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Abstract

An analytical method for inhomogeneous turbulent flow has been proposed on the basis of

the mean-Lagrangian-coordinate system with an emphasis on the general covariance under

the coordinate transformation. The mean-Lagrangian-coordinate system, which is defined to

be a coordinate system convected by the mean flow, is excel in describing the turbulence-

statistical quantities in generally covariant manner. By rewriting all the physical quantities

and laws from the Eulerian frame to the mean-Lagrangian coordinate system, the renormal-

ized perturbation theory has been developed to be applicable to generally-covariant turbulence

correlations.

As an example, the present theory has been applied to the investigation of the Reynolds

stress. As a result, a temporally non-local representation has been obtained in generally

covariant form, which is a generalized result of multiple-time analysis in homogeneous-

turbulence methodology. Applying the temporal-locality approximation, an algebraic rep-

resentation of the Reynolds stress has been obtained with some new effects such as the

Oldroyd derivative of the strain rate, spatial derivatives of the strain rate and the absolute

vorticity.
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Part I

Introduction

Turbulent flow

Fluid is a physical model applied to deformable material such as gasses or liquids; atmosphere or water are
typical examples which always appear in any circumstances in our daily lives. These typical fluids have two
oppositional properties; one is the nonlinearity which promotes complex and fine motion in space and time,
and the other is the viscosity acting as resistivity against the complex motion in space. The ratio of these
two effects can be most simply characterized by what is called the Reynolds number ; as the Reynolds number
increases, the nonlinearity exceeds the viscosity and makes flow more complex, disordered and unstable, and
finally flow reaches what we call turbulent flow which is the exact target of our interest (Reynolds 1883).
Under the low-Reynolds-number condition, the turbulent motion is suppressed by the viscosity and flow tends
to show ordered and stable behaviors. In contrast to the terminology “turbulent flow”, these ordered flows
are called the laminar flow.

One of the most typical features of turbulence is the strong mixing which causes huge effective diffusion
of momentum, temperature or chemical substances, while the smaller mixing is driven by molecular diffusion
in non-turbulent flow. These turbulence diffusion rates are often Reynolds-number times as large as their
molecular-diffusion counterparts. Thus, in most of real-world turbulent flow such that the Reynolds num-
ber exceeds several thousands or millions, the turbulence effect governs the transportation phenomena; it
effectively promotes the mixing of the fuel and air in engines, it dramatically enhances the drag force on the
surfaces of cars, ships or airplanes, it helps the oxygen to dissolve into ocean, it equalizes the temperature
of the atmosphere, it diffuses the gigantic magnetic flux in the sun, interstellar gasses or galaxies. Namely,
almost everywhere in our universe, there are lots of phenomena which can never be explained without ap-
propriate knowledges about turbulence. Because of its universality and wide applicability, fluid turbulence
has been the targets of various scientific fields, and the disclosure of its essence should have a huge impact
on wide variety of fields of both pure and applied sciences.

Statistical approach to turbulent flow

Because turbulent flow is stochastic, some kinds of statistical averaging are often applied to it. The spatial
and time averaging are available for the spatially homogeneous and stationary systems respectively. When
the system is homogeneous in certain directions, we may be able to average quantities in those directions;
channel turbulence is a typical example whose statistical averaging is often taken in the plane parallel to the
wall. In more general case where flow has neither homogeneity nor stationarity, one may take average about
the ensemble of realizations, which is called the “ensemble average”.

The most fundamental problem of the statistical analysis of turbulence is the closure problem; because of
the nonlinearity, statistically-averaged quantities cannot form a closed set of finite-number equations despite
its original is closed. So far, various types of closure models have been proposed by researchers according
to their purposes. We can roughly divide these modelings into two strategies; homogeneous-turbulence and
inhomogeneous-turbulence closures. For industrial applications where physical properties vary in space, the
mean flow is the primary interest so that the closure model is desired to be easily handled with spatially-
varying mean quantities. Thus these models are usually closed only in terms of one-point one-time quantities.
On the other hand, researchers, who are interested in the fundamental mechanism in the smaller-scale flow
rather than the mean flow, may choose the homogeneous turbulence since they do not have to consider about
the mean flow nor boundaries, which makes mathematical analysis remarkably simple. In the homogeneous-
turbulence methodologies we often use multiple-point multiple-time quantities which are connected to detailed
structures such as eddies, vortex tubes, vortex sheets, etc. Both homogeneous-turbulence and inhomogeneous-
turbulence closures have their merits and problems respectively.

Homogeneous and inhomogeneous turbulence methodologies

Homogeneous-turbulence closures enable us to analyze the small-scale structures in details, and there are
successful models enough able to reproduce some of fundamental real features with few empirical constants.
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However, the homogeneity is no more than an ideal situation and lack of reality. On the other hand,
inhomogeneous-turbulence closure is directly connected to the practical applications. However, inhomogeneous-
turbulence models often include lots of empirical functions or constants in order to make the model applicable
to as wide range of situations as possible. Namely, theoretical supports and wide applicability are often not
compatible. Thus theoretically well-supported methodology for inhomogeneous turbulent flow may be desired
for the further development of this field.

For several decades, theoretical researches for turbulent flow had been conducted mainly on homogeneous
turbulence with taking advantages of its statistical homogeneity, and remarkable successes have been made in
extracting some of primitive and fundamental properties such as Kolmogorov’s scale-similarity laws in time
and space (Kolmogorov 1941). Direct-interaction approximation (DIA), renormalized perturbation theory
(RPT) and renormalization group (RNG) theory are the major groups of these works and all enable us to
derive approximated laws based on mathematical structures of the Navier-Stokes equation (accompanied
by the incompressibility condition) which is the exact law of nature (Kraichnan 1959, Wyld 1961, Foster
et al. 1976, 1977). Although homogeneous turbulence is rather ideal situation considerably simplified in
contrast to the real turbulence, these studies tell us detailed information in fine structures via multiple-point
multiple-time quantities such as the second-order velocity correlation; Lagrangian-history direct-interaction
approximation (LHDIA), abridged LHDIA (ALHDIA), Lagrangian renormalization approximation (LRA) or
Lagrangian direct-interaction approximation (LDIA) are good examples which have successfully derived the
Kolmogorov’s scale similarity and other qualitative and quantitative agreements with experiments at least in
terms of the lower order moments without using any empirical parameters (Kraichnan 1965, Kaneda 1981,
Kida & Goto 1997).

On the contrary, for inhomogeneous turbulent flow which is observed in the real world, self-consistent
methodologies have not been well-established. This originates from immutable differences between the ideal
and real turbulence; in the real world turbulence is inevitably associated with anisotropy and inhomogeneity
which drive turbulent motion via energy-cascading process. For anisotropic case, we cannot characterize the
dynamics of turbulence only by scalar variables, unlike homogeneous isotropic case, and we cannot avoid to
deal with complex equations for multiple-component variables. Besides, due to inhomogeneity, it is difficult to
discriminate clearly the scale of fluctuation and that of the global structure of the mean field so that we have
to understand the dynamics of those two simultaneously. Although inhomogeneous turbulence studies are
necessary in explaining the real phenomena, these mathematical complexities prevent us from approaching
to it in analytical manners.

Thus, in the inhomogeneous-turbulence studies, phenomenological understanding is very important. The
closure model in industrial fields is referred to as the “turbulence model”, which is often based on phe-
nomenology and some mathematical constraints such as tensor analysis or dimensional analysis. Turbulence
models are roughly classified into first-order (algebraic) and second-order models. The first-order model is
an attempt to represent turbulence fluxes in algebraic ways; linear-eddy-viscosity model of the Reynolds
stress (momentum flux due to turbulence) is representative of this which is originally based on the analogy
of molecular viscosity of the Newtonian fluid. Second-order model is more elaborate and challenging attempt
to construct the transport equation of the turbulence fluxes themselves, which seems to be more precise
than the former since it incorporates into the model the detailed physical processes of them such as convec-
tion, production, redistribution, diffusion and dissipation due to turbulence motion. Strategies in turbulence
modeling have been gradually improved by enduring trial and error, and now these models are applied to
many practical cases such as homogeneous anisotropic flows, plane mixing layer, plane jet, symmetric and
asymmetric channel flows (Hanjalić & Launder 2012).

In spite of these remarkable successes, turbulence models are still under the development and researchers
have to continue the endless effort still now. The main cause of the situation may be attributed to its empirical
and intuitive processes. Since these models inevitably include some uncertainties in functional forms of the
modeled terms and constants attached to them which are usually optimized in order that the model is
consistent with experiments or simulations of some canonical flows. For each target, one may construct
elaborate models which can reproduce the real features as accurately as possible by tuning them. However,
as long as one pursues the universal model applicable to as various cases as possible, these conventional
techniques may be indirect approaches to the goal.

Another negative aspect of turbulence modeling is that it lacks direct connection with homogeneous-
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turbulence methodology. Turbulence models are usually based on one-point one-time quantities while
homogeneous-turbulence closures on multiple-point multiple-time quantities. However, it is needed to bridge
the gap between the turbulence modeling and homogeneous-turbulence methodology since the successes of
ideal-turbulence theories clearly indicate the fundamental importance of the multiple-point multiple-time
variables in the real turbulence. Although this bridging has been partially achieved by Leslie (1973) in
channel-flow by comparing the Reynolds-stress transport equation and DIA energy equation, there is still
enough room to search for more general correspondence between them.

Theoretical approach to inhomogeneous turbulent flow

Some of pioneering attempts for shear turbulence had been done from theoretical viewpoints. Kraichnan
(1964) applied his DIA methodology to shear turbulence and obtained analytical expressions for the Reynolds
stress and the scalar flux. Leslie (1973) also applied DIA to channel flow with a coordinate-decomposition
technique and theoretically derived the transport term of the turbulence-energy and Reynolds-stress equations
which correspond to the model by Hanjalić and Launder (1972). Unfortunately, these remarkable works are
accompanied by unavoidable complexities in mathematical manipulations and it seems to be far difficult to
extend these strategies to more general flow with complex boundaries. More manageable strategies have
evolved from RNG; Yakhot and Orszag (1986) extended the RNG procedures to inhomogeneous turbulence
and derived the K-ϵ model including numerical coefficients. Rubinstein and Barton (1990) utilized RNG to
obtain so called the nonlinear K-ϵ model where the Reynolds stress is expressed as the quadratic function of
the velocity gradient.

Another type of inhomogeneous-turbulence theories has evolved from RPT strategy; two-scale direct-
interaction approximation (TSDIA) which is a combination technique of multiple-sale expansion in the sin-
gular perturbation method and DIA (Yoshizawa 1984). TSDIA is mainly based on the following physical
insight. The mean fields often have larger-scale variations than those of fluctuations in both space and time
so that the spatial and time derivatives of the mean fields, which are causes of turbulence motion, may be
evaluated to be small relative to those of the instantaneous fields highly fluctuating in space and time. Thus
TSDIA incorporates these mean-field effects as perturbations, and homogeneous-turbulence field, to which we
can apply the homogeneous-turbulence theories, is taken as the non-perturbative field. Unlike the traditional
inhomogeneous-turbulence modelings, TSDIA enables us to investigate various statistical quantities on the
basis of the mathematical structures of the governing equations.

This strategy has been applied to various turbulence phenomena so far; non-linear turbulence viscosity
effect (Yoshizawa 1984, 1985a, Nishizima & Yoshizawa 1987, Okamoto 1994), turbulence diffusion of scalars
passively convected by fluids (Yoshizawa 1985b), chemical reaction in turbulent flow (Hamba 1987), turbu-
lence of compressible fluid (Yoshizawa 1990a, 1991, 1992, 2003), frame-rotation effect (Yokoi & Yoshizawa
1993, Okamoto 1995) or turbulence dynamo and magnetic reconnection effects in magneto-hydrodynamic
turbulent flow (Yoshizawa 1985c, 1990b, Yokoi & Yoshizawa 1993, Guo et al. 2012). Especially for the charge-
neutral incompressible fluid, TSDIA theoretically derived some of two-equation algebraic models, which are
practically-used strategies in mechanical engineering society very often, without any empirical parameter.
Furthermore, TSDIA is able to derive even new effects that have never been expected from the dimensional
nor tensor analyses. Although TSDIA still contains some unclear assumptions, these successes should be
emphasized as great advantages over the traditional modeling.

Despite TSDIA has shown prominent successes as theoretical methodology in the above senses, it has
not achieved the entire goal of the inhomogeneous-turbulence closure. One of the most obvious shortfalls is
incapability of quantitative (or sometimes even qualitative) agreement with some real cases; models directly
derived from TSDIA are sometime inconsistent with the real features, and thus it is needed in its practical
use to modify some of constants and model forms derived as purely theoretical results. For example, the
second-order non-linear algebraic model derived from TSDIA cannot reproduce the proper inequality of the
turbulence intensities of simple shear flow. Thus the theoretical results from TSDIA are not always validated
even in some canonical flows.

Another problematic fact, which has not been well-recognized so far, is that TSDIA contains inevitable
inconsistencies in the rule of coordinate transformation. This may be rephrased that TSDIA breaks the
covariance under several types of coordinate transformations. As will be shown later, the general covariance
under the coordinate transformation is one of the most fundamental properties of turbulence, and gives a strict
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mathematical constraints to its dynamics. Thus we should take the general covariance as the fundamental
property for the turbulence theory, which will provide us a strong guideline for the construction of the physical
models. However, the models of such generally covariant quantities derived by TSDIA cannot satisfy the
general covariance, mainly because it is formulated in Eulerian framework. As a consequence, the results
of the TSDIA cannot reproduce the proper rule of the coordinate transformation. Therefore we have to
reconstruct the theory in alternative ways, since the rule of coordinate transformation is one of the most
fundamental properties in any theory of physics and the inclusion of such fundamental features often brings
us some remarkable improvements in the physical modeling.

Composition of thesis

It is the objective of this thesis to show the importance of the general covariance and to formulate the
new theoretical approach to the inhomogeneous-turbulence closure consistent with the general covariance.
For this purpose, we first review some of fundamentals in mathematical treatments, phenomenologies and
the conventional strategies of turbulence physics in Part II. Part III is the backbone of the thesis. In §5 the
importance of the covariance under the general coordinate transformations is explained. In §6, the importance
of the mean-Lagrangian formalism is emphasized from the view point of both multiple-time closure and the
general covariance. In §7 the details of the formulation of the present theory are given. In §8, the present
theory is applied to the Reynolds stress as an example. In particular the temporally non-local representation of
the Reynolds stress clearly shows how the mean-Lagrangian representation is favorable in generally covariant
formulation. As the result of the temporal-locality approximation, an algebraic representation of the Reynolds
stress is derived in covariant form.
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1 GOVERNING LAW OF FLUID

Part II

Conventional methodologies
In this part, we will review fundamentals of the statistical-turbulence methodologies. First the concept of ensemble
average and the Reynolds decomposition, which are very standard descriptions of turbulence, will be introduced.
Next we will review the phenomenologies, mathematical treatments and conventional modelings of homogeneous
and inhomogeneous turbulence. Finally we will see a brief summary of TSDIA which is a theoretical approach to
inhomogeneous turbulence.

We mainly use the orthonormal coordinate system as a frame of reference so that we do not have to distinguish the

covariant and contravariant components of tensors. Thus we attach indices on the bottom-right side of each symbol

to describe tensor components. Spatial derivative operation ∂/∂xi on an arbitrary tensor Cabd... is abbreviated as

Cabd...,i if necessary. Laplacian ∂2/∂xi∂xi is written as △.

1 Governing law of fluid

In the inertial frame of reference, continuum, including fluid, is governed by the conservation laws of momen-
tum, energy and mass, which are given respectively by

ρ
d

dt
vi = σij,j , (1.1)

ρ
d

dt
u =

1
2
σijsij − qj,j , (1.2)

d

dt
ρ + ρvj,j = 0, (1.3)

where v, ρ, σ, u and q are velocity, density, stress, internal energy per unit mass and heat-flux density
respectively. s is the strain rate given by sij = vi,j + vj,i. The operator d/dt = ∂/∂t + vj∂/∂xj is the
Lagrangian derivative. The above equation holds not only for fluid but also for general continuum so that we
should introduce some restrictions to u, σ and q to obtain the fluid equations. Newtonian fluid is defined by
the following constitutive equation where stress is represented as an isotropic-linear function of strain rate.

σij = −pδij +
1
2
λskkδij + µsij , (1.4)

where p is the pressure, λ and µ are the first and second molecular-viscosity coefficients. We apply the
Fourier’s heat-conduction law to the heat-flux density q and obtain

qi = −κT,i , (1.5)

where T is the temperature, κ is heat-conduction coefficient. Here we introduced new scalar variables p,
T , λ, µ and κ which are all thermodynamical variables. Generally speaking, thermodynamical state of the
single-chemical-species fluid is determined only by two thermodynamical variables so that the above equations
(1.1)-(1.5) form the closed system for v and two of thermodynamical variables. If we choose the mass density
and the temperature as the representative thermodynamical variable, the rests are represented as p = p (ρ, T ),
u = u (ρ, T ), µ = µ (ρ, T ) and κ = κ (ρ, T ) (In case of the ideal gasses, we have u = CvρT , p = RρT where T
is the temperature, Cv and R are constants). By assuming the incompressibility, the system of equations is
simplified into the following;

ρ
d

dt
vi = −p,i + (µij),j , (1.6)

ρ
d

dt
u =

1
2
µsijsij + (κT,j),j , (1.7)

vj,j = 0. (1.8)

If we neglect the temperature dependence of µ and κ, (1.6) and (1.7) are reduced to

ρ
d

dt
vi = −p,i + µ△vi, (1.9)
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2 STATISTICAL METHODOLOGY

ρ
d

dt
u =

1
2
µsijsij + κ△T. (1.10)

Here we should recognize that (1.9) and (1.8) form the closed system for v and p without T . Namely the
temperature gives no contribution to fluid dynamics. (1.9) is called Navier-Stokes equation. In this thesis we
discard the energy equation (1.10) and deal with the following two equations as the fundamental laws;

d

dt
vi = −p,i + ν△vi, (1.11)

vj,j = 0. (1.12)

Here we divided the pressure by the constant density and put p/ρ → p for simplicity. Although ν = µ/ρ is
often called the kinematic-viscosity coefficient, we call ν as the molecular viscosity to emphasis the contrast
between the molecular-viscous and turbulence-viscous effects.

2 Statistical methodology

The motion of fluid is governed by a deterministic system of equations (1.11) and (1.12) which had already
been established in 19th century (Stokes 1845). Thus one might think that there was no need to pay special
attentions to turbulent flow since it is totally determined by (1.11) and (1.12) with proper boundary and initial
conditions. However, this is not true. Because of the strong nonlinearity, even a slight disturbance given at
certain time can cause the huge departure from its original solution within finite time, which is often referred
to as the “sensitive dependence on the initial condition” of nonlinear systems. If we had a proper way to deal
with differential equations without any error or approximation, we could predict turbulent flow in details
enough. However, in reality, we do not have general analytical solutions to these highly complex phenomena,
and thus we have to rely on the numerical analysis which always contains finite errors of discretization. Thus,
so far, we have no way to predict nor control the detail motion of turbulent flow at every location and time.
Besides, it is also impossible to give the detailed predictions to the real phenomena since our observations
always contain finite errors. Thus we should start everything with recognizing that turbulent flow is actually
stochastic in spite of its fundamental determinism.

Fortunately researchers had found another possibility of turbulence research; the statistical regularities.
Although instantaneous properties of turbulence look totally at random, there are lots of universal regularities
in the mean properties so that researchers hope there will be some simple and beautiful mathematical laws
behind the complexities and chaos, which has been the pure scientific motivation of turbulence researches.
Besides, in contrast to each realization of turbulent flow, the averaged properties can be reproduced and
observed experimentally so that they can be the target of controls in industrial applications. For example,
although we cannot predict nor control the instantaneous drag force at every point on a wall, we can do it for
drag force averaged on the wall. Kolmogorov (1941) had established statistical phenomenologies of small-scale
turbulence and found some beautiful scale similarities, which had been confirmed in various experiments and
computations in later works. These discoveries of universal regularities motivate researchers to establish the
statistical methodology for turbulence and this thesis is also about a branch of these attempts.

2.1 Ensemble average and the Reynolds decomposition

In statistical approach, ensemble averaging is the fundamental operation to establish its formalism. First we
denote the ensemble-averaging operation by ⟨ ⟩; the average value F of an arbitrary dynamical variable f
in time and space is supposed to be given by F = ⟨f⟩. Obviously averaging is linear operation so that for
arbitrary dynamical variable f and g we have

⟨Cff + Cgg⟩ = Cf ⟨f⟩ + Cg⟨g⟩, (2.1)

where Cf and Cg are constants. Here we should add an important insight of this operation; averaging of
average is identical to averaging once. Namely we have

⟨⟨f⟩⟩ = ⟨f⟩ = F. (2.2)
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3 HOMOGENEOUS TURBULENCE 2.2 Statistical unclosedness and need for turbulence closure

The fluctuation f ′ of f is given as the deviation from its average; namely f ′ = f − ⟨f⟩. Because of (2.2) we
obtain

⟨f ′⟩ = ⟨f − ⟨f⟩⟩ = ⟨f⟩ − ⟨⟨f⟩⟩ = F − F = 0, (2.3)

i.e. any fluctuation is zero-mean. This decomposition operation between the mean and fluctuation based on
the ensemble averaging is called the “Reynolds decomposition” (Tennekes & Lumley 1972).

2.2 Statistical unclosedness and need for turbulence closure

By applying the above Reynolds decomposition to (1.11) and (1.12), we obtain the governing equation for
the mean fields and fluctuations which are given by

D
Dt

Vi = −P,i + ν△Vi − Rij,j , (2.4)

Vj,j = 0, (2.5)

(
D
Dt

− ν△
)

v′i +
(
v′iv

′
j

)
,j

+ p′,i = −Vi,jv
′
j + Rij,j , (2.6)

v′
j,j = 0, (2.7)

where D/Dt = ∂/∂t + Vj∂/∂xj is the Lagrangian derivative based on the mean velocity. Rij = ⟨v′
iv

′
j⟩ is

called the Reynolds stress which represents the effective momentum flux due to turbulence motion and this
gives the direct contribution of the turbulence to the mean flow. For four unknowns V, P , v′ and p′ the
above set of equations are necessary and sufficient so that it is exactly the closed system. In constructing
the statistically closed system of equations, however, we are supposed to close the system only in terms of
statistically-averaged values so that we have to calculate R without using fluctuation v′ explicitly. The most
straightforward way may be to construct the equation of R, which is written as(

D
Dt

− ν△
)

Rij = P R
ij − ϵij + Πij − Tijk,k , (2.8)

where
P R

ij = −Vi,kRkj − Vj,kRik , (2.9)

ϵij = 2ν⟨v′
i,kv′

j,k⟩ , (2.10)

Πij = ⟨p′ (v′
i,j + v′

j,i)⟩ , (2.11)

Tijk = ⟨p′(v′
j δik + v′i δjk)⟩ + ⟨v′

iv
′
jv

′
k⟩ . (2.12)

PR , ϵ, Π and T are called production, dissipation, redistribution and transportation flux respectively. Our
equation contains new unknowns, especially third-order moments in redistribution and transportation term.
In exact treatment of this equation we need to solve these third-order correlations, whose equations include
fourth-order properties as well. This is the immortal problem of nonlinear system including fluid turbulence;
namely equation for a moment at certain order inevitably includes higher-order moments and thus we always
strike into infinite hierarchy which prevents us from investigating the system in exact procedures. In practical
analysis we need to truncate this hierarchy by representing the higher-order correlations in terms of the lower
quantities. This is referred to as the “closure problem” and it has been the most fundamental target of the
researches of this field until now.

3 Homogeneous turbulence

In statistical treatments of turbulence, we have to introduce statistical dynamical variables which characterize
the nature of turbulence. In primitive stage, one may introduce the correlation length or time in the physical
space, with which we can easily imagine the picture of turbulence eddies traveling in the physical space.
However they lack the information about the smaller-scale eddies; since the correlation length and time scales
given in physical space are of the largest-eddy motion and the smaller-scale structures are hidden behind
these properties. In order to investigate the fine-scale physics of turbulence, let us introduce a concept
of homogeneous turbulence where all the turbulence quantities except for the mean velocity are spatially

7



3 HOMOGENEOUS TURBULENCE 3.1 Representative dynamical variables

uniform. Homogeneous turbulence was first introduced by Taylor (1935) as the idealized situation of the
real turbulence; in the region enough apart from the wall, turbulence may be taken as locally homogeneous
so that homogeneous turbulence may be able to illustrate some of real features. Although this statement is
not completely validated in fluid turbulence, homogeneous turbulence gives us canonical model of small-scale
turbulence in the real nature which can be utilized in the later studies of inhomogeneous turbulence.

Homogeneous turbulence is an ideal turbulence. The whole statistical quantities are identical under spatial
translation and hence the degree of freedom is greatly reduced. As a result of this simplifications, we can
analyze the fine structures in detail without interference of non-uniform structures in larger scale. In order
to reveal the smaller-scale structures, the Fourier transformation is available. Although the Fourier analysis
is often incapable of illustrating the spatial structures in physical space, it enable us to investigate each size
of motion separately.

3.1 Representative dynamical variables

First of all we set up an orthonormal coordinate system {x1, x2, x3} as an inertial frame of reference. In
general, the correlation of dynamical variables f(x, t), g(x′, t′), h(x′′, t′′) are the functions of x, x′, x′′, t,
t′ and t′′ all of which are independent variables. In our situation, however, the system is now statistically
homogeneous so that any correlations are identical under arbitrary translations. For example the correlation
of dynamical variables f(x, t), g(x′, t′), h(x′′, t′′), should depends on their relative positions; namely

⟨f(x, t)g(x′, t′)h(x′′, t′′)⟩ = C(x′ − x,x′′ − x, t, t′, t′′), (3.1)

which depends on only two spatial variables. Thus the functional form is simplified very much which makes
later analysis very much simpler than the general inhomogeneous cases. In particular, the one-point correla-
tions such as the turbulence energy K(≡ ⟨v′ · v′⟩/2) or its dissipation rate ϵ(≡ ν⟨∇v′ · ∇v′⟩) are all uniform
in the space.

Next, let us see the Fourier spectra of statistical quantities. Providing there is no boundary and Fourier
integrals are convergent, we obtain the spectrum of arbitrary dynamical variable f(x, t) as

f(k, t) =
1

(2π)3

∫
d3 xe−ik·xf(x, t) = F|kx f(x, t), (3.2)

where we define the Fourier-transformation operator F as follows in this thesis;

F|kx× ≡ 1
(2π)3

∫
d3 xe−ik·x × . (3.3)

Here we introduce the second-order correlation of velocity spectra which is given by

Uij(k, t;k′, t′) = ⟨v′
i(k, t)v′j(k

′, t′)⟩. (3.4)

This is the general representation which holds for inhomogeneous cases. Here we add the statistical homo-
geneity as a constraint and obtain

Uij(k, t;k′, t′) =
1

(2π)3

∫
d3 xe−k·x 1

(2π)3

∫
d3 x′e−k′·x′

⟨v′
i(x, t)v′

j(x
′, t′)⟩

=
1

(2π)3

∫
d3 x′e−i(k+k′)·x′ 1

(2π)3

∫
d3 x e−ik·(x−x′) Uij(x − x′; t, t′),

(3.5)

where U(x − x′; t, t′)(≡ ⟨v′(x, t) ⊗ v′(x′, t′)⟩) is the second-order velocity correlation in physical space. For
statistical homogeneity, the integral

∫
d3 x exp[−ik · (x − x′)] Uij(x − x′; t, t′)/(2π)3 does not depend on x′

so that we can conduct the two volume integrations independently. Thus we obtain

Uij(k, t;k′, t′) = δ3(k + k′)Uij(k; t, t′), (3.6)

where Uij(k; t, t′) = F|kx−x′ Uij(x − x′; t, t′). Let us think the simple physical meaning of Uij(k; t, t′). Using
Uij(k; t, t′), the turbulence energy K is given by the following;

K(t) =
1
2

∫
d3k Uii(k; t, t). (3.7)

8



3 HOMOGENEOUS TURBULENCE 3.2 Dynamical equation

Thus Uii(k; t, t)/2 represents the contribution of each mode k to the total energy. Likewise we can ana-
lyze various properties of turbulence motion of each size separately. For homogeneous and isotropic case,
Uij(k; t, t′) is simply represented only by three real scalar functions Q(k; t, t′), R(k; t, t′) and S(k; t, t′) as

Uij(k; t, t′) = δijQ(k; t, t′) +
kikj

k2
R(k; t, t′) + ϵijlklS(k; t, t′). (3.8)

In addition, for incompressible case we have kj vj(k, t) = 0 and thus we have kj Uij(k; t, t′) = 0 as well, which
yields

kj Uij(k; t, t′) = δijkjQ(k; t, t′) +
kikj

k2
kjR(k; t, t′) + iϵijlklkjS(k; t, t′)

= kiQ(k; t, t′) + kiR(k; t, t′)
= 0.

