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Abstract

The de facto standard method for the study of two-particle channels from lattice
QCD consists in first extracting the finite-volume spectrum from lattice correlators
using the variational method and then relating it to the infinite-volume scattering phase
shifts using the finite-size formula introduced by Lüscher or one of its generalizations.
This approach has been applied successfully to a large number of two-particle channels,
paving the way for a complete ab-initio description of hadron physics. The HAL QCD
method is a more recent addition to this field and proposes an alternative way to extract
the scattering phase shifts of a two-particle system from lattice QCD simulations.
Wave function-like correlators are computed on the lattice which can be related to
the scattering phase shifts in infinite volume. The energy-dependence of these wave
functions is modeled by a non-local kernel through the Schrödinger equation and this
kernel is approximated from lattice input, leading to predictions for the scattering
phase shifts in the whole elastic energy region.

A part of this thesis is dedicated to the numerical application of the HAL QCD
method to various meson-meson channels. In particular, we study the pion-pion channel
in the isospin I = 1 and I = 2 channels. For I = 2, the HAL QCD method allows us to
extract the scattering phase shifts from simulations at a pion mass of mπ = 700 MeV.
The I = 1 P-wave channel contains the rho meson and is particularly challenging.
The HAL QCD method is found to face difficulties in this channels which only allows
us to acquire a qualitative understanding of the interaction. We also study several
charmed meson-meson channels which have been predicted to host tetraquark bound
states by some quark model calculations. No bound state is found in the pion mass
range mπ = 410 ∼ 700 MeV and the quark-mass dependence of the results hints at the
absence of bound states at the physical point.

Another part of this thesis is dedicated to improve the theoretical tools available for
the study of two-particle channels in lattice QCD. We first show how the HAL QCD
method can be extended to treat the interaction above the inelastic threshold for both
coupled two-particle channels and channels with more than two particles. We then go
on to propose two new methods which address some of the criticisms of the HAL QCD
method while retaining its core ideas. Firstly, the effective potential method is a new
way to extract the finite-volume spectrum for two-particle channels. It extends the
variational method to rectangular correlation matrices which are used to parameterize
an effective Hamiltonian operator. The finite-volume spectrum is then related to the
spectrum of this operator. Secondly, the kernel approximation method is a rigorous
alternative to the HAL QCD method based on an extensive study of the finite-volume
effects. It relies on the same wave function-like correlators in finite volume, which
we directly relate to the infinite-volume Bethe-Salpeter kernel. The properties of this
kernel are then used to study the energy-dependence of the correlators as well as the
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mixing of their angular momentum components by the cubic group. This leads to a
well-defined strategy to extract the scattering phase shifts. Our two newly proposed
methods are compared numerically to the previously available ones and are found to
be both correct and efficient.
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Chapter 1

Introduction

Physics, as a science, finds value in its predictions of the natural phenomena of our
world. Probably the first and simplest phenomenon that a student in Physics learns to
describe mathematically, hence becoming capable to derive quantitative predictions, is
the motion of a body in free fall. It is simple because it only involves two bodies: the
Earth and, say, a ball which interact in a well-known manner. However, the ball and
the Earth are not elementary objects but composed of many subcomponents so that a
more accurate description of the phenomenon is theoretically possible. A calculation
from first-principles, or ab-initio, is a prediction for some phenomenom which considers
directly the interaction of its elementary subcomponents. This thesis attempts to
contribute towards an ideal of Physics which is to describe any physical system from
the very basic constituents of the universe: elementary particles.

To date, the known elementary particles are 6 flavors of quarks (up, down, strange,
charm, bottom, top), as many leptons (electron, electron neutrino, muon, muon neu-
trino, tau, tau neutrino), the antiparticle partners of the quarks and leptons as well as
5 gauge bosons (photon, gluon, W+, W− and Z0). The Standard Model (SM) of par-
ticle physics is a theory which attempts to describe the properties of these elementary
particles and their interactions through all the known elementary forces but gravity:
electromagnetism, the weak force and the strong force. Since its finalization in the
mid-1970s, it has found unprecedented success in the experimental validation of its
prediction so that it is generally accepted as a correct representation of our world, at
least within the energy scales currently accessible by experiments.

Any natural phenomenon will unavoidably be the combined result of the four ele-
mentary interactions. At the scales considered in particle physics, gravity is completely
negligible. As for electromagnetism and the weak force, we will only consider in this
thesis phenomena for which their contributions are also negligible compared to that of
the strong force at the currently accessible degree of accuracy.

Quantum chromodynamics (QCD) is the subset of the SM that attempts to explain
the strong force, i.e. the force which in particular helps keep the atomic nuclei bound
in spite of the electromagnetic repulsion between protons. While the theoretical formu-
lation of QCD is quite concise, it leads to a very rich array of natural phenomena. A
characteristic feature of QCD is asymptotic freedom [5], which implies that the strong
interaction actually becomes weaker and weaker as the energy increases. At large
energies (compared to ΛQCD ∼ 200 MeV) such as the ones encountered in collision ex-
periments, the theory can therefore be treated perturbatively in a numerically efficient
way and the success of the resulting predictions so far have established the correctness
of QCD.
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As the energy goes below ΛQCD, the interaction in QCD becomes too strong to
be treated as a perturbation and non-perturbative calculations are needed to extract
any quantitative predictions. This corresponds to distances at or above Λ−1

QCD ∼ 1 fm
(= 10−15 m), which is around the size of the nucleons. Until recently, the physics at
these scales was mostly described by phenomenological models fitted to experimental
values. The advent of lattice QCD, a fully non-perturbative quantitative treatment of
QCD pioneered by Wilson [6], has opened the way to ab-initio predictions of nuclear
physics and in general any phenomenon dominated by the strong interaction.

Due to confinement, another characteristic feature of QCD, the quarks and anti-
quarks cannot be observed in isolation but only in certain composite particles called
hadrons. The experimentally established hadrons can be grouped into two categories:
the baryons (which include the nuclei) are composed of three quarks and the mesons
are composed of a quark and an antiquark. This thesis is dedicated to apply and
improve the methods for the non-perturbative, ab-initio study using lattice QCD of the
interaction between hadrons. Although the methods can be generalized to any hadrons,
the applications considered in this thesis are restricted to the interaction between two
mesons.

While many physicists or engineers routinely tackle highly complexified versions of
the Earth and ball problem involving a huge number of subcomponents, it may seem
that the interaction of two mesons is not much of a challenge. The difficulty arises in
the fact that a meson is actually not simply composed of a quark and an antiquark and
that the quarks and antiquarks are not particles in the classical sense. As a quantum
field theory (QFT), QCD describes the quarks, antiquarks and gluons in the form of
quantized fields, the physical particles being identified with the excited states of their
associated field.

In the path integral formalism, quantitative predictions of a QFT for some physical
process are obtained by summing the contribution to this process of all the possible
states of the fields of the theory. Schematically, this leads to two principal difficulties:
(i) the sum is performed over an infinite number of degrees of freedom because the fields
take values at each position in space-time and (ii) the contributions are all of the same
order, meaning that the final result is only finite if all the contributions (an infinity)
are considered. Lattice QCD overcomes these issues by (i) restricting the space-time
to a finite lattice so that the theory has a finite number of degrees of freedom and (ii)
considering imaginary (Euclidean) times so that the contributions are exponentially
suppressed in some functional of the fields and only the most important ones need to
be considered.

The discretization and restriction of space-time to a finite lattice induces corrections
which need to be treated carefully but disappear as the continuum and infinite-volume
limits are taken. However, the fact that lattice QCD calculations are in Euclidean
space (imaginary time) severely restricts the set of possible predictions for real-world
phenomena. Indeed, it is well-known that a finite set of predictions in Euclidean space
cannot be analytically continued to predictions at real (Minkowski) times. Predictions
which are actually accessible to lattice QCD calculations include the spectrum of the
theory and some matrix elements.

Lattice spectroscopy is the name of the field concerned by the study of the spectrum
in lattice QCD, which has already encountered great success towards reproducing the
mass spectrum of QCD [7]. The light hadron masses, computed from the spectrum of
single-particle channels, are probably the simplest observables to extract from lattice
QCD with quarks but precision calculations still require very large computational
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resources. It is then no surprise that the extraction of the spectrum of two-particle
channels is even more demanding and that real-world predictions still lie ahead for
most channels of interest. However, due to technical reasons that we will see later,
lattice QCD computations are less demanding if the quark masses are set to larger-
than-physical values and the resulting predictions for two-particle channels are very
promising.

The systematic study of two-particle channels in lattice QCD became possible with
the seminal work of Lüscher [8, 9]. He derived a direct relation between the discrete
spectrum of two-particle channels in finite volume and the scattering phase shifts of the
theory in infinite volume. The former is accessible to lattice calculations while the latter
can be directly compared to experimental values, thereby making a bridge between
theory and experiments. This formula has been the basis of most of the lattice studies
of two-particle channels in the past two decades although some alternative methods
have been formulated. In particular, we will discuss the HAL QCD method [10–12],
named after the HAL QCD collaboration which has been formed around the initiators
of the method to improve and apply it to various systems1.

Instead of the finite-volume spectrum, the HAL QCD method is based on the
computation through lattice QCD of some matrix elements reminiscent of quantum
mechanical wave functions. These matrix elements, called the Bethe-Salpeter (BS) wave
functions, can be related to the scattering phase shifts in infinite volume. Furthermore,
a non-local but energy-independent potential can be constructed such that the BS wave
functions at all energies below the inelastic threshold satisfy the Schrödinger equation
for this potential. This potential and its properties are unknown but some physical
arguments suggest that it could be approximated by truncation of its velocity expansion,
an expansion in non-locality valid with some assumptions on the potential. Once the
potential is approximated with lattice QCD inputs, the Schrödinger equation can be
solved at any energy. In other words, a finite number of BS wave functions computed
in lattice QCD can lead to the scattering phase shifts at any energy in the domain of
validity of the approximation.

The HAL QCD method relies on a certain number of assumptions and approxima-
tions. While these have been shown to be reasonable in a few channels [13, 14], they
may have hindered a wider adoption of the method outside of the HAL QCD collab-
oration. The HAL QCD method is often deemed too complex and not well-justified
theoretically compared to Lüscher’s approach. However, it is based on the enticing
idea that even in quantum field theory the interaction is “well-behaved” and may be
approximated in the form of a simple kernel. In contrast, Lüscher’s formula stems less
from the properties of a system than from geometric considerations arising when it is
restricted to a finite box. Because it does not make assumptions on the system, it gives
rigorous but limited predictions. Combining the rigor of Lüscher’s approach with the
ideas of the HAL QCD method has been a central theme of this work.

The work compiled in this thesis is the result of a certain number of investigations,
both theoretical and numerical, in the wide field of study of two-particle channels from
lattice QCD. As its name suggests (Hadron to Atomic nuclei from Lattice QCD), the
HAL QCD collaboration was created with a particular focus on the nuclear interaction.
By its importance, the nuclear interaction has attracted a lot of interest but there is
a large number of hadronic channels with interesting properties which could benefit
from ab-initio calculations using lattice QCD. A part of this thesis is dedicated to
the application of the HAL QCD method to new two-particle channels, including the

1 The author of this thesis is a member of the HAL QCD collaboration.
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challenging isospin I = 1 two-pion channel which required the development of new
numerical techniques and several charmed meson-meson channels. Another part of
this thesis stems from a reflection on the method itself and has lead to an extension
of the method, as well as the proposition of two new methods aiming to mitigate the
shortcomings of the HAL QCD method while retaining its powerful core ideas.

∗ ∗ ∗

This thesis is organized as follows. In Chapter 2, we explain the basics of lattice
QCD. Starting with some notations and reminders in several topics of quantum field
theory, we go on to describe the formulation of quantum chromodynamics as well as
how this theory can be expressed in a way amenable to computer calculations. The
chapter ends with a brief treatment of lattice spectroscopy which shows how physical
information can be extracted from numerical results.

Chapter 3 is dedicated to the methods involved in the study of two-particle channels.
We first introduce the basics of scattering theory, exploring its evolution from classical
mechanics to quantum mechanics and finally quantum field theory. These basics then
allow us to easily present the two currently dominant approaches to the study of
two-particle channels in lattice QCD: Lüscher’s formula and the HAL QCD method.

After these review chapters, Chapter 4 presents the theoretical contributions of
this thesis. The first section describes how the HAL QCD method can be extended to
study the properties of a system above its inelastic threshold. In the second section,
we present a new method, called the effective potential method, to extract the finite-
size spectrum of a theory from lattice simulations. It is a generalization of the usual
variational method which incorporates the ideas of the HAL QCD method for increased
efficiency but retains Lüscher’s formula for the link to the scattering phase shifts. The
last section introduces another new method, called the kernel approximation method,
to directly extract scattering phase shifts. It is based on an extensive study of the
lattice correlators in two-particle channels using the theoretical tools used to derive
Lüscher’s formula. By generalizing these tools, we arrive at a strategy to model the
interaction in a rigorous and efficient way.

In Chapter 5, we show our numerical results for the study of several two-particle
channels using lattice QCD. The first application is a comparison of all the method
presented thus far in the context of the two-pion channel with isospin I = 2. We then
go on to the study of the more challenging two-pion channel with isospin I = 1 using
the HAL QCD method. Finally, we show the result of an investigation of possible
tetraquark bound states, again using the HAL QCD method.

A summary of this work and some concluding remarks are presented in Chapter 6.
Appendices A and B provide technical details related to section 4.2, on the effective
potential method, and section 4.3, on the kernel approximation method, respectively.



Chapter 2

Lattice quantum chromodynamics

2.1 Quantum field theory

Before tackling QCD, we will first introduce some notions of quantum field theory
(QFT) in the context of the simpler example of a scalar field theory. QFT is a difficult
framework, with still uncertain mathematical foundations and many of its subtleties
are beyond the scope of this thesis. A more rigorous treatment of the objects discussed
in this section can be found in standard textbooks or may be yet to be discovered. We
will mainly follow ref. [15].

2.1.1 Wick rotation

Let us consider a quantum field theory of a real scalar field φ(x) which describes
the physics of a particle of mass m and spin 0. In Minkowski space, the theory is
characterized by the Hilbert space H of physical states, containing a vacuum state |0〉
invariant under the transformations of the Poincaré group. All the information of the
Hilbert space and thus the physical content of the theory can be recovered from the
knowledge of the n-point correlation functions

W(x1, . . . , xn) ≡ 〈0|φ̂(x1) · · · φ̂(xn)|0〉, (2.1)

also called Wightman functions, where φ̂(x) is the quantized field which acts as an
operator on H and xi are 4-dimensional vectors in Minkowski space.

While the physical theory is defined in Minkowski space, it will prove useful to
consider its extension to Euclidean space for actual calculations. Continuing the coordi-
nates to complex values, both spaces represent the same space-time. To distinguish the
two, the coordinates in Minkowski space will be noted (x0,x) = (x0, . . . , x3) while those
in Euclidean space will be noted (x, x4) = (x1, . . . , x4). The correspondence is then
given by x0 = −ix4 and the spatial components left unchanged. We will call Euclidean
points the space-time points with real Euclidean coordinates, i.e. (x1, . . . , x4) ∈ R4.

Provided the spectral condition, an axiom of scalar quantum field theory related to
causality, the Wightman functions can be continued analytically in some region of the
space with complex coordinates. In particular, we can define the Schwinger functions
as the restriction of this continuation on Euclidean points,

S(. . . , (xk, x4
k), . . .) ≡ W(. . . , (−ix4

k,xk), . . .), (x1
k, . . . , x

4
k) ∈ R4, (2.2)

with the constraint that
x4

1 > x4
2 > . . . > x4

n. (2.3)
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The Schwinger functions can actually be shown to be defined on a much larger domain,
in particular on all non-coinciding Euclidean points

xj 6= xk for j 6= k. (2.4)
Furthermore, they have the nice property to be symmetric in their arguments, which
is not the case for the Wightman functions. Conversely, the Wightman functions can
be recovered from the Schwinger functions.

Another important class of functions, as we will see in section 3.1.3, are the time-
ordered Wightman functions

WT (x1, . . . , xn) ≡ 〈0|T φ̂(x1) · · · φ̂(xn)|0〉, (2.5)
where the time-ordering operator T orders the field operators φ̂(xk) from left to right
by decreasing time coordinate x0

k. These functions can be shown to be related with
the Schwinger functions by the so-called Wick rotation,

WT (. . . , (x0
k,xk), . . . ) = lim

θ→(π2 )−
S(. . . , (xk, eiθx0

k), . . . ). (2.6)

In the following, we will write the Schwinger functions, or Euclidean correlation
functions, as

〈φ̂(x1) · · · φ̂(xn)〉 ≡ S(x1, . . . , xn), (2.7)
for Euclidean coordinates xk, in contrast to the notation on the right-hand side of (2.1)
where Minkowski coordinates are implied.

2.1.2 Path integral

Generating functional

The generating functional of the Euclidean correlation functions is defined as

Z[J ] ≡
∞∑
n=0

1
n!

∫
d4x1 · · · d4xn J(x1) · · · J(xn) 〈φ̂(x1) · · · φ̂(xn)〉 (2.8)

which acts on a source J , a classical real scalar field. The correlation functions are
then simply recovered using functional derivatives as

〈φ̂(x1) · · · φ̂(xn)〉 = δnZ[J ]
δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

(2.9)

The functional derivatives act as
δ

δf(y)f(x) = δ(x− y) (2.10)

and satisfies the usual rules of differential operators. Note that (2.8) can be formally
written as

Z[J ] = 〈e(J,φ̂)〉 with (J, f) ≡
∫
d4x J(x)f(x). (2.11)

The connected Euclidean correlation functions 〈φ̂(x1) · · · φ̂(xn)〉C are defined recur-
siveley by 〈φ̂(x1)〉C ≡ 〈φ̂(x1)〉 and

〈φ̂(x1) · · · φ̂(xn)〉 ≡
∑
P
〈φ̂(xi) · · · φ̂(xj)〉C · · · 〈φ̂(xk) · · · φ̂(xl)〉C (2.12)

where the sum is over all partitions P of the set {1, . . . , n}. They can also be recovered
from the generating functional as

〈φ̂(x1) · · · φ̂(xn)〉C = δn logZ[J ]
δJ(x1) · · · δJ(xn)

∣∣∣∣
J=0

(2.13)
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Free scalar field

We will first look at the generating functional in the theory of a free scalar field,
which is particularly simple. It can be shown axiomatically that the Euclidean 2-point
correlation function is then

G(x, y) ≡ 〈φ̂(x)φ̂(y)〉 =
∫

d4p

(2π)4
eip·(x−y)

p2 +m2 . (2.14)

We recognize the Green function of the Klein-Gordon equation

(∂µ∂µ −m2)G(x, y) = −δ(x− y). (2.15)

Furthermore, the only non-zero Euclidean connected correlation function in the free
theory is

〈φ̂(x)φ̂(y)〉C = G(x, y). (2.16)
We then deduce from (2.13) that the generating functional of the free theory is equal
to

Z[J ] = exp
{1

2

∫
d4xd4y J(x)G(x, y)J(y)

}
. (2.17)

For a k×k symmetric, positive-definite covariance matrix A and an arbitrary vector
J , the following gaussian integral is well-known∫

dkφ exp
{
−1

2(φ,Aφ) + (J, φ)
}

=

√
(2π)n
detA exp

{1
2(J,A−1J)

}
. (2.18)

The integration is over vectors φ ∈ Rk on the left-hand side. If we think of a field as
a vector in an infinite space, we can make an analogy between the right-hand sides of
(2.17) and (2.18) to write formally

Z[J ] = 1
Z[0]

∫ ∏
x

dφ(x) exp
{
−1

2(φ, (−∂µ∂µ +m2)φ) + (J, φ)
}
. (2.19)

Of course, the continuous space-time is not only infinite but also uncountable so the
product

∏
x is formal and this integral is clearly not well-defined. We will take care of

this when we put the theory on a finite lattice.

Interacting scalar field

We now consider the case of an interacting quantum scalar field, with a classical
Euclidean action given by

S[φ] = 1
2(φ, (−∂µ∂µ +m2)φ) + SI [φ] (2.20)

where SI is the part describing the interaction.
Dyson’s formula relate the generating formula for the free and the interating theories.

In Euclidean space, it reads

Z[J ] ∝ 〈exp{−SI [φ̂in] + (J, φ̂in)}〉in (2.21)

where the subscript in refers to the free field theory (standing incoming as will be made
clear in section 3.1.3). Combining this equation with our results for the free theory, we
deduce a formal expression for the generating function of the interacting theory

Z[J ] = 1
Z

∫ ∏
x

dφ(x) e−S[φ]+(J,φ), (2.22)
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where Z = Z[0]. This translates to the correlation functions as

〈φ̂(x1) · · · φ̂(xn)〉 = 1
Z

∫ ∏
x

dφ(x) e−S[φ]φ(x1) · · ·φ(xn). (2.23)

We have thus reached an explicit expression of the Euclidean correlation functions
using the Euclidean action of the theory. The left-hand side of (2.23) is the expectation
value of a product of operators φ̂ acting on the Hilbert space of physical states H while
on the right-hand side, φ is a classical field and there is no mention of the Hilbert space
(remember (2.18), the field φ is simply introduced as a mathematical device). This
relation is called the functional integral or path integral of the theory. We remind that
this expression is formal and will require some regularization, on the lattice in our case.

2.2 QCD on a computer

We have seen in the previous section how the physical content of a quantum field theory
is encoded in the Euclidean correlation functions and how these can be expressed as an
integral over classical fields. Integrals are precisely something computers can compute
so that after extending the previous argument to QCD, we will see how these integrals
can be prepared for computation. A more extensive treatment can be found in many
books, e.g. ref. [15–18].

2.2.1 QCD in the continuum

Fields

QCD describes the physics of the quarks, elementary particles of spin 1
2 coming in

Nf = 6 flavors (with bare masses mf ) and Nc = 3 colors (degenerate masses), as well
as the antiquarks, their antiparticle partners. We will note the quark field ψfc , and the
antiquark field ψ̄fc , with f (resp. c) the flavor (resp. color) index and the spin indices
kept implicit. QCD is a Yang-Mills theory for the color gauge group SU(3)c. This
means that the quark and antiquark fields are required to transform covariantly under
local gauge transformations as

ψf (x)→ Ω(x)ψf (x), ψ̄f (x)→ ψf (x)Ω(x)−1 (2.24)

where Ω(x) ∈ SU(3) acts on the color degrees of freedom (d.o.f.) of ψf differently at
each position x.

QCD is invariant under local gauge transformations thanks to the existence of gauge
fields of spin 1, the gluons, which come in 8 types and will be noted Aaµ for a = 1, . . . , 8.
It is convenient to define the gluon field as a field of 3×3 matrices Aµ(x) =

∑8
a=1A

a
µt
a,

where ta are the generators of the Lie algebra su(3), normalized by Tr tatb = 1
2δab. The

gluon field transforms under local gauge transformations as

Aµ → Ω(x)Aµ(x)Ω(x)−1 + i∂µΩ(x)Ω(x)−1. (2.25)

Action

We can now introduce the action of QCD in Euclidean space as

S[ψ, ψ̄, A] = SF [ψ, ψ̄, A] + SG[A]. (2.26)
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The fermionic part of the action is

SF [ψ, ψ̄, A] =
Nf∑
f=1

∫
d4x ψ̄f (x)(γµ[∂µ + igAµ(x)] +mf )ψf (x). (2.27)

where the constant g is the bare gauge coupling and γµ are the Euclidean Dirac matrices.
Note that γµ implicitely acts on the spin d.o.f. and Aµ on the color d.o.f. The gauge
part of the action is

SG[A] = 1
2g2

∫
d4x Tr [Fµν(x)Fµν(x)] (2.28)

where the field strength tensor is defined from the gluon field as

Fµν(x) ≡ ∂µAν − ∂νAµ + ig[Aµ, Aν ]. (2.29)

Provided (2.24) and (2.25), the action S thus constructed is invariant under local gauge
transformation.

Similarly as was discussed in the previous section, QCD is characterized by the
Hilbert space H of physical states after quantization. The Euclidean space path integral
for QCD will be written by analogy as

〈F [ψ̂, ˆ̄ψ, Â]〉 = 1
Z

∫ ∏
x

{
dψ(x)dψ̄(x)dA(x)

}
e−S[ψ,ψ̄,A]F [ψ, ψ̄, A]. (2.30)

with Z = 〈1〉 and dψ(x) a measure taking into account flavor, spin and color indices.
On the left-hand side, F is a functional of the field operators ψ̂, . . . acting on H which
also returns an operator. On the right-hand side, F is the same functional but taking
as arguments the classical fields ψ, . . . and thus returning a classical field. Note that
this infinite-dimensional integral is still formal.

Parallel transporter

For any path Cxy between two space-time points x and y, define the parallel transporter
U(Cxy) ∈ SU(3) as

U(Cxy) = P exp
{
ig

∫
Cxy

Aµds
µ

}
. (2.31)

where P is the path ordering operator. It follows from (2.25) that it transforms under
local gauge transformations simply as

U(Cxy)→ Ω(x)U(Cxy)Ω(y)−1. (2.32)

The parallel transporter and the gluon field are equivalent as can be seen by taking
infinitesimal paths in (2.31). This means that the action could be equivalently written
as a function of the parallel transporter. Indeed, with µ̂ the unit vector in the direction
µ, we have for the straight curve Cx,x+aµ̂ between x and x+ aµ̂

(∂µ + igAµ(x))ψf (x) = lim
a→0

U(Cx,x+aµ̂)ψf (x+ aµ̂)− U(Cx,x−aµ̂)ψf (x− aµ̂)
2a . (2.33)

Similarly, for the closed path Cx,x = Cx,x+aµ̂ ◦ Cx+aµ̂,x+aµ̂+aν̂ ◦ Cx+aµ̂+aν̂,x+aν̂ ◦ Cx+aν̂,x
following the edges of a square, we have

Tr [Fµν(x)Fµν(x)] = lim
a→0

2
a4Re Tr [1− U(Cx,x)]. (2.34)
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x+ aµ̂

x

Uµ(x) Uµν(y)

y

y + aµ̂ y + aµ̂+ aν̂

y + aν̂

Figure 2.1: Gauge links Uµ(x) and plaquettes Uµν(x) on the lattice.

With such identities we can write the QCD action as S[ψ, ψ̄, U ] where the parallel
transporters replace the gluon field. The path integral would then be written as

〈F [ψ̂, ˆ̄ψ, Û ]〉 = 1
Z

∫
DU

∏
x

{
dψ(x)dψ̄(x)

}
e−S[ψ,ψ̄,U ]F [ψ, ψ̄, U ] (2.35)

with some measure DU for the parallel transporters. This measure should take care of
the redundancy arising from the properties

U(C ◦ C′) = U(C)U(C′) and U(−C) = U(C)−1 (2.36)

for two paths C, C′ and with −C the path C traversed in the reversed direction. Schemat-
ically we could have DU =

∏
C∗ dU(C∗), a product over some “independent” paths C∗.

2.2.2 QCD on a lattice

The formulation of QCD on a discretized space-time serves two purposes. From a
theoretical point of view, the finite lattice spacing introduces an ultraviolet regulator
which is a necessary device to make the expressions finite in QFT and thus allow
predictions for physical quantities. From a practical point of view, combined with
restricting space-time to a finite volume, it leads to a finite number of degrees of
freedom and therefore makes numerical calculations possible.

Let us then restrict the Euclidean space-time to a finite 4-dimensional hypercubic
lattice

Λ ≡ {an ∈ R4 | nµ = 0, . . . , N − 1}. (2.37)
The extent in each direction is L = Na, and the lattice spacing a enforces a momentum
cutoff of order 1/a.

Naive discretized action

On the lattice, the definition of the measure DU , which was troublesome in the con-
tinuum becomes straightforward. Indeed, any path is the concatenation of elementary
straight lines of length a between neighboring sites of the lattice. Using the properties
(2.36), this means that the parallel transporter of any path can be reconstructed from
the gauge links (see fig. 2.1)

Uµ(x) ≡ U(Cx,x+aµ̂), x ∈ Λ, µ = 1, . . . , 4. (2.38)

Since these gauge links are independent and complete, we can use them as the gauge
degrees of freedom and choose the measure

DU =
∏
x∈Λ

4∏
µ=1

dUµ(x) (2.39)
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where dUµ(x) is the Haar measure for SU(3), which ensures that DU is gauge-invariant.
The quark degrees of freedom are simply the value of the fields at each lattice site, with
a measure ∏

x∈Λ
dψ(x)dψ̄(x) (2.40)

Note that this is now a well-defined product over a finite number of terms, contrary to
the formal

∏
x that we used in the continuum.

