC)
def
== ϕ

(0)
m1 | . . . | ϕ

(0)
mn

~m
def
== m1, . . . ,mn

~m′
def
== m1′, . . . ,mn′

~m′′
def
== m1′′, . . . ,mn′′

(6.23)

Where ~m are the channels in Ci or CC .
U(CC) is a process that controls the counters ϕ for each channel availability at any time, according to

the changes in Ci. On U(CC), each channel instance x in CC is represented by x′′. Whenever x′′ becomes
available a counter increase ϑx,INC should be called, and each channel instance that becomes unavailable
should result in a call to ϑx,DEC . Each sum of sequences x1,1.x1,2 . . .+ . . .+ xn,1.xn,2 . . . is replaced by:

(σx1,INC . . . . .σxn,INC).

(x′′

1,1.σX,DEC .σx12,INC .x
′′

1,2.σx12,DEC . . . |

...

| x′′

n,1.σX,DEC .σxn2,INC .x
′′

n,2.σxn2,DEC . . .)

(6.24)

where σX,DEC = σx11,DEC .σx21,DEC . . . σxn1,DEC , which decreases the counters of all channels that are
the first of each sequence in the sum.

~m′ are fresh channels that are observable from anything in parallel with Θ , and ~m′′ are fresh channels
to provide interaction between Ci and U(CC). Trans(Ci) provides a translation between actions in Ci, CC ,
and the external world. Finally, Φ is a set of counters to store the visibility of each channel in ~m.

Fig. 6.11 shows how each part of Θ communicate. Ci is free to call whatever channel in Trans through ~m.
Whenever a channel mx is called by Ci, Trans calls the equivalent channel m′′

x on U(CC) and m′

x becomes
externally observable. When m′′

x is called on U(CC), this call Ci can also call any of ϑx in Φ to check if a

certain channel x is available to be called. Trans communicates with the outside world through ~m′.

Ci Trans

Φ U(CC)

m mʹ

mʺ�

�T �F

...

Figure 6.11: Communications between each part of Θ

It is interesting to notice that Θ is define only based on the client portion of the contract, not the service
side. We now proceed with two examples of usage of Θ.

6.7.1 Compatibility example: Ci and S1C

We are now ready to show a full example using Θ to check compatibility of the implementation in Fig. 6.7
against versions 1 and 2 of the data mining service.

Θ(Ci, C1C) = new{~m, ~m′′} m1.m2.B |

m′′

1 .σm1,F .U(S1C,2) | Trans(Ci) | ϕ
(1)
m1 | ϕ

(0)
m2 | ϕ

(0)
m3 | ϕ

(0)
m4

(6.25)

At follows we list all reactions from Θ(Ci, C1C). All reactions are either internal or external ones in terms

of ~m′, which are the only observable actions from outside of Θ, as we stated above. We omit restrictions,

each σx,F after each channel x′′, Trans, and represent the list of counters ϕ
(a)
m1 | ϕ

(b)
m2 | ϕ

(c)
m3 | ϕ

(d)
m4 as ϕ(a,b,c,d)

for a concise representation. We name the states of Θ(Ci, C1C) using S1,1, S1,2, . . ..
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Θ(Ci, C1C)
m′

1−−→= S1,1

S1,2 = m2.B | m′′

2 .U(S1C,3) +m′′

1 .U(S1C,2) |

ϕ(1,1,0,0) m′

2−−→

S1,3 = B | m′′

3 .U(S1C,2) +m′′

4 .0 | ϕ
(0,0,1,1) (ϑm1)

−−−−→

(ϑT .m1 + ϑF .m3.m1.m2).B |

m′′

3 .U(S1C,2) +m′′

4 .0 | ϕ
(0,0,1,1) (ϑF )

−−−→

m3.m1.m2.B | m′′

3 .U(S1C,2) +m′′

4 .0 | ϕ
(0,0,1,1) m′

3−−→

S1,4 = m1.m2.B | U(S1C,2) | ϕ
(1,1,0,0) m′

1−−→

S1,5 = m2.B | U(S1C,2) | ϕ
(1,1,0,0) m′

2−−→

S1,3
m4−−→ 0

(6.26)

Therefore we can say that Θ(Ci, C1C) ≈ C1C using the relation Θ(Ci, C1C)RC1C :

R = {(S1,1, S1C,1), (S1,2, S1C,2),

(S1,3, S1C,3), (S1,4, S1C,2), (S1,5, S1C,2), (0, 0)}
(6.27)

Note that Ci has the potential to generate more states from S2 if put in another context, which were

avoided by a response ϑF from ϕ
(0)
m1 = Emptym1.

6.7.2 Compatibility example: Ci and S2C

We can see these states if we try to check the compatibility between Ci and C2C , as follows. The names of
states from Θ(Ci, C2C) are S2,1, S2,2, and S2,3.

Θ(Ci, C2C) = S2,1
m′

1−−→

S2,2 = m2.B | m′′

2 .U(S2C,3) +m′′

1 .U(S2C,2) |

ϕ(1,1,0,0) m′

2−−→

S2,3 = B | m′′

3 .U(S2C,2) +m′′

4 .0+

m′′

1 .U(S2C,3) | ϕ
(1,0,1,1) (ϑm1)

−−−−→

(ϑT .m1 + ϑF .m3.m1.m2).B |

m′′

3 .U(S2C,2) +m′′

4 .0 +m′′

1 .U(S2C,3) | ϕ
(1,0,1,1) (ϑT )

−−−→

m1.B | m′′

3 .U(S2C,2) +m′′

4 .0 +m′′

1 .U(S2C,3) |

ϕ(1,0,1,1) m′

1−−→ S2,3
m′

4−−→ 0

(6.28)

The relation R to prove that Ci weakly simulates C2C is:

R = {(S2,1, S2C,1), (S2,2, S2C,2), (S2,3, S2C,3), (0, 0)} (6.29)

Both (6.27) and (6.29) contain the (0, 0) pair, meaning both relations can be said to reach a simultaneous
termination state.
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Chapter 7

β channels: a π-calculus extension to
one-to-many messages

Abstract

The π-calculus is a well-established formalization to model and reason distributed systems. There are several
variants of the π-calculus but none of them was specifically designed to enable communication in a one-to-
many fashion. This paper introduces a new kind of channel called β to the π-calculus in which an output
channel interacts with a number of input channels. β interactions are useful in a number of applications in
which messages are exchanged in multicasting. In this paper we introduce a formalization of β channels in
which those channels are translated into standard π-calculus expressions. We also present three examples
of usage of β channels that go beyond message multicasting, to model: cyclic barriers, passing references to
services, and a MapReduce use case.

7.1 Introduction

Formal methods provide us frameworks to reason about events that we observe in systems, and the structures
we create. Although π-calculus is a well-established formalization for distributed computing, for the best of
our knowledge, the proposed extensions of the π-calculus do not represent one-to-many communication. In
this paper we introduce a new construct we call β that tries to fill this gap.

One-to-many communication is one of the main building blocks of network applications such as streaming
and is at the core of non-centralized agent topologies, such as peer-to-peer, grid, or cloud computing. A
single message reaching multiple destinations in a transparent way for the sender is useful whenever an agent
sends data not to another single agent, but to a group of agents.

In a cloud computing environment, for instance, a client may request a service without knowing which
service agent, in a list of hundreds of available agents, will in fact respond to service calls. In such a case, a
client may have, at the beginning, only a reference (a β) to a group of agents, not to one specific agent.

We also need to discuss the meaning of simultaneity. In the π-calculus there is simultaneity in a channel
reaction, but what does that actually mean? In reality, interactions are hardly simultaneous. A message
transfer over the network usually does not happen in a way that is completely simultaneous to sender and
receiver. Instead, there is a certain difference in timing that is not relevant in any sense, so we model it as
a simultaneity. What the π-calculus does not do is to allow for more than two processes to share the same
simultaneous-enough event.

In this paper we present a formal definition of the β-calculus Section 7.2. We argue that the β channels
as a shorthand for a complex π-calculus process that we describe in details. We want to demonstrate that
β channels described this way do not impose new fundamental constructs to the π-calculus, so that all
reasoning valid in π-calculus are also valid with the introduction of β. We present a detailed multicasting
example of processing a β interaction in Section 7.3.

On Section 7.4 we show three other applications of β channels: to implement a cyclic barrier to synchronize
an undefined number of threads; for service references to passed around, allowing for clients to communicate
with several instances of a certain service at once; and to model a MapReduce use case.

Finally, on Section 8.8 presents our final remarks and the contributions this paper has made.

81
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7.2 A β notation in pure π-calculus

Introducing the basic concepts of π-calculus is out of the scope of this text. For a detailed introduction to
the π-calculus we refer the reader to [21,54,71]. Here we use the notation [71]. A broad overview of research
related to the π-calculus can be found on [35].

7.2.1 Expected behavior or β channels

Let us begin by defining a reaction rule REACTβ for β channels:

Definition 7.1 Reaction rule for β channels. Let P0, P1, . . . , PN and M0,M1, . . . ,MN be processes in
standard π-calculus. All reactions in terms of β channels are relations expressed by the rule:

REACTβ : (β.P0 +M0) | (β.P1 +M1) | . . . | (β.PN +MN )→ P0 | P1 | . . . | PN (7.1)

To improve readability, we also add round brackets around channel names to explicitly state which
channel was responsible for the reaction. This kind of arrow differs from a labeled transition, represented
without round brackets, in that labeled transitions represents the capacity or potential to a reaction, not a
reaction that takes place. The following examples illustrate the difference between these two kinds of arrows:

βX .P0 +M0
βX
−−→ P0 (7.2)

(βX .P1 +M1) | . . . | (βX .PN +MN )
βX
−−→ P1 | . . . | PN (7.3)

(βX .P0 + βY Q0) | (βX .P1 + βY .Q1) | . . . | (βX .PN + βY .QN )
(βY )
−−−→ Q0 | Q1 | . . . | QN

(7.4)

Equations (7.2) and (7.3) are labeled transitions by means of βX and βX respectively. Both represent
the potential of a process to interact with another process put in parallel and change as a result of such
interaction. Equation (7.2) means that βX .P0 +M0 is able to send data to at least one β at the same time,
while equation (7.3) means that (βX .P1 +M1) | . . . | (βX .PN +MN ) is able to receive data from exactly
one β.

Equation (7.4) is an actual reaction by means of the complementary pair of channels βY and βY . We
represent the pair using (βY ). In this example the label on top of the arrow is not mandatory but present
only for clarity, since another possible reaction would be in terms of the pair (βX).

β channels can also be restricted. The restriction rule is almost the same as the one introduced for the
π-calculus in [71]. Here we represent the restricted channels within curly brackets for readability.

Definition 7.2 Restriction rule for β channels Let P and P ′ be processes. We define the restriction
rule for β channels as:

RESβ :
P → P ′

new{β}P → new{β}P ′
(7.5)

We can also use reactions by means of β channels to pass values from an output channel βX to an input
channel βX . In the equation bellow a single interaction sends the polyadic ~d4 to three receiving processes.
Each of these three processes performs its own alpha conversion after receiving ~d4.

β( ~x1).Q1 | β( ~x2).Q2 | β( ~x3).Q3 | β〈 ~d4〉.Q4 → {
~d4/ ~x1
}Q1 | {

~d4/ ~x2
}Q2 | {

~d4/ ~x3
}Q3 | Q4 (7.6)

β channels are such that the reaction above is possible in a single step or, as we will see later, in several
steps. Before we present the equivalent expression to a β channel we need to introduce a few building blocks.
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Figure 7.1: The ring structure of a β channel. (a) A situation in which only the process Q1 is waiting for
messages from the β channel. The controller C manages the ring and the channels bx,join and bx,send. (b)
A state in which processes Q1 and Q2 are waiting for messages.

7.2.2 Expressing β channels using π-calculus

The structure of a β channel that we introduce in this section is derived from the linking operator in [71],
and the structure of a scheduler (Section 7.3). Figure 7.1 illustrates the structure of a β channel.

Figure 7.1 (a) bla bla 7.1 is the state of a β channel with just one process listening to messages. This is
equivalent to the expression β.Q1. We need an extra process C(ready), a controlling node, to manage channel
subscription (the bjoin channel) and sending messages to the channel (the bsend channel).

It would be also possible for nodes β.Q1, . . . , β.Qn to organize themselves without the need of an extra
process C. One of the nodes would need to become the controller node, doing what C does in the solution
we present in this paper. We refrain from using such solution, which arguably can in fact be implemented
in real systems, because it imposes the creation of a protocol to avoid problems that arise from parallelism
between processes. For instance, the lack of a previously existing central control allows for more than one
node to mistakenly take the role of C at the same time. So we would need to create a protocol to avoid
this from happening. Such algorithm implementation in π-calculus can be done but, without extending the
π-calculus, it can only be expressed using very long expressions, which is beyond the purpose of this paper.

Here we want to prove the feasibility of β channels in π-calculus, so we will avoid the non-centralized
approach. Besides, the approach we present here, one that relies on a dedicated process, is a realistic one
as it can be directly mapped into message queue services that are usually at the core of scalable enterprise
architectures.

Before we present the expressions of each kind of node, we define the following vectors which we use to
keep our expressions concise:

~b = (bjoin, bsend)

~l = (lA, lB)

~r = (rA, rB)

(7.7)

~b are the channels used to communicate with the external world. bjoin is used by external process to
join the β channel as a listener process. There is no subscription process for senders since senders typically
connect to the β channels only for the time it takes to send the message and leaves the channel right after
that. Senders use the bsend channel to transfer data, which represent with ~x.

Channels ~l and ~r represent links between a certain node (be it the controller C node of the participant
nodes Q in Fig. 7.1) and its left and right neighbors respectively. We define two parallel layers A and B
in the ring. Layer A is used to transfer data ~x between nodes in the clockwise direction. Layer B is used
by nodes to reconfigure the ring, allowing for nodes to be added or removed from it. Messages in the B
layer travel in the counter-clockwise direction, as represented by the arrows in Fig. 7.1. We are now ready
to define the controller and participant nodes.

Definition 7.3 Controller node. A controller node C of a β channel is defined by the equations bellow,
in which we initially set the state to C(~b) = C(init)(~b):
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C(init)(~b)
def
== new{ ~lC} bjoin(~l, ρ).ρ〈 ~lC〉.C

(ready)〈~b,~l〉

C(ready)(~b, ~r)
def
== new{ ~lC} rB(~r′).C

(ready)〈~b, ~r′〉+ bjoin(~l, ρ).lC,B〈~l〉.ρ〈 ~lC〉.C
(ready)〈~b, ~r〉 +

bsend(~x).C
(busy)(~b, ~r)

C(busy)(~b, ~r)
def
== rA〈~x〉.C

(busy)〈~b, ~r〉+ lC,A(~x, ~l′).

if(~l′ = ~r)then(rb(~r′).C
(init)〈~b〉)else(rA〈~x, ~lC〉.C

(busy)〈~b, ~r〉)

(7.8)

The C(init) state is one in which the controller only allows for channel subscription via the bjoin channel.
After at least one listener participant joined the β channel, the bsend channel becomes available for a sender
participant node to send messages. Interactions by means of the bsend and bsend pair of channels are possible
only on the C(ready) state, after channel initialization.

The controller node goes to the C(busy) state after an interaction with a sender node. After the message
was delivered to all listener participants, the β channel ring becomes empty again and the controller node
goes back to the C(init) state.

The specific β channel is represented by~b. Therefore, at a given time, there should never be two controller
nodes bound to the same ~b name. We need then to define constraints for the usage of C.

Definition 7.4 Well-formed system in terms of controller nodes. Let S be a system in the π-calculus
in the form Q1 | . . . | Qn, where Q1, . . . , Qn are called components and are summations. A well-formed
system in terms of C is one that observes the following restrictions:

• Controller nodes C can only appear in S if they are one of the components.

• No two controller nodes should be parametrized using the same ~b.

The first rule states that controller nodes can not be part of a component. This is important to make
sure that a controller node actually behaves as an independent node. Therefore, its expression is not hidden
by another channel, as in “a.C〈~b〉”. Also, container node processes never die, so it does not make sense to

have a component whose expression follows the patterns “C〈~b〉.a” or “C〈~b〉+ P”, where a is a channel and
P is a sequence.

The second rule ensures that each β channel is represented by a single controller node. So “C〈b1〉 | C〈b2〉”

is a well-formed system, while “C〈~b1〉 | C〈~b1〉” is not.

Definition 7.5 Listener participant node. A listener participant node N to a β channel is a node that
intends to receive messages from this channel. Listener participants are defined by the following equations,
in which we set the initial state to be N(~b, ~x) = N (init)(~b, ~x):

N (init)(~b, ~x)
def
== new{ρ,~l} bjoin〈~l, ρ〉.ρ(~r).N

(ready)〈~l, ~r, ~x〉

N (ready)(~l, ~r, ~x)
def
== rB(~r′).N

(ready)〈~l, ~r′, ~x〉+ lA(~x, ~l′).rA〈~x,~l〉.(lB〈~r〉+N (ready)〈~l, ~r, ~x〉)
(7.9)

Listener participant nodes start in the N (init) state, in which it requests to join the β channel as a
listener. ρ is a private channel that a listener participant sends to the controller node in order to get a
reference to the its new right neighbor. When a listener is on the N (ready) state, it is capable of either
receive a reconfiguration signal or receive data. Reconfiguration comes from rB(~r′), where ~r′ is the new right

neighbor, while data comes from lA(~x, ~l′).

Definition 7.6 Equivalent expression to a listener participant node process. Let a listener par-
ticipant process P have the form P = β(~x).P ′ where P ′ is a process in the π-calculus, including the empty

process. Also, let the controller node of the β channel be C〈~b〉. The equivalent expression to P in the π-

calculus is N (ready)〈~l, ~r, ~x〉.P ′, where N (ready)〈~l, ~r, ~x〉 is obtained as the series of reactions N(~b, ~x) | C〈~b〉 →∗

N (ready)〈~l, ~r, ~x〉, and ~r is the right neighbor’s left channel received from the controller node.

This definition states that a listener participant node can be considered in a reaction as specified in
equation (7.1) only after the controller node caused the listener participant node to reach the N (ready) state.
Between the N (init) and the N (ready) states listener participant nodes go through the intermediate state
new{ρ,~l} ρ(~r).N (ready)〈~l, ~r, ~x〉, but we should not be concerned about such state since this is a transitory
state that will necessarily lead the listener node to the N (ready) state.



7.3. EXAMPLE 85

Definition 7.7 Sender participant node. A sender participant node to a β channel is a node that intends
to send messages to a β channel. Sender participant nodes are defined by an output channel bsend followed
by a process P , which can be empty: bsend.P . Sender participant nodes are represented using β.P .

All complexity is on the controller and listener participant nodes. That is why the sender participant
node does not require any especial treatment.

Proposition – On a well-formed system having a controller node for a β channel called βX , listener and
sender participant nodes observe REACTβ for βX .

7.3 Example

In this section we show an example of our proposal. We will simulate a system that begins with a controller
node. Figure 7.2 shows the setup process from a state in which only the controller exists (Fig. 7.2-a) until
three participant nodes were added (Fig. 7.2-d). Listener participant nodes β〈~x〉.Q1, β〈~x〉.Q2, and β〈~x〉.Q3

are then added to the system one by one.
In Fig. 7.2 we chose to use only names of channels on the left of processes (~l, lA, and so on). We will

use this convention when we describe processes in this example. Because our structure is of two rings, we
do not need to use names referring to channels on the right as all channels are also represented as a channel
on the left of some process.

After this setup phase, all three listener nodes are ready to receive a single message from the β channel.
We will use the following equivalence from β-calculus to standard π-calculus:

β〈~x〉.Q1 | β〈~x〉.Q2 | β〈~x〉.Q3 ≡ C〈~b〉 | N〈~b, ~x〉.Q1 | N〈~b, ~x〉.Q2 | N〈~b, ~x〉.Q3 (7.10)

We then calculate the chain of reactions that take place in case the system is put to interact with a
process that exposes a bsend output channel. In other words, we calculate the chain of reactions from the
following labeled reaction:

C(ready) | Q1 | Q2 | Q3
bsend−−−→ (7.11)
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Figure 7.2: A simplified representation of the ring channels in which only the left channels are represented.
(a) Initial state, with no processes attached. (b) β.Q1 (c) β.Q1 | β.Q2 (d) β.Q1 | β.Q2 | β.Q3

We will use four kinds of arrows on the equations bellow. The first, without any label →, is a non-
observable reaction that takes place because of an option (a plus sign). The second kind of arrow has a label

on top of it, as in
x
−→, and marks a labeled transition, or a hypothesis of what would take place if the current

system was put to interact with a process that exposes the complementary channel x. The third kind of

arrow has a label between parenthesis, as in
(x)
−−→, and means a non-observable reaction by means of a pair of
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complementary channels x and x. The fourth kind of arrow represents a non-arbitrary decision that results
from processing an if-then-else block, and is written → (∗).