(3.9)

Thus we have R(k; t, t′) = −Q(k; t, t′). Finally we obtain

Uij(k; t, t′) =
1

4πk2

{
Pij(k)E(k; t, t′) + iϵijl

kl

2k2
H(k; t, t′)

}
, (3.10)

which is represented by only two real scalar functions E(k; t, t′) = 4πk2Q(k; t, t′) and H(k; t, t′) = 8πk4S(k; t, t′)
each of which is related to turbulence energy and helicity. Indeed wavenumber integral of each function gives
the total turbulence energy K(t) and helicity H(t) ≡ ⟨v′ · rotv′⟩ respectively as K(t) =

∫ ∞
0

E(k; t, t) dk and
H(t) =

∫ ∞
0

H(k; t, t) dk. Pij = δij − kikj/k2 is a projector to solenoidal component1.

3.2 Dynamical equation

In homogeneous isotropic turbulence, the two-point velocity correlation is represented only by two scalar
functions E(k; t, t′) or H(k; t, t′). And we can extract the length, velocity and time scales of turbulence
only by E(k, t). In this sense E(k, t) could be a representative dynamical variable which describes simple
and basic characters of turbulence. Thus let us construct its dynamical equation. The exact analysis of
homogeneous isotropic turbulence requires the absence of inhomogeneity and anisotropy from the system,
i.e. the non-uniform distribution of the Reynolds stress or the mean-flow gradient should be removed from
(2.6). However, as has been stated above, these inhomogeneity and anisotropy are the exact energy sources
in the real phenomena. The equation for the turbulence energy is given by taking the contraction of indices
i and j of (2.8) and dividing the both sides by 2, that is(

D
Dt

− ν△
)

K = −1
2
RijSij − ϵ −

⟨(
p′ +

1
2
v′

jv
′
j

)
v′i

⟩
,i , (3.11)

which means that energy is produced by anisotropic stress and transported by the gradients of pressure-
velocity and triple correlations. For purely homogeneous isotropic case, the above is reduced to ∂K/∂t = −ϵ,
where turbulence is monotonically decaying. Thus we cannot sustain turbulence without inhomogeneity
and anisotropy. We can avoid this trade-off problem between homogeneous-isotropy and sustainability by
adding an external random force whose spectrum is distributed only in lower-wavenumber region. Under this
assumption the governing laws (2.6) and (2.7) are reduced to(

∂

∂t
− ν△

)
v′i(x, t) +

(
v′iv

′
j),j

(
x, t) + p′,i(x, t) = fi(x, t), (3.12)

v′
j,j(x, t) = 0. (3.13)

The following equation is derived from the Fourier transformation of the above two equations.(
∂

∂t
+ 2νk2

)
Q(k, t) =

1
i
Mj.ab(k)[k;p,q]Tabj(p,q; t) + ⟨flv

′
l⟩(k, t), (3.14)

1Arbitrary vector w in wave-number space can be represented as a linear combination of k and another vector, say ǩ,
orthogonal to k. Let A and B be arbitrary complex-number constants and put w = Ak + Bǩ. By multiplying w by P, we
obtain

Pijwj = A Pijkj + B Pij ǩj = A (ki − ki) + B
(
ǩi − 0

)
= Bǩi ,

where we used the orthogonality k · ǩ = 0. Thus P projects wave-number-space tensors into solenoidal components.
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3 HOMOGENEOUS TURBULENCE 3.3 Phenomenology

Figure 1: Budget of (3.15); The outlines of production spectrum P (k) (chain line), dissipation
spectrum 2νk2E(k) (dotted line) and energy-transfer function T (k) (thick solid line) are illus-
trated. In the fully-developed turbulence, the dissipation spectrum 2νk2E(k) locates in higher-
wavenumber range (finer scale in physical space) than the production-rate spectrum P (k), since
the dissipation rate originates from the higher derivative term. Thus there is a certain scale gap
between these two spectra. The energy transfer function T (k) is supposed to take negative value
in the production range while it is to be positive in the dissipation range so as to transfer energy
from the production to dissipation ranges through the scale gap.

where Tabi(p,q; t) =
∫

d3k′ ⟨v′a(p, t)v′b(q, t)v′i(k
′, t)⟩ and ⟨flv

′
i⟩(k, t) = F|kx−x′⟨flv

′
i⟩(x − x′, t). By multiplying

the both sides by 4πk2 we obtain (
∂

∂t
+ 2νk2

)
E(k, t) = T (k, t) + P (k, t). (3.15)

Here,

T (k, t) =
1
i
Mj.ab(k)[k;p,q]Tabj(p,q; t)

is called the energy-transfer function which represents the energy-injection rate from other modes via non-
linear interaction.

P (k, t) = 4πk2⟨f lv′l⟩(k, t)

is the energy-production-rate spectrum which represents the production rate of the energy due to the external
force at each mode k. Due to statistical isotropy of the external force, P (k, t) is supposed to be an isotropic
function.

Note that by integrating the both sides of (3.15) by k from 0 to ∞, we obtain the K equation in the
physical space as follows;

∂K

∂t
= ⟨fjv

′
j⟩ − ϵ, (3.16)

where the first term of the right-hand side is the energy-production rate, ϵ is the energy-dissipation rate.

3.3 Phenomenology

In the previous discussion we have found that the scalar-binary-correlation function Q(k, t) or the energy
spectrum E(k, t) tells us some important features of homogeneous isotropic turbulence, and for further
deductive argument we have to deal with the dynamical equations of Q(k, t) or E(k, t). Unfortunately, as
has been stated previously, there is always the infinite-hierarchy problem in our moment equations so that
it is still difficult to go to the next stage without some closure methodologies. In spite of this unpleasant
situation, we still have an alternative way to obtain some universal laws of this canonical turbulence from a
combination of simple phenomenological assumptions, which had been first discussed by Kolmogorov (1941).

In physical space, according to (3.16), homogeneous isotropic turbulence can be most simply explained by
the two processes; the energy-production and dissipation processes of energy, each of which has a characteristic
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3 HOMOGENEOUS TURBULENCE 3.3 Phenomenology

length scale. The scale where the energy production occurs often contains the most of energy and thus it is
referred to as the energy-containing range (or simply containing range). In a fully-developed turbulence, the
dissipation process occurs in finer scale than that of the energy production since the Navier-Stokes equation
has a second-order-derivative term as the dissipative term. The energy budgets in the wavenumber space is
depicted in the figure 1. Because of this scale gap between these two processes, the nature requires another
process bridging the gap; namely there is a process in the intermediate scale which transfers energy from
the energy-containing scale to the dissipative scale. In the physical space, this process may be expressed
by turbulence eddies which are colliding and destructed into small pieces, which may be interpreted as the
energy-transfer from the larger-scale motion to the smaller. Here let us see a physical insight called “locality”
of the nonlinear interaction, which is essential statement in the later discussions. Imagine what happens
when eddies of totally different length scales meet together. From the view point of the finer-scale eddies, the
large eddy’s motion may look like a uniform flow so that the smaller eddy would be simply convected without
destructed. Thus the nonlinear interaction between wavenumbers of huge scale gap may be relatively small to
that between closer wavenumbers; the nonlinear interaction is expected to be locally effective in wavenumber
space. Because of this locality, small-scale motion should be the result of multiple eddy-destruction processes,
not by the direct energy injection from the larger scale. This is referred to as the energy-cascading process,
which cuts off the direct connection between the injection-scale structure and small-scale turbulence and
suggests the existence of some universal laws in small scale. On the basis of this idea, Kolmogorov (1941)
had proposed two hypothesis which may be rephrased by the followings.

1. Arbitrary statistical properties of small-scale motion include only ν and ϵ as the scale-determining
parameters.

2. In far larger scale than η = ν3/4ϵ−1/4 arbitrary statistical properties of small-scale motion include only
ϵ as the scale-determining parameter.

η is called Kolmogorov length which characterizes the length scale of dissipation process. We can construct
other characteristic quantities such as velocity Vη = ν1/4ϵ1/4 or time Tη = ν1/2ϵ−1/2. The Reynolds number
of the dissipation scale is calculated as Reη = Vηη/ν = 1, which indicates the balance between inertia and
viscosity. In smaller scale than this scale, the viscosity excess the inertia and turbulence motion may be
suppressed. Thus the Kolmogorov length represents the smallest length scale of turbulence. According to
the first hypothesis, the energy spectrum of high-wavenumber range is supposed to be given by E(k) =
ν5/4ϵ1/4Ê(k̂) where Ê(k̂) is the universal dimensionless function of dimensionless wavenumber k̂ = ηk. In
fully-developed turbulence, we observe a huge scale gap between the energetic and dissipative scales and
there exists a wavenumber band called the inertial range where the inertia (nonlinear interaction) plays the
dominant role in the energy transfer between while the dissipation effect is negligibly small. According to
the second hypothesis, the only possible choice for Ê in this range is a power function Ê(k̂) = Kok̂

−5/3

and we obtain E(k) = Koϵ
2/3k−5/3, where Ko is called the Kolmogorov constant which is one of the most

fundamental universal constant of fluid turbulence. Experiments and computations suggest Ko = 1.62±0.17
(Sreenivasan 1995)

Let us investigate further insight with (3.15) in a semi-phenomenological manner. First we divide the
Fourier spectra into two parts; the wavenumber range higher than k and the lower range. In addition, we
assume that only the range lower than kp has non-zero energy injection P (k, t), namely P (k, t) = 0 for k > kp.
Thus the total-energy-injection rate ϵI (t) =

∫ ∞
0

dk′P (k′, t) now coincides with
∫ k

0
dk′P (k′, t). By integrating

(3.15) from 0 to k(> kp), we obtain the equation of lower-range energy K
<k

(t) =
∫ k

0
E(k′, t)dk′ which is

given by
d
dt

K
<k

(t) = −2ν

∫ k

0

E(k′, t)k′2 dk′ − Π(k, t) + ϵ
I
(t), (3.17)

where Π(k, t) = −
∫ k

0
T (k′, t)dk′. On the other hand, by integrating from k to ∞ we obtain the equation of

the higher-range energy K
>k

(t) =
∫ ∞

k
E(k′, t)dk′ as

d
dt

K
>k

(t) = −2ν

∫ ∞

k

E(k′, t)k′2 dk′ + Π(k, t). (3.18)

In the derivation of Π(k, t) we used the relation
∫ ∞
0

dk′T (k′) = 0 which guarantees the total-energy conserva-
tion for the inviscid limit ν → 0. On the right-hand side of (3.18), the only positive term which can provide

11



3 HOMOGENEOUS TURBULENCE 3.3 Phenomenology

energy to the higher range is Π(k, t). Thus Π(k, t) represents the energy-transfer rate from the lower range
through the nonlinear interaction. Let us see next the equilibrium state where (3.17) is reduced to

−2ν

∫ k

0

k′2E(k′) dk′ − Π(k) + ϵ
I

= 0. (3.19)

In the limit case k → ∞ we obtain −2ν
∫ ∞
0

k′2E(k′) dk′ + ϵI = −ϵ + ϵI = 0 and thus ϵI = ϵ. Although
(3.19) includes only ν and ϵ in explicit form, we should notice that there is still possibility that the second
term includes the information of the energy-injection scale in general. Assuming the locality of the nonlinear
interaction, Π(k) at k > kp is supposed to be free from the large-scale structures. Then the above equation
have only two independent parameters ν and ϵ. Providing we obtain a closure approximation truncated at
second order, Π(k) would be represented as a functional of E(k); namely we have

−2ν

∫ k

0

k′2E(k′) dk′ − Π[E](k) + ϵ = 0. (3.20)

This is a consistent functional equation for E(k) so that this exactly determines the energy spectrum of the
small scale which has only ν and ϵ as scale-determining factors. Thus E(k) is expected to include only ν and
ϵ as scale-determining factors, which corresponds to Kolmogorov’s first hypothesis, and hence the solution
should be again in the form of E(k) = ν5/4ϵ1/4Ê(k̂). Likewise the functional Π[E](k) is also characterized
only by ν and ϵ so that Π[E](k) should be represented as ϵΠ̂[Ê](k̂) where Π̂ is a non-dimensional functional
of Ê. Thus (3.20) reduces to

−2
∫ k̂

0

k̂′2 Ê(k̂′) dk̂′ + Π̂[Ê](k̂) + 1 = 0. (3.21)

Thus Ê(k̂) is firmly a universal function. In the band kp < k ≪ 1/η we shall neglect the first term and obtain

Π̂[Ê](k̂) + 1 = 0 (3.22)

Due to the locality of Π, ϵ is the only scale-determining factor, which corresponds to the Kolmogorov’s
second hypothesis. Hence we obtain again the Kolmogorov’s power law E(k) = Koϵ

2/3k−5/3. Second-
moment-closure theories such as LHDIA, LRA or LDIA provide us the functional forms for Π[E](k) which
enable us to analytically calculate Ko from (3.22); LHDIA concludes Ko = 1.77 while LRA and LDIA yield
Ko = 1.722. Eulerian DIA had failed to reproduce the −5/3-power law since it could not eliminate the
energy-containing velocity from Π; namely DIA provides us

Π[E; U ](k) + ϵ = 0, (3.23)

where U is the characteristic velocity of the energy-containing range, which results in E(k) ∝ U1/2ϵ1/2k−3/2.
The actual failure of this result comes from its Eulerian formulation. The locality of the nonlinear interaction
originally arises from the convection of smaller eddies by the larger which can be properly described only by
Lagrangian view. In the Eulerian view, however, the small-scale properties are always swept by the larger
eddies and this sweeping effect is erroneously accounted into the energy-transfer process. Namely larger-scale
structure directly interferes the small-scale eddies and this is the reason why DIA spectrum includes U .

Let us see more details by applying the simplification to the energy-containing and dissipative ranges.
We simply replace the exact spectral forms of the both ranges by simple cut-off wavenumbers kc and kd (see
figure 2). Under this simplification we can calculate the bulk quantities K and ϵ as

K =
∫ ∞

0

E(k)dk ≈ Koϵ
2/3

∫ kd

kc

k−5/3dk =
3
2
Koϵ

2/3
(
k−2/3

c − k
−2/3
d

)
≈ 3

2
Koϵ

2/3k−2/3
c , (3.24)

ϵ = 2ν

∫ ∞

0

k2E(k)dk ≈ 2Koνϵ2/3

∫ kd

kc

k1/3dk =
3
2
Koνϵ2/3

(
k

4/3
d − k4/3

c

)
≈ 3

2
Koνϵ2/3k

4/3
d , (3.25)

where we assumed kc ≪ kd which holds in the fully-developed turbulence. We can solve kc and kd, the
spectral properties, in terms of K and ϵ, the properties in the physical space; namely we have

kc =
(

3
2
Ko

)3/2

K−3/2ϵ, (3.26)
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3 HOMOGENEOUS TURBULENCE 3.4 Renormalized-perturbation theory of turbulence

Figure 2: Schematic views of the energy and dissipation spectra; (a) The outlines of the energy
and dissipation spectra are illustrated. Energy is most contained in the lower-wavenumber range
(energy-containing range) while it rapidly decreases in the dissipation range. Between these two,
there is the inertial range where the energy spectrum is given in −5/3-power form. (b) We avoid
to deal with the detailed structures of the energy-containing and dissipation ranges, but instead,
we simply replace these two ranges with a simple cutoff wavenumbers kc and kd.

kd =
(

3
2
Ko

)3/4

ν−3/4ϵ1/4 =
(

3
2
Ko

)3/4

η−1. (3.27)

Thus the energy-containing and dissipative scales are given by three factors K, ϵ and ν. It is fundamentally
important fact for the turbulence modeling that the basic structures of the turbulence motion are roughly
described by two bulk quantities K and ϵ, which partially validates the two-equation modeling such as K-ϵ,
K-l, or K-ω models. The ratio of these scales kd/kc is given by

kd

kc
=

(
3
2
Ko

)−3/2

×
(

K2

νϵ

)3/4

= 2−3/2 33/8 π−3/4 K3/8
o ×

(
UL

ν

)3/4

= 2−7/4 33/4 π−1 × L

η
,

(3.28)

where U(=
√

2K) and L(= 2π/kc) are the characteristic scales of velocity and length of the energy-containing
eddies. Namely we have

UL

ν
∼

(
L

η

)4/3

∼
(

kd

kc

)4/3

∼ K2

νϵ
. (3.29)

Thus the Reynolds number of the energy-containing scale is directly related to the gap between the energy-
containing and dissipative scales, which is also prescribed by K, ϵ and ν. From a different viewpoint, we
can extract another physical meaning of the Reynolds number. The mixing of scalars and momentum are
basically due to the energy-containing eddies whose characteristic scales of velocity and length are given by
U(∼ K1/2) and L(∼ K3/2/ϵ). Thus, according to an analogy of molecular viscosity, the effective viscosity νT

(or diffusivity κT ) is supposed to be given by U × L ∼ K2/ϵ. Thus the turbulence Reynolds number UL/ν
also means the ratio of turbulence and molecular viscosities νT /ν.

3.4 Renormalized-perturbation theory of turbulence

Although we have obtained several basic and universal features of homogeneous turbulence from the above
discussion in a remarkably simple manner, it basically depends on physical hypothesis and dimensional
analysis. In order to derive them consistently, we should directly deal with the exact governing equation (3.15)
which is not closed yet. Among lots of closure theories, we pick up here the renormalized-perturbation theory
(RPT) which is now a day one of the most frequently-used theories of homogeneous isotropic turbulence. The
theory is based on two dynamical variables. One is the spectrum of two-point two-time correlation Q(k; t, t′),
the other is obtained from the response against infinitesimal disturbance introduced as follows.
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4 INHOMOGENEOUS TURBULENCE

Let us think the forcing term f in (3.12) as a small disturbance. The solution v′ totally depends on
this disturbance so that v′ may be represented as a functional of f . Thus we rewrite this as v′(k, t||f). By
assuming f be a small factor, we can expand v′(k, t||f) in terms of f around the non-disturbed field v′(k, t||0)
as

v′i(k, t||f) = v′
i(k, t||0) +

∫ t

−∞
dt′

∫
d3k′ G′

ij(k, t;k′, t′) fj(k′, t′) + O(f2). (3.30)

G′ is what is called the response against infinitesimal disturbance. By taking the ensemble average of this,
we obtain ⟨

G′
ij(k, t;k′, t′)

⟩
= δ3(k − k′) Pij(k) G(k; t, t′), (3.31)

where we used homogeneity, incompressibility and isotropy of turbulence. The isotropic scalar function
G(k; t, t′) is chosen as the other dynamical variable of RPT. One of the prominent superiorities of RPT to
the previous works is that the strong nonlinearity of turbulence is effectively included through G.

LRA, which is one of the most successful closure theories, is a branch of RPT methodology. Incorporating
the Lagrangian view into the formulation, LRA shows good agreements with experiments and simulations
at least with respect to the second-order moments (Kaneda 1981, Kaneda 1986, Kraichnan 1965, Kraichnan
1977).

4 Inhomogeneous turbulence

In the real turbulence, the statistical properties are not uniform in space; some area may be more fluctuating
than other areas, or may have different anisotropic aspect from others. Thus turbulent flow in the real world
is accompanied by non-uniform mean fields, unlike the homogeneous turbulence. The more fluctuating area
has larger K, the more dissipative area has larger ϵ. Thus the non-uniform variations of K or ϵ become the
topic of debates.

The closure model is expected to be the system of field equations for these statistical quantities regarded
as the field variables. One of the most important field variables is of course the mean velocity field V, whose
governing equations are given by (2.4) and (2.5). In order to solve these equation, the Reynolds stress R
should be solved. Thus the modeling of the Reynolds stress is a major topic of the inhomogeneous-turbulence
closure. Note that the author will have the discussions about the inhomogeneous turbulence with emphasis
on the modeling of the Reynolds stress.

In this section, some attempts of inhomogeneous-turbulence closure are reviewed in two categories; one
is based on the phenomenological understandings, the other is on the theoretical understandings.

4.1 Turbulence modeling

As has been stated previously, we should truncate the moment hierarchy at finite order for inhomogeneous
turbulence. The most primitive but common strategy is to represent the Reynolds stress in the simple
viscosity form as

Rij =
2
3
Kδij − νT Sij , (4.1)

where νT is effective viscosity due to the turbulence motion, Sij(= Vi,j + Vj,i) is the mean strain rate. νT

should reflect the contribution from the turbulence motion. The oldest type of this model is the mixing-length
model where the distribution of νT is supposed to be given before calculating the mean velocity field. One of
more practical strategies is to employ K and ϵ which can describe the small-scale structures in simple way
(see §3.3). As has been pointed out in the §3.3, the turbulence viscosity is estimated as U × L ∼ K2/ϵ. By
attaching a constant Cν we obtain

νT = Cν
K2

ϵ
. (4.2)

In order to close the whole system, we have to solve K and ϵ both of whose equations are the targets of the
closure. The equation for K is given by(

D
Dt

− ν△
)

K = −1
2
RijSij − ϵ −

⟨(
p′ +

1
2
v′

jv
′
j

)
v′i

⟩
,i , (4.3)
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4 INHOMOGENEOUS TURBULENCE 4.2 Two-scale direct-interaction approximation

which includes the triple moment that represents the transportation of K due to the turbulence motion.
Usually these turbulence fluxes are modelled as gradient-diffusion effect; namely turbulence intensity is
transported from the highly-fluctuating region to the lower. Thus the turbulence-energy flux ⟨(p′+v′

jv
′
j/2)v′

i⟩
is modelled as −νT /σKK,i where σK is a positive constant. Thus we obtain the following model equation
for K.

DK

Dt
= −1

2
RijSij − ϵ +

{(
νT

σK
+ ν

)
K,i

}
,i, (4.4)

Comparing to K equation, on the contrary, it is generally difficult to give physical interpretation to each
unknown term of the exact ϵ equation. Instead it is often modelled as similar equation to K equation; namely,
highly turbulent region is expected to be highly dissipative. This linkage between K and ϵ is very important
since it prevents them from taking negative value. The standard model equation of ϵ is written as

Dϵ

Dt
= −1

2
Cϵ1

ϵ

K
RijSij − Cϵ2

ϵ2

K
+

{(
νT

σϵ
+ ν

)
ϵ,i

}
,i, (4.5)

where Cϵ1, Cϵ2 and σϵ are positive constants (more detailed derivation can be seen in Hanjalić & Launder
1972). Equations (2.4), (2.5), (4.1), (4.2), (4.4) and (4.5) form a closed system and it is called the standard
K-ϵ model. These two-equation linear-eddy-viscosity models have been the most popular and standard
strategy to practical cases. K-ϵ model, K-l model or K-ω model are representative examples which are
now a day widely used in industrial, meteorological or medical science, where l(∝ K3/2/ϵ) and ω−1(∝ ϵ/K)
are the characteristic length and time respectively (Launder & Spalding 1974, Wilcox 1988). These two-
equation linear-eddy-viscosity models have enough power to mimic the simple flows such as wall-bounded or
plane-symmetric-channel flows where only the shear-Reynolds stress plays a principal role in the mean-flow
dynamics, and thus they are now incorporated into some commercial software packages for computations.

Another strategy is to mimic the exact generation process of the Reynolds stress itself (2.8), which is called
the Reynolds-stress modeling (RSM). In this strategy the Reynolds stress itself is taken as the dynamical
variable. For example, we model the unknown terms of (2.8) as

DRij

Dt
=P R

ij − 2
3
ϵδij − CR

ϵ

K

(
Rij −

2
3
Kδij

)
− CIP

(
P R

ij − 1
3
P R

kkδij

)
+ C ′

TR

{
K

ϵ
(RiaRjk,a + RjaRki,a + RkaRij,a)

}
,k + ν△Rij .

(4.6)

(2.4), (2.5), (4.5) and (4.6) form a closed set of equations for V, P , R and ϵ. This set of equations, first
proposed by Launder, Reece and Rodi (1975), shows preferable performances in relatively wide varieties of flow
to the simple two-equation first-order models. The second-order modelings begin to show remarkable power
in their prediction, not only for elementary flows with simple boundaries, but also for more complex flows
in industrial cases; homogeneous anisotropic flows, plane mixing layer, plane jet, symmetric and asymmetric
channel flows. However, they could not reach the perfect agreements with all the experiments; they recognized
that its main cause comes from the shortfall in the modeling of the redistribution process. Before and after this
standard model, a number of works have been done in terms of the redistribution term. Two-component-limit
(TCL) modelings for the rapid term is now a day one of the most successful strategies in this context which
have noticeable power in the description of strong anisotropic case such as near-wall turbulence (Launder &
Li 1994, Craft & Lien 1995, Iacovides et al. 1996, Kidger 1999, Craft et al. 2000, Craft & Launder 2001,
Suga 2003).

Although RSM have achieved many successful results in various practical flows, there is still a huge
problem in the detached flow behind bluff bodies where the velocity-pressure correlation becomes dominant.
Besides, the model contains multiple components of the Reynolds stress so that it sometime suffers from the
numerical instability. Considering these fact, RSM strategy is still under the development now a days.

4.2 Two-scale direct-interaction approximation

So far we have seen the modelings based on relatively weak constraints such as dimensional analysis or physical
intuitions. Here we will see an example of theoretical approach, two-scale direct-interaction approximation
(TSDIA), which provides us theoretical tools to analyze various turbulence quantities based on the Navier-
Stokes equation. The original work has been done by Yoshizawa (1984) for the theoretical analysis of the
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4 INHOMOGENEOUS TURBULENCE 4.2 Two-scale direct-interaction approximation

Reynolds stress, which was modified later by Hamba (1987) in the treatment of incompressibility.

TSDIA is based mainly on the scale-separation concept; in the region apart from boundaries, the mean
quantities usually have much smoother variations in both space and time than the fluctuations, and thus
the contribution from the mean quantities to the fluctuation dynamics may be taken as small perturbations.
Let us see again (2.6) which governs the velocity fluctuation. If the mean velocity and the Reynolds stress
have only small variations in space, their gradients may be evaluated as small. Furthermore, as long as we
consider the small-scale dynamics of the fluctuation, the variations of mean fields may be negligible. Under
these assumptions, (2.6) reduces to(

∂

∂t
+ Vj

∂

∂xj
− ν△

)
v′

i(x, t) +
(
v′

iv
′
j

)
,j

(x, t) + p′,i(x, t) = −δVi,jv
′
j(x, t) + δRij,j , (4.7)

where δ is an expediential parameter indicating that Vi,j and Rij,j are small. Here we neglect spatial variations
of Vj , Vi,j and Rij,j . This equation has two prominent advantages over the original; one is that this can be
taken as statistically homogeneous equation, and the other is that we can apply perturbation methodology to
this equation by regarding the δ-related terms as small perturbation. Thus one may apply the homogeneous-
turbulence methodology to this equation with incorporating the anisotropic and inhomogeneous contributions
from Vi,j and Rij,j via perturbation technique. However, the scale separation is not successful in reality; the
scales of mean fields and fluctuations sometime overlap each other and they are not clearly separated.