We can then introduce a gauge-invariant action on the lattice for these degrees of
freedom

SΛ[ψ, ψ̄, U ] ≡ SΛ
F [ψ, ψ̄, U ] + SΛ

G[U ] (2.41)

using the naive fermion action

SΛ
F [ψ, ψ̄, U ] = a4 ∑

x∈Λ

Nf∑
f=1

ψ̄f (x)
[
γµ
Uµ(x)ψf (x+ aµ̂)− U−µ(x)ψf (x− aµ̂)

2a +mfψf (x)
]
.

(2.42)
with the shorthand U−µ(x) = Uµ(x− aµ̂)−1 and the Wilson action

SΛ
G[U ] = 2

g2

∑
x∈Λ

∑
µ<ν

Re Tr [1− Uµν(x)] (2.43)

where we defined the plaquette (see fig. 2.1)

Uµν(x) = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)−1Uν(x)−1, x ∈ Γ, µ 6= ν. (2.44)

Equations (2.33) and (2.34) guarantee that the continuum action is recovered as the
lattice spacing a approches zero and the volume is taken to infinity

S[ψ, ψ̄, A] = lim
a→0

lim
L→∞

SΛ[ψ, ψ̄, U ]. (2.45)

While irrelevant in the limit of an infinite lattice, periodic boundary conditions are
usually taken in the spatial directions µ = 1, 2, 3 to ensure translational invariance. In
the temporal direction µ = 4, the boundary conditions are taken as periodic for the
gauge field but antiperiodic for the fermion fields, for technical reasons related to the
reconstruction of the Minkowski theory.

Doubling problem and alternative actions

The action defined in (2.41) is only one example of all the lattice actions with the proper
limit (2.45). For any such lattice action SΛ, we can define a path integral similarly as
(2.35)

〈F [ψ̂, ˆ̄ψ, Û ]〉Λ = 1
ZΛ

∫ ∏
x∈Λ

dψ(x)dψ̄(x)
4∏

µ=1
dUµ(x)

 e−SΛ[ψ,ψ̄,U ]F [ψ, ψ̄, U ], (2.46)

where ZΛ is fixed by 〈1〉Λ = 1. This integral is finite-dimensional and well-defined.
The left-hand side of (2.46) represents correlations functions for a QCD-like quan-

tum field theory describing particles on the lattice. Although the lattice action ap-
proaches the QCD action as (2.45) there is no guarantee that all the correlation func-
tions converge towards those of QCD, primarily because the lattice action does not
exhibit the same symmetries as the one in the continuum.
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As an important example, it can be shown that at any value of the lattice spacing,
the naive fermion action (2.42) leads to a dispersion relation such that all energy levels
have a degeneracy of 16 states1. This is known as the doubling problem and means
that the QFT induced by this lattice action describes 16 times more physical fermions
that the continuum one. To circumvent this issue, Wilson proposed an alternative
discretization of the fermion action by adding the following term to (2.42)

− a
∑
x∈Λ

Nf∑
f=1

4∑
µ=1

ψ̄f (x)Uµ(x)ψf (x+ aµ̂)− 2ψf (x) + U−µ(x)ψf (x− aµ̂)
2a2 . (2.47)

It is gauge invariant and vanishes for a→ 0 so that the resulting action is still satisfying.
Furthermore, it lifts the degeneracy of the states so that toward the continuum limit,
only one state per flavor recovers the dispersion relation of a particle of mass mf

while the other 15 states acquire infinite masses. However, while solving the doubling
problem, the new term explicitely breaks chiral symmetry so that some important
features of QCD cannot be reproduced. The fermions described by such an action are
called Wilson fermions.

Many other valid lattice actions have been proposed, for two main objectives. The
first objective is to improve the convergence of the discretized action towards the
continuum one. For example, the Wilson gauge action has a convergence rate of O(a2)
while the action for Wilson fermions only convergences as O(a). The action for clover
fermions is obtained by adding new terms to the action of the Wilson fermions so
that the terms in O(a) vanish and the overall action converges as O(a2). Another
objective is to keep an aspect of chiral symmetry on the lattice but such considerations
are beyond the scope of this thesis.

Continuum limit

With the rescaling ψf →
√
amf + 4a3/2ψ and a similar one for ψ̄f , the lattice fermion

fields in the path integral (2.46) can be made dimensionless. This rescaling simply
factors out a constant which is absorbed in ZΛ. Then, the action for Wilson fermions
can be compactly written as

SΛ
F [ψ, ψ̄, U ] =

∑
x∈Λ

Nf∑
f=1

ψ̄f (x)ψf (x)− κf
∑
±

4∑
µ=1

ψ̄f (x)(1∓ γµ)U±µ(x)ψf (x± aµ̂)

 .
(2.48)

where κf = 1/(2amf + 8) is called the hopping parameter. Since a does not appear
explicitely in the gauge action (2.43) and (x, x ± aµ̂) above are only indices for the
integration variables ψ, ψ̄, the whole path integral can be written indepently of a, with
dimensionless degrees of freedom and dimensionless parameters κf and β = 6/g2. Now,
if these are the only parameters of the lattice, how do we take the continuum limit?

On one side, the correlation functions of “real-world” QCD (and thus quantities to
be compared with experiments) can be obtained up to corrections of order O(a) (or
better) by computing the path integral for a lattice2 with a suitable choice of parameters
κf (a) and β(a) as a→ 0. Here, a is just a dummy parameter and κf (a) and β(a) some
functions to be determined.

1 The dispersion relation for each flavor, obtained from the pole locations of the free fermion
propagator, is given by

∑4
µ=1 sin(pµa)2 = (mfa)2. It has 0 or 16 solutions for pµ within the first

Brillouin zone (−π/a, π/a].
2 Technically an infinite lattice but the limit N →∞ is trivial, if computationally expensive.
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On the other side, if we compute the path integral for a (infinite) lattice and some
parameters XΛ = ({κf}Nff=1, β), we obtain correlation functions which correspond to
those of a continuum QCD-like theory, let us call it T , up to corrections O(aT (XΛ))
and to those of another theory T ′ up to corrections O(aT ′(XΛ)), etc. These two
theories have the same content and symmetries as “real-world” QCD, let us call it Tϕ
for physical, but lead to different values for observables, e.g. the hadron masses. To
make predictions on real-world quantities, it is then necessary to choose the lattice
parameters such that aTϕ(XΛ) approaches zero. This is called the continuum limit at
the physical point. Note that with previous notations, a = aTϕ({κf (a)}Nff=1, β(a)). One
can also explore the continuum limit away from the physical point, i.e. aT (XΛ) → 0
where T is for example a theory for which the pion mass is heavier than the physical
one. It can give valuable insight, is often less computationally demanding and may be
related to Tϕ by e.g. chiral extrapolation.

These qualitative considerations can be made rigorous in the framework of the
renormalization group. For this thesis, it will suffice to say that the continuum limit
corresponds to β →∞ and that κf must be tuned to reach the physical point.

2.2.3 Computation

We have seen how the Euclidean correlation functions of QCD can be recovered in some
limit from the path integral on the right-hand side of (2.46), a well-defined integral, with
an appropriate choice of parameters κf and β. A detail that was ignored so far is that
the quarks being fermions, their fields anticommute. This is implemented by requiring
that the integration parameters ψ(x) and ψ̄(x) for x ∈ Λ be anticommuting numbers,
called Grassman variables. Since such numbers cannot be treated by a computer, we
first integrate over the quark degrees of freedom analytically in the path integral. To
do so, note that the action for Wilson fermion (2.48) (and any other bilinear action)
can be written as

SΛ
F [ψ, ψ̄, U ] =

∑
x,y∈Λ

∑
A,B

ψ̄A(x)DA,B(x, y)ψB(y). (2.49)

where D is a U -dependent matrix, called the Dirac operator, with position indices (x, y)
as well as flavor, spin and color indices which are compactly represented as (A,B).
Then it can be shown that for a functional

F [ψ, ψ̄, U ] = F [U ] ψA1(x1)ψ̄B1(y1) · · ·ψAn(xn)ψ̄Bn(yn) (2.50)

the path integral is given after integration of the quark fields by

〈F [ψ̂, ˆ̄ψ, Û ]〉Λ = (−1)n
∑
σ∈Sn

sign(σ)
∫
DU F [U ] D−1

A1,Bσ1
(x1, yσ1) · · ·D−1

An,Bσn
(xn, yσn)∫

DU

(2.51)
with Sn the set of permutations of {1, . . . , n} and the following measure for the inte-
gration on the gauge links

DU ≡ DU e−S
Λ
G[U ] det[D]. (2.52)

Actually, any functional with a non-zero expectation value is a combination of
functionals described by (2.50). It is then sufficient to compute numerically the kind
of integrals which appears in the right-hand side of (2.51). Since such integrals are
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typically over a huge number of dimensions (32N4 for the lattice considered here),
the method of choice is Monte-Carlo integration. The idea is to generate M gauge
configurations, i.e. M sets Ui of gauge links for the whole lattice, such that their
distribution approaches DU as M grows. Then the integrals are evaluated as the limit∫

DU f(U)∫
DU

= lim
M→∞

1
M

M∑
i=1

f(Ui). (2.53)

Typically, the generation of the gauge configurations Ui is very computationally expen-
sive. However, once they are generated and stored, one can compute integrals as above
for any function f desired.

Note that the measure DU is positive (as expected for a measure) and decays
exponentially for large values of the gauge action. Such a behavior is crucial to the
fast convergence of the limit (2.53) since the space of the gauge configurations which
contribute significantly to the integral is much smaller than the total integration space.
The method described previously, i.e. sampling gauge configurations according to
the distribution DU so that the ones with the largest contributions to the integral
appear more often in the chain Ui, is called importance sampling. It is one of the most
compelling advantages to make computations in Euclidean space. Indeed, for the path
integral in Minkowski space, the contribution of all the gauge configurations are of
similar importance towards the final result and must be taken into account, a task
clearly impossible in an infinite space.

2.3 Lattice spectroscopy

We have seen how the framework of lattice QCD allows to compute the Euclidean
correlation functions of QCD using computer simulations. These correlation functions
can be used to extract any relevant information of QCD in Euclidean space. However,
to obtain predictions for the “real-world”, the Euclidean correlation functions must
be analytically continuated to Minkowski space using the Wick rotation introduced in
subsection 2.1.1. As we will see, this analytical continuation cannot be performed from
the results of numerical simulations but meaningful predictions can still be obtained.
One important prediction allowed by lattice QCD is about the energy-levels of the
theory, i.e. the spectrum of the Hamiltonian operator.

2.3.1 Euclidean correlators

We will call correlators the particular case of correlation functions where the functional
can be separated as

F [ψ, ψ̄, U ] = O1[ψ(·, t1), ψ̄(·, t1), U(·, t1)] O2[ψ(·, t2), ψ̄(·, t2), U(·, t2)], (2.54)

i.e. the product of two functionals O1 and O2 which only involve the fields at times t1
and t2 respectively, with t1 > t2. For i = 1, 2 define the folowing operator acting on
the Hilbert space H

Ôi(t) = Oi[ψ̂(·, t), ˆ̄ψ(·, t), Û(·, t)]. (2.55)

In Minkowski space, the correlation function associated to a functional of the type
(2.54) is

〈0|F [ψ̂, ˆ̄ψ, Û ]|0〉 = 〈0|Ô1(t1)Ô2(t2)|0〉 = 〈0|Ô1(0) e−iĤ(t1−t2)Ô2(0)|0〉 (2.56)
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where Ĥ is the Hamiltonian operator of QCD which has a discrete spectrum in finite
volume. Let |n〉 and Wn (n = 1, . . . ) be the eigenstates and associated eigenenergies of
the Hamiltonian which couple with the states Ô2(0)|0〉 and Ô1(0)†|0〉. The energies Wn

are assumed strictly increasing with n. Expanding on the complete set of eigenstates
of the Hamiltonian, we get

〈0|Ô1(t1)Ô2(t2)|0〉 =
∑
n

〈0|Ô1(0)|n〉〈n|Ô2(0)|0〉 e−iWn(t1−t2). (2.57)

Both sides can be analytically continuated to Euclidean times τk = itk as

〈Ô1(τ1)Ô2(τ2)〉 =
∑
n

〈0|Ô1(0)|n〉〈n|Ô2(0)|0〉 e−Wn(τ1−τ2). (2.58)

We have thus related an Euclidean correlation function on the left-hand side, which
can be computed in lattice QCD, to matrix elements and eigenenergies of the theory
in Minkowski space. Note that the analytic continuation supposes an infinite extent in
the temporal direction.

As we will see in the next subsection, it is possible to approximate the matrix
elements and eigenenergies for the first few eigenstates n but it would require an
infinite number of numerical calculations to extract all of them. While these first few
eigenstates may be enough to obtain the Euclidean correlator due to the exponential
suppression e−Wn(τ1−τ2), there is no such suppression in Minkowski space so that all the
eigenstates may contribute significatively to the correlator. This is why the analytic
continuation from numerical results back to correlation functions in Minkowski space
is in general an ill-defined problem. However, gaining information for the lower part of
the spectrum is already very useful as will be discussed in later chapters.

2.3.2 Spectrum extraction

In this subsection, we will implicitely consider that times noted t are Euclidean. The
fundamental identity derived above for the Euclidean correlators is then

〈Ô1(t)Ô2(0)〉 =
∑
n

〈0|Ô1(0)|n〉〈n|Ô2(0)|0〉 e−Wnt. (2.59)

Ô2 is usually called the source operator and Ô1 the sink operator.

Naive method

At large time separations t, the contribution from the ground state |n = 1〉 dominates
the correlator

〈Ô1(t)Ô2(0)〉 = C e−W1t [1 +O(e−(W2−W1)t)] (2.60)

where C ≡ 〈0|Ô1(0)|n = 1〉〈n = 1|Ô2(0)|0〉. This means that one can extract the
ground state energy W1 and the coefficient C by fitting this correlator at large enough
t. One can equally fit the correlator

〈Ô1(t)Ô1(0)†〉 = C ′ e−W1t [1 +O(e−(W2−W1)t)] (2.61)

where C ′ ≡ |〈0|Ô1(0)|n = 1〉|2. Assuming that C 6= C ′, we can cancel the contribution
of the ground state as

C ′〈Ô1(t)Ô2(0)〉 − C〈Ô1(t)Ô1(0)†〉 = C ′′ e−W2t [1 +O(e−(W3−W2)t)] (2.62)
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for some constant C ′′.
In conclusion, we can extract the energy W1 from correlators (2.61) involving one

operator and additionally the energyW2 from correlators (2.62) involving two operators.
It is easy to see that with correlators involving Nop operators we can extract the Nop
first energies of the spectrum.

An issue with this method is that numerical simulations are performed for a space-
time with a finite extent in the temporal direction Lt. Therefore, the method breaks
down when two consecutive energies are too close in the sense that they do not satisfy
(Wn+1 −Wn)Lt � 1. In typical simulations, this may happen as soon as n = 1.

Variational method

The variational method is a smarter approach to the extraction of the first few eigenen-
ergiesWn from Euclidean correlators. Assume that we have chosen a set of independent
operators Ôi (i = 1, . . . , Nop). From numerical simulations, create a time-dependent
correlation matrix C(t) with coefficients

Cij(t) = 〈Ôi(t)Ôj(0)†〉, i, j = 1, . . . , Nop. (2.63)

Instead of fitting each correlator separately as proposed before, we will use them all
at the same time. For two times t and t0, solve the following generalized eigenvalue
problem (GEVP)

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0), n = 1, . . . , Nop. (2.64)

Lüscher and Wolff first showed [19] that the eigenvalues have the following asymptotic
behavior

W eff
n (t, t0) ≡ −∂t log λn(t, t0) = Wn +O(e−∆Wnt), ∆Wn = min

m 6=n
|Wm −Wn|, (2.65)

This means that at fixed t0 the eigenvalues decay exponentially in t with a rate which
approaches the eigenenergiesWn at large t. Unfortunately, the method still breaks down
if two consecutive energies are too close in the same sense as for the naive method3.

By considering the contribution of the energy eigenstates |n〉 for n > Nop as pertur-
bations, it was later shown [20] that for t0 and t chosen such that t < 2t0, the solutions
have the stronger asymptotic behavior

W eff
n (t, t0) = Wn +O(e−(WNop+1−Wn)t), n = 1, . . . , Nop. (2.66)

We see that one can reliably extract the eigenenergies n for which (WNop+1 −
Wn)Lt � 1, a condition typically satisfied at least for the first few eigenstates n� Nop.
The variational method is therefore an efficient method to extract the spectrum from
lattice simulations. It is the method used in most modern computations, with a number
of operators Nop which can be very large for high-precision calculations.

3 Even then, the variational method is still more numerically stable than the naive method. Consider
e.g. equation (2.62) when C and C′ have some uncertainty and the ground state contribution is not
exactly cancelled.



Chapter 3

Two-particle channels

Free theories are trivial and physics really becomes interesting when interactions
come into play. However, any physical process involving interactions is the result
of an infinity of more or less important contributions and cannot be treated exactly.
Scattering theory is a framework to study simplified interacting processes in a way
which is amenable to calculations. It assumes an initial state in the “distant past”
t = −∞ consisting of a set of free objects (particles, waves, classical bodies) and a final
state in the “distant future” t = +∞ consisting of a possibly different set of free objects.
At intermediate times, these objects can interact according to a predetermined theory.

Most of what we know about the microscopic world is based on the study of such
scattering processes. Indeed, since a microscopic object cannot be observed directly, a
standard method of observation is to probe this object by sending other objects with
known properties to interact with it. The analysis of the change in the properties of
the probing objects after interaction will provide insight on the scatterer. Alternatively,
a theory such as the Standard Model can be (and has been extensively) tested by
comparing its predictions for scattering processes to experimental data.

Scattering theory has a long history and while it may involve different mathematical
formalisms in classical physics, quantum mechanics and quantum field theories, it is
enlightening to consider their similarities and the evolution between them. We will
therefore start this chapter by introducing these three mathematical formalisms, with
a focus on two-body processes.

The following of the chapter is dedicated to the study of two-particle scattering
processes in quantum field theory using lattice simulations. The Standard Model has
encountered great success for its prediction of scattering processes using perturbative
approaches. However, many processes such as nucleon-nucleon scattering must be
treated in a non-perturbative approach, for which lattice simulations are the only
known candidates. We will therefore present the finite size formula and the HAL QCD
method which are currently the two main concepts to study two-body processes from
lattice simulations of quantum field theory.

3.1 Scattering theory

3.1.1 Classical mechanics

In classical mechanics, the simplest scattering process is that of two bodies interacting
through a central conservative force assumed to vanish at infinite distances. Let m1
and m2 be the masses of the scattering bodies and V (r) be the potential associated
with the interaction, r being the distance between the two bodies. As is well-known,
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Figure 3.1: Impact parameter b and scattering angle θ in classical mechanics.

such a classical two-body problem can be reduced to the scattering of a body of mass
µ = m1m2

m1+m2
, the reduced mass of the original system, off a stationary body at the origin

with an interaction given by the same potential V .
At t = −∞, the two bodies are infinitely distant and thus the non-stationary body

moves freely along a straight line with a speed v∞. The distance b (see fig. 3.1) between
this line and the origin, i.e. the shortest distance that the two bodies would reach
in the absence of interaction, is called the impact parameter. Assuming they do not
form a bound state, the two bodies at t = +∞ are again infinitely distant and the
non-stationary body moves freely with the same speed v∞ (by energy conservation)
along a straight line making an angle θ (see fig. 3.1) with the initial one in the plane
containing the origin (movements in central potentials being planar). The angle θ is
called the scattering angle. Note that it is also the angle between the incoming and
outgoing directions of each body in the initial two-body problem.

By conservation of the total classical energy E = 1
2µv

2
∞, one can show that the

scattering angle is related to the impact parameter by

θ(b) = π − 2
∫ ∞
rmin

dr
1√

1− b2/r2 − V (r)/E
b

r2 (3.1)

where rmin, the shortest distance between the two bodies in the presence of interaction,
solves

1− b2/r2
min − V (rmin)/E = 0. (3.2)

In order to have a scattering angle in the range [θ, θ + dθ], corresponding to a
solid angle dΩ = 2π sin θ dθ by rotational symmetry, the moving particle must pass
at t = −∞ through an annulus of cross-sectional area dΣ = 2πb(θ) db(θ). Here, the
function b(θ) can be obtained by inverting (3.1). The differential scattering cross-section
is then defined as

σ(Ω) ≡ dΣ
dΩ = b

sin θ

∣∣∣∣dbdθ
∣∣∣∣ (3.3)

and the total scattering cross-section as its integral over all solid angles

σtot =
∫
dΩ σ(Ω). (3.4)

The cross-section has the following interpretation. Imagine that the scattering
process is repeated a large number of times, at the same energy but with an uniform
distribution for the initial direction of the incident body in the plane perpendicular to
the line b = 0. Then, the probability distribution for the solid angle Ω of the outgoing
line at t = +∞ is given by σ(Ω)/σtot. Alternatively, if incident bodies come in a uniform
beam parallel to the line b = 0 with intensity I, the number of outgoing bodies scattered
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at a solid angle dΩ per unit of time will be Iσ(Ω)dΩ. The latter interpretation shows
how the differential scattering cross-section can be directly measured experimentally.
It is actually the main quantity of interest in many scattering experiments because the
initial state of incoming particles is not precisely known so that sending a large number
in an approximately uniform beam can mitigate this uncertainty.

3.1.2 Quantum mechanics

Two-particle states

Before discussing the formulation of scattering theory in quantum mechanics we will
first consider the structure of a general two-particle state. The state with a well-defined
energy E of two particles at positions x and y in their center-of-mass frame is described
by a wave function of the form Ψ(x,y, t) = ψ(r)e−iEt where r = x − y. The wave
function ψ is a solution of the time-independent Schrödinger equation

Hψ = Eψ. (3.5)

We take the Hamilton operator to be

H = − 1
2µ∆ + V (r), r = |r| (3.6)

where ∆ is the Laplacian with respect to r and the potential is assumed to have a
finite range R for simplicity, i.e. V (r) = 0 for r > R. For rapidly-decaying potentials,
this is a good approximation. The wave function can be expanded on the spherical
harmonics basis as

ψ(r) =
∞∑
l=0

l∑
m=−l

Ylm(r̂)ψlm(r), r = r r̂1 (3.7)

where the partial waves ψlm(r) are solutions of the radial Schrödinger equation[
d2

dr2 + 2
r

d

dr
− l(l + 1)

r2 + k2 − 2µV (r)
]
ψlm(r) = 0. (3.8)

with k2 = 2µE. This equation has only one solution ul(r; k) which is bounded near the
origin and there exist some constants blm such that ψlm(r) = blmul(r; k). Furthermore,
in the region r > R this equation reduces to the radial Helmoltz equation for which
the two linearly independent solutions are known to be the spherical Bessel functions
jl and nl. We deduce that there are constants αl(k) and βl(k) such that

ul(r; k) = αl(k)jl(kr) + βl(k)nl(kr), r > R. (3.9)

The asymptotic behavior of ul(r) at large r is thus given by

ul(r; k) ∼ 1
kr

[
αl(k) sin(kr − lπ2 )− βl(k) cos(kr − lπ2 )

]
. (3.10)

Define the scattering phase shifts δl(k) by

e2iδl(k) = αl(k)− iβl(k)
αl(k) + iβl(k) . (3.11)

1 In general, we will use the notation r = r r̂ where r is the norm of r and r̂ its angular part.
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which is well-defined since the right-hand side has modulus 1 for real αl(k) and βl(k).
The asymptotic behavior of the partial waves at large r are then

ψlm(r) ∼ Clm
sin(kr − lπ2 + δl(k))

kr
. (3.12)

where the constants Clm = blm αl(k)/ cos δl(k) may be fixed by appropriate boundary
conditions.

Scattering processes

Equation (3.12) shows that wave function for two particles interacting through a po-
tential V (r) is determined at large relative distances only by the scattering phase shifts
δl(k). We will now discuss the consequences of this result for scattering experiments.

As we have seen in the classical case, a typical scattering experiment consists in
directing a uniform beam of particles with momentum k and mass µ towards a target
and measuring the distribution of the outgoing flux as a function of the scattering
angle. Assuming that there is no interaction between the incoming particles and that
the scattering is elastic, i.e. the particle content is not modified by the interaction, we
only need to consider the system made of one incoming particle and the target. The
previous discussion showed that it may be represented by a wave function ψ(r) with a
large-r behavior satisfying (3.12) with k = |k|. Taking k in the direction of the z-axis,
the rotational symmetry of the system enforces Clm = Clδm0.

The incoming particle has definite momentum k so that it can be represented by a
plane wave

ψin(r) ≡ eik·r =
∞∑
l=0

Dl jl(kr)Yl0(r̂) (3.13)

with Dl = il
√

4π(2l + 1). At large r, the wave function ψ is thus the superposition of
the incoming wave function ψin and a scattering wave function ψsc ≡ ψ − ψin which
has an asymptotic behavior

ψsc(r) ∼ eikr

kr

[ ∞∑
l=0

Cle
iδl(k) −Dl

2i1+l Yl0(r̂)
]
− e−ikr

kr

[ ∞∑
l=0

Cle
−iδl(k) −Dl

2i1−l Yl0(r̂)
]
. (3.14)

Since the scattering wave function must propagate from the origin outward, we require
the second term in e−ikr to vanish. This effectively fixes the constants Cl to Cl =
eiδl(k)Dl, i.e. the asymptotic partial waves in the presence of interaction are obtained
from the incoming (free) ones by a simple phase shift of δl(k). The total wave function
then reads at large r as

ψ(r) ∼ eik·r + f(r̂)e
ikr

k
(3.15)

with the scattering amplitude

f(r̂) = 2π1/2
∞∑
l=0

√
2l + 1eiδl(k) sin δl(k)Yl0(r̂). (3.16)

The non-oscillating part of the asymptotic flux is given by

j ≡ −i2µ (ψ∗∇ψ − ψ∇ψ∗) ∼ k
µ

+ k

µ

|f(r̂)|2

r2 r̂ +O(r−3). (3.17)
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This is the flux per unit area and the flux per unit solid angle is obtained as r2j · r̂. We
deduce that the differential scattering cross-section, defined similarly as in the classical
case as the ratio of the scattered flux in a certain solid angle to the total incoming flux
is given by

σ(r̂) = |f(r̂)|2. (3.18)

The total scattering cross-section is then directly found to be

σtot = 4π
k2

∞∑
l=0

(2l + 1) sin2 δl(k). (3.19)

Low-energy limit

We once again assume that the potential vanishes or becomes negligible beyond some
radius R. Defining the logarithmic derivative of the solution ul

γ(r; k) = 1
ul(r; k)

d

dr
ul(r; k). (3.20)

one can show from (3.9) and (3.11) that the following equality holds for any r ≥ R,

tan δl(k) = kj′l(kr)− γ(r; k)jl(kr)
kn′l(kr)− γ(r; k)nl(kr)

. (3.21)

At low energies, in the sense that momenta k are such that kR� 1, one can plug the
asymptotic behavior of the spherical Bessel functions in the above equality evaluated
at r = R+ to get

tan δl(k) ∼
k→0

(l + 1)−Rγ(R+; 0)
l +Rγ(R+; 0)

(kR)2l+1

(2l + 1)!!(2l − 1)!! ∝ (kR)2l+1. (3.22)

This shows that at low energies, the phase shifts are exponentially suppressed in l.
Therefore, it is often sufficient to only consider the scattering of the s-wave (l = 0). For
the s-wave, the phase shift at low energies can be parameterized as

k cot δ0(k) = − 1
a0

+ 1
2r0k

2 +O(k4) (3.23)

where a0 is called the scattering length and r0 the effective range of the interaction.
The scattering length can be interpreted geometrically by noting that for r > R the
l = 0 radial wave function for the scattering process discussed previously is

ψ00(r) =
√

4πeiδ0(k) sin(kr + δ0(k))
kr

∼
k→0

√
4π
(

1− a0
r

)
. (3.24)

Therefore, in the region where r > R and kr � 1, rψ00(r) is simply a line and a0
is the point at which it changes sign when extrapolated to any value of r. While it
depends on the specifics of the potential, a negative scattering length a0 < 0 is thus
characteristic of a weakly attractive potential which do not support bound states while
a0 > 0 may result from a repulsive potential or an attractive potential supporting a
shallow bound state. Furthermore, the scattering cross-section in the low-energy limit
is simply obtained from the scattering length as

σtot ∼
k→0

4πa2
0. (3.25)
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3.1.3 Quantum field theory

Many of the concepts of scattering theory in quantum mechanics have equivalent in
quantum field theory. In this subsection, we will only treat the simpler case of a
quantum field φ(x) describing a scalar particle of mass m, i.e. the same context as in
section 2.1 so that we use consistent notations. We will treat the theory in Minkowski
space to account for real-time processes.

