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1 Background

In nature, fluids often show stochastic and disordered behaviors both in time and space. These phenomena
are inclusively called the “turbulent flows”. In various circumstances in the real world such that the Reynolds
number exceeds some thousands or millions, fluid turbulence plays important roles; it promotes the mixing
of the fuel and air in engines, it enhances the drag force on the surfaces of cars, ships or airplanes, it helps
the oxygen to dissolve into ocean, it equalizes the temperature of the atmosphere, it diffuses the gigantic
magnetic flux in the sun, interstellar gasses or galaxies. Namely, almost everywhere in our universe, there are
lots of phenomena which can never be explained without appropriate knowledges about turbulence. Because
of its universality and wide applicability, fluid turbulence has been the targets of various scientific fields and
the disclosure of its essence should give huge impacts to wide variety of field of both pure and applied science.

The incompressible Newtonian fluids, which we simply call “fluids” in this thesis, are governed by the
Navier-Stokes equation and incompressibility condition. Because of its chaotic and unpredictable behavior,
we apply ensemble averaging (let us denote averaging by ⟨· · · ⟩) to the Navier-Stokes equation, which yield
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where V and P are the mean velocity and pressure, D/Dt = ∂/∂t + Vj∂j is the Lagrangian derivative based
on the mean velocity, ν is the molecular viscosity coefficient. The two-rank tensor
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as the second-order moment of the velocity fluctuation v′, is called the Reynolds stress, which acts as an
effective momentum flux due to turbulence motion. In exact treatment of the Reynolds stress, we shall
deal with its transport equation. However, because of the nonlinearity of the Navier-Stokes equation, the
Reynolds-stress equation contains the third-order moments, and we meet the fourth-order moments in the
third-order-moment equation. Namely, we inevitably strike into the infinite hierarchy of moment equations.
In practical analysis we need to truncate this hierarchy by representing the higher-order correlations in terms
of the lower quantities. This is referred to as the “closure problem” and it has been the most fundamental
target of the researches of this field until now. Especially in the inhomogeneous-turbulence studies, this is
termed as the “turbulence modeling”. In turbulence modelings, the phenomenological modelings have been
the main approaches to the goal, and these strategies have developed to some commercial soft-ware pack-
ages in computations and are applied to the various practical cases. On the contrary, there are some of
theoretical attempts based on the exact governing laws. One of these branches is two-sale direct-interaction
approximation (TSDIA: Yoshizawa 1984); a combination technique of a singular perturbation method and
direct-interaction approximation (DIA: Kraichnan 1959). Unlike the traditional inhomogeneous-turbulence
modellings, TSDIA enables us to investigate various statistical quantities based on the mathematical struc-
tures of the governing equations and, besides, it is applicable not only to the charge-neutral fluid but also to
more complex situation such as magnetohydrodynamic turbulence (Yoshizawa 1998).

2 General covariance of turbulence

In spite of its theoretical consistency and wide applicability, it is known that TSDIA is inconsistent with
some classes of coordinate transformations, at least it has been confirmed so far that it is inconsistent with
time-dependent rotation (Hamba & Sato 2008). This may be rephrased as follows; TSDIA includes the
covariance breakages under some classes of coordinate transformations. The covariances under the Galilean
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transformation, time-independent and time-dependent rotation have already been discussed often in tur-
bulence community (Speziale 1979). In the thesis, the author has extended the covariance to more general
statement; turbulence is strictly covariant under the general coordinate transformations. This is clearly shown
by considering the transformation rule of the velocity field. The transformation of the exact velocity v from
a coordinate system {y} to another system {ỹ} is given by

vã = yã
,i vi + yã

,t. (2)

By taking the average and fluctuation we obtain

V ã = yã
,i V i + yã

,t, (3)
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,i

(
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)
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(4) is clearly meaning that turbulence is generally covariant. From (4), we obtain Rãb̃ = yã
,iy

b̃
,j Rij which

means that the Reynolds stress is also generally covariant. Thus the turbulence modeling should be conducted
in consistent manner with the general covariance.