In order to describe both fine and smoother variations, we introduce two types of coordinates and time
parameters; ξ(= x), X(= δx), τ(= t) and T (= δt). Using these new parameters, we rewrite arbitrary
physical quantity f(x, t) as f(ξ, τ ;X, T ). Besides, we assume that all the mean fields are described by
global coordinates X and time T . Thus the Reynolds decomposition may be rewritten as f(ξ, τ ;X, T ) =
f ′(ξ, τ ;X, T )+F (X, T ). In addition, we assume the statistical homogeneity in terms of ξ, which corresponds
to the local homogeneity. Under these assumptions the original equations (2.6) and (2.7) are rewritten as(

∂

∂τ
+ Vj(X, T )

∂

∂ξj
− ν

∂2

∂ξj ∂ξj

)
v′

i(ξ, τ ;X, T ) +
∂

∂ξj

(
v′

iv
′
j

)
(ξ, τ ;X, T ) +

∂

∂ξi
p′(ξ, τ ;X, T )

= −δ
D

DT
v′

i(ξ, τ ;X, T ) − δ
∂Vi

∂Xj
(X, T )v′j(ξ, τ ;X, T ) − δ

∂

∂Xi
p′(ξ, τ ;X, T ) − δ

∂

∂Xj

(
v′iv

′
j

)
(ξ, τ ;X, T )

+ δ
∂Rij

∂Xj
(X, T ) + δ2ν

∂2

∂Xj ∂Xj
v′i(ξ, τ ;X, T ),

(4.8)

(
∂

∂ξj
+ δ

∂

∂Xj

)
v′

j(ξ, τ ;X, T ) = 0. (4.9)

These form a closed set of equations of v′
i(ξ, τ ;X, T ) and p′(ξ, τ ;X, T ). In the later analysis we apply the

perturbation techniques; we expand v′
i and p′ as

v′
i(ξ, τ ;X, T ) = v′0i (ξ, τ ;X, T ) + δv′1i (ξ, τ ;X, T ) + O(δ2) , (4.10)

p′(ξ, τ ;X, T ) = p′0(ξ, τ ;X, T ) + δp′1(ξ, τ ;X, T ) + O(δ2) . (4.11)

By substituting these two into the dynamical equations (4.8) and (4.9), and collecting the terms of each
order, we obtain the equations for the quantities of each order. What is essential for the later formulation is
that the zeroth fields v′0i and p′0 are governed by totally the same equations as the homogeneous turbulence.
Thus we assume that the zeroth fields behave as homogeneous turbulence. The total turbulence field can
be expanded in terms of zeroth field so that all the statistical properties are supposed to be represented by
those of zeroth field.

Applying the TSDIA to the Reynolds stress yields

Rij =
2
3
δij

∫
Q0(k; τ, τ)d3k − δ

7
15

(
∂Vi

∂Xj
+

∂Vj

∂Xi

)∫
d3 k

∫ τ

−∞
d τ ′Q0(k; τ, τ ′)G0(k; τ, τ ′) + O(δ2) , (4.12)

where Q0 and G0 are the binary correlation and the infinitesimal response function of the zeroth field. By
the replacement Xi → δxi, we obtain the eddy-viscosity representation as the lowest-order analysis, and we
may put

K =
∫

d3k Q0(k; τ, τ), (4.13)

16



4 INHOMOGENEOUS TURBULENCE 4.2 Two-scale direct-interaction approximation

νT =
7
15

∫
d3 k

∫ τ

−∞
d τ ′Q0(k; τ, τ ′)G0(k; τ, τ ′). (4.14)

This explains the eddy viscosity as the accumulation of contributions from various scale motions each of
which is given by the energy multiplied by the time-scale. Thus, we have obtained here an organic connection
between the eddy viscosity of turbulence modeling and small-scale turbulence. In theoretical sense, this is
quite natural consequence since the class of inhomogeneous turbulence includes that of homogeneous one
as special case and inhomogeneous-turbulence theory could be an extended form of homogeneous version;
namely TSDIA had succeeded in giving us a bridge between homogeneous and inhomogeneous turbulence
methods.

By substituting the exact spectral forms of Q0 and G0 into (4.14), we can investigate νT in more detail.
Especially, when turbulence is developed enough to have clear inertial subrange in small scale, we learned
that the small-scale structures are roughly characterized by only three factors; K, ϵ and ν (§3.3), and hence
we can expect to obtain simple explanation of νT . Indeed, by assuming the exact spectral form as

Q0(k; τ, τ ′) = Cσ ϵ2/3k−11/3G0(k; τ, τ ′), G0(k; τ, τ ′) = exp[−Cωϵ1/3k2/3(τ − τ ′)],

and applying the cut-off wavenumber kc of the energy-injection range we utilized in §3.3 to Q0 , we reach

νT = Cν
K2

ϵ
, Cν =

7
360πCσCω

. (4.15)

Now the coefficient Cν of K-ϵ eddy viscosity is explicitly given in terms of Cσ and Cω which are the universal
constants of homogeneous isotropic turbulence. Using a homogeneous-turbulence closure, Yoshizawa (1978)
estimated Cσ = 0.118 and Cω = 0.419 which conclude Cν = 0.123, while Cν = 0.09 is often chosen in
practical applications (Okamoto 1994). The original TSDIA (Yoshizawa 1984) concludes Cν = 0.0785 while
its treatment of incompressibility was modified by Hamba (1987) yielding the present result. Since the whole
procedure is totally based on the Navier-Stokes equation (some unclear assumptions are included though),
TSDIA needs no empirical constants in principle2. This point should be emphasized as a great advantage
over the traditional methodology.

Furthermore, not only the acknowledged types but also entirely-new types of models that have never
been expected in the conventional frameworks, TSDIA can derive in general. In higher-order analysis of the
Reynolds stress, TSDIA yields

Rij =
2
3
Kδij −

(
0.123

K2

ϵ
− 0.147

K2

ϵ2
DK

Dt
+ 0.0933

K3

ϵ3
Dϵ

Dt

)(
∂Vi

∂xj
+

∂Vj

∂xi

)
+ 0.0427

K3

ϵ2
D
Dt

(
∂Vi

∂xj
+

∂Vj

∂xi

)
+ 0.0542

K3

ϵ2

(
∂Vi

∂xa

∂Vj

∂xa
− 1

3
δij

∂Va

∂xb

∂Va

∂xb

)
+ 0.0297

K3

ϵ2

(
∂Vi

∂xa

∂Va

∂xj
+

∂Vj

∂xa

∂Va

∂xi
− 2

3
δij

∂Va

∂xb

∂Vb

∂xa

)
+ 0.00525

K3

ϵ2

(
∂Va

∂xi

∂Va

∂xj
− 1

3
δij

∂Va

∂xb

∂Va

∂xb

)
+ . . . ,

(4.16)

which includes not only non-linear strain-rate terms but also D/Dt-related terms that represent the non-
equilibrium effects (Yoshizawa 1984, Okamoto 1994). Yokoi and Yoshizawa (1993) developed TSDIA analysis
and obtained a prediction that the gradient of turbulence helicity H causes the vortical motion, which leads
to K-ϵ-H model. Yoshizawa (1985c) applied TSDIA to the turbulence electromotive force of the magnetohy-
drodynamic (MHD) turbulence and discovered the cross-helicity dynamo stating that the alignment of the
velocity and magnetic-field fluctuations causes the effective electromotive force parallel to the vorticity. Now
we can summarize the basic features of TSDIA as follows.

2In practical computations, however, these theoretical constants have often been tuned so as to reproduce experimental
results.
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4 INHOMOGENEOUS TURBULENCE 4.2 Two-scale direct-interaction approximation

1. It is a self-consistent approach to inhomogeneous turbulence along with organic connections to the
Navier-Stokes equation. (It does not require any empirical parameter in principle.)

2. It bridges a gap between the inhomogeneous-turbulence models and the homogeneous turbulence the-
ories.

3. It provides theoretical supports for conventional models and suggestions of new types of models which
is hardly estimated only from intuitions and experiences.

Although these successes sound very attractive in theoretical study of general turbulent flows, TSDIA is
inconsistent with several classes of coordinate transformation; it causes some contradictions, at least, when
we consider the time-dependent rotation of the reference frame, which may be rephrased as follows; TSDIA
breaks the covariance under several types of coordinate transformations. It has been wellknown and discussed
for some decades that turbulence has covariance under the translation and time-dependent rotation and this
has been one of important guidelines of the turbulence modeling (Speziale 1979). In the next part, the
author will present further generalized statement i.e. turbulence has the covariance under far wider group of
transformation.

The main reason of the covariance breakdown of TSDIA is that the bases of perturbative expansions in
TSDIA are Eulerian which are not covariant even under translation and time-dependent rotation. Although
it may provide covariant results at the infinite order, it always breaks the covariance as long as we truncate
the perturbation expansion at a finite order. Thus the most natural solution for this problem may be to find
another base for the perturbative expansion with which we may always obtain covariant results at arbitrary
orders of truncation. In the next part, we will see the importance of the general covariance and our new
strategy in more details.
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5 NEED FOR THE GENERAL COVARIANCE

Figure 3: General coordinate system; The general coordinate system {y} (B) is illustrated in
contrast to an inertial reference frame (A) (In general, {z} does not have to be orthonormal.).
In the thesis, we define the class of general coordinate system as those freely moving as time
passes.

Part III

The mean-Lagrangian formalism
In this part the author will present a new formalism of inhomogeneous turbulent flow. First, in §5, we shall recognize
the importance of the covariance under the general coordinate transformation in inhomogeneous turbulent flows3. In
§6, according to the analogy of the continuum physics, we will introduce the mean-Lagrangian coordinate system. In
§7, we will extend the RPT to the inhomogeneous turbulence on the basis of the mean-Lagrangian representation. In
§8, the theory will be applied to the Reynolds stress in order to see both relation and difference between the present
theory and the conventional modeling.

In the formulation, we inevitably employ curvilinear coordinate systems and thus we have to discriminate covariant
and contravariant components of tensors. In this part, we denote the indices of covariant components on lower-right
side of the tensor symbol while the contravariant counterparts on the upper-right side. We will see physics in curved
coordinate system so that we shall treat two types of spatial derivatives. One is the ordinary partial derivative; for
an arbitrary multi-component quantity Cab···

cd···, j-component partial derivative is supposed to be represented as
Cab···

cd··· ,j . The other is the covariant derivative whose application to Cij...
kl... is given by

∇aCij...
kl... = Cij...

kl... ,a + Γi
maCmj...

kl... + Γj
maCim...

kl... + · · · − Γn
kaCij...

nl... − Γn
laCij...

kn... − . . . .

Γi
ab is the Christoffel symbol of the second kind which is given by

Γa
ij =

1

2
gab (gbj,i + gbi,j − gij,b) ,

where g is the metric tensor. If necessary, we use the abbreviated form of the covariant derivative given by

∇aCij...
kl... = Cij...

kl... ;a.

5 Need for the general covariance

5.1 General covariance in continuum physics

Let us begin with the discussion about the coordinate systems for reviewing what kind of covariance we
treat. The physical space is assumed to be a three-dimensional space flat in the sense of the metric geometry.

3Note that we only treat the general transformation in the 3-dimensional space, since we do not consider the general-
relativistic effects. In the non-relativistic limit, our transformation group is larger than one has ever seen in classical mechanics.
We should remark that what we call the general transformation group is asymptotically extended to the subgroup of that in
general relativity.
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5 NEED FOR THE GENERAL COVARIANCE 5.1 General covariance in continuum physics

First we discriminate the inertial frame from the other frames of reference. We introduce an orthonormal-
coordinate system {z1 , z2 , z3} = {z} as an inertial frame of reference as (A) in figure 3 4. Note that we
employ the capital roman letters for the indices of Eulerian-coordinate representation. For example, we can
represents the coordinate variables as zI(I = 1, 2, 3).

For the next step we introduce the curvilinear-coordinate system {y} which is moving relatively to the
inertial frame {z} by providing the condition such as

yi = yi (z1 , z2 , z3 , t) = yi (z, t) , (5.1)

where i = 1, 2, 3. We employ small roman letters for the indices of the general-coordinate representation.
The simplest example of the above relation is the linear relation between y and z, which may be written as

yi = T i
J(t) zJ + Y i(t). (5.2)

If we put T as the unit matrix and Y as linear function of t, (5.2) represents the Galilean transformation.
If Y is nonlinear in t, (5.2) is transformation to an accelerated frame. If T is a time-dependent orthogonal
matrix, (5.2) represents the transformation to a rotating frame.

Generally speaking, coordinate system {y} may have rotation and distortion non-uniform in time and
space which is depicted by (B) in figure 3. In the non-relativistic sense, the coordinate system {y} defined
by (5.1) forms the largest class of the coordinate systems. Thus, in this thesis, we call coordinate systems
such as {y} given by (5.1) the general coordinate system, and we call the transformation between general
coordinate systems the general coordinate transformation. For example, transformation from {y} to another
general-coordinate system {ỹ} is given as follows;

ỹã = ỹã(y1, y2, y3, t) = ỹã(y, t), (5.3)

where ã = 1, 2, 3; the coordinate representation in {ỹ} is discriminated from that of {y} by indices. Under
the general-coordinate transformation group, we consider the covariance. We require the tensor fields to
satisfy the transformation rule given by

Cij···
kl···(y, t) → C ãb̃···

c̃d̃···(ỹ, t) =
∂ỹã

∂yi
(y, t)

∂ỹb̃

∂yj
(y, t) · · · ∂yk

∂ỹc̃
(ỹ, t)

∂yl

∂ỹd̃
(ỹ, t) · · ·Cij···

kl··· (y, t) ,

where (y, t) and (ỹ, t) show the same space-time point (If we consider the transformation between differ-
ent times, we cannot do these abbreviations). In the later analysis, we sometime employ abbreviations in
notations; we employ the same main symbols for physical quantity in any coordinate system, since we can
recognize its coordinate representation by tilde on the indices. For example C̃ ãb̃···

c̃d̃··· is supposed to be rewrit-
ten as C ãb̃···

c̃d̃···. In the same manner, we rewrite the coordinate variable ỹã as yã since we can discriminate
it from yi by tilde on the index 5. Following the abbreviation, the above transformation rule is rewritten as
follows 6;

Cij···
kl··· → C ãb̃···

c̃d̃··· = yã
,i yb̃

,j · · · yk
,c̃ yl

,d̃ · · ·Cij···
kl···. (5.4)

In the continuum physics, every physically objective quantity should be represented as a tensor field at
certain rank. One of the typical examples of non-covariant quantities is the velocity field of continuum. The
transformation rule of the velocity field is given by

vã = yã
,i vi + yã

,t, (5.5)
4In the figure, an orthonormal-coordinate system is used for simplicity. However, {z} does not have to be orthonormal in

general.

5This strategy is extended to the inertial-frame and the mean-Lagrangian-frame variables (see §6.2); the inertial-coordinate
and the mean-Lagrangian-coordinate representations of C are written respectively as CIJ···

KL··· and Cµν···
ρσ···, since we can

recognize the coordinate representations by indices of the capital roman and the Greek alphabet.

6The covariant derivatives of covariant quantities transform as tensor; for example we have

Cij···
kl;m··· → Cãb̃···

c̃d̃··· ;ẽ = yã
,i yb̃

,j · · · yk
,c̃ yl

,d̃ · · · ym
,ẽCij···

kl··· ;m.
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5 NEED FOR THE GENERAL COVARIANCE 5.2 General covariance of turbulence quantities

which is accompanied by an extra term (see appendix A). Thus we must be careful enough in extracting
the covariant properties of material motion. For example, in the Eulerian-coordinate system, we often use a
quantity given by

sij = vi;j + vj;i, (5.6)

which is called the strain rate in classical hydrodynamics. However this quantity is not generally covariant
since the velocity field transforms as (5.5) 7. In the modern theory of continuum physics, the strain rate is
given by

sij =
o
ot

gij =
∂

∂t
gij + vk

;i gkj + vk
;j gik, (5.7)

which is consistent with the general covariance (Eringen 1975, also see appendixB)8. The operator o/ot
is called the Oldroyd derivative, which is introduced in order to measure the pure time derivative in the
Lagrangian frame (see appendix B). In the Eulerian frame, ∂gIJ/∂t = 0 so that (5.7) coincides with (5.6) 9.
The operation of o/ot for the general tensor C is given by

o
ot

Cij...
kl... =

d

dt
Cij...

kl... − vi
;aCaj...

kl... − vj
;aCia...

kl... − . . .

+ vb
;kCij...

bl... + vb
;lC

ij...
kb... + . . . ,

(5.8)

where the operator d/dt is called the Lagrangian derivative, which has been often used in conventional fluid
dynamics.

d

dt
=

∂

∂t
+ vj∇j . (5.9)

It is noticeable that the Lagrangian derivative is non-covariant operation in general, excepting for when
it operates on scalar field, since the Lagrangian derivative does not contain the effect of the distortion or
rotation of the coordinate frame while they are taken into account in the Oldroyd derivative.

5.2 General covariance of turbulence quantities

So far we have discussed about the exact velocity field. Next let us turn to the mean flow and fluctuation,
which are of our interest. By taking the fluctuating part of (5.5), we obtain

v′ã ≡ vã − ⟨vã⟩ = yã
,i

{
vi − ⟨vi⟩

}
= yã

,i v′i . (5.10)

In this thesis we use the angular bracket ⟨· · · ⟩ for the ensemble averaging. (5.10) is the same as the rule
of generally covariant vectors. Thus the velocity fluctuation v′, which is the most fundamental quantity of
turbulence, is a covariant quantity and therefore we should take the general covariance as one of the most
fundamental properties of turbulence. As a natural consequence, we notice that many quantities constructed
from the velocity fluctuation are covariant. For example, by taking the moments of (5.10) we obtain

⟨v′ã v′b̃⟩ = yã
,i yb̃

,j⟨v′i v′j⟩, (5.11)

⟨v′ã v′b̃ v′c̃⟩ = yã
,i yb̃

,j yc̃
,k⟨v′i v′j v′k⟩, (5.12)

7Note that the covariant derivative of non-covariant quantities such as vi ≡ gik vk does not yield covariant result; namely,

vã;b̃ ̸= yã
,i yb̃

,j vi;j .

8Following the exact definition of the Oldroyd derivative, sij is written as

sij =
o

ot
gij =

∂

∂t
gij + vk gij;k + vk

;i gkj + vk
;j gik.

However, the covariant derivative of the metric is identically zero; namely

gij;k = gij,k − Γa
ik gaj − Γa

jk gia =
(
Γi.jk + Γj.ik

)
− Γj.ik − Γi.jk = 0,

which yields (5.7).

9Note that the strain rate is often defined as the half of the above; namely 1
2
ogij/ot, so that it coincides with that of

infinitesimal deformation theory of continuum.
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and so on. (5.11) proves that the Reynolds stress R ≡ ⟨v′ ⊗ v′⟩, which plays principle roles in the mean-flow
dynamics, transforms as a covariant tensor.

In addition to the fluctuation, we find another remarkable character in the mean flow. By taking the
ensemble average of (5.5), we obtain

V ã = yã
,i v′i + yã

,t , (5.13)

where V = ⟨v⟩ is the mean velocity. This indicates that the mean velocity field V transforms in the same
manner as the original velocity field v. Thus the derivative operation given by

O
Ot

Cij...
kl... =

D
Dt

Cij...
kl... − Caj...

kl...V
i
;a − Cia...

kl...V
j
;a − . . .

+ Cij...
bl...V

b
;k + Cij...

kb...V
b
;l + . . . ,

(5.14)

is also a covariant operation as well as (5.8) since V transforms in the same manner as v (see appendix B).
Here, the operator D/D t = ∂/∂t + V j∇j is the Lagrangian derivative based on the mean flow, which is a
non-covariant operation as well as d/dt given by (5.9).

So far we have obtained two insights; one is the general covariance of the fluctuation v′ and the other is the
equivalence between the original velocity field v and the mean velocity field V in terms of the transformation
rule. Here we should recognize the point in common between the continuum physics and the turbulence
closure. In continuum physics, covariant quantities such as stress or heat flux have certain relations with
the motion of the continuum and to clarify these relations as the constitutive equations is required for the
closure of the continuum theory. The covariance imposes on those relations a mathematical constraint; When
we constitute the physical model for the constitutive equation, we must employ only the generally covariant
quantities. This has been used as a strong guideline in determining the constitutive equations.

On the other hand, in turbulence closure, we have to clarify the relations between the statistical quantities
and the motion of the mean flow. The statistical quantities which give major contributions to the mean-flow
dynamics are often covariant (Reynolds stress is a typical example). Thus, following the continuum physics,
we reach a strict mathematical constraint for the inhomogeneous turbulence as follows; When we constitute
the physical model of the generally-covariant correlations, we have to employ only the generally-covariant
quantities of turbulence.

This constraint can be applied as guideline to the actual turbulence modeling in what follows. When we
constitute the physical model of the Reynolds stress, for a concrete example, the model should be represented
as a function or functional of covariant quantities such as

R = F

{
K, ϵ, . . . ,S,

OS

Ot
,
O2S

Ot2
, . . . ,Θ,

OΘ

Ot
,
O2Θ

Ot2
, . . .

}
, (5.15)

where K ≡ 1
2 ⟨v

′ ·v′⟩ and ϵ ≡ ν⟨∇v′ · ∇v′⟩ are turbulence energy and its dissipation rate, S is the strain rate
of the mean flow given by

Sij =
O
Ot

gij , (5.16)

Θ is the absolute vorticity of the mean flow whose definition will be given by (7.11)10. In other words we
cannot accept the model such as

R = F

{
K, ϵ, . . . ,∇V,

D∇V
Dt

,
D2∇V

Dt2
, . . .

}
, (5.17)

which contains non-covariant factors. The Reynolds stress (4.16) derived by TSDIA is an example of (5.17),
which contradict the general covariance of the real nature.

Generally speaking, the results derived by TSDIA are not consistent even with the rule under transforma-
tions between Euclidean coordinate systems rotating relatively to each other. Yokoi and Yoshizawa (1993)
investigated the effect of the frame rotation by applying perturbative expansion about the frame rotation

10Instead of the Oldroyd derivative, it is also possible to employ other objective derivatives such as the Jauman derivative
(Oldroyd 1958).
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6 NEED FOR THE MEAN-LAGRANGIAN FORMALISM

Figure 4: The space-time area contributing to the evolution of fluctuation at a space-time point
(y, t) is illustrated by contours. In this figure, three-dimensional space is represented in one
dimension for simplicity. The darker area is supposed to give more contribution. The area
around the trajectory of the mean-flow particle often gives important contribution.

and obtained a preferable representation of the Reynolds stress in which the mean vorticity is accompanied
by the frame rotation (namely vorticity is retained as absolute vorticity), these results are valid only when
the frame rotation is enough small. In other words, these models lose the theoretical validity as the refer-
ence frame differs from the inertial frame, which is unsatisfactory in terms of physical objectivity. Strictly
speaking, perturbative expansion method based on the rotation of the reference frame is not preferable in
the first place since the perturbative interactions depend on the observer so that the perterbative solution at
each order cannot be objective and, accordingly, the results contradict the general covariance at any order.

Not only the Reynolds stress, as is mentioned above, but also other dynamical quantities such as (5.12)
and the relations between them are supposed to have covariant structures. Thus we have to take the general
covariance into account in the formulation of the whole theory.

Needs for the physical objectivity have already been pointed out by some pioneering works in the context
of covariance under some limited transformation groups. Weis & Hutter (2002) claimed the importance of the
covariance under the time-dependent rotational transformation and represented it as “Euclidean invariance”.
Hamba (2006) also took it as an indispensable factor and showed its availability in practical modelings by
using so called “co-rotational derivative” which is consistent with the Euclidean invariance. Hamba and Sato
(2008) employed the co-rotational derivative and reformulated TSDIA to be consistent with the Euclidean
invariance.

The general covariance, on the contrary, have not been recognized so far, despite it is a fundamental
property of turbulence. Hence it is enough expected that the inclusion of the general covariance will offer
more accurate guideline which lead us to more accurate physical models. Thus it would be very important
phase in the development of turbulence research to incorporate the general covariance into the base of the
formulation.

6 Need for the mean-Lagrangian formalism

6.1 Multiple-time analysis and covariance

Generally speaking, the physical state of non-local area in space and time gives the contribution to the
evolution of fluctuation. However, because of the mean-flow convection, some localized area in the space-
time is especially important. In order to give more clear explanation, we introduce a concept of the mean-flow
particle as follows.
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6 NEED FOR THE MEAN-LAGRANGIAN FORMALISM 6.1 Multiple-time analysis and covariance

Providing the mean velocity V(y, t) ≡ ⟨v(y, t)⟩ is known in every point and time in a general coordinate
system {y}, we can construct a differential equation given by

d
dt′

γi(t′|y, t) = V i (γ(t′|y, t), t′) , (6.1)

where γ(t|y, t) = y. (6.1) describes the trajectory of a point convected by the mean flow which locates at
y at time t. The solution is uniquely identified so that we can regard γ(t′|y, t) as a virtual particle which
never split into more than two pieces nor unite with others. Let us call this the mean-flow particle.

Because of the convection by the mean flow, the area around the trajectory of the mean-flow particle often
gives the main contribution to the evolution of turbulence at point y at time t (see figure 4). Thus it is often
meaningful to discuss about the turbulence quantities on the trajectory of the mean-flow particle. Hence,
when we consider a scalar field (say f(y, t)) relating to the actual turbulent flow, the following quantity is
supposed to be important to the dynamics on the space-time point (y, t);

γf(y, t; t′) = f (γ(t′|y, t), t′) . (6.2)

The quantity γf(y, t; t′) is also important from the viewpoint of the general covariance; γf(y, t; t′) behaves as
scalar field at point y at time t. Using these quantities, we can take algebraic operations between quantities
of different times 11. This is very important fact in terms of the requirement for the physical modeling
of turbulence quantities discussed in §5. According to the requirement, we can incorporate the turbulence
energy in the past times t′, t′′, t′′′, . . . (< t) into the model of the Reynolds stress such as

R(y, t) = F {. . . , γK(y, t; t′), γK(y, t; t′′), γK(y, t; t′′′), . . . } , (6.3)

where F is a function including sum or product of arguments. This is exactly an example of multiple-time
closure consistent with the general covariance.

In case of general tensor, we need more complex operations. We cannot simply extend (6.2) to general
tensor, namely Cij···

kl···(γ(t′|y, t), t′), since the frame of reference has deformation and rotation which cannot
be removed by a simple translation. Thus we should cancel out the deformation and rotation by applying
linear transformations. The counterpart of (6.2) in case of general tensor is given by

γCij...
kl...(y, t; t′) = Zi

a(t′|y, t)Zj
b (t′|y, t) · · · Z̄c

k(t′|y, t)Z̄d
l (t′|y, t) · · ·Cab···

cd···(γ(t′|y, t), t′), (6.4)

where the transformation coefficient Zi
a(t′|y, t) satisfies

∂

∂t′
Zi

a(t′|y, t) = −Zi
k(t′|y, t)V k

,a(γ(t′|y, t), t′), (6.5)

with Zi
a(t|y, t) = δi

a, Z̄(t′|y, t) is the inverse of Z(t′|y, t). On this stage, we can take both addition and
multiplication 12 13. In the same context of (6.3), we can construct the physical model of the Reynolds stress

11For example, for scalar fields f(y, t), g(y, t), h(y, t), . . . , we can take sum and product such as

γf(y, t; t′) + γg(y, t; t′′) + γh(y, t; t′′′) + . . .

or
γf(y, t; t′) γg(y, t; t′′) γh(y, t; t′′′) + . . .

both of which behave as scalar fields at point y at time t.