LSZ formalism

To study scattering processes in quantum field theory, we need to define “in” and “out”
states. These states represent a certain number of particles, propagating freely in a
“distant” past or future. The first step is to define some new fields φin(x) and φout(x)
through the Yang-Feldman equations

√
Zφin(out)(x) ≡ φ(x)−

∫
d4y∆ret(adv)(x− y)j(y), (3.26)

where ∆ret(adv)(x−y) is the retarded (advanced) Green’s function for the Klein–Gordon
operator ∂µ∂µ +m2 and the source is j(y) = (∂µ∂µ +m2)φ(y). The in and out fields
thus created are free scalar fields as can be seen from

(∂µ∂µ +m2)φin(out)(x) = 0. (3.27)

They can therefore be expanded on plane waves

φin(out)(x) =
∫
d̃k
[
e−ik·xain(out)(k) + eik·xa†in(out)(k)

]
k0=ωk

, (3.28)

where the Lorentz-invariant measure is defined as

d̃k ≡ d3k

(2π)32ωk
, (3.29)

with ωk =
√
m2 + k2. The normalization constant

√
Z in (3.26) is chosen such that

the creation and annihilation operators for the in field a(†)
in satisfy the canonical com-

mutation relations2. These operators can be recovered from the fields using

ain(out)(k) = i

∫
d3x eikx

↔
∂0 φin(out)(x), (3.30)

where the right-hand side is independent of x0 and f
↔
∂0 g = f(∂0g)− (∂0f)g.

The “in” and “out” states discussed previously are then simply defined using the
creation operators of the in and out fields. For example, the incoming and outgoing
states of n particles with momenta ki are

|k1, . . . ,kn in(out)〉 =
n∏
i=1

a†in(out)(ki)|0〉. (3.31)

They are orthonormal when using the measure d̃k for momentum integration.
Since Sret(x − y) = 0 for xy < y0, it seems that the integral in (3.26) will vanish

and φ(x) approach
√
Zφin(x) as x0 → −∞, with a similar situation for the out field as

2 The creation and annihilation operators for the out field will then also satisfy these relations.
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x0 → +∞. This is not exact but a rigorous statement of this idea is that for any two
normalizable states |α〉, |β〉 and any on-shell momentum k, the following limits hold

lim
x0→−∞(+∞)

∫
d3x 〈α|eik·x

↔
∂0 φ(x)|β〉 =

√
Z

∫
d3x 〈α|eik·x

↔
∂0 φin(out)(x)|β〉. (3.32)

Combining (3.30) and (3.32), we can compute any matrix element between in and
out states from correlation functions of the field φ(x). In particular, one can obtain
the LSZ reduction formula (named after Lehmann, Symanzik and Zimmermann) for
scalar fields

〈p1, . . . ,pm out|q1, . . . , qn in〉 =
(

i√
Z

)m+n ∫ m∏
i=1

[
d4xi e

−ipi·xi(∂2
xi +m2)

]
×

n∏
j=1

[
d4yj e

iqj ·yj (∂2
yj +m2)

]
〈0|Tφ(x1) · · ·φ(xm)φ(y1) · · ·φ(yn)|0〉. (3.33)

where pi = (ωpi ,pi) and ∂2
xi is the d’Alembert operator ∂µ∂µ acting on the coordinate

xi.

S-matrix

The S-matrix S is defined as the operator which links the bases made by the “in” and
the “out” states

Sαβ ≡ 〈β out|α in〉 so that |α in〉 =
∑
β

Sαβ|β out〉 (3.34)

where α and β denote the details of the states, i.e. the number of particles and their
momenta. The sum is over all possible states (discrete for the number of particles and
continuous with measure d̃k for the momenta). We make the conservation of total
energy-momentum explicit by writing the matrix elements as

Sαβ = (2π)4δ(Win −Wout)δ(Pin − Pout)S(β|α) (3.35)

where Win(out) and Pin(out) are the total energy and momentum of the incoming (out-
going) particles described by α (β).

To ensure conservation of probability, the S-matrix must be an unitary operator.
Consider two incoming particles, the unitarity condition is then given by

(2π)4δ(p̃′ + q̃′ − p̃− q̃)
∑
n

∫ n∏
i=1

d̃ki (2π)4δ
(
p̃+ q̃ −∑n

i=1k̃i)
)

S(k1, . . .kn|p′, q′)∗S(k1, . . .kn|p, q) = (2π)62ωp2ωqδ(p− p′)δ(q − q′) (3.36)

with the shorthand p̃ = (ωp,p), etc. for on-shell 4-momenta. The sum is over all
possible numbers n of outgoing particles and all momenta for these particles. If the
energy is below the inelastic threshold, i.e. the lowest energy which can support more
than two on-shell particles, only terms with n = 2 contribute to the sum. Furthermore,
the condition in the center-of-mass frame is simplified to

δ(p′ − p)
32π

∫
dk̂ S(k,−k|p′,−p′)∗S(k,−k|p,−p) = (2π)3(2ωp)2δ(p′ − p) (3.37)
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where k = p k̂. The Dirac delta function on the right-hand side can be expanded on
the spherical harmonics as

δ(p′ − p) = δ(p′ − p)
p2

∞∑
l=0

l∑
m=−l

Y ∗lm(p̂′)Ylm(p̂) (3.38)

The two previous equations, combined with the spherical symmetry of the interaction,
lead to the following expansion of the S-matrix elements in the center-of-mass frame
under the inelastic threshold

S(p′,−p′|p,−p) = 16π2W

p

∞∑
l=0

l∑
m=−l

e2iδl(p)Y ∗lm(p̂′)Ylm(p̂) (3.39)

where p′ = p and W = 2ωp is the total energy. The norms of the coefficients in the
expansion are fixed by unitarity as we have seen but their phases depend on the specifics
of the interaction and are conventionally chosen as 2δl(p), which effectively defines the
scattering phase shifts in scalar quantum field theory.

An important remark is that we assumed the two incoming particles to be distin-
guishable, which requires some internal degree of freedom such as isospin in the current
context. If the particles are not distinguishable, the right-hand side of (3.36) has four
terms and the S-matrix elements get a multiplicative factor of 2.

Cross-section

To separate the effect of the interaction from the free propagation, it useful to introduce
the T-matrix defined by S = 1 + iT . With the same context and notations as for
equation (3.39), we get for the T-matrix elements

T (p,−p|pz,−pz) = 16π3/2W

p

∞∑
l=0

√
2l + 1eiδl(p) sin δl(p)Yl0(p̂) (3.40)

where |p| = |pz| = p, pz is along the z-axis and the remark about distinguishability
of the particles still applies. By rotations and Lorentz boosts, this expression can be
generalized to any frame and incoming momenta.

Note the similarity of (3.40) with the expression (3.16) of the scattering amplitude
f(r̂) in quantum mechanics (QM). It is then possible to define the cross-section in
quantum field theory with similar arguments as we have done in QM. For the purpose
of this thesis, it suffices to say that the interaction-dependent part of the differential
cross section is given by the squared modulus of the T-matrix elements (cf. (3.18) for
the analogous expression in the QM). In the context of two-particle elastic scattering,
we have shown that it is once again completely determined by the knowledge of the
scattering phase shifts δl(p).

3.2 Finite-size method

We have reviewed the mathematical framework to describe scattering processes from
classical mechanics to quantum field theory. In the case of the elastic scattering of
two particles, two incoming particles propagate freely in the distant past, interact at
intermediate times and propagate freely again in the distant future. The discrepancy
between the incoming and outgoing states can be completely characterized by the
scattering phase shifts. The phase shifts can be measured experimentally and linked to
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the theoretical description of the interaction (the potential for classical and quantum
mechanics, the correlation functions for quantum field theory via the LSZ reduction
formula). One can thus test a theory or make useful predictions for real-world events.

In the context of quantum field theory, we have seen in chapter 2 that the Euclidean
correlation functions can be computed using lattice techniques. However, the explicit
expression of the S-matrix provided by the LSZ reduction formula involves correlation
functions in Minkowski space. Since the analytic continuation to Minkowski space of
the correlation functions computed on the lattice is ill-defined, we need another way
to extract the S-matrix.

We know from section 2.3 that the energy spectrum can be extracted from lattice
inputs. Lattice calculations are performed for a finite volume so that the spectrum
is discrete and varies with the volume. A remarkable result is that the two-particle
energy spectrum of a theory in finite volume is directly related to the scattering phase
shifts of this theory in infinite volume at the corresponding energies. The idea is that
the boundary conditions restrict the spectrum in final volume in a way which can
be worked out analytically with an explicit dependence on the scattering phase shifts.
This relation was first derived by Martin Lüscher and is since known as the finite-size
formula, Lüscher’s formula or the Lellouch-Lüscher formula. It is valid if the lattice
extent is larger than twice the effective range of the interaction.

The formula was first proven by Lüscher for a system of two scalar particles of identi-
cal massm with zero total momentum in a finite box with periodic boundary conditions.
Since then, it has been expanded to “moving” frames [21] (systems with non-zero total
momentum), asymmetric lattices [22], twisted boundary conditions [23], particles with
arbitrary spins [24], arbitrary number of coupled two-particle channels [25], systems
with more than two particles [26], etc.

Given the finite-size formula, the strategy to study two-particle channels on the
lattice is the following. Using the variational method described in section 2.3.2, one can
extract the lower part of the energy spectrum from lattice simulations. This spectrum
corresponds to the spectrum of the theory in a finite box up to corrections due to the
non-zero lattice spacing. After taking the continuum limit at fixed volume, one uses
the finite-size formula to relate the obtained spectrum to the scattering phase shifts
of the theory in infinite-volume at these energies. This approach will be refered to as
the finite-volume method. To obtain the phase shifts at different energies, one can then
repeat the process with a different volume or a different total momentum.

In this section, we will follow Lüscher’s original derivation [8, 9, 27] of the finite-size
formula. The first part is to prove the formula for a quantum mechanical system where
the wave function satisfies the Schrödinger equation. The second part is to show that
an effective Schrödinger equation can be derived in quantum field theory so that the
result is still valid.

3.2.1 Two-particle states on a torus

We have discussed at the beginning of subsection 3.1.2 the structure of the wave
function ψ(r) describing a quantum mechanical system of two scalar particles of mass
m in infinite volume in the center-of-mass frame. We keep the same notations and,
as previously, we assume that the interaction between the particles derives from a
sperically symmetric potential V (r) with final extent R, i.e. V (r) = 0 for r > R.
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Boundary conditions

In infinite volume, we have found that the partial waves ψlm(r) defined by (3.7) are
solutions of the radial Schrödinger equation (3.8). In the region r > R, the potential
vanishes and the partial waves are linear combinations of the spherical Bessel functions:

ψlm(r) = blm [αl(k)jl(kr) + βl(k)nl(kr)] , (3.41)

for some constants blm and where the energy-dependent functions αl(k) and βl(k) are
related to the phase shifts by (3.11). Remember that k is related to the energy E by
k2 = 2µE.

Now, consider the same system in a finite cubic box of size L×L×L with periodic
boundary conditions. The wave function is periodic, ψ(r) = ψ(r+nL) for any n ∈ Z3,
and the interaction is described by the periodic potential

VL(r) =
∑
n∈Z3

V (|r + nL|). (3.42)

The problem is greatly simplified if R < L/2, which we will assume from now on.
Indeed, for r < L/2 the potential is simply VL(r) = V (r) so that the partial waves
ψlm(r) satisfy the same radial Schrödinger equation as in the infinite volume. Therefore,
the relation (3.41) still holds in the region R < r < L/2 for some constants blm possibly
different from that of the infinite-volume partial waves. For R < L/2, the finite-volume
wave functions are therefore directly related to the scattering phase shifts.

We will now see how the periodic boundary conditions constrain the solutions of
the Schrödinger equation and thus the energy spectrum. The potential VL(r) vanishes
if |r + nL| > R for any n ∈ Z. In this exterior region, the wave function satisfy the
Helmoltz equation

(∆ + k2)ψ(r) = 0. (3.43)

Ref. [9] studied in detail the periodic solutions to this equation. By Fourier transform,
the momenta for periodic solutions take value in the lattice

Λ =
{

2π
L n ∈ R3

∣∣∣ n ∈ Z3
}
. (3.44)

A technical issue arises if an energy in finite volume is such that the associated k is
exactly the norm of some element of Λ. These energies must be treated separately
and we refer to ref. [9] for details. However, this case should be anecdotal in practice
because Λ is discrete so in the following we will assume that k is “regular”, meaning
that it is not the norm of any element of Λ. It is then straightforward to see that the
function

G(r; k2) = 1
L3

∑
p∈Λ

eip·r

p2 − k2 (3.45)

is well-defined and is a periodic solution of the Helmoltz equation. Further solutions
can be defined by differentiation. A convenient choice is

Glm(r; k2) = Ylm(∇)G(r; k2) (3.46)

with the harmonic polynomials defined by

Ylm(r) = rlYlm(r̂). (3.47)
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It can be shown that the functions Glm(r; k2) are linearly independent by looking at
their behavior around r = 0. Furthermore, on the set of periodic solutions of the
Helmoltz equation of order ν, i.e. the solutions ψ such that rν+1ψ(r) = O(1) near the
origin r = 0, the functions Glm(r; k2) with l ≤ ν are complete and therefore form a
basis.

The trick is then to put an angular momentum cutoff ν on the interaction, i.e.
consider the system where the interaction is described by an operator V̂ν such that

V̂νψ(r) = V (r)
ν∑
l=0

l∑
m=−l

Ylm(r̂)ψlm(r). (3.48)

Obviously the original system is recovered as ν → ∞. At finite ν however, the wave
functions of the Hamiltonian eigenstates are guaranteed to be of order order ν and
therefore can be expanded in the exterior region as

ψ(r) =
ν∑
l=0

l∑
m=−l

vlmGlm(r; k2) (3.49)

for some coefficients vlm. To write this in terms of partial waves, we need the spherical
harmonics expansion of the functions Glm(r; k2). It is given for r < L/2 by

Glm(r; k2) = (−1)l

4π kl+1

Ylm(r)nl(kr) +
∞∑
l′=0

l′∑
m′=−l′

Mlm,l′m′Yl′m′(r)jl′(kr)

 . (3.50)

An explicit expression for the elements of the matrixM is given in equation (3.34) of
ref. [9]. We then find for l ≤ ν and R < r < L/2 that the partial waves are given by

ψlm(r) =
[
vlm

(−1)l

4π kl+1
]
nl(kr) +

 ν∑
l′=0

l′∑
m′=−l′

vl′m′
(−1)l′

4π kl
′+1Ml′m′,lm

 jl(kr).
(3.51)

On the other hand, the partials waves ψlm(r) for l ≤ ν still satisfy the same radial
Schrödinger equation after the introduction of the angular momentum cutoff. Therefore,
the expression (3.41) in terms of the phase shifts still holds for l ≤ ν and R < r < L/2.

Quantization condition

The previous discussion provides some understanding of the structure of the wave
functions of two particles in finite volume. If the interaction range R is smaller than L/2
there is a spherically symmetric region R < r < L/2 where the wave function describes
a free propagation. Equation (3.41) shows that the resulting wave function is completely
determined by (i) a set of constants depending on the boundary conditions and (ii)
the scattering phase shifts. In both finite and infinite volume, the boundary condition
at r = R+ encodes the effect of the interaction in the interior region r r < R. In finite
volume however, the periodic boundary conditions enforce an additional constraint
given by (3.51). While the two-particle spectrum in infinite volume is continuous, the
two constraints in finite volume are only compatible for a certain set of values of k. This
implies that the finite-volume spectrum is discrete but also that it is directly related
to the scattering phase shifts.

Consider Hν the Hilbert space of complex vectors v with components vlm where
l = 0, . . . ν and m = −l, . . . , l. These vectors will represent the finite number of degrees
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l P AP1 AP2 EP TP1 TP2
0 + 1 0 0 0 0
1 − 0 0 0 1 0
2 + 0 0 1 0 1
3 − 0 1 0 1 1
4 + 1 0 1 1 1
5 − 0 0 1 2 1
6 + 1 1 1 1 2

Table 3.1: Multiplicitiy N(Γ, l) of the irreducible representation Γ = A+
1 , . . . of the

cubic group in the decomposition of the representation ρl for the first few
angular momenta l.

of freedom of the wave function ψ in the exterior region in the presence of the cutoff ν.
Define the linear operators A, B and M acting on Hν by

[Av]lm = αl(k)vlm, [Bv]lm = βl(k)vlm, [Mv]lm =
ν∑

l′=0

l′∑
m′=−l′

Mlm,l′m′vl′m′ . (3.52)

Then, the two constraints (3.41) and (3.51) can be simply written in Hν as

det[A−BM ] = 0. (3.53)

Using the definition (3.11), we can make the phase shifts dependence explicit with

det[e2iδ − U ] = 0, U = (M + i)/(M − i), (3.54)

where e2iδ is diagonal with elements e2iδl(k) and matrix U can be shown to be well-
defined.

The long-awaited finite-size formula is given by (3.54) as the momentum cutoff ν
is driven to infinity. It characterizes the energies which are possible in finite volume
thanks to the compatibility of the two boundary conditions discussed previously. Note
that it involves the determinant of an infinite matrix as ν →∞. However, the scattering
phase shifts can often be neglected above some value of the angular momentum so
that keeping ν finite leads to a good approximation. Furthermore, we can use the
symmetries of the finite-volume system to simplify this formula.

Cubic symmetry

In infinite volume, the two-particle system is spherically symmetric, meaning that it
is invariant under the action of all the rotations R in SO(3). In a finite cubic box,
the system is only invariant under a finite set of 24 rotations forming the octahedral
symmetry group O. Combining rotations with reflections, the finite-size system is
invariant under the achiral octahedral symmetry group Oh, or cubic group, which
contains 48 transformations. The group O has 5 irreducible representations A1, A2, E,
T1 and T2 with respective dimensions 1, 1, 2, 3 and 3. The cubic group Oh has twice
as many, obtained from those of O using the tensor product with the two irreducible
representations of the parity operator and therefore denoted as A+

1 , A
−
1 , etc.

Under the action of an element R of O(3), the spherical harmonics transform as

Ylm(Rr̂) =
l∑

m′=−l
D

(l)
mm′(R)Ylm′(r), (3.55)
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where D(l)(R) are the Wigner D-matrices. For any R ∈ O(3), we can define the
operators D(R) and Dl(R) in Hν with elements

[D(R)]lm,l′m′ = δll′D
(l)
mm′(R), [Dl(R)]l′m′,l′′m′′ = δll′δll′′D

(l)
m′m′′(R) (3.56)

Using (3.55), it is easy to see that ρ : R ∈ Oh 7→ D(R) and ρl : R ∈ Oh 7→ Dl(R) form
representations of Oh on Hν . Furthermore, these representations have the following
decompositions

ρ =
ν⊕
l=0

ρl, ρl =
⊕

Γ
N(Γ, l) Γ, (3.57)

where the second direct sum runs over the irreducible representations Γ (of respective
dimensions dΓ) of the cubic group Γ = A+

1 , . . . and N(Γ, l) denotes the multiplicity of
Γ in ρl. Table 3.1 summarizes the values of these multiplicities for the first few angular
momenta. This decomposition of ρ ensures the existence of an orthonormal basis

|Γ, α; l, n〉, Γ ∈ {A+
1 , . . . }, α ∈ {1, . . . , dΓ}, l ∈ {0, . . . , ν}, n ∈ {1, . . . , N(Γ, l)},

(3.58)
which transforms under the action of the cubic group as (Γ, α).

It can be shown using the explicit expression of the elements Mlm,l′m′ that the
operator M in Hν commutes with all the matrices D(R) for R in the cubic group Oh.
The application of Schur’s lemma then implies that the operator M is block-diagonal
in the basis |Γ, α; l, n〉 with identitical blocks for each occurrence of a representation Γ,
i.e.

〈Γ, α; l, n|M |Γ′, α′; l′, n′〉 = δΓΓ′δαα′M(Γ)ln,l′n′ . (3.59)

The elements of the matricesM(Γ) are given in appendix E of ref. [9] for l, l′ ≤ 4.
Consider HΓα

ν the subspace of Hν spanned by |Γ, α; l, n〉 at fixed (Γ, α). We can
define the operators M(Γ) and e2iδ acting on HΓα

ν by

[e2iδv]ln = e2iδl(k)vln, [M(Γ)v]ln =
ν∑

l′=0

N(Γ,l′)∑
n′=1

M(Γ)ln,l′n′vl′n′ , (3.60)

for any v in HΓα
ν .

In the basis |Γ, α; l, n〉, we have seen that the operator M is block-diagonal. There-
fore, the determinant in (3.54) becomes a product of determinants and for it to be zero,
there must be at least one irreducible representation Γ such that

det[e2iδ −M(Γ)] = 0, U(Γ) = (M(Γ) + i)/(M(Γ)− i). (3.61)

The discussion in this subsection implies that the finite-size spectrum can be sepa-
rated in 10 sets of eigenenergies, one for each irreducible representation Γ of the cubic
group. In lattice simulations, it is advantageous to use operators which only couple
with eigenstates in a certain channel (Γ, α). In this case, all the eigenergies satisfy
the condition (3.61) for this Γ. As an example, consider Γ = A+

1 . The original condi-
tion (3.54) involves the scattering phase shifts for any angular momentum l ≥ 0 while
the reduced condition (3.61) only involves those for angular momenta l = 0, l = 4,
etc. (see table 3.1). Neglecting the phase shifts for l ≥ 4 (which is often a very good
approximation), the reduced condition simply reads

cot δ0(k) = 1
π3/2q

Z00(1; q2), q = kL

2π (3.62)
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because the determinant is that of a 1× 1 matrix. The zeta function appearing above
is defined for Re s > 3/2 by

Z00(s; q2) = 1√
4π

∑
n∈Z3

1
(n2 − q2)s (3.63)

and by analytic continuation otherwise.

3.2.2 Potential in QFT

Following ref. [8], we will now present an argument proving that the quantization
conditions derived previously still hold in quantum field theory, up to corrections
exponentially small in the size of the box. Once again, we consider the quantum field
theory of a field φ(x) describing a scalar particle of mass m.

Instead of wave functions as in quantum mechanics, the basic objects in QFT will
be the connected Euclidean correlation functions3 〈φ(x1) · · ·φ(xn)〉C defined in (2.12).
The full Euclidean propagator is defined as

G(p) =
∫
d4xe−ip·x〈φ(x)φ(0)〉C (3.64)

and we assume that the field φ is normalized so that the propagator has a pole with
unit residue on the mass shell

G(p)−1 = m2 + p2 − Σ(p), Σ(p)
∣∣∣
p2=−m2

= ∂

∂pµ
Σ(p)

∣∣∣
p2=−m2

= 0. (3.65)

The full-propagator-amputated connected correlation function G(p1, . . . , pn) is defined
by

〈φ(x1) · · ·φ(xn)〉C =
∫

d4p1
(2π)4 · · ·

d4pn
(2π)4 e

i(p1·x1+···+pn·xn)

· (2π)4δ(p1 + · · · pn)G(p1) · · ·G(pn)G(p1, . . . , pn). (3.66)

As seen in section 2.1.1, the correlation functions in Minkowski space can be
recovered from the Euclidean ones by a Wick rotation. Combining this with the LSZ
reduction formula (3.33), we obtain an expression for the two-particle T-matrix element
introduced in section 3.1.3 as

T (p′, q′|p, q) = lim
ε→0+

G(p′, q′,−p,−q), (3.67)

with the Euclidean 4-vectors p = (p, iωp − ε), p′ = (p′, iωp′ − ε), etc.

Connected 4-point function

We are interested in the properties of the connected 4-point function G(p1, p2, p3, p4)
in the center-of-mass frame which is related to the scattering phase shifts throught
the T-matrix by (3.67) and (3.40). To this purpose, we introduce the following usual
notations for two-particle channels

p1 = 1
2P + p′, p2 = 1

2P − p
′,

p3 = −(1
2P + p), p4 = −(1

2P − p),
(3.68)

3 From now on, we omit the hat on the field operator φ(x) and other operators since there is no
confusion with the classical fields introduced for the path integral.
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where we enforced the conservation of total momentum. In the center-of-mass frame,
we note the Euclidean total momentum as P = (0, iW ), which corresponds to a total
energy of W after performing the Wick rotation. Assuming that there are neither
bound states nor additional stable particles, the inelastic threshold is at Wth = 4m
where 4 on-shell particles can be created. We will consider the structure of the 4-point
function for energies in the strip 0 ≤ ReW < 4m, or elastic energy region.

An important tool for the study of two-particle states is the Bethe-Salpeter kernel
BS(p1, p2, p3, p4). It is defined as the sum of all the Feynman diagrams contributing
to G(p1, p2, p3, p4) wich are two-particle irreducible in the (p1, p2)-channel. With the
shorthands

K(p′, p) = BS(p1, p2, p3, p4), (3.69)
G4(p′, p) = G(p1, p2, p3, p4), (3.70)

G2(k) = G(1
2P + k)G(1

2P − k), (3.71)

the 4-point function G4 and the Bethe-Salpeter (BS) kernel K are related through

G4(p′, p) = K(p′, p) + 1
2

∫
d4k

(2π)4K(p′, k)G2(k)G4(k, p). (3.72)

In ref. [8], Lüscher studied in detail the regularity of the propagator G2 and the BS
kernel K in the elastic energy region. He proved that the kernel K(p′, p) is analytic in
the domain

|ReW | < 4m, |Im p′4| < m, |Im p4| < m, (3.73)
and that the singularities of the propagator G2 are such that for any function f(p4)
analytic in the strip |Im p4| < m, the integral

Ik(W ) =
∫
dk4
2π f(k4)G2(k), (3.74)

where k = (k, k4), extends to an analytic function of W in the region 0 ≤ ReW < 4m
except, if ωk < 2m, at W = 2ωk where it has a simple pole with residue −f(0)/(2ωk)2.
This results motivated the definition of a new kernel K̂ as

K̂(p′, p) = K(p′, p) + 1
2

∫
d4k

(2π)4K(p′, k)
[
G2(k)− 2πδ(k4)h(k)

(2ωk)2(2ωk −W )

]
K̂(k, p), (3.75)

which can be shown to be analytic in the elastic energy region if h is any function such
that h(k) = 1 at W = 2ωk < 4m. This regularity is obtained because the singularities
of G2 are cancelled in the integral.

In terms of the new kernel K̂, the relation (3.72) reads

G4(p′, p) = K̂(p′, p) + 1
2

∫
k4=0

d3k

(2π)3 K̂(p′, k) h(k)
(2ωk)2(2ωk −W )G4(k, p). (3.76)

In summary, the integral over k4 is performed and the regular part of G2 is incorporated
into K̂ while its singular part is made explicit.

Effective Schrödinger equation

We now provide a completely 3-dimensional formulation of (3.76). For any vector k
with ωk < 2m, define the “wave function”

ψk(r) = (eik·r+e−ik·r)+ lim
ε→0+

∫
d3p

(2π)3
meip·r

p2 − k2 − iε
ρ(p)G4(p, k)ρ(k)

∣∣∣∣∣p4=k4=0
W=2ωk+iε

(3.77)
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using the normalizing function

ρ(p) = 1
4ωp

√
h(p)(2ωp +W )

m
. (3.78)

Similarly, define the “potential”

UE(r′, r) = − lim
ε→0+

∫
d3p′

(2π)3
d3p

(2π)3 e
i(p′·r′−p·r)ρ(p′)K̂(p′, p)ρ(p)

∣∣∣∣∣p′4=p4=0
W=2ωk+iε

. (3.79)

with a subscript E = k2/m denoting explicitly the k2-dependence.
After some algebra, one finds that (3.76) implies

− 1
2µ∆ψk(r) + 1

2

∫
d3r′ UE(r, r′)ψk(r′) = Eψk(r) (3.80)

with µ = m/2.
We have recovered from QFT the Schrödinger equation for the scattering of two

indistinguishible particles in the center-of-mass frame with incoming relative momentum
k and total energy E. Furthermore, using the relation (3.67) between the T-matrix
elements and the 4-point function as well as the expansion (3.40) of the T-matrix
elements in terms of the scattering phase shifts, one can show that the “wave function”
ψk(r) has the same asymptotic behavior as the wave function in quantum mechanics4

The “potential” UE is energy-dependent but this does not matter since the relation
with the phase shifts is valid at fixed energy. With the choice of h(p) = exp[(mE −
p2)/m2], it is analytic in E in the range −m < E < 3m, rotationally invariant, smooth
in r and r′ and decays exponentially in all directions.