3 Mean-Lagrangian formalism

From (3), the author has found an important suggestion; the mean velocity transforms in totally the same
manner as the exact velocity field. This indicates that the mathematical equivalence between the exact
and mean flow. In the continuum physics, the coordinate system convected by the exact flow is utilize in
the description of long-time historical effect in covariant manner. From its analogy, we can introduce the
coordinate system convected by the mean flow in covariant description of the turbulence quantities, which we
call the mean-Lagrangian coordinate system. The later procedures may be summarized as follows; (I) Rewrite
the fluctuation equation into generally covariant form. (II) Rewrite it in the mean-Lagrangian coordinate
system. (III) Separate the coordinate dependence into homogeneous and inhomogeneous parts. (IV ) Apply
the renormalized perturbation theory (RPT: Wyld 1961, Kraichnan 1977, Kaneda 1981) to the calculations
of statistical quantities. These procedures has been applied to the Reynolds stress and the author obtained
the following result;
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where up to lowest-order diagrams are explicitly calculated for simplicity. This result is very distinct from
the conventional modelings in the following senses; the time evolutions of the mean-flow properties (S, Θ,
and Λ) and the fluctuation properties ( BQ and BG) coexist in the time integration. Thus (5) can illustrate
the system where the time scales of the mean flow and the fluctuation are not clearly separated. In this sense
(5) is more generalized form of the conventional algebraic Reynolds stress models where the Reynolds stress
is determined only by the present information. This is clearly the generalization of the RPT of homogeneous
turbulence which explains phenomena in terms of multiple-time quantities of fluctuation. On the other hand,
the temporally-localized approximation can be obtained as follows;
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Figure 1: Channel flow with coordinate system

Figure 2: Intensity of DNS Figure 3: Intensity of the present Figure 4: Intensity of TSDIA

where BK, νT , γt, Ns and Ds are scalar coefficients expressed by the statistical properties of fluctuation. O/Ot
is the Oldroyd’s derivative which is generally covariant operation. It is noticeable that D/Dt is not generally
covariant (except when it is applied to scalar fields). Note that γt- and D-related terms originate from
the nonlocal effect in time and space respectively, which suggests a generalization of conventional algebraic
Reynolds stress models (ARSM). Besides, (6) is covariant under the general coordinate transformation.

4 Discussions

4.1 Relation with the conventional K-ϵ model

By assuming the renormalized field as fully-developed isotropic turbulence, (6) reduces to a generalized
algebraic representation of K-ϵ type as follows;
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Here K, ϵ, g, S and Θ are turbulence energy, its dissipation rate, metric, strain rate and absolute vorticity.
The standard K-ϵ model, which has been widely employed in many engineering fields, is obtained as the
lowest-order truncation of the present analysis. Again, CT - and CMDs- related terms are from the nonlocal
effect in time and space, which are newly introduced by the present analysis.

4.2 Application to a plane channel flow

In order to see the validity of the present theory, the author has tested (7) in comparison with a direct-
numerical simulation of the plane-channel turbulence (Moser et al. 1999). The author substituted the
simulation data of K, ϵ, S and Θ into (7) and compared this with the simulated R in each component.
Generally speaking, the present theory has shown good agreement in every component in the region apart
from the wall. Especially the present theory reproduced the proper distribution of the turbulence intensity
i.e. R22 < R33 < R11 (see figures 2 and 3), which is well-known phenomena in simple shear flows such as
wall-bounded flows, while TSDIA cannot (see figure 4).
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5 Conclusion

The author has proposed a new analytical approach to inhomogeneous turbulent flow based on the mean-
Lagrangian formulation with an emphasis on the general covariance under the coordinate transformation. As
a consequence, the author has obtained the followings as the conclusion of the present study.

1. It was proved that the fluctuation field is generally-covariant quantity, and that the various turbulence
quantities including the Reynolds stress are generally covariant.

2. The mean-Lagrangian-coordinate representation is newly introduced, and its advantage for the combi-
nation of the multiple-time analysis and the general covariance was shown.

3. By taking the advantage of the mean-Lagrangian formalism, a theory of inhomogeneous turbulence
on the basis of multiple-point multiple-time quantities were developed in agreement with the general
covariance.

4. A temporally non-local representation of the Reynolds stress was derived in the form of the convected
integration, which clearly includes the history of both fluctuation and mean field along the mean-flow
trajectory in a generally covariant manner.

5. An algebraic representation of the Reynolds stress was derived which contains new effects such as the
Oldroyd derivative of the strain rate, spatial derivative of the strain rate and absolute vorticity. These
represent the non-local effect in both space and time in a generally covariant manner.
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