We start with C and a process Q1:

C〈~b〉 | N (init)〈~b, ~x〉.Q1
(bjoin)
−−−−→ new{ ~lC} ρ1〈 ~lC〉.C〈~b, ~l1〉 | new{ρ1, ~l1} ρ1(~r).N

(ready)〈~l1, ~r, ~x〉.Q1
(ρ1)
−−→

C〈~b, ~l1〉 | N
(ready)〈~l1, ~lC , ~x〉.Q1

Then we add Q2:

C〈~b, ~l1〉 | N
(ready)〈~l1, ~lC , ~x〉.Q1 | N

(init)〈~b, ~x〉
(bjoin)
−−−−→

.Q2new{ ~lC} lC,B〈~l2〉.ρ2〈 ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~lC , ~x〉.Q1 |

new{ρ2, ~l2} ρ2(~r).N
(ready)〈~l2, ~r, ~x〉.Q2

(lC,B)
−−−−→

new{ ~lC} ρ2〈 ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q1 |

new{ρ2, ~l2} ρ2(~r).N
(ready)〈~l2, ~r, ~x〉.Q2

(ρ2)
−−→

C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q1 | N

(ready)〈~l2, ~lC , ~x〉.Q2

Finally, we finish the setup by adding Q3:

C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q1 | N

(ready)〈~l2, ~lC , ~x〉.Q2 | N
(init)〈~b, ~x〉.Q3

(bjoin)
−−−−→

new{ ~lC} lC,B〈~l3〉.ρ3〈 ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q1 | N

(ready)〈~l2, ~lC , ~x〉.Q2 |

new{ρ3, ~l3} ρ3(~r).N
(ready)〈~l3, ~r, ~x〉.Q3

(lC,B)
−−−−→

new{ ~lC} ρ3〈 ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q1 |

N (ready)〈~l2, ~l3, ~x〉.Q2 | new{ρ3, ~l3} ρ3(~r).N
(ready)〈~l3, ~r, ~x〉.Q3

(ρ3)
−−→

C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q1 | N

(ready)〈~l2, ~l3, ~x〉.Q2 |

N (ready)〈~l3, ~lC , ~x〉.Q3

At this point the system is at a state in which there is a controller node and three listener participant
nodes. We only need a sender participant node in order to complete a system in which a β transition. We
then calculate a labeled transition by means of bsend. In other words, we evaluate what would take place
if a process such as β〈~x〉 was put in parallel with the system at the current state. To keep our expressions
short we will use Q′

1, Q
′

2, and Q′

3 to represent Q1, Q2, and Q3 after an alpha conversion to receive ~x from
the β channel.
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C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q1 | N

(ready)〈~l2, ~l3, ~x〉.Q2 | N
(ready)〈~l3, ~lC , ~x〉.Q3

bsend−−−→

l1,A〈~x, ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q

′

1 | N
(ready)〈~l2, ~l3, ~x〉.Q2 | N

(ready)〈~l3, ~lC , ~x〉.Q3
(l1,A)
−−−→

C〈~b, ~l1〉 | l2,A〈~x, ~l1〉.(l1,B〈~l2〉+N (ready)〈~l1, ~l2, ~x〉).Q
′

1 | N
(ready)〈~l2, ~l3, ~x〉.Q2 | N

(ready)〈~l3, ~lC , ~x〉.Q3
(l2,A)
−−−→

C〈~b, ~l1〉 | (l1,B〈~l2〉+N (ready)〈~l1, ~l2, ~x〉).Q
′

1 | l3,A〈~x,
~l2〉.(l2,B〈~l3〉+N (ready)〈~l2, ~l3, ~x〉).Q

′

2 |

N (ready)〈~l3, ~lC , ~x〉.Q3 →

C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q

′

1 | l3,A〈~x,
~l2〉.(l2,B〈~l3〉+N (ready)〈~l2, ~l3, ~x〉).Q

′

2 | N
(ready)〈~l3, ~lC , ~x〉.Q3

(l3,A)
−−−→

C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q

′

1 | (l2,B〈
~l3〉+N (ready)〈~l2, ~l3, ~x〉).Q

′

2 |

lC,A〈~x, ~l3〉.(l3,B〈~r, ~lC〉+N (ready)〈~l3, ~lC , ~x〉).Q
′

3 →

C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q

′

1 | N
(ready)〈~l2, ~l3, ~x〉.Q

′

2 |

lC,A〈~x, ~l3〉.(l3,B〈 ~lC〉+N (ready)〈~l3, ~lC , ~x〉).Q
′

3

(lC,A)
−−−−→

if(~l3 = ~l1)then(l1(~r′).C〈~b〉)else(l1,A〈~x, ~lC〉.C〈~b, ~l1〉) |

N (ready)〈~l1, ~l2, ~x〉.Q
′

1 | N
(ready)〈~l2, ~l3, ~x〉.Q

′

2 |

(l3,B〈 ~lC〉+N (ready)〈~l3, ~lC , ~x〉).Q
′

3 → (∗)

l1,A〈~x, ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q

′

1 | N
(ready)〈~l2, ~l3, ~x〉.Q

′

2 |

(l3,B〈 ~lC〉+N (ready)〈~l3, ~lC , ~x〉).Q
′

3 → (∗)

l1,A〈~x, ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q

′

1 | N
(ready)〈~l2, ~l3, ~x〉.Q

′

2 |

l3,B〈 ~lC〉.Q
′

3

(l3,B)
−−−−→

l1,A〈~x, ~lC〉.C〈~b, ~l1〉 | N
(ready)〈~l1, ~l2, ~x〉.Q

′

1 |

N (ready)〈~l2, ~lC , ~x〉.Q
′

2 | Q
′

3

(l1,A)
−−−→

C〈~b, ~l1〉 | l2,A〈~x〉.(l1,B〈~l2〉+N (ready)〈~l1, ~l2, ~x〉).Q
′

1 |

N (ready)〈~l2, ~lC , ~x〉.Q
′

2 | Q
′

3

(l2,A)
−−−→

C〈~b, ~l1〉 | (l1,B〈~l2〉+N (ready)〈~l1, ~l2, ~x〉).Q
′

1 |

lC,A〈~x, ~l2〉.(l2,B〈 ~lC〉+N (ready)〈~l2, ~lC , ~x〉).Q
′

2 | Q
′

3 → (∗)

C〈~b, ~l1〉 | l1,B〈~l2〉.Q
′

1 |

lC,A〈~x, ~l2〉.(l2,B〈 ~lC〉+N (ready)〈~l2, ~lC , ~x〉).Q
′

2 | Q
′

3

(l1,B)
−−−−→

C〈~b, ~l2〉 | Q
′

1 | lC,A〈~x, ~l2〉.(l2,B〈 ~lC〉 +

N (ready)〈~l2, ~lC , ~x〉).Q
′

2 | Q
′

3

(lC,A)
−−−−→

if(~l2 = ~l2)then(l2,B(~r′).C〈~b〉)else(l2,A〈~x, ~lC〉.C〈~b, ~l2〉) |

Q′

1 | (l2,B〈
~lC〉+N (ready)〈~l2, ~lC , ~x〉).Q

′

2 | Q
′

3 → (∗)

l2,B(~r′).C〈~b〉 | Q
′

1 | (l2,B〈
~lC〉+N (ready)〈~l2, ~lC , ~x〉).Q

′

2 | Q
′

3

(l2,B)
−−−−→

C〈~b〉 | Q′

1 | Q
′

2 | Q
′

3

7.4 Applications of the β-calculus

In this section we present some applications of the β-calculus. Besides the obvious usage to model message
multicasting, β channels can also be used to synchronize processes as it can be easily used to create a point
in process execution in which many processes wait for a single signal. Another application is to allow for
easy expression of the lottery example in [71].
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7.4.1 Cyclic barrier

One of the ways to use β channels is to create a synchronization point for parallel executing processes. Given

processes P
(1)
1 , . . . , P

(1)
n and P

(2)
1 , . . . , P

(2)
n , a cyclic barrier for n processes can be build by selecting any of

the processes to resume all others by calling a β channel.

P
(1)
1 .a2. . . . .an.β.P

(2)
1 | P

(1)
2 .a2.β.P

(2)
2 | . . . | P (1)

n .an.β.P
(2)
n

(7.12)

Here we assume that P
(1)
1 , . . . , P

(1)
n are all processes that eventually become equivalent to a “zero” 1.

When these processes finish, they expose a2, a2, . . . , an respectively.
The sequence of input channels a2. . . . .an ensures that the output channel β will only be active after all

processes P
(1)
1 , . . . , P

(1)
n terminated. This simple example shows that β channels can concisely represent par-

allel process synchronization. Our β channels can also easily implement the equivalent to Java’s noftifyAll
method.

7.4.2 Service reference

In this example we consider the problem to pass a reference to a service class, not to a specific service
instance to a client. The client intends to contact all available service instances to ask one of them to process
a certain service. We can model such system using:

Client
def
== new{r} receiveRef(βref ).βref 〈r〉.r(inst).inst

Service(βX)
def
== new{ref} βX(r).r〈ref〉.ref

(7.13)

The client waits until it receives a reference to a service. This reference may come from another process
that is put to interact with Client. Then the client sends a message to all available service instances via
the output channel βref 〈r〉. The first service instance to reply through r sends its own address, or reference,
inst along r. The client then calls the service on this reference using the output channel inst.

Service instances are parametrized using the β channel that will group instances of this service. When a
service instance receives a call for a reference from a client, the service instance will try to reply using the
received channel r. If the service instance is not the first to reply, it will block forever.

This example is not realistic in this sense, but the point we want to stress here is the implications of
passing β through other channels.

7.4.3 MapReduce

MapReduce [22] is a strategy for computation distribution in which a certain task is sent to multiple servers
to be executed (the map phase). After servers have executed its portion of the task using its local resources,
each server sends back the partial results obtained to the caller. All partial results are reduced into a single
final result (this is the reduce phase).

Let us consider a specific case of MapReduce consisting of a process P that receives tasks and n worker
threads W1, . . . ,Wn. when P receives a task, it sends it to the n workers to execute it and, after a timeout,
P asks all workers to interrupt task execution. An outline of such system may be:

P
def
== new{r} run(task).βstart〈task, r〉.P

(running)〈r〉

P (running)(r)
def
== (r.P (running)〈r〉+ τ.βinterrupt)

W
def
== βstart(task, r).(R〈task, r〉 | βinterrupt.finish)

R(task, r)
def
== τ.r.(R〈task, r〉+ finish) + finish

(7.14)

Channel βstart is used by P to start the same task on all worker nodes W . r is a channel for worker
processes to send partial results back to P whenever a partial result is available. P goes to the P (running)

state after all available workers were activated by the βstart〈task, r〉 output channel. P is a simple thread,

1A zero is also known as a “stop”, using the nomenclature in [54] among others
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so while on the P (running) state all calls to r are not concurrent. The especial channel τ on the P (running)

state models the timeout until asking all nodes to interrupt processing the task.
Workers, on the other hand, consist of two threads. One, represented by R, is in charge of executing the

task in cycles modeled by τ.r. R consists of a loop until the task is over, in which case the second option
in the first plus of R is chosen. R then blocks waiting for a call to the finish channel. The finish channel
may also be called any time before R decides that the task is over. In this case (the second plus sign in the
expression of R), the R thread does not go to another τ.r loop. The second thread in W simply waits for a
call in βinterrupt and sends a message to the first thread to either unblock it if it already finished the task,
or to prevent another τ.r loop to be executed.

7.5 Conclusions

On this paper we introduced the β channel, which models one-to-many channels as an extension of the
π-calculus. Such fact, established using our definitions of β channels, allows us to carry the concept of
simulation (strong, or weak) to the β-calculus as well. By doing so, one can easily draw conclusions regarding
behavioral equivalence when modeling systems using the β-calculus.

We also contributed to the field by providing three non-trivial examples of applications of the β calculus.
The first example demonstrates that the β calculus can enhance the expressiveness of the π-calculus, by
providing a concise way to express certain sorts of process synchronizations. The second shows that when β
channels are passed along channels, they allow for processes to reach a group of other processes. The third
example demonstrates how more than one β channel can be used in combination to command an indefinite
number of worker threads.
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Chapter 8

A process calculus approach to a
distributed middleware

abstract

In a distributed computing environment, the middleware is the concretion of distribution and the program-
ming models. We propose a distributed middleware architecture built around the concept of a contract-
centric approach to distributed computing. Our definition of a contract is one based on a process calculus
in which channels are first class citizens. The most distinctive feature of our proposed architecture for a
middleware is that it reconfigures communication channels in real time, following the creation of channels or
passing references to channels as part of the process calculus. In order to adapt calculus to a non-centralized
environment we introduce a new construct called β that represents a one-to-many channel. This paper also
describes our experience trying to use a general-purpose message exchange specification, the JMS, as the
basis for the underlying communication that our middleware uses. Although in the end we could implement
all features of our proposed middleware using JMS, we found many shortcomings with the JMS specification
that we present in this paper. We also present how our approach simplifies unit testing based on messages
exchanged between nodes. This section is based on [60].

8.1 Introduction

A distributed middleware is not only the piece of software that makes it possible to build an infrastructure of
distributed computing, but also is a concretion of a programming model. Trying to adapt new programming
models to existing middleware implementations may lead to bloated solutions that hinders our ability to
exploit those new programming models. This is the case of programming models in which mobile agents and
dynamic interconnections play a central role.

On this paper we describe the Distributed Service Objects (DSO), a proof-of-concept distributed middle-
ware we built to implement a programming model in which services and clients have dynamic interconnections
and whose behavior is specified using a process calculus. These contracts are based on the π-calculus [71]
and describe not only interactions between clients and services (the sort of messages they exchange) but also
object mobility and dynamic channels allowing communication between software agents.

Our distribution model features a set of message exchange domains on which processes communicate. A
process may connect to each message domain with access to read or write messages according to a policy
extracted from the contracts. Each message domain represents a message bus for a particular purpose. There
are message domains that are private to the middleware infrastructure, while other domains serve for clients
to communicate with services.

From the point of view of application developers, the complexity of message domains is completely hidden
under an OOP façade and advanced features are presented using a DSL which is pre-compiled into standard
Java code. This DSL has two simultaneous purposes. First, to create objects that can be moved across the
network. Second, to allow for the adherence to contracts to be formally verified.

We propose a decentralized network of message exchange nodes and that new connections can be created
following the service contract. Messages are not only from software agent to a single agent, but also from
agent to groups of agents. We chose Java to be the programming language for our implementation and JMS
as the technology to implement the overlay network that transfers messages between processes. The choice
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of JMS is both a natural one in Java and one that allows us to implement the restrictions we needed in
a convenient way. Nevertheless, we found some shortcomings in the JMS standard that forced us create
adaptations that we discuss here.

The rest of this paper is organized as follows. On Section 8.2 we enumerate the state of the art research
on this field. On Section 8.3 we will present our programming model. Section 8.4 explains message domains.
Section 8.5 presents details about our middleware implementation. Next, on Section 8.6, we discuss a service
project life cycle and how our proposed solution can ease this process. We discuss our contributions on
Section 8.7 and conclude this paper on Section 8.8. We also provide three appendices to offer details about
our proposal: 8.9 presents an execution of a system described in terms of an expanded π-calculus; 8.10
outlines classes that implement agents of such system; and finally 8.11 presents a unit test that exploits the
testing capabilities of our middleware.

8.2 Related research

The importance of message exchange in enterprise systems was already well-established. For instance, [40]
proposes patterns for enterpise integration in which messages play a central role to coordinate distributed
agents.

Benatallah et al. [12] propose that business protocols could be used to guide the development of clients.
Services should comply with protocols and this would allow for advanced compatibility verifications. Their
model is similar to ours, but in our case we focus on the dynamic creation of private channels between client
and service, which is equivalent to giving the client new capabilities based on previous interactions with the
service.

A study on the application of AOP to simplify the structure of middlewares and increase extensibility
was presented on [82]. AOP was also proposed to be used in the structure of middlewares in [10,52,74]. The
idea behind quantification is from [27]. We also applied AOP on an early state of our research but decided
to replace AOP with a DSL due to shortcomings we found in AOP point cut models. Besides, our use of
manipulation of generated code aims at extracting behavior patterns from the client source code and check
it against a service specification.

The service composition problem is also addressed in [81] . The proposed solution is based on a catalog
of previously tested patterns that can be applied to solve some design problems in the middleware.

Ning et al. [64] propose a business process management based on an Enterprise Service Bus (a message
bus that coordinates an enterprise infrastructure of distributed services). The proposal also uses π-calculus
to formally model the environment. There are important differences with our approach. Firstly, enterprise
infrastructures have a traditionally centralized control. Here we propose a distributed and decentralized
approach. Secondly, here we not only use π-calculus to model the structure of the middleware itself, but we
also apply the π-calculus to model contracts between services and clients.

Wu and Li [80] propose a language to describe the architecture of middlewares for ubiquitous computing.
This work also uses π-calculus to model the structure of the middleware, but as a language or pattern, in
contrast with the approach in [64]. Our approach is similar, but not restricted to the middleware itself. In
fact, we do not make a great distinction between elements that are part of the structure of the middleware
and the services that are provided on top of the middleware. We could blur the limits between those two
words using message domains, or dynamic message topics.

On [62], Mishra and Misra propose that interactions between components in a multi-threaded system
should not be analyzed from source code or structure decoupling techniques such as AOP, but rather the
relations between services should be detected using .NET Common Language Runtime (CLR), a commonality
between languages based on the .NET platform. The approach is a valid one and, although designed for
local applications, could be adapted to our model. A π-calculus formalism is also used in [62].

Ponnekanti and Fox [68] addresses the problem of how to allow interoperation between services that evolve
independently. The article makes the case for web services and does not take into account implementations.
But part of the proposed solution is the creation of semi-automated middleware components that can resolve
incompatibilities as they are detected. Our approach, on the other hand, is one that does not try to resolve
incompatibilities at run time, but that uses formal specifications to find incompatibilities earlier.

Finally, it is important to justify the choice of the variation of π-calculus we used. The one we selected for
this paper was defined by Milner [71]. There are several variations of this original π-calculus. An extensive
list can be found on [21]. For instance,the Asynchronous Distributed π-Calculus (ADPI) [39] defines a
grammar in which option operators (a plus sign, roughly equivalent to an if block) are absent and recursion
is used to add expressive power to the grammar. Here we chose the variation presented on [71] because it
is the most straightforward when we try to extract behavior from structured imperative languages such as
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Java. Nevertheless, here we provide an extension of the π-calculus defined in [71], which we call β and that
represents a multicasting channel.

8.3 Programming model

Our programming model aims at allowing programmers to define distributed components (which are called
clients or services depending on the context), but also provide the underlying distributed middleware with
parameters that tell the middleware which channels to create and which rights to give to components. We
separate the programming model into different levels of abstraction.

Figure 8.1 illustrates this separation. On the top, the Contract Design is the most abstract level in
which contracts are defined using π-calculus expressions. After a contract was defined, developers can work
on source code that implements such a contract. Source code should be written using a DSL, that resem-
bles a general purpose programming language, such as Java or C. Such source code is then analyzed by a
π-expression tool and checked for adherence to the service contract, which means that the implementation
behaves the same way that the abstraction presented by the service contract does. Finally, during deploy-
ment, artifacts generated using a combination of pre-processors and compilers will generate artifacts that
can be deployed in the middleware we introduce here. We will come back to this figure later, when we
introduce our proposed project life cycle.

Client / Service

Developers

Figure 8.1: Outline of the software development process

An introduction to the π-calculus is beyond the scope of this paper, so we refer the reader to [71] for
an in-depth introduction to the π-calculus. Instead of providing explanation about the syntax for the lack
of available space on this paper, we will describe in words some of the π-calculus expressions we will use as
soon as new aspects of π-calculus are used.

Our aim is to create a strategy in which programmers could have their clients and services checked against
defects earlier, before their programs are put into work. The sort of defects we target are those that prevent
client and service to interact because they follow different state models. For instance, a service may require
an initial setup before starting to serve a client, and a client may not be prepared to conduct this initial
setup. On another example, client and service may not agree upon the same termination protocol, making
it hard for the service to tell if a client shares the same information about service termination.

We also want to propose a model for communication channels that can dynamically change during the
interaction between client and service. Our goal is that such a model should be integrated into the service
contracts so that they can also be used as parameters for the formal verifications of source code.

The central piece of our programming model is the service contract, which describes how both client and
service should behave. The service behavior alone is not enough for a service contract since it cannot be
used to represent situations in which client and service change states asynchronously.

To demonstrate this let us analyze an example. Let us consider a service in which a client requests the
service to execute certain tasks. The service takes some time to execute the task and then delivers the
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results to the client. While the task is executing the client is free to cancel the task any time, by calling a
method on the service. When the task finishes the service sends the result of the task execution to the client
asynchronously, which is done by calling a method on the client.

Instead of specifying the format of functions exposed by both service and client, the π-calculus expression
specifies the behavior of each party. For instance, let us consider the following set of expressions:

C
def
== (CC , CS) = CC | CS

CC
def
== m1 +m2.m3(a).P1

CS
def
== new{x, y}(m1 | m2.(m3〈x〉+m3〈y〉) | P2 | P3)

(8.1)

C stands for the contract, which consists of a pair of interacting contracts: the client contract CC

and the service contract CS . We will use Latin capital letters to represent processes. When a process is
parameterized, we represent its declaration using round brackets (for instance, “X(p)”) and its instantiation
using angle brackets (for instance, “X〈p〉”). C is the same as CC put in parallel with CS (indicated by the
pipe character). Parallelism is the way, in the π-calculus, to represent processes put to interact. P1 is a
process that interacts with the channel a, P2 is a process that interacts with the channel x, and P3 interacts
with channel y.

In the example above, the client may first chose arbitrarily between calling the method m1 or m2.
Arbitrary choices are represented by a plus sign. If the client chooses to call m1, CC makes a transition to
the zero state 1 and the process CC ceases to exit. If, on the other hand, the client chooses to call m2, then
the service becomes able to call m3 on the client. Now the service has the opportunity to make an arbitrary
choice between passing a reference to the x channel or the y channel to the client. To make this description
clear, let us see an example of execution of such contract:

CC | CS
(m2)
−−−→

m3(a).P1 | new{x, y}(m1 | (m3〈x〉+m3〈y〉) | P2 | P3)
(m3)
−−−→

{y/a}P1 | new{x, y}(m1 | P2 | P3)
(y)
−−→ · · ·

(8.2)

We use the notation
(m2)
−−−→ to denote an interaction by means of the pair (m2,m2). The expression

{y/a}P1 means an alpha conversion of P1 in which all names a in P1 are replaced by y. The channels x and
y are private to the service until they are passed through m3.

We denote a visibility restriction using the syntax new{x, y}(W ), meaning that channels x and y can
only be seen within the context of the process named W . For instance, in new{x, y}(W ) | Z, it is impossible
to have a transition in terms of x and y which are restricted by the new keyword. Figure 8.2 shows the
interactions in (8.2).
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Figure 8.2: Dynamics of domain binding. Circles are message domains. (a) initial state; (b) CC calls m2 on
CS ; (c) CS passes a reference to y using m3〈y〉; (d) CC becomes connected with A3

1The zero state, also called the stop state is usually represented as a trailing 0 (zero) or the word “stop”. This state represents
a termination of a process. In this paper we will omit these states at the end of sequences for simplicity. For instance, the full
form of any sequence would be m1.m2. . . . .mN .0 or m1.m2. . . . .mN .stop.
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Figure 8.2 also illustrates the dynamics of domain connections. Initially, in Fig. 8.2 (a), the client CC

is connected only to the message domain of CS . CC and all objects at the client side of the contract are
located in the client layer. The object proxy layer contains object proxies for remote services, as in [75].