Finite volume

We now consider the same quantum field theory in a finite box of size L × L × L
with periodic boundary conditions. In this case, the momenta only take values on
the lattice Λ, see (3.44). The Bethe-Salpeter kernel is thus modified since all the loop
integral appearing in the two-particle irreducible Feynman diagrams become sums over
Λ. Let KL be the finite-volume equivalent of K in finite-volume. Lüscher showed using
graph-theoretical techniques [8] that K −KL decays exponentially in L.

A useful result to relate the finite-volume quantities to the infinite-volume ones is
that

1
L3

∑
p∈Λ

f(p) =
∫

d3p

(2π)3 f(p) +O(L−N ) (3.81)

for any continous and integrable function f which has integrable derivatives up to the
N -th order (N ≥ 1). With this relation, one can exchange all sums for integrals when
the integrand is regular and prove that that the effective Schrödinger equation (3.80)
still holds in finite volume up to corrections decaying faster than any power of L−1.
A more detailed analysis, cf. section 4.3, shows that the corrections actually decay
exponentially in L.

The last difference with the quantum mechanical case is that the potential UE does
not have a finite range, even less one which is smaller than L. A work-around is to

4 The argument is similar to the one for the Bethe-Salpeter wave function which will be discussed
in detail in section 3.3.1.
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multiply UE(r, r′) by a smooth radial function which is equal to 1 for r and r′ smaller
than say .3L and equal to 0 for r and r′ larger than .4L. The resulting “potential”
has the same regularity as UE and but it also has a finite range R = .4L < L/2.
Furthermore, since UE decays exponentially in all directions, we can replace UE by the
finite-ranged potential in the Schrödinger equation and only cause corrections decaying
exponentially in L.

From the above arguments, we deduce that the quantization conditions derived for
the quantum mechanical system are still valid in quantum field theory up to corrections
vanishing exponentially with L.

3.3 HAL QCD method

The finite-size method relies on the ability to extract numerically the lower part of
the spectrum of the theory in finite volume. In practice, the key equation is there-
fore (2.58), which allows to obtain from lattice simulations the energies Wn of the
finite-size Hamiltonian eigenstates |n〉 as well as matrix elements of the type 〈0|O(0)|n〉
where O(0) is an operator involving the field operators of the theory at time t = 0.

In contrast with the finite-size method, the HAL QCD method [10–12] proposes
to extract the scattering phase shifts in infinite volume not from the finite-size energy
spectrum but from some specific matrix elements. Since its inception, it has been
applied to the study of many two-hadron channels (see e.g. [28] for a review) by the
HAL QCD (Hadron to Atomic nuclei from Lattice QCD) collaboration.

3.3.1 Bethe-Salpeter wave function

As previously, we will introduce the method with the example of a quantum field theory
of a field φ(x) describing a scalar particle of mass m, normalized in the same way as
for the previous section. Furthermore, we assume for simplicity the absence of bound
states and resonances.

In the center-of-mass frame, the eigenstates of the Hamiltonian with energies
2m ≤ W < 4m all describe two-particle scattering states. In infinite volume, the
eigenspace corresponding to an energy W in this region is therefore spanned by the
states |k,−k in〉 with W = 2ωk, which we introduced in (3.31). The two incoming
particles will be assumed distinguishable but it is straightforward to extend the results
to indistinguishable particles. In the case of scalar particles, this requires the existence
of internal degree of freedoms which will be kept implicit.

The Bethe-Salpeter (BS) wave function in infinite volume is defined as

ψk(r) = 〈0|φ(0, r2 )φ(0,−r2 )|k,−k in〉, (3.82)

where φ(0, r) is the field operator taken at position r and Minkowski time 0.

Asymptotic behavior

We show in this section how the asymptotic behavior of the BS wave function in infinite
volume can be used to extract the scattering phase shifts [12, 29, 30]. All considerations
in this subsection are made in Minkowski space.

Using the techniques that led to the LSZ reduction formula (3.33), in particular
the explicit expression of the “in” states, we arrive to the following expression of the
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BS wave functions5

ψk(r) = −
∫
d4x d4y ei(ωkx0−k·x)ei(ωky0+k·y)

(∂2
x +m2)(∂2

y +m2) 〈0|Tφ(0, r2 )φ(0,−r2 )φ(x)φ(y)|0〉. (3.83)

Define the proper vertex Γ as the connected time-ordered correlation function in
momentum-space amputated by the free propagator6

〈0|Tφ(x1) · · ·φ(xn)|0〉C = in
∫

d4p1
(2π)4 · · ·

d4pn
(2π)4 e

i(p1·x1+···+pn·xn)

· (2π)4δ(p1 + · · · pn) Γ(p1, . . . , pn)
(p2

1 −m2 + iε) · · · (p2
n −m2 + iε)

. (3.84)

The proper vertex with 4 external particles is related to the T-matrix element by

Γ(p1, p2,−p3,−p4) = iT (p1,p2|p3,p4), (3.85)

in the elastic energy region if all pi are on-shell. Furthermore, we introduce the
shorthand Γ4(p′, p) = Γ(p1, p2, p3, p4), keeping the total momentum P implicit and
using the notations (3.68), more convenient for two-particle channels.

With its explicit expression derived previously, the BS wave function can be related
to the proper vertex by

ψk(r) = eik·r −
∫

d4p

(2π)4 e
ip·r Γ4(p, k̃)

((1
2P + p)2 −m2 + iε)((1

2P − p)2 −m2 + iε)
(3.86)

where the total momentum is P = (2ωk,0) and k̃ = (0,k).
We use the residue theorem to integrate out p0 in (3.86) with a contour encircling

the upper complex plane and get

ψk(r) = eik·r − i
∫

d3p

(2π)3 e
ip·rωp + ωk

8ωpωk
Γ4(p̃, k̃)

p2 − k2 − iε
+ I(r), (3.87)

where p̃ = (ωk − ωp,p). Only the residue corresponding to the two-particle pole of the
propagator is worked out explicitly. The other poles, due to inelastic channels, do not
contribute to the asymptotic behaviour of the BS wave function in the elastic energy
region and are aggregated in a function I(r) which is expected to vanish rapidly at
large r.

Introduce the following radial functions

flm(p) = il−1ωp + ωk
8ωpωk

∫
dp̂Y ∗lm(p̂)Γ4(p̃, k̃). (3.88)

Then, the BS wave function can be expanded on the spherical harmonics with partial
waves given by

[ψk]lm(r) = 4πiljl(kr)Y ∗lm(k̂) +
∫ ∞

0

p2dp

2π2
jl(pr)flm(p)
p2 − k2 − iε

+ Ilm(r). (3.89)

5 With Z = 1 due to the normalization of φ.
6 In comparison, G(p1, p2, p3, p4) was defined in section 3.2 as the connected part of the Euclidean

4-point correlation function in momentum-space amputated by the full propagator.
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where k2 = k2.
Assume that due to the limited range of the interaction, the proper vertex is such

that
∫∞

0 flm(p)p−lj0(pr)p2dp decays exponentially with r. The second term in the
right-hand side of the previous equation can then be evaluated to7∫ ∞

0

p2dp

2π2
jl(pr)flm(p)
p2 − k2 − iε

= i
k

4πflm(k)[jl(kr) + inl(kr)] (3.90)

up to corrections vanishing exponentially in r, which will be incorporated in Ilm(r).
We recover a term flm(k) involving Γ4(p̃, k̃) taken at p2 = k2, i.e. for the momenta of
the 4 particles taken on-shell. With the relation (3.85), one may then relate flm(k) to
the T-matrix and thus to the phase shifts.

Combining the different parts of the plane waves, we finally obtain an asymptotic
behavior at large r in terms of the scattering phase shifts,

[ψk]lm(r) ∼ Clm
sin(kr − lπ2 + δl(k))

kr
, (3.91)

where Clm = 4πileiδl(k)Y ∗lm(k̂). This expression is actually identical to the one for the
quantum mechanical wave function of two particles (3.12).

Composite particles

The elementary fields of QCD are the quark, antiquark and gluon fields. Due to
confinement, single quarks cannot form asymptotic states so that all stable particles
are composite.

In section (3.1.3), we have shown how the Yang-Feldman equations can be used to
define a field φin(x) which creates asymptotic states in the case of a theory with one
elementary field φ(x). It was shown by Nishijima, Zimmermann and Haag (see [31] for
a review) that the same equations can be used to define a field Oin(x), which create
asymptotic composite particles, from an interpolator O(x). An interpolator O(x) is
a polynomial of the elementary fields and possibly their derivatives, all taken at the
same space-time point x. For example, interpolators of the pion π+ may be

Oπ1 (x) = ū(x)γ5d(x),
Oπ2 (x) = ū(x)γ5γtd(x),

Oπ3 (x) = ū(x)
←
∇γ5

→
∇d(x), etc.

(3.92)

All the results thus far may therefore be generalized to composite particles replacing
φ(x) by appropriate interpolators O(x). Naturally, the definition of the BS wave
function becomes dependent on the choice of such interpolators.

Computation

In this section, we will discuss as the BS wave functions, defined in infinite volume, are
related to finite-volume objects which can be computed with lattice simulations.

Consider the BS wave function of two incoming particles 1 and 2 and two outgoing
particles 3 and 4. Let O3 and O4 be a choice of interpolators for the particles 3 and
4. Denoting |1(k), 2(−k) in〉 the incoming state in the center-of-mass frame where

7 The argument will be made more rigorous in section 4.3.
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particle 1 has initial momentum k and particle 2 has initial momentum −k, the BS
wave function reads

ψk(r) = 〈0|O3(0, r2 )O4(0,−r2 )|1(k), 2(−k) in〉. (3.93)

In infinite volume, the projection operator on the physical states of energyW under
the inelastic threshold may be defined as

PW =
∫

d3p

(2π)3Wp
2πδ(Wp −W ) |1(p), 2(−p) in〉〈1(p), 2(−p) in| (3.94)

where Wp is the total energy8 of two asymptotic particles 1 and 2 with relative mo-
mentum p.

Let Osrc(0) be an operator made of the elementary fields and their derivatives at
time t = 0 such that PW Osrc(0)|0〉 6= 0. Note that there are no requirement of locality
on Osrc(0) contrary to the interpolators O3 and O4. Define the wave function

ψW (r) = 〈0|O3(0, r2 )O4(0,−r2 )PW Osrc(0)|0〉. (3.95)

It follows from the previous definitions that

ψW (r) =
∫
dk̂ η(k̂)ψk(r) (3.96)

where k = kk̂ and W = Wk. Here, η(k̂) is a function of the angular part of k which
depends on the choice of Osrc(0). In summary, ψW is a linear combination of the BS
wave functions ψk with the norm of k fixed by W = Wk. It is easy to see that ψW
retains the asymptotic behavior (3.91) in terms of the phase shift δl(k).

In finite volume, the energy eigenstates cannot be labelled with an asymptotic
momentum. For a cubic box of extent L, we will note the energy eigenstates |n,m,L〉
with associated energies Wn. The label m denotes the degeneracy of the energy9. The
projection on the energy W = Wn is therefore

PLn =
∑
m

|n,m,L〉〈n,m,L|. (3.97)

and one can define the following finite-volume functions

ψL,n(r) = 〈0|O3(0, r2 )O4(0,−r2 )PLn Osrc(0)|0〉. (3.98)

For an energy W below the inelastic threshold, define Li (i = 1, . . . ) the increasing
sequence of lattice sizes for which the spectrum contains W , as well as ni the index of
W in this spectrum. One can expect that the following limit holds

ψW (r) = CW lim
i→∞

ψLi,ni(r), (3.99)

for a constant CW independent of r.
The last object to introduce is the following Euclidean correlator in finite volume

ΨL(r, τ) = 〈O3(r2 , τ)O4(−r2 , τ)Osrc(0)〉, (3.100)

8 Wp =
√
p2 +m1 +

√
p2 +m2 if m1 and m2 are the masses of the particles 1 and 2.

9 We will see in section 4.3 an explicit description of the energy eigenspaces in finite volume.
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where τ denotes the time in Euclidean space. As we have seen in section 2.3, Euclidean
correlators can be expanded on the eigenstates |n〉 of the finite-volume Hamiltonian.
In the case of the correlator above, it gives precisely

ΨL(r, τ) =
∑
n

e−WnτψL,n(r). (3.101)

In summary, the correlators ΨL(r, τ) can be evaluated using lattice simulations.
With e.g. the variational method, one can use the τ -dependence of these correlators
to extract the matrix elements ψL,n(r). In the infinite-volume limit L → ∞, these
matrix elements converge towards the functions ψW (r). These functions are directly
related to the BS wave functions and in particular have the same asymptotic behavior
in terms of the scattering phase shifts. The combination of this steps gives a strategy
to compute the scattering phase shifts from lattice simulations.

3.3.2 Energy-independent potential

For some energy W < Wth below the inelastic threshold, let k be such that W = Wk.
Due to the asymptotic behavior of ψW , the function (∆ + k2)ψW (r) decays rapidly at
large r. Let R be the smallest radius such that (∆ + k2)ψW (r) is negligible10 for any
r > R and W < Wth. This R can be thought of as the effective range of the interaction
below the inelastic threshold.

Let Wn for n = 1, . . . be the eigenergies in finite volume, with kn such that Wn =
Wkn and Wnth the lowest eigenenergy above the inelastic threshold. The mixing of the
functions ψL,n under the inelastic threshold can be summarized in the norm matrix
NL with elements

NL
n,n′ =

∫
d3r ψ∗L,n(r)ψL,n′(r), (3.102)

for n, n′ < nth.
The HAL QCD potential in finite volume is defined as

ULHAL(r, r′) = 1
2µ

∑
n,n′<nth

[(∆ + k2
n)ψL,n(r)][NL]−1

n,n′ψ
∗
L,n′(r′). (3.103)

With the previous argument, we can say that ULHAL(r, r′) ' 0 for R < r � L but it is
difficult to extract more properties of this non-local potential.

From the definition of the potential, it is clear that the following Schrödinger
equation holds for any elastic eigenstate n < nth

(∆ + k2
n)ψL,n(r) = 2µ

∫
d3r′ ULHAL(r, r′)ψL,n(r′). (3.104)

Actually, with the proper definition of ULHAL, the functions ψL,n can be shown to
satisfy any number of equation. The choice of the Schrödinger equation is of course
chosen for physical reasons in the hope that the potential ULHAL thus created would be
well-behaved.

10 Of course, this is subject to interpretation but the tail of this function is often exponential in
QCD so one may chose R to be around two or three decay lengths.
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Infinite volume

The potential ULHAL is well-defined in finite volume since there are a finite number
of eigenstates under the inelastic threshold and the functions ψL,n are defined on the
compact space [−L

2 ,
L
2 ]3. In the infinite-volume limit, this is no longer the case, which

could introduce mathematical difficulties. For this reason, we will take the infinite-
volume limit as a formal one, which may or may not be well-defined in the theory of
distributions.

In the infinite-volume limit, the Schrödinger equation (3.104) implies that the
functions ψW satisfy

(∆ + k2)ψW (r) = 2µ
∫
d3r′ UHAL(r, r′)ψW (r′), (3.105)

for any energy W < Wth, with the potential

UHAL(r, r′) = lim
L→∞

ULHAL(r, r′). (3.106)

The strategy of the HAL QCD method is to first approximate the potential ULHAL,
and thus UHAL, from lattice input. With this potential, the Schrödinger equation (3.105)
is solved in infinite-volume at all elastic energies W < Wth. This provides an approxi-
mation of the functions ψW (r) and therefore of the scattering phase shifts.

Note that (3.105) is formally equivalent to (3.80), encountered in the derivation of
the finite-size method, once we take E = k2/2µ. Both UHAL and UE are non-local but
UHAL has the particularity that it is not energy-dependent. However, the properties of
UE are known because it is related to the Bethe-Salpeter kernel. An attempt to relate
the potential UHAL to the BS kernel will lead to the kernel approximation method
proposed in section 4.3 for this thesis.

Velocity expansion

We now discuss how UHAL can be approximated from lattice input. As seen before, it
is possible to extract using the variational method a finite number of functions ψL,n
using the correlators ΨL. The approximation then relies on the assumption that the
potential UHAL is only moderately non-local and satisfies some symmetries.

Take the partial Fourier transform of UHAL as

V (r,p) =
∫
d3r′ UHAL(r, r′)eip·(r−r′), (3.107)

and assume that the following power series converges for an p in R3

V (r,p) =
∑
n∈N3

Vn(r)(ip)n, (3.108)

where pn = pn1
1 pn2

2 pn3
3 . This series is called the velocity expansion of UHAL. The

assumption of moderate non-locality is that the velocity expansion converges quickly
in |n| so that it can be truncated.

If the potential UHAL is further assumed to have some symmetries, the non-zero
terms in the velocity expansion can be restricted. For example, Okubo and Marshak
showed [32] that under some assumptions11, the velocity expansion for the nucleon-
nucleon interaction reads

V (r,p) = V0(r) + Vσ(r)σ1 · σ2 + VT (r)S12 + VLS(r)L · S +O(p2), (3.109)
11 Namely hermiticity, translational invariance in space and time, Galilei invariance, rotational

invariance, parity and time-reversal invariance, fermi statistics and isospin invariance.
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where σ1,2 are the spin Pauli matrices, S = (σ1 + σ2)/2 and L = r × p.
In summary, the assumed symmetries of the potential induce a form

V (r,p) =
∞∑
a=1

Va(r)
∑
n∈N3

Ma,n(ip)n, (3.110)

with some known matricesM having a finite number of non-zero elements (e.g. M0,n =
δ0,n for a local term). Then, the assumption of moderate non-locality means that the
sum over a can be truncated. With such a form, equation (3.104) reads

(∆ + k2
n)ψL,n(r) ' 2µ

A∑
a=1

Va(r)
∑
n∈N3

Ma,n∇nψL,n(r). (3.111)

for large A and L. It is easy to see that this equation can be inverted at each r to
obtain Va(r) if A linearly-independent functions ψL,n(r) have been computed. The
HAL QCD potential UHAL has thus been approximated and can be used as described
previously.

Time-dependent method

In practice, it is often very costly or even impossible with current computational
limitations to extract one or several functions ψL,n(r) with good accuracy from lattice
simulations. This is especially the case when the spectrum Wn is rather dense around
the ground state and the variational method breaks down. We will now show a way to
mitigate this problem [33]. For simplicity, we assume that the particles 1 and 2 have
the same mass m, although the argument can be generalized to channels where this is
not the case [34].

On the lattice, compute the following correlators for one or several linearly-independent
source operators Oisrc(0) (i = 1, . . . , Nsrc)

RiL(r, τ) ≡ e2mτ 〈O3(r2 , τ)O4(−r2 , τ)Oisrc(0)〉 =
∑
n

e−(Wn−2m)τψiL,n(r). (3.112)

Compared to ΨL defined in (3.100), we added an overall factor e2mτ and an index i
labelling the source operator used for the computation.

Using the identity k2

m = (W − 2m) + (W−2m)2

4m where W = Wk = 2
√
k2 +m2, it is

possible to show that the previously defined correlators satisfy(
1

4m
∂2

∂τ2 −
∂

∂τ
+ ∆
m

)
RiL(r, τ) '

A∑
a=1

Va(r)
∑
n∈N3

Ma,n∇nRiL(r, τ) +O(e−(Wth−2m)τ ).

(3.113)
for i = 1, . . . , Nsrc. The second part on the right-hand side is the contribution of the
states above the inelastic threshold and may be neglected in practice at τ reasonably
large. It is clear that similarly as (3.111), one can invert the previous equation to
obtain Va(r) if correlators RiL for Nsrc ≥ A linearly-independent source operators have
been computed.

The improved method described here takes advantage of the known time-dependence
of the correlator. It is very useful since it does not require to separate the contribution
of each eigenstate. However, it relies heavily on the assumption that the truncated
velocity expansion (3.110) is valid.
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Chapter 4

Towards better methods

4.1 HAL QCD method above the inelastic threshold

The HAL QCD method relies on the asymptotic behavior of the two-particle Bethe-
Salpeter wave functions below the inelastic threshold. Therefore, it breaks down when
inelastic channels make important contributions to the lattice correlators and cannot be
neglected. In this section, we show how to treat this problem and extend the definition
of the HAL QCD potential to energies above the inelastic threshold. We will consider
two cases of inelastic channels in particular. The first one is the case where outgoing
particles are created by the interaction, schematically A+B → A+B +C + . . . . The
second one represents coupled two-particle channels, i.e. A + B → C + D where the
channel (C,D) opens at a higher energy than (A,B).

4.1.1 Multi-particle channels

To make the presentation more concrete, we will treat the nucleon-nucleon (NN)
scattering in the center-of-mass frame. The (first) inelastic threshold is W 1

th = 2mN +
mπ which corresponds to the opening of the channel NN → NN + π. Here mN is the
mass of the nucleon and mπ that of the pion. Other threshold energies are naturally
defined as Wn

th = 2mN + n × mπ, corresponding to the creation of n pions. Note
that the production of particles other than the pion such NN̄ or KK̄ can be treated
similarly and we restrict the argument to NN → NN + nπ for notational simplicity.

For an energyW in the interval ∆n = [Wn
th,W

n+1
th [ (n = 0, 1, . . . ), we can define the

asymptotic states |NN + iπ,W, ci in〉 corresponding to two nucleons and i ≤ n pions.
The momenta, helicities and other quantum numbers of the particles are collectively
represented as ci. ci contains in particular the momenta p1, p2 of the nuclei and kl
(l = 1, . . . , i) of the pions which are such that p1 + p2 +

∑i
l=1 kl = 0 and

W =
√
m2
N + p1 +

√
m2
N + p2 +

i∑
l=1

√
m2
π + kl. (4.1)

The set of configurations ci compatible with W in the sense described above is noted
CiW . The kinetic energy for ci is defined as

EiW,ci = p2
1

2mN
+ p2

2
2mN

+
i∑
l=1

k2
l

2mπ
. (4.2)
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Define the Bethe-Salpeter wave functions ψkiW,ci for NN + iπ → NN + kπ as

ZNZ
k/2
π ψkiW,ci([r]k) = 〈0|N(0,0)N(0, r0)

k∏
l=1

π(0, rl)}|NN + iπ,W, ci in〉, (4.3)

where i ≤ n but k = 0, 1, . . . since the k pions are virtual. ZN and Zπ are the
renormalization constants for the nucleon and pion field defined as in section 3.1.3.
N and π are some interpolators for the nucleon and pion. The relative distances of
the particles to the first nucleon are given by [r]k = r0, . . . , rl. The spinor and flavor
degrees of freedom are kept implicit.

Multi-particle potential

We will now build a potential which leads to a Schrödinger-like equation similar
to (3.105) for energies W up to Wnmax+1

th (nmax ≥ 0).
For an energy W ∈ ∆n (n ≤ nmax) and compatible configurations ci ∈ CiW (i ≤ n),

define the vector of wave functions

|ψiW,ci〉BS =
(
ψ0i
W,ci , ψ

1i
W,ci , . . . , ψ

nmaxi
W,ci

)T
. (4.4)

It includes the wave functions corresponding (in addition to the nuclei) to i incoming
pions and any number of virtual intermediate pions up to nmax. We use the bra and
ket formalism for easier notations. Note however that these (nmax + 1)-dimensional
vectors are not in the Hilbert space of the physical states (which contains for example
the vacuum |0〉) but in a product of function spaces. We add a subscript BS to make
this difference explicit.

For notational simplicity, we define Ωnmax the set of all possible incoming states
below Wnmax+1

th

Ωnmax =
{
W, i, ci

∣∣∣n ≤ nmax, W ∈ ∆n, i ≤ n, ci ∈ CiW
}
. (4.5)

Remember that W is the total energy, n the maximal number of outgoing pions, i the
number of incoming pions and ci contains the incoming momenta, etc.

For two incoming states (W, i, ci) and (W ′, j, c′j) in Ωnmax , define the elements of
the norm matrix N as

NWci,W ′c′j
= BS〈ψiW,ci |ψ

j
W ′,c′j

〉BS =
nmax∑
k=0

∫
d[r]k

{
ψkiW,ci([rk])

}∗
ψkjW ′,c′j

([rk]), (4.6)

where the last part effectively defines the inner product on the space of vectors |ψiW,ci〉BS .
While the BS wave functions may be linearly dependent, it is highly unlikely that the
(nmax+1)-dimensional vectors of BS wave functions are linearly independent. Therefore,
we expect the norm matrix to have an inverse N−1.

The inverse of the norm matrix can be used to construct a dual basis to the vectors
|ψiW,ci〉BS as

|ψ̄iW,ci〉BS =
∑

W ′,j,c′j∈Ωnmax

{
N−1
Wci,W ′c′j

}∗
|ψjW ′,c′j 〉BS , (4.7)

which is such that
BS〈ψ̄iW,ci |ψ

j
W ′,c′j

〉BS = δW,W ′δi,jδci,c′j . (4.8)
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Define the (nmax + 1)× (nmax + 1) diagonal matrices EW,ci and H0 with elements

[EW ]kk = EkW ≡ (W 2 − (W k
th)2)/2W k

th, (4.9)

and

[H0]kk = Hk
0 ≡ −

∇2
r0

2mN
−

k∑
l=1

∇2
rl

2mπ
. (4.10)

Note that E0
W,c0

= E0
W independently of c0 but in general EkW,ck 6= EkW for k > 1.

The potential operator is then defined in the following way

U =
∑

W,i,ci∈Ωnmax

(EW −H0)|ψiW,ci〉BS BS〈ψ̄iW,ci |, (4.11)

The operator U is therefore an (nmax + 1)× (nmax + 1) matrix of non-local potentials
Ukl([r]k, [r′]l).

Observe that for any two incoming states (W, i, ci) and (W ′, j, c′j) in Ωnmax ,

BS〈ψiW,ci |(U − U
†)|ψjW ′,c′j 〉BS = BS〈ψiW,ci |(EW ′ − EW )|ψjW ′,c′j 〉BS . (4.12)

Therefore, the operator U is Hermitian on the space spanned by |ψiW,ci〉BS for (W, i, ci)
in Ωnmax , at fixed energy W . This is the space which is relevant for physical processes.
However, the potential U is not Hermitian on the full Hilbert space.

With such definitions, it is easy to see that we recover a set of coupled Schrödinger
equations which reads

(EkW −Hk
0 )ψkiW,ci([r]k) =

nmax∑
l=0

∫
d[r′]l Ukl([r]k, [r′]l)ψliW,ci([r

′]l) (4.13)

for any (W, i, ci) ∈ Ωnmax and k ≤ nmax.
Having reached our goal, we end with some mathematical remarks. All of the above

is well-defined if Ωnmax is a finite set (and the notations we used implied this). Of course,
this is not the case so that one may define the potential operator in finite volume and
take the infinite-volume limit as was done in section 3.3.2. The same remarks apply
here and the result may be taken at least formally.

Non-relativistic approximation

For channels with two outgoing particles, we have seen in section 3.3.1 (in the case of
scalars but it can be extended to spin 1/2 particles [12]) that the asymptotic behavior of
the BS wave functions can be used to recover the scattering phase shifts. The BS wave
functions corresponding to the previous section are ψ00

W,c0
, i.e. with zero incoming or

outgoing pions, but this result can be extended to ψ0i
W,ci

with any i. Furthermore, this
asymptotic behavior implies that the wave functions are solutions of the Helmoltz equa-
tion at large distances. One can then show that the non-local potential U0l([r]0, [r′]l)
for any l ≤ nmax vanishes at large |r0|.