12For example, we can take addition and multiplication of tensor fields A, B, C, . . . at different times t, t′, t′′ . . . such as

γAij···
kl···(y, t; t′) + γBij···

kl···(y, t; t′′) + γCij···
kl···(y, t; t′′′) + · · · ,

or
γAab···

cd···(y, t; t′) γBef···
gh···(y, t; t′′) γCij···

kl···(y, t; t′′′) · · · ,

both of which transforms as tensors. In continuum physics, the tensor given by

Eij = gij(y, t) − γgij(y, t; t′) (t′ < t)

sometime plays an important role in investigating the geometrical change of material, which is called the strain tensor (Sometime
it is defined as the half of the above).

13The following limit also behaves as a tensor field.

lim
t′→t

γCij···
kl···(y, t; t′) − Cij···

kl···(y, t)

t′ − t
=

DCij···
kl···

Dt
(y, t) − V i

;a(y, t)Caj···
kl···(y, t) − V j

;a(y, t)Cia···
kl···(y, t) − · · ·

+ V b
;k(y, t)Cij···

bl···(y, t) + V b
;l(y, t)Cij···

kb···(y, t) + · · · ,
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6 NEED FOR THE MEAN-LAGRANGIAN FORMALISM 6.2 Mean-Lagrangian representation

such as
R(y, t) = F {. . . , γS(y, t; t′), γS(y, t; t′′), γS(y, t; t′′′), . . . } , (6.6)

which incorporates the strain rate at the past times t′, t′′, t′′′, . . . (< t).

(6.3) and (6.6) may look discrete about the past times. We can extend these functions to continuous ones
by using a special integration in time. Since γC(y, t; t′) behaves as tensor, the following integration does also
behave as tensor;∫ t

dt′ γCij...
jk...(y, t; t′)

=
∫ t

dt′ Zi
a(t′|y, t)Zj

b (t′|y, t) · · · Z̄c
k(t′|y, t)Z̄d

l (t′|y, t) · · ·Cab···
cd···(γ(t′|y, t), t′).

(6.7)

In the continuum physics, this is called the convected integration which is often used to represent the memory
effect observed in viscoelastic materials (Oldroyd 1950). In turbulence modeling, the Reynolds stress is
sometime explained by the relaxation effect of strain rate where the relaxation-time scale is given by K/ϵ.
By using the convected integration, we may put the Reynolds-stress model as

R(y, t) = F

{
. . . ,

∫ t

−∞
dt′exp

[
−

∫ t

t′
dτ

γϵ(y, t; τ)
γK(y, t; τ)

]
γSij(y, t; t′), . . .

}
, (6.8)

which is permitted as a generally covariant model14. Here we should notice that the integration is taken
over the trajectory of the mean flow shown in figure 4. The value of exponential part tends to zero as t − t′

increases so that (6.8) indicates the present strain rate is more relevant in explaining the Reynolds stress
than that of the past.

In (6.3), (6.6) and (6.8), only the quantities on the trajectory γ are considered. In more accurate treat-
ment, however, we have to incorporate the area around the trajectory (see figure 4). In the present theory, we
will represent the spatially-nonlocal effect by the derivative expansion in space; namely we should incorporate
the spatial derivatives such as ∇K, ∇ϵ, ∇S, ∇Θ or higher-order derivatives of them into our model.

6.2 Mean-Lagrangian representation

In the present theory, we should pay special attention to the treatment of multiple-time quantities in order to
keep the whole theory consistent with the general covariance; namely we have to calculate both the mean-flow
trajectory γ and matrix Z from the mean velocity field. However, these procedures are so complex that their
direct use would make the later work too much cumbersome.

In order to avoid these complexities, we introduce coordinate system of a special kind where the mean
velocity field is globally cancelled. We denote this new coordinate variables as xµ (µ = 1, 2, 3). We use x for
the main symbol and the Greek alphabet for indices in the coordinate representation. According to (5.13),

which gives another definition of the Oldroyd derivative. By applying this to the metric tensor, we obtain

lim
t′→t

gij(y, t) − γgij(y, t; t′)

t − t′
= lim

t′→t

E(y, t; t′)

t − t′
,

which represents the change rate of strain. This is the exact reason why the strain rate is defined by (5.16).

14By transforming the model equation (4.6) into covariant form and integrating it, we obtain

Rij(y, t) =
2

3
K(y, t)gij(y, t)

−
2

3
(1 − CIP )

(
δi
aδj

b −
1

3
gijgab

)
(y, t)

∫ t

−∞
dt′exp

[
−CR

∫ t

t′
dτ

γϵ(y, t; τ)
γ
K(y, t; τ)

]
γK(y, t; t′) γSab(y, t; t′) + · · · .

Thus RSM may be categorized in the models such as (6.8).
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6 NEED FOR THE MEAN-LAGRANGIAN FORMALISM 6.2 Mean-Lagrangian representation

Figure 5: Configuration of the mean-Lagrangian coordinate system; The coordinate system {x}
convected by the mean-flow is the mean-Lagrangian coordinate system. The set of coordinate
variables is interpreted as the label for the mean-flow particle. We should notice that y(x, t)
alone represents the trajectory of mean-flow particle labelled as x.

the transformation of the mean velocity field from {y} to {x} is written as follows 15 16;

V µ(x, t) = 0 =
∂xµ

∂yi
(y(x, t), t) V i (y(x, t), t) +

∂xµ

∂t
(y(x, t), t)

=
∂xµ

∂yi
(y(x, t), t)

{
V i (y(x, t), t) − ∂

∂t
yi(x, t)

}
.

Thus we have
∂

∂t
yi(x, t) = V i (y(x, t), t) . (6.9)

This equation has the same form as (6.1). Thus yi(x, t) represents the trajectory of a mean-flow particle
for constant x; x is the label for the mean flow particle which is the exact counterpart of the Lagrangian
coordinate system in the continuum physics. In this thesis we call the coordinate system convected by the
mean flow as the mean-Lagrangian coordinate system (see figure 5).

Since the mean velocity is totally cancelled out in the mean-Lagrangian coordinate system, γ(t′|x, t) = x
and Z(t′|x, t) = 1 so that

Zµ
α(t′|x, t)Zν

β(t′|x, t) · · · Z̄γ
ρ (t′|x, t)Z̄δ

σ(t′|x, t) · · ·Cαβ···
γδ··· (γ(t′|x, t), t′) = Cµν···

ρσ···(x, t′). (6.10)

15When we discuss about the coordinate transformation in the continuum physics, we often deal with the composed function
such as

f (y(x, t), t) .

In this representation, we should notice that the derivative function such as ∂f/∂t (y(x, t), t) is discriminated from the simple
time-derivative operation. The former is obtained by substituting y = y(x, t) into the derivative function ∂f/∂t (y, t), while
the latter is given by

∂

∂t
f (y(x, t), t) =

∂f

∂yi
(y(x, t), t)

∂yi

∂t
(x, t) +

∂f

∂t
(y(x, t), t) ̸=

∂f

∂t
(y(x, t), t) ,

16By differentiating xµ (y(x, t), t) by t with fixing x, we obtain

∂

∂t
xµ (y(x, t), t) = 0 =

∂xµ

∂yi
(y(x, t), t)

∂yi

∂t
(x, t) +

∂xµ

∂t
(y(x, t), t) .

Thus we have
∂xµ

∂t
(y(x, t), t) = −

∂xµ

∂yi
(y(x, t), t)

∂yi

∂t
(x, t).
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7 DETAILS OF THE FORMULATION

Thus in the mean-Lagrangian frame we can take both sum and product of quantities at arbitrary times 17

18. Due to this feature, we can construct the covariant model in remarkably simpler manners. For example,
the model (6.8) is supposed to be rewritten as follows 19;

R(x, t) = F

{
. . . ,

∫ t

−∞
dt′exp

[
−

∫ t

t′
dτ

ϵ(x, τ)
K(x, τ)

]
Sµν(x, t′), . . .

}
. (6.12)

This is much simpler form than (6.8) since we do not have to calculate γ nor Z; we only need the simple
time integration. In the mean-Lagrangian coordinate system, we have to consider neither the convection of
the mean-flow particle nor the frame deformation, and thus multiple-time quantities are represented in the
simplest forms. In the following formulation, we shall employ lots of multiple-time quantities in a manner
similar to the homogeneous-turbulence theory so that the mean-Lagrangian representation is very effective
to avoid cumbersome calculations of γ and Z. Note that the strain rate S is given by

Sµν(x, t) =
∂

∂t
gµν(x, t), (6.13)

instead of (5.16). This is also due to the absence of the mean velocity field in the mean-Lagrangian repre-
sentation.

There is another feature of the mean-Lagrangian representation. Comparing to the general coordinate
representation, the coordinate-space area contributing to the fluctuation dynamics is effectively localized in
the mean-Lagrangian coordinate representation. In the general coordinate system, we have to consider wide
range of spatial-coordinate area since the mean-flow particle travels in the coordinate space, as is shown in
figure 6 (a). In the mean-Lagrangian coordinate system, on the contrary, the area we have to consider is
localized around the actual coordinate point x, as shown in figure 6 (b). In the later discussion, we will treat
spatially nonlocal effect by spatial derivative expansions. As long as we truncate the derivative expansion at
lower order, the mean-Lagrangian representation is suitable choice since the spatial-coordinate area we have
to consider is expected to be minimized.

7 Details of the formulation

In this section we will see the detailed formulation of the present theory. In the whole procedure, we will
investigate the turbulence dynamics with tracing the mean flow. By extending the renormalized perturbation
theory and applying it to our system, we will reach a series of method to represent varieties of general
correlations in terms of homogeneous isotropic properties in a manner consistent with the general covariance.

7.1 Covariant form of the dynamical equation

First we start from the inertial coordinate system {z} for simplicity. In the inertial frame, the motion of the
incompressible Newtonian fluid is governed by the Navier-Stokes equation and the incompressibility condition

17For example, sum of tensors A, B, C, . . . at different times t, t′, t′′, . . . , namely

Aµν···
ρσ···(x, t) + Bµν···

ρσ···(x, t′) + Cµν···
ρσ···(x, t′′) + · · · ,

is a tensor. Product of them, namely

Aµν···
ρσ···(x, t)Bαβ···

γδ···(x, t′)Cωζ···
ξη···(x, t′′) · · · ,

is also a tensor. These operations are clearly simpler than those in the general coordinate representation.

18The Oldroyd derivative is reduced to

OCµν···
ρσ···

Ot
(x, t) = lim

t′→t

Cµν···
ρσ···(x, t′) − Cµν···

ρσ···(x, t)

t′ − t
=

∂Cµν···
ρσ···

∂t
(x, t).

Thus the Oldroyd derivative is represented by simple time derivative, which can also be understood from (5.14) since the mean
velocity field is cancelled in the mean Lagrangian coordinate system.

19Because of (6.10), the convected integration of C becomes∫ t

dt′ Cµν···
ρσ···(x, t′), (6.11)

which is just a simple integration.
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7 DETAILS OF THE FORMULATION 7.1 Covariant form of the dynamical equation

Figure 6: The space-time area contributing to the fluctuation is depicted in two coordinate
representations; the general coordinate representation and the mean-Lagrangian representation.
Dotted and solid lines are the trajectories of the mean flow. (a) In the general coordinate system,
we have to consider wide range of spatial-coordinate variable since the mean-flow particle travels
in the coordinate space. (b) In the mean-Lagrangian coordinate system, on the contrary, the
area we have to consider is localized in the neighborhood of the coordinate point x.

written as
d

dt
vI(z, t) = −p;I(z, t) + ν△vI(z, t), (7.1)

vJ
;J(z, t) = 0, (7.2)

where p is the pressure normalized by constant density, ν is the kinematic viscosity. Note that the sets of
arguments (z, t) and (y, t) are abbreviated in the following transformations. The ensemble averages of the
above equations yield the equations of the mean flow; Reynolds-Averaged Navier-Stokes equation (RANS
eq.) and its incompressibility condition given by

D
Dt

V I = −P ;I + ν△V I − RIJ
;J , (7.3)

V J
;J = 0, (7.4)

where P ≡ ⟨p⟩ is the mean pressure. By subtracting the mean-equations (7.3) and (7.4) from the originals
(7.1) and (7.2) respectively, we obtain the set of equations for the velocity fluctuation v′ and the pressure
fluctuation p′ ≡ p − P ; (

D
Dt

− ν△
)

v′I +
(
v′Iv′J)

;J
+ p′;I = −V I

;Jv′J + RIJ
;J , (7.5)

v′J
;J = 0. (7.6)

(7.5) is obviously non-covariant form, containing Lagrangian derivative and mean velocity gradient both of
which are non-covariant. As was shown in the previous section, velocity fluctuation is covariant vector and
its dynamical equation should be represented in a covariant form. By adding −V I

;Jv′J to the both sides of
(7.5), we transform the time derivative term into a covariant form;(

O
Ot

− ν△
)

v′I +
(
v′Iv′J)

;J
+ p′;I = −2V I

;J v′J + RIJ
;J . (7.7)

Except for the first term of the right-hand side, all terms are written in covariant form. Multiplying the
above by transformation coefficients yi

,I and transforming it yields

−2yi
,I zJ

,j V I
;J v′j =

(
O
Ot

− ν△
)

v′i +
(
v′iv′j)

;j
+ p′;i − Rij

;j . (7.8)
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7 DETAILS OF THE FORMULATION 7.2 Homogeneity-inhomogeneity decomposition

All quantities on the right-hand side are obviously covariant so that the left-hand side should also be covariant.
Let us define a 2-rank tensor given by

Σi
j ≡ yi

,I zJ
,j V I

;J . (7.9)

Σ is an objective measure of departure of the mean-flow motion from the inertial motion, and behaves as a
generally covariant tensor (see appendix C). The symmetric part of Σij = gik Σk

j is rewritten as

Σij + Σji = zI
,i zI

,j (VI;J + VJ;I) = zI
,i zI

,j

(
gIJ,t + V K gIJ;K + V K

;I gKJ + V K
;J gIK

)
= zI

,i zI
,j

O
Ot

gIJ =
O
Ot

gij = Sij ,
(7.10)

where we used gIJ,t = 0 and gIJ;K = 0. Anti-symmetric part is supposed to be called the absolute vorticity
of the mean flow, which is written in this thesis as

Θij = Σij − Σji. (7.11)

As a consequence, we obtain generally covariant form of the dynamical equation for the velocity fluctuation
in the general coordinate system {y} as follows;(

O
Ot

− ν△
)

v′i +
(
v′iv′j)

;j
+ p′;i = −

(
Si

j + Θi
j

)
v′j + Rij

;j . (7.12)

Finally, in the mean-Lagrangian coordinate system {x}, we have the following set of governing equations;(
∂

∂t
− ν△

)
v′µ(x, t) + (v′µv′ν);ν (x, t) + p′;µ(x, t) = −

(
Sµ

ρ + Θµ
ρ

)
(x, t) v′ρ(x, t) + Rµρ

;ρ(x, t), (7.13)

v′ρ
;ρ(x, t) = 0. (7.14)

7.2 Homogeneity-inhomogeneity decomposition

In the region apart from boundaries, the variations in time and space of the mean fields are usually smoother
than those of fluctuations. Based on this intuition, an assumption had been proposed; inhomogeneous
turbulence may be treated as homogeneous one in local area (Local homogeneity: Taylor 1935). Following
this idea, Yoshizawa (1984) introduced the two-scale representation for Eulerian coordinate variables and time
respectively, which is the synonym of the multiple-scale variables used in a singular perturbation method;
Yoshizawa employed his two-scale representation to discriminate the characteristic scales of the fluctuations
and those of the mean fields. In the present work, on the other hand, we will introduce two coordinate systems
in order to separate the dependence on the coordinate variables into homogeneous and inhomogeneous parts.

First, for every dynamical variable, we introduce a corresponding function of two sets of coordinate
variables each of which forms a three dimensional space, namely ξ and X, and we assume they are independent
of each other. For example we introduce f(ξ, t|X) corresponding to an arbitrary dynamical variable f(x, t).
Next, we have to set the relation between the original quantity and its dual-coordinate counterpart. We
assume that the real dynamical variable is given by substituting x and δx into ξ and X of the corresponding
function, where δ is an expediential parameter whose meaning will be mentioned later. Thus the real
dynamical variable f(x, t) is reproduced from its dual-coordinate counterpart as

f(x, t|δx) = f(x, t). (7.15)

Next we set up a non-trivial hypothesis stating that any fluctuating variables are statistically homogeneous
with respect to ξ. Note that the inhomogeneity of the original quantity is denoted by variable X. In this
sense let us call this operation the homogeneity-inhomogeneity decomposition (HID).

HID should form a mapping from the class of functions in physical space such as f(x, t) to the other
class of the dual-coordinate functions such as f(ξ, t|X). In order to apply HID to all the dynamical variables
without contradiction, it should conserve the structures of both addition and multiplication. Thus HID of
the sum and product of arbitrary dynamical variables f and g should be given by

(f + g)(x, t) = f(x, t) + g(x, t)
HID

7−→ (f + g)(ξ, t|X) = f(ξ, t|X) + g(ξ, t|X), (7.16)
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7 DETAILS OF THE FORMULATION 7.2 Homogeneity-inhomogeneity decomposition

(fg)(x, t) = f(x, t)g(x, t)
HID

7−→ (fg)(ξ, t|X) = f(ξ, t|X)g(ξ, t|X). (7.17)

Under these assumptions, the following relation should hold for arbitrary fluctuating variables f and g;

⟨f(ξ, t|X)g(ξ′, t′|X)⟩ = C(ξ − ξ′, t, t′|X). (7.18)

As a special case, we have
⟨f(ξ, t|X)g(ξ, t|X)⟩ = C(0, t, t|X) = C(t|X), (7.19)

which is independent of ξ. Thus, HID counterparts of any one-point correlations such as turbulence energy,
its dissipation rate and the Reynolds stress are independent of ξ as follows;

K(x, t), ϵ(x, t), Rµν(x, t)
HID

7−→ K(t|X), ϵ(t|X), Rµν(t|X), (7.20)

where the non-uniform variations of them are denoted by X. Generally speaking, the ensemble average of
the fluctuating quantity on the mean-Lagrangian coordinate system should be independent from ξ for the
homogeneity in ξ space. Thus we have the following relation for averaged fluctuating quantities;

F (x, t) = ⟨f(x, t)⟩
HID

7−→ ⟨f(ξ, t|X)⟩ = F (t|X), (7.21)

where F is the averaged value of f . Note that we cannot apply the relation (7.21) to some of non-fluctuating
quantities such as the metric g, the strain rate S and the absolute vorticity Θ of the mean flow, since they
are not the average of the fluctuating quantities on the mean-Lagrangian-coordinate system. However, it will
be proved in the following discussion that they are also independent of ξ in different contexts.

In our mean-Lagrangian view, the coordinate system may be curvilinear since it is moving with the mean
flow. Thus it is needed to recognize the duality between covariant and contravariant tensors. For example,
for arbitrary fluctuating contravariant vector hµ there exists the conjugate quantity given by

hµ(x, t) = gµν(x, t)hν(x, t). (7.22)

By applying HID to this relation, we obtain

hµ(ξ, t|X) = gµν(ξ, t|X)hν(ξ, t|X). (7.23)

By taking the ensemble average of the both sides, we obtain

Hµ(t|X) = ⟨hµ(ξ, t|X)⟩
= ⟨gµν(ξ, t|X)hν(ξ, t|X)⟩
= gµν(ξ, t|X)⟨hν(ξ, t|X)⟩
= gµν(ξ, t|X)Hν(t|X),

(7.24)

where H is the averaged value of h. Note that the metric tensor g is not fluctuating. Now it is obvious that
the metric is independent of ξ since the left-hand side is independent of ξ. The same situation holds also for
the contravariant metric. Thus we have

gµν(x, t)
HID

7−→ gµν(t|X), (7.25)

gµν(x, t)
HID

7−→ gµν(t|X). (7.26)

So far we have required the statistical homogeneity in ξ for both covariant and contravariant quantities
equivalently. This sounds quite natural since covariant and contravariant quantities are conjugate and they
should be treated in an equivalent way. This is the reason why (7.25) and (7.26) hold. In other words,
the relations (7.25) and (7.26) ensure the compatibility between the homogeneity and the duality. As a
consequence, the HID representation of (6.13) is given by

Sµν(ξ, t|X) =
∂

∂t
gµν(t|X). (7.27)

Thus the HID representation of the strain rate is supposed to be independent of ξ in order that the metric
tensor is consistently independent of ξ. Thus we have

Sµν(x, t)
HID

7−→ Sµν(t|X). (7.28)
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7 DETAILS OF THE FORMULATION 7.2 Homogeneity-inhomogeneity decomposition

Accordingly we have

Sµν(x, t) = gµρ(x, t)gνσ(x, t)Sρσ(x, t)
HID

7−→Sµν(t|X) = gµρ(t|X)gνσ(t|X)Sρσ(t|X).
(7.29)

Next let us think about the spatial derivative. Taking into account that the condition (7.15) must hold, we
have the following rule for the spatial-partial derivative 20;

∂

∂xµ
f(x, t)

HID

7−→
(

∂

∂ξµ
+ δ

∂

∂Xµ

)
f(ξ, t|X). (7.30)

In our formalism, we use the covariant derivative which is accompanied by the Christoffel symbols. Taking
into account that the metric tensor becomes independent of ξ, we notice that the Christoffel symbols of the
first kind should be evaluated as δ-related quantities as

Γρ.µν(x, t)
HID

7−→1
2
δ

{
∂

∂Xν
gρµ(t|X) +

∂

∂Xµ
gρν(t|X) − ∂

∂Xρ
gµν(t|X)

}
=δΓρ.µν(t|X).

(7.31)

Thus, for that of the second kind, we have

Γρ
µν(x, t) = gρσ(x, t)Γρ.µν(x, t)

HID

7−→ gρσ(t|X)δΓρ.µν(t|X) = δΓρ
µν(t|X). (7.32)

Thus, in the HID representation, the covariant derivative is supposed to be represented as

∇κCµν...
ρσ...(x, t)

HID

7−→
(

∂

∂ξκ
+ δ

X

∇κ

)
Cµν...

ρσ...(ξ, t|X), (7.33)

where the operator
X∇, which may be called the covariant derivative of X or simply the covariant derivative

as far as it does not cause any confusion with the original, is given as follows;
X

∇κCµν...
ρσ...(ξ, t|X)

=
∂

∂Xκ
Cµν...

ρσ...(ξ, t|X)

+ Γµ
ακ(t|X)Cαν...

ρσ...(ξ, t|X) + Γν
ακ(t|X)Cµα...

ρσ...(ξ, t|X) + · · ·
− Γβ

ρκ(t|X)Cµν...
βσ...(ξ, t|X) − Γβ

σκ(t|X)Cµν...
ρβ...(ξ, t|X) − · · · .

(7.34)

Let us see the dynamical equation for the strain rate in order to confirm the consistency of (7.28) and
(7.29). The HID representation of the dynamical equation of Sµν is(

∂

∂t
− ν

X

∇2

)
Sµν(t|X) = − 2

3
Sρ

µ(t|X)Sρν(t|X) +
1
2
Θρ

µ(ξ, t|X)Θρν(ξ, t|X)

+
1
2
{Sρ

µ(t|X)Θνρ(ξ, t|X) + Sρ
ν (t|X)Θµρ(ξ, t|X)}

− 2P;µν(t|X) − δ(Rρ
µ;ρν + Rρ

ν;ρµ)(t|X).

(7.35)

Thus we should put Θ as follows in order to guarantee the independence of the mean-strain rate from ξ;

Θµν(x, t)
HID

7−→ Θµν(ξ, t|X) = Θµν(t|X). (7.36)

This relation is consistent with the dynamical equation of Θ shown below, which does not contain the
dependence of ξ at all and allows the existence of the solution for Θ free from ξ;(

∂

∂t
− ν

X

∇2

)
Θµν(t|X) =Sρ

µ(t|X)Θρν(t|X) − Sρ
ν (t|X)Θρµ(t|X)

+ δ(Rρ
ν;ρµ − Rρ

µ;ρν)(t|X).
(7.37)

20In reproducing the spatial derivative ∂f/∂xµ (x, t), we replace ξ and X with x and δx of the derivative function (∂f/∂ξµ +
δ∂f/∂Xµ) (ξ, t|X), namely

∂f

∂xµ
(x, t) =

(
∂

∂ξµ
+ δ

∂

∂Xµ

)
f(ξ, t|X)

∣∣∣∣
ξ=x, X=δx

=
∂f

∂ξµ
(x, t|δx) + δ

∂f

∂Xµ
(x, t|δx).
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7 DETAILS OF THE FORMULATION 7.3 Fourier transformation

Finally, by applying HID to (7.13) and (7.14), we reach a set of equations for the velocity and pressure
fluctuations give by{

∂

∂t
− νgρσ(t|X)

∂

∂ξρ

∂

∂ξσ
− 2δν

∂

∂ξρ

X

∇ρ − δ2ν
X

∇2

}
v′µ(ξ, t|X)

+
(

∂

∂ξρ
+ δ

X

∇ρ

)
(v′µv′ρ)(ξ, t|X) + gµν(t|X)

(
∂

∂ξν
+ δ

X

∇ν

)
p′(ξ, t|X)

= −
(
Sµ

ρ + Θµ
ρ

)
(t|X)v′ρ(ξ, t|X) + δRµν

;ν(t|X),

(7.38)

(
∂

∂ξν
+ δ

X

∇ν

)
v′ν(ξ, t|X) = 0. (7.39)

We obtain the solution for the original equations (7.13) and (7.14) by replacing ξ and X of the solutions
v′(ξ, t|X) and p′(ξ, t|X) of (7.38) and (7.39) with x and δx respectively.

Here we should notice that our equations (7.38) and (7.39) permit the solution homogeneous with respect
to ξ, since their forms are identical under the translation;

ξ 7→ ξ′ = ξ + a, (7.40)

where a is a constant vector independent of ξ and t. In our formulation, all the fluctuating quantities are
constructed from v′ and p′ both of which are permitted to be homogeneous about ξ. Therefore all of the
fluctuating quantities are permitted to be homogeneous about ξ.

It should be noted here that HID performs as the synonym of two-scale decomposition employed in
TSDIA in the present analysis(Yoshizawa 1984, also see §4.2). As is mentioned at the beginning of section,
the variations of the statistical quantities are often smoother than those of fluctuations. In such cases δ is
supposed to be evaluated as small, which makes the dependence on X much smaller than that of ξ. In this
sense, we can call ξ and X local coordinates and global coordinates respectively, since ξ plays a principal
roles in describing the local structure while X denotes the global variation of the statistical quantities.

In the case that the variations of the statistical quantities are so steep as to be comparable to that of
the fluctuation such as near-wall region, we cannot take δ as small parameter. In such cases, we need some
non-perturbative treatment of δ-effect.

7.3 Fourier transformation

As is often used in the homogeneous turbulence theories, we apply the Fourier analysis to ξ in order to discuss
in the spectrum space. First we define the Fourier transformation as

F× ≡ (2π)−3

∫
dvolξ exp(−ikρξ

ρ)×, (7.41)

where dvolξ = d3ξ
√
G, G ≡ det[gρσ]. Under this definition, the delta function is given as follows;

δ3
c (k, t|X) = (2π)−3

∫
dvolξ exp(−ikρξ

ρ) . (7.42)

Nonlinear term is transformed in our representation as follows;

f(ξ, t|X)g(ξ, t|X)
F

7−→ (2π)−3
∫

dvolξ exp(−ikαξα)

×
∫

dvolp

∫
dvolq exp(ipβξβ) exp(iqγξγ)f(p, t|X)g(q, t|X)

=
∫

dvolp

∫
dvolq

× (2π)−3
∫

dvolξ exp {i(pα + qα − kα)ξα} f(p, t|X)g(q, t|X)

=
∫

dvolp

∫
dvolqδ

3
c (k − p − q, t|X) f(p, t|X)g(q, t|X),

(7.43)
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7 DETAILS OF THE FORMULATION 7.4 Elimination of the pressure fluctuation

where dvolk = d3k
√
G−1. For simplicity, we use the following symbol for the convolution;

[k;p,q] f(p, t|X)g(q, t|X) ≡
∫

dvolp

∫
dvolqδ

3
c (k − p − q, t|X)f(p, t|X)g(q, t|X).