On Fig. 8.2 (b), CC calls m2 on CS . Then on Fig. 8.2 (c), CS calls m3 on CC and passes a reference
to the channel y as part of this call. Finally on Fig. 8.2 (d), CC becomes connected with A3 too through
y. At this state CC can interact with both CS and A3. There may be other clients connected to y at the
same time, but CC cannot see them and vice-versa. The programming model assumes that the underlying
run time environment guarantees that this effect takes place.

Several clients can be connected to the server that provides CS at a time and each client will see its own
instance of CC , so that the behavior specified in the service contract is not violated.

The equations (8.2) lead the system to a state in which P1 can interact with P3 through channel y. Such
interaction was not possible before the server decided to send the channel y through m3.

But our middleware is a message oriented one. So how does this process translates into messages and
agents? First, before y was passed to the client process (on the m3 transition above) this channel does not
even need to exist. So the service asks for the underlying message exchange system to create such channel
as soon as the channel is needed, right before passing a reference to the channel to the client.

We do not literally need a new domain in this case. In fact, even passing a reference to a channel is
not necessary when only two peers are communicating, since communication between service and client is
already established. The same behavior of (8.1) could be emulated if P1 , P2 , and P3 were specified in terms
of the channel a, and if we replace CC and CS by the following:

CC
def
== m1 +m2.m3.P1

CS
def
== new{x1, x2}(m1 | m2.m3.(x1 + x2) | x1.P2 | x2.P3)

(8.3)

The difference here is that the private channels x1 and x2 are guarding P2 and P3 from access. When
m3 is called, the service makes an arbitrary choice to enable either P2 or P3 by calling either x1 or x2

respectively. Therefore, by “passing a channel to a client”, we mean connecting the client with a third agent.
Let us go back to equation (8.1) and forget about (8.3), which was just a counter-example.

Passing a channel to either P2 or P3 means that both P2 and P3 are agents other than the client and the
service. Let us call those agents A2 and A3 respectively.

So the expressions of P2 and P3 represent the behaviors of A2 and A3 from the perspective of the client,
which at this point is restricted to the expression P1.

It is also possible that A2 and A3 are already instantiated and serving other clients when the server CS

gives access to them to yet another client, here represented by CC . So P2 and P3 should make reasonable
assumptions about in which states the agents can be when CC starts to interact with them. The simplest
case is of services that do not change states and simply expose a set of service methods mS1,mS2, . . .:

P2
def
==!(mS1 +mS2 + . . .) (8.4)

The exclamation point means a replication, or an infinite repetition of the term on the right of it. The
equation above means that this service can serve one method at a time and that after processing any method,
all of its methods become available to be called again.

8.4 Message domains

A message domain is a logical entity in which participants exchange messages. Each agent subscribed to a
domain may have reading, writing, or reading and writing access to messages. We use the read-only access
to model auditing and logging services, that only observe the activity on a message domain and cannot
interfere with this activity. Reading and writing accesses represents a bidirectional communication, as in
a service coordinator and participant relationship. A write-only access can be used to model situations in
which agents send notifications or reports.

Unfortunately, the π-calculus only defines a one-to-one channel interaction. So we introduce a syntax
shorthand called β, which is a channel in which communication is one-to-many. We define a reaction rule
involving β as:
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REACTβ : (β.P0 +M0) | (β.P1 +M1) | . . . |

(β.PN +MN )
(β)
−−→ P0 | P1 | . . . | PN

(8.5)

Where (β.P0+M0) is the sender process, and (β.P1+M1), ..., (β.PN +MN ) are the receiver processes of
a message β. There is no guarantee over the order in which each of the receivers get the message. Without
parameters, β interactions can be used to emulate notification in a service level (similar to a “notify all”
monitor operation). Here we use β channels primarily to multicast messages to a group of agents. This sort
of special channel can be generalized using a polyadic calculus:

(β〈 ~x0〉.P0 +M0) | (β( ~x1).P1 +M1) | . . . |

(β( ~xN ).PN +MN )
(β)
−−→ P0 | {x0/x1}P1 | . . . | {x0/xN}PN

(8.6)

We also use the notation c:m to mean an input channel m associated to a group of channels c that can be
transferred at once. Output usage of channels is written c:m. We use this notation to show a clear parallel
between passing a reference to a set of channels and passing a reference to an object in OOP languages. We
extend the reaction above to all channels β:x grouped under β.

We want to make a clear distinction between one-to-many and one-to-one transmission modes. So we
will represent sets of channels that are one-to-one, as in the standard π-calculus, using the letter α. Their
reaction rules will be straight forward. The example bellow shows two possible outcomes from the same
original system under the same kind of reaction:

α:g.P | α:g.Q | α:g.R
(α:g)
−−−→ P | Q | α:g.R

α:g.P | α:g.Q | α:g.R
(α:g)
−−−→ P | α:g.Q | R

(8.7)

8.4.1 Passing a reference to a message domain

The following is an example of passing a message domain in a channel interaction:

V1 = m1(x).!(x:c1(message).consume〈message〉)

V2 = new{βA} m1〈βA〉

V1 | V2
(m1)
−−−→ V3 =!(βA:c1(message).consume〈message〉)

(8.8)

where m1 is a channel to send the message domain βA. Note that V1 was not made specifically to interact
with βA but becomes capable of doing so after interaction with V2. The process V3 keeps receiving messages
from βA:c1 (one of the channels in βA) and forward them to a channel that consumes it. V3 is not a complete
system since there is nothing sending messages or consuming them. So we need to put the process V3 in
parallel with another process that has a call like βA:c1. Let us consider a scenario in which there is an

undefined number of copies of V3 put to interact with such a process. Let us represent each copy as V
(N)
3 :

!(T.βA:c1〈~x〉) | V
(1)
3 | . . . | V

(n)
3 (8.9)

Where T is an expression that generates different values of ~x on each iteration. We want the message
sender !(T.βA:c1〈~x〉) to have its structure independent from the number of replicas of T3. That is why we
need β here since the alternative to a β would be a complex π-calculus expression that would add listeners to
the messages and had to iterate over all registered listeners to replicate the message. It is important to note
that when several processes receive a β there is no way to determine in which order the processes received
β.

8.4.2 Example: a distributed data mining service

Now let us analyze an example of usage of our approach on a distributed data mining service. Here is a list
of agents in this example:

• Q1 – Client Application – The piece of software that calls the data mining service.
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• Q2 – Resource Broker – An agent that provides a reference to a data mining service. [8]

• Q3 – Monitoring Agent – Keeps track of all messages exchanged between agents. Data collected by
this agent can be used to optimize performance, for instance.

• Q4 – Data Mining Service – Processes a data mining algorithm with the help of a set of databases.

• Q5 – Database – Database agents.

These agents have their communication organized using a set of message domains, or channels. Each
channel is expected to dynamically accept or reject any attempt a client makes to join it. Here is the list of
message domain:

• βDM – Data Mining – For a client to call a data mining service and receive data mining results.

• βDB – Data Base – For a data mining service to access a set of data base services.

• βDS – Data Synchronization – For database agents to communicate with each other and synchronize
their data. This channel can be used by databases to form a cluster.

• βRB – Resource Brokerage – For a client to obtain a reference to a data mining service from a resource
broker.

Table 8.1 shows read and write access to each message domain. A client Q1 should first request a
reference to a data mining service channel βDM . Obtaining a reference to a service channel means that from
this moment, there will be a message domain ready for the client to connect. When the client connects to
this domain, the client should send a message to the domain to request whatever is listening on this domain
to create an instance of the service. The client only knows the address of the message domain, not the actual
address of the data mining service agent Q4.

Table 8.1: Example of a message domain structure. ’r’ and ’w’ stand for read and write rights respectively.

Channel Q1 Q2 Q3 Q4 Q5

βDM rw - - rw -
βDB - - - rw rw
βDS - - r - rw
βRB rw rw r - -

Requests sent by the client will be executed by the data mining service agent with the help of database
agents Q5. Q1 cannot communicate directly with any of the Q5 agents because we are trying to hide the
internal structure of the data mining service. This internal structure consists of message domains βDB and
βDS . The later is specific for database agents to hide complexity from the data mining service. Q3 monitors
channels βDS and βRB .

Agents do not interact directly. Instead, they exchange stimuli using channels, which is the only artifact
in π-calculus. The π-calculus expression of each process is given by the following:

Q1 = new{p1}(αRB :getRef〈p1〉.p1(cDM ).Q
(init)
1 〈cDM 〉)

Q
(init)
1 (b) = new{q1}(b:startDM〈q1〉.q1.(Q

(init)
1 〈b〉+ τ.0))

Q2 = βRB :declare(ref).Q
(init)
2

Q
(init)
2 = (αRB :getRef(a).a〈r〉+ βRB :declare(ref)).Q

(init)
2

Q3 = (βRB :declare(a) + βDS :sync(a)).Q3

Q4 = new{p4}(βRB :declare〈p4〉.Q
(waiting)
4 )

Q
(waiting)
4 = new{p4}(p4:startDM(a).Q

(running)
4 〈a〉)

Q
(running)
4 (a) = new{p4, q4}(αDB :read〈q4〉.q4.

Q
(running)
4 〈a〉+ τ.a.Q

(waiting)
4 )

Q5 = (αDB :read(p).p+ βDS :sync+ βDS :sync).Q5

(8.10)
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The letter τ is used to represent an internal reaction, not externally observable. Nevertheless, the
consequences of a τ may be observed by another process as τ represents processing. Here we use τ to
represent a computation that, after an unknown or undefined time, puts an agent into another state without
the need to an interaction with another process.

The channel getRefReq is used to request a reference to a data mining channel. The argument to
this channel call is a channel through which the response should be sent to Q1. The agent Q1 becomes
initialized after it received cDM , a reference to a remote data mining service agent. Resource brokers Q2

are initially unable to give references to services and remain on this state until they receive a reference
through the βRB :declare channel. Q3 monitors some multicast conversations and does not interfere with
these interactions. Agents Q4 receive requests for data mining through βDB :startDM and remain on the
running state until the data mining is over. Here we do not specify what exactly causes the data mining to
finish. We simply present the data mining termination as an arbitrary option (represented by the plus sign

in the expression of Q
(running)
4 ).

Finally, Q5 receives requests for data through the α:read channel. Here we use an α channel instead of
a β one because we want only one instance of Q5 to respond to requests, leaving the other instances free to
serve parallel requests that may arrive from other clients.

A system consists of at least one instance of each of those five kinds of agents, except for Q3 which is
not absolutely necessary for the system to work. More than one copies of Q2, Q4, and Q5 may exist in
order to provide high availability services. We present a detailed example of a system and its execution on
Appendix 8.9.

We can also make the expressions in (8.10) more generic by passing all α and β channels as parameters
in an initial setup. For instance, Q5 could be replaced by the equations bellow, and initialized by putting it
in parallel with setupDB〈αDB , βDB〉:

Q6 = setupDB(cDB , cDS).Q
(init)
6 〈cDB , cDS〉

Q
(init)
6 (a, b) = (a:read(p).p+ b:sync+

b:sync).Q
(init)
6 〈a, b〉

(8.11)

8.5 Middleware

Mainly because of the way we propose to handle message domains and mediate services using contracts,
we decided to implement our own proof of concept middleware. Figure 8.3 shows the layered structure of
our middleware. Each node is a copy of the container in this figure. Each container is partitioned into five
subsystems: two user subsystems and three infrastructure subsystems in which a container interact with
other containers or systems.

The two user subsystems are the client and service subsystems. They consist of business logic and services
for the business logic respectively. This is where classes created by the user will be located.

The other three subsystems serve as the infrastructure for the user ones. At follows we will describe each
part of the middleware.

8.5.1 Business Layer

Objects in the business layer are general purpose business logic that uses service indirectly. The business
layer contains classes that interface with the end user or that represent the application that ultimately uses
remote services.

The only layer visible to the business layer is the client layer. References to the objects in the client
layer are provided to the business layer objects through inversion of control. Business layer objects can also
explicitly call an API to get those references.

The separation between the business layer and the client layer is necessary to insulate the potential
complexity of the business layer from formal verification. For instance, the business layer may interface with
a number of external systems or interact directly with the user. All those factors should not interfere with
the operation of services.

8.5.2 Client Layer

While the business layer contains logic with a general structure that is not checked to adhere with any
specification, the client layer is checked against the expected client behavior. This layer represents a bridge
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Figure 8.3: Layered structure of the middleware

between business classes and services, remote or local. Together with the business layer, the client layer
makes up the client subsystem.

Objects in this layer are subject to analysis over service contract adherence. Also, objects in this layer
are declared using a special DSL, which has two purposes: to reinforce restrictions in the design of objects in
this layer and to allow for objects in this layer to refer to elements in the contract, such as names of service
states.

The client layer can interact both with remote services (through the object proxy layer) and with local
services, which are in the service layer.

8.5.3 Object Proxy Layer

This layer consists of local objects that represent remote services. The goals of objects in this layer is to
translate local calls to methods into a set of message calls that cause a remote method to execute. Behind
the scenes, synchronous and asynchronous decoupling is done using an implementation of the active object
design pattern [24, 44], which on the one hand allows for callers of a function or method to synchronously
block waiting for a response (which we model as the service client). On the other hand, a group of threads
work in the background to perform the task until the result is finally delivered.

In fact, all referred objects are dynamic proxies [75], local objects that are proxies for remote ones.
Whenever an object on this layer receives a request to process a method, the request is forwarded to a
remote node using the messaging manager, which we will describe later.

8.5.4 Service Layer

This layer contains objects that actually process requests. Requests that originate from the client layer and
may reach the client layer through two different paths:

• from the client layer through the object proxy layer, through the messaging manager, and finally to
the service layer if both client and service reside on the same node, or

• from a similar path, but using the network to deliver the request to a remote node.

In the second case, an object in the client layer invokes a method in an object in the object proxy layer,
which in turn converts the request into a message and asks the messaging manager to deliver this message
through the network. Next, the messaging manager delivers such message, as we will describe on the next
subsection. The node that receives the message is also an instance of the container depicted in Fig. 8.3.
The message, then arrives at this remote node through the message service, reaches the messaging manager,
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which places a request to the service layer where the service object is located. After the request is processed
by the service object, the response travels the same path on the opposite direction.

Objects in the service layer are instantiated by the local service registry based on demand coming from
the messaging manager .

8.5.5 Messaging Manager

As introduced on the previous subsection, the goal of the messaging manager is to deliver and receive
messages on behalf local and remote object proxy layers and the service layers. The messaging manager also
provides messaging capabilities to the local service registry, which will be introduced in Section 8.5.6.

Actual message sending and receiving is delegated to a messaging driver, as illustrated in Fig. 8.3.
This allows for the messaging subsystem to be independent from the actual message delivery service in
use. Decoupling is provided by a message driver Service Provider Interface (SPI), which we defined for our
middleware. Internally, the messaging manager implements the active object design pattern [45] to decouple
synchronous message delivery requests from asynchronous responses. Synchronous requests come from the
object proxy and service layer of the same container instance, while asynchronous responses come from
remote nodes.

A detailed structure of the messaging manager is shown in Fig. 8.4. This figure depicts three different
approaches for messaging drivers: provider-specific messaging, unit testing messaging, and JMS messaging.
At follows we explain each approach.

Message

Service

JMS provider

library

Messaging

Manager

Provider-specific

conf. agent

in-memory driver

JMS driverMessage driver SPI

Container

Provider-

specific

driver

Provider-

specific

API
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Service

JMS SPI

JUnit tool

Provider-specific

messaging JMS messaging

Unit testing messaging

provider-specific transport
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tests

Manag.

SPI

Provider Manag.

Figure 8.4: The messaging subsystem in details

Provider-specific messaging driver

The first approach is called provider-specific because the whole stack (driver, API, transport, and message
service) is specific to the message service in use. This is the most generic way to implement communication.

The main problem about this approach is that creating a driver for another message service implicates
creating the whole stack again. There is almost no reuse between the implementation of two drivers. The
advantage of this approach is that it can use whatever feature the message service has to offer. For instance,
the HornetQ 2 message service has a management API that expose methods to create topics on-the-fly.

In-memory messaging driver

The second approach is the in-memory messaging driver, or unit testing messaging. On this approach the
messaging driver works completely in memory and the network is simply not used. Messages are not actually
sent over the network but instead are transferred to objects within the same Java Virtual Machine (JVM)
for the purpose of allowing for test automation. Each message that passes the in-memory driver is registered
in a log for later verification by unit tests, which are based on JUnit [5, 11].

Such technique of replacing an actual class implementation with one that logs activity for later verification
is also known as mock objects [51].

2http://www.jboss.org/hornetq/
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After the messages were exchanged between objects a test script can check if the messages were delivered
correctly. This method has its side effects for situations in which objects in the client and service subsystems
compete for resources when they are on the same JVM but this competition is avoided when objects are in
different JVMs. So development should be test-driven in order for tests to be possible. The same sort of
problem is faced in any test environment.

JMS-based messaging

The third approach is based on the JMS and it is the most complex one because the structure was designed
to allow for the replacement of JMS implementation with minimum adaptation. The JMS driver is common
to any JMS implementation because it connects to the message service through the JMS SPI.

The main reason to use JMS is its flexibility. One of the main merits of using JMS is that the actual
implementation of message exchange can be easily replace to meet different needs without changing the
source code of the classes that use messaging. JMS specifies a SPI to message delivery services instead of a
specific protocol to message exchange. In other words, it is up to each implementation of the JMS standard
to specify how messages are delivered. As a result, JMS implementations are free to deliver messages using
any underlying method. Many of the implementations can use multiple protocols and allow for optimizations
based on the topology of message subscribers. For example, the ActiveMQ 3 implementation allows for several
instances of the broker to be connected to each other and clients may connect to any of these instances. The
network of brokers can optimize network usage based on the filters in each client subscription.

JMS is also a natural option to partition messages between nodes following the ideas in [56]. A message
domain is a virtual space in which nodes can exchange messages freely. Nodes outside the message domain
cannot send or receive messages. We used partitioning in terms of message domains to allow for a network of
services to act as a single multithreaded server. Certain domains can be allocated to coordination of service
objects, while others serve to allow for certain service objects to serve as infrastructure to other services.
Our message domain partitions were also modeled in terms of π-calculus.

There is, however, a downside on JMS. Because in our programming model channels are created at
run time and passed to agents, the messaging manager needs to ask the underlying messaging service to
provide such dynamic control over connections between agents. Unfortunately, the JMS specification does
not provide this capability. As a result, any attempt to implement such service on top of JMS will end up
as being completely reliant on the capabilities of the message service in use. It may even be the case that a
certain implementation of JMS does not support reconfiguration during run time (on-the-fly).

We created a provide-specific configuration agent that is in charge of filling this gap. This agent is a
process that is in charge of receiving and processing messages asking for the dynamic reconfiguration of
the message topics. Each implementation of the message exchange service or protocol requires its own
implementation of the message administration agent.

Whenever the JMS driver receives from the messaging manager a request to create a new channel, the
JMS driver translates this request to a call to some methods in the JMS SPI. These methods are implemented
by some objects in the JMS provider library. Objects from this library then use a provider-specific transport
to send the message through the network. The configuration agent receives the message and then uses a
management tool that is specific to the message service in order to have the message service create a new
topic.

8.5.6 Local Service Registry

Functions provided by the service registry are:

• creating new instances of service objects following the demands from the messaging manager

• providing information about which services the container is ready to provide

• finding references to service objects that were instantiated in the past

• destroying a service object that will not be used anymore

• terminate the container when asked to do so

If the service needs a resource to run, the local service registry will request a resource from the local
resource manager and give the service object access to the resource using dependency injection (an inversion
of control mechanism since the service receives the resource, instead of searching for it).

3http://activemq.apache.org/
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In our current implementation, requests for containers that provide a certain service can be broadcasted.
Each node that receives such requests consults its own local service registry to check if it can provide the
requested service. A more sophisticated implementation would allow for an infrastructure with a better
performance and would require, for instance, resource brokers to keep track of service providers. Here we
did not try to address such issues, as we wanted our implementation to be only a proof of concept of a
supporting infrastructure for our programming model.

The local service registry also interacts with the container MBean, which is a Java Management Extensions
(JMX) service that can receive queries about the current status of the container or commands such as a
request to terminate the container.

8.5.7 Local Resource Manager

Most services are based on resources outside of the container, such as a database, a programming library,
a storage space, or even a sensor. The local resource manager is in charge of providing necessary resources
to service objects in the service layer. As we already described, the local resource manager receives requests
for resource wrappers from the local service registry.

A resource wrapper is a Java object that encapsulates primitive routines to access a resource. For
instance, instead of providing a file to a service object, the local resource manager may provide an input
stream to a file. Having references to resources controlled this way allows for managing resource allocation.

8.6 Source code manipulation and project life cycle

In order to manipulate Java source code we created a source code pre-processor build using the Antlr tool [67]
4. Antlr generates a lexer and parser from an EBNF grammar. The parser creates an AST from the source
code written by a programmer and this AST is then transformed into one that is compatible with the
standard Java grammar. Finally, this generated source code compiled into Java classes and interfaces.

An example of transformation is when a method call contains an EST. In this case, the AST processing
module translate the method call into source code that creates a message containing the expected transition
along with the arguments. The AST obtained from the source code is also used to extract an equivalent
π-calculus expression, which is later used to check compatibility with the service contract.

The main benefit of our approach is a programming model in which correctness of an implementation
can be checked early. Our aim is to come out with a programming model in which produced artifacts are
correct by design. A developer does not need to wait until a real test in order to find structural problems
that prevent a client from interacting with a service. Also, as shown on Fig. 8.4, we provide an in-memory
messaging driver that enables unit testing before deployment. We separate this model into three distinct
phases: contract design phase, development phase, and deployment phase.

8.6.1 Contract design phase

On this phase a service designer describes a set of service contracts. Each contract consists of a set of
operations in client and service, and relationships between operations. Each operation is described using
both a list of arguments, which can be of two distinct types: data arguments passed by value, and references
to channels.