The study of the BS wave functions with more than two outgoing particles is more
complex and was performed in [35] in the case of an arbitrary number of outgoing scalar
particles with identical masses. It was shown that in the non-relativistic approximation,
the BS wave function has a similar asymptotic behavior as in the two-particle case,
governed by some generalized scattering phase shifts which can be related to the T-
matrix and therefore are physical observables.
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The non-relativistic approximation is to be understood as the regime where all
incoming and outgoing particles have momenta which are small compared to their
masses. For the system presented in this section, the BS wave function ψkiW,ci (with k
outgoing particles) contains contributions from possibly any set of outgoing momenta
compatible withW according to (4.1) (while the incoming momenta are fixed by ci). In
general, the only way to be sure that all these contributions are in the non-relativistic
approximation is if W −W k

th � mπ. Note that if W −W k
th < 0, the energy is not

sufficient to create k outgoing pions so that ψkiW,ci vanishes rapidly at large distances.
To sum up, we can restrict the incoming states considered up to now to the set

ΩNR
nmax =

{
(W, i, ci) ∈ Ωnmax | (W −W i

th � mπ, ci is non-relativistic) if i ≥ 1
}
.

(4.14)
where a non-relativistic ci means a set of non-relativistic incoming momenta. There
are no restrictions on the states with 2 incoming particles.

For any state (W, i, ci) ∈ ΩNR
nmax , we get from the above argument a 3(i + 1)-

dimensional Helmoltz equation

(EiW −H i
0)ψiiW,ci([r]i) ∼ 0 (4.15)

at large distances (i.e. large mini 6=j |ri − rj | and large mini |ri|) and we can extract
a generalized phase shift from the asymptotic behavior of ψiiW,ci([r]i). Unfortunately,
we cannot say the same for ψkiW,ci with k > i and an energy W large enough to create
k pions. Indeed, the condition W − W k

th � mπ is not satisfied so that ψkiW,ci can
contain contributions from states with non-relativistic outgoing pions. We deduce that
Ukl([r]k, [r′]l) with k > 0 does not in general decay rapidly at large separations [r]k.
This observation may question the validity of the truncation of a possibly generalized
velocity expansion. However, note that it is possible that if the interaction is weak
enough, relativistic outgoing configurations may have small contributions to BS wave
functions with non-relavistic incomining configurations.

Computation

The computation method for the generalized potential described previously goes along
the same line as for the usual HAL QCD potential described in section 3.3.2. From
lattice simulations at large sizes L, compute Euclidean correlators

RkL([r]k, τ) ≡ eWk
thτ 〈N(0, τ)N(r0, τ)

k∏
l=1

π(rl, τ)Osrc(0)〉 (4.16)

for some source operator Osrc(0) which couples to the NN states.
Using that EkW ' (W − W k

th) + (W−Wk
th)2

4mN is exact at k = 0 and a very good
approximation if k > 0 and W −W k

th � mπ, we can show that for any k ≤ nmax we
have the following time-dependent Schrödinger-like equation(

1
4m

∂2

∂τ2 −
∂

∂τ
−Hk

0

)
RkL([r]k, τ) =

nmax∑
l=0

∫
d[r′]l Ukl([r]k, [r′]l)RkL([r′]l, τ), (4.17)

up to corrections in O(e−(Wnmax+1
th −Wk

th)τ ). For low k these corrections decay very
quickly. The key to obtain the above equation is that the Schrödinger equation (4.13)
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is the same for any number of incoming particles i and any momentum configuration
ci. Therefore, it is still valid when taking linear combinations.

Now, assume that each potential Ukl can be approximated by a finite number of
terms as (3.111), involving a finite number Nunk of unknown functions V a

kl. It suffice to
compute correlators RkL for as many linearly independent sources as there are unknown
functions and then invert the resulting set of equations (4.17) to obtain the functions
V a
kl and thus an approximation of the full potential matrix U .
Once the potential matrix U is approximated, the coupled equations (4.13) can

be solved at any energy W . As discussed previously, the asymptotic behavior of the
solutions is determined by some generalized scattering phase shifts which can be related
to experimental observables. This method therefore allows to extract possibly useful
predictions above the NN interaction about the pion production threshold, or any
other similar system.

A final remark is that the correlator RkL receives contributions from states with
relativistic incoming momenta. This leads to two conclusions. If one can extract the
actual BS wave functions from the correlators, using e.g. the variational method or
ground state saturation, the incoming state could be identified and the contribution
of the relativistic incoming momenta excluded. Then, the previous discussion holds
with a restriction of the incoming states to ΩNR

nmax . However, if such a separation of
the incoming states is not possible, the time-dependent method relying on (4.17) is
the only practical choice. Then, all the states in Ωnmax , not only the non-relativistic
ones, need to be incorporated in the potential U as was described in (4.11). This could
lead to an even more non-local potential and jeopardize the convergence of the velocity
expansion.

Alternative definition

In nuclear physics for example, many potentials have been used to reproduce the
experimental scattering phase shifts. These different potentials usually lead to different
wave functions, albeit with similar asymptotic behavior. In the HAL QCD method, the
wave functions are fixed by the choice of the interpolators but the potential is still not
unique. Several alternative definitions of the potential are described in the appendix
of Ref. [3]. We will discuss here one of these definitions with interesting properties.

Instead of treating all incoming states up to an energy threshold Wnmax+1
th , we

will look at each energy range ∆n (consisting of the energie between two successive
thresholds) separately and define the potential recursively. We thus define the set of
incoming states indices compatible with energies in ∆n (n ≥ 0) as

Ω̃n =
{
W, i, ci |W ∈ ∆n, i ≤ n, ci ∈ CiW

}
. (4.18)

For any n ≥ 0, define the norm matrix N n by its elements

N n
Wci,W ′c′j

=
∫
d[r]n

{
ψniW,ci([rn])

}∗
ψnjW ′,c′j

([rn]), (4.19)

for (W, i, ci) and (W ′, j, c′j) in Ω̃n. The requirement of the inversibility of this norm
matrix N n is stronger than the equivalent requirement for N but remains reasonable.
The inverse of the norm matrix can then be used to construct a set of functions

ψ̄niW,ci =
∑

W ′,j,c′j∈Ω̃n

{
[N n]−1

Wci,W ′c′j

}∗
ψnjW ′,c′j

(4.20)
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dual to the BS wave functions in the sense that∫
d[r]n

{
ψ̄niW,ci([rn])

}∗
ψnjW ′,c′j

([rn]) = δW,W ′δi,jδci,c′j . (4.21)

Note that these are functions as opposed to the vectors of functions used in the first
construction of the potential.

The starting point for a recursive construction of the potential is

Ũ00([r]0, [r′]0) =
∑

W,c0∈Ω̃0

(E0
W −H0

0 )ψ00
W,c0([r]0)

{
ψ̄00
W,c0([r′]0)

}∗
. (4.22)

Note that it is exactly equivalent to the potential described in section (3.3.2). This
construction is therefore an actual extension of the HAL QCD potential above the first
inelastic threshold.

Now, suppose that the potential Ũkl is defined for k, l < n. For k < n, define the
off-diagonal element

Ũkn([r]k, [r′]n) =
∑

W,i,ci∈Ω̃n

[
(EkW −Hk

0 )ψkiW,ci([r]k)−Kn,ki
W,ci

([r]k)
] {
ψ̄niW,ci([r

′]n)
}∗
.

(4.23)
where the function

Kn,ki
W,ci

([r]k) =
n−1∑
l=0

∫
d[r′]lŨkl([r]k, [r′]l)ψliW,ci([r

′]l) (4.24)

only involves the parts of the potential which were previously defined. The rest of the
off-diagonal elements are then fixed for Hermiticity to Ũnk = (Ũkn)† for k < n. Once
all the off-diagonal elements are defined, we can take k = n in both (4.23) and (4.24)
to define the last diagonal element Ũnn. By recurrence over n, the potential is then
defined up to any inelastic threshold.

The potential thus constructed leads to the following coupled Schrödinger equations
for the BS wave functions at an energy W ∈ ∆n

(EkW −Hk
0 )ψkiW,ci([r]k) =

n∑
l=0

∫
d[r′]l Ũkl([r]k, [r′]l)ψliW,ci([r

′]l). (4.25)

Apart from the potential, the main difference with the previous equation (4.13) is that
the BS wave functions with k > n outgoing pions (which have no observable asymptotic
behavior) are not included.

This alternative construction of the potential has several advantages over the first
that we considered. It does not necessitate an a priori cutoff nmax. Except possibly for
the diagonal elements, the potential is Hermitian (not just on a subspace as previously).
The non-physical channels with k > n for an energy W ∈ ∆n are not included.

Another advantage is that each potential Ũkl only includes the information of the
BS wave functions in the energy range ∆n where n = max(k, l). This should lead to
potentials which are “better-behaved” than those of the first construction (4.11). For
example, consider the potentials for two outgoing particles Ũ2n. It would be sensible
that the two-particle interaction below the first inelastic threshold is representative of
the two-particle interaction above it, where additional terms from n-particle interaction
would account mostly for the change of physics. In this case, Ũ2n would essentially
decay with n and the full matrix Ũ have its principal elements around the diagonal.
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The main inconvenient of this construction compared to the first one is that it is
not compatible with the time-dependent method. This is due to the fact that the BS
wave functions satisfy a different set of Schrödinger equations depending on the initial
energy. Wether this incovenient is surmontable in practice (using e.g. the variational
method) will depend greatly on the system of interest. Note that the remarks about
the non-relativistic approximation apply as before.

4.1.2 Coupled two-particle channels

The difficulties faced by the two constructions discussed in the previous subsection,
notably the separation of relativistic and non-relativistic contributions, show how chal-
lenging a correct and practically useful treatment of the multi-particle channels via
potential approaches can be. In this subsection, we discuss a case where the extension
of the potential approach above the inelastic threshold is significantly simpler, namely
coupled two-particle channels. A first attempt to this extension was made before this
work in [36].

An example of coupled two-particle channels is given in QCD by the channel with
strangeness S = −2 and isospin I = 0 where the ΛΛ, NΞ and ΣΣ channels coexist
above energies W = 2mΣ.

In general, we consider the processes Ai +Bi → Aj +Bj where i, j = 0, . . . , nmax.
The masses of Ai and Bi are denoted mAi and mBi . At an energy W in the center-of-
mass frame, the incoming relative momentum pi satisfies

W =
√
m2
Ai

+ pi +
√
m2
Bi

+ pi. (4.26)

The kinetic energy and the free Hamiltonian operator are given by

EiW ≡
(W 2 −m2

Ai
−m2

Bi
)2 − 4m2

Ai
m2
Bi

8µiW 2 = p2
i

2µi
, H i

0 ≡ −
∆

2µi
, (4.27)

where µi is the reduced mass of the channel AiBi. We assume that the channels are
ordered by their threshold energy W i

th ≡ mAi +mBi , i.e. W i
th < W j

th if i < j.
The incoming states are denoted |AiBi,W, ci in〉 where ci contains the direction of

the relative momentum and the helicities if the particles have non-zero spin. For an
energy W ∈ ∆n (n ≤ nmax), define the Bethe-Salpeter wave functions ψkiW,ci as√

ZAiZBiψ
ki
W,ci(r) = 〈0|Ak(0,0)Bk(0, r)|AiBi,W, ci in〉, (4.28)

where 0 ≤ i ≤ n, 0 ≤ k ≤ nmax. Ak and Bk are interpolators for the corresponding
particles. The renormalization factors ZAi and ZBi are defined as usual.

We construct the potential as in the first part of the previous subsection. Follow-
ing (4.4), we define (nmax + 1)-dimensional vectors |ψiW,ci〉BS . Using the inverse of a
norm matrix, we obtain a dual set of vectors |ψ̄iW,ci〉BS . The potential matrix U is then
defined as in (4.11) but with the diagonal elements of the matrices EW and H0 given
by (4.27). This leads to the following coupled Schrödinger equation

(EkW −Hk
0 )ψkiW,ci(r) =

nmax∑
l=0

∫
dr′ Ukl(r, r′)ψliW,ci(r

′) (4.29)

for any (W, i, ci) ∈ Ωnmax and k ≤ nmax.
Since all the BS wave functions have two outgoing particles, they satisfy the Hel-

moltz equation at large separations r. This implies that the potentials Ukl(r, r′) all
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decay rapidly in r, which may lead to a rapidly convergent velocity expansion. Fur-
thermore, all BS wave functions have asymptotic behaviors governed by experimentally
observable phase shifts. Note that there is no need of a relativistic approximation for
these two results, as oppposed to the case of channels with more than two outgoing
particles.

Finally, the time-dependent method can be used to extract the potential from lattice
simulations, without the annoying caveat that the contribution of relativistic states
must somehow be separated. In the simple case of equal-mass particles in each channel,
i.e. mAi = mBi for i ≤ nmax, the method is very similar to the non-coupled channels,
see section 3.3.2, so we will not repeat it here. The general case with possibly unequal
masses is difficult but amenable [34].

4.2 Effective potential method

The finite-size method relies in practice on the ability to extract the spectrum in
finite volume from lattice simulations via the variational method. This is done by
choosing a set of linearly-independent field operators, called the variational basis, and
untangling the mixing between the states they create and the energy eigenstates. Many
considerations factor in the choice of the variational basis. The number of fields
should be sufficiently large that contributions from high-energy eigenstates can be
well separated from those of low-energy states. However, the statistical noise in the
correlators increases with the number of fields and the fields should not overlap too
much with each other that statistical noise render them effectively linearly dependent.
Furthermore, increasing the number of fields may also increase the contributions from
unwanted high-energy eigenstates. Therefore, an optimal but in practice difficult choice
would be a set of fields such that their associated operators create states as close as
possible to the low-energy eigenstates.

Although the variational method can be applied to any system, we particularly
focus in this section on systems of two particles, for simplicity assumed to have equal
mass m. In this context, the difficulties discussed above in the choice of a variational
basis are magnified as the spatial extent L of the lattice increases. Indeed, apart from
a few possible bound states, the low-energy eigenstates correspond to scattering two-
particle states with energies close to their free value of 2

√
m2 + (2πn/L)2 where n is

the norm of a 3-vector with integer coordinates. For large L, the energy difference
between consecutive energy eigenstates is thus of the order of (2π/L)2/m. In this case
of a dense energy spectrum, even with a good choice of a variational basis, statistical
errors usually render difficult the application of the variational method.

In response to these concerns, we will present in this section an alternative approach
to extract the lower energy spectrum of lattice field theories in two-particle channels.
The basic idea is to construct an effective Hamiltonian operator which coincides with the
actual Hamiltonian of the system on a certain subspace of the physical states’ Hilbert
space. After a large (Euclidean) temporal shift of the fields, this subspace contains the
low-energy eigenstates, making it possible to extract their energies from the eigenvalues
of the effective Hamiltonian. This approach can be implemented in various ways and
we will discuss in detail a particular one in which the effective Hamiltonian is chosen by
analogy with non-relativistic physics were the interaction is given through a potential.
We will call this approach the effective potential method.

The effective potential method introduced in this section is in some sense a gener-
alization of the finite-size method which draws inspiration from the fundamental ideas
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of the HAL QCD method. Therefore, it can be thought as a new, intermediate method
which intends to combine their strong points while mitigating their shortcomings.

4.2.1 Effective Hamiltonian

Correlation matrices

For a given quantum field theory, we will call an equal-time operator a polynomial of
the elementary fields and their derivatives, all taken in the same time slice. Choose two
sets of equal-time operators: Oi(t) for i = 1, . . . , Nsnk called the sink operators and Sj(t)
for j = 1, . . . , Nsrc called the source operators. Define the Nsnk ×Nsrc time-dependent
correlation matrix C(t) with elements

Cij(t) ≡ 〈Oi(t)Sj(0)〉, (4.30)

The brackets 〈·〉 denote as usual the Euclidean correlation functions, here in a finite
box of size L× L× L.

As discussed in section 2.3.1, the Euclidean correlators can be expanded on the
energy eigenstates |n〉 (n ≥ 1) with energy Wn, giving the following expression of the
correlation matrix elements

Cij(t) =
∞∑
n=1

PinQnje
−Wnt, (4.31)

where the half-infinite matrices P and Q are defined by their elements

Pin = 〈0|Oi(0)|n〉, Qnj = 〈n|Sj(0)|0〉, i ≤ Nsnk, j ≤ Nsrc, n ≥ 1. (4.32)

The brackets 〈0| · |0〉 denote as usual the finite-volume matrix elements in Minkowski
space.

The matrices P and Q represent the mixing between the states created by the
source and sink operators and the energy eigenstates. We also introduce the finite
matrices P (0) and Q(0) which are obtained from the matrices P and Q respectively by
only considering the energy eigenstates with indices n = 1, . . . ,min(Nsrc, Nsink).

We will consider three cases for the choice of sink and source operators

A) the sink and source operators are conjugate, i.e. Nsnk = Nsrc and Oi = S†i for all
i ≤ Nsrc, and the square mixing matrix P (0) = [Q(0)]† is invertible,

B) there are as many sink and source operators, i.e. Nsnk = Nsrc, and the square
mixing matrices P (0) and Q(0) are both invertible,

C) there are at least as many sink than source operators, i.e. Nsnk ≥ Nsrc, the square
mixing matrix Q(0) is invertible and the rectangular mixing matrix P (0) has full
column rank.

The condition on the rank of the mixing matrices ensures that the states created by
the operators are linearly independent as well as their projections on the first Nsrc
eigenstates. It also ensures that the correlation matrices C(t) have full column rank
for large enough times t.

Note that case A is included in case B and case B is included in case C. Furthermore,
case A is exactly equivalent to what we described in section 2.3.2 and can be considered
the “standard” setting.
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We remind that the basis of the variational method is to solve the generalized
eigenvalue problem (GEVP)

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0) (4.33)

for two time coordinates t and t0. While the GEVP may be defined for non-square
matrices, there is no general algorithm to solve such problems and there may be no
solutions at all. Therefore, in the context of the variational method, we can only
consider the cases A and B corresponding to an equal number of sink and source
operators, Nsnk = Nsrc.

We have seen in section 2.3.2 that for t0 and t chosen such that t < 2t0, the solutions
have the asymptotic behavior

W eff
n (t, t0) ≡ −∂t log λn(t, t0) = Wn +O(e−(WNsrc+1−Wn)t), n = 1, . . . , Nsrc. (4.34)

The proof of this result, shown in [20], was done in case A where the correlation matrices
are Hermitian but can easily be expanded to case B.

A practical way to have t < 2t0 is to keep t− t0 fixed and increase t0. Considering
the limit of t− t0 approaching zero, we can then introduce an alternative generalized
eigenvalue problem

[−∂tC](t)vn(t) = λn(t)C(t)vn(t), (4.35)
and it is straightforward that its solutions are

vn(t) = vn(t, t), λn(t) = W eff
n (t, t). (4.36)

Generalized variational method

Our goal is to extend the variational method to case C, which includes the possibility
of non-square correlation matrices with Nsnk > Nsrc. The main incentive to do so is
that the practical situation often arises where the computational cost of the evaluation
of the correlation matrices is mostly driven by the number of source operators; for
example, by the computation of source-to-all propagators in lattice QCD. In this
situation, the number of sink operators can be increased at little additional cost. As
each sink operator probes the eigenstates differently, it is advantageous to be able to
use all this information instead of being restricted to Nsnk = Nsrc.

As mentioned previously, the generalized eigenvalue problems defined by eq. (4.33)
and (4.35) are still well-defined for non-square matrices although they have no exact
solutions in general, due to statistical errors and contamination from eigenstates |n〉
with n > Nsrc. We will discuss here an approach to treat such overdetermined problems.

Assume that there is a “scheme” to construct Nsnk × Nsnk t-dependent matrices
H(t) satisfying,

H(t)C(t) = [−∂tC](t). (4.37)
This can be abstracted as H(t) ≡ f(C(t), ∂tC(t)) where f is a function, the “scheme”,
satisfying f(A,B)A + B = 0 for any matrices A and B in the relevant vector space.
We further require that H(t) converges at large t.

From the above equation, the matrix H(t) may be interpreted as an effective
Hamiltonian operator, which coincides with the actual Hamiltonian Ĥ at least on V(t),
the column space of the correlation matrix C(t).

Let λi(t) (i ≤ Nsnk) be the eigenvalues of H(t) in ascending order. It is shown in
detail in appendix A.1 that Nsrc of these eigenvalues have the asymptotic behavior

λin(t) = Wn +O(e−(WNsrc+1−Wn)t), n = 1, . . . , Nsrc, (4.38)
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where the index in ≤ Nsnk identifies the eigenvalue related to the eigenenergyWn. This
provides a way to extract the Nsrc first eigenergies from the spectrum of H(t), with
the same asymptotic corrections as the solutions of the GEVP (4.35).

Since H(t) has in total Nsnk ≥ Nsrc eigenvalues, one needs a way to identify which
eigenvalues satisfy the previous equation. It is found in the same appendix that at large
t, a sufficient but not necessary condition for an eigenvalue λ of H(t) to approximate
an eigenenergy in the way of eq. (4.38) is that an associated eigenvector v satisfies

‖PtH(t)(1− Pt)v‖
‖λPtv‖

� 1, (4.39)

where Pt is the orthogonal projector on V(t).
The relation (4.38) can be understood as follows. Define

Vsrc(t) = span
j≤Nsrc

{
Te−ĤtSj(0)|0〉

}
, Vsnk = span

i≤Nsnk

{
O†i (0)|0〉

}
, (4.40)

the linear span of the states created by the source and sink operators, where T is again
the time ordering operator. Then, V(t) can be identified with the projection of Vsrc(t)
on Vsnk. At large t, the space Vsrc(t) “approaches”

Veig = span
n≤Nsrc

{|n〉} , (4.41)

the linear span of the first Nsrc Hamiltonian eigenstates since the contributions from
higher eigenstates become negligible. In this limit, the effective Hamiltonian operator
H(t) coincides with the actual Hamiltonian on the low-energy eigenstates, i.e. these
eigenstates become also eigenvectors of the effective Hamiltonian and their associated
eigenvalues are the eigenenergies.

If there are as many source as sink operators, Nsrc = Nsnk, there exists a unique
matrix H(t) which satisfies eq. (4.37) and this approach is equivalent to solving the
generalized eigenvalue problem similar to (4.35) but for left eigenvectors. In this sense,
the present approach can be seen as a generalization of the variational method. A more
direct generalization, taking the “standard” GEVP (4.33) as the starting point, would
be the consideration of matrices T (t, t0) such that

T (t, t0)C(t0) = C(t). (4.42)

The matrix T (t, t0) could then be identified as an effective time-translation operator,
or transfer matrix. Both approaches are equivalent but it is easier to choose a “scheme”
for H(t) than T (t, t0) as we will see later.

In the case of Nsnk > Nsrc, the projection Ptv of an eigenvector v of H(t) on V(t)
can be associated with an approximate solution of the GEVP (4.35) and the left-hand
size of (4.39) is an upper bound on the error of this approximation. Furthermore,
there are many matrices H(t) satisfying eq. (4.37) as guaranteed by the condition on
the rank of C(t). Different constructions of H(t) may provide approximations of the
energies Wn with the same asymptotic behavior but converging more or less rapidly
for practically accessible times t. The choice of a particular construction is therefore
an important step and may rely on a physical interpretation of the problem, so that
any insight into the specific system can be put to profit.
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4.2.2 Effective potential

Consider the limit of low-energy two-particle states, i.e. states with energies such that
Wn ' 2m + En, defining Wn = 2

√
m2 + k2

n and En = k2
n/m. In this section, we

will propose a particular construction of H(t) based on insights from this limit. At
these energies, the system behaves similarly as its non-relativistic limit. Since the
Hamiltonian of non-relativistic systems is better understood in terms of two-particle
wave functions, we will introduce a specific choice of sink fields.

Choice of implementation

Define Λs the set of spatial sites of the lattice used for calculations and Ns the number
of sites in each spatial direction. Let ri for i = 1, . . . , N3

s be an enumeration of Λs.
Lattice wave functions are then a particular case of the correlation matrices introduced
before with the sink operators chosen as

Oi(t) =
∑
x∈Λs

φ1 (x+ ri, t)φ2 (x, t) , (4.43)

where φ1 and φ2 are local interpolators for the two outgoing particles. Each sink
operator corresponds to the interpolators taken at a distance ri and projected on the
center-of-mass frame. Therefore, the number of sink operators is Nsnk = N3

s .
By analogy with the non-relativistic limit of the system, we take H(t) in the form

H(t) = 2m1− 1
m∆ + U(t), (4.44)

where ∆ is a matrix acting on the sink operators indices with elements as the Laplacian
acts on the associated vectors ri, i.e. with elements given by

∆ij =
3∑

µ=1

[
δri+µ,rj − 2δri,rj + δri−µ,rj

]
, i, j = 1, . . . , Nsnk, (4.45)

in lattice units with µ the elementary lattice vector in the spatial direction µ. In the
non-relativistic limit considered here, and only then, it is clear that the matrix U(t)
may be interpreted as an effective potential.

A choice of construction for H(t) is equivalent to a choice of construction for U(t)
satisfying

U(t)C(t) = [(−∂t − 2m1 + 1
m∆)C](t). (4.46)

The number of degrees of freedom for U(t) is (Nsnk)2 and the above conditions fixes
NsrcNsnk of them. In practical situations Nsrc � N3

s = Nsnk, which leaves a very large
freedom in the choice of U(t).

We will choose a particular construction of U(t) by mimicking the truncation of
the velocity expansion of non-local potentials in non-relativistic quantum mechanics.
We therefore impose the following constraints to fix the remaining degrees of freedom

Cubic symmetry In appendix A.2, we describe in detail the structure of the matrices
acting on lattice wave functions, like U(t), which transform covariantly under
the action of the cubic group. As expected, it is found that the actual number of
degrees of freedom left after this constraint is around 48 times less than that of
general matrices. Furthermore, there is a basis such that these matrices are block-
diagonal with one block for each irreducible representation of the cubic group.
Therefore, if as is usually the case in practice the source operators transform
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according to a particular irreducible representation, only one block is relevant to
satisfy (4.46) and the remaining degrees of freedom can be removed. For example,
restricting the source operators to the representation A+

1 and enforcing the cubic
symmetry for U(t) divides the number of degrees of freedom by 384.

Minimal non-locality The last redundant degrees of freedom can be removed by
keeping only hopping terms in U(t) between sites with minimal separation and
setting the others to zero. We detail in appendix A.3 an implementation of this
idea. The locations of the non-zero elements of U(t) are completely fixed by
this requirement and their value is obtained by a (sparse) matrix inversion. In
practice, high condition numbers make this inversion numerically impossible. By
relaxing the non-locality constraint to accept no more minimal but “moderate”
non-locality, i.e. any hopping between sites within a distance smaller than a cutoff
Rmax, this method becomes numerically tractable. Furthermore, the dependence
of U(t) in the cutoff Rmax gives an estimate of the systematic uncertainties
induced by this method.

Hermiticity Adding a Hermicity constraint to U(t) is only a slight modification of the
construction achieved thus far, see appendix A.3. Unfortunately, the modified
construction is found to be very numerically unstable and therefore unusable
in practice. An alternative construction satisfying the three constraints and
numerically stable might be discovered in the future but for the moment we
cannot enforce Hermiticity. Note that Hermiticity is not required for the method
to work.

The strategy of the effective potential method for the study of two-particle channels
is then the following. After choosing a set of sources and interpolators, compute
the lattice wave functions C(t) from numerical simulations. Invert (4.46) to obtain
U(t) using the scheme discussed above. Compute the eigenvalues and eigenvectors
of H(t) which is related to U(t) by (4.44). Among these, identify the ones satisfying
the condition (4.39). Extract the lower part of the finite-size spectrum from these
eigenvalues as (4.38). Relate the finite-size spectrum to the scattering phase shifts
using the finite-size formula.

Note that while the choice of implementation described in this subsection was
motivated by the consideration of a certain limit of the system, and thus is expected
to give better results (i.e. a faster convergence rate) close to this limit, it can be used
for any energy range.

Alternative implementation

We can take one step further the analogy with the non-relativistic limit by introducing a
slightly modified approach, inspired by the time-dependent HAL QCD method. Rescale
the correlation matrices as C ′(t) = e2mtC(t) and consider the alternative generalized
eigenvalue problem

[(−∂t + 1
4m∂

2
t )C ′](t)v′n(t) = λ′n(t)C ′(t)v′n(t). (4.47)

It is straightforward to relate its solutions to those of the GEVP (4.35) and get

v′n(t) = vn(t), λ′n(t) = λn(t)− 2m+ (λn(t)− 2m)2

4m = En +O(e−(WNsrc+1−Wn)t),
(4.48)
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so that the eigenvalues allow to extract directly En instead of Wn as previously, with
the same asymptotic corrections.