It is important to see the commutation relations between the modified Fourier transformation and the
spatial covariant derivative and time derivative. For this purpose, we investigate G which is the only factor
dependent on the global coordinates and time in the modified-Fourier-transformation operator. Taking the
covariant derivative of G, we obtain

X

∇ρG(t|X) = G(t|X)gαβ(t|X)
X

∇ρgαβ(t|X). (7.44)

Here we used a formula ∂ det[Mµν ]/∂Mαβ = det[Mµν ] (M−1)αβ , where M is an arbitrary two-rank matrix.
Since the covariant derivative of the metric is identically zero, we obtain

X

∇ρG(t|X) = 0. (7.45)

In the same manner, taking the time derivative of G yields

∂

∂t
G(t|X) = G(t|X)gαβ(t|X)

∂

∂t
gαβ(t|X) = G(t|X)gαβ(t|X)Sαβ(t|X). (7.46)

Since we treat only incompressible fluid in this thesis, the strain rate is traceless. Therefore we obtain

∂

∂t
G(t|X) = 0. (7.47)

Thus the modified Fourier transformation F commutes with both spatial and time derivatives as follows21;(
X

∇,
∂

∂t

)
F = F

(
X

∇,
∂

∂t

)
. (7.48)

Finally, by applying the modified Fourier transformation to both (7.38) and (7.39), we obtain the following
set of equations; {

∂

∂t
+ νgρσ(t|X)kρkσ − 2iδνkρ

X

∇ρ − δ2 X

∇2

}
v′µ(k, t|X)

+
(
ikν + δ

X

∇ν

)
[k;p,q] v′µ(p, t|X)v′ν(q, t|X)

+
(
ikµ + δ

X

∇µ
)

p′(k, t|X)

= − (Sµ
ν + Θµ

ν) (t|X)v′ν(k, t|X) + δRµν
;ν(t|X)δ3

c (k, t|X),

(7.49)

(
ikρ + δ

X

∇ρ

)
v′ρ(k, t|X) = 0. (7.50)

7.4 Elimination of the pressure fluctuation

In the master equations (7.49) and (7.50) we have two dynamical variables; v′ and p′. Here we are aiming to
eliminate the pressure from our equations. Let us separate the pressure related part and the others in (7.49)
as (

ikµ + δ
X

∇µ
)

p′(k, t|X) =
p

fµ(k, t|X), (7.51)

where

p

fµ(k, t|X) = −
{

∂

∂t
+ νgρσ(t|X)kρkσ − 2iδνkρ

X

∇ρ − δ2 X

∇2

}
v′µ(k, t|X)

−
(
ikν + δ

X

∇ν

)
[k;p,q] v′µ(p, t|X)v′ν(q, t|X)

− (Sµ
ν + Θµ

ν) (t|X)v′ν(k, t|X) + δRµν
;ν(t|X)δ3

c (k, t|X).

(7.52)

21In TSDIA, on the contrary, the spectra depend on the mean velocity and, consequently, the spectra of spatial/time derivative
terms based on TSDIA are accompanied by spatial/time derivatives of the mean velocity field which are apparently non-covariant
quantities. To make matters worse, these terms cause divergence which cannot be removed from appropriate reason (Okamoto
1994). In the mean-Lagrangian formulation, on the contrary, the dynamical equations do not contain the mean velocity from
the very beginning and thus it is totally free from the above difficulties.
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By multiplying the both sides of (7.51) by kµ/ik2 we obtain

p

L̂p′(k, t|X) =
kν

ik2

p

fν(k, t|X), (7.53)

where
p

L̂ = 1 − δikρ
X∇ρ/k2, k =

√
gαβkαkβ . Using the inverse operator of

p

L̂, we obtain

p′(k, t|X) =
p

L̂−1 kν

ik2

p

fν(k, t|X), (7.54)

where the operator
p

L̂−1 is given by a series expansion as

p

L̂−1 = 1 + δ
ikρ

k2

X

∇ρ + δ2

(
ikρ

k2

X

∇ρ

)2

+ δ3

(
ikρ

k2

X

∇ρ

)3

+ · · · . (7.55)

By substituting (7.54) into (7.51), we obtain

P̃µ
ν (k, t,

X

∇|X)
p

fν(k, t|X) = 0, (7.56)

where the operator P̃ is defined by

P̃µ
ν (k, t,

X

∇|X) = δµ
ν − (ikµ + δ

X

∇µ)
p

L̂−1 kν

ik2
. (7.57)

(7.56) does not contain the pressure, which is the objective of this subsection.

In the later analysis, we will take the similar procedure to that of the incompressible-turbulence theory.
Thus it is useful to introduce the solenoidal (incompressible) part of the velocity fluctuation. Therefore we
introduce

svµ(k, t|X) = Pµ
ν (k, t|X)v′ν(k, t|X), (7.58)

where Pµ
ν (k, t|X) = δµ

ν − kµkν/k2 is a projection operator for extracting the solenoidal part. By making use
of (7.50), we obtain

svµ(k, t|X) =
(

δµ
ν − kµkν

k2

)
v′ν(k, t|X)

= v′µ(k, t|X) − δ
ikµ X∇ν

k2
v′ν(k, t|X)

= sL̂µ
νv′ν(k, t|X),

(7.59)

where sL̂µ
ν = δµ

ν − δikµ X∇ν/k2. In the same manner as we have done for the pressure, we can also express
the above result as

v′µ(k, t|X) = (sL̂−1)µ
ν

svν(k, t|X), (7.60)

(sL̂−1)µ
ν = δµ

ν + δ
ikµ X∇ν

k2
+ δ2 ikµ X∇ρ

k2

ikρ X∇ν

k2
+ · · · . (7.61)

Thus we have the equation for the solenoidal velocity by substituting (7.60) into v′ in (7.56). It is also
convenient for the later discussion to multiply the modified projector (7.57) by the solenoidal projector to
investigate only the solenoidal component. Then we have the following equation for the solenoidal velocity;

P̂µ
ν (k, t,

X

∇|X)
p

fν(k, t|X) = 0, (7.62)

p

fµ(k, t|X) = −
{

∂

∂t
+ νgρσ(t|X)kρkσ − 2iδνkρ

X

∇ρ − δ2 X

∇2

}
(sL̂−1)µ

ν
svν(k, t|X)

−
(
ikρ + δ

X

∇ρ

)
[k;p,q] (sL̂−1)µ

ν
svν(p, t|X)(sL̂−1)ρ

σ
svσ(q, t|X)

− (Sµ
ν + Θµ

ν) (t|X)(sL̂−1)ν
ρ

svρ(k, t|X) + δRµν
;ν(t|X)δ3

c (k, t|X),

(7.63)

where P̂ is a modified projection operator given by

P̂µ
ν (k, t,

X

∇|X) = Pµ
ρ P̃ ρ

ν (k, t,
X

∇|X) = Pµ
ν − δPµ

ρ

X

∇ρ p

L̂−1 kν

ik2
. (7.64)
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By expanding the operators pL̂ and sL̂ in (7.62), we obtain the perturbative representation of the dynamical
equation as {

∂

∂t
+ νgρσ(t|X)kρkσ

}
svµ(k, t|X) =

1
i
Mµ

ρσ(k, t|X)[k;p,q] svµ(p, t|X) svµ(q, t|X)

− Pµ
ν (k, t|X)(Sν

ρ + Θν
ρ)(t|X) svρ(q, t|X)

+ O(δ),

(7.65)

where Mµ
ρσ = 1

2 (Pµ
ρ kσ + Pµ

σ kρ) is another solenoidal projector. In principle we can obtain the exact v′ and
p′ by solving (7.65) and using (7.60) and (7.54) in a perturbative manner.

7.5 Static-metric representation

In the following process we will solve the velocity-fluctuation field in perturbative manner on the basis of the
homogeneous isotropic turbulence. At first glance, from (7.65), one may consider the homogeneous-isotropic-
turbulence equation is given by{

∂

∂t
+ νgρσ(t|X)kρkσ

}
vµ(k, t|X) =

1
i
Mµ

ρσ(k, t|X)[k;p,q]vµ(p, t|X)vµ(q, t|X).

If this were true, one could regard the second term on the right-hand side of (7.65) as perturbative interaction
and would straightly apply the perturbation analysis. However this is not true since the metric in this
coordinate representation clearly depends on time22. Thus, in this subsection, we are aiming to transform
(7.65) into a proper form where the perturbative and non-perturbative parts are separated according to our
purpose.

First we introduce a new representation in which the metric is static. In the following discussion, we
attach “ˇ” to the static-metric-represented wavenumber. In the static-metric frame, indices are denoted by
capital roman letters. The transformation from the mean-Lagrangian to static-metric representation is given
by

ǩI = Xaµ
I (t)kµ, (7.66)

CIJ...
KL...(ǩ, t|X)

= XaI
µ(t) XaJ

ν (t) . . . Xaρ
K(t) Xaσ

L(t) . . . Cµν...
ρσ...( XaA

α (t)ǩA, t|X),
(7.67)

where Xa’s are the transformation coefficients which obey the following relations;

XaI
µ(t) Xaµ

J(t) = δI
J , (7.68)

XaI
µ(t) Xaν

I (t) = δν
µ . (7.69)

The metric tensors of the static-metric frame are given by

Xaµ
I (t)Xaν

J(t)gµν(t|X) = gIJ , (7.70)

XaI
µ(t) XaJ

ν (t)gµν(t|X) = gIJ , (7.71)

where gIJ and gIJ are both constant in time. By transforming (7.70), we obtain

XaI
µ(t) XaJ

ν (t) gIJ = gµν(t|X). (7.72)

22This can be understood by recognizing the operator

∂

∂t
+ νgρσ(t|X)kρkσ

is different from what we see in the homogeneous-turbulence equation in Eulerian frame;(
∂

∂t
+ νk2

)
vi(k, t) =

1

i
Mi.ab(k, t)[k;p,q]va(p, t)vb(q, t).

In our coordinate representation, the time-derivative is the Oldroyd derivative where the deformation of the coordinate frame is
considered.
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Taking the time derivative of both sides of the above leads to

d XaI
µ(t)

dt
XaJ

ν (t) gIJ +
d XaJ

ν (t)
dt

XaI
µ(t) gIJ = Sµν(t|X). (7.73)

This indicates that the symmetric part of (d XaI
µ(t)/dt) XaJ

ν (t) gIJ coincides with 1
2S. Thus the above relation

yields the following relation;
d XaI

µ(t)
dt

XaJ
ν (t) gIJ =

1
2
(Sµν + Aµν)(t|X). (7.74)

Here, A is an arbitrary 2-rank anti-symmetric tensor and this is an extra dynamical variable corresponding
to the angular velocity of the static-metric frame relative to the mean-Lagrangian frame (see appendix D).
The determination of A will be discussed later with its role in the perturbation analysis (see §7.7).

By transforming (7.74), we obtain the differential equations for the transformation coefficients as

d XaI
µ(t)

dt
=

1
2
(Sν

µ + Aµ
ν)(t|X) XaI

ν(t), (7.75)

d Xaν
J(t)

dt
= −1

2
(Sν

µ + Aµ
ν)(t|X)Xaµ

J(t). (7.76)

By using them, we obtain the relation between the time derivative in the static-metric representation and
the counterpart in the mean-Lagrangian representation. Especially for the solenoidal vector C, we obtain
the following relation (see appendix E);

∂CI

∂t
(ǩ, t|X) = P I

J (ǩ)
∂ CJ

∂t
(ǩ, t|X)

= XaI
µ(t)

{
Pµ

ν

∂

∂t
+

1
2
Pµ

ρ (Sρ
ν + Aν

ρ) +
1
2
Pµ

ν (Sρ
σ + Aσ

ρ)kρ
∂

∂kσ

}
Xaν

J(t) CJ(ǩ, t|X).
(7.77)

The viscous-decaying operator in the static-metric frame is given by

L̂I
J(ǩ, t|X) ≡P I

J (ǩ)
(

∂

∂t
+ ν gAB ǩAǩB

)
=XaI

µ(t)
{

Pµ
ν

∂

∂t
+

1
2
Pµ

ρ (Sρ
ν + Aν

ρ) +
1
2
Pµ

ν (Sρ
σ + Aσ

ρ)kρ
∂

∂kσ
+ Pµ

ν νgρσkρkσ

}
Xaν

J(t),
(7.78)

whose mean-Lagrangian version is given by

L̂µ
ν (k, t|X) ≡Xaµ

I (t)L̂I
J(ǩ, t|X) XaJ

ν (t)

=Pµ
ν

∂

∂t
+

1
2
Pµ

ρ (Sρ
ν + Aν

ρ) +
1
2
Pµ

ν (Sρ
σ + Aσ

ρ)kρ
∂

∂kσ
+ Pµ

ν νgρσkρkσ.
(7.79)

Thus the homogeneous-isotropic-field equation is written in the mean-Lagrangian representation as

L̂µ
ν vν(k, t|X) =

1
i
Mµ

ρσ(k, t|X)[k;p,q]vµ(p, t|X)vν(q, t|X).

Therefore we transform the dynamical equation (7.65) into the following form.

L̂µ
ν

svν(k, t|X) =
1
i
Mµ

ρσ[k;p,q] svρ(p, t|X) svσ(q, t|X)

+ F̂µ
ν (k, t|X) svν(k, t|X)

+ O(δ),

(7.80)

where F̂ is a linear operator defined by

F̂µ
ν = Pµ

ρ

(
−1

2
Sρ

ν − Θρ
ν +

1
2
Aν

ρ

)
+

1
2
Pµ

ν (Sρ
σ + Aσ

ρ)kρ
∂

∂kσ
. (7.81)

The objective of this subsection has been achieved by (7.80).
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7 DETAILS OF THE FORMULATION 7.6 Partial renormalization

So far we have used Xa as the main tool in this subsection. This convenient representation method is,
however, apparently non-objective since it totally depends on how we choose the static-metric frame. Thus
we introduce here time-evolution coefficients which express the time evolution of Xa in a covariant manner.
First we define the time-evolution coefficient of the first kind as follows;

Λµ
ν (t; t′|X) = Xaµ

J(t) XaJ
ν (t′). (7.82)

Multiplying this by Xaν
I (t′) and using (7.68), we obtain

Xaµ
I (t) = Λµ

ν (t; t′|X) Xaν
I (t′). (7.83)

Substituting this into (7.76) yields the equation for the time-evolution coefficient as

∂

∂t
Λµ

ν (t; t′|X) = −1
2
(Sµ

ρ + Aρ
µ)(t|X)Λρ

ν(t; t′|X), (7.84)

with
Λµ

ν (t′; t′|X) = δµ
ν . (7.85)

Note that the time-evolution coefficient is determined independently of the choice of the static metric repre-
sentation, as is clear from (7.84) and (7.85). Using the time-evolution coefficient, we can reach the covariant
result without using the static-metric representation explicitly as will be discussed later (see (7.107) and
(7.108) in §7.7). In the same manner, we introduce the time-evolution coefficient of the second kind as

Λ̄µ
ν (t; t′|X) = XaJ

µ(t) Xaν
J(t′) (7.86)

which satisfies the followings;
XaI

µ(t) = Λ̄ν
µ(t; t′|X) XaI

ν(t′), (7.87)

∂

∂t
Λ̄ν

µ(t; t′|X) =
1
2
(Sρ

µ + Aµ
ρ)(t|X)Λ̄ν

ρ(t; t′|X), (7.88)

Λ̄ν
µ(t′; t′|X) = δν

µ. (7.89)

(7.82) and (7.86) yields Λµ
ν (t; t′|X) = Λ̄µ

ν (t′; t|X).

7.6 Partial renormalization

So far we have transformed the set of dynamical equations into (7.80) which has a manageable form for
our purpose, and now is the time to apply the statistical analysis to the master equation (7.80). Our basic
strategy is based on RPT. In this context we have to specify the perturbative terms, so that we introduce
perturbative parameters λ and µ for the nonlinear self-interaction and S, Θ-related terms respectively. Thus
we rewrite (7.80) as

L̂µ
ν

svν(k, t|X) =λ
1
i
Mµ

ρσ[k;p,q] svρ(p, t|X) svσ(q, t|X)

+ µF̂µ
ν (k, t|X) svν(k, t|X)

+ O(δ).

(7.90)

We assume these three parameters λ, µ and δ as perturbative parameters representing the magnitude of
nonlinearity, anisotropy and inhomogeneity respectively. Thus we regard the following solenoidal field ṽ as
the non-perturbative field;

L̂µ
ν ṽν(k, t|X) = 0. (7.91)

In addition, we introduce the propagator of ṽ as

L̂µ
ρ G̃ρ

ν(k; t, t′|X) = Pµ
ν (k, t|X)δ(t − t′). (7.92)

ṽ and G̃ are to be referred to as the bare field and bare propagator in the context of RPT. By using G̃, we
can integrate (7.90) as

svµ(k, t|X) = ṽµ(k, t|X)

+ λ

∫ t

−∞
dt′ G̃µ

ν (k; t, t′|X)
1
i
Mν

ρσ[k;p,q] svρ(p, t|X) svσ(q, t|X)

+ µ

∫ t

−∞
dt′ G̃µ

ν (k; t, t′|X)F̂ ν
ρ (k, t′|X) svρ(k, t′|X)

+ O(δ).

(7.93)
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7 DETAILS OF THE FORMULATION 7.6 Partial renormalization

Figure 7: Diagrammatic representations: The total fluctuation v′, the non-perturbative field ṽ,
its propagator G̃ and the convolution are represented by a thick line, a thin line, a dotted line
and a vertex respectively.

Figure 8: Examples of vertex representation; (a) the convolution of two velocity fluctuations
is represented by vertex with two thick lines attached to the two tail terminals, and (b) its
integration with the bare propagator is represented by attaching a dotted line to the arrow
terminal.

By substituting the above expansion into sv on the right-hand side iteratively, we obtain the solution for the
equation (7.90) as a series expansion. Using (7.60), we obtain the perturbative expansion of the total velocity
fluctuation;

v′µ(k, t|X) = ṽµ(k, t|X)

+ λ

∫ t

−∞
dt′ G̃µ

ν (k; t, t′|X)
1
i
Mν

ρσ[k;p,q]ṽρ(p, t|X)ṽσ(q, t|X)

+ µ

∫ t

−∞
dt′ G̃µ

ν (k; t, t′|X)F̂ ν
ρ (k, t′|X)ṽρ(k, t′|X)

+ δ
ikµ X∇ν

k2
ṽν(k, t|X)

+ · · · .

(7.94)

In order to make the discussion simple and clear, we employ the symbolic method first introduced by Wyld
(1961). The total fluctuation v′, the non-perturbative field ṽ, its propagator G̃ and the convolution are
represented respectively by a thick line, a thin line, a dotted line and a vertex shown in figure 7 23.

By using them, we express the perturbative expansion of v′ with a series of diagrams shown in figure 9,
where F̂ operates on the side of “∗”. Here we have a particular group of diagrams free from µ and δ as (A)
in figure 9. This group is obviously the solution of the following equation for Bv;

L̂µ
ν

Bvν(k, t|X) = λ
1
i
Mµ

ρσ[k;p,q] Bvρ(p, t|X) Bvσ(q, t|X). (7.95)

Let us call Bv the basic field which will play the fundamental role in our closure method.

Then we introduce the other key factor: the response of the basic field for the infinitesimal disturbance.
Let us consider the above equation with infinitesimal external force Υ;

L̂µ
ν

Bvν(k, t|X||Υ) = λ
1
i
Mµ

ρσ[k;p,q] Bvρ(p, t|X||Υ) Bvσ(q, t|X||Υ)

+ Pµ
ν (k, t|X)Υν(k, t|X).

(7.96)

23The vertex has three terminals; arrow terminal is for propagator integration, the other two of them are for convolution. For
example, convolution of two velocity fluctuations, namely

1

i
Mµ

ρσ [k;p,q]v′ρ(p, t|X)v′σ(q, t|X),

is represented as figure 8(a), while its integration with the propagator, namely∫ t

−∞
dt′ G̃µ

ν (k; t, t′|X)
1

i
Mµ

ρσ [k;p,q]v′ρ(p, t′|X)v′σ(q, t′|X),

is represented by figure 8(b).
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7 DETAILS OF THE FORMULATION 7.6 Partial renormalization

Figure 9: Perturbative expansion of the total velocity fluctuation; We have shown the diagram-
matic expansion up to the order of λ2 µ1 for simplicity. (A) is a group of diagrams free from
both µ and δ, which is defined as the basic field Bv.

Figure 10: Perturbative expansion of the basic field and its one-wave-number response.

The external force causes the infinitesimal variation of Bv from its original value. This variation may be
expanded in terms of Υ as

Bvµ(k, t|X||Υ) = Bvµ(k, t|X) +
∫

dvolk′

∫ t

−∞
dt′ BG′µ

ν (k, t;k′, t′|X)Υν(k′, t′|X) + O(Υ2). (7.97)

BG′ is the response function against infinitesimal disturbance Υ, which has two wave numbers k and k′; the
former for response and the latter for disturbance. Here we define the one-wave-number response by

BG′µ
ν (k; t, t′|X) ≡

∫
dvolk′ BG′µ

ν (k, t;k′, t′|X), (7.98)

which is governed by

L̂µ
ρ

BG′ρ
ν (k; t, t′|X) =Pµ

ν (k, t|X)δ(t − t′)

+ 2λ
1
i
Mµ

ρσ[k;p,q] Bvρ(p, t|X) BG′σ
ν (q; t, t′|X).

(7.99)

The diagrammatic representations for the basic field Bv and its one-wave-number response BG′ are given in
figure 10. Now we can expand the velocity fluctuation on the basis of ṽ and G̃. The pressure fluctuation is
expressed by (7.54) so that it is also expanded with ṽ and G̃, and thus all of the fluctuating quantities are
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7 DETAILS OF THE FORMULATION 7.6 Partial renormalization

Figure 11: Perturbative expansion of the binary correlation and the averaged response of the
basic field

Figure 12: An example of self correlation of a diagram in figure 10 is shown. According to the
Normality assumption, we have three choices of pairs; (1, 3)(2, 4), (1, 4)(2, 3), and (1, 2)(3, 4),
each of which yields the diagrams (A), (B) and (C). Reminding the vertex is symmetric under
exchange of its two tails, we notice that (A) and (B) are identical to each other. The rest (C) is
a self-connected-loop diagram which automatically vanishes under the given assumptions.

expanded in terms of ṽ and G̃.

Here we assume that the velocity fluctuation is Gaussian-random factor in the far past, which indicates
that the bare field itself is also Gaussian-random equivalently at arbitrary time. Under this assumption,
arbitrary correlation of ṽ is to be represented in terms of its binary correlations. For example, the fourth-
order correlation of ṽ is calculated as

⟨ṽα(k(1) , t(1))ṽβ(k(2) , t(2))ṽγ(k(3) , t(3))ṽδ(k(4) , t(4))⟩
=⟨ṽα(k(1) , t(1))ṽβ(k(2) , t(2))⟩ ⟨ṽγ(k(3) , t(3))ṽδ(k(4) , t(4))⟩

+ ⟨ṽα(k(1) , t(1))ṽγ(k(3) , t(3))⟩ ⟨ṽβ(k(2) , t(2))ṽδ(k(4) , t(4))⟩
+ ⟨ṽα(k(1) , t(1))ṽδ(k(4) , t(4))⟩ ⟨ṽβ(k(2) , t(2))ṽγ(k(3) , t(3))⟩.

(7.100)

In general, for even positive integer n, the correlation of the nth order is reduced to

⟨ṽα(k(1) , t(1))ṽβ(k(2) , t(2)) · · · ṽη(k(n−1) , t(n−1))ṽζ(k(n) , t(n))⟩
= ⟨ṽα(k(1) , t(1))ṽβ(k(2) , t(2))⟩ · · · ⟨ṽη(k(n−1) , t(n−1))ṽζ(k(n) , t(n))⟩

+ ⟨ṽα(k(1) , t(1))ṽζ(k(n) , t(n))⟩ · · · ⟨ṽη(k(n−1) , t(n−1))ṽβ(k(2) , t(2))⟩
+ · · · all the rest of combinations (for evenn),

(7.101)

while it vanishes for odd n. We write this bare binary correlation ⟨ṽµ(k, t|X)ṽν(k′, t′|X)⟩ as Ũµν(k, t;k′, t′|X).
Thus we can represent any correlations in terms of the bare correlation Ũ and the bare propagator G̃.

Following the Normality assumption of the bare field, we obtain the binary correlation and the averaged
one-wave-number response of the basic field as the series expansions shown in figure 11 24, each of which are

24As an example, let us calculate the self correlation of λ1-order term in figure 10 (the second term of the right-hand side
of Bv’s expansion). In the diagrammatic representation, each binary correlation of the bare field is obtained by connecting a
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Figure 13: Reverse expansions of the basic quantities

defined by
BUµν(k, t;k′, t′|X) = ⟨Bvµ(k, t|X) Bvν(k′, t′|X)⟩ (7.102)

and
BGµ

ν (k; t, t′|X) = ⟨ BG′µ
ν (k; t, t′|X)⟩. (7.103)

Unlike the bare counterparts, these basic-field quantities include infinite order of λ terms and exactly
incorporate the strong nonlinear effect of the Navier-Stokes turbulence. What follows is to utilize these BU
and BG to incorporate the strong nonlinearity into the simple perturbation analysis. We will conduct this
by replacing the bases of the expansion Ũ and G̃ by BU and BG. The later procedure may be summarized
as the following steps.

1. Due to the Gaussian nature of the bare field, arbitrary correlation F of our concern can be expanded
in terms of λ, µ and δ and is represented as a series expansion F [Ũ, G̃; λ, µ, δ].

2. On the other hand, the basic quantities BU and BG are to be expanded only by λ and are represented
as series expansions BU[Ũ, G̃;λ] and BG[Ũ, G̃; λ] (see figure 11).

3. Then we invert these expansion and obtain the series expansions of bare quantities Ũ[BU, BG; λ] and
G̃[BU, BG; λ] (see figure 13).

4. By substituting these inverted expansions into F [Ũ, G̃; λ, µ, δ], we obtain the series expansion:
F [BU, BG; λ, µ, δ] = F [Ũ{BU, BG; λ}, G̃{BU, BG;λ};λ, µ, δ].

5. By taking the proper truncation with respect to λ, we obtain the demanded approximation of F .

Under this procedure the nonlinear interaction is firmly incorporated in the series expansion even at the
lowest order of λ. We may call this procedure “renormalization” following some pioneering works (Wyld 1961,
Kraichnan 1977, Kaneda 1981). In this context the key factors BU and BG are referred to as the renormalized
correlation and propagator respectively. We should recognize an important fact of the renormalization we have
introduced here; we employed BU and BG which include only the contributions from λ as the renormalized
quantities. Thus the infinite partial summation has been done only for the nonlinearity and we merely
performed simple perturbative expansions for µ and δ, which may lead us to undesirable result as anisotropy
or inhomogeneity become prominent. In this sense we call our procedure partial renormalization.