In our prototype implementation we used the Java programming language as the underlying platform,
therefore, arguments passed by value are in fact serialized Java objects in which all data is contained within
the object. Such self-contained object can also be represented using some general purpose format, such as
JSON 5 or XML.

Channels are modeled as references to Java agents. In other words, a channel is equivalent to the
capability of interacting with a remote object. Those objects may live in a complex context, with many
dependencies to other Java objects, some of them representing resources.

In terms of π-calculus expressions. Each operation is modeled as an input channel. Agent mobility is not
represented directly. Instead, agents are, in principle, free to migrate from peer to peer without disrupting
visibility. The contract design phase does not need to describe systems in such details. It is during the
deployment phase that distribution strategies can be applied to locate computation close to data, or where
resources (such as CPUs) are more powerful, for instance.

4http://www.antlr.org/
5http://www.json.org/
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8.6.2 Development phase

This is the phase in which developers spend much of the programming effort to create services and clients.
On this phase, developers are in charge of preparing the artifacts of client and service subsystems, as shown
in Fig. 8.3.

As we saw, artifacts on those two subsystems are created either using standard Java or our DSL that
expands it. The DSL source code will be subject of formal verification and translation.

Firstly, as we already explained, the DSL source code is converted into an AST representation. Next,
π-calculus expressions are extracted from this AST. Those expressions are then checked against one or more
target contracts to verify compatibility. If lack of compatibility is found, the developer can see an error
report and correct a behavior immediately, avoiding going to the deployment phase to find the error.

On the next step, the AST is translated into one compatible with Java. During this translation, the
pre-processor adds dependencies with supporting libraries and routines that perform dependency injection.

All this source code is compiled to generate byte codes that can be executed by the middleware. The
developer can then submit the assembled artifacts to unit testing. Unit testing is of two types: message
exchange verifications and testing based on mock objects [51].

Figure 8.5 shows an example of expected messages. In this figure there are three message verifications.
Each message verification consists of a source, a channel (represented by the arrows), and a destination.

1 #

2 # A message from admin to the DBS group through channel C1

3 #

4 admin : 0-0-0-0-1 ===[ C1 ]===> <DBS > ( SERVICE_PROVIDER_QUERY )

5
6 #

7 # A message from any user on 6 to all nodes in C1

8 #

9 0-0-0-0-6 ===[ C1 ]===> * ( SERVICE_PROVIDER_QUERY_RESPONSE )

10
11 #

12 # A message from admin to 6

13 #

14 admin : 0-0-0-0-1 ===[ C1 ]===> 0-0-0-0-6 ( ←֓
REMOTE_SERVICE_OBJECT_REFERENCE_REQUEST / org.dso.messaging.dtos.←֓
ServiceObjectReferenceRequestDTO )

Figure 8.5: Example of expected message exchange asserts

The expression on line 3 checks if a message was sent from UUID 0-0-0-0-1 using the channel C1, addressed
to all nodes in the DBS group. The message type is expected to be a query for a service provider. The
second expression, on line 5, is checking if a node whose UUID is 0-0-0-0-6 sent a reply, and the third assert
statement checks if the client asked for a reference to a service object.

Expression of expected messages should follow the EBNF grammar in Fig. 8.6. It is optional to specify
which user should send the message which is represented by the question mark on the first element of
“assert”. The origin of the message can be expressed both using a Universally Unique Identifier (UUID) or
a wildcard. Channels should be specified either using a channel name or a wildcard. The destination of the
message can be a message group, between angle brackets. Finally, the message type is optional and should
be within round brackets. The type of the message can be specified using a constant from a fixed list of
message types, and the name of a Java class that encapsulates the data. Appendix 8.11 shows an example
of unit test.

8.7 Discussion

8.7.1 A critique on JMS and centralization

As already stated, JMS is independent on the actual transport mechanism in place. By means of simple
configuration, the actual topology of message exchange can be completely altered without any change in the
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test := statement*

statement := (comment | assert) ’\n’

comment := ’#’ text

assert := (user ’:’)? origin channel destination type?

user := userName | ’*’

origin := UUID | ’*’

channel := ’===[’ (channelName | ’*’) ’]===>’

destination := UUID | ’*’ | ’<’ groupName ’>’

type := ’(’ messageType (’/’ javaType )? ’)’

messageType := ’PING’ | ’PONG’ |

| ’SERVICE_PROVIDER_QUERY’

| ’SERVICE_PROVIDER_QUERY_RESPONSE’

| ’REMOTE_SERVICE_OBJECT_REFERENCE_REQUEST’

| ’REMOTE_SERVICE_OBJECT_REFERENCE_RESPONSE’

| ’REMOTE_METHOD_SERVER_ALIVE’

| ’REMOTE_METHOD_SERVER_ALIVE_RESPONSE’

| ’REMOTE_METHOD_EXECUTION_REQUEST’

| ’REMOTE_METHOD_EXECUTION_RESPONSE’

| ’REMOTE_METHOD_EXECUTION_RESPONSE_EXCEPTION’

| ’REMOTE_METHOD_EXECUTION_ACCESS_DENIED’

javaType := javaNameToken (’.’ javaNameToken)*

Figure 8.6: EBNF grammar for expected messages asserts

way the DSO middleware is structured. Also, DSO can be configured to use a completely different JMS
implementation, which can provide its own topologies for message delivery.

As a consequence, the actual message exchange in use can range from a completely centralized one (for
instance, a single message service receiving and dispatching all messages) to a completely distributed one
(for instance, using a reliable multicast).

What is interesting about JMS is that it allows for users to decide whether message exchange should be
distributed or centralized. The final performance of a system created using our middleware will be highly
dependent on the JMS in use.

8.7.2 A critique on the JMS model for message selector establishment

In the JMS programming model, it is up to each client to declare its own message filters when a connection is
made to the JMS server. This design is based on the assumptions that all message consumers connected to a
certain message topic should be able to consume any message sent to the topic and that it is up the consumer
to correctly specify its own message filters, which reflects which sort of messages it expects to receive. The
decision to receive or not a message is on the consumer, while the sender’s role is to provide correct message
metadata so that the filters created by message consumers work as expected by the consumers.

Such model is a problem for us since a message topic is used to transfer both sensitive data (for instance,
the parameters of a method call), and data that should not reach all nodes connected to the message topic.

We need to have strict control over which node receives which message. It is the service’s responsibility
to specify which agent will be able to see which message. One way to solve this problem is by managing
public cryptography keys in order to sign messages exchanged.

So while using JMS we cannot rely on the selections made by each client when connecting to a message
topic. We cannot prevent, by means of JMS alone, that a malicious client will connect to a certain message
topic and apply no filter, which allows this client to read all messages on this topic. Instead, we were forced
to implement such mechanism on top of JMS using cryptography. With this mechanism in place we could
avoid having a malicious client reading non-authorized messages, but a maliciously defective filter causes an
overuse of network, sending messages to nodes that are not able to read them.

Nonetheless, the JMS model is still useful since it allows for broadcasts within the message topic, which
we use for service nodes to perform non-functional tasks: to warn all clients about certain conditions such
as service shutdown, or to send a query to all clients requesting them to send their current state. JMS is
also just a reference model we used to implement our middleware.
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8.7.3 A critique on the message admin agent

The main problem we found with JMS was that this standard does not define an interface to reconfigure
message topics or message queues. As a result, we had to propose two sorts of adaptations: implementing a
message admin agent for each JMS implementation, or using extensions of the JMS SPI provided by some
JMS implementations. These two alternatives are illustrated in Fig. 8.4, respectively as “JMS messaging”
and “provider-specific messaging”.

A third way to implement the dynamic permissions to read and write messages would be to embed
filtering of messages in the JMS driver. The problem with this approach is that it uses a JMS system only
as a way to implement message multicasting, so each container receives all messages sent and is in charge of
discarding messages that it should not receive. Such approach would not use message selectors, which are
one of the main parameters to allow for messaging systems to optimize network usage.

8.8 Conclusions

In this paper we presented our experience developing the DSO, a distributed middleware based on a pro-
gramming model in agents (or services) are developed to comply with a contract specified in terms of the
π-calculus. The most distinctive feature of our contracts is the ability of calls to methods to pass references
to channels using both one-to-one and one-to-many messages. The main challenge of our middleware was to
come out with a way to adapt the JMS model to allow for the dynamic reconfiguration of message topics to
emulate channel passing.

We also presented a brief outline of the programming capabilities we developed to enhance the expressive-
ness of source code, which allows for advanced formal verification even in face of channel exchange. Among
the features we developed is a unit testing tool. Finally, we also propose two simple extension points to
the standard π-calculus: (a) passing a set of channels not as a polyadic ~c, but having subchannels, as in an
object; and (b) allowing one-to-many messages using β channels.

Our model can also be used outside of our programming model in the general case in which interconnec-
tions are dynamic.

8.9 Appendix – An example of system based on the data mining
service contract

On this appendix we analyze an example of system build using the contract in equation (8.10). On this
example, there are one instance of Q1, two instances of Q2, two of Q4, and two of Q5. We won’t add
instances of Q3 since this agent neither sends messages to the other agents nor changes its state in a way
that is externally observable. In π-calculus terms, we would simply have to repeat the expression of Q3 on
all equations.

8.9.1 Infrastructure set up

We begin by setting up the service infrastructure, which requires service instances to declare themselves to
resource brokers. The final product of this set up is two instances of Q4 ready to be used by a client, and
all resource brokers storing references to them. Because we will deal with more than one instance of certain
types of agents, we will name each instance using Roman numerals I, II, . . . , V II, and will identify each
channel k of a certain instance X using k(X). Also, we will represent a state S(name) of the instance X using
S(name,X).

Q
(I)
1 | Q

(II)
2 | Q

(III)
2 | Q

(IV )
4 | Q

(V )
4 | Q

(V I)
5 | Q

(V II)
5

(βRB :declare)
−−−−−−−−−→

Q
(I)
1 | Q

(init,II)
2 | Q

(init,III)
2 | Q

(waiting,IV )
4 | Q

(V )
4 | Q

(V I)
5 | Q

(V II)
5

(βRB :declare)
−−−−−−−−−→

Q
(I)
1 | Q

(init,II)
2 | Q

(init,III)
2 | Q

(waiting,IV )
4 | Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5
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On the first reaction, the channel p
(IV )
4 is transmitted from Q

(IV )
4 simultaneously to Q

(II)
2 and Q

(III)
2 .

If we exclude the elements that do not participate on the reaction and expand those that are involved, this
reaction can be represented in more details as:

βRB :declare(ref).Q
(init,II)
2 | βRB :declare(ref).Q

(init,III)
2 |

new{p
(IV )
4 }(βRB :declare〈p

(IV )
4 〉.Q

(waiting,IV )
4 )

(βRB :declare)
−−−−−−−−−→

Q
(init,II)
2 | Q

(init,III)
2 | Q

(waiting,IV )
4

The second reaction is almost equivalent to the first one. The channel p
(V )
4 is also transmitted to Q

(II)
2

and Q
(III)
2 , which are now both on the “init” state:

(αRB :getRef(a).a〈r〉+ βRB :declare(ref)).Q
(init,II)
2 |

(αRB :getRef(a).a〈r〉+ βRB :declare(ref)).Q
(init,III)
2 |

new{p
(V )
4 }(βRB :declare〈p

(V )
4 〉.Q

(waiting,V )
4 )

(βRB :declare)
−−−−−−−−−→

Q
(init,II)
2 | Q

(init,III)
2 | Q

(waiting,V )
4

8.9.2 Client obtaining a reference to the service

Now the client Q
(I)
1 is able to communicate with one of the resource brokers to obtain a reference to the

data mining service. Bellow we show how Q
(I)
1 gets a reference of an instance of Q4. In this example Q

(III)
2

responds to the request sent by Q
(I)
1 . The response of Q

(III)
2 is a reference to the instance Q

(V )
4 , which is

reachable through the channel p
(V )
4 .

Q
(I)
1 | Q

(init,II)
2 | Q

(init,III)
2 | Q

(waiting,IV )
4 | Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5

αRB :getRef
−−−−−−−−→

new{p
(I)
1 }(p

(I)
1 (cDM ).Q

(init,I)
1 〈cDM 〉) | Q

(init,II)
2 | p

(I)
1 〈p

(V )
4 〉.Q

(init,III)
2 |

Q
(waiting,IV )
4 | Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5

p
(I)
1−−→

Q
(init,I)
1 〈p

(V )
4 〉 | Q

(init,II)
2 | Q

(init,III)
2 |

Q
(waiting,IV )
4 | Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5

On the reactions above, Q
(init,III)
2 was randomly chosen to respond to the request fromQ

(I)
1 . The presence

of αRB :getRef(a) in the expression of Q
(init)
2 in 8.10 is responsible for such non-determinism. When Q

(init,II)
2

and Q
(init,III)
2 are in parallel, only one of these processes will interact with a call like αRB :getRef .

8.9.3 Service call

At this point the client already has a reference to the service instance and the two service instances are

already instantiated. So the client can now call the service. Because neither Q
(II)
2 nor Q

(III)
2 nor Q

(waiting,IV )
4

participate in the following interactions, we use the replacementW = Q
(II)
2 | Q

(III)
2 | Q

(waiting,IV )
4 to simplify

notation and will expand it back in the last equation:
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Q
(init,I)
1 〈p

(V )
4 〉 | W | Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5

p
(V )
4 :startDM
−−−−−−−−−→

S(running) = new{q
(I)
1 }(q

(I)
1 .(Q

(init,I)
1 〈p

(V )
4 〉+ τ.0)) | W |

Q
(running,V )
4 〈q

(I)
1 〉 | Q

(V I)
5 | Q

(V II)
5

αDB :read
−−−−−−→

new{q
(I)
1 }(q

(I)
1 .(Q

(init,I)
1 〈p

(V )
4 〉+ τ.0)) | W |

new{p
(V )
4 , q

(V )
4 }(q

(V )
4 .Q

(running)
4 〈q

(I)
1 〉) | q

(V )
4 .Q

(V I)
5 | Q

(V II)
5

q
(V )
4−−−→ S(running) αDB :read

−−−−−−→
q
(V )
4−−−→ . . .

αDB :read
−−−−−−→

q
(V )
4−−−→ S(running) τ

−→

new{q
(I)
1 }(q

(I)
1 .(Q

(init,I)
1 〈p

(V )
4 〉+ τ.0)) | W |

q
(I)
1 .Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5

q
(I)
1−−→

new{q
(I)
1 }(Q

(init,I)
1 〈p

(V )
4 〉+ τ.0) | W | Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5

τ
−→

Q
(II)
2 | Q

(III)
2 | Q

(waiting,IV )
4 | Q

(waiting,V )
4 | Q

(V I)
5 | Q

(V II)
5

On the first reaction, Q
(I)
1 starts the data mining process on theQ

(V )
4 service. We call this state S(running).

On the following two reactions, Q
(V )
4 requests data from the database and gets data from it, which puts

the system back to the S(running) state. Reactions
αDB :read
−−−−−−→

p(V )

−−−→ may repeat an indefinite number of times

until Q
(V )
4 retrieved all data it needs. Q

(V )
4 can then perform an internal reaction τ which causes it to send

the result back to Q
(I)
1 through q

(I)
1 . At the end, Q

(I)
1 becomes the zero (or stop) process and disappears.

On the final state the system is ready to serve another client.

More rigorously, there is no guarantee over which of the database agents will reply a request for data. On

the equations above, Q
(V I)
5 is answering the requests, but Q

(V II)
5 could have replied as well. The contract

was designed in a way that this choice is random. Therefore, a more rigorous representation would be one

in which we define S
(running)
A and S

(running)
B as:

S
(running)
A = new{q

(I)
1 }(q

(I)
1 .(Q

(init)
1 〈p

(V )
4 〉+ τ.0)) | Q

(II)
2 | Q

(III)
2 |

Q
(waiting,IV )
4 | Q

(running,V )
4 〈q
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We should also state that reactions by means of the channels αDB :read and p(V ) lead the system to

either S
(running)
A or S

(running)
B randomly, until Q

(V )
4 stops calling αDB :read.

8.10 Appendix – Outline of a data mining service implementation

On this appendix we present and example of artifacts that developers are expected to create on top of DSO:
objects for the business, client, object proxy, and service layers.

In order to illustrate the artifacts we will present a possible implementation of the distributed data mining
application that we outlined on equation (8.10). We will omit the monitoring agent Q3 and database agents
Q5 in order to keep this appendix short and because their structure can be inferred from the description we
make of Q4.
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8.10.1 Business layer

Figure 8.7 shows an example of method that belongs to a business layer object. The DMReceiver class only
exists in the context of the business and client layers and is used to send data mining results to the business
layer when results become available. Since only the client layer will be checked against the service contract,
the business layer can establish whatever protocol with the client layer as long as this protocol does not
interfere with the adherence of the client layer to the contract.

1 // Uploading data to client layer

2 client.uploadData(data);

3
4 DMReceiver receiver = new DMReceiver () {

5 public void asyncResult(DMResult result) {

6 // Consume data mining result

7 }

8 };

9
10 // Starting a new thread to receive results

11 // asynchronously

12 new Thread () {

13 public void run() {

14 client.startDM(receiver);

15 }

16 }. start();

17
18 // Do something else in parallel while waiting

Figure 8.7: Business layer source code – Example of part of a method that uses a client layer object.

The source code in Fig. 8.7 is completely unrelated to the contract in equation (8.10), which allows us
to have the business layer as complex as we want without compromising formal verification. The example
shows that we are even free to create threads and perform parallel tasks and receive results asynchronously.

8.10.2 Client layer

Figure 8.8 is the outline of a class in the client layer. The @InitialState annotation states that objects created
from this class start in the Q1 state. We named the states using the same names of states in (8.10) only for
readability. Such match is not mandatory. What is mandatory is that the behavior of the implementation
should not violate the limits imposed by the contract. On this example, there are two new states A and B
that are not named in the contract.

The @State annotation prevents a method to be called if the current state is different from the one
specified in the annotation. State control is part of the DSL and allows the verification tools to extract
precise π-calculus expressions from the source code.

The @Scope annotation defines which component can call a certain method. For instance, only the
resource broker is capable of calling the getRefResponse method, which is how the resource broker sends a
reference to the client.

We can see that while the signature of the π-calculus channel getRef accepts only a single channel as
argument, the signature in the DSL accepts two arguments: the service class and the method that will
be called. The service class is not on the π-calculus expression because we want to limit the π-calculus
to channels (methods), or sets of channels (objects). On this source code a reference to a Java method is
written (this.getRefResponse). The actual byte codes check if the method exists via reflection and passes
a reference to the method using a string.

In this case the automatically extracted equivalent expression would be:
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Q1 = αRB :getRef〈p〉.A

A = p(service).Q
(init)
1

Q
(init)
1 = service:startDM〈q〉.B

B = q.0

(8.12)

It is easy to see that the behavior of A is almost the same as Q1 in equation (8.10). The main difference
is that A does not evolve into a process that accepts more than one repetition of service:startDM〈q〉.q. This
difference means that the client implementation is not using all capabilities of the service. Such a difference
is not enough for the client implementation to be declared as not being compatible with the contract.

Note that the class in Fig. 8.8 the complexity of finding a reference to the DMService through the resource
broker is hidden from the business layer.

In this example when the client object receives the data mining result, it applies a filter to the result
and delivers the filtered result in several calls to the asyncResult method. It is important to note that
the local filter is not part of the contract nor is known by the service, but the existence of such filter is not
relevant in the extracted π-calculus equivalent expression since it does not change any execution flow related
to communication channels defined in the contract.

8.10.3 Object proxy layer

Figure 8.9 is an object proxy interface. There are two implementations of this interface in each client-service
relation. On the client side this interface is implemented by a dynamic proxy, which translates method
requests to communication with the messaging manager. On the service side, this interface is implemented
by the service itself, as we will see next. During pre-processing, this interface is extended to allow for channels
to be transferred as an extra argument, as specified in the contract.

8.10.4 Service layer

Figure 8.10 illustrates an implementation of the service. All details concerning the data mining algorithm
were omitted since we only want to discuss the structure of the service. The init() method is called by
the container in order to allow for the service object to initialize. This method is also taken into account
wen extracting the equivalent π expression. It is worth noting that the both the client and the service call
procedures on the resource broker. While the client calls an α channel, the service calls a β one. Despite of
this difference, there is difference between calling each kind of channel.

This service implementation also contrasts with the client implementation in that the service does not
pass a reference to itself in order to implement a call to a database function and receiving the result:
αDB :read〈q4〉.q4. Instead, the service simply calls a method on the database and collects the result as an
ordinary Java local method: Data d = db.read(). Behind the scenes, the calls are equivalent, but the
structure used in the client is more flexible. It allows for a call to pass a reference to a third agent that will
receive the results of processing.

8.11 Appendix – Example of unit test

Figure 8.11 shows parts of a unit test that checks the basic functioning of messages. First, on line 02,
the unit test creates an in-memory container. Lines 05 until 10 show the creation of a configuration object.
Actual configuration is much more detailed than the one shown on Fig. 8.11. Only the relevant configuration
is shown: the messaging driver to be used is the mock messaging driver, user name and password for the
messaging service, the operating system integration is also a mock one, and the service provided is represented
by the MyService class. So all messages transferred and all interactions with the operating system (such
as attempts to create new processes) will be trapped by mock implementations that can be later analyzed
by unit tests. The container is started on line 11. The first argument is a working directory in which the
container will keep all temporary files and logs. The second argument is the properties that were set before.

Next, from lines 15 until 19, we create another properties object to represent the configuration used by
a client. On line 22 the unit test obtains a reference to a dummy service. Having a reference to a service is
equivalent to the unit testing working as the client layer.