The whole discussion thus far can be adapted to take (4.47) as a basis. Consider
matrices H ′(t) such that

H ′(t)C ′(t) = [(−∂t + 1
4m∂

2
t )C ′](t), H ′(t) = − 1

m∆ + U ′(t). (4.49)

Then, the spectrum of H ′(t) will asymptotically contain En for the Nsrc lowest eigen-
states n. The eigenenergies Wn can be recovered directly from En. The construction
of U ′(t) is chosen similarly to U(t) but with the constraint

U ′(t)C ′(t) = [(−∂t + 1
4m∂

2
t + 1

m∆)C ′](t). (4.50)

instead of (4.46).
This modified approach has the following advantage. As demonstrated in sec-

tion 3.3.2 for the HAL QCD method, the right-hand side of (4.50) vanishes on the
rows i corresponding to large |ri| (compared to the typical interaction range) if t is
large enough that the inelastic channels can be neglected. Therefore, a large part of
the effective potential U ′(t) can be set to zero which simplifies the computations and
reduces the statistical errors. In the case of U(t) discussed before, this simplification
only happens in the non-relativistic limit where Wn ' 2m+ En.

4.2.3 Qualitative comparison with other methods

The effective potential method is primarily a way to extract the finite-size spectrum
of two-particle channels. It is therefore to be compared directly with the variational
method. Combined with the finite-size formula, it enables to extract the scattering
phase shifts. However, the equations defining the method are very similar to the ones
in the HAL QCD method. This is why it can be thought as minimalist version of the
HAL QCD method, omitting any relation of the effective potential U(t) with a possible
analogous object in infinite-volume. The derivation is purely restricted to finite-volume
and does not make any assumptions.

By considering lattice wave functions, or more generally non-square correlation
matrices, the effective potential method allows to use more information from the
system than the variational method at little additional cost. Furthermore, one can use
information on the type of Hamiltonian of the system to possibly speed up convergence
towards the eigenenergies while the GEVP in the variational is more of a black box.
Compared to the HAL QCD method, it does not make assumptions on the convergence
of the velocity expansion of some potential or the fast decay of the inelastic channels
and it makes proper use of the cubic symmetry in finite volume. We stress that one
can gain confidence in the correctness of the results by the appearance of a plateau
of the eigenvalues and the validity of (4.39). If these conditions are not met for some
eigenvalues, no definitive conclusion may be drawn for the corresponding eigenenergies.

4.3 Kernel approximation method

The HAL QCD method and the finite-size method are quite different in their execution
but are similar in their derivation. In the HAL QCD method, the scattering phase
shifts are related to the asymptotic behavior of Bethe-Salpeter wave functions (BS)
in quantum field theory under the inelastic threshold. A kernel equivalent to the BS
wave functions through the Schrödinger equation is then defined and the goal is to
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approximate it by lattice input, assuming some analytic form. In the finite-size method,
a relation is found between the spectrum in finite volume and the scattering phase shifts.
This relation is obtained by the study of the finite-volume wave functions in quantum
mechanics outside the interaction region, then extended to quantum field theories
by finding some equivalent objects. Avoiding the analogy with quantum mechanics,
derivations of the finite-size formula based on wave functions have also been given in
purely field-theoretical frameworks [29, 30, 37]. In any case, the derivation stems from
the study of an ad hoc definition of “wave functions” in quantum field theory.

The difference is that the wave functions play a center role in the HAL QCD method
while they are merely a mathematical device in the derivation of the finite-size formula.
Indeed, other derivations [24, 38] have been given based on the study of the poles of the
finite-volume 4-point function. These derivations of the finite-size formula are simpler
and have lead to painless generalizations.

Compared to modern derivations of the finte-size formula, the HAL QCD method
lacks in two main ways. It does not consider the effect of the finite volume and the
cubic symmetry on the BS wave functions. It is based on a potential of which the
properties are basically unknown but are critically important to the applicability of the
method. This section presents the result of an extensive study of wave function-like
correlators in finite volume. It has lead to the development of a new method to extract
the scattering phase shifts from lattice simulations, called the kernel approximation
method. This method is similar to the HAL QCD method in several aspects but does
not suffer the previously mentioned drawbacks.

As previously, we consider quantum field theories of a real scalar field which describes
the physics of a self-interacting particle of massm. We keep notations from section 3.2.2
but assume in addition that the particle has an internal degree of freedom (such as
isospin) so that two incoming particles can be considered distinguishable.

4.3.1 The 4-point function

Infinite volume

We start our investigation by proving several results in infinite volume which will be
useful when considering the finite-volume system.

In the case of two distinguishable particles, the integral relation (3.72) between the
full connected 4-point function G4 and the Bethe-Salpeter kernel K reads

G4(p′, p) = K(p′, p) +
∫

d4k

(2π)4K(p′, k)G2(k)G4(k, p). (4.51)

We wish to derive a three-dimensional formalism in which the relative energies
disappear. This is a standard procedure in the study of the Bethe-Salpeter kernel and
several choices of formalisms have been used in the past. The idea is to extract the
pole of the full two-particle propagator G2(k) in the elastic region, which can be made
similar to that of the non-relativistic resolvent R(k) defined by

R(k) = 1
k2/m− E(W ) , E(W ) = W 2 − 4m2

4m . (4.52)

The following lemma describes the structure of the pole and generalizes Lemma 3.3.
by Lüscher in ref. [8].
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Lemma 4.1. For any function f(k) of k = (k, k4) and W analytic in the domain

0 ≤ m′ ≤ m, 0 ≤ ReW < 2(m+m′), |Im k4| < m+m′
2 , |Imk| ≤ m−m′

2 , (4.53)

the function
I(k) =

∫ dk4
2π G2(k)f(k)− 1

2mWR(k)f(k)|k4=0 (4.54)

is analytically continuable in the domain (4.53) restricted by k4 = 0.

Proof. The idea of the proof is the same as for Lemma 3.3. in ref. [8]. Lüscher assumes
analycity of f for any |Im k4| < m so that he can deform the k4 integration contour (to
get an explicit singularity similar to that of R(k)) by any imaginary shift m∗ < m then
take the limit m∗ → m. This leads to an analytic domain containing 0 ≤ ReW < 4m.
For a more general result, we keep track of the maximal region of analycity of I(k) if
we only assume that f(k) is analytic in |Im k4| < m+m′

2 with m′ ≤ m (which restricts
the possible deformations of the integration contour). Lüscher’s result is obtained by
setting m′ = m.

Motivated by Ref. [39], we do not choose a particular formalism to integrate over
the relative energy but keep the discussion general by introducing the concept of 3-
projection.

Definition 4.1. A generalized function P(k) of the energy W and the Euclidean 4-
vector k is called a 3-projection if for any function f(k) of k = (k, k4) and W analytic
in the domain (4.53), the integral

J(k) =
∫ dk4

2π P(k)f(k), (4.55)

is analytically continuable in the domain (4.53) restricted by k4 = 0 and we have
J(k) = f(k)|k4=0 at W = 2ωk if ωk < 2m.

This choice of definition is such that for any 3-projections PL and PR, the 2-particle
kernels

G2(k′, k) = (2π)4δ(k′ − k)G2(k) and Ĝ2(k′, k) = (2π)3δ(k′ − k)PR(k′) R(k)
2mW PL(k)

(4.56)
have the same singularities in the elastic energy region, as can be seen from lemma 4.1.

The 3-projections are used to “project” kernels in 4-vector space to kernels in 3-
vector space. For any choice of 3-projections PL and PR, define the operator P̃ such
that

[P̃ · F ](k′,k) = 1
2mW

∫
dk′4
2π

dk4
2π PL(k′)F (k′, k)PR(k), (4.57)

where k′ = (k′, k′4) and k = (k, k4).
In order to find an equation for the “projection” of the 4-point function G̃4 = P̃ ·G4,

define a modified Bethe-Salpeter kernel K̂ by

K̂(p′, p) = K(p′, p) +
∫

d4k′

(2π)4
d4k

(2π)4K(p′, k′)
[
G2(k′, k)− Ĝ2(k′, k)

]
K̂(k, p), (4.58)

and its “projection” Ũ = −P̃W · K̂. The analyicity of the resulting kernel is guaranteed
by the following theorem. In addition to the analycity in the energy W discussed by
Lüscher, we also prove analycity in the 3-momenta, which will prove useful later.
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Theorem 4.1. The kernel Ũ(p′,p) is analytically continuable in the domain

0 ≤ m′ ≤ m, 0 ≤ ReW < 2(m+m′), |Imp′| ≤ m−m′
2 , |Imp| ≤ m−m′

2 . (4.59)

Proof. In the proof of Theorem 3.1 by Lüscher in ref. [8], it was shown that the Bethe-
Salpeter kernel K(p′, p) is analytically continuable for any momenta satisfying

|14 ImP + s′Im p′|+ |14 ImP + sIm p|+ |s′Im p′ + sIm p| < 2m, (4.60)

where P = (0, iW ) is the total Euclidean momentum and s, s′ are any of ±1. It is not
difficult to show that this includes the domain

(4.59) and |Im p′0| < m+m′
2 , |Im p0| < m+m′

2 . (4.61)

Now, we can use Lemma 4.1 to show that∫ d4k′

(2π)4
d4k

(2π)4K(p′, k′)[G2(k′, k)− Ĝ2(k′, k)]K(k, p) =
1

2mW
∫ dk

(2π)3R(k){K(p′, k)K(k, p)|k4=0 − JR(p′,k)JL(k, p)}+ I(p′, p) (4.62)

where I(p′, p) is analytic in the domain (4.61) and e.g. JR(p′,k) =
∫ dk4

2π K(p′, k)PR(k).
In the integral on the right-hand side, R(k) has a simple pole for k such that W = 2ωk.
However, the definition of a 3-projection implies that

JR(p′,k) = K(p′, k)|k4=0 and JL(k, p) = K(k, p)|k4=0 (4.63)

at W = 2ωk < 4m. We deduce that the integral on the left-hand side of (4.62) and by
recurrence K̂(p′, p) are analytically continuable in the domain (4.61). The properties
of 3-projections finally ensure the claimed result for the analycity domain of Ũ .

From now on, we assume that the 3-projections PL(k) and PR(k) have been chosen
and that they decay sufficiently fast at large k that the integrals over 3-momenta in the
definition of K̂ are well-defined. In ref. [8, 9], Lüscher’s derivation can be understood
within the following choice of 3-projections

PL(k) = PR(k) = 2πδ(k4)e
mE(W )−k2

2m2 . (4.64)

After some algebra, we obtain a fully three-dimensional formulation of the integral
equation (4.51) as

− G̃4(p′,p) = Ũ(p′,p) +
∫

d3k

(2π)3 Ũ(p′,k)R(k)G̃4(k,p). (4.65)

The definition of a 3-projection ensures that when the two incoming and two
outgoing particles are set on the mass-shell, the “projected” observables do not depend
on the choice of the 3-projection. In particular, the scattering amplitude T is obtained
from the 4-point function G4 when setting the four particles on-shell, see (3.67). For
any 3-projections, the following relation holds

T (p′,−p′|p,−p) = lim
ε→0+

2mW G̃4(p′,p) (4.66)

for W = 2ωp + iε, ωp′ = ωp < 2m and the scattering amplitude is characterized in
terms of scattering phase shifts as

T (p′,−p′|p,−p) = 8π2W
∞∑
l=0

l∑
m=−l

e2iδl(p) − 1
2ip Ylm(p′)Y ∗lm(p). (4.67)
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With this three-dimensional formulation we can define “wave functions” in momen-
tum space from the 4-point function as follows. At any energy W = 2ωq + iε with
ωq < 2m, define the generalized function

ψ̂q∞(p) = (2π)3δ(p− q) +R(p)G̃4(p, q), (4.68)

where p ∈ R3 and q is an on-shell momentum, i.e. |q| = q. Due to the rotational
symmetry of the system, we only need to consider ψ̂∞(p) = ψ̂qz∞(p) where qz is the
momentum in the z direction with norm q and all the other functions can be recovered
using rotations.

A direct consequence of the integral equation (4.65) is that ψ̂∞ satifies

−R(p)−1ψ̂∞(p) =
∫

d3p′

(2π)3 Ũ(p,p′)ψ̂∞(p′), (4.69)

which is nothing but the Schrödinger equation in momentum space for the “potential”
Ũ . With ψ∞ and U the inverse Fourier transforms of ψ̂∞ and Ũ , we get in position
space

1
m(∆ + q2)ψ∞(r) =

∫
d3r′ U(r, r′)ψ∞(r′), (4.70)

where ∆ is the Laplace operator and r, r′ ∈ R3. The exponential decay of U is
guaranteed by the following proposition.

Proposition 4.1. For any Wmax ∈ [0, 4m[, define the range ρ = 1
m−Wmax/4 . Then, in

the energy region 0 ≤ ReW < Wmax, the large-distance behavior of U is given by

U(r, r′) = O(e−
r+r′
ρ ), (4.71)

for positions r, r′ ∈ R3 with norms r, r′.

Proof. Using Theorem 4.1, in the energy region 0 ≤ ReW < Wmax the kernel Ũ(p′,p)
can be analytically continued in the complex momentum region |Imp′| ≤ ρ−1 and
|Imp| ≤ ρ−1. The assumed fast decay of the 3-projections also ensure that the kernel
vanishes at infinity in this momentum region. We can therefore use a contour integral
to show that

U(r, r′) = e
− r+r

′
ρ
∫ dp′

(2π)3
dp

(2π)3 e
ip·r Ũ(p+ i rrρ ,p

′ − i r′

r′ρ) e−ip′·r′ . (4.72)

The fast decay can again be used to show that the integral on the right-hand side is
bounded.

Note that for energies approaching the inelastic threshold 4m, the “effective range”
ρ diverges. This does not mean that U cannot decay rapidly in this region but the
effect of the inelastic threshold is highly non-trivial so no general argument may be
given without further assumptions or techniques.

For any distance R > 0, define the compactly supported kernel

UR(r, r′) =
{
U(r, r′) if |r|+ |r′| ≤ 0.9R,
0 if |r|+ |r′| ≥ R,

(4.73)

with a smooth and spherically symmetric connection between the two regions. Proposi-
tion 4.1 ensures that in the region 0 ≤ ReW < Wmax, the Schrödinger equation (4.70)
still holds if we replace U by UR, up to corrections of order O(e−0.9R/ρ) (with ρ de-
fined as in the Proposition). Compactly supported functions can be treated using the
following Proposition proved in appendix B.1.
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Proposition 4.2. Let h be a smooth function defined on R3 with compact support on
B(0, R)1. Then, its Fourier transform can be expanded as

ĥ(p) =
∑∞
l=0
∑l
m=−l p

lflm(p)Ylm(p̂), (4.74)

for any p in R3, where p = pp̂ and flm are even entire functions of exponential type R.

The function hR(r) =
∫
d3r′ UR(r, r′)ψ∞(r′) satisfies the condition of the Proposi-

tion above. Moving back to momentum space, it implies that there exist even entire
functions fRlm of exponential type R such that

R(p)−1ψ̂∞(p) =
∞∑
l=0

l∑
m=−l

plfRlm(p)Ylm(p̂) +O(e−0.9R/ρ). (4.75)

Provided the properties of the functions fRlm, we can use the result (6a) of ref. [40] to
obtain for any r > R and angular momentum (l,m)∫

dp p2jl(pr)
plfRlm(p)

p2 − q2 − iε
= iπ

2 q
l+1h

(+)
l (qr)fRlm(q), (4.76)

where h(+)
l (qr) = jl(qr) + inl(qr). These integrals can be used to take the inverse

Fourier transform of ψ̂∞(p) in (4.75) and obtain the expression2

ψ∞(r) = eiqz ·r + m

4π

∞∑
l=0

l∑
m=−l

(iq)l+1h
(+)
l (qr)fRlm(q)Ylm(r̂) +O(e−0.9R/ρ). (4.77)

at any position r ∈ R3 with norm r > R. Finally, the expression of the fRlm(q) can be
obtained by comparing (4.75) and the definition of ψ̂∞. We get

qlfRlm(q) = 16π2

m

e2iδl(q) − 1
2iq Y ∗lm(ez) +O(e−0.9R/ρ). (4.78)

In summary, for any R > 0 and any position r with r = |r| > R, the infinite volume
“wave function” ψ∞ at the energy W = 2ωq + iε has the expression

ψ∞(r) =
∞∑
l=0

l∑
m=−l

αlm[jl(qr)− tan δl(q)nl(qr)]Ylm(r̂) +O(e−0.9R/ρ), (4.79)

where αlm = 2πil(e2iδl(q) + 1)Y ∗lm(ez). In other words, it has the same expression as the
quantum-mechanical wave function of two-particles outside of the (finite) interaction
region, up to corrections decaying exponentially. Note that this result is general to any
3-projections satisfying the assumptions discussed up to now.

Finite volume

In a finite box of size L × L × L, the propagator GL(p1) and amputated correlation
functions GL(p1, . . . , pn) can be defined similarly as their infinite-volume counterparts
as sums of Feynman diagrams. In both cases the contributing diagrams are the same

1 The open ball of radius R centered at the origin.
2 We have ψ̂∞(p) = (2π)3δ(p − qz) + R(p)[R(p)−1ψ̂∞(p)] due to the rules for the product of

generalized functions.
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but their values in finite-volume is obtained by replacing momentum integrals by sums
over the lattice

Λ =
{2π
L
n
∣∣∣ n ∈ Z3

}
. (4.80)

The following proposition is useful to treat sums over Λ.

Proposition 4.3. If the integrable function f(k) of k ∈ R3 can be continued analyti-
cally in the domain |Imk| ≤ η to a function vanishing at infinity, we have

1
L3
∑
k∈Λ f(k) =

∫ dk
(2π)3 f(k) +O(e−ηL). (4.81)

Proof. Poisson’s summation formula reads

1
L3
∑
k∈Λ f(k) =

∑
n∈Z3

∫ dk
(2π)3 f(k)eiLn·k. (4.82)

For n with n = |n| > 0, we can use a contour integral to get∫ dk
(2π)3 f(k)eiLn·k = e−nηL

∫ dk
(2π)3 f(k + iη nn )eiLn·k = O(e−nηL). (4.83)

The result follows.

Lüscher proved in [27] that the finite-volume propagator is equal to the infinite-
volume propagator up to corrections exponentially small in the volume, namely

GL(p) = G(p) +O(e−
√

3
2 mL). (4.84)

Let KL be the Bethe-Salpeter kernel in finite volume and UL defined from K as U
was defined from K (replacing the integral in (4.58) by a sum). Using the same
graph-theoretical techniques developped in [27], it can be shown that KL −K decays
exponentially with the volume. Combined with Proposition 4.3 and the analycity
domain of K described in the proof of Theorem 4.1, it is straightforward that UL − U
also decays exponentially with the volume.

In the following we will not write explicitely any term decaying exponentially with
the volume so that we have G = GL and U = UL. Defining G̃4L the finite-size
counterpart of G̃4, we get

− G̃4L(p′,p) = Ũ(p′,p) + 1
L3

∑
k∈Λ

Ũ(p′,k)R(k)G̃4L(k,p). (4.85)

Define infinite matrices with elements

[R]p′,p = δp′,pL
−3R(p), [Ũ ]p′,p = Ũ(p′,p), [G̃4L]p′,p = G̃4L(p′,p), (4.86)

where p′,p ∈ Λ. Then (4.85) can be compactly written as

− G̃4L = Ũ + Ũ R G̃4L. (4.87)

In the rest of this subsection we take the energy asW = 2ωq+ iε with 0 ≤ q2 < 3m2

and ε infinitesimal. Furthermore we only consider energies such that q is not the norm
of any momentum in Λ. Other energies can be considered “accidental” and may be
treated separately.
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For a kernel F (p′,p) defined on any real momenta p′,p ∈ R3, introduce the following
four infinite matrices with elements

[F ]p′,p =F (p′,p),
[F◦•]p′,lm =

∫
dq̂ F (p′, q)Ylm(q̂),

[F•◦]l′m′,p =
∫
dq̂′ Y ∗l′m′(q̂′)F (q′,p),

[F••]l′m′,lm =
∫
dq̂′dq̂ Y ∗l′m′(q̂′)F (q′, q)Ylm(q̂),

(4.88)

where p′,p ∈ Λ, |q′| = |q| = q and l ≥ 0, |m| ≤ l. The matrix F contains the values of
the kernel F when both arguments are momenta in Λ. The matrix F◦• is composed of
its values with a momentum in Λ as first argument and momenta on the mass shell
as second argument, projected on a specific angular momentum (l,m). The other two
matrices are interpreted similarly. Note that the right-multiplication by F◦• consists of
a sum over the momenta in Λ while the left-multiplication by the same matrix consists
of a sum over all angular momenta (l,m).

With the notations (4.88) we are ready to establish the relation between the finite-
volume G̃4L and the infinite-volume G̃4. The following relation is shown in appendix B.2
to be valid up to corrections decaying exponentially with the volume3

G̃4L = G̃4 + G̃◦•4
1

1 +M••G̃••4
M••G̃•◦4 . (4.89)

The matrix M•• is in angular momentum space, like G̃••4 and the expression of its
elements [M••]l1m1,l2m2 is given in (B.20).

The finite-volume 4-point function G̃4L(p′,p) is only defined for momenta p′,p in
Λ so that we cannot take it half or fully on-shell to define G̃◦•4L, etc. It is however
possible to do so with the infinite-volume 4-point function G̃4(p′,p) since it is defined
for any real momenta p′,p. Equation (4.89) is then a non-trivial but simple way to
relate finite-volume physics to infinite-volume, asymptotic physics.

4.3.2 Finite-volume spectrum

Euclidean correlators

Consider general two-particle operators with mean Euclidean time t,

Oi(t) ≡
∫

d4P

(2π)4
d4p

(2π)4 Ai(P , p)e
iP4t

∫
d4xd4y e−i[P ·

x+y
2 +p·(x−y)]φ(x)φ(y), (4.90)

where the index i denotes a specific choice of operator. As previously, we will only
treat the system in the center-of-mass frame so that we set Ai(P , p) = (2π)3δ(P )Ai(p).
The equivalent operators in finite volume are

OiL(t) ≡ 1
L3

∑
p∈Λ

∫
dP4
2π

dp4
2π Ai(p)eiP4t

∫
FV

d4xd4y e−i[P ·
x+y

2 +p·(x−y)]φ(x)φ(y), (4.91)

where P = (0, P4) and the integration over x and y is in the finite volume [−L
2 ,

L
2 ]3.

Let |n〉 and Wn for n ≥ 1 be the eigenstates and eigenvalues of the finite-volume
Hamiltonian operator. As is well-known, the Euclidean correlators are decomposed as

CijL (t) ≡ 〈OiL(t)OjL(0)†〉 =
∑
n≥1
〈0|OiL(0)|n〉〈n|OjL(0)†|0〉e−Wnt. (4.92)

3 The notation 1
A

is a shorthand for A−1 but A
B

has no meaning for two matrices A and B.
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We can also analyze the correlators using the explicit expression of the operators.
This leads to4

CijL (t) = 1
L6

∑
p′,p∈Λ

∫
dP4
2π

dp′4
2π

dp4
2π Ai(p′)eiP4tA†j(p)

×
[
2πδ(p′4 − p4)L3δp′,p +G2(p′)G4L(p′, p)

]
G2(p). (4.93)

Introduce the functions PL and PR defined by

PL(p) =
[
Āi(p)√
2mW

]−1
Ai(p)R(p)−1G2(p), PR(p) =

[
Ā†j(p)
√

2mW

]−1
A†j(p)R(p)−1G2(p),

(4.94)
where the operator- and energy-dependent function Āi is5

Āi(p) = Ai(p)|p4=0√
2mW

e−η
mE(W )−p2

2m2 . (4.95)

with the usual notation P4 = iW and some η > 0.
Using Lemma 4.1, we can show that PL and PR are 3-projections if Ai(p) and Aj(p)

can be analytically continued in the region |Im p4| < m, |Imp| ≤ m
2 and they either

i) do not depend on p4, in which case the 3-projections PL,R(p) are given by

PL(p) = PR(p) = 2mWeη
mE(W )−p2

2m2 R(p)−1G2(p), (4.96)

i.e. they do not depend on the choice Ai,j of operators at all. This corresponds
to operators for two particles taken at the same Euclidean time (“equal-time”
operators).

ii) depend on p4 and do not vanish6 on the line p4 = 0.

We will assume these conditions realized in the following.
The correlator CijL (t) is then the sum of two terms, one for the connected and one

for the disconned part. We can simplify the disconnected part by noting that∫
dP4
2π e−iP4t

[∫
dp4
2π Ai(p)G2(p)A†j(p)− Āi(p)R(p)Ā†j(p)

]
= O(e−4m̄t), (4.97)

for any m̄ < m and p in Λ. Due to Lemma 4.1 and the assumed properties of Ai, the
integrand on the left-hand side is analytic for 0 ≤ ImP4 ≤ 4m so that we can push the
integration line to ImP4 = 4m̄.

The disconnected part is easily shown to involve the “projected” 4-point function
G̃4L defined by (4.57) using the 3-projections introduced in (4.94). Combining the two
parts, we finally arrive to the simple expression

CijL (t) =
∫
dP4
2π eiP4t Tr

[
Āi(1 +RG̃4L)RĀ†j

]
+O(e−4m̄t), (4.98)

4 The functions Ai may have indices for internal degrees of freedom, which is why we use the
Hermitian conjugation †.

5 The exponential ensures the convergence of integrals like (4.58).
6 If they vanish, we can formally add a constant to Ai,j and drive it towards zero at the end of the

derivation.
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with the matrices Āi defined by

[Āi]p′,p = δp′,p Āi(p), (4.99)

for p′ and p two momenta in Λ.
By identification of equations (4.92) and (4.98), we can deduce that the poles

of the matrix (1 + RG̃4L)R in the domain 0 ≤ ImP4 < 4m̄ are associated to the
eigenenergies by P4 = iWn. Furthermore, if X̃n is the residue of this matrix at the pole
W = Wn < 4m̄, we have7

Tr ĀiX̃nĀ†j = 〈0|OiL(0)|n〉〈n|OjL(0)†|0〉. (4.100)

As discussed previously, for equal-time operators the 3-projections do not depend
on the particular choice of operators and the residue is easily found from the above
equation to be

[X̃n]p′,p = 2mWn

[
eη

mE(Wn)−p′2

2m2 ψ̂n(p′)
] [
eη

mE(Wn)−p2

2m2 ψ̂n(p)
]†
, (4.101)

for p′,p two momenta in Λ and the definition

ψ̂n(p) = 1
L3

∫
FV

d3xd3y e−ip·(x−y)〈0|φ(x)φ(y)|n〉, (4.102)

where x = (x, 0), y = (y, 0).

Quantization condition

We have seen that the finite-size spectrum for two-particle states in the elastic energy
region is given by the poles of the matrix (1 + RG̃4L)R. This requires the use of
3-projections satisfying certain conditions discussed previously but we will focus on
the simple and practically useful choice of (4.96) which is relevant to the study of
equal-time operators. Using (4.87) we directly have the following matrix relations

G̃4L = −Ũ 1
1 +RŨ

, (1 +RG̃4L)R = 1
1 +RŨ

R. (4.103)

In the absence of interaction the Bethe-Salpeter vanishes, which leads to Ũ = G̃4L =
0. Then, the poles of (1 +RG̃4L)R are simply the poles of R, which are W = 2ωk for k
in Λ. In the presence of interaction, some eigenenergies may “accidentally” be of this
form but we focus on those which are not. Since Ũ has no singularity in the elastic
energy region, see Theorem 4.1, we conclude that the eigenergies of interest are poles
of the matrix G̃4L and can be characterized by

det(1 +RŨ) = 0, (4.104)

where the determinant is over the momenta in Λ. This is the determinant of an infinite
matrix but we can use the symmetries of the system to reduce it to the well-defined
determinant of finite matrices.

The matrices considered so far in finite-volume such as Ũ can be seen as operators
in CΛ, the infinite-dimensional vector space of functions mapping Λ to C. Their matrix
representation corresponds to the basis given by the functions8

|p〉 : p′ ∈ Λ 7→ δp,p′ (4.105)
7 Assuming that the eigenenergy Wn is not degenerate.
8 We use underlined bras and kets to distinguish these vectors from the physical states.
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λ A+
1 A+

2 E+ T+
1 T+

2 A−1 A−2 E− T−1 T−2
(0, 0, 0) 1
(0, 0, a) 1 1 1
(0, a, a) 1 1 1 1 1
(a, a, a) 1 1 1 1
(0, a, b) 1 1 2 1 1 2 2
(a, b, b) 1 1 1 2 1 1 2 1
(a, b, c) 1 1 2 3 3 1 1 2 3 3

Table 4.1: Number of occurences N(Γ, pλ) of the irreducible representation Γ of the
cubic group in the decomposition of the representation Rλ

p depending on
the shape of the elements of Λλp . Any set Λλp contains exactly one element
of the leftmost column with 0 < a < b < c. Empty cells mean zeros.

for all momenta p in Λ. We will now consider these matrices as operators without
changing the notation so for example [Ũ ]p′,p = 〈p′|Ũ |p〉 for p′,p ∈ Λ.