In the diagrammatic expansions in figures 11 and 13, readers may realize that they lack of some diagrams
which have loops each of which is closed with only one vertex. These diagrams, however, automatically vanish
due to the assumptions we have set up (see appendix F).

pair of thin lines. Here we label the four thin lines as 1-4. According to the Normality assumption, we have three choices of
pairs; (1, 3)(2, 4), (1, 4)(2, 3), and (1, 2)(3, 4) each of which yields the diagrams (A), (B) and (C) in figure 12. Reminding the
vertex is symmetric under exchange of its two tails, we notice that (A) and (B) are identical to each other. The rest (C) is a
self-connected-loop diagram which automatically vanish under our assumptions (see appendix F). Finally we obtain a λ2-order
diagram (the second term of BU’s expansion in figure 11).
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7 DETAILS OF THE FORMULATION 7.7 Statistical properties of the basic field

7.7 Statistical properties of the basic field

So far we have developed a series of methods to express the statistical quantities in terms of BU and BG.
In order to obtain further insights, we need more specific information on the basic field. For the later
convenience, we assume the basic field as isotropic and parity-symmetric in the static-metric representation,
which may be partly justified by the fact that the basic field is governed by the same equation as that of the
isotropic field as is indicated by (7.95) (we will see another justification in §7.8). Under this assumption, the
basic-field quantities BU and BG reduce to

BU IJ(ǩ; t, t′|X) ≡
∫

dvolǩ′
BU IJ(ǩ, t; ǩ′, t′|X) = P IJ(ǩ) BQ(k; t, t′|X), (7.104)

BGI
J(ǩ; t, t′|X) = P I

J (ǩ) BG(k; t, t′|X), (7.105)

where BQ and BG are isotropic scalar functions. k is the norm of the wave-number vector k and is represented
in the same form in both of mean-Lagrangian and static-metric frames as

k =
√

gµνkµkν =
√

gIJ ǩI ǩJ . (7.106)

The relations (7.83) and (7.87) yield the correlation and propagator in the mean-Lagrangian representation
as follows;

BUµν(k; t, t′|X) = Xaµ
I (t) Xaν

J(t′)BU IJ(ǩ; t, t′|X)

= Xaµ
I (t) Xaν

J(t′)P IJ(ǩ)BQ(k; t, t′|X)

= Xaµ
I (t)Λν

ρ(t′; t|X)Xaρ
J(t)P IJ (ǩ)BQ(k; t, t′|X)

= Λν
ρ(t′; t|X)Pµρ(k, t|X)BQ(k; t, t′|X),

(7.107)

BGµ
ν (k; t, t′|X) = Xaµ

I (t)XaJ
ν (t′) BGI

J(ǩ; t, t′|X)

= Xaµ
I (t)XaJ

ν (t′)P I
J (ǩ) BG(k; t, t′|X)

= Xaµ
I (t)Λ̄ρ

ν(t′; t|X)XaJ
ρ (t)P I

J (ǩ) BG(k; t, t′|X)

= Λ̄ρ
ν(t′; t|X)Pµ

ρ (k, t|X) BG(k; t, t′|X),

(7.108)

where the relations (G·4) and (G·7) in appendix G are used. We note that Xa’s do not appear in both (7.107)
and (7.108). Now any types of correlations are expressed in terms of a set of scalar functions BQ and BG,
and we are about to analyze these two dynamical variables.

By applying the renormalized-perturbation method explained in §7.6 to equations for BQ and BG, one can
obtain a closed system of equations for them and, consequently, one may close the whole system involving BQ
and BG as dynamical variables. However, these equations are the same as what had already been obtained
for the homogeneous isotropic case using DIA (Kraichnan 1959), and it is wellknown that the DIA equations
cannot reproduce the proper features of developed turbulence at high Reynolds number such as the −5/3-
power law of the energy spectrum in the inertial range. Thus we take a tentative method which has been
proposed by Yoshizawa (1978, 1984). He had introduced an artificial damping around the infra-red region
to remove the infra-red divergence in the equation of the propagator and reconstructed the DIA equations
to be consistent with Kolmogorov’s power law. By using the modified DIA equations, spectral forms were
successfully obtained for the inertial range with numerical coefficients. In this thesis, we make full use of his
result.

We expect the basic field to behave as the homogeneous isotropic field at high Reynolds number. In such
a case there exists a characteristic −5/3-power law in the energy spectrum BE(k, t|X) ≡ 4πk2σ(k, t|X) as
is shown in the figure 14(a). Thus we simplify the energy spectrum as figure 14(b); namely we replace the
detailed structure of the energy-containing and dissipative ranges with simple cut-off wave numbers kc(t|X)
and kd(t|X). Besides we assume the exponential decay for the time evolution of both BQ and BG. Thus the
inertial-range forms of BQ and BG are given by

BQ(k; t, t′|X) = σ(k, t|X) exp [−ω(k, t|X)|t − t′|] , (7.109)

BG(k; t, t′|X) = exp [−ω(k, t|X)(t − t′)] , (7.110)
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Figure 14: Simplification of the energy spectrum; (a) the outlines of the energy and dissipation
spectra are illustrated. (b) We avoid to deal with the detailed structures of the energy-containing
and dissipation ranges, but instead, we simply replace these two ranges with a simple cutoff
wavenumbers kc and kd. Due to this simplification, the basic field is characterized by only three
factors; kc, kd and Bϵ.

σ(k, t|X) = Cσk−11/3 Bϵ2/3(t|X), (7.111)

ω(k, t|X) = Cωk2/3 Bϵ1/3(t|X), (7.112)

where Cσ is proportional to the Kolmogorov constant, Cω characterizes the decaying time due to turbulence.
Bϵ is the dissipation rate of the basic-field energy. In the high-Reynolds-number limit (kc → 0 and kd → ∞),
the modified DIA with the above simplification gives the following set of constants (Yoshizawa 1978);

Cσ = 0.118 , Cω = 0.419. (7.113)

This yields the Kolmogorov’s constant Ko = 4πCσ = 1.48 which is consistent with experimental results
Ko = 1.62 ± 0.17 (Sreenivasan 1995). In this approximation all the spectral information of the basic field
is characterized only by three factors, kc, kd and Bϵ, and this fact enables us to investigate the basic-field
quantities in a remarkably simple way. In reality, the actual number of degrees of freedom is only two
instead of three, since Bϵ is theoretically given by Bϵ = 2ν

∫
dvolkk2 BQ(k; t, t|X) for arbitrary spectral form

of BQ(k; t, t|X). Under the approximation, it is reduced to

Bϵ = 2ν

∫
dvolkk2 BQ(k; t, t|X)

= 2ν

∫ kd

kc

dk 4πk2 Cσ
Bϵ2/3k−11/3

= 8πCσν Bϵ2/3

∫ kd

kc

dk k1/3

= 6πCσν Bϵ2/3
(
k

4/3
d − k4/3

c

)
,

(7.114)

and thus we obtain
Bϵ = (6πCσ)3 ν3

(
k

4/3
d − k4/3

c

)3

. (7.115)

Thus all the properties of the basic field can be described by any two of the three factors kc, kd and Bϵ.

7.8 Fixing of A

In (7.107) and (7.108), there is still uncertainty of A introduced in §7.5 as an extra dynamical variable through
Λ and Λ̄ (see (7.84) and (7.88)). Since the whole procedure of the renormalization discussed above should
presuppose determined A, we have to prescribe A in an independent manner of §7.6.

Here we pay attention to the global motion. There exists vortical motion prescribed by Θ in the large
scale from which the energy cascades into the smaller scale. The motion in the small scale is expected to
be affected by the global rotation through the energy cascading process. If the global motion has rotation
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in the static-metric frame, the isotropic assumption represented as (7.104) and (7.105) cannot be accepted
since both BU and BG would include some anisotropy owing to the global rotation. On the other hand, if
we take the static metric frame to be rotating together with the mean flow, the mean flow has no rotation
relative to the static metric frame and the basic field is expected to be independent from the global rotation
in the static metric representation. Therefore we choose the static-metric frame rotating with the mean flow,
which is equivalent to put A as zero (see appendix D);

Aµν(t|X) = 0. (7.116)

One may think the static-metric frame should not be rotating against the inertial frame. In this choice
the small-scale turbulence is supposed to be more strongly affected by the inertia than the rotation of the
large eddies which drives turbulence motion. However, in reality, the inertial effect such as Coriolis force
decreases as the length scale gets small. Thus the author thinks that the mean-flow determines the rotational
state of the small-scale motion at a primary stage; the basic field should be rotating with the mean flow.

8 Application to the Reynolds stress

Here we apply the above method to the Reynolds stress as a specific example. Using the HID representation,
the Reynolds stress is denoted as

Rµν(t|X) = ⟨v′µ(ξ, t|X)v′ν(ξ, t|X)⟩ =
∫

dvolk

∫
dvolk′⟨v′µ(k, t|X)v′ν(k′, t|X)⟩. (8.1)

By substituting δx = X and replacing all the perturbative parameters as unity (δ, µ, λ=1), we obtain the
Reynolds stress in the real space; namely Rµν(x, t) = Rµν(t|x). Thus we have to investigate the total
binary correlation ⟨v′µ(k, t|X)v′ν(k′, t|X)⟩. Following §7.6, we expand the above correlation by Ũ and G̃
as illustrated in figure 15 where each of M.R. denotes the mirror-reversed counterpart of the left diagram.
By substituting the reverse expansions shown in figure 13 into the expansion in figure 15, we obtain the
renormalized expansion shown in figure 16 where some loops arising from λ terms have been effectively
absorbed into the thick lines of the no-loop diagrams.

Unfortunately, we cannot determine clearly the proper order of λ for the truncation of the expansion,
which is expected to be a proper approximation, since the nonlinearity cannot be assumed as small in
turbulence phenomena. However, it is wellknown empirically that the truncation at even lower order still
retains important features of real phenomena. Thus it is still valuable to truncate at the lowest order of λ
to extract the major contributions from µ- and δ- related terms. Following this idea, we eliminate one-loop
corrections below. Thus the renormalized expansion in figure 16 results in figure 17.

The present analysis includes µ1-, µ2- and µ1δ2-order terms. Since µ2δ2-order analysis produces an
enormous number of terms, these higher-order analyses are left for the future works. Note that δ1-order terms
automatically vanish since these terms include odd numbers of wavenumbers which have no contribution to
the wavenumber integrations.
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8 APPLICATION TO THE REYNOLDS STRESS

Figure 15: Perturbative expansion for the binary correlation. Each M.R. denotes the mirror-
reversed counterpart of the left diagram.

Figure 16: Renormalized expansion of the binary correlation up to first order of µ.

Figure 17: Truncated renormalized expansion for the binary correlation.
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8 APPLICATION TO THE REYNOLDS STRESS 8.1 Temporal nonlocality of the Reynolds stress

Figure 18: Configuration of the point of integrand in (8.2) is depicted with a mean-flow element
and the mean-Lagrangian frame on it; In explaining R, history of S, Θ, Λ and Λ̄ on the mean-
flow particle is considered over its trajectory. Note that the trajectory is not a point in general
coordinate system {y}.

8.1 Temporal nonlocality of the Reynolds stress

By substituting into (8.1) the renormalized truncated expansion obtained in the previous section, we can
calculate the Reynolds stress as follows;

Rµν(x, t) =
2
3
gµν(x, t)

∫
dvolk BQ(k; t, t|x)

− 7
15

∫ t

−∞
dt′

{
Λµ

ρ (t; t′|x)Λ̄σ
κ(t; t′|x)gκν(x, t) + Λν

ρ(t; t′|x)Λ̄σ
κ(t; t′|x)gκµ(x, t)

}
×

(
1
2
Sρ

σ + Θρ
σ

)
(x, t′)

∫
dvolk BG(k; t, t′|x) BQ(k; t, t′|x)

− 1
10

∫ t

−∞
dt′

{
gµρ(x, t)Sν

ρ (x, t′) + gνρ(x, t)Sµ
ρ (x, t′)

}
×

∫
dvolk BG(k; t, t′|x) BQ(k; t, t′|x)

− 1
15

∫ t

−∞
dt′

{
gµρ(x, t)Sν

ρ (x, t′) + gνρ(x, t)Sµ
ρ (x, t′)

}
×

∫
dvolk BG(k; t, t′|x)k

∂

∂k
BQ(k; t, t′|x)

+ O(µ2, µδ2),

(8.2)

where up to µ1-order diagrams are explicitly shown for simplicity. Note that the present analysis includes
even higher-order effect of δ. This result is very important in the following two senses.

First, the time evolutions of the mean-flow properties (S, Θ, and Λ) and the fluctuation properties ( BQ
and BG) coexist in the time integration. Thus (8.2) can illustrate the system where the time scales of the mean
flow and the fluctuation are not separated. In this sense (8.2) is more generalized form of the conventional
algebraic Reynolds stress models where the Reynolds stress is determined only by the present information
25. This is clearly the generalization of the RPT of homogeneous turbulence which explains phenomena in

25The counterpart of (8.2) in TSDIA is (4.12), where the history effect of the velocity gradient is not considered. To be precise,
Lagrangian derivatives of the velocity gradient appears in higher order analysis of TSDIA. Thus, TSDIA may include the history
effects as time-derivative expansions. However, because of the time-scale separation between mean flow and fluctuation, TSDIA
cannot perform the time integration of mean-flow quantities and fluctuation simultaneously.
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8 APPLICATION TO THE REYNOLDS STRESS 8.2 Temporal-locality approximation

terms of multiple-time quantities of fluctuation 26.

Second, all the integrals in the (8.2) are the convected integrations on the mean-flow particle labelled by
x. Thus, in general coordinate representation, (8.2) integrates the history of S, Θ, Λ and Λ̄ on the nonlocal
trajectory in the coordinate space in generally covariant manner (see figure 18). Thus (8.2) successfully
describe the non-local contribution of the mean-flow trajectory to the Reynolds stress in covariant manner
due to the mean-Lagrangian representation, whose importance has been stated in §6.

8.2 Temporal-locality approximation

We expand S(x, t′), Θ(x, t′), Λ(t′; t|x) and Λ̄(t′; t|x) around t as follows 27;

Sρ
σ(x, t′) = Sρ

σ(x, t) + (t′ − t)
∂Sρ

σ

∂t
(x, t) +

1
2
(t′ − t)2

∂2Sρ
σ

∂t2
(x, t) + · · · ,

Θρ
σ(x, t′) = Θρ

σ(x, t) + (t′ − t)
∂Θρ

σ

∂t
(x, t) +

1
2
(t′ − t)2

∂2Θρ
σ

∂t2
(x, t) + · · · ,

Λρ
σ(t′; t|x) = δρ

σ − 1
2
(t′ − t)Sρ

σ(x, t) − 1
4
(t′ − t)2

(
Sρ

αSα
σ +

∂Sρ
σ

∂t

)
(x, t) + · · · ,

Λ̄ρ
σ(t′; t|x) = δρ

σ +
1
2
(t′ − t)Sρ

σ(x, t) − 1
4
(t′ − t)2

(
Sρ

αSα
σ +

∂Sρ
σ

∂t

)
(x, t) + · · · .

(8.3)

By substituting (8.3) into (8.2), we obtain

Rµν =
2
3

BKgµν − νT Sµν + γt

(
∂Sµν

∂t
+ Sµ

ρ Sνρ

)
+ NI S · Sgµν

+ NII Θ · Θgµν

+ NIII Sµ
ρ Sνρ

+ NIV Θµ
ρΘνρ

+ NV

(
Sµ

ρ Θνρ + Sν
ρΘµρ

)
+ DI

(
Sµ;νρ

ρ + Sν;µρ
ρ

)
+ DII Sαβ

;αβgµν

+ DIII (Θµ
ρ
;νρ + Θµ

ρ
;νρ)

+ DIV △Sµν ,

(8.4)

where up to second-order terms of S and Θ are retained28. BK, νT , γt, NI -NV and DI -DIV are all scalars
explained by the fluctuation properties as follows 29;

26Another profound connection between the present and homogeneous-turbulence theories is discussed in §9.2, which indicates
that the present theory may illustrate the interaction between fluctuation and the mean flow in almost the same manner as one
of the most reliable theory of homogeneous turbulence.

27Higher-order terms in (8.3) produce cubic terms and even higher-order terms. For example, the first-order derivative of S
can be evaluated as S2 since

gµν
∂Sµν

∂t
= −S · S,

while the second-order derivative can be evaluated as third since

gµν
∂2Sµν

∂t2
= −2Sα

β Sβ
γ Sγ

α + Sµν
∂Sµν

∂t
.

28Retaining the higher order terms of (8.3) produces cubic terms such as SSS, SSΘ, SΘΘ and ΘΘΘ, and even higher-order
terms. However, the present work does not include cubic and even higher-order analysis of µ which include higher-order effects
of S and Θ, so that we retained up to second-order terms of S and Θ.

29The wave-number integrations were conducted along with the following formulae.∫
dvolk

kµkν

k2
× =

1

3
gµν

∫
dvolk ×
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8 APPLICATION TO THE REYNOLDS STRESS 8.2 Temporal-locality approximation

BK =
∫

dvolkBQ(k; t, t), (8.5)

νT =
1
15

∫ t

−∞
dt′

∫
dvolk

{
10 BG(k; t, t′) BQ(k; t, t′) + 2 BG(k; t, t′)k

∂

∂k
BQ(k; t, t′)

}
, (8.6)

γt =
1
15

∫ t

−∞
dt′(t − t′)

∫
dvolk

{
10 BG(k; t, t′) BQ(k; t, t′) + 2 BG(k; t, t′)k

∂

∂k
BQ(k; t, t′)

}
. (8.7)

NI =
2
35

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ BG(k; t, t′) BG(k; t′, t′′) BQ(k; t, t′′)

+
26
105

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ k

∂BG

∂k
(k; t, t′) BG(k; t′, t′′)BQ(k; t, t′′)

+
2

105

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ BG(k; t, t′) k

∂BG

∂k
(k; t′, t′′) BQ(k; t, t′′)

+
2
35

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ k2 ∂

∂k

{
∂BG

∂k
(k; t, t′) BG(k; t′, t′′)

}
BQ(k; t, t′′)

+
1
21

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ BG(k; t, t′) BG(k; t, t′′) BQ(k; t′, t′′)

+
2

105

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ k

∂BG

∂k
(k; t, t′) BG(k; t, t′′) BQ(k; t′, t′′)

+
1
35

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ k2 ∂BG

∂k
(k; t, t′)

∂BG

∂k
(k; t, t′′) BQ(k; t′, t′′),

(8.8)

NII = − 2
15

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ BG(k; t, t′) BG(k; t′, t′′) BQ(k; t, t′′)

+
1
15

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ BG(k; t, t′) BG(k; t, t′′) BQ(k; t′, t′′),

(8.9)

NIII = − 5
21

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ BG(k; t, t′) BG(k; t′, t′′) BQ(k; t, t′′)

− 11
35

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ k

∂BG

∂k
(k; t, t′) BG(k; t′, t′′)BQ(k; t, t′′)

− 13
105

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ BG(k; t, t′) k

∂BG

∂k
(k; t′, t′′) BQ(k; t, t′′)

− 1
105

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ k2 ∂

∂k

{
∂BG

∂k
(k; t, t′) BG(k; t′, t′′)

}
BQ(k; t, t′′)

+
1
42

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ BG(k; t, t′) BG(k; t, t′′) BQ(k; t′, t′′)

− 13
105

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ k

∂BG

∂k
(k; t, t′) BG(k; t, t′′) BQ(k; t′, t′′)

+
2

105

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ k2 ∂BG

∂k
(k; t, t′)

∂BG

∂k
(k; t, t′′) BQ(k; t′, t′′),

(8.10)

∫
dvolk

kαkβkγkδ

k4
× =

1

15

(
gαβgγδ + gαγgβδ + gαδgβγ

) ∫
dvolk ×

48



8 APPLICATION TO THE REYNOLDS STRESS 8.2 Temporal-locality approximation

NIV = − 4
15

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ BG(k; t, t′) BG(k; t′, t′′) BQ(k; t, t′′)

+
2
15

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ BG(k; t, t′) BG(k; t, t′′) BQ(k; t′, t′′),

(8.11)

NV =
1
15

∫
dvolk

∫ t

−∞
dt′

∫ t′

−∞
dt′′ BG(k; t, t′) BG(k; t′, t′′) BQ(k; t, t′′)

+
1
10

∫
dvolk

∫ t

−∞
dt′

∫ t

−∞
dt′′ BG(k; t, t′) BG(k; t, t′′) BQ(k; t′, t′′),

(8.12)

DI =
1
7

∫
dvolk

∫ t

−∞
dt′

1
k2

BG(k; t, t′) BQ(k; t, t′), (8.13)

DII =
4

105

∫
dvolk

∫ t

−∞
dt′

1
k2

BG(k; t, t′) BQ(k; t, t′), (8.14)

DIII = − 1
15

∫
dvolk

∫ t

−∞
dt′

1
k2

BG(k; t, t′) BQ(k; t, t′), (8.15)

DIV = − 2
21

∫
dvolk

∫ t

−∞
dt′

1
k2

BG(k; t, t′) BQ(k; t, t′). (8.16)

We can easily transform the above result into the general coordinate representation as follows30;

Rij =
∂yi

∂xµ

∂yj

∂xν
Rµν =

2
3

BKgij − νT Sij + γt

(
OSij

Ot
+ Si

aSja

)
+ NI S · Sgij

+ NII Θ · Θgij

+ NIII Si
aSja

+ NIV Θi
aΘia

+ NV

(
Si

aΘja + Sj
aΘja

)
+ DI

(
Si;ja

a + Sj;ia
a

)
+ DII Sab

;abg
ij

+ DIII

(
Θi

a
;ja + Θi

a
;ja

)
+ DIV △Sij .

(8.17)

All the terms on the right-hand side of (8.17) are generally covariant so that we have successfully derived
the covariant representation for the Reynolds stress in a temporally-localized form. BK-, νT -, and N -related
terms of (8.17) give us a theoretical support for the conventional quadratic-algebraic models. The other

30Here the Oldroyd derivative of the strain rate is given by

OSij

Ot
=

DSij

Dt
− V i

;kSkj − V j
;kSki.

The mean velocity field in the above equation is the one observed in the general coordinate system {y}.
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terms are unusual in previous works; γt-related term and D-related terms represent nonlocal effect in space
and time.

Note that (8.17) does not contain any adjustable parameter, unlike the conventional algebraic models. By
prescribing the statistical information of fluctuation through BQ and BG, (8.17) can determine the Reynolds
stress.

Somebody may say the present result (8.17) could be obtained only by replacing non-covariant terms
of (4.16) derived from TSDIA with covariant counterparts. However, we cannot simply replace the D/Dt
term of (4.16) with the Oldroyd derivative, since there exist several covariant time derivatives other than
the Oldroyd derivative. Thus we cannot obtain (9.31) from TSDIA with the simple replacement. On the
other hand, in the present formulation, the Oldroyd derivative in the delay-response term (the CT -related
term) is obtained as the natural consequence since it is the simple time derivative in the mean-Lagrangian
representation. Moreover, we should notice that even if we choose the Oldroyd derivative, the present form,
namely

OSij

Ot
+ Si

aSja,

is not trivial. Instead of the present form, one may well employ the deviatoric part of OSij/Ot, namely

OSij

Ot
+

1
3
S · S gij .

9 Discussions

9.1 General covariance and temporal nonlocality

At a glance of (8.17), one may think that the present theory could be utilized only for the algebraic models,
which are described only by one-point one-time quantities. If this were true, one may think that the mean-
Lagrangian representation were unnecessarily complex and cumbersome to obtain (8.17), since some similar
forms to (8.17) have already been obtained by some pioneering methodologies such as TSDIA in simpler
formalism (Note that they are not formulated in as a wide range of covariance as (8.17)). However, we
should notice that the present theory is not only for deriving algebraic models of the Reynolds stress, but it
is capable of deriving temporally-nonlocal effect.

By looking at (8.2) carefully, we notice that the multiple-time dynamics of both mean flow and fluctu-
ation are firmly considered by the present theory. Indeed, in all the RPT procedures (see §7.6), we have
integrated the quantities of both mean flow and fluctuation in time. Thus we can surely say that the present
theory is a multiple-time closure theory of both mean flow and fluctuation, which is the generalization of
the homogeneous-turbulence RPT where the multiple-time quantities of fluctuation are essential in the for-
mulation. We should note that (8.17) is a result of temporal-locality approximation, and that multiple-time
analysis is essential for the long derivation of (8.17) 31.

The present theory has two prominent advantages over TSDIA; one is the consistency with the general
covariance and the other is the illustration of multiple-time dynamics of both mean field and fluctuation. In
order to combine these two features, the mean-Lagrangian representation is the most natural and suitable
choice, as has been stated in §6. This combination may be depicted most simply by (8.2). Indeed, all the
time integrations in (8.2) are the convected integrations due to the mean-Lagrangian representation, which
successfully incorporate the history of S, Θ and spatial derivatives of them in generally covariant manner 32

33.

31The counterpart of (8.2) in TSDIA is (4.12). In this representation, the history of the velocity gradient is not considered
since the time scales of the mean flow and the fluctuation are separated from the begining.

32Note that all the time integrations in RPT procedures of §7.6 are also convected integration due to the mean-Lagrangian
representation. Thus, not only for the theoretical results (8.2) and (8.17), but also for every step of mathematical manipulation,
the mean-Lagrangian formalism plays indispensable roles for covariant multiple-time analysis.

33Temporally nonlocal representations such as (6.8) also incorporate the historical effect of the mean flow. However, the

50



9 DISCUSSIONS 9.2 Analogy with LRA theory

9.2 Analogy with LRA theory

By assuming so called the “fluctuation-dissipation relation” for the basic properties; namely

BQ(k; t, t′) = BQ(k; t′, t′)BG(k; t, t′), (9.1)

we obtain

νT =
1
15

∫ t

−∞
dt′

∫
dvolk

{
7 BG(k; t, t′) BQ(k; t, t′) + k BG(k; t, t′) BG(k; t, t′)

∂

∂k
BQ(k; t′, t′)

}
. (9.2)

In the framework of LRA of homogeneous isotropic turbulence, it has been shown that far-smaller-scale motion
acts on the larger as turbulence viscosity which is given by a quite similar expression to (9.2) (Kaneda 1986).
In the wavenumber space, the turbulence viscosity on the mode much lower than k0 may be represented as

νT (k0) =
1
15

∫ t

−∞
dt′

∫ ∞

k0

4π k2dk

{
7 LG(k; t, t′) LQ(k; t, t′) + k LG(k; t, t′) LG(k; t, t′)

∂

∂k
LQ(k; t′, t′)

}
, (9.3)

where LQ(k; t, t′) and LG(k; t, t′) are “Lagrangian velocity correlation” and “Lagrangian response function”
respectively 34. The present result (9.2) corresponds to the case k0 → 0 of (9.3), which may be explained
that all the modes of fluctuation are considered in deriving (9.2). Although BQ and BG are not based on
the Lagrangian view in ξ space, this analogy indicates that the present theory can describe the interactions
between the mean flow and the fluctuation at close level of the LRA theory. Of course, the eddy-viscosity
stress of our result is just an approximation and it represents only a limited part of the total energy dissipation,
which has been also pointed out in homogeneous turbulence theories (Kaneda 1986, Kraichnan 1976). In the
present work, deviation from linear-eddy-viscosity stress may be explained by the nonlinear-eddy-viscosity
stress and inhomogeneity terms.

On the other hand, the counter part of TSDIA given by (4.14), namely

νT =
7
15

∫ τ

−∞
dτ ′

∫
d3 kG0(k; τ, τ ′)Q0(k; τ, τ ′),

lacks k-derivative term appears in (9.2) and (9.3). The exact cause of this is from two-scale-represented
convection term; Vj(X, T ) ∂/∂ξj in the first bracket of the left-hand side of (4.8). As a result of two-scale
decomposition of the term, the non-uniform variation of the mean velocity is neglected in ξ-scale dynamics,
while the velocity gradient is not neglected in the right-hand side. As a consequence, in the homogeneous
turbulence subjected to the uniform shear, (4.8) of TSDIA yields different type of fluctuation equation from
the exact Navier-Stokes equation. In the present work, on the contrary, the master equation (7.38) in case
of homogeneous shear flow is identical to the exact Navier-Stokes equation.