The test verifies on line 25 that the total number of messages exchanged so far was four: one message in
which the client searches for a service reference, another for the service to reply declaring itself as a service
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1 @InitialState(Q1)

2 public class Client {

3 // Field set via inversion of control injection

4 ResourceBroker rb;

5 // Field initialized by the refResp () call back

6 DMService service;

7 // Field initialized with data received

8 Data data;

9
10 @State(Q1) // Can only be called when state is Q1

11 public void uploadData(Data data) {

12 rb.getRef(DMService.class , this.getRefResponse );

13 this.data = data;

14 to(A); // State transition

15 }

16
17 @State(A) @Scope(rb)

18 public void getRefResponse (DMService service) {

19 this.service = service;

20 to(Q1_init);

21 }

22
23 @State(Q1_init) public synchronized void

24 startDM(DMReceiver receiver , LocalFilter filter) {

25 service.startDM(this.data , this.dmResult);

26 to(B);

27 }

28
29 @State(B) @Scope(service)

30 public void dmResult(DMResult result) {

31 for (/* loop around the local filter */) {

32 if (/* local filter logic */) {

33 receiver.asyncResult(result);

34 }

35 }

36 }

37 }

Figure 8.8: Client layer source code – A class that implements part of the client contract.

provider, a third message in which the client requests a service instance, and finally a fourth message in
which the server replies with a service reference.

The test calls a method on line 27, and on line 29 it checks that the number of messages transferred now
changed to 8. Finally, on line 31, the unit test checks if the messages transferred so far using a script called
“messages.expected”, similar to the one on Fig. 8.5. The MockMessagingJUnitTool class can also be used
to reset the memory log of activities. This is useful for us to check only part of the messages transferred
and to start each unit test with an empty log of messages, which reduces the chances of a test ending up
interfering with a subsequent one. It is also possible to start several containers to run in parallel using the
approach in Fig. 8.11, so we can easily simulate a network of containers and agents.

We want to come out with a programming environment in which a client can be developed and checked
independently from the service implementation. To achieve this goal we replace the service with a mock
version, which also keeps a log of calls and emulates the behavior of the actual service. Unit tests allow
us to check aspects of software other than the interactions based on interaction models. Therefore the unit
testing capabilities are complementary to the formal verification done using π-calculus.
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1 interface DMService {

2
3 void startDM(Data data);

4 }

Figure 8.9: Proxy layer source code

1 @InitialState(Q4)

2 public class Service implements DMService {

3
4 // Inversion of control injection

5 Database db;

6 // Inversion of control injection

7 ResourceBroker rb;

8 // Field set with value from argument

9 Method receiver;

10
11 // Hook method to initialize the service

12 @State(Q4)

13 public init() {

14 rb.declare(this);

15 to(Q4_WAITING);

16 }

17
18 @State(Q4_WAITING)

19 public void startDM(Data data ,

20 Method receiver) {

21 to(Q4_RUNNING);

22
23 Result results = new Result ();

24
25 while(/*stop condition */) {

26 Data d = db.read();

27 // Using d to create the result

28 }

29
30 receiver(results);

31 to(Q4_WAITING);

32
33 }

34
35 }

Figure 8.10: Service layer source code
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1 01. // Creating a virtual container

2 02. Container container1 = new Container ();

3 03.

4 04. // Configuring and starting this container

5 05. Properties containerProps = new Properties ();

6 06. containerProps .setProperty(MESSAGING_DRIVER ,

7 . MockMessagingFactory.class.getName ());

8 07. containerProps .setProperty(

9 . CONFIGURATION_VAR_USERNAME , "agent");

10 08. containerProps .setProperty(

11 . CONFIGURATION_VAR_PASSWORD , "secret");

12 09. containerProps .setProperty(OS_INTEGRATION_DRIVER ,

13 . MockOSIntegration.class.getName ());

14 10. containerProps .setProperty(SERVICE + "1",

15 . MyService.class.getName ());

16 11. container1.start(workingDir ,

17 . new DSOSystemProperties (containerProps ));

18 12.

19 13. // Creating a client configuration with a

20 14. // different username and password pair

21 15. Properties clientProps = new Properties ();

22 16. clientProps.setProperty(MESSAGING_DRIVER ,

23 . MockMessagingFactory.class.getName ());

24 17. clientProps.setProperty(OS_INTEGRATION_DRIVER ,

25 . MockOSIntegration.class.getName ());

26 18. clientProps.setProperty(

27 . CONFIGURATION_VAR_USERNAME , "client");

28 19. clientProps.setProperty(

29 . CONFIGURATION_VAR_PASSWORD , "1234");

30 20.

31 21. // Obtaining a service reference

32 22. MyService service = (MyService) new

33 . LocalServiceDirectory(clientProperties ).

34 . getServiceManager(MyService.class.getName ()).

35 . getRemoteServiceObjectProxy ();

36 23.

37 24. // Checking that 4 messages were exchanged

38 25. junit.framework.Assert.assertEquals (4,

39 . MockMessaging.getTransferredMessages ().size());

40 26. // Calling a service method

41 27. service.serviceMethod ();

42 28. // Checking that 8 messages were exchanged

43 29. junit.framework.Assert.assertEquals("",

44 . 8, MockMessaging.getTransferredMessages ().size());

45 30. // Checking message metadata

46 31. MockMessagingJUnitTool .

47 . assertMessages ("messages.expected");

Figure 8.11: Example of unit testing using the in-memory driver
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Chapter 9

Evaluation

Abstract

We have described our approach for a new DSL that allows for programmers to develop implementations
of distributed systems specified by means of the π-calculus. The next natural step is then to evaluate our
proposed approach, which is the topic of this chapter. In order to do so we present one example and present
the outline of its implementation.

9.1 Introduction

On the previous chapters we described the problem we are addressing in this research and our proposed
solution to it. In this section we evaluate our solution. Because the ultimate goal of our research is to
provide a more convenient way for developers to specify, implement, and check software artifacts, evaluating
our contribution in an experimental setting should necessarily involve measurements of human factors in
system development. In the end, there would be no complete experiment without actual programmers
trying to use our proposed method and tools. Such experiment should be multidisciplinary and include
fields such as psychology.

Instead of going this way, our evaluation will be based on the quantitative analysis of a partial implemen-
tation of the IRC. This example also illustrates the concepts we introduced on previous chapters. Section 9.2
introduces the chat program. Section 9.3 summarizes the conclusions we can draw from the examples we
presented.

9.2 Chat program

Our first example is a chat system. The design of this chat is based on the IRC protocol [42, 66]. We are
not interested in implementing the whole protocol but just to demonstrate how the main functions of this
protocol (namely, user connection, message exchange, and basic channel management) can be done using
our proposed architecture.

The chat example is interesting from the point of view of compatibility verification since

We begin by describing the basic elements of the IRC protocol that we will implement. Then we present
two different implementations of these functionality using our proposed architecture of middleware and we
demonstrate how contracts could be used to control compatibility.

On the first implementation, we will try to replicate the IRC network by using agents to represent servers
IRC spanning tree topology. Channels will be virtual entities collectively managed by all server agents.

On the second implementation, we model each IRC channel as a JMS message topic. This implementation
is perhaps more closely related to the original IRC idea since it delegates client exchange of messages to the
underlying JMS transport. On the other hand, this solution imposes some additional complexities related
to channel management.

117
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9.2.1 The IRC protocol

Topology

The IRC connection topology is illustrated by Figure 9.1. The network is such that each client should be
connected to a single server. Servers are connected to each other in a spanning tree, which is based on the
graph defined by all possible direct links between servers.

All servers should be aware of the whole system topology (the sets of clients, servers, and connections
between them) at any given time. So a server that receives a connection from a client process is supposed
to inform such topology change to the servers it is connected with.

Such information should be propagated to all servers. In the example of Figure 9.1, a new client C6
connecting to S3 would make S3 send a message to S2 to tell S2 about the new client. S2 would propagate
such data to S1.

Because all servers share the same information about the network topology, any server can create a route
plan for messages. In the scenario of Figure 9.1, a message from client C1 to client C5 would traverse servers
S1, S2, and S3 in this order. But a message from client C3 to C5 would go through S2 and S3 only, since S2
is able to determine that the message does not need to pass through S1 to reach its destination.

Messages can also be sent to a group of clients. Routing in such a case is done similarly but when a
server receives a request to send a message to a group of clients, this server should forward such request to
all branches that have at least one node that should receive the message.

C1

C2

C3

C4 C5

Figure 9.1: Connection structure of an IRC network. S1, S2, and S3 are servers and C1, C2, C3, C4, and
C5 are clients. Servers are interconnected in a spanning tree.

To connect to an IRC system, the client should know beforehand the IP of one of the servers and its
TCP/IP port.

Channels

Clients communicate through channels. The same client may join one or more channel at the same time.
The original IRC specification [66] states that there is no limit on the number of simultaneous channels that
a single client should join at the same time, but also suggests that it is reasonable to impose a limit on such
number. For simplicity, here we will assume that there are no limitations on the number of simultaneous
channels or subscriptions that servers can handle.

There are three possible situations when a client joins a channel:

• The channel does not exist – In this case the client becomes the channel owner, which is also known
as a ‘channel operator’. We describe the capabilities of a channel operator later.

• The channel exists and it is free to join – The client automatically joins this channel and becomes able
to exchange message with other clients currently subscribed to the channel.

• The channel exists, but was marked as private by its channel operator – The client can only join the
channel if, prior to the attempt to join the channel, the client received an invitation from the channel
operator.
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Operators

For each IRC channel, a channel operator is a client owns the channel and that is able to perform some
management tasks in the channel, such as removing other users, banning users, or inviting users to join the
channel, if the channel was created so that only invited users can join the channel. Channels are created by
the first user who tries to connect to it, and this user automatically becomes the channel operator.

Security

In 1993 the IRC protocol was described with little concern about message privacy. The protocol was built
around the assumption that the operating system user plays an important role in the distributed chat system.
So one of the problems with the security is that identity verification uses ident to query for the actual user
that is connecting to an IRC server. When a service receives a connection from a client, the client is required
to issue a login command on the server. Such command consists of a user name in the IRC system and the
user name in the local operating system, among other data. The IRC server passes the TCP/IP client port
to an ident daemon (usually identd) to confirm with the client operating system that the user name passed
in the login command matches with the user that is running the process that is connecting with the IRC
server.

Another issue is that the protocol does not describe any sort of support for cryptography. There is
a handshake between servers but not between server and clients. So the protocol does not allow for a
negotiation step in which cryptography could be added to communication. The lack of cryptography can
be fixed by wrapping sockets, as in Secure Shell (SSH) tunneling. But this solution requires the usage of a
second protocol, which uses an independent login process.

9.2.2 Server contract

Table 9.1 lists all functions that our parcial implementation of IRC servers provide to clients. Among the
simplifiations we imposed to this implementation is the restriction that no client can be simultaneously
connected to more than one channel at the same time. Instead, we model a client subscription as one in
which clients have to necessarily chose only one channel to be connected to at a time and clients receive
messages only from the channel it is currently connected to. Such restriction greatly simplifies the design of
our contract, as the complete specification would require us to create a complex data structure in π-calculus,
which is completely possible, but out of the scope of this text.

Table 9.1: List of IRC agents and functions

Agent Function name Short name Data arguments

Server login login user/password

Connection (Conn)
join private channel jpc channel name
join public channel jc channel name

Channel (Ch)
send message sm message
receive message rm –

Channel with Public Admin (CA)

send message sm message
receive message rm –
remove user ru user name
destroy channel dc –

Channel with Private Admin (CPA)

send message sm message
receive message rm –
remove user ru user name
destroy channel dc –
invite user iu user name
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Server
def
== new{x} login(r, e).(r〈x〉.(Conn〈x〉 | Server) + e.Server)

Conn(ref)
def
== new{x}

ref :jc(r, s, e).(r〈x〉.(Ch〈x〉 | Conn〈ref〉) + s〈x〉.(CA〈x〉 | Conn〈ref〉) + e.Conn〈ref〉) +

ref :jpc(r, s, e).(r〈x〉.(Ch〈x〉 | Conn〈ref〉) + s〈x〉.(CPA〈x〉 | Conn〈ref〉) + e.Conn〈ref〉)

Ch(ref)
def
== (ref :sm+ ref :rm).Ch〈ref〉

CA(ref)
def
== (ref :sm+ ref :rm+ ref :ru+ ref :dc).CA〈ref〉

CPA(ref)
def
== (ref :sm+ ref :rm+ ref :ru+ ref :dc+ ref :iu).CPA〈ref〉

(9.1)

Equation (9.1) shows the server side of the system, which consists of many agents that are created on
demand as they are made needed by clients. Here we rely on inversion of control to set the correct channels
to the client. For instance, if the client asks to join a channel that does not exist, the connection agent will
assign the caller as the channel operator. The way we designed the system is such that channel operators
receive references to PCA or CA agents through inversion of control, via the s channel.

We abstract away from the actual topology of agents that make up the system because we are assuming
that the contract should reflect the client perspective towards the system behavior. As we saw on Sec-
tion 9.2.1, an IRC network is based on a number of server agents connected in a spanning tree, but such
organization is not visible to clients.

Channels named x are those through which clients can communicate with newly created agents. Right
after sending x to a client, the server creates the corresponding agent and passes x as a parameter.

Agents in this context are the expression of services from the point of view of clients. For instance, a
subscription to a public channel is represented by a connection with a C agent. But several clients should
be simultaneously connected to the same IRC channel for them to communicate. So each server-side agent
is actually the proxy, on the server, representing a remote client.

At follows we explain the functioning of each kind of agent in equation (9.1).

Server agent – Server

The server agent is in charge of checking if clients are allowed to join an IRC network and providing connec-
tions to authorized clients. If a client is authorized, the server creates a connection agent using Conn〈x〉 and
passes the channel x to the client. This channel x is used by clients to exchange messages with a connection
agent. If the client is not authorized (for instance, because the password provided does not match with the
expected one) the server will not create a new connection and pass a null channel to the client. Null channels
will be understood as messages from server-side agents to inform clients about a failure.

The π-calculus expression login(r) actually does not represent all data transferred from client to server,
but only the channels exchanged between these two processes. Actual calls to the login method, as shown
in Table 9.1, should carry user name and password arguments.

Argument r is the way to translate into π-calculus the capacity of the server to send something back to
the caller. In concrete programming language terms, a call to r such as r〈x〉 is translated into a callback
method in the client for dependency injection purposes.

Connection agent – Conn

As Table 9.1 shows, the Conn agent has two functions: one that allows for clients to join a private channel,
and another that allows clients to join a public channel. If the channel already exists, the connection agent
will decide whether the client will be allowed to connect to the channel or not. If the client is not allowed to
connect to the channel, the Conn agent will reply by sending a null name through the r channel: r〈null〉. If
joining the channel is successful, the Conn agent will send back to the client a reference to a PC or C, and
decide if the client should be a channel operator or not.

If the client becomes the channel operator, in addition to sending the reference to the channel agent PC
or C, the Conn agent will also send a reference to the admin agent PCA or CA to the client. For the passing
of admin channels to be possible, clients are expected to wait for those channels to be sent through a channel
that the Conn agent call s in equation (9.1).
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IRC Channel agent – Ch

The IRC channel agent represents a channel subscription in which the connected client can only send and re-
ceive messages. A client should send messages using the ch:sm channel and receive messages asynchronously
through the ch:rm channel.

Public channel admin agent – CA

Represents a channel subscription that allows for the client to send messages, destroy the channel, and
remove users.

Private channel admin agent – CPA

Represents a channel subscription that allows for the client to send message, destroy the channel, remove
users, and invite users. By default, no user can join a private channel unless the user was already invited to
join the channel.

9.2.3 Client contract

A client starts in the C(start) state. On this state the client can only try to log in to the server. If login is
successful, the client receives a reference to a connection from the server. If login is not successful, the client
process should simply die. The server will not accept any further command.

At the C(connected) state, the client has a connection with the server and can use such connection to
request to join a channel. If a channel is private and the client did not receive an invitation to join the
channel, the client receives an error report via the e channel. When this happens, the client remains at the
connected state, in which it can try again to join a channel.

We assume that channel invitations do not generate messages that are sent to the client. Instead, a
channel invitation simply adds the invited user to the list of users allowed to join a certain channel. Again,
this decision was motivated to keep this implementation as simple as possible.

We also did not model termination of any sort for simplicity. In an IRC network the service is interactive
and therefore dependent on the end user whish to continue the service, in contrast with task oriented services
in which the termination of the task should mark the end of the service, and in this case a more complex
termination protocol, such as the WS-BA [65] should take place.

Before presenting the client contract we define three auxiliary functions: F (t), F (t-a), and F (t-p-a). A
supercript (t) stands for “talk”, (t-a) stands for “talk and administration”, and (t-p-a) stands for talk and
administration in a private channel. A more restrictive kind of subscription is used to define a less restrictive
one, in which extra functions are added:

F (t)(ch)
def
== ch:sm+ ch:rm

F (t-a)(ch)
def
== F (t)〈ch〉+ ch:ru+ ch:dc

F (t-p-a)(ch)
def
== F (t-a)〈ch〉+ ch:iu

(9.2)

Given those functions, the client contract will be:

C(s) def
== new{r, e} login〈r, e〉.(r(c).C(c)〈c〉+ e.0)

C(c)(c)
def
== new{r, s, e}

c:jc〈r, s, e〉.(r(ch).(C(t)〈c, ch〉 | C(c)〈c〉) + s(ch).(C(t-a)〈c, ch〉 | C(c)〈c〉) + e.C(c)〈c〉) +

c:jpc〈r, s, e〉.(r(ch).(C(t)〈c, ch〉 | C(c)〈c〉) + s(ch).(C(t-p-a)〈c, ch〉 | C(c)〈c〉) + e.C(c)〈c〉)

C(t)(ch)
def
== F (t)〈ch〉.C(t)〈ch〉

C(t-a)(ch)
def
== F (t-a)〈ch〉.C(t-a)〈ch〉

C(t-p-a)(ch)
def
== F (t-p-a)〈ch〉.C(t-p-a)〈ch〉

(9.3)

The superscript (s) and (c) stand for “start” and “connected”, respectively. At the C(s) state, the client
sends channels r and e to the server, which in turn is responsible for checking the data provided by the client
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(user name and password) and call either r or e in case of successful or failing login, respectively. A call to
the r channel will make the client go to the C(c) state, in which the client is able to call either c:jc or c:jpc.
Calls to the e channel cause the client to simply terminate, which here is represented by 0, a zero1.

When calling either of these functions, the client sends three channels to the server: r, s, and e. The
server is then in charge of selecting which of these three channels to call, reflecting a decision it made about
the request send by the client. This strategy uses the Visitor design pattern [34], freeing the client from
having to parse service responses before taking action. Instead, the response from the server activates the
correct reaction in the client.

The first channel r should be used by the server to inform the client that the subscription was successful
and that the subscription does not have administrative rights over the channel. The second channel s is called
by the server to tell the client that the subscription was successful and that the client is now considered the
channel operator. Finally, the e channel is used by the server to inform the client that channel subscription
was not well-succeeded. Subscription is not allowed when the channel already exists, it is a private one, if
the client was not invited to join it, or if the clien already joined the channel.

We should note that the reaction to interactions by means of channels r or s are such that the client is
supposed to create a new process to each channel. This has a very strong consequence in the structure of
the client.

It is also important to emphasize that a C(c) process is always available in the client. Therefore there
is no limit on the number of simultaneous channel subscriptions that a client may have at any given time.
The consequence is that it is impossible, by using finite states, to represent such kind of system.

9.2.4 Client implementation

We start by describing the client implementation because the client, by force of the very IRC protocol, is
simpler than the server structure. Figure 9.2 shows the source code of an attempt to implement the client.
The strategy used is to keep a hash map containing all channels that the client subscribed. When some
other class calls the sendMessage method, the procedure checks if the required channel is already in the
hash map. If it is, then use it, if it is not, then the method attempts to retrieve a new channel object.

Figure 9.4 is the IRCCHannelWrapper class. Note that this implementation does not use all available
functions of the contract. For instance, this implementation does not allow for the client to create private
channels. If this was a GUI-based implementation, it would be equivalent to an interface with a missing
button called “create private channel”. Such channel would require a “invite user” button, that the imple-
mentation does not support neither. Another missing function is the capability of deleting the channel. As
we will see, the lack of these functions do not qualify the client as not being a legal implementation of the
contract. As we already saw, client implementations are free to implement the contracts only partially.

The π-calculus expression is the following:

A
def
== login〈r, e〉.B

B
def
== r(c).C + e.Z

C
def
== c:jc〈r, s, e〉.(r(c).(C ′〈c〉 | C) + s(c).(C ′′〈c〉 | C) + e.C)

C ′(c)
def
== (c:sm+ c:rm).C ′〈c〉

C ′′(c)
def
== (c:sm+ c:rm+ c:ru).C ′′〈c〉

Z
def
== 0

(9.4)

The following relation provides the proof of simulation:

R = {(A,C(s)), (B, r(c).C(c)〈c〉+ e.0), (C,C(c)〈c〉), (Z, 0),

(r(c).(C ′〈c〉 | C) + s(c).(C ′′〈c〉 | C) + e.C,

r(ch).(C(t)〈c, ch〉 | C(c)〈c〉) + s(ch).(C(t-a)〈c, ch〉 | C(c)〈c〉) + e.C(c)〈c〉),

(C ′〈c〉 | C,C(t)〈c, ch〉 | C(c)〈c〉),

(C ′′〈c〉 | C,C(t-a)〈c, ch〉 | C(c)〈c〉),

(C ′〈c〉, C(t)〈c〉), (C ′′〈c〉, C(t-a)〈c〉)}

(9.5)

1As we saw, another way to represent termination is using stop instead of 0.
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1 import java.util.HashMap;

2
3 @InitialState(A)

4 public class IRCClient {

5 private IRCServer server;

6 private IRCConnection connection;

7 private HashMap <String , ChannelWrapper > channels = new HashMap <←֓
String , ChannelWrapper >();

8 private HashMap <String , ChannelAdminWrapper > channelsAdmin = new ←֓
HashMap <String , ChannelAdminWrapper >();

9 @State(A)

10 public void login(String username , String password) {

11 server.login(username , password , this.ok , this.ko);

12 to(B);

13 }

14 @State(B)

15 @Scope(server)

16 public void ok(IRCConnection connection) {

17 this.connection = connection;

18 to(C);

19 }

20 @State(B)

21 @Scope(server)

22 public void ko() {

23 System.err.println("Login invalid.");

24 to(Z); // Prevents any further method call

25 }

26 @State(C)

27 public void sendMessage(final String channelName , final String ←֓
message) {

28 if (channels.containsKey(channelName)) {

29 ChannelWrapper cw = channels.get(channelName);

30 cw.send(message);

31 } else if (channelsAdmin.containsKey(channelName)) {

32 ChannelAdminWrapper cwa = channelsAdmin.get(channelName);

33 cwa.send(message);

34 } else {

35 connection.join(channelName , new Return () {

36 public void r(ChannelWrapper cw) {

37 channels.put(channelName , cw);

38 cw.send(message); }

39 public void s(ChannelWrapperAdmin cwa) {

40 channelsAdmin.put(channelName , cwa);

41 cwa.send(message); }

42 public void e() {

43 System.err.println("Error!"); } });

44 }

45 }

46 @State(C)

47 public void removeUser(String channelName , String userName) {

48 if (channelsAdmin.containsKey(channelName)) {

49 ChannelAdminWrapper cw = channelsAdmin.get(channelName);

50 cw.removeUser(userName);

51 }

52 }

53 }

Figure 9.2: An IRC client implementation
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1 public class ChannelWrapper implements IRCMessageListener {

2
3 private IRCChannel channel;

4
5 public ChannelWrapper (IRCChannel channel) {

6 this.channel = channel;

7 channel.setListener(this);

8 }

9
10 public void send(String message) {

11 channel.send(message);

12 }

13
14 @Scope(channel)

15 public void receive(IRCMessage message) {

16 System.out.println(message);

17 }

18 }

Figure 9.3: The IRC channel wrapper class

1 public class ChannelAdminWrapper extends ChannelWrapper {

2 public ChannelAdminWrapper (IRCChannel channel) {

3 super(channel);

4 }

5
6 public removeUser(String userName) {

7 channel.removeUser(userName);

8 }

9 }

Figure 9.4: The IRC channel admin wrapper class
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Therefore the client implementation correctly implements the client contract. Equations (9.5) do not
present all possible states reachable since each call to c:jc or c:jpc adds an extra C(t)〈c〉, C(t-a)〈c〉, or
C(t-p-a)〈c〉 process to the system. Therefore, formally the number of states can grow indefinitely. But it can
be shown that R proves that the client implementation simulates any state that can be reached by the client
contract.