Let us construct a representation R of the cubic group Oh on CΛ which maps a
rotation R ∈ Oh to the matrix D(R) such that D(R)|p〉 = |R · p〉 for all p in Λ.

The set of momenta Λ can be partitioned twice as

Λ =
⋃
p∈|Λ| Λp, Λp =

⋃N(p)
λ=1 Λλp . (4.106)

The first partition is over the norm of the momenta, with

|Λ| = {|p| ∈ R | p ∈ Λ} , Λp =
{
p′ ∈ Λ | p = |p′|

}
. (4.107)

The second partition is over the orbit of the momenta under the action of the cubic group.
Define the equivalence relation such that two momenta in p,p′ in Λp are equivalent
if there is a rotation R ∈ Oh for which p′ = R · p. Then Λλp for λ = 1, . . . , N(p) are
defined as the equivalence classes of that relation. For example 2π

L (1, 2, 2) and 2π
L (3, 0, 0)

are both in Λ 6π
L

but not in the same equivalence class.
These partitions of Λ are stable under the action of the cubic group and therefore

induce the following decomposition of the representation R

R =
⊕
p∈|Λ|Rp, Rp =

⊕N(p)
λ=1 Rλ

p , Rλ
p =

⊕
ΓN(Γ, pλ)× Γ. (4.108)

The last relation is simply the decomposition of Rλ
p over the irreducible representations

of the cubic group Γ = A±1 , A
±
2 , E±, T

±
1 , T±2 with multiplicities N(Γ, pλ). These

multiplicities are summed up in table 4.1.
The decomposition (4.108) of R implies the existence of a basis of CΛ in which

the matrices D(R) are block-diagonal with identical blocks for each occurence of an
irreducible representations Γ in the decomposition of R. The elements of this basis are
noted |pλΓνα〉 with p ∈ |Λ| the norm of a finite-volume momentum, λ ∈ {1, . . . , N(p)}
an equivalence class for momenta with this norm, Γ an irreducible representation,
ν ∈ {1, . . . , N(Γ, pλ)} an index for the multiplicity of Γ in Rλ

p and α ∈ {1, . . . , dΓ}
where dΓ is the dimension of Γ. They are such that

〈p′λ′Γ′ν ′α′|D(R) |pλΓνα〉 = δp′,pδλ′,λδΓ′,Γδν′,ν [DΓ(R)]α′,α , (4.109)

where R ∈ Oh 7→ DΓ(R) is some representation of Oh isomorphic to Γ.
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Let p be a momentum in Λ. It belongs to some equivalence class Λλp , where
p = |p|, which contains in total N(pλ) =

∑
ΓN(Γ, pλ)dΓ elements. These elements

can be canonically enumerated as p1,p2, . . . ,pN(pλ) starting from p1 = (a, b, c) with
0 ≤ a ≤ b ≤ c then using permutations and sign changes on the coordinates. Denote i
the index such that p = pi. The mixing of the two bases introduced so far necessarily
takes the form

〈p′λ′Γνα|p〉 = δp′,pδλ′,λ [Θpλ]Γνα,i . (4.110)

The matrices Θpλ are unitary with finite size N(pλ)×N(pλ). Note that the particu-
lar values of the momenta in Λλp are not relevant for the structure of the representation,
only the way they transform under the action of the cubic group is. Therefore, it can
be shown that for a fixed choice of canonical enumeration we only need 7 matrices Θpλ,
corresponding to the shape of p1 described by the rows of table 4.1. The dimensions
N(pλ) of Θpλ associated to these rows from top to bottom are 1, 6, 12, 8, 24, 24 and
48.

Enumerate the elements of |Λ| as q1 = 0, q2 = 2π
L , . . . by increasing value. Let q = qi

one such element, i.e. the norm of some momentum in Λ, and define the matrices Rq
and Ũq by

[Rq]p′,p = δq,|p|[R]p′,p and Ũq = 1
1 + Ũ (R−Rq)

Ũ , (4.111)

so that the relation (4.103) can be written

G̃4L = −Ũ
[
1− (R−Rq) Ũq

] 1
1 +Rq Ũ

. (4.112)

The matrix Rq vanishes except for momenta with norm q and it is easy to show that
both R−Rq and Ũq are analytic in the region9 ωqi−1 + ωq ≤ ReW < ωq + ωqi+1 . We
deduce that any pole of the finite-volume 4-point function G̃4L in this region satisfies
the condition

det(1 +Rq Ũq) = 0. (4.113)

This condition is equivalent to (4.104) and the determinant is still that of an infinite
matrix but we can use the fact that Rq is zero outside of Λq to give it a finite value.

Finally, the spherical symmetry of the Bethe-Salpeter kernel can be used to show10

that the matrices Ũ and Ũq transform covariantly under the action of the cubic group in
the sense that they commute with the matrices D(R) for any rotation R ∈ Oh. Using
Schür’s lemma, this ensures the expression

〈qλ′Γ′ν ′α′| Ũq |qλΓνα〉 = δΓ′,Γδα′,α [ŨΓ
q ]λ′ν′,λν , (4.114)

for some finite matrices ŨΓ
q . We conclude that (4.113) implies the existence of an

irreducible representation Γ such that

det(1 + 1
L3R(q) ŨΓ

q ) = 0. (4.115)

This is the determinant a finite matrix and it is a well-defined characterization of the
finite-volume eigenenergies in the region ωqi−1 + ωq ≤ ReW < ωq + ωqi+1 . Similar
conditions can of course be derived for the whole energy region 0 ≤ ReW < 4m by
changing q. Note that in the simple case of q ≤

√
8 · 2π/L and Γ = A+

1 , ŨΓ
q is a 1× 1

matrix and this condition is equivalent to Eq. (3.32) of ref. [8].
9 For i = 1, take ωq0 = −m.

10 If the 3-projections PL,R are rotationally invariant, which is the case here.
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Residues

Let Wn be any eigenenergy in the elastic energy region. Assuming that it is not
“accidentally” a pole of R, i.e. Wn = 2ωp for some momentum p in Λ, it satisfies the
condition (4.115) for some momentum norm q in |Λ| and some irreducible representation
Γ of the cubic group. The nullspace of 1 + 1

L3R(q) ŨΓ
q taken at Wn is therefore non-

empty. Let u1, . . . , uN(nΓ) be an orthonormal basis of this nullspace. Each vector ua
of the basis, with elements [ua]λν , is such that the following holds at the energy Wn,

[ua]λν + 1
L3R(q)

N(q)∑
λ′=1

N(Γ,qλ)∑
ν′=1

[
ŨΓ
q

]
λν,λ′ν′

[ua]λ′ν′ = 0. (4.116)

For any α in {1, . . . , dΓ}, use this vector to define two elements of CΛ

|uαa 〉 =
N(q)∑
λ=1

N(Γ,qλ)∑
ν=1

[ua]λν |qλΓνα〉, |vΓαa
n 〉 =

(
1− (R(n) −R(n)

q ) Ũ (n)
q

)
|uαa 〉,

(4.117)
where we use a superscript (n) to denote that the matrices R, etc. are taken at the
energy Wn. Inserting the definitions of Rq and Ũq leads to the two relations

(1 +R(n)
q Ũ (n)

q )|uαa 〉 = 0, (1 +R(n) Ũ (n))|vΓαa
n 〉 = 0. (4.118)

This gives sense to the two conditions (4.104) and (4.113): the determinant of these
infinite matrices is zero because their nullspace is not empty. Let Pn be the orthogonal
projector on ΣN , the nullspace of 1 +R(n) Ũ (n). It may be expressed as

Pn =
∑
Γ

dΓ∑
α=1
PΓα
n , PΓα

n =
N(nΓ)∑
a=1
|vΓαa
n 〉〈vΓαa

n |, (4.119)

where the first sum is over the irreducible representations Γ of the cubic group, the
second is over the dimension of Γ and the third is over the basis of the nullspace of
1 + 1

L3R(q) ŨΓ
q at W = Wn (it may be empty for some Γ, in which case PΓα

n = 0, but
not all so that Pn 6= 0). All these sums are finite.

The projector Pn can be used to characterize the residue X̃n of (1 +RG̃4L)R at the
pole W = Wn. Note that Ũ is analytic at this energy due to Theorem 4.1 so we have
the expansion

Ũ = Ũ (n) + (W −Wn) Ũ (n)′ +O((W −Wn)2), (4.120)
for some matrix Ũ (n)′. We can also work out the expansion of R around W = Wn,

R = R(n)
[
1 + (W −Wn)WnL3

2m R(n) +O((W −Wn)2)
]
. (4.121)

Combining the last two expansions, we obtain around the pole

1 +RŨ =
(
1 +R(n)Ũ (n)

)
+ (W −Wn)R(n)

(
WnL3

2m R
(n)Ũ (n) + Ũ (n)′

)
+O((W −Wn)2).

(4.122)
The first term 1 +R(n)Ũ (n) is zero when left- or right-multiplied by any vector of Σn

and non-zero otherwise. Consider 1+RŨ as a 2×2 block matrix with blocks separating
Σn and its orthogonal complement, the upper-left block A being its restriction from
Σn to Σn, etc. The inverse of a 2× 2 block matrix is given by[

A B
C D

]−1

=
[

(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A−BD−1C)−1 (D − CA−1B)−1

]
. (4.123)
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From the previous observation A, B and C scale like W −Wn around the pole while D
converges towards an inversible matrix. Only the upper-left part of the inverse matrix
is singular and equivalent to A−1 around the pole. We deduce that

1
1 +RŨ

= 1
W −Wn

Pn
1

R(n)
(
−WnL3

2m + Pn Ũ (n)′ Pn
)Pn +O(1), (4.124)

where we used R(n)Ũ (n)Pn = −Pn. Given (4.103), the residue X̃n is then directly given
by

X̃n = Pn
1

−WnL3

2m + Pn Ũ (n)′ Pn
Pn. (4.125)

Note that if the kernel Ũ is not energy-dependent, Ũ (n)′ vanishes and the residue
is proportional to the projection Pn.

With the expression (4.125) of the residue X̃n, we can show that the function ψ̂n
defined in (4.102) satisfies

− [R(n)]−1(p) ψ̂n(p) = 1
L3

∑
p′∈Λ

Ũ (n)
η (p,p′)ψ̂n(p′), (4.126)

where p ∈ Λ and the rescaled kernel Ũη is

Ũη(p,p′) = eη
p2−p′2

2m2 Ũ(p,p′), (4.127)

with Û
(n)
η its value at the energy Wn as before. Remember that η was introduced

in (4.95) to ensure that some integrals do not exhibit UV divergences. Since η can be
taken arbitrarily close to zero, the deviation between Ũη and Ũ is only for asymptotically
large p2−p′2

m2 . This corresponds to the interaction between intermediate states of vastly
different energies. For the present study of energies of the order of the mass m, we will
consider that we may replace Ũη by Ũ for η small enough.

Defining ψn(r) the inverse Fourier transform of ψ̂n(p), the previous equation reads
in position space, up to correction vanishing exponentially with the volume as usual,

1
m(∆ + q2

n)ψn(r) =
∫

FV
d3r′ U (n)(r, r′)ψn(r′), (4.128)

where r, r′ ∈ [−L
2 ,

L
2 ]3 and qn is such that Wn = 2ωqn .

The previous equation is quite similar to (4.70) satisfied by ψ(n)
∞ in infinite volume.

However, it becomes exactly the same if we replace U by the compactly supported
UR where R = 0.4L in both (4.70) and (4.128). As discussed for the infinite-volume
equation, this only results in additional corrections vanishing exponentially with the
volume. In summary, up to such corrections, ψn and ψ

(n)
∞ satisfy the exact same

Schrödinger equation on the ball B(0, L2 ). This implies in particular that in the region
0.4L < r < 0.5L, ψn is determined by the scattering phase shifts δl(qn) in the same
way as (4.79)11.

11 With possibly different coefficients αlm.
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Another quantization condition

We have seen that the poles of the 4-point function G̃4L below the inelastic threshold
correspond12 to the finite-size spectrum and we have expressed a characterization of
these poles through (4.104). Another characterization can be directly derived using the
relation (4.89) between the finite- and the infinite-volume 4-point functions. Indeed,
since the infinite-volume amputated 4-point function G4 has no singularity in the elastic
energy region (in the absence of bound states and resonances), the pole must satisfy

det(1 +M••G̃••4 ) = 0, (4.129)

where the determinant is over all angular momenta (l,m).
Remember that G̃••4 corresponds to G̃4 being taken on-shell on both arguments

and this is proportional to the T-matrix by (4.57). Therefore, we have for a pole at
Wn = 2ωqn ,

[G̃••4 ]lm,l′m′ = 1
2mWn

[T ]lm,l′m′ = δl,l′δm,m′
8π2

imqn

(
e2iδl(qn) − 1

)
, (4.130)

where m in the denominators is the particle mass. Equation (4.129) is then equivalent
to the finite-size formula derived by Lüscher in ref. [9].

Once again, this condition involves the determinant of an infinite matrix, which may
be interpreted as the fact that 1+M••G̃••4 has a non-zero nullspace at some eigenenergy
Wn. For the rest of this subsection, we take all energy-dependent matrices and functions
at this energy Wn (or Wn + iε when necessary) and omit the usual superscript (n) to
avoid too heavy notations. Let u1, u2, . . . be an orthonormal basis of the nullspace of
1 +M••G̃••4 . Each vector ua of the basis, with elements [ua]lm, is such that

[ua]lm +
∞∑
l′=0

l′∑
m′=−l′

[M••]lm,l′m′ [G̃••4 ]lm′,lm′ [ua]l′m′ = 0. (4.131)

For any position r ∈ R3 and any on-shell momentum q = qnq̂, we introduce the
difference

∆L(r, q̂) ≡
∫

d3p

(2π)3 e
ip·rR(p)G̃4(p, q)− 1

L3

∑
p∈Λ

eip·rR(p)G̃4(p, q). (4.132)

With the methods discussed in appendix B.2 which lead to the relation (4.89), we can
show that this difference has the following expression

∆L(r, q̂) =
∑
lm

∑
l′m′

4πiljl(qnr)Ylm(r̂)[M••]lm,l′m′ [G̃••4 ]l′m′,l′m′Y ∗l′m′(q̂). (4.133)

Due to the similarity with (4.131), we define for any vector ua a function of the angle q̂

fa(q̂) =
∞∑
l=0

l∑
m=−l

[ua]lmYlm(q̂). (4.134)

These functions all satisfy the relation∫
dq̂∆L(r, q̂)fa(q̂) = −

∫
dq̂ eiq·rfa(q̂). (4.135)

12 Except for “accidental” eigenenergies Wn = 2ωq with q in Λ.
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We can use the functions fa to take some specific combinations of the infinite-volume
“wave functions” ψ̂q∞ defined in (4.68),

ψ̂qn,a∞ (p) =
∫
dq̂ ψ̂q∞(p)fa(q̂). (4.136)

Then, the previous discussion leads to the remarkable13 property that up to corrections
vanishing exponentially with the volume, these generalized functions satisfy[

F−1
∞ · ψ̂qn,a∞

]
(r) =

[
F−1
L · ψ̂

qn,a
∞

]
(r), (4.137)

for any r ∈ [−L
2 ,

L
2 ]3, where the infinite- and finite-volume inverse Fourier transforms

are defined as usual by

[F−1
∞ · ĥ](r) =

∫
dp

(2π)3 e
ip·rĥ(p), [F−1

L · ĥ](r) = 1
L3

∑
p∈Λ

eip·rĥ(p), (4.138)

for a function ĥ defined on R3.

4.3.3 Description of the method

In the previous section, we have derived two quantization conditions allowing to char-
acterize the finite-volume energy spectrum below the inelastic threshold. The two
conditions are of course equivalent and they are related by equation (4.89).

The second condition (4.129) is the well-known finite-size formula first derived by
Lüscher in ref. [9]. While it was derived in a purely quantum-field-theoretical setting
using the 4-point function, we also gave an interpretation in terms of “wave functions”.
The idea is that some functions ψ̂qn,a∞ defined in infinite-volume can “fit” in a finite
box, in the sense of (4.137), which was the starting point of Lüscher’s derivation for a
quantum mechanical system. The condition itself can be directly exploited to relate
the finite-size spectrum to the scattering phase shifts. However, the existence of the
functions ψ̂qn,a∞ does not seem to have any practical use since they are defined from the
unknown functions ψ̂q∞.

The first quantization condition (4.104) is a generalization of the work by Lüscher
in ref. [8]. It states that the functions

ψn(r) = 1
L3

∫
FV

d3x 〈0|φ(x+ r, 0)φ(x, 0)|n〉, (4.139)

defined for any eigenstate |n〉 of the finite-volume Hamiltonian with an energy under
the inelastic threshold, satisfy the same Schrödinger equation (4.70) as the infinite-
volume “wave functions” ψ∞. This is significant because the functions ψn can actually
be evaluated using lattice simulations and the functions ψ∞ are directly related to
the scattering phase shifts by (4.79). It implies that the scattering phase shifts can
similarly be extracted from ψn but also opens the way to approximate the Schrödinger
equation at nearby energies. We will explore that possibility in this section.

Kernel approximation

We come back to the Schrödinger equation (4.70) satisfied by the infinite-volume
functions ψ∞ in the elastic energy region. As discussed previously, it still holds if we

13 Considering their singularities.
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replace U by the compactly supported UR up to corrections decaying exponentially
with R. At an energy Wn < 4m of the finite-volume spectrum, taking R = 0.4L it also
satisfied in the ball B(0, L2 ) by the finite-volume function ψn up similar corrections,
which we will neglect since R ∼ L. Let us write it again

1
m(∆ + q2

n)ψ(r) =
∫
d3r′ U

(n)
R (r, r′)ψ(r′), (4.140)

valid with r ∈ R3 for ψ = ψ
(n)
∞ and r ∈ B(0, L2 ) for ψ = ψn.

Due to its spherical symmetry, the kernel U (n)
R can be expanded on the spherical

harmonics as

U
(n)
R (r, r′) =

∞∑
l=0

l∑
m=−l

[U (n)
R ]l(r, r′)Ylm(r̂)Y ∗lm(r̂′), (4.141)

while the function ψ, which is either ψ(n)
∞ or ψn, is expanded as

ψ(r) =
∞∑
l=0

l∑
m=−l

[ψ]lm(r)Ylm(r̂). (4.142)

For any angular momentum channel (l,m), this leads to the radial Schrödinger equation

1
m

(
d2

dr2 + 2
r

d

dr
− l(l + 1)

r2 + q2
n

)
[ψ]lm(r) =

∫ R

0
dr′ r′2[U (n)

R ]l(r, r′)[ψ]lm(r′), (4.143)

valid at least for r < L
2 .

It may seem surprising that the functions ψn satisfy uncoupled radial Schrödinger
equations while the angular momentum is not conserved in finite volume. However,
remember that the Schrödinger equation (4.128) for ψn is only valid up to corrections
decaying exponentially with the volume. It would be exact if we replaced U (n) by
a kernel defined from the finite-volume Bethe-Salpeter kernel KL using sums over
momenta in Λ instead of integrals for loops, Fourier transforms, etc. This kernel would
only transform covariantly under the cubic symmetry and therefore it would mix the
different angular momentum components of ψn in the Schrödinger equation. We deduce
that these mixings decay exponentially with the volume and may be neglected. This
is in stark constrast with the finite-size formula (4.129) for which the mixing of the
angular momentum channels in finite volume is essential.

If the function [ψ]lm is analytic at r and its Taylor expansion around r has a radius
of convergence larger than R, the right-hand side of the radial Schrödinger equation
can be shown14 to read∫ R

0
dr′ r′2[U (n)

R ]l(r, r′)[ψ]lm(r′) =
∞∑
j=0

V
(n)
l,j (r)( 1

m∂r)
j [ψ]lm(r), (4.144)

where the series converges absolutely and the functions Vl,j are given by

Vl,j(r) = mj

j!

∫ R

0
dr′ (r − r′)jr′2[UR]l(r, r′), (4.145)

with the usual superscript (n) to denote that they are taken at the energy Wn. We use
the derivative ( 1

m∂r)
j so that the functions Vl,j all have the dimension of an energy.

14 Using the compact support of UR, the Fourier transform of g(r − r′) = r′2[U (n)
R ]l(r, r′) is entire

and its expression as a power series can be used to obtain the derivatives of [ψ]lm.
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Since [U (n)
R ]l is smooth, the functions [ψ]lm are also smooth by elliptic regularity but

they may not be analytic, let alone have a large radius of convergence. However, if we
set an arbitrary UV momentum cutoff15, i.e. make their Fourier transform compactly
supported, the functions [ψ]lm become entire and the expansion (4.144) holds. Another
way to have a well-defined expansion is if the kernel [U (n)

R ]l(r, r′) has some particular
decay properties in |r − r′|. For example if [U (n)

R ]l(r, r′) ∝ δ(r − r′), the functions V (n)
l,j

vanish for j > 0 and expansion is a finite sum. Either way, we will assume in the
following that the expansion converges absolutely.

Due to Theorem 4.1, the functions [U (n)
R ]l and therefore Vl,j are analytic in the energy

region 0 ≤ ReW < 4m. It follows that the coefficients Vl,j(r) seen as functions of realW
are equal to their Taylor series aroundW = 2m in the open interval Iel = ]0, 4m[16. For
any finite-volume eigenenergy Wn in Iel, the following expansion converges absolutely∫ R

0
dr′ r′2[U (n)

R ]l(r, r′)[ψ]lm(r′) =
∞∑
j=0

∞∑
k=0

Vl,j,k(r)(Wn
2m − 1)k( 1

m∂r)
j [ψ]lm(r), (4.146)

where the functions Vl,j,k defined by

Vl,j,k(r) = (2m)k

k! ∂kWVl,j(r)|W=2m, (4.147)

are again scaled to have the dimension of an energy.
Note how the coefficients Vl,j,k(r) have no superscript (n) in the previous equation

since they are energy-independent. The energy dependence is now made completely
explicit in the terms (Wn

2m −1)k. While that equation is satisfied by the functions [ψn]lm
at energies Wn in the intersection of the finite-size spectrum and Iel (a finite set), it is
also satisfied with the same set of coefficients Vl,j,k(r) by the infinite-volume functions
[ψ∞]lm at all energies W in Iel, replacing Wn by W , qn by

√
mE(W ) and ψ by ψ∞.

Since the expansion (4.146) converges absolutely, it can be approximated by trun-
cation. In other terms, the radial Schrödinger equation for [ψ]lm at an energy Wn in
the interval Iel reads

1
m

(
d2

dr2 + 2
r

d

dr
− l(l + 1)

r2 + q2
n

)
[ψ]lm(r) '

Nj∑
j=0

Nk∑
k=0

Vl,j,k(r)(Wn
2m − 1)k( 1

m∂r)
j [ψ]lm(r),

(4.148)
for large Nj , Nk and as usual large box size L. This truncation is simple but may not
have the optimal convergence rate.

In general, consider any basis {Θb}b=1,2,... of the set of vectors indexed by N2. Denote
their components Θb

j,k where (j, k) ∈ N2. At fixed r and l, the coefficients Vl,j,k(r) can
be seen as the components of a vector and therefore expanded as

Vl,j,k(r) =
∞∑
b=1

Θb
j,kV

b
l (r), (4.149)

for some functions V b
l (r). This relation is invertible so that the knowledge of all the

coefficients Vl,j,k(r) or all the coefficients V b
l (r) is equivalent. If the vectors Θb all have

15 Lattice simulations will naturally set a UV cutoff.
16 We can also consider the Taylor series around any real energy W∗ ∈ [0, 4m[ which would converge

in the interval I∗ = ]W∗ − δW ,W∗ + δW [ where δW = min(W∗, 4m−W∗). The choice of W∗ = 2m will
be the most useful for computations.
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a finite number of non-zero components, each choice of basis leads to a sequence of
truncations

1
m

(
d2

dr2 + 2
r

d

dr
− l(l + 1)

r2 + q2
n

)
[ψ]lm(r)

'
B∑
b=1

V b
l (r)

∞∑
j=0

∞∑
k=0

Θb
j,k(Wn

2m − 1)k( 1
m∂r)

j [ψ]lm(r), (4.150)

such that we recover the radial Schrödinger equation (4.143) as B →∞. The previous
truncation (4.148) is the particular choice of B = (Nj + 1)(Nk + 1) and Θj+(Nj+1)k

j′,k′ =
δj,j′δk,k′ .

Kernel computation

As discussed previously, the functions ψn can be evaluated by lattice simulations. Select
a certain number of finite-volume operators Oi (i = 1, . . . , Nsrc), not necessarily in the
form described by (4.91). Discretizing the finite-volume theory on a regular lattice
with spacing a (where L ∈ aN), one may compute the correlators

Ψr,i(t) ≡ e2mt 1
L3

∑
x

〈φ(x+ r, t)φ(x, t)O†i 〉a. (4.151)

where i = 1, . . . , Nsrc and the brackets 〈· · · 〉a denote the Euclidean correlation functions
in the discretized theory. The index r and the sum on x are over the grid positions
aZ3 ∩ [−L

2 ,
L
2 ] while the Euclidean time t may be discretized with another spacing

proportional to a. The factor e2mt will be useful later.
These correlators have the usual expansion over the eigenstates with energies W a

n

of the Hamiltonian of the discretized theory

Ψr,i(t) =
∑
n≥1

ψan(r)An,ie−(Wa
n−2m)t, (4.152)

for some coefficients An,i and where ψan(r) and W a
n have the limit

lim
a→0
r∈aZ3

ψan(r) = ψn(r), lim
a→0

W a
n = Wn. (4.153)

The correlators Ψr,i(t) are defined for r on the discrete lattice. They can be
interpolated linearly in r on the whole ball B(0, L2 ), projected on specific angular
momenta channels (l,m) then convolved with a normalized gaussian function with
width of the order of a. The resulting correlators are denoted Ψlm,i(r, t) and can be
expressed as

Ψlm,i(r, t) =
∑
n≥1

[ψan]lm(r)An,ie−(Wa
n−2m)t, (4.154)

where r ∈ [0, L2 [ is continuous (but t is discretized) and we have the limits

lim
a→0

∂jr [ψan]lm(r) = ∂jr [ψn]lm(r), (4.155)

for any j ≥ 0. The asymptotic rate of convergence is linear with a practical convergence
rate expected to be the slowest at small r (compared to L) and/or large angular momenta
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l. We take the convolution with a gaussian so that the functions [ψan]lm(r) and Ψlm,i(r, t)
are smooth in r and the limit above also holds for the derivatives.

With a large numberNsrc of operators and correlators evaluated at large times t, one
can use the variational method to extract the functions [ψan]lm(r) for a certain set n ∈ N .
For some B such that there are at least B eigenenergies in {Wn}n∈N ∩Iel, plug [ψan]lm(r)
at these energies in the truncated radial Schrödinger equation (4.150) to obtain the
coefficients V a

l (r)17 up to linear corrections in the lattice spacing, exponentially decaying
correction in the box size L and additional corrections due to the truncation. Solving
the same Schrödinger equation for any energy in the interval Iel leads to solutions
proportional to [ψ∞]lm which can be used to extract the scattering phase shifts at these
energies from the asymptotic behavior (4.79), up to the same order of corrections as
described for Vl,j,k(r). These corrections vanish as we take a→ 0, L→∞ and B →∞.

The previous paragraph describes an ideal scenario which is unfortunately unattain-
able with limited computational resources. In practice, only a few eigenenergies above
the ground state may have a decent signal-to-noise ratio and it can be difficult to
separate their contributions in the case of a dense finite-size spectrum. Separate the
contributions of the inelastic states as

Ψlm,i(r, t) =
∑

Wn∈Iel

[ψan]lm(r)An,ie−(Wa
n−2m)t +O(e−2mt). (4.156)

It is then easy to show that the equation

1
m

(
∂2
r + 2

r
∂r −

l(l + 1)
r2 − ∂t + 1

4m∂2
t

)
Ψlm,i(r, t)

=
∞∑
b=1

 ∞∑
j=0

∞∑
k=0

Θb
j,k

1
(−2)k

1
mj+k ∂

k
t ∂

j
rΨlm,i(r, t)

V b
l (r) +O(e−2mt), (4.157)

holds up to additional corrections linear in a and exponential in L. At this stage, ∂t is
discretized but not ∂r since the spatial dependence has already been interpolated.