9.3 Relation with the conventional K-ϵ model

By applying the simplification discussed in §7.7, the relation between (8.17) and K-ϵ type of models is
suggested. Under this simplification, (8.5)-(8.16) reduce to

BK = 6πCσk−2/3
c

(
1 − BRe−1/2

)
Bϵ2/3, (9.4)

νT =
7
15

π
Cσ

Cω
k−4/3

c

(
1 − BRe−1

)
Bϵ1/3, (9.5)

memory function (the exponential function) is based on K and ϵ both of which are one-time correlations while (8.2) is based on
the two-time correlations. Thus, (8.2) given by the present result is clearly distinct from the temporally nonlocal models such
as (6.8); RSM can be categorized in these models.

34In the original work of Kaneda (1986), (9.3) is given by

νT (k0) =
1

15

∫ t

−∞
dt′
∫ ∞

k0

2π k2dk

{
7 LG(k; t, t′) LQ(k; t, t′) + k LG(k; t, t′) LG(k; t, t′)

∂

∂k
LQ(k; t′, t′)

}
;

namely, it looks like the half of (9.3). This is simply because LQ in the original work is defined as the double of the above
(Kaneda 1981, 1986).
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γt =
8
45

π
Cσ

C2
ω

k−2
c

(
1 − BRe−3/2

)
, (9.6)

NI =
2
45

π
Cσ

C2
ω

k−2
c

(
1 − BRe−3/2

)
, (9.7)

NII = 0, (9.8)

NIII =
4

135
π

Cσ

C2
ω

k−2
c

(
1 − BRe−3/2

)
, (9.9)

NIV = 2NII = 0, (9.10)

NV =
2
15

π
Cσ

C2
ω

k−2
c

(
1 − BRe−3/2

)
, (9.11)

DI =
3
35

π
Cσ

Cω
k−10/3

c

(
1 − BRe−5/2

)
Bϵ1/3, (9.12)

DII =
4

175
π

Cσ

Cω
k−10/3

c

(
1 − BRe−5/2

)
Bϵ1/3, (9.13)

DIII = − 1
25

π
Cσ

Cω
k−10/3

c

(
1 − BRe−5/2

)
Bϵ1/3, (9.14)

DIV = − 2
35

π
Cσ

Cω
k−10/3

c

(
1 − BRe−5/2

)
Bϵ1/3. (9.15)

Here BRe = (kd/kc)4/3 corresponds to the Reynolds number of the basic field. In the high-Reynolds-
number flow, BRe is expected to be much larger than unity. In the present analysis, therefore, we omit all
the negative power of BRe.

Here we introduce the basic field energy given by

BK = 6πCσ
Bϵ2/3k−2/3

c . (9.16)

Using (9.16) we can represent (9.5)-(9.15) by BK and Bϵ. Therefore (8.17) is reduced to

Rij =
2
3

BKgij − Cν

BK2

Bϵ
Sij

+ CT

BK3

Bϵ2

(
OSij

Ot
+ Si

aSja

)
+ C ′

S

BK3

Bϵ2
S · Sgij

+ CS

BK3

Bϵ2
Si

aSja

+ CC

BK3

Bϵ2
(
Si

aΘja + Sj
aΘia

)
+ CMD1

BK5

Bϵ3
(
Si;ja

a + Sj;ia
a

)
+ C ′

MD1

BK5

Bϵ3
Sab

;ab gij

− CMD2

BK5

Bϵ3
(
Θi

a
;ja + Θj

a
;ia

)
− CMD3

BK5

Bϵ3
△Sij ,

(9.17)
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where the constants are given as follows;

Cν =
7

540πCσCω
= 0.0835, (9.18)

CT =
1

1215π2C2
σC2

ω

= 0.0341, (9.19)

C ′
S =

1
4860π2C2

σC2
ω

= 0.00853, (9.20)

CS =
1

7290π2C2
σC2

ω

= 0.00569, (9.21)

CC =
1

1620π2C2
σC2

ω

= 0.0256, (9.22)

CMD1 =
1

90720π4C4
σCω

= 0.00139, (9.23)

C ′
MD1

=
1

340200π4C4
σCω

= 0.000371, (9.24)

CMD2 =
1

194400π4C4
σCω

= 0.000650, (9.25)

CMD3 =
1

136080π4C4
σCω

= 0.000929. (9.26)

All the transport coefficients in (9.17) are expressed in terms of the basic-field quantities BK and Bϵ,
which are not the total quantities observed in the real flow. Thus let us employ observable quantities; total
turbulence energy K and its dissipation rate ϵ. First the turbulence energy is obtained only by taking the
trace of the Reynolds stress (9.17) as follows;

K =
1
2
gabR

ab = BK +
1
2
(3C ′

S + CS)
BK3

Bϵ2
S · S +

1
2

(
3C ′

MD1
+ 2CMD1

) BK5

Bϵ3
Sab

;ab. (9.27)

Through the same procedure we applied to the Reynolds stress, we can calculate the full dissipation rate
expanded in terms of the basic-field quantities as follows;

ϵ = Bϵ + Cϵ
log BRe

BRe

BK2

Bϵ
S · S + O(BRe−1), (9.28)

where Cϵ is a positive constant. In high-Reynolds-number limit BRe → ∞, it reduces to

ϵ = Bϵ, (9.29)

where we used a wellknown relation; logr/r → 0 as r → ∞ 35. By inverting the expansion (9.27) we obtain
BK expanded by the real turbulence energy K and its dissipation rate ϵ as

BK = K − 1
2
(3C ′

S + CS)
K3

ϵ2
S · S − 1

2
(
3C ′

MD1
+ 2CMD1

) K5

ϵ3
Sab

;ab + O(S4). (9.30)

35Namely inhomogeneity does not affect the energy-dissipation rate in high-Reynolds-number case, that is consistent with
Kolmogorov’s theory (Kolmogorov 1941)
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By substituting (9.29) and (9.30) into (9.17) and collecting terms up to second-order of S, we obtain

Rij =
2
3
Kgij − Cν

K2

ϵ
Sij

+ CT
K3

ϵ2

(
OSij

Ot
+ Si

aSja

)
+ CS

K3

ϵ2

(
Si

aSja − 1
3
S · Sgij

)
+ CC

K3

ϵ2
(
Si

aΘja + Sj
aΘia

)
+ CMD1

K5

ϵ3

(
Si;ja

a + Sj;ia
a − 2

3
Sab

;ab gij

)
− CMD2

K5

ϵ3
(
Θi

a
;ja + Θj

a
;ia

)
− CMD3

K5

ϵ3
△Sij .

(9.31)

Note that C ′
S- and C ′

MD1 related terms in (9.17) are completely absolved into the isotropic term 2
3Kgµν

through the second and third terms of (9.30). (9.31) should be compared with the explicit algebraic models
of high-Reynolds-number K-ϵ type where all the transport coefficients are represented in terms of K and ϵ.
What is derived here is discriminated from the conventional models since (9.31) contains nonlocal effect in
space and time (CT -, CMD1-, CMD2- and CMD3-related terms).

Cν-, CT -, CS- and CC-related terms of (9.31) are derived from the µ1- and µ2-order diagrams. These
terms take non-zero value when the strain rate or the absolute vorticity are non-zero in the actual point.
The basic functions of these terms are briefly explained in appendix H. Note that the constant Cν = 0.0835
attached to the linear-viscosity term is close to the counterpart of the standard K-ϵ models; usually it is
optimized as Cν = 0.09 from observations of the near-wall flows 36.

CMD1-, CMD2- and CMD3-related terms are from µ1δ2-order diagrams which may be non-zero even when
neither the strain rate nor the absolute vorticity exist. Simple applications of (9.31) are given in appendix I
and J, where some basic features of these new effects are briefly given.

Note that the K-ϵ type of model (9.31) is not the only result of the present theory. In the derivation of
(9.31), we utilize the simplified spectrum discussed in §7.7. In the simplification procedure, we simply replace
the detailed structure of both the energy-containing and dissipation ranges with cutoff wavenumbers kc and
kd. In general, however, these two ranges can take various forms in different cases. Especially, the energy
containing range depends on information of global structures. The result (8.2) and (8.17) may be capable of
reflecting such a detailed correction from both global and local structures. Starting from more general form
(8.17), we may be able to extend the simple K-ϵ form (9.31) to more generalized version. These analysis can
hardly be conducted by conventional empirical modeling.

9.4 Approach to the total closure model

In this thesis we applied the present theory only to the Reynolds stress which is merely one of all the
targets. However, it should be emphasized that the present theory can be applied to arbitrary correlation in
hydrodynamic turbulence. This wide applicability come from the original RPT of homogeneous turbulence.
Since the present theory is a natural generalization of RPT, we can investigate not only the Reynolds stress
but also various correlations. Furthermore, for any covariant correlations, the present theory always derives
the results consistent with the general covariance, since all of the quantities in the formulation are generally
covariant. By applying the present theory to necessary number of correlations, we can obtain the closed
system of equations.

36Constants (9.18)-(9.26) totally depends on the choice of values Cσ and Cω . Note that the choice in the present work can
be modified by means of more accurate treatment of the basic field, which changes the values given by (9.18)-(9.26) (see §9.5).
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For example, for the closure based on turbulence energy K and its dissipation rate ϵ, we need to close
equations for them besides (9.31), which are written in general-coordinate representation as follows;

DK

Dt
= −1

2
RijSij − ϵ +

⟨(
1
2
gabv

′av′b + p′
)

v′j
⟩

;j , (9.32)

Dϵ

Dt
= − 2ν

⟨
v′i;jv

′
i;kv′j;k⟩

− 2ν2
⟨
v′i;jkv′i;jk

⟩
− ν

(
Si

j + Θi
j

) ⟨
v′

i;kv′j;k + v′
k;iv

′k;j
⟩

− ν (Sij;k + Θij;k)
⟨
v′jv′i;k⟩

−
(
ν

⟨
v′a;bv′

a;bv
′j⟩ + 2ν

⟨
p′,av′j;a⟩)

;j + ν△ϵ,
(9.33)

where all the correlations in (9.32) and (9.33) are generally covariant. Note that the present theory can be
applied to all the correlations given here and we can obtain the closed set of equations which are consistent
with the general covariance 37. Thus the ability of the present theory to construct the covariant model is
surely important.

9.5 Need for fine-Lagrangian view

Although we employed the mean-Lagrangian view which cancels out the sweeping effect caused by the mean
flow, it is still unable to remove the sweeping effect caused by fine structure since our formulation is fun-
damentally Eulerian framework for smaller scale, so that we have employed the tentative method in §7.7
where we avoided to deal with the exact dynamics of the basic field and put the spectral form consistent with
the Kolmogorov’s theory, the time scale employed in this method completely contradicts what it should be
in Eulerian framework though; namely Eulerian propagator we employed in this formulation should depend
on the properties in larger scale while (7.112) does not. In this sense the present work is still apart from
self-consistent method on the stage of the simplification. Besides, the constants Cσ = 0.118 and Cω = 0.419,
which all the constants Cν , CT , CS and CC of our algebraic result of the Reynolds stress based on, are
derived by the modified Eulerian DIA so that we cannot fully rely on these values. Indeed the Kolmogolov’s
constant Ko predicted by fine-Lagrangian frameworks is often larger than Ko = 4πCσ = 1.48 obtained by
the present methodology; LHDIA predicts Ko = 1.77 (Kraichnan 1966), LRA and LDIA predict Ko = 1.722
(Kaneda 1986, Kida & Goto 1997).

Nevertheless, the author thinks it is still valuable to make this simplification as far as we pick up the
principal corrections due to anisotropy and inhomogeneity effects, since the differences of diagrams between
Eulerian and Lagrangian framework appear in the one-loop correction for the first time and there is no fatal
difference in the no-loop diagrams. Thus, even if we involve the fine-Lagrangian view, we will obtain the
same result as the present work as long as we discard the contributions from the loop diagrams. It is also
noticeable that the Eulerian formalism is considerably simpler than the Lagrangian formalism that the former
has remarkable power in analyzing more complex system than isotropic Navier-Stokes turbulence such as the
MHD system which have more perturbative interactions other than simple nonlinear interaction. Thus it is
effective to some degree to employ the mean-Lagrangian framework with constants Cσ and Cω re-optimized
by fine-Lagrangian theories such as LHDIA, LRA or LDIA.

On the contrary, the fine-Lagrangian formulation will be crucial on the stage where we deal with the
dynamics of the binary correlation directly with its dynamical equation, since we will see the essential
contribution from the loop diagrams even at the lowest order of λ, which will not be so much complex and
will make whole procedure self-consistent within feasible effort.

9.6 A priori test in a channel flow

In order to see the validity of the present theory, we shall investigate our theoretical result by using a DNS
data of a channel flow (Moser et al. 1999). Here, we compare the Reynolds stress calculated by DNS and
algebraic representation R{K, ϵ, S,Θ} into which the computed values of K, ϵ, S and Θ are substituted. It
is also worthwhile to compare the present result with the previous works. Here we employ the second-order
algebraic model derived by TSDIA given by (4.16) as a target for the comparison.

37We should remark that the higher-order-derivative terms of (9.33) may not be precisely treated by the simplification explained
in §7.7. Because of higher-order differentiation, the higher-wavenumber properties of the basic field gives important contributions
in the analysis. In this treatment, we need more precise information than the simple cutoff wavenumber kd.
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9 DISCUSSIONS 9.6 A priori test in a channel flow

Figure 19: Channel flow with coordinate system

Due to the symmetry of the system, every statistical quantity is uniform in the direction parallel to the
wall. Thus we have only to investigate the distribution of the each quantity in wall-normal direction.

We set up the coordinate system shown in the figure 19; z1 for the stream-wise direction, z2 for the
wall-normal direction and z3 for span-wise direction respectively 38. Flow is characterized by the following
Reynolds number;

Reτ =
UτH

ν
= 587.19 , (9.34)

where H is the half width of the channel and Uτ is the friction velocity defined by

Uτ =

√
−ν

dU

dz2

∣∣∣∣
wall

. (9.35)

In the following discussion, every quantity is normalized by H and Uτ .

9.6.1 Anisotropic distribution of turbulence intensity

The turbulence intensity of the DNS is shown in figures 20. Over the whole region of the channel, the
anisotropic distribution R11 > R33 > R22 is obtained. The expansion up to the second term of (9.31),
namely

Rij =
2
3
Kgij − Cν

K2

ϵ
Sij , (9.36)

cannot reproduce the anisotropic distribution as is shown in figure 21. Higher-order representation coupled
by CT -, CS- and CC-term corrections, namely

Rij =
2
3
Kgij − Cν

K2

ϵ
Sij + CT

K3

ϵ2

(
OSij

Ot
+ Si

aSja

)
+ CS

K3

ϵ2

(
Si

aSja − 1
3
S · Sgij

)
+ CC

K3

ϵ2
(
Si

aΘja + Sj
aΘia

)
,

(9.37)

can reproduce the anisotropic distribution R11 > R33 > R22 as is shown in figure 22. (4.16) derived by
TSDIA, on the contrary, erroneously yields R11 > R22 > R33 which contradicts the reality (see figure 23).
Although the anisotropic distribution gives no contribution to the dynamics of channel flow, it is critically
important for inducing the secondary flows observed in flows with more complex geometry such as flows in

38Although we have employed the contra-variant coordinate system in all the procedures we have done so far, we employ here
the covariant coordinate variables zI (= gIJ zJ ) since contravariant coordinates z1, z2 and z3 are likely to be confounded with
powers of z.
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9 DISCUSSIONS 9.6 A priori test in a channel flow

Figure 20: Turbulence intensity of the DNS: A wellknown distribution R11 > R33 > R22 is
obtained.

Figure 21: Turbulence intensity of linear-eddy-viscosity representation (9.36): All the compo-
nents R11, R22 and R33 take the same value and the anisotropic distribution R11 > R33 > R22

cannot be reproduced only by the Cν-term correction in (9.36). Here DNS values are plotted by
dotted lines.
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Figure 22: Turbulence intensity with nonlinear-viscosity correction (9.37): Due to the correction,
the correct distribution R11 > R33 > R22 of DNS is reproduced.

Figure 23: Turbulence intensity given by TSDIA: A wrong distribution R11 > R22 > R33 is
obtained.
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9 DISCUSSIONS 9.6 A priori test in a channel flow

Figure 24: Comparison of shear stresses: Reynolds shear stress obtained by the DNS, the present
work and TSDIA are shown.

pipes of non-circular cross-section (Speziale 1982).

Note that we cannot discuss about the validity from how much the models coincide with DNS values, since
the values of the present model totally depend on the constants Cσ and Cω given by (7.113). As has been
discussed in §9.5, we cannot fully rely on these constants, and these may be re-optimized by fine-Lagrangian
theories in future works. However, the relation R11 > R33 > R22 always consists for any positive Cσ and Cω.

We should remark that the higher-order-derivative terms (CMD1-, CMD2- and CMD3- related terms) do not
give any correction to the turbulence intensity, which is analytically shown by (I·1) in appendix I.

9.6.2 Shear stress

The comparison of shear stresses obtained by (9.37) and (4.16) is shown in figure 24. Comparing to TSDIA,
the present work shows better agreement with the DNS data. Besides, the comparison of turbulence-viscosity
coefficients νT ≡ −R12/(dU/dz2) are shown in figure 25. As well as the shear stress, the present work shows
better agreement with DNS data. We should note, however, that the results shown here also totally depend
on the constants Cσ and Cω, and thus these comparison are not the exact evidence for validity of the present
work.

Note that only Cν-related term gives measurable contribution to the shear stress. The nonlinear terms
(CT -, CS- and CC-terms) analytically vanishes and the higher-order-derivative terms (CMD1-, CMD2- and CMD3-
related terms) does not contribute so much in simple shear flows, which is indicated by (I·9) in appendix I.

9.6.3 Near-wall region

Although we have made certain success in the area enough apart from the wall in both qualitative and
quantitative senses, we have to refer to the defects in the near-wall region; theoretical results for both normal
and shear components anomalously exceed the real values. Adding to this, the normal components R22 and
R33 violate the realizability R22, R33 > 0. We may be able to overcome these difficulties by incorporating
higher order terms of perturbations since the contributions from inhomogeneity and anisotropy become
rapidly prominent as one gets close to the wall as is shown by figure 20. However, the simple expansion will
bring us more complexity in terms of tensorial form and the algebraic representation will have more than ten
of independent terms, as is seen in some pioneering works for higher-order nonlinear models based on TSDIA
(Yoshizawa 1984, Okamoto 1994).
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Figure 25: Comparison of eddy viscosities: The comparison of turbulence-viscosity coefficient
νT ≡ −R12/(dU/dz2) is shown. Comparing to the TSDIA result, the present work shows better
agreement with DNS.

Here let us see another possibility that would be a hint to solve this problem. The transport coefficients
in (9.17) are originally represented by properties of the basic field which are only isotropic part of the whole
fluctuation field and has limited energy and dissipation; BK and Bϵ. In other words, not whole energy and
its dissipation but only energy and dissipation from the isotropic part give the actual contributions to the
transport coefficients. In our algebraic representation, however, we truncated the renormalized expansion
at the order of µ2 so that BK and Bϵ in the transport coefficients are simply replaced by K and ϵ, both of
which seem to differ from BK and Bϵ, especially K would be considerably higher than BK when turbulence
has strong anisotropy, since the large scale motion which is easily affected by anisotropy gives the major
contribution to the turbulence energy. This may be one of the reasons why our result (9.31) has shown
erroneous behaviors in the near-wall region.

10 Conclusions

The author has reached the following as the conclusion of the present study.

1. It was proved that the fluctuation field is generally-covariant quantity, and that the various turbulence
quantities including the Reynolds stress are generally covariant.

2. The mean-Lagrangian-coordinate representation is newly introduced, and its advantage for the combi-
nation of the multiple-time analysis and the general covariance was shown.

3. By taking the advantage of the mean-Lagrangian formalism, a theory of inhomogeneous turbulence
on the basis of multiple-point multiple-time quantities were developed in agreement with the general
covariance.

4. A temporally non-local representation of the Reynolds stress was derived in the form of the convected
integration, which clearly includes the history of both fluctuation and mean field along the mean-flow
trajectory in a generally covariant manner.

5. An algebraic representation of the Reynolds stress was derived which contains new effects such as the
Oldroyd derivative of the strain rate, spatial derivative of the strain rate and absolute vorticity. These
represent the non-local effect in both space and time in a generally covariant manner.
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B OLDROYD DERIVATIVE

Appendix

A Transformation rule of the velocity field

Let an element of continuum be P whose position at time t is given by Pyi(t) in a coordinate system {y}.
The velocity of P in this coordinate representation is given by

Pvi(t) =
d
dt

Pyi(t). (A·1)

We introduce another coordinate system {ỹ} whose relation with {y} is given by ỹã = ỹã (y, t) (yã = yã(y, t)
in the abbreviation form). In the new coordinate system, the position of P is given by

Pyã(t) = yã (Py(t), t) . (A·2)

Thus the velocity is given by

Pvã(t) =
d
dt

Pyã(t) =
d
dt

yã (Py(t), t) =
∂yã

∂yi
(Py(t), t) Pvi(t) +

∂yã

∂t
(Py(t), t) (A·3)

Here we should notice that the last term on the right-hand side is obtained by substituting y = Py(t) into
the derivative function ∂yã/∂t (y, t). The element velocity Pv(t) is given by v (Py(t), t), so that the above is
reduced to

vã (Pỹ(t), t) =
∂yã

∂yi
(Py(t), t) vi (Py(t), t) +

∂yã

∂t
(Py(t), t) . (A·4)

This relation holds for arbitrary element of continuum. Thus, by replacing (Py(t), t) and (Pỹ(t), t) with (y, t)
and (ỹ, t), we obtain

vã(ỹ, t) =
∂yã

∂yi
(y, t) vi (y, t) +

∂yã

∂t
(y, t) . (A·5)

B Oldroyd derivative

Oldroyd derivative is originally derived from the pure time derivative in the Lagrangian frame. Let us derive
the Oldroyd derivative of a two-rank tensor Ci

j(y, t) from its Lagrangian representation Cµ
ν(x, t). For

simplicity, we denote the time differentiation for fixed Lagrangian variable x by a dot; namely,

ḟ ≡
(

∂f

∂t

)
x

for arbitrary quantity.

By taking the time derivative of Cµ
ν(x, t), we obtain

Cµ
ν,t = Ċµ

ν =
(
xµ

,i yj
,ν Ci

j

)
˙

= ẋµ
,i yj

,ν Ci
j + xµ

,i ẏj
,ν Ci

j + xµ
,i yj

,ν Ċi
j

(B·1)

The third term of the right-hand side of (B·1) reduces to 39

xµ
,i yj

,ν Ċi
j = xµ

,i yj
,ν

(
Ci

j,t + Ci
j,kyk

,t

)
= xµ

,i yj
,ν

(
Ci

j,t + vk Ci
j,k

)
,

where we used yk
,t = yk

,t(x, t) = vk. The second term of the right-hand side of (B·1) is rewritten as

xµ
,i ẏj

,ν Ci
j = xµ

,i yj
,νt Ci

j = xµ
,i yj

,tν Ci
j

= xµ
,i vj

,k yk
,ν Ci

j = xµ
,i yj

,ν vk
,j Ci

k.
(B·2)

39In a full notation Ċi
j can be calculated as(

∂

∂t
Ci

j(y(x, t), t)

)
x

= Ci
j,k(y(x, t), t) yk

,t(x, t) + Ci
j,t(y(x, t), t).
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The first term of the right-hand side of (B·1) is transformed by using xµ
,i yi

,ν = δµ
ν . First, by taking the dot

derivative of the both sides, we obtain

δ̇µ
ν = 0 = ẋµ

,i yi
,ν + xµ

,i ẏi
,ν . (B·3)

Thus we have

ẋµ
,i = −xµ

,k ẏk
,ρ xρ

,i

= −xµ
,k yk

,ρt xρ
,i

= −xµ
,k yk

,tρ xρ
,i

= −xµ
,k vk

,l yl
,ρ xρ

,i,

(B·4)

from which the first term is transformed as follows;

ẋµ
,i yj

,ν Ci
j = −xµ

,i yj
,ν vi

,k Ck
j . (B·5)

Thus (B·1) becomes

Ċµ
ν = xµ

,i yj
,ν

(
Ci

j,t + vk Ci
j,k − vi

,k Ck
j + vk

,j Ci
k

)
⇔Ci

j,t + vk Ci
j,k − vi

,k Ck
j + vk

,j Ci
k = yi

,µ xν
,jĊ

µ
ν .

(B·6)

Using an identity;
vk

(
Γi

lkCl
j − Γl

jkCi
l

)
− Γi

lkvlCk
j + Γk

ljv
lCi

k = 0,

(B·6) results in

Ci
j,t + vk

(
Ci

j,k + Γi
lkCl

j − Γl
jkCi

l

)
−

(
vi

,k + Γi
lkvl

)
Ck

j +
(
vk

,j + Γk
ljv

l
)

Ci
k = yi

,µ xν
,jĊ

µ
ν . (B·7)

Here we should note that Ċµ
ν = Ċµ

ν(x, t) = Cµ
ν,t. The left-hand side is rewritten as

o
ot

Ci
j = Ci

j,t + vk Ci
j;k − vi

;k Ck
j + vk

;j Ci
k (B·8)

which is what we call the Oldroyd derivative of Ci
j . The Oldroyd derivative of a general tensor Cij···

kl··· is
obtained in totally the same manner as we discussed above;

o
ot

Cij···
kl··· = Cij···

kl··· ,t + vm Cij···
kl··· ;m − vi

;m Cmj···
kl··· − vj

;m Cim···
kl··· − · · ·

+ vm
;k Cij···

ml··· + vm
;l C

ij···
km··· + · · ·

(B·9)

The counterpart of (B·7) is given by

o
ot

Cij···
kl··· = yi

,µ yj
,ν · · · xρ

,k xσ
,l · · · Cµν···

ρσ··· ,t (B·10)

Using the Lagrangian coordinate system, the general covariance of the Oldroyd derivative is shown by fol-
lowing steps. First we transform (B·10) as follows;

Cµν···
ρσ··· ,t = xµ

,i xν
,j · · · yk

,ρ yl
,σ · · · o

ot
Cij···

kl···. (B·11)

Following (B·10), we obtain the Oldroyd derivative in another coordinate system {ỹ} as

o
ot

C ãb̃···
c̃d̃··· = yã

,µ yb̃
,ν · · · xρ

,c̃ xσ
,d̃ · · · Cµν···

ρσ··· ,t. (B·12)

By substituting (B·11) into (B·12) yields

o
ot

C ãb̃···
c̃d̃··· = yã

,µ yb̃
,ν · · · xρ

,c̃ xσ
,d̃ · · ·

(
xµ

,i xν
,j · · · yk

,ρ yl
,σ · · · o

ot
Cij···

kl···

)
= yã

,i yb̃
,j · · · yk

,c̃ yl
,d̃ · · ·

o
ot

Cij···
kl···,

(B·13)

which proves that oC ãb̃···
c̃d̃···/ot obeys the general tensor rule.
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Since V transforms in totally the same manner as v (see (5.13) and (5.5)), all the above discussions hold
for the mean-flow version; namely,

O
Ot

Cij···
kl··· = Cij···

kl··· ,t + V m Cij···
kl··· ;m − V i

;m Cmj···
kl··· − V j

;m Cim···
kl··· − · · ·

+ V m
;k Cij···

ml··· + V m
;l C

ij···
km··· + · · ·

(B·14)

satisfies
O
Ot

C ãb̃···
c̃d̃··· = yã

,i yb̃
,j · · · yk

,c̃ yl
,d̃ · · ·

O
Ot

Cij···
kl···. (B·15)

C General covariance of the tensor Σ

Covariance of Σ introduced by (7.9)may be confirmed by the following steps. First by transforming (7.9) we
obtain

V I
;J = zI

,i yj
,JΣi

j . (C·1)

In arbitrary coordinate system {y}, its definition is given by (7.9). Thus, in another coordinate system {ỹ},
Σ is given by

Σã
b̃ = yã

,I zJ
,b̃ V I

;J . (C·2)

By substituting (C·1) into (C·2), we obtain

Σã
b̃ = yã

,I zJ
,b̃

(
zI

,i yj
,JΣi

j

)
= yã

,i yj
,b̃ Σi

j , (C·3)

which is consistent with the general tensor rule (5.4). Covariant and contravariant representations of Σ are
obtained respectively as follows;

Σij ≡ gikΣk
j = gik yk

,I zJ
,jV

I
;J = gIK zK

,i zJ
,j V I

;J = zK
,i zJ

,j VK;J , (C·4)

Σij ≡ gjk Σi
k = gjk yi

,I zJ
,k V I

;J = yi
,I yj

,A gJA V I
;A = yi

,I yj
,A V I;A, (C·5)

where we used identities; gik yk
,I = gIK zK

,i and gjk zJ
,k = yj

,A gJA. Thus Σ is completely determined by
the mean-velocity gradient in the inertial frame.