Note that the inverse relation R−1 does is not a simulation just take the pair (C ′′〈c〉, C(t-a)〈c〉). It is easy

to see that the inverse, (C(t-a)〈c〉, C ′′〈c〉), cannot be in a simulation relation since C(t-a)〈c〉
ch:dc
−−−→ C(t-a)〈c〉,

but no transition is possible from C ′′〈c〉 by means of ch:dc. Therefore there no relation that contains
(C(t-a)〈c〉, C ′′〈c〉) is a simulation. We already expected that R−1 would not be a simulation since, as we
stated above, this client does not implement all possible functions present in the contract.

9.2.5 First implementation: agents as servers

Our first implementation is one in which agent topology attempts to reproduce the topology of the IRC
network. Our implementation is not concerned with the actual bytes transferred through the network, since
transport was abstracted and delegated to messaging drivers, as explained in Chapter 8.5.5. The topology
of this solution is depicted in Figure 9.5.

C1

C2

C3

C4 C5

t1

t3

t5 t6

t2

t4

Figure 9.5: Our first implementation of a chat system

M1

C1 C2

M3
C3

C4
C5

M2

Figure 9.6: Example of actual topology of process connections

Each rectangle (t1, t2, t3, t4, t5, and t6) represents a message topic. Each client connection with a server
process requires a specific message topic. Also, all service processes are connected to a single message topic
t1 that represents the message domain in which services share information regarding client topology.

While Figure 9.5 depicts the logical way in which agents are interconnected, Figure 9.6 is an example
of an actual JMS deployment. Nodes M1, M2, and M3 are JMS messaging processes. All other agents are
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directly connected to M1, M2, or M3 through sockets. The actual protocol used for agents and messaging
processes to communicate depend on the actual JMS implementation.

Messaging processes are in charge of mediating all communication between all agents. In this example,
M1, M2, and M3 are all connected. They use these connections to share data about updates in the topology
of the JMS system and to transfer messages that should reach client processes agents connected to other
messaging processes. This setup can be used to optimize network usage, or to improve the responsiveness of
the system as a whole since each computer can be in charge of processing part of the job of receiving and
sending messages to connected nodes. Redundant messaging processes can also provide a high availability
of the messaging services.

On this research we propose a network of distributed services in which the underlying message transfer
remains transparent to programmers. As we saw in Chapter 8, one of the ways to implement the messaging
subsystem is by using JMS. The actual transport can be base on a network of servers that work in cooperation
to deliver messages to connected clients. Therefore, the actual topology of servers in DSO may be more
sophisticated than the one described in the IRC protocol. For instance, ActiveMQ supports a topology
called “network of brokers” in which several ActiveMQ processes, or brokers, are connected to virtually
function as a single broker.

While we do not intend to emulate the actual message delivery, we can create an infrastructure of services
whose structure reminds of the IRC protocol. Because our aim is to provide enough arguments to support
that the whole protocol could be implemented with our methods, we are going to implement a subset of the
functions present in the IRC protocol.

1 public class IRCServer {

2
3 public void login(String username , String password , r, e) {

4 if ( /* check access */) {

5 r(new IRCConnection(username));

6 } else {

7 e();

8 }

9 }

10 }

Figure 9.7: IRC login server

9.2.6 Second implementation: message domains as channels

On this second implementation we propose that each IRC channel should be implemented by a JMS topic.
This implementation uses the messaging exchange mechanism in a way that fits better to the JMS model,
which means that it surely takes better advantage of optimizations and the routing mechanisms available in
the JMS network in use.

While the actual connection configuration is also the one in Figure 9.6, topic usage is depicted in Fig-
ure 9.9. ch1 and ch2 are chat channels, while m is a management channel used by channel operators to
manage chat channels. In the example of Figure 9.9 channel operators are C2 and C5. S1 is an agent that
is in charge of receiving management messages from channel operators and reconfiguring message topics, as
explained in Section 8.5.5.

9.3 Conclusions

The example we just presented allows us to clearly see the benefits of our proposal. As we already stated,
we could see on the example that a contract the way we are specifying using the π-calculus is not possible
if we use a finite number of states. This is because the IRC protocol specifies that there is no limit in the
number of simultaneous channels a certain client may be connected to. All channels are expected to send
asynchronous messages to the client, which forces us to model such protocol using a structure that generates
new processes.

As we saw, an actual implementation of this protocol using our approach does not force one to actually
have a process (even a thread) for each channel, but asynchronous events may be channeled through a single
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process. In theory, this eliminates the possibility of a true simultaneous reception of messages, but such
problem does not represent a serious violation of the IRC protocol.

We also saw that it is possible to implement the same contract using different agent topologies. In other
words, the π-calculus contract may be intentionally vague to allow for many sorts of implementations to be
created around it.
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1 public class IRCConnection implements MessageDomainListener {

2
3 public static final String IRC_BUS = "IRCServerBus";

4 public static final long BUS_TIMEOUT = 2000;

5
6 // Injected using inversion of control

7 private MessageDomainFactory dmf;

8 private MessageDomain domain;

9 private String username;

10
11 private HashMap <String , IRCChannel > channelMap = new HashMap <String ,←֓

IRCChannel >();

12
13 public IRCConnection(String username) {

14 domain = dmf.get(IRC_BUS);

15 this.username = username

16 }

17
18 public void jc(String channelName , r, s, e) {

19 domain.send(new IRCChannelSearch (channelName));

20 IRCChannelSearchResponse resp = domain.waitFirst(←֓
IRCChannelSearchResponse.class , BUS_TIMEOUT);

21 if (resp == null) { // Should create a new channel

22 IRCChannel c = new IRCChannel(domain);

23 channelMap.put(channelName , c);

24 s(c);

25 } else { // Channel already exists

26 domain.send(new IRCChannelJoinRequest(channelName , username)←֓
);

27 IRCChannelJoinResponse jr = domain.waitMessage(←֓
IRCChannelJoinResponse .class , BUS_TIMEOUT);

28 if (jr.isAccept ()) {

29 r(CONTINUE HERE);

30 } else {

31 e();

32 }

33 }

34 }

35
36 public void jpc(String channelName , r, s, e) {

37 // (...)

38 }

39
40 @Scope(domain)

41 public void receiveMessage (Message m) {

42
43 }

44 }

Figure 9.8: IRC connection
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Figure 9.9: Our second implementation of a chat system
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Chapter 10

Conclusion

Abstract

We could shortly describe our proposal as a model for the development of distributed systems. Our focus
was on which working environment a programmer will utilize and which abstractions a distributed system
designer will utilize. We started on the basis of an OOP model of distributed objects. Next, we evaluated
the design principles of message domains. We also analyzed how we could take advantage of defining our
own DSL to create a seamless version evaluation mechanism. Finally, we presented our implementation of a
middleware that not only applies those ideas but also has some advanced testing and debugging capabilities.
In this chapter we summarize all this discussion, present details about the research process, and state our
perspectives for future developments that follow the same research direction.

10.1 Introduction

We start by providing a summary of our proposal. This research has main two parts. On the first one
we attempted to solve the problem with finite state machines. On the second part we explain our second
approach in which we applied the π-calculus to express contracts of distributed services.

Although the first proposal was for us an important evolutionary step, the second proposal proved to be
much more far reaching. We compare both approaches after the summary.

Finally, we provide a brief outline of our main contributions.

10.2 Summary of our proposal

10.2.1 Part I – FSMs

Our first approach showed to be enough for systems in which the number of states is finite. We argue that
those systems are the majority of distributed ones, since in an ideal client-server set up the server should be
ready to serve any function chosen by the client any time, and the server should expect anything from the
client at any time. In terms of number of states, the client may have an infinite number of possible states,
issuing any signal to the server at any time. The server, on the other hand, should have a very predictable
and easy to guess behavior, so ideally, the server should have as few states as possible, allowing the client to
chose whatever function it needs at any time.

Obviously, real systems differ from this simplification. In reality, systems tend to be somewhere in
between this ideal (of a pure service serving a pure client) and a complex cooperation between agents in
which agents share communication responsibilities.

In terms of process calculus, our approach was successful to deal with the sort of system in which channels
are fixed and the number of processes do not change along time. We can call those systems static and say
that this first approach was a reasonable solution for those systems, while the second approach solves the
same problem for dynamic systems.

10.2.2 Part II – π-calculus

For dynamic systems, the π-calculus provides us with a reasoning that allows us to describe systems in a
more rich way. Although this method allows us to model systems of a much greater range, there are still
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limitations. We focus on systems S consisting of a set of processes S
def
== P1 | . . . | Pn. With each of the n

processes fixed. But what happens when we put S to interact with a new environment, therefore exposed

to a different set of processes? In other words, what if we have a new system S in which S′
def
== S | Q? Such

question is harder to answer when we consider that Q interferes with S, changing its behavior. We are yet to
address such concerns and, as we have shown in the structure of our middleware and programming model,
we avoid such a problem by imposing a control over the involved agents, which we represented using layers
(business, client, object proxy, and service).

10.3 Contributions

For the best of our knowledge, we are the first to attempt to use the π-calculus as a means to represent service
contracts. We have outlined a programming model and run time environment making realistic assumptions.
Our proposal can also be easily adapted to the general case of formally checking distributed systems in other
scenarios, possibly using other programming languages, or other ways to express contracts.

Although we still consider our middleware as a tentative implementation, our experience implementing
it helped us find differences between a messaging service (JMS in our case) and the requirements for a
message system that provides the dynamic interconnection that our proposed architecture needs. We could
not provide a solution that is general for any JMS implementation. Instead, we proposed a pattern for
adapters to be created. The role of these adapters is to add functions in a JMS implementation that allows
for messages to manage the topology of message topics.
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Appendix A

Middleware manual

As we already presented in Section8, we have implemented a simple prototype middleware to test our
approach for distribution. In this appendix we present a pragmatic manual for the middleware.

All commands are designed for Linux systems and were tested in Ubuntu 10.10, but as we implemented
the middleware in Java, all tools can also be used in Windows and MacOS environments. The Java version
utilized was jdk1.6.0 25 and jdk1.7.0 21. We did not test it against older versions of Java, but as we utilized
Java 6, one can expect that old JVMs will be not fully compatible.

A.1 Admin tool

The admin tool is a stand alone application to manage containers running in a local machine.
In order to manage containers during their execution, the admin tool makes a local connection to the

containers using JMX. For now we are not providing any support for remote administration as it makes
setup and security more complex. Nevertheless, it is possible to administer remote agents by using the admin
tool in a remote terminal (for instance, using SSH).

A.1.1 Starting a container

A container is the process that will keep a single agent running. Staring a container will create a software
agent instance and connect it to the message exchange system. Containers can be simply started as a
stand-alone Java application and will require the location of a configuration file.

In all examples in this section, let us assume that the directory /a/b/c contains the following files:
dso.properties, dso1.properties, dso2.properties, and dso3.properties. Let us also assume that the contents
of these files are presented in Figures A.1, A.2, A.3, and A.4 respectively. Let us also call the containers
specified by these files c1, c2, and c3.

1 dso.messagingDriver=org.dso.messaging.drivers.activemq.MessagingFactory

2 dso.activemqURL=tcp:// localhost :61616

3 dso.osDriver=org.dso.osintegration.linux.LinuxOSIntegration

4
5 dso.service=x.y.z.MyService

6
7 log4j.rootLogger=DEBUG , FILE

8
9 log4j.appender.FILE=org.apache.log4j.FileAppender

10 log4j.appender.FILE.layout=org.apache.log4j.PatternLayout

11 log4j.appender.FILE.layout.ConversionPattern= %d - %-4r [%t] %-5p %c %x ←֓
- %m%n

Figure A.1: Contents of /a/b/c/dso.properties

Note that dso.properties does not contain a complete container specification since this file does not have
a dso.uuid entry. Therefore, these four files specify how to start only three containers. Also note that
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1 dso.uuid =0000 -00 -00 -00 -000001

2 log4j.appender.FILE.File=/var/log/container1.log

Figure A.2: Contents of /a/b/c/dso1.properties

1 dso.uuid =0000 -00 -00 -00 -000002

2 log4j.appender.FILE.File=/var/log/container2.log

Figure A.3: Contents of /a/b/c/dso2.properties

1 dso.uuid =0000 -00 -00 -00 -000003

2 log4j.appender.FILE.File=/var/log/container3.log

Figure A.4: Contents of /a/b/c/dso3.properties

dso1.properties, dso2.properties and dso3.properties define three different files to write log messages. This
is important for us to make sure that the logs of the containers don’t mix.

Starting all containers in a certain directory

Figure A.5 shows how to start all containers specified in a certain directory. The admin tool will find all
properties files and will start all three containers.

1 admin start /a/b/c

Figure A.5: Starting a container

Starting only one container by passing the configuration file

Figure A.6 shows how to start only the container c2. The admin tool will read only the files dso2.properties
and dso.properties.

1 admin start /a/b/c/dso2.properties

Figure A.6: Starting a container

Starting only one container by UUID

It is also possible to select only one container based on its UUID . Figure A.7 shows how to start only c3.
The admin tool will read only the files dso3.properties and dso.properties.

Note that UUIDs can be specified using either a short or a long format. For instance, the strings 0000-
00-00-00-000011 and 00000000-0000-0000-0000-000000000011 represent the same UUID.

1 admin start /a/b/c/ 0000 -00 -00 -00 -000003

Figure A.7: Starting a container

Starting all containers in the current directory

If no argument is given after the ‘start’ clause, the admin tool will try to read all containers in the current
directory. Figure A.8 shows how to do it with the containers of our example.
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1 cd /a/b/c

2 admin start

Figure A.8: Starting a container

Manually starting a container

Alternatively, you can also start a single container manually using the command in Figure A.9. Running
a container this way is exactly what the admin tool does behind the scenes. Running it manually can be
useful for debugging purposes.

1 java -cp DSO.jar org.dso.service.container.Container ./dso.properties

Figure A.9: Starting a container

A.1.2 Listing containers

After starting one or more containers it is possible to list which containers are running using the status
clause, as in Figure A.10.

1 admin status

Figure A.10: Listing containers

The output will be a list of all containers currently running. The list also shows during how many
milliseconds the container is running and the Process Identifier (PID) of the container. The PID is useful
for us to change the priority of a container in the operating system. Also, the PID can be used to shutdown
a container, as we will see at follows.

A more detailed version of the ‘status’ command is the ‘detailedstatus’ command. The difference is that
‘detailedstatus’ also prints several system properties of the remote JVM, such as the working directory and
the JVM class path. Some of the system properties variables (especially the class path) can be quite long.

A.1.3 Stopping a container

There are four ways to stop a container using the admin tool: asking the tool to stop all containers, specifying
the container to stop by passing the container configuration file, specifying the container to stop by passing
the operating system’s PID, and specifying the container to stop by passing the container’s UUID.

Stopping all containers

Stopping a single container using a file name

Stopping a single container using a PID

Stopping a single container using a UUID

As in the start command, UUIDs can be specified either in the short of long forms.

A.1.4 JMX

All operations performed by the admin tool after the console was started are done using the JMX. There-
fore, these operations can all be performed using a JMX such as the JConsole, which is part of the Java
Development Kit (JDK).
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1 admin stop all

Figure A.11: Stopping all containers

1 admin stop dso2.properties

Figure A.12: Stopping a container by passing a configuration file

A.2 Configuration file of a container

Configuration files can become very long which may make them hard to maintain. Yet, most of configuration
in configuration files is the same across containers. For instance, if we want to have five containers running on
the same host machine, we are likely to have all five containers connecting to the same messaging system and
outputting log messages using the same message format. The differences in configuration between containers
may be which user name to use to connect to the messaging system, or which log file will receive logs from
each container.

For this reason, we have chosen configuration files to be hierarchical. Each container is configured by one
configuration file but a root configuration file may contain all configuration that is common to all children
configuration files.

Configuration files in the DSO middleware use the standard plain text Java configuration format 1.
Besides configuration files in plain text, the Java API for configuration files can also read an Extensible
Markup Language (XML) format. But we opted for using the simplest plain text format because it is less
verbose than the XML format. Besides, the XML format does not add any feature to the configuration files
in our usage scenario.

Figure A.15 shows an example of configuration file. The sharp character (#) starts a comment line.
All DSO configuration has the ‘dso.’ prefix, which makes it easy to use a single configuration file for

DSO and other systems, when needed. For example, the bottom part of the configuration file is fed to the
Log4J tool.

As we already mentioned, each container makes a single connection to the messaging system.

A.2.1 Service properties

Services may have specific configurations as well, which are useful for us to control the behavior of services
without having to change its source code. For example, a service that connects to a database may have
service properties that provide configuration parameters to the service. Configuration variables are declared
in the implementation of a service. They are not available in the service interface since the values of these
variables do not interest to the service user, only to the service container.

Service properties should be set in the container configuration file. If the property name is “property1”,
the configuration should be set using an entry called “dso.service.conf.property1”, as shown in Figure A.15.

When creating a service, a programmer can easily specify a service property by decorating a field of
an implementation class with the ServiceProperty annotation. Figure A.16 shows an example of a service
implementation class with two service properties.

As the example shows, the ServiceProperty annotation can have a defaultValue property set. This
property is the default value of the property if the configuration file does not provide any value for the
property. The type of a service property should be a Java primitive (int, double, etc), a class equivalent to
a primitive (Integer, Double, etc) or the String class.

Instance policy

The instance policy is a configuration variable that controls when the container creates new instances of
service objects. This variable may have three different values 2:

• ONE PER CONTAINER – Each container creates only one instance of the service object.

1For a detailed reference on the format of configuration files, please refer to
http://download.oracle.com/javase/6/docs/api/java/util/Properties.html#load(java.io.Reader)

2These values are internally parsed to the org.dso.service.container.content.InstancePolicy enumeration.
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1 admin stop 876

Figure A.13: Stopping container with PID 876

1 admin stop 0000 -00 -00 -00 -000003

Figure A.14: Stopping container with UUID 0000-00-00-00-000003

1 dso.messagingDriver=org.dso.messaging.drivers.activemq.MessagingFactory

2 dso.activemqURL=tcp:// localhost :61616

3
4 #

5 # Adding items to the class path

6 dso.classpath1=${dso.home}/lib.jar

7
8 dso.containerHome=${dso.home }/../../ containersHome /000001/

9 dso.uuid =000000 -00 -00 -00 -000001

10
11 # To be replaced by the shell script

12 dso.service1.conf.outputDir=OUTPUT_DIR

13
14 # Service properties

15 dso.service1.conf.containerNumber =1

16
17 dso.osDriver=org.dso.osintegration.linux.LinuxOSIntegration

18
19 dso.username=admin1

20 dso.password =786

21
22 # Will be defined in children files:

23 # dso.uuid=

24
25 dso.customerTopic1 =C1

26
27 dso.group1=ADMINISTRATORS

28
29 dso.service1=example.CounterService

30 dso.service1.serviceUseMock =no

31 dso.service1.instancePolicy =ONE_PER_CONTAINER

32
33 #

34 # Log4J configuration

35 #

36
37 log4j.rootLogger=DEBUG , FILE

38
39 log4j.appender.FILE=org.apache.log4j.FileAppender

40 log4j.appender.FILE.File=${dso.home}/x.log

41 log4j.appender.FILE.layout=org.apache.log4j.PatternLayout

42 log4j.appender.FILE.MaxFileSize =1MB

43 log4j.appender.FILE.MaxBackupIndex =0

Figure A.15: Example of DSO configuration file

• ONE PER CLIENT – Each client will have its own instance of the service object.
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1 public class MultiplicationServiceImpl extends ServiceImplementation ←֓
implements MultiplicationService {

2
3 @ServiceProperty (defaultValue="Default property 1")

4 private String property1;

5
6 @ServiceProperty (defaultValue="Default property 2")

7 private String property2;

8
9 (...)

10
11 }

Figure A.16: Service implementation with service properties

• ONE PER CALL – Each call to any function will create a new instance of the service object.

The question is now how these policies relate to the mobility of objects. Let’s say that a certain service
S1 is installed on node n1. A service object s1,1 was created using the ONE PER CONTAINER policy on
node n1. Calls to S1 on this server will always be directed to s1,1. What happens when another instance
s1,2 of the same service S1 arrives at n1? Suppose this instance was created on a node n2 in which the policy
is ONE PER CLIENT. In this case we need to make sure that the behavior of S1 for all its clients do not
change on n1. In other words, clients that already have a reference to s1,1 should be still served by s1,1, not
s1,2.

A.2.2 Log4J configuration

The bottom part of the file in Figure A.15 are properties to configure the behavior of the Log4J logging tool.
The configuration file is also forwarded the Log4J classes 3, which control all the log capabilities of DSO.

Log4J reads all configuration variables starting with the ‘log4j.’ prefix. In the example of Figure A.15, we
are forwarding logs to a file. We log everything whose level is at least DEBUG. We chose to utilize Log4J
because it is very flexible and modular. For instance, logs can be sent to a remote log server and several log
appenders can be utilized simultaneously.

A.3 Jython client

The Jython client is an interactive console application that enables users to use the infrastructure of services
in a text-based interface. This client tool is useful when an user wants to call service methods without the
need to implement a client application.

All commands entered by the user are processed using the Jython programming language. Jython is the
implementation of the Python programming language as a script engine for the Java platform. Jython is
almost fully compatible with the Python language specification, therefore most of what can be done using
the C implementation of Python can also be done using Jython.

Besides the basic Python programming language environment, the Jython client also provides an easy
way to access remote services through the network. All services are presented to the user as Python objects.
Calling a remote service is as easy as calling a method in a Python object.

It is also important to stress that the Jython client differs a lot in purpose and structure compared to
the admin tool we saw on the previous section. From an architectural perspective, the Jython client does
not differ from any service client. The admin tool, on the other hand, does not use the messaging subsystem
and relies on JMX

A.3.1 Starting the Jython Client

The Jython client can be started using the jythonclient command in the terminal. Figure A.21 shows a
terminal session in a Jython client. The initialization of the Jython client does not take any arguments

3For more information on Log4J, please refer to the official website http://logging.apache.org/log4j/
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from the user, but is heavily dependent on the contents of its configuration file, located at DSOHOME/con-
f/jythonclient.properties. We will see details about this configuration file in the following section.

The Jython Client tries to mimic the interaction of the python Read-eval-print loop (REPL). Just like
the python REPL, the Jython Client detects when the user starts a block. The REPL understands that the
input is starting a block when the last non-space character is a colon. The following lines typed by the user
will be all considered as being part of the block until the user types a blank line. Only when a blank line is
entered, the Jython client will interpret the whole block.

Also similarly to the python REPL, the Jython client REPL is terminated when the user issues the
“exit()” command.

A.3.2 Non-interactive mode

It is also possible to ask the Jython Client to execute a script and exit. This is what we call a non-interactive
Jython client session. Scripts should be also written in the Python programming language. There are two
ways to pass a script to the Jython client: through Unix pipes (output redirection) and explicitly by passing
the name of a Jython script to the Jython client. Each method is illustrated in Figures A.17 and A.18
respectively.

1 echo "service.method () \n for i in range (10): \n\tservice.method(i)\n" |←֓
jythonclient

Figure A.17: Jython client using pipe

1 jythonclient --script script.py

Figure A.18: Jython client using script file

In Figure A.17, the -e option in the echo command activates the interpretation of escape characters such
as “
n” for the new line character. Python uses line breaks and indentation as part of its syntax to delimit blocks
such as class definitions, loops, and function declarations.

A.3.3 Jython Client configuration file

The configuration file will determine how the Jython Client will initialize.

Service connections

A service connection is a local Python object that serves as a proxy to a remote service. Using service
connections is actually the most important feature of the Jython Client.

It is possible to create any number of service connections.

Start up script

This is a script that is executed when the Jython Client is initialized. Java properties files allow for properties
to have multiple lines. Then although the start up script is a single property in the configuration file, it
can contain several Python commands. The source code in Figure A.20 is an example of how to use this
property to show a welcome message.

1 startupScript=print "Welcome to the Jython Client" \

2 from datetime import datetime \

3 print "Current time is: " + str(datetime.now())

Figure A.19: Stopping container with UUID 0000-00-00-00-000003

Java properties files allow property values to be declared in many lines using the backslash character. But
the location of the backslash character does not add a new line character to the value of the property. The
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backslash character is just a way to declare a long variable name using more than one line in the properties
file.

Command aliases

The configuration script allows users to define command aliases. Each alias is represented by a name, which
can be any string. Users can call the alias by typing two dot characters followed by the alias name. Figure
A.20 shows how to declare command aliases.

1 command.a=print "this is a"

2 command .0= print "this is 0"

3 command .1=

4 command .2=

5 command .3= print "This is command 3!!" \

6 for i in range (11): \

7 tprint "Calling decrease ()" \

8 tprint "xxx"

9 command .4=

10 command .5=

11 command .6=

12 command .7=

13 command .8=

14 command .9=

15 command .10= print "this is 10"

Figure A.20: Stopping container with UUID 0000-00-00-00-000003

Log4J configuration

Log4J needs to be configured too and this is done on the same file, just as we saw in the configuration of
containers. Here too, all configurations related to Log4J have the prefix ‘log4j.’.

A.3.4 Example of Jython Client usage session

First the user is starting the Jython Client by calling the ‘jythonclient’ command. Then the Jython Client
shows a welcome message and shows that it is loading services. After that the client lists all command
aliases.

A.4 Variables in configuration files

When we store log messages in files, an immediate problem we need to solve is how to represent the file
path in a way that keeps the configuration portable. In other words, we want the configuration to be easily
adaptable to other environments. This requirement forces us to use relative paths. So we can assign the
property “log4j.appender.FILE.File” with a string that starts with the value of the variable “dso.home”. For
example: “log4j.appender.FILE.File=$dso.home/../data/

A.4.1 List of variables

At follows we list the available variables.
dso.home - The directory that contains the DSO installation. In the Jython Client, the value of this

variable is automatically detected by the shell script that calls the JVM and the value of the variable can
be overridden by using the “–basedir” option.

user.dir - The directory from which the JVM was executed. This variable is the same provided by the
Java programming language.

user.home - The home directory of the user who is running the JVM. This variable is the same provided
by the Java programming language.
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1 user@host :~/# jythonclient

2 ###############################

3 # #

4 # Jython client #

5 # #

6 ###############################

7
8 Classes PM , PMTree , VM , VMState , and CommandLineLib are pre -imported.

9 Type "exit" to leave

10
11 Loading services ...

12
13 Loading: myservice (x.y.z.MyService)

14
15 Loading pre -defined command aliases:

16
17 ..1 :: myservice.x("Testing")

18 ..2 :: UUID.randomUUID ()

19 ..3 :: print "This is cool"

20 ..4 :: myservice.draw(20, 20)

21 ..5 :: myservice.draw(21, 21)

22 ..6 :: myservice.draw(22, 22)

23 ..7 :: dir()

24 ..8 :: ping("C1")

25 ..9 :: ping("C2")

26
27 Loading the startupScript:

28
29 Welcome to the Jython Client

30
31 > myservice.a()

32 Response from myservice

33 > ..2

34 This is cool

35 > exit()

36 user@host :~/#

Figure A.21

A.5 Limitations

There are limitations to our middleware. Here we list the main limitations, which were not yet fully imple-
mented for us to focus on the functionality and our proof of concept.

A.5.1 Inner classes

Inner classes are not supported by the pre-processor. This is because, in the context of defining artifacts for
the DSO, inner classes do not add any new way to specify artifacts. Also, supporting the syntax of inner
classes requires an extension of our grammar. Visibility of inner classes can be too limited, which does not
make those classes interesting for distributed objects. Nevertheless, we are planning to support inner classes
in services in the future in order to fully support the standard Java grammar.
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Appendix B

Distributed Middleware
Implementation Details

In this appendix we explain some implementation details of the middleware. Some of the decisions we made
during the course of the research were based on issues we found during the construction of the middleware.
Therefore, this appendix sheds light on the causes of those decisions.

B.1 Messaging Subsystem

In our middleware, we present an abstract model that is different from the JMS one. In our model, as it
can be seen on Figure B.1, a user object represents a certain user A. From the perspective of this object,
a messaging subsystem is essentially an object that exposes some methods to manage message visitors and
that can be used to send messsages.

Such messaging object is obtained through a MessagingFactory object, which is obtained through the
MessagingSystem class. Messaging factory is part of the driver and is in charge of controlling the instantiation
of messaging objects. Control, in this case, means giving messaging object to authorized users and trying to
use message exchange resources with austerity. For instance, two requests to establish identical connections
to the message exchange system should point to the same messaging object.

For the middleware, messages are Data Transfer Objects (DTOs) related to a message type. A message
DTO is an object of a class that extends the MessageDTO class, while a message type is a value of an
enumeration.

Details about how messages are delivered depend on the driver and underlying message exchange mech-
anism. In this section we present the JMS driver, which serves as an illustration.

B.1.1 JMS Driver

The JMS driver is responsible for creating connections to JMS and present this connections to the rest of
the middleware. At present, we tested the driver only against the ActiveMQ implementation of JMS.

Figure B.1 is a diagram of the internal functioning of such driver. JMS cannot be used directly by
our middleware since JMS model is based on sessions, which manage connections with a message exchange
system.

Compatibility

As the driver was not build utilizing any class that is specific to ActiveMQ, it should work with other
implementations of JMS but tests are necessary to ensure full compatibility. Nevertheless, we needed to add
an ActiveMQ agent to the JMS network in order to provide additional functions to manage topics (create
and delete topics, and change access rights to users on-the-fly).

As already stated, JMS is an API specification instead of an actual message delivery mechanism or
protocol. That means that clients written to use JMS are, at least in theory, capable of exchanging messages
utilizing any implementation of JMS, utilizing any underlying message transport.

Several message queues that offer a JMS API allows for utilization of several message delivery mechanisms.
ActiveMQ, for instance, can utilize reliable multicast or in-memory messaging.
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Figure B.1: Structure of the JMS driver.

ActiveMQ-specific Aspects

Each JMS implementation can define its own solutions for common problems such as failure tolerance. High
availability is already supported by ActiveMQ utilizing the ‘failover:’ URL prefix. Adding this prefix to the
URL used to connect to ActiveMQ causes the JMS clients to try to reconnect in case the JMS server becomes
unreachable for any reason. In these cases, the ActiveMQ driver will try reconnection automatically, which
does not impact our JMS driver in Figure B.1.

B.2 Class Loading

Class loading is one of the biggest concerns when trying to migrate classes over the network. In this section
we introduce details about a simple dynamic class loader we had to create for the DSO middleware.

B.2.1 Dynamic Class Loader

One needs to replace the standard class loader in order to change the class loading mechanism of a JVM.
This can be done either by providing the -Djava.system.class.loader argument to the java command or by
calling the java.lang.Thread.setContextClassLoader(ClassLoader) method.

The first method replaces the system class loader. So all threads in the JVM will use this class loader to
load classes. The second method changes the class loader of a single thread.

Both methods will still use a parent class loader, which is the class loader Java uses to load the JVM.
This creates a difficulty, since this parent class loader may be automatically activated when a certain

class was not found by the child class loader. Our solution was to start the JVM using the first method
while giving to the parent class loader no location of any Java Archive (JAR) file.

There are some features missing in our implementation of a class loader. An important missing feature
is the ability to load agents during the JVM live phase. We are using the clause “-javaagent:$JAVA HOME-
/jre/lib/management-agent.jar” when starting a JVM in order to avoid a bug triggered by the JMXUtility,
on this line: “vm.loadAgent(managementAgentJAR);”.

This line asks the remote JVM (or, in our case, a local JVM accessed using the loop back virtual
network interface) to load an agent during the live phase of a JVM. The system classloader is supposed to
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load the agent and add the agent JAR to the class path dynamically. But our custom class loader (called
org.dcl.DynamicClassLoader) is not doing something it should in order to add the agent and yet allow for
the JVM to detect this. A workaround we found was adding the following:

1 me.equals("sun/jvmstat/perfdata/resources/aliasmap")) {

2
3 management.Agent.agentmain("");

4 h(Exception e) {

Figure B.2: A bad fix

But this solution does not work in every case. So instead of solving this problem, we are leaving the
actual solution for later and for now we simply load the agent although this agent is not needed for now.
The current solution is not that bad, since it avoids having the JMXUtility to have to load remote agents.

B.2.2 Security

It is easy to see that allowing a class obtained remotely to be executed locally can become a security breach.
For instance, a remote class may have been build in a malicious way and damage some local resource, or
even be exploited to expose sensitive data.

Security was not a concern addressed on this research. Here our focus was on the inter-operation of
mobile software agents and its implications in the programming environment. Nevertheless, we can outline
how security at this level could be controlled.

First, all exchanged JAR files should necessarily be digitally signed by the sender. The identity of the
sender should necessarily be validated by a chain of certificate authorities whose first node should be a root
authority trusted by the local node. Each node should have one or more root certificates in order to be able
to build chains of certificate authorities.

If a chain can be built, the local node should execute classes in the JAR file in a controlled JVM.
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Appendix C

Distributed Middleware
Programmers’ Manual

This appendix is a manual for programmers interested in participating on the development of the DSO
project. Reading this appendix is also useful to understand some of the decisions we made when we developed
the DSO middleware.

This appendix differs from the in that this one was written having the programmer in mind. The
programmer needs to know all the internals of the system (which is covered on sessions ) but also

C.1 Coding Conventions

C.1.1 Class naming

MV suffix - Message Visitor - A class that visits one or more kinds of messages. DTO suffix - Data Transfer
Object - Every DTO is a subclass of MessageDTO and should be identified by the “DTO” suffix.

C.1.2 Comments

Comments in Java source code should go until the column 100, despite of the indentation.
The word “TODO” should be placed at the beginning of a comment to mark it as something still to be

resolved. The word “FIXME” has the same usage, but points to something of a more pressing priority.

C.2 Important Classes in the API

C.2.1 MessageDTO

A message between two nodes is represented by a org.dso.messaging.dto.MessageDTO object.
Each kind of message exchanged between nodes is an object of a class that extends the MessageDTO. The

MessageDTO class has the “validate()” abstract method, which is called by all “init()” in order to verify if
the DTO is complete. During the life cycle of a DTO, this object may have its internal state changed several
times before delivery. Calling this method is a way to prevent a DTO in an invalid state to be transferred
through the network.

C.3 Mock Messaging

The mock messaging (the org.dso.messaging.drivers.mock.MockMessaging class) is the message driver we
use during unit testing. Instead of actually transferring messages through the network, the mock messaging
transfer messages within the same JVM. By using the mock messaging, we can start several containers on
the same JVM and make them interact. This is ideal for unit tests (such as the ones using the JUnit tool).

On the one hand, this prevents us from having to start several JVMs in order to test the interactions
between networked elements. On the other hand, tests conducted using the mock messaging can not simulate
many situations that occur in a networked set up.
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The main limitations of the mock messaging are: sharing of the system class loader and sharing of
operating system resources. Actually, the limitations in the mock messaging was the main motivation for us
to write the integration tests.

When two or more containers share the same class loader the behavior of the middleware is different from
the real usage of containers. In a real scenario, each container starts up with a set of classes it can reach.
Because the class loader is the same, the class loader cannot reproduce the effect of containers having access
to different sets of classes.

Also, as we pointed out, using the mock messaging causes all containers to share operating system
resources. It is not possible, for instance, to precisely estimate the memory footprint of containers when the
mock messaging is in use.

C.3.1 Reset

Puts the mock messaging in the initial state, cleaning the log of messages transferred.

C.3.2 Dump

Generates a dump of everything that happened with the mock messaging since the last reset.

C.3.3 Reset Event Log

The resetEventLog() method resets only the event log, leaving the network topology intact. This method
is useful when used in combination with the dump() method. The resetEventLog() method can be called
to make the next call to the dump() method print only messages that were sent since the last call to the
resetEventLog() method. It is then easier to see which messages were transferred in each section of tests.

MockMessaging.resetEventLog(); /* * Perform some actions that uses the messaging system * to send
and receive messages. */ System.err.println(MockMessaging.dump());

C.3.4 Get sent messages

Retrieves a list of the messages transferred since the last reset.

C.3.5 Mock Messaging Authorization

Authorizations can be given and revoked at run time using the org.dso.messaging.drivers.mock.MockMessaging-
Authorization class. This is done by the org.dso.DSOAllTests.setUpLoggerAndResetEverything() method
as we will see in the next section.

C.3.6 JUnit Tool

When we write unit tests, it can easily become complex to check long sequences of messages transferred
through the mock messaging. Although the mock messaging driver allows us to retrieve every message
object that was transferred, the source code of the test case can easily become long, hard to read, and
therefore hard to maintain or expand.

We developed the Mock Messaging JUnit Tool in order to simplify checking such sequences of messages.
Instead of programmatically checking each field of a message, which is cumbersome and, as already stated,
hard to read, this JUnit Tool allows us to represent each expected message as a string in the same format
generated by MessageDTO.toString().

Figure C.2 shows an example of such string representation. All white space characters are simply ignored,
making it easy for the programmer to indent the string the way the programmer finds more readable. This
is particularly important when a set of string representations of messages are put together in a file, as we
will see later.

The syntax of the string representation is simply a series of properties of the message put in an order
that makes it readable: the user who sent the message, the UUID of the node that originated the message,
the topic through which the message was sent, the recipient of the message, and the message type between
parenthesis.

The recipient can be either a single node or a group. If the recipient is a single node, then the UUID of
the node should be placed on the right side of the arrow. If the recipient is a group, then the name of the
group should be placed between angle brackets on the right side of the arrow.
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The type information is optional and can be expressed both as “(<message type >/ <DTO class name
>)” or simply as “( <message type >)”. The DTO class name is only checked against the expected DTO
class, as specified in the MessageType enumeration.

1 admin : 0000 -00 -00 -00 -000600 ===[ C1 ]===> 0000 -00 -00 -00 -001000 (←֓
REMOTE_SERVICE_OBJECT_REFERENCE_RESPONSE /org.dso.service.reference.←֓
ServiceObjectReferenceDTO)

Figure C.1: Example of string representation of a message

With the exception of the message type parenthesis (which is optional), every element can be replaced
by an asterisk sign to represent a wildcard. No verifications will be made for all location in which asterisks
are present. This is useful in situations in which there is uncertainty about the outcome of a message. For
example, when node 0000-00-00-00-000600 sent a message to the DBS group asking if any server is alive, the
first reply can come from any server in this group. So if we do not want the exact sequence to be checked,
we can simply check the sequence in Figure C.2. In this figure we are simply checking that two nodes replied
the message from 0000-00-00-00-000600, we do not care what is the UUID of each node or which node sent
the first message.

The string representation does not allow us to represent the contents of the message. Checking the
contents of the messages can be done by retrieving each message from the Mock Messaging using the
getTransferredMessages() method. The focus of the JUnit Tool is not checking the correctness of the data
that was transferred, but instead to check if the right kind of message was transferred from the right node
to the right destination in the right order.

1 #

2 # Checking that a query is followed by two responses

3 #

4 admin : 0000 -00 -00 -00 -000600 ===[ C1 ]===> <DBS > (←֓
SERVICE_PROVIDER_QUERY )

5 * : * ===[ C1 ]===> 0000 -00 -00 -00 -000600 (←֓
SERVICE_PROVIDER_RESPONSE)

6 * : * ===[ C1 ]===> 0000 -00 -00 -00 -000600 (←֓
SERVICE_PROVIDER_RESPONSE)

Figure C.2: Example of string representation of a message

As the tool was specifically designed to check long sequences of messages, it is capable of reading a file
containing one message description in each line. Figure C.2 also illustrates the format of input files for the
Mock Messaging JUnit Tool. The first three lines are comments, as they start with the sharp character.
A unit test may invoke the processing of such a file using the MockMessagingJUnitTool.assertMessages()
method. The sole argument should be either the name of the file containing the description of the sequence
of messages (as in Figure C.2), or a input stream pointing to bytes in such format.

C.4 Structure of JUnit tests

The Maven build will find all unit tests and execute them automatically. But programmers also need to
execute the unit tests from inside of an IDE such as Eclipse. When running from an IDE, the programmer
can call all unit tests by calling the org.dso.DSOAllTests test suite.

This test class has a static method called org.dso.DSOAllTests.setUpLoggerAndResetEverything(), that
prepares the environment for any unit test. Resetting the environment at each test is useful for us to make
sure that we eliminate the influence a test may have in another one.

C.4.1 Logging

Logging should be done by test classes using the Log4J tool. All logs are directed to the standard con-
sole. Log4J is configured by the org.dso.DSOAllTests.setUpLoggerAndResetEverything() method to write
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all output to the standard console. It is possible to change the log level by changing the setUpLoggerAn-
dResetEverything() method.

Structure of a typical test case class is shown in Figure C.3.

1 public class MyTest {

2
3 @Before

4 public void setUp () throws Exception {

5 DSOAllTests.setUpLoggerAndResetEverything ();

6 }

7
8 @Test

9 public void test1 () {

10 Logger logger = Logger.getLogger(this.getClass ());

11 logger.info(MockMessaging.dump());

12 assertEquals (102, MockMessaging.getSentMessages ().size());

13 }

14 }

Figure C.3: Typical unit test class

C.5 Integration test script

The integration test script is a bash 1 shell script.
For more information on how to call the integration test script, call the script without any argument.

The script will print a detailed message explaining all arguments that can be passed to it. You can also
check the header of the script’s source code.

C.5.1 Interactive session

When a test fails, debugging the test by printing messages on screen can be extremely time consuming as
each run of an integration test can take several minutes to complete. If we identified that a certain line n
fails to execute, the best way to find the problem is by analyzing the bash process (the process that executes
the integration test) while the process is still active.

We provide the “interactive” function to allow for developers to interact with the bash process this way.
A call to the “interactive” function causes the integration test script to stop and enables the user to interact
with a bash console. In the interactive session, the user can manually check the state of the containers, log
files, and output files.

The idea behind the “interactive” function is that this function should only be in the integration test
script temporarily while the programmer searches for the causes of some defect in DSO or in the integration
tests themselves. As soon as the defect is found, the programmer should remove the calls to the “interactive”
function, so subsequent calls to the integration tests finish without interruptions.

If sound was enabled using the –sound argument, the integration script will also play a sound file when
a break point is reached. This feature is to avoid making the user wait several minutes for the interactive
session to be reached. If the rich output is enabled, the command line is printed in bold to ease identification
of the commands entered.