It is noticeable that we have to identify the inertial frame of reference in the first place. Since the law of
fluid treated in the present work is based on non-relativistic framework, inertial frame has a special meaning
comparing to any other frame of references. In this context, Σ is not only a velocity gradient in the inertial
frame, but an objective measure of how much the mean flow deviates from the inertial motion.

D Physical meaning of the antisymmetric field A

To clarify the physical meaning of A, let us think about a vector
X

h fixed to the static-metric frame on a
mean-flow particle labeled by X. By using (7.75), we obtain the equation for

X

h in the mean-Lagrangian
representation.

d
dt

X

hµ(t) =
d XaJ

µ(t)
dt

X

ȟJ =
1
2

(
Sν

µ + Aµ
ν
)
(t|X) XaJ

ν (t)
X

ȟJ =
1
2

(
Sν

µ + Aµ
ν
)
(t|X)

X

hν (D·1)

In an Eulerian coordinate system (it may be rotating relative to the inertial frame), this is rewritten as

O
Ot

X

hi(t) =
D
Dt

X

hi(t) +
X

hj(t)V j
;i =

1
2

(
Sj

i + Ai
j
)

X

hj(t). (D·2)

By dividing the mean-velocity gradient into strain and vorticity, we obtain

D
Dt

X

hi(t) =
1
2

(
Ai

j − Ωi
j
) X

hj(t), (D·3)

while a constant-length vector
X

J rotating with the mean flow satisfies the following equation;

D
Dt

X

Ji(t) = −1
2
Ωi

j(t|X)
X

Jj(t). (D·4)

Thus A represents the angular velocity of the static-metric frame relative to the mean flow and, accordingly,
the condition (7.116) makes (D·3) coincide with (D·4), which means that the static-metric frame is to be
rotating with the mean flow without distortion.
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E Time derivatives in the static metric representation and the
mean-Lagrangian representation

By taking the time derivative of (7.67), we obtain

∂

∂t
CIJ...

KL...(ǩ, t|X)

=
d
dt

XaI
µ(t) XaJ

ν (t) . . . Xaρ
K(t) Xaσ

L(t) . . . Cµν...
ρσ...

(
XaA

α (t)ǩA, t|X
)

=
d XaI

µ

dt
(t) XaJ

ν (t) . . . Xaρ
K(t) Xaσ

L(t) . . . Cµν...
ρσ...

(
XaA

α (t)ǩA, t|X
)

+ XaI
µ(t)

d XaJ
ν

dt
(t) . . . Xaρ

K(t) Xaσ
L(t) . . . Cµν...

ρσ...

(
XaA

α (t)ǩA, t|X
)

+ . . .

+ XaI
µ(t) XaJ

ν (t) . . .
d Xaρ

K

dt
(t) Xaσ

L(t) . . . Cµν...
ρσ...

(
XaA

α (t)ǩA, t|X
)

+ XaI
µ(t) XaJ

ν (t) . . . Xaρ
K(t)

d Xaσ
L

dt
(t) . . . Cµν...

ρσ...

(
XaA

α (t)ǩA, t|X
)

+ . . .

+ XaI
µ(t) XaJ

ν (t) . . . Xaρ
K(t) Xaσ

L(t) . . .
d XaA

α

dt
(t)ǩA

∂Cµν...
ρσ...

∂kα

(
XaA

α (t)ǩA, t|X
)

+ XaI
µ(t) XaJ

ν (t) . . . Xaρ
K(t) Xaσ

L(t) . . .
∂Cµν...

ρσ...

∂t

(
XaA

α (t)ǩA, t|X
)

= XaI
µ(t) XaJ

ν (t) . . . Xaρ
K(t) Xaσ

L(t) . . .

×
{

1
2
(Sµ

β + Aβ
µ)Cβν...

ρσ... +
1
2
(Sν

β + Aβ
ν)Cµβ...

ρσ... + . . .

− 1
2
(Sγ

ρ + Aρ
γ)Cµν...

γσ... −
1
2
(Sγ

σ + Aσ
γ)Cµν...

ργ... + . . .

+
1
2
(Sβ

γ + Aγ
β)kβ

∂Cµν...
ρσ...

∂kγ
+

∂Cµν...
ρσ...

∂t

} (
XaA

α (t)ǩA, t|X
)
.

Thus the time derivative in static-metric representation transforms into the following form in the mean-
Lagrangian representation.

∂

∂t
CIJ...

KL...(ǩ, t|X)

7→
{

∂Cµν...
ρσ...

∂t

+
1
2
(Sµ

β + Aβ
µ)Cβν...

ρσ... +
1
2
(Sν

β + Aβ
ν)Cµβ...

ρσ... + . . .

− 1
2
(Sγ

ρ + Aρ
γ)Cµν...

γσ... −
1
2
(Sγ

σ + Aσ
γ)Cµν...

ργ... + . . .

+
1
2
(Sβ

γ + Aγ
β)kβ

∂Cµν...
ρσ...

∂kγ

}
(k, t|X)

(E·1)

Especially for a vector C, we have

∂ CI

∂t
(ǩ, t|X) 7→

{
∂Cµ

∂t
+

1
2
(Sµ

ρ + Aρ
µ)Cρ +

1
2
(Sρ

σ + Aσ
ρ)kρ

∂Cµ

∂kσ

}
(k, t|X). (E·2)

F Self-connected-loop diagram

In constructing the λ2 diagrams in §7.6, we have omitted another type of diagrams which have loops each
of which is closed with only one vertex as is shown in figure 26. These self-connected loops, however, do not
contribute to the final result as long as we perform the lowest-order-λ truncation. The self-connected loop
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Figure 26: Self-connected loop appearing in simple perturbative expansions

shown in figure 26 is calculated as∫ t

−∞
dt′ G̃µ

ν (k; t, t′|X)
1
i
Mν

ρσ(k, t′|X)
∫∫

dvolp dvolq δ3
c (k − p − q, t′|X) Ũρσ(p, t′;q, t′)

Renormalization

−→
∫ t

−∞
dt′ BGµ

ν (k; t, t′|X)

× 1
i
Mν

ρσ(k, t′|X)
∫∫

dvolp dvolq δ3
c (k − p − q, t′|X) BUρσ(p, t′;q, t′)

+ O(λ3)

(F·1)

Now the basic field is zero-mean random factor. Thus, by taking the average of (7.95) we obtain

1
i
Mν

ρσ(k, t|X)
∫∫

dvolp dvolq δ3
c (k − p − q, t|X) BUρσ(p, t;q, t)

= L̂µ
ν ⟨ Bvµ(k, t)⟩

= 0

(F·2)

and hence (F·1) = 0 + O(λ3). Thus the renormalization of any diagrams which include self-connected loops
give no contribution at the lowest order. By assuming the isotropy of the bare field, the self-connected loop
takes zero value; namely we obtain

1
i
Mµ

ρσ(k, t|X)
∫∫

dvolp dvolq δ3
c (k − p − q, t|X) ⟨ṽρ(p, t)ṽσ(q, t|X)⟩

=
1
i
Mµ

ρσ(k, t|X)
∫∫

dvolp dvolq δ3
c (k − p − q, t|X)Ũρσ(p, t|X)δ3

c (p + q, t|X)

=
1
i
Mµ

ρσ(k, t|X)δ3
c (k, t|X)

∫
dvolp Ũρσ(p, t|X)

=
1
i
Mµ

ρσ(k, t|X)δ3
c (k, t|X)

2
3
gρσ(t|X)

∫
dvolp Q̃(q, t|X)

= 0,

(F·3)

where the relation Mµ
ρσ(k, t|X) kρg

ρσ(t|X) = Pµρ(k, t|X) kρ = 0 is used.

G Proof of (7.107) and (7.107)

One-wavenumber correlation in the mean-Lagrangian frame is given by

BUµν(k; t, t′|X) =
∫

dvolk′BUµν(k, t;k′, t′|X)

=
∫

dvolk′ ⟨Bvµ(k, t|X)Bvν(k′, t′|X)⟩ .

(G·1)

Thus, using (7.66) and (7.67), we obtain

BUµν(k; t, t′|X) = Xaµ
I (t)Xaν

J(t′)
∫

dvolk′

⟨
Bv̌I(Xaα

A(t)kα, t) Bv̌J(Xaβ
B(t′)k′

β , t′)
⟩

. (G·2)
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Under the coordinate transformation (7.66), the volume element is transformed as

dvolk′ =
√

det {gαβ(t′|X)} d3k′

=
√

det {gαβ(t′|X)} det
(

k′
β

ǩ′
B

)
d3ǩ′

=
√

det {gαβ(t′|X)} det
{

XaB
β (t′)

}
d3ǩ′

=
√

det {gαβ(t′|X)} det2
{

XaB
β (t′)

}
d3ǩ′

=
√

det
{

gαβ(t′|X)XaA
α (t′) XaB

β (t′)
}

d3ǩ′

=
√

det {ǧAB} d3ǩ′ = dvolǩ′ .

(G·3)

Thus we obtain

BUµν(k; t, t′|X) = Xaµ
I (t)Xaν

J(t′)
∫

dvolǩ′⟨Bv̌I(ǩ, t) Bv̌J(k̂′, t′)⟩

= Xaµ
I (t)Xaν

J(t′)BǓ IJ(ǩ; t, t′|X).
(G·4)

Next, let us turn to the infinitesimal response of the basic field in order to investigate the renormalized
propagator. The infinitesimal response in the static-metric field is given by

BvI(ǩ, t|X||Υ) =BvI(ǩ, t|X) +
∫

dvolǩ′

∫ t

−∞
dt′ BG′I

J (ǩ, t; ǩ′, t′|X)ΥJ(ǩ′, t′|X) + O(Υ2)

=XaI
µ(t) Bvµ(k, t|X) + XaI

µ(t)
∫

dvolk′

∫ t

−∞
dt′ Xaµ

I (t)BG′I
J (ǩ, t; ǩ′, t′|X)XaJ

ν (t′)Υν(k′, t′|X)

+ O(Υ2).
(G·5)

Comparing this with (7.97) we have

BG′µ
ν (k, t;k′, t′|X) = Xaµ

I (t) XaJ
ν (t′) BG′I

J (ǩ, t; ǩ′, t′|X). (G·6)

Thus we have

BGµ
ν (k; t, t′|X) =

∫
dvolk′ ⟨BG′µ

ν (k, t;k′, t′|X)⟩

= Xaµ
I (t) XaJ

ν (t′)
∫

dvolǩ′

⟨
BG′I

J (ǩ, t; ǩ′, t′|X)
⟩

= Xaµ
I (t) XaJ

ν (t′) BGI
J(ǩ; t, t′|X).

(G·7)

H Physical meaning of µ1- and µ2-order terms

Let us see the physical meaning of Cν-, CT -, CS- and CC-related terms of our result (9.31), which may be
effectively classified in terms of the turbulence-energy production PK = − 1

2RµνSµν . First, turbulence-energy
production rate caused by the eddy-viscosity stress is given by

1
2
Cν

K2

ϵ
Sa

b Sb
a (≥ 0) ,

which never takes negative value, and thus the eddy-viscosity stress only reduces the mean-flow energy, never
enhances. Thus the eddy-viscosity stress is dissipative. Next, in order to see the CT related term, we calculate
the time-derivative of S · S, that is

D
Dt

SijSij =
O
Ot

(
SijgiagjbS

ab
)

=
OSij

Ot
giagjbS

ab + Sij Ogia

Ot
gjbS

ab + Sijgia
Ogjb

Ot
Sab + Sijgiagjb

OSab

Ot

= 2Sab
OSab

Ot
+ 2Sa

b Sb
cS

c
a,
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Thus we have

Sij

(
OSij

Ot
+ Si

aSja

)
=

1
2

D
Dt

SijSij , (H·1)

where we should notice that the Lagrangian derivative on scalar is covariant. The CT -related stress yields
the following production rate;

1
2
CT

K3

ϵ2
D
Dt

SijSij . (H·2)

By coupling this with that of the eddy-viscosity stress, we obtain

1
2
Cν

K2

ϵ

(
1 − CT

2Cν

K

ϵ

D
Dt

)
S · S . (H·3)

Thus CT -related stress can be interpreted as the delay-response of the eddy-viscosity dissipation against the
acceleration of the straining motion. The CS-related stress yields the following production rate;

−1
2
CS

K3

ϵ2
Sa

b Sb
cS

c
a. (H·4)

We employ the proper-orthogonal representation to investigate the triple product in a simple manner. We
put the principal values of S as α, β, and γ so that the triple product is to be given by α3 + β3 + γ3. In
general we have

(α + β + γ)3 = α3 + β3 + γ3 + 3α2(β + γ) + 3β2(γ + α) + 3γ2(α + β) + 6αβγ.

Using the incompressibility condition α + β + γ = 0, we obtain

03 = α3 + β3 + γ3 + 3α2(−α) + 3β2(−β) + 3γ2(−γ) + 6αβγ, (H·5)

which results in α3 + β3 + γ3 = 3αβγ = 3IIIS , where IIIS is the third invariant of S. Thus turbulence-energy
production rate caused by CS-related stress is

−3
2
CS

K3

ϵ2
IIIS . (H·6)

IIIS can be both positive and negative; it is positive when one of three principal values (α, β, and γ) is
positive and the others negative, it is negative when one of them is negative and the others positive, it is zero
when one of them is zero. Thus we can summarize the role of CS-related stress as follows.

1. It enhances the mean-flow energy when the mean-flow is 1-elongation 2-contraction straining (figure
27(a)).

2. It reduces the mean-flow energy when the mean-flow is 2-elongation 1-contraction straining (figure
27(b)).

3. It neither reduces nor enhances the mean-flow energy when the mean-flow is 2-dimensionally straining.

Thus we may refer to CS-related stress as the reversible stress.

The rest is the S-Θ-cross term which may be referred to as orthogonal stress since its scalar product with
strain rate is zero as follows; (

Si
lΘ

jl + Sj
l Θil

)
Sij = 0. (H·7)

Thus this term does not give any contribution to the mean-flow-energy cascade. Because of its orthogonality
to the strain rate, this term produces totally different tensorial form from the others which are related to the
strain rate. In order to obtained a simple representation of S-Θ-cross term, we take the proper-orthogonal
representation of the strain rate. We write the matrix representations of S, Θ and g as

[
Sij

]
=

α
β

γ

 ,
[
Θij

]
=

 −ζ η
ζ −ξ
−η ξ

 , [gij ] =
[
gij

]
=

1
1

1

 , (H·8)
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Figure 27: Strain types and IIIS ; (a) If the mean-flow has a straining motion of 1-elongation
2-contraction, one of three eigen value is positive and the other two negative so that IIIS is to
be positive. (b) On the other hand if the mean-flow has a straining motion of 2-elongation
1-contraction, one of three eigen values is negative and the others positive so that IIIS is to be
negative.

Figure 28: Orthogonal stress; the strain rate and the orthogonal stress are represented in terms
of the principal axes and the principal values. Providing the mean flow is more stretching in one
direction than the other (a) and the absolute vorticity takes non-zero value (b), the orthogonal
stress produces the positive (negative) normal stress in the direction turned π/4 (3π/4) along
the absolute vorticity from the stretching direction (c).

where α, β and γ are again the eigenvalues of S. ξ(= −Θ23), η(= −Θ31) and ζ(= −Θ12) are the positive-
oriented absolute vorticities of 1, 2 and 3 axis. In this representation, we obtain

[
Si

aΘja
]

=
[
Sia

]
[gab]

(
−

[
Θjb

]T
)

=

 αζ −αη
−βζ βξ
γη −γξ

 , (H·9)

and finally we reach [
Si

aΘja + Sj
aΘia

]
=

 (α − β)ζ (γ − α)η
(α − β)ζ (β − γ)ξ
(γ − α)η (β − γ)ξ

 . (H·10)

Let us investigate the above result in 1-2 plane. If we assume α > β and ξ > 0, the 1-2 component (α−β)ζ is
positive. By applying rotational transformation at the angle of π/4 in 1-2 plane along the absolute vorticity,
we obtain[

cos π/4 sin π/4
− sinπ/4 cos π/4

] [
(α − β)ζ

(α − β)ζ

] [
cos π/4 − sin π/4
sinπ/4 cos π/4

]
=

[
(α − β)ζ

−(α − β)ζ

]
, (H·11)

which may be depicted in the figure 28. In general the orthogonal stress causes the positive/negative normal
stress in the direction turned π/4/3π/4 along the absolute vorticity from the stretching direction.

I Application to the simple shear flow

Let us see an application of (9.31) to the simple shear flow. We employ a Cartesian inertial coordinate system
{z1 , z2 , z3}. Let z1 , z2 and z3 be of the streamwise, normalwise and spanwise directions respectively, whose
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Figure 29: Configuration of simple shear flow; Mean velocity has only the horizontal component.
The strain rate and orthogonal stress are represented in terms of the principal axes and the signs
of principal values (the outward arrows show positive principal value while the inward negative).
The mean flow is stretched in π/4-rotated direction from the streamwise direction as (A), and
has the right-handed absolute vorticity as (B). The orthogonal stress produces positive/negative
normal stress in streamwise/normalwise direction as (C).

configuration is depicted in figure 29. In this situation, the mean flow is stretched in π/4-rotated direction
from the stream-wise direction and has the right-handed absolute vorticity. Thus the orthogonal stress
may produce positive/negative stress in the stream-wise/perpendicular-wise direction. Indeed the simple
application of our result (9.31) to this system yields

R11 =
2
3
K + CR1

K3

ϵ2
D2,

R22 =
2
3
K + CR2

K3

ϵ2
D2,

R33 =
2
3
K + CR3

K3

ϵ2
D2,

(I·1)

where D = dU/dz2 is the velocity gradient,

CR1 = −CT +
1
3
CS + 2CC = 4.57 × 10−4 × (πCσCω)−2,

CR2 = CT +
1
3
CS − 2CC = −3.66 × 10−4 × (πCσCω)−2,

CR3 = −2
3
CS = −9.14 × 10−5 × (πCσCω)−2,

(I·2)

are all dimensionless constants. According to our result, CR1 > CR3 > CR2 so that we obtain

R11 > R33 > R22 (I·3)

which is consistent result with experiments and simulations 40. Let us see more detailed cause of this
consistency. (I·3) can be rewritten as R11 > R33 and R33 > R22, which can be rephrased in our representation
as CR1−CR3 > 0 and CR3−CR2 > 0. Here we should notice that CR1−CR3 = CR3−CR2 +CS > CR3−CR2

which indicates only CR3 − CR2 > 0 is needed. Thus the following inequality is necessary and sufficient for
the proper relation (I·3);

CR3 − CR2 = 2CC − CT − CS > 0 (I·4)

Since both CT and CS are positive, this indicates that the CC related term, namely orthogonal stress, plays
the indispensable role in the anisotropic intensity distribution (I·3). On the contrary, the result from TSDIA
(4.16) yields

R11 > R22 > R33, (I·5)
40Note that this consistent condition (I·3) always holds irrespective of the values of Cσ and Cω .
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Figure 30: Out line of the mean-velocity profile of the wall-bounded turbulent flow: The universal
structure of high-Reynolds-number flow in the near-wall region is depicted. In the closest area
from the wall, there exist the viscous sublayer where the molecular viscosity is dominant in
the momentum diffusion. In the outer region, the logarithmic layer exists where the molecular
viscosity is negligible. The logarithmic velocity profile is universally observed in both experiments
and simulations.

which contradicts the real feature. The cause of this failure can be explained as follows; (4.16) has smaller
orthogonal stress and larger reversible stress than those of the present result. Although (4.16) is not generally
covariant form, we can rewrite this as follows as long as we remain in the orthonormal Eulerian coordinate
system;

RIJ =
2
3
KδIJ − C̃ν

K2

ϵ
SIJ + C̃T

K3

ϵ2
DSIJ

Dt

+ C̃S
K3

ϵ2

(
SikSjk − 1

3
S · SδIJ

)
+ C̃C

K3

ϵ2
(SikΩjk + SjkΩik) ,

(I·6)

where the constants C̃ν-C̃C given by

C̃ν = 0.123, C̃T = 0.0427, C̃S = 0.0297, C̃C = 0.0122,

do not take the same values as Cν-CC of the present result (Okamoto 1994). The necessary and sufficient
condition for (I·3) is 2C̃C − C̃S > 0. However, it does not hold since C̃C(= 0.0122) is less than half of
CC(= 0.0256) and C̃S(= 0.0297) is almost five times larger than CS(= 0.00569). Thus, the weaker orthogonal
stress and the stronger reversible stress cause the unrealistic result (I·5).

It is remarkable that the inhomogeneity terms in (9.31) give no contribution to the normal components.
The inhomogeneity effect can be seen in the shear component which is given by

R12 = −Cν
K2

ϵ

dU

dz2

− Cα
K5

ϵ3
d3U

dz3
2

, (I·7)

where Cα is a positive constant given by

Cα = −CMD1 + CMD2 + CMD3 = 1.89 × 10−4. (I·8)

In order to avoid confusion in spatial differentiation, we utilize here the covariant component of the coordinate
variable z2 .
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Figure 31: Comparison of the shear stresses with and without inhomogeneity effect. The max-
imum value of | − Cα(K5/ϵ3)(d3U/d3z2)| (the magnitude of the inhomogeneity effect on shear
stress) reaches 0.028 at z2 = 0.39 in the region 0.2 ≤ z2 ≤ 1. Although the roughness of the
third-order derivative of the mean velocity is reflected in the profile, the inhomogeneity term
does not contribute to the total shear stress so much as the linear-viscosity term.

It is wellknown that the standard K-ϵ model is consistent with the logarithmic velocity profile typically
observed in wall-bounded turbulent flows (figure 30) and that the standard K-ϵ form R12 = −CνK2/ϵ has
the asymptotic solution of the logarithmic velocity profile. In the present work, however, we derived (I·7)
which contains an extra term. We should remark that our result (I·7) does not contradict this velocity profile.
In the logarithmic layer physical quantities are approximately given by

U ≈ 1
κ

logz2 + const . , ϵ ≈ 1
κ z2

, K ≈ 3, R12 ≈ −1,

where all the quantities are normalized by a velocity scale Uτ ≡ (νdU/dz2)
1/2 and a length scale ν/Uτ . κ is a

non-dimensional universal constant called the Karman constant which is estimated as 0.41 from observations.
Under the above approximation, Cα term is reduced to

−Cα
K5

ϵ3
d3U

dz3
2

≈ −Cα35 (κ z2)
3 1

κ z3
2

= −Cα35κ2 ≈ −0.016, (I·9)

which gives only little effect on the total shear stress R12 ≈ −1. Thus, in the wall-bounded turbulence,
Cα-related term may not contribute so much comparing to the linear-eddy-viscosity term and, consequently,
it may not affect the nature of logarithmic layer.

The inclusion of inhomogeneity term is examined in terms of the shear stress in a priori test (see §9.6.2),
whose result is shown in figure 31. Although the roughness caused by the third-order derivative of the
mean velocity appears, the inhomogeneity term does not contributes to the total shear stress so much as the
linear-viscosity term. The roughness may be removed by taking the average over larger ensemble.

J Application to the axisymmetric flow

Axisymmetric flows are typical flows appearing in various industrial situations, and these are still important
target of turbulence-modeling studies. These flows have curvatures in their streamlines or isosurfaces of
scalars so that we can expect new physical effect distinguished from those in the simple shear flows. Let us
see here an axially-uniform axisymmetric flows for simplicity.

Here we employ the cylindrical coordinate system {r, θ, z} whose configuration is given by figure 32.
For simplicity we assume the system is uniform in axial direction. We put the velocity components as
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Figure 32: Configuration of the cylindrical coordinate system

(
0, V θ(r), V z(r)

)
; the radial component should vanish because of the incompressibility. In this coordinate

representation, r-θ and r-z components of (9.31) are given by

Rrθ = −Cν
K2

ϵ

dV θ

dr
− Cα

K5

ϵ3
d3V θ

dr3
+ Cβ

K5

ϵ3
1
r

d2V θ

dr2
+ Cγ

K5

ϵ3
1
r2

dV θ

dr
, (J·1)

Rrz = −Cν
K2

ϵ

dV z

dr
− Cα

K5

ϵ3
d3V z

dr3
+ C ′

β

K5

ϵ3
1
r

d2V θ

dr2
+ C ′

γ

K5

ϵ3
1
r2

dV θ

dr
, (J·2)

where Cα-C ′
γ are all positive constants given by

Cα = −CMD1 + CMD2 + CMD3 ,

Cβ = 3CMD1 − 3CMD2 − 2CMD3 ,

Cγ = CMD1 − CMD2 ,

C ′
β = 3CMD1 − 3CMD2 − 2CMD3 ,

C ′
γ = −CMD1 + CMD2 + 2CMD3 .

(J·3)

First of all, we should remark that nonlinear-eddy-viscosity effects do not contribute to r-θ and r-z compo-
nents, which are the shear stresses on the cylindrical surface. Up to second-order nonlinear-eddy viscosity,
the first departure from the linear-eddy viscosity is achieved by the inhomogeneity effect. Next, the third
and fourth terms on the right-hand sides of (J·1) and (J·2) originate from the curvature of the stream line
and these terms do not appear in the simple shear flow in (I·7). Especially the fourth term can be combined
with the first term as

Rrθ = −Cν
K2

ϵ

(
1 − Cγ

Cν

K3

ϵ2
r−2

)
dV θ

dr
+ Cβ

K5

ϵ3
1
r

d2V θ

dr2
− Cα

K5

ϵ3
d3V θ

dr3
, (J·4)

Rrz = −Cν
K2

ϵ

(
1 −

C ′
γ

Cν

K3

ϵ2
r−2

)
dV z

dr
+ C ′

β

K5

ϵ3
1
r

d2V z

dr2
− Cα

K5

ϵ3
d3V z

dr3
. (J·5)

Thus, in the core region, the eddy viscosity may be effectively reduced by the inhomogeneity effect. This
feature is actually needed in the swirling flow in a circular pipe. Let us suppose that strongly swirling flow
is imposed from the inlet and there exist the pressure gap between inlet and outlet. It is wellknown from
experiments that the streamwise velocity is effectively reduced in the core region, and the velocity reduction
continues for long along the pipe. In the simple eddy-viscosity or nonlinear eddy-viscosity models, however,
this velocity reduction breaks down soon after the inlet. This is often attributed to the overestimated shear
stresses Rrθ and Rrz which diffuse both swirling motion and velocity reduction of the core. In the present
results (J·4) and (J·5), however, Rrθ and Rrz are effectively reduced in core region, which may contribute to
the better prediction of velocity reduction.
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