During the interactive session the user actually interacts with the same bash instance that was executing
the integration tests. Therefore all functions and variables available during the execution of the integration
test script will be available during the interactive session. Also, all changes in the variables’ values and
function declarations during the interactive session will be available for the integration test script if the
script is resumed after the interactive session finishes.

Calls to the “interactive” function can be placed anywhere after the preamble section. This section is
identified in the integration test script using some comment lines.

There are three different ways to terminate an interactive session:

1Bash is a command line interpreter originally based on the Bourne shell, and is currently maintained by the Free Software
Foundation.
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• By typing “ok” or “resume”. The interactive session will terminate and the integration test script will
resume from where it stopped.

• By typing “kill”. The integration test script will be immediately interrupted and the rest of the script
will be not executed.

• When a timeout is reached. If the user does not issue any command before a certain timeout, the
interactive session automatically terminates and the integration test script is resumed. Reaching this
timeout has the same effect as typing “ok” or “resume”. The INTERACTIVE TIMEOUT variable in
the test.config file sets the length of the timeout. The value of this variable is the number of seconds
in the timeout.

C.5.2 Continuous mode

Unfortunately, not all tests are deterministic. Depending on a number of factors, it is possible that some
execution errors happen intermittently, making it impossible to completely reproduce the integration tests.
The best practice when we have this sort of defect is to find what causes the test to have this random
behavior and to eliminate the source of randomness.

But the very source of instability is also a defect. So we cannot expect that the solution for this problem
to be easy to address. There are cases in which the only option we have is to execute the integration tests
until the random error happens. The integration test script can be executed in an infinite loop to help
developers facing this situation.

This is what we call the continuous mode of execution. When the “–continuous” option is passed to the
integration test script, the script will start a loop that executes the integration tests until the tests finishes
with a return code different from zero or until the user terminates the script (which can be done by sending
a kill signal through the kill command, or interactively using Control+C key combination).

The continuous execution attempts to reproduce several independent executions of the integration tests.
For the executions to be independent it is important that we minimize the influences one execution will
have on the next one. For that reason, the continuous execution of the integration test creates a new Bash
process for each test. This way, we avoid having the variables defined during an integration test execution
influencing the next integration test execution.

The continuous mode can be prevented from running by passing the “–non-continuous” option as an
argument to the integration test script. When both “–continuous” and “–non-continuous” options are
available, the integration test script will execute in a non-continuous way. This option has actually two uses.

The first use is for cases in which the user defined an alias to get the integration test script to run
in continuous mode by default. In other words, if the user defined a command line alias that maps the
“integration test” script to the “integration test –continuous” command. The “–non-continuous” option can
be used to cancel this default when the user needs a single execution of the integration test.

The second use of this option has to do with the structure of the integration test script. For simplicity, this
script calls itself (even if this call is on a new bash instance, as we stated above) passing all received arguments
to the new script execution process. The “–non-continuous” argument is added to the list of arguments in
order to prevent this other instance to also execute in continuous mode, since the “–continuous” argument
was not removed from the argument list.

C.5.3 Logging

Limiting log file sizes

Logging is important during the integration tests. When we generate log files correctly, we can easily find
the causes of problems in our tests. DSO uses the Log4J tool to generate logs, as we saw on Section A.

But the log outputs are not intended to be kept long after they were generated, as in a real production
environment. Instead, all log files generated during the integration tests are intended to be checked by the
user and discarded as soon as the user does not need them anymore. It is common that when a test finishes,
some agents or containers remain running. The side effect may be the log files getting bigger and bigger
out of control. For example, those pieces of software periodically generate log messages from the ActiveMQ
classes, even if there is no activity in the DSO system.

To avoid having log files taking too much hard disk space, we configured all log files to have the lim-
itations shown in Figure C.4. The MaxFileSize variable limits the maximum size of a log file, while the
MaxBackupIndex tells Log4J how many backups of old log files to keep when the maximum size of a log file
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is reached. When this variable is zero, Log4J will not keep any backup and will simply truncate the log files
to fit in the maximum size, discarding the oldest messages.

1 log4j.appender.FILE.MaxFileSize =1MB

2 log4j.appender.FILE.MaxBackupIndex =0

Figure C.4: Log4J file size limitation

Log output performance

Currently, we are using the pattern conversion in Figure C.5. The meaning of each token in this pattern is
documented in the Log4J API documentation2. What we want to underline here is the “%L” token, which
outputs the line number that generated the log. The “%c” token prints the class that generated the log.
Having the line number in the log messages makes it easy for programmers to navigate the source code based
on the contents of the log files.

But, according to the Log4J documentation , using the “%L” conversion character is extremely slow.
We are using this conversion character despite of this performance problem since in the integration tests we
focus on checking the functionality, not the performance. Nevertheless, it is important for the developer to
know about this issue.

1 log4j.appender.FILE.layout.ConversionPattern= %d - %-4r [%t] %-5p %c(%L)←֓
%x - %m%n

Figure C.5: Pattern conversion that formats Log4J messages

Advanced log visualization with Chainsaw

Figure C.6 shows the contents of a configuration file that creates a logger that sends log messages to a log
server through the network.

1 log4j.rootLogger=DEBUG , SERVER , SOME_OTHER_LOGGER

2 log4j.appender.SERVER=org.apache.log4j.net.SocketAppender

3 log4j.appender.SERVER.Port =4445

4 log4j.appender.SERVER.RemoteHost=localhost

5 log4j.appender.SERVER.ReconnectionDelay =10000

Figure C.6: Log4J configuration to use remote log server

C.6 Message debugging

One of the key aspects of DSO is the message exchange subsystem. It is important that the developer knows
how to verify if messages are being transferred correctly. In this section we list the main tools a programmer
can use to check messages.

C.6.1 HermesJMS

HermesJMS is a free software tool to allow for users to interact with JMS systems. The tool makes it easy for
users to create and send JMS messages and to visualize messages exchanged in message topics and message
queues. We use HermesJMS mainly for debugging the DSO protocol.

The kind of debugging that HermesJMS provides allows us to check the contents of messages: its fields
and payload. For instance, if we are to change the DSO protocol and add a new field to messages for any

2Log4J pattern layout: http://logging.apache.org/log4j/1.2/apidocs/org/apache/log4j/PatternLayout.html
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particular reason, the first tests we should conduct would be executed while the programmer can access the
history of messages exchanged.

A more high level test of message exchange uses expected messages lists, as in Section 8.6.2. Expected
messages lists are concerned with the types of messages, the destination and origin. This differs from the
sort of fine-grained data that can be visualized using HermesJMS.

It is also possible to visually inspect the sequence of messages to search for inconsistencies, but such
process takes too much time to do manually and is quite error prone.
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Appendix D

Detailed compatibility example

In this apendix we will show a complete example of compatibility processing to illustrate the process in
details. We believe this apendix may be useful for readers that want to review the algorithm we explained.

During explanation text, long examples break text fluency, so that is the reason why we decided to place
a longer example as an apendix.

D.1 Client source code

1 method x() {

2 m1();

3 if(/* condition */) {

4 m2();

5 loop(/* repetition arguments */) {

6 m3();

7 m4();

8 if(/* condition */) {

9 m5();

10 m6();

11 m7();

12 } else {

13 m8();

14 }

15 m9();

16 }

17 m10();

18 } else {

19 m11();

20 }

21 m12();

22 m13();

23 loop(/* repetition arguments */) {

24 m14();

25 }

26 m15();

27 }

Figure D.1: Client source code for the detailed example

159
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1 (BLOCK A

2 A1: m1

3 A2: (COND

4 CK B

5 B1: m2

6 B2: (LOOP

7 CK C

8 C1: m3

9 C2: m4

10 C3: (COND

11 CK D

12 D1: m5

13 D2: m6

14 D3: m7

15
16 CK E

17 E1: m8

18
19
20 C4: m9

21
22
23 B3: m10

24
25 CK F

26 F1: m11

27
28
29 A3: m12

30 A4: m13

31 A5: (LOOP

32 CK G

33 G1: m14

34
35
36 A6: m15

37 )

Figure D.2: Client source code for the detailed example

D.2 Client source code reduced AST

D.3 Step by step solution

A1 means line 1 of subtree A. A! means the solution of the subtree A, meaning that the subtree will be
reduced to one or more linear transformations. A means transformation of a LOOP subtree into a BLOCK
subtree.
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1 A1: (BLOCK A m1)

2 A2: (BLOCK A (BLOCK B m1) (BLOCK F m1))

3 A3: (BLOCK A (BLOCK B m1 * m12) (BLOCK F m1 * m12))

4 A4: (BLOCK A (BLOCK B m1 * m12m13) (BLOCK F m1 * m12m13))

5 A5: (BLOCK A (LOOP G (BLOCK B m1 * m12m13) (BLOCK F m1 * m12m13)))

6 A6: (LOOP G (BLOCK B m1 * m12m13) (BLOCK F m1 * m12m13) * m15)

7 B1: (LOOP G (BLOCK B m1m2 * m12m13) (BLOCK F m1 * m12m13) * m15)

8 B2: (LOOP G (BLOCK B (LOOP C m1m2) * m12m13) (BLOCK F m1 * m12m13) * m15←֓
)

9 B3: (LOOP G (BLOCK B (LOOP C m1m2) * m10m12m13) (BLOCK F m1 * m12m13) * ←֓
m15)

10 F1: (LOOP G (BLOCK B (LOOP C m1m2) * m10m12m13) (BLOCK F m1m11 * m12m13)←֓
* m15)

11 F!: (LOOP G (BLOCK B (LOOP C m1m2) * m10m12m13) m1m11m12m13 * m15)

12 C1: (LOOP G (BLOCK B (LOOP C m1m2 : m3) * m10m12m13) m1m11m12m13 * m15)

13 C2: (LOOP G (BLOCK B (LOOP C m1m2 : m3m4) * m10m12m13) m1m11m12m13 * m15←֓
)

14 C3: (LOOP G (BLOCK B (LOOP C m1m2 : (BLOCK D m3m4) (BLOCK E m3m4)) * ←֓
m10m12m13) m1m11m12m13 * m15)

15 C4: (LOOP G (BLOCK B (LOOP C m1m2 : (BLOCK D m3m4 * m9) (BLOCK E m3m4 * ←֓
m9)) * m10m12m13) m1m11m12m13 * m15)

16 D1: (LOOP G (BLOCK B (LOOP C m1m2 : (BLOCK D m3m4m5 * m9) (BLOCK E m3m4 ←֓
* m9)) * m10m12m13) m1m11m12m13 * m15)

17 D2: (LOOP G (BLOCK B (LOOP C m1m2 : (BLOCK D m3m4m5m6 * m9) (BLOCK E ←֓
m3m4 * m9)) * m10m12m13) m1m11m12m13 * m15)

18 D3: (LOOP G (BLOCK B (LOOP C m1m2 : (BLOCK D m3m4m5m6m7 * m9) (BLOCK E ←֓
m3m4 * m9)) * m10m12m13) m1m11m12m13 * m15)

19 D!: (LOOP G (BLOCK B (LOOP C m1m2 : m3m4m5m6m7m9 (BLOCK E m3m4 * m9)) * ←֓
m10m12m13) m1m11m12m13 * m15)

20 E1: (LOOP G (BLOCK B (LOOP C m1m2 : m3m4m5m6m7m9 (BLOCK E m3m4m8 * m9)) ←֓
* m10m12m13) m1m11m12m13 * m15)

21 E!: (LOOP G (BLOCK B (LOOP C m1m2 : m3m4m5m6m7m9 m3m4m8m9) * m10m12m13) ←֓
m1m11m12m13 * m15)

22 C!: (LOOP G (BLOCK B m’1 m’2 m’3 * m10m12m13) m1m11m12m13 * m15)

23 B!: (LOOP G m’1m10m12m13 m’2m10m12m13 m’3m10m12m13 m1m11m12m13 * m15)

24 G1: (LOOP G m’1m10m12m13 m’2m10m12m13 m’3m10m12m13 m1m11m12m13 : 14 * ←֓
m15)

25 G~: (BLOCK G m’4 m’5 m’6 m’7 * m15)

26 G!: m’4m15 m’5m15 m’6m15 m’7m15

Figure D.3: Step by step solution
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Appendix E

Building it all

All software we developed is distributed in its source code and therefore we need to document how to build it.
Our software is not a monolithic project, but it is made of smaller interdependent modules. A distribution
of all pieces of software in this research is organized in a directory tree. Hereinafter we will refer to the root
node of this directory tree as ROOT.

Before presenting each module and the dependencies between the modules, we understand that the reader
may have reached this appendix only to get guidance about how to start using the deliverables of this project.
Therefore, we first present a simple method to build all deliverables and later we explain the deliverables in
details.

E.1 General Build

All build is managed by the Maven tool [7]. In order to build all artifacts, one only needs to execute the
mvn command at the ROOT directory. Figure E.1 illustrates how to call Maven in a Linux system. The
mvn command will automatically recognize a configuration file called pom.xml in the ROOT directory and
build all modules according to the instructions in this file.

1 user@host -name :/# cd ROOT

2 user@host -name:ROOT# mvn

Figure E.1: Execution of the Maven build process

Figure E.2 shows a successful output of the execution of this script. When all modules were built
correctly, Maven will print the message “BUILD SUCCESS” as in Figure E.2. As a result of a successful
build execution, Maven creates the distribution files:

1. ROOT/dso-00-distribution/target/dso-0.01-bin.tar.gz

2. ROOT/dso-00-distribution/target/dso-0.01-bin.tar.zip

These files contain everything one needs to execute a DSO container. Details about how to start a
container can be found in Chapter A.

1 [INFO] -----------------------------------------

2 [INFO] BUILD SUCCESS

3 [INFO] -----------------------------------------

4 [INFO] Total time: 15.081s

5 [INFO] Finished at: Sun Jun 24 18:16:23 JPT 2012

6 [INFO] Final Memory: 23M/179M

7 [INFO] -----------------------------------------

Figure E.2: End of the output of a successful Maven build
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Maven is based on Java and is a free software multi-platform building tool. The execution of mvn will
yield zero as the return code if no problem was found. A non-zero will be yielded if any error prevented the
Maven script from terminate successfully. This feature makes it easy for an external script to call Maven
and to check if the execution was successful.

The build process may take a few minutes. During this process Maven compiles all source code and
execute all unit tests. During the build process Maven will check if all dependencies (all JAR files that are
needed by DSO classes) are available in the local repository. If any dependency is not available, Maven will
download it. Therefore, the first run of the Maven build may take a long time if Maven needs to download
a lot of files.

Maven creates all of its artifacts in directories called “target” inside of each sub-project. Calling “mvn
clean” will clean these directories. Cleaning these directories enables the user to eliminate the eventual
influences of a previous build.

E.1.1 Integration tests

Although we have tried to cover most of the possible sources of defects in our software, it is not possible
to fully test our software using JUnit alone. For example, it is not possible to check if our software will
behave correctly when it uses the ActiveMQ as the underlying message delivery infrastructure. We need
then another kind of test that mimics a real usage of the software. We call these tests the integration tests.

We also provide a script that conducts the integration tests automatically. Calling the integration tests
is as simple as calling this script. Figure E.3 shows how to call this script. Calling it without any argument
will get the script to print all possible arguments.

1 user@host -name :/# ROOT/dso -00- distribution/src/test/bin/integration_test←֓
--test

Figure E.3: Starting the integration tests

These tests will check if a DSO distribution was already built by a previous call to “mvn”. If such
distribution exists, the script will create an instance of the ActiveMQ server, several containers connected
to this ActiveMQ server, and will call some services on these containers.

Figure E.4 shows the end of the output of a successful execution of the integration tests. The output
shows a message printed by the admin tool. This message shows the details of a currently running container.
The integration tests leave an instance of ActiveMQ and an instance of a container, which can be used by
the user to manually execute any further test.

1 Found 1 container:

2
3 0. Node UUID: 00000000 -0000 -0000 -0000 -000000000002

4 Service name: example.CounterService

5 PID: 31552

6 Up time: 3949 ms

7 Display name: org.dso.service.container.Container ROOT/dso -00-←֓
distribution/target/integration_tests -tmp/data/dso000002.properties

8
9 SUCCESSFUL!

10 Elapsed time: 82 seconds

Figure E.4: End of a successful execution of the integration tests

If the user does not want to use the ActiveMQ instance and the container, the user can simply call the
integration test with the “clean” argument, as in Figure E.5. This command will stop the DSO containers,
stop the ActiveMQ process, and remove all files related with the integration tests, which are located at
ROOT/dso-00-distribution/target/integration tests-tmp/.



E.2. MODULES 165

1 user@host -name :/# ROOT/dso -00- distribution/src/test/bin/integration_test←֓
--clean

Figure E.5: Cleaning an integration test

E.1.2 Build and integration tests in a single command

We have also prepared the integration test command to call the mvn command. This is convenient for
cases in which we want to completely build the modules from the source code and perform the integration
tests. Doing it all in a single step is particularly useful for developers while changing the source code of
our modules. Figure E.6 shows how to print the help of the integration test script. As the help message
shows, calling integration test –mvn-clean-mvn-test is the most complete option. It cleans previous builds
and performs the complete build and integration tests.

1 user@host -name :/# ROOT/dso -00- distribution/src/test/bin/integration_test←֓
--help

2 This script can perform 4 different procedures. Each procedure is ←֓
activated by a specific argument.

3 Tasks in each procedure are as follows:

4 A Cleans previous integration tests

5 B Performs the integration tests

6 C Calls "mvn clean" on the base project

7 D Calls "mvn" on the base project

8 Usage:

9 ./ integration_test --clean A

10 ./ integration_test --test A B

11 ./ integration_test --mvn -test A D B

12 ./ integration_test --mvn -clean -mvn -test A C D B

Figure E.6: Cleaning an integration test

E.1.3 Prerequisites

All pieces of software may be built from any terminal in which JDK and Maven are installed. The whole
software was written in Java, therefore both build and execution should work in a number of platforms.

Maven dependencies are managed with the use of a repository of JAR files. During the execution of a
Maven build script, the execution of the script gathers data to determine the set of dependencies needed for
the build. If any dependency of a certain module is not met by another module in the same build process,
Maven treats this dependency as external to the build and searches for the JAR file of this dependency in the
repository. If the repository already contains this dependency, Maven will proceed with the build process.
Otherwise, Maven will download the dependency from a Maven repository on the Internet.

For the user who invokes the build of this project, the consequences of this approach is that the first
build may take time, as all dependencies are downloaded from the Internet.

E.2 Modules

The successful execution of the mvn command will generate several JAR files, which are placed in the target
directory inside of each module. Maven is built around the concept that each module exports one main
artifact. In our modules, all artifacts are JAR files.

In this section we both introduce each module and the location of the JAR file that each module generates
as its main artifact. This is the list of all artifacts:

1. ROOT/DMViewer/target/DMViewer-0.1.jar

2. ROOT/DynamicClassLoader/target/DynamicClassLoader-0.1.jar
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3. ROOT/hyphenType/target/hyphenType-0.1.jar

When we call the mvn command at the ROOT directory, Maven checks the dependencies between modules
before actually start building any module. When we execute the General Build and a certain module a
depends other modules b and c, Maven will make sure that the artifacts of b and c are available before
starting to build a.

But when we call the mvn command at any specific module (while the current directory is a child of
ROOT), Maven will not resolve inter-module dependencies since only the Global Build at ROOT/pom.xml
contains the locations of all modules. So if we want to manually build a, we need first to build b and c
manually and install b and c in the local Maven repository.

Fortunately, building and installing a module in the local Maven repository can be done simply by
calling the “mvn install” command. For instance, assuming that neither b nor c have any dependency on
other modules, we can build a using the sequence of commands in Figure E.7. Here we also assume that
ROOT is /media/distribution.

1 user@host -name :/# cd /media/distribution/b

2 user@host -name:/ media/distribution/b# mvn install

3 user@host -name :/# cd /media/distribution/c

4 user@host -name:/ media/distribution/c# mvn install

5 user@host -name :/# cd /media/distribution/a

6 user@host -name:/ media/distribution/a# mvn

Figure E.7: Building the module a manually.

As the general build, the build process of each module is configured to generate the basic artifacts using
only the mvn command. But each module may also offer additional artifacts that are built using the mvn
command followed by a target name. At follows we present details about each module and their specific
targets, when available.

E.2.1 DMViewer

The simulator.

E.2.2 DynamicClassLoader

A class loader that makes it possible to load new items to the class path during run time.

E.2.3 hyphenType

hyphenType is a tool to read command line inputs as in a Linux terminal. We needed to create this tool in
order to make it easier for us to create text based programs. Details about this tool are out of the scope of
this text and the reader should refer to the documentation generated by Maven.

Site target

The site target will generate a site containing a detailed documentation about the hyphenType tool. The
documentation covers not only how to use the tool, but also the Javadocs documentation, and reports on
unit test coverage and source code quality. The site target can be called using the command “mvn site:site”
and the site is generated as a series of files under the ROOT/hyphenType/target/site directory.

PDF target

The PDF target will generate a PDF file containing the same documentation that is generated in the site
target. The PDF target can be called using the command “mvn pdf:pdf” and the PDF is generated at
ROOT/hyphenType/target/pdf/maven-pdf-plugin.pdf.
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E.2.4 DSO

dso-00-distribution

This project serves two purposes: (1) to create a distribution containing everything a user needs to use the
middleware, and (2) to perform an integration test to check, as described before.

dso-01-core

Contains all core classes. All other projects depend on this one, but the dso-01-core project does not depend
on any other project.

dso-02-messaging-01-activemq

The ActiveMQ messaging driver. This is a separate project in order to allow for users to chose whether or
not they want to use the ActivemQ JMS implementation.

dso-03-client-01-jython

The Jython client project.

dso-04-osintegration-01-linux

An operating system integration ready to create and manage Linux processes.

dso-05-build-01-maven-plugin

The Apache Maven plugin to allow for programmers to use the DSO pre-processor.

dso-06-example-01-counter-service and dso-06-example-02-multiplication-service

Two examples of usage of the DSO middleware. These examples are also used to perform integration tests.

DynamicClassLoader

The dynamic class loader project.

hyphenType

The hyphenType library, which is used to read command line arguments and parse them.
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