Suppose that the correlators can be evaluated at times t large enough that the
O(e−2mt) contributions of the inelastic eigenstates are negligible. The number of finite-
volume eigenenergies in the interval Iel grows to infinity with L. At finite L suppose
that there are at least B such energies. Then choose B arbitrary operators Oi with
linearly independent mixing with the eigenstates corresponding to energies in Iel. After
truncation of the sum on b, the coefficients V b

l (r) for b = 1, . . . , B can be approximated
by inverting (4.157). These coefficients can be used as previously to approximate the
scattering phase shifts at any energy in Iel.

Discussion

In practice, it may not be possible to neglect the contribution of the inelastic eigenstates
with energies Wn ≥ 4m. The variational method can be used to face this issue. In
the first formulation of this method, we used the fact that the variational method can
theoretically be used to extract the contribution of a single eigenstate. This is how the
variational method is usually used and it becomes challenging as the volume increases.
In the second formulation, we only need to use the variational method to remove as
much as possible the contribution of eigenstates with energies Wn ≥ 4m, for example
by adding some operators which couple with these unwanted states.

17 These coefficients are then the solution of a linear system at each r.
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Consider the system of two pions in the isospin I = 1 channel at the physical point.
The first energy levels are pion-pion scattering states and there are higher energy levels
corresponding to the rho resonance. By adding rho-like operators in the variational
basis, one can obtain “clean” pion-pion operators with negligible mixing with the rho
states. However, there is no need to fine tune the pion-pion operators to mix with
exactly one eigenstate as is usually required to extract the associated eigenergy which
will be used in the finite-size formula. At large L where the energies of the pion-pion
scattering states are very close, the improvement can be significative. Of course, the
focus would be on the elastic scattering and not the properties of the resonance.

Similarly as the variational method, for which one can check the validity of the
extracted eigenenergies by the appearance of a plateau, the coefficients Vl,j,k(r) should
also exhibit a plateau in some time range. Another available test is to check the
dependence on the truncation B or the choice of basis. Finally, if the extraction
of specific eigenstates by variational method is amenable, one can check that the
scattering phase shifts agree at the energies of the finite-size spectrum using the finite-
size formula. If these tests pass, one can gain confidence in the value of the scattering
phase shifts obtained in the range [2m,Wmax] where Wmax is the energy of the highest
eigenstate which contribute significantly to the correlators. Indeed, at higher energies,
the contributions of the truncated terms may become more important.

In summary, the kernel approximation method has two main advantages, in its area
of application, compared to the finite-size formula,

i) there is no need to separate the contribution of each single eigenstates using the
variational method, only to “clean” the operators sufficiently from the contribu-
tion of the inelastic eigenstates,

ii) it provides an approximation of the scattering phase shifts in the whole region
Iel, which converges as B →∞18.

18 Technically, this limit corresponds to L→∞ so that the finite-size spectrum would become dense
in Iel anyway. However, not only would it be impossible to separate the contribution of each eigenstate
by the variational method in this limit but we may expect that moderate B are sufficient to obtain the
scattering phase shifts at a certain degree of precision.



Chapter 5

Numerical applications

5.1 Comparing the methods in the two-pion I = 2 channel

The system of two pions in the isospin I = 2 channel is arguably the simplest and less
computationally expensive to study scattering process in lattice QCD. For this reason,
it has been widely investigated (see e.g. ref. [30, 41, 42]) and is the system of choice
to serve as the test-bed of new methods. In this section we will present simulation
results for the study of this system using the various methods discussed so far in order
to analyze the correctness and efficiency of each method.

5.1.1 Simulations details

We have performed simulations of the I = 2 ππ channel in full lattice QCD. Our
calculations are based on Nf = 2 + 1 QCD gauge configurations generated by the
PACS-CS collaboration [43] on a 323 × 64 lattice using the Iwasaki gauge action at
β = 1.9 and clover fermions. The associated lattice spacing is a = 0.0907 fm and the
sea quark hopping parameters are κud = 0.1370 and κs = 0.1364, making for a pion
mass of m = 0.32242(65) a−1, or m = 0.7 GeV.

We use momentum-wall source fields for all the methods, i.e.

S†j (t) = [ūw(qj , t)γ5dw(0, t)] [ūw(−qj , t)γ5dw(0, t)] (5.1)

at the Euclidean time t, where the momentum-wall quarks are defined from the quark
fields as

ūw(qj , t) =
∑
x

e−iqj ·xū(x, t). (5.2)

We use 5 momenta, chosen as q1 = 0, q2 = (0, 0, q), q3 = (0, q, q), q4 = (q, q, q) and
q5 = (0, 0, 2q), with q = 2π

L .
For the HAL QCD, effective potential and kernel approximation method, we use

local pion fields with fixed separation as sink fields

Owf
r = 1

48
∑
R∈Oh

∑
x

[
uγ5d̄

]
(x)

[
uγ5d̄

]
(x+R · r) (5.3)

where the lattice sites x and r run over one periodicity cell. The first sum is on the
rotations R of the cubic group Oh and serves as a projection on the A+

1 irreducible
representation. The sink operators for the variational method are then constructed by
projecting the previous fields on momenta qi,

Ovar
i =

∑
rk

e−iqi·rkOwf
k , (5.4)
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which are chosen similarly as for the source fields.

5.1.2 HAL QCD method

We use the time-dependent HAL QCD method described in section 3.3.2. The starting
point is the evaluation of the following correlators on the lattice

Ri(r, t) ≡ e2mt〈Owf
r (t)S†i (0)〉, (5.5)

where the index i refers to source operator used in the correlator. We show in fig. 5.1
some of these correlators. As expected, they take contributions at small times t from
the BS wave functions ψL,n of the energy eigenstates |n〉, cf. (3.98), in such a way that
their shapes somehow resemble their free values (the projection of cos(2π

L qi · r) on A+
1

for Ri). At large t, the contribution of the ground state dominates so that the shape
of the correlators becomes independent of the source operator (here indexed by i). We
see that this ground state saturation is more or less complete by t = 25 for all our
sources but i = 1.

Assuming Hermiticity, rotational invariance and time-reversal invariance of the
potential UHAL for a system of two mesons, it can be expressed as

UHAL(r, r′) = V (r,v2,L2)δ(r − r′), (5.6)

for some function V , where v = 2p/m, L = r × p and p = −i∇ are differential
operators. The velocity expansion at the next-to-leading order then reads

UHAL(r, r′) =
[
V0(r) + 1

2{Vv2(r),v2}+ Vl2(r)L2 +O(v4)
]
δ(r − r′), (5.7)

where O(v4) is to be understood as a decaying behavior when the potential is applied
to functions varying asymptotically slowly.

In order to analyze the validity of the velocity expansion, we show in fig. 5.2 the
effect of the operators L2 and v2 on the correlators Ri at t = 12 for i = 0 to 4.
The functions v2Ri are seen to be large, compared to Ri, and almost radial at small
radii while the functions L2Ri are negligible up to r & 0.8 fm then become large
and highly multi-valued in the radial direction. The effect of L2 is as expected since
the correlators Ri transforming as the A+

1 representation of the cubic group contains
angular momentum components l = 0, l = 4, l = 6 and above. The application of L2

makes the l = 0 component vanish while the l ≥ 4 components, suppressed at small
radii by the centrifugal effect, are enhanced.

As we will see, the range of the interaction at the energies considered here is
r ' 0.8 fm. The functions L2Ri have a very small signal-to-noise ratio in the interacting
region so that the L2 dependence of V cannot be extracted reliably from our simulations.
However, this L2 dependence of V is expected to be much less relevant than its v2

dependence when applied on the correlators Ri, for the very same reason. We are thus
lead to analyze the expansion

UHAL(r, r′) =
[
V0(r) + 1

2{Vv2(r),v2}+ 1
2{Vv4(r),v4}+O(L2) +O(v4)

]
δ(r − r′),

(5.8)
which would be reasonable for functions with the features of the correlators Ri described
above.

We plot in fig. 5.3 (left) the function v4R0 and t = 12. Contrary to expectations,
it is much larger than R0 and seems less regular than v2Ri. Looking at fig. 5.3
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Figure 5.1: In the (i+ 1)-th row from the top, the correlators Ri(r, t), normalized
by their global maximum value, are shown in the plane x = 0 at the
times t = 5 (left) and t = 25 (right).
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Figure 5.2: The correlators Ri at t = 12 for i = 0 to 4 and the effect of the operators
v2 and L2 on them. The normalization of Ri is the same as in fig. 5.1.
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Figure 5.3: (Left) effect of v4 on the correlator R0 at t = 12. (Right) the Fourier
transform of v2kR0 at t = 12 for k = 0, 1, 2. The normalization of R0 is
the same as in fig. 5.1.



5.1. Comparing the methods in the two-pion I = 2 channel 79

(right), this can be explained directly by the lattice discretization effect. We see that
R0 and v2R0 contain contributions for momenta mostly below 1 GeV and 3 GeV
respectively. However, v4R0 takes sizeable contributions for momenta up to the lattice
cutoff 2π

a ∼ 12 GeV and therefore cannot be reliably used without reducing the lattice
spacing a. The same remarks stand for v4Ri with different sources i.

Given the previous discussion, we will consider the following approximations of the
potential UHAL,

UHAL(r, r′) ' V0(r)δ(r − r′), (5.9)

at the leading order (LO) and

UHAL(r, r′) '
[
V0(r) + 1

2{Vv2(r),v2}
]
δ(r − r′), (5.10)

at the next-to-leading order (NLO). Remember that these approximations are only
expected to be valid when the potential is applied to the correlators Ri or functions
with similar features.

For i = 0, . . . , 4 define the functions

V i
A(r, t) ≡ 1

Ri(r, t)

(
1

4m
∂2

∂t2
− ∂

∂t
+ ∆
m

)
Ri(r, t). (5.11)

Using the Schrödinger equation (3.113), the LO approximation is equivalent to

V0(r) ' V i
A(r, t), (5.12)

for any source i provided that the contribution of the inelastic eigenstates are negligible
at the time t. The previous analysis of the correlators shows that only the two lowest
energy eigenstates are non-negligible at t = 25. Looking at more time slices, it seems
reasonable to neglect the contribution of the inelastic eigenstates at times t & 10.

Fig. 5.4 presents the leading order (LO) potentials V i
A(r, t) for our 5 sources at

times t = 12 and t = 25. Projected in the radial direction, these are multi-valued
functions. At t = 12, we can see that they coincide completely for i = 0, i = 3 and
i = 4. The ground state saturation can be considered complete at t = 12 for the
source i = 0 but not for i = 3 and i = 4 where the third and fourth excited states still
contribute as we will see in the discussion of the variational method. The agreement
between these three leading order potentials is therefore encouraging. The same can be
said for the sources i = 2 at t = 12 and i = 1 at t = 25. In both cases (as can be seen
in fig. 5.1 for the latter), the correlators are still far from achieving a complete ground
state saturation but the leading order potentials are very close to their asymptotic
values. The slight deviations can be the result of either the contributions of inelastic
states or the truncation of the potential. As discussed previously we would incline for
the latter so that this observation suggest that the truncation effects are rather small.
The singularity of V 1

A is due to the correlator R1(r, t) crossing zero around r = 0.8 fm
at t = 12, see fig. 5.2 (upper right).

For any pair of source indices i1 6= i2, define the functions V i1,i2
A (r, t) and V i1,i2

B (r, t)
as the solutions of the system(

1
4m

∂2

∂t2
− ∂

∂t
+ ∆
m

)
·
[
Ri1(r, t)
Ri2(r, t)

]
=
[
Ri1(r, t) 1

2v
2Ri1(r, t)

Ri2(r, t) 1
2v

2Ri2(r, t)

] [
V i1,i2
A (r, t)
V i1,i2
B (r, t)

]
, (5.13)
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Figure 5.4: The LO potentials V iA computed for each source i separately at the times
t = 12 (upper) and t = 25 (lower).
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Figure 5.5: The components V i1,i2A and V i1,i2B of the NLO potential, at t = 12 for
the choice of sources (i1, i2) = (0, 1). The LO potential V iA computed
from the source i = 0 is shown for comparison.
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Figure 5.7: Fit functions for the components of the LO and NLO potentials corre-
sponding to fig. 5.5. Bands at one standard deviation are shown for each
fit function.

at all positions r. Then, the Schrödinger equation (3.113) implies that the NLO
approximation is equivalent to

V0(r) ' V i1,i2
A (r, t) + 1

2v
2V i1,i2

B (r, t), Vv2(r) ' V i1,i2
B (r, t), (5.14)

at a time t where the inelastic states contributions are negligible.
Fig. 5.5 shows the functions V i1,i2

A and V i1,i2
B that we extract with the choice

(i1, i2) = (0, 1) and t = 12. We observe that V i1,i2
B is small and V i1,i2

A is close to
the LO potential V i1

0 . This is consistent with the fact that the truncation effects at the
LO level were expected to be small from the previous discussion. To comfirm this fact,
we compute the NLO potential for several other choices (i1, i2). The aggreement of the
results in fig. 5.6 is remarkable. Note that at the NLO, the fact that the correlator
R1(r, t = 12) crosses zero around r = 0.8 fm does not induce a singularity because
v2R1(r, t = 12) is non-zero in this region.

We now fit the components of the potential by radial analytic functions. For the
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components V i
A and V i1,i2

A , we use a sum of one Gaussian and two exponentials

f(r) = a1e
−a2r2 + a3e

−a4r + a5e
−a6r, (5.15)

and for the component V i1,i2
B , we use

f(r) = a1(ra2 − a3)e−a4r, (5.16)

as fit functions with parameters a1, a2, . . . . We show in fig 5.7 the results of the fits
corresponding to the potentials previously shown in fig. 5.5.

We then solve the radial Schrödinger equation in infinite volume in the S-wave at
any energy using the fit to the potentials obtained by lattice input. These potentials
approximate UHAL and therefore the solutions approximate the infinite-volume BS
wave functions given the relation (3.105). An numerical estimation of the scattering
phase can thus be extracted from the asymptotic behavior of the solutions. Using
either the LO or the NLO potential, we obtain two estimations which we will present
in fig. (5.9) along with the results of the kernel approximation method.

5.1.3 Kernel approximation method

The kernel approximation method is in practice quite similar to the HAL QCD method,
with some advantages that we will see. It relies on the same correlators Ri(r, t), but
projected on angular momentum channels as described in section 4.3.3. First, the
correlators Ri(r, t), defined for discrete r on the lattice, are interpolated linearly to
obtain Rlin

i (r, t) defined for continous r in the ball B(0, L2 ). Then, these interpolations
are projected on the angular momentum channels by the spherical harmonics as

[Rlin
i ]lm(r, t) =

∫
dr̂Y ∗lm(r̂)Rlin

i (r, t), (5.17)

for 0 ≤ r < L
2 . Finally, we use a convolution with a Gaussian function or its derivatives

to obtain the following smooth radial functions

∂jr [Ri]lm(r, t) =
∫ L

2

0
dr′[Rlin

i ]lm(r − r′, t) 1√
2π

[
d

dr′

]j
e−

r′2
2σ , (5.18)

for any j ≥ 0, where the differentiation in the integral can be performed analytically.
An important difference with the HAL QCD method is that the existence of a

rapidly-decaying, spherically symmetric potential which can be approximated by trun-
cation is not assumed but proven. However, it is energy-dependent and may not satisfy
Hermicity and time-reversal invariance. Its general form is therefore

U(r, r′) = V (r, r · v,v2,L2,W − 2mπ)δ(r − r′), (5.19)

where the dependence in all the arguments of V but r can be expanded in a power
series as seen in (4.148).

In this work, we are interested in the S-wave (l,m) = (0, 0). The dependence of
the potential in L2 is therefore irrelevant. As for the other dependences, the analysis
made for the HAL QCD method suggests that an expansion of U similar to UHAL is
adequate. We therefore directly consider the NLO expression 5.10 for U(r, r′) and
define the functions Ṽ i1,i2

A (r, t) and Ṽ i1,i2
B (r, t) by(

1
4m

∂2

∂t2
− ∂

∂t
+ ∆
m

)
·
(

[Ri1 ]00(r, t)
[Ri2 ]00(r, t)

)
=
(

[Ri1 ]00(r, t) 1
2v

2[Ri1 ]00(r, t)
[Ri2 ]00(r, t) 1

2v
2[Ri2 ]00(r, t)

)(
Ṽ i1,i2
A (r, t)
Ṽ i1,i2
B (r, t)

)
,

(5.20)
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Figure 5.8: The components Ṽ i1,i2A and Ṽ i1,i2B of the potential obtained using the
kernel appoximation method, at t = 12 for the choice of sources (i1, i2) =
(0, 1). Bands at one standard deviation are shown for each component.
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Figure 5.9: Comparison of the S-wave scattering phase shifts obtained with the HAL
QCD method and the kernel approximation method. Corresponds to
the potentials shown in fig. (5.7) and fig. (5.8) respectively.

for any pair of source indices (i1, i2). We show in fig. 5.8 the results for t = 12 and
(i1, i2) = (0, 1). Note that the radial derivatives are computed using the convolu-
tion (5.18) and we chose σ = 0.8a.

Once the potential is extracted, we can solve the Schrödinger equation (4.70) to
approximate the S-wave component of the infinite-volume functions ψ∞ in the elastic
region and consequently the scattering phase shifts from their asymptotic behavior.
We show in fig. 5.9 a comparison of the scattering phase shifts obtained using the HAL
QCD method and the kernel approximation method. As expected, the two methods
give very close results at the NLO. Furthermore, the interaction is more attractive at
the NLO than at the LO which is consistent with the sign of the NLO components VB
and ṼB. We see that the NLO starts to deviate from the LO at around 150 MeV above
the two-particle threshold.

Although the final results are quite similar for the current numerical application, it
is important to stress the advantages of the kernel approximation method.
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Figure 5.10: Effective energies obtained using the variational method at Nsrc = 5.
The dashed lines show the location of the eigenenergies in the absence
of interaction.

i) In the HAL QCD method, the existence of an energy-independent potential
is shown but the existence of an energy-dependent potential with Hermiticity,
rotational invariance, time-reversal invariance and some analyticity properties
is assumed. In the kernel approximation method, these properties are explic-
itly proven if we relax the energy-independence, Hermiticity, and time-reversal
invariance requirements.

i) By projecting on the partial waves, the kernel approximation method treats
correctly the fact lattice correlators contain an infinity of angular momentum
components due to the cubic symmetry of the lattice. This is not particularly
relevant for correlators in the A+

1 representation because the contributions for
l ≥ 4 are small but it can make an important difference for the study of the P-
or D-waves.

i) Because the correlators are interpolated to continous radii, the kernel approxima-
tion method does not require the choice of fit functions for the potentials, thereby
reducing systematic uncertainties. For example, the form (5.16) is motivated by
the observed results but has no particular physical meaning.

5.1.4 Variational and effective potential methods

As discussed in section 2.3.2, the variational method is based on the computation of
correlation matrices defined by

Cij(t) = 〈Ovar
i (t)S†j (0)〉, i, j = 1, . . . , Nsrc. (5.21)

For the current calculations we use the Nsrc = 5 sources described in (5.4). By solv-
ing the generalized eigenvalue problem (2.64), some effective energies W eff

n (t) can be
extracted, which converge towards the energies of the Hamiltonian eigenstates at large
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Figure 5.11: Left-hand side of the condition (4.39) corresponding the first 5 eigen-
values of the effective Hamiltonian in the effective potential method,
depending on the number of sources. Vertical dashed lines show the
location of the eigenenergies in the absence of interaction.

times t. Using the fixed difference t− t0 = 5, the asymptotic behavior of the effective
energies is given by (2.66). The results of our calculations are shown in fig. 5.10 for
the first 5 eigenstates.

For the effective potential method, the starting point is again the correlators Ri(r, t)
where r runs over the lattice sites. However, instead of seeing these correlators as the
discretization of functions in the continuum, they are seen as rectangular correlation
matrices of size (L/a)3 × Nsrc with indices r and i. Then, an effective Hamiltonian
is constructed which satisfies eq. (4.49). As was proven in section 4.2, this implies
that some of its eigenvalues approximate the eigenenergies with the asymptotic behav-
ior (4.48). These eigenvalues can be identified by the condition (4.39). We use the
construction of the effective Hamiltonian as described in appendix A.3.2. The effective
Hamiltonian is then moderately non-local but not Hermitian. The effective potential is
set to zero at distances greater than aNs/2 from the origin and the non-locality cutoff
Rmax is set to 0, 1 and

√
2 for Nsrc = 1, 2 and 3 respectively.

For the variational method, exactly Nsrc effective energies can be extracted when
Nsrc sources are used. For the effective potential method, the effective Hamiltonian has
(L/a)3 � Nsrc eigenvalues but only those satisfying the condition (4.39) can be reliably
identified to the eigenenergies. We can see in fig. 5.11 how the condition is satisfied
in practice. For Nsrc sources, the first Nsrc clearly satisfy the condition, which makes
it at least equivalent to the variational method. For Nsrc = 2 and 3, the condition
is moderately satisfied for a few more eigenergies but not enough to be conclusive.
However, remember that the condition is sufficient but not necessary so more that Nsrc
may indeed in practice be extracted as we will see.

We show in fig. 5.12 a comparison between the effective energies obtained using
the variational (left) and the effective potential method (right). For the variational
method, we only show Nsrc = 5. Using less than 5 sources, less eigenergies are accessible
but for a given eigenenergy increasing the number of sources has little effect. A first
remark is that even from Nsrc = 1, the estimation for the first 5 eigenergies using
the effective potential method are reasonable and as Nsrc increases, these estimations
improve. Compared to Nsrc = 2 and 3 the energies above the ground state for Nsrc = 1
are underestimated. This can be related to the strengthening of the repulsion between
the LO and NLO in the HAL QCD and kernel approximation method. Between
Nsrc = 2 and 3, the same remark applies for the energies above the second excited state.
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n Variational method Effective potential method
1 [7, 23] [8, 25]
2 [15, 21] [19, 24]
3 [10, 17] [11, 19]
4 [6, 10] [10, 16]

Table 5.1: Fit ranges used for the variational and effective potential method.
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Figure 5.13: Comparison of the S-wave scattering phase shifts obtained with the
variational method and the effective potential method The estimation
from the kernel approximation method corresponding to fig. 5.9 is
shown for reference.

Furthermore, the effective energies exhibit significantly cleaner and longer plateaus in
the effective potential method than in the variational method. For the latter it can be
difficult to choose an adequate fitting range.

In order to obtain the scattering phase shifts, the effective energies are fitted to
a constant for both methods and the finite-size formula is applied, neglecting the
contribution of angular momenta l ≥ 4. We use Nsrc = 5 for the variational method
and Nsrc = 3 for the effective potential method, with fitting ranges summarized in
table 5.1 for the first 4 eigenstates. The results are show in fig. 5.13. We can see a very
good agreement between all the methods discussed so far.

5.2 Study of the rho meson channel

In recent years, the I = 1 two-pion system has attracted a lot of attention in lattice QCD.
The increase in computational power has finally allowed to generate fully dynamical
QCD gauge configurations at quark masses low enough for the rho resonance to be
observed, promising a better understanding of complex hadron processes from first
principles. Recent studies [44–47] all use the finite-size formula [9] or its extension to
moving frames [21], in order to relate the finite-size energy spectrum to the infinite
volume phase shifts. The main difficulty faced by this method is that one can only
extract the phase shifts at a few energies on the lattice, making it difficult to reconstruct
the continuous energy range and thus the physical parameters of the system, especially
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around the resonance where the phase shifts vary rapidly.
This section reports on our first attempt to apply the HAL QCD method to the

I = 1 two-pion system. The meson masses considered here do not allow for the rho
meson to decay, the goal being to test the viability of the method in this channel before
applying it to the study of the resonance.

5.2.1 Computation method

Decay condition

In the physical world, the rho meson is a resonance in the two-pion channel with isospin
I = 1. It has a mass of roughly 770 MeV which is well above the lowest two-pion states
at an energy of 2mπ ∼ 280 MeV. In typical calculations, the situation on the lattice is
quite different. As discussed previously, computational limitations imply that we are
for the moment restricted to quarks masses above their physical values. Large quark
masses induce larger pion masses and larger rho masses but not proportionately. It
results that the mass ratio mπ/mρ is typically much larger that its experimental value
of ∼ 0.18. If this ratio is larger than 0.5, as was the case until a few years ago, the ρ
meson does not decay into two pions and the dynamics is completely different from the
physical world.

Recent calculations have been realized at mass ratios under 0.5 but face another
challenge on the lattice. Indeed, the rho meson is a resonance appearing in the P-wave
of the two pions channel, which means that the pions cannot be at rest. On the lattice,
the smallest non-zero momenta have norm 2π/L so that the lowest pion-pion state in
the center of mass frame has an energy close to

Wππ = 2
√
m2
π + (2π/L)2. (5.22)

The rho meson can decay if Wππ < Wρ = mρ, which happens if L & 3.5 fm at the
physical values of the masses. While such configurations are beginning to be available,
they were not at the time of this study and still require huge computational resources.
A workaround, which has been used extensively in the past studies, is to study the
system in a moving frame, i.e. consider two pions with non-zero total momentum. In
this case, one of the pions can be set at rest in the lattice frame so that the two-pion
states’ energy decreases while the rho meson gains a non-zero momentum and its energy
increases, making it easier to satisfy the decay condition Wππ < Wρ.

The HAL QCD method is only defined in the center of mass frame so that the direct
study of the decay of the rho meson impossible. In the wait of larger computational
power, we here lay the ground for future simulations by considering how the HAL QCD
method can be applied to this system, even in the case of unphysical dynamics. Indeed,
this channel has several features which make it particularly challenging.

Variational basis

To describe two pions in the center of mass frame and isospin I = 1 channel, we use
the following operator

ππ(q) = 1√
2

[
π−(q)π+(−q)− π+(q)π−(−q)

]
, (5.23)



5.2. Study of the rho meson channel 89

〈ππ(q; t)ππ(p; t0)〉 =

q −q

p−p

− − − (q↔ −q)

q −q

0

〈ππ(q; t)ρ(t0)〉 = − (q↔ −q)

Figure 5.14: Decomposition in Wick contractions of the correlation functions corre-
sponding to ππ → ππ and ρ→ ππ, appearing both in the correlation
matrix (with q = p) and the BS wave function. Time goes upward.

where π± are local interpolating operators for the pions. The Bethe-Salpeter (BS) wave
functions are then defined in this channel as

Ψn(r) =
∫

d3q

(2π)3 e
ir·q〈0|ππ(q)|n〉 (5.24)

with |n〉 an eigenstate of QCD with the required quantum numbers.
As discussed previously, the considered channel contains both pion-pion scattering

states and the rho meson. Furthermore, in the pion mass region we investigate, we
expect the ground state to be the rho meson and the first excited state to be the
pion-pion scattering state with back-to-back momenta with a norm close to 2π/L. Due
to the presence of the rho state, we cannot use the time-dependent HAL QCD method.
We will therefore combine the HAL QCD method with the variational method to extract
the contribution of the rho and the pion-pion states in the lattice correlators.

To approximate the pion-pion state we use the operator ππ(p) with momentum
p = 2π

L ez and for the rho meson the operator

ρ ≡ 1√
2
∑
x

[
ū(x)a · γu(x)− d̄(x)a · γd(x)

]
(5.25)

with a polarization taken parallel to that of the relative momentum of the pions, a = e3.
As described in section 2.3.2, the variational method relies on the computation of

the correlation matrices

C(t, t0) =
(
〈ππ(p; t)ππ(p; t0)〉 〈ππ(p; t)ρ(t0)〉
〈ρ(t)ππ(p; t0)〉 〈ρ(t)ρ(t0)〉

)
. (5.26)

Neglecting the contributions of the higher eigenstates, the variational method pro-
vides the mixing between the states ππ(p)|0〉 and ρ|0〉 and the eigenstates |n〉 corre-
sponding to the lowest pion-pion state and the rho meson. Once this mixing is known,
we can choose optimal sources to extract the BS wave functions Ψn(r).

Wick contractions

We have seen in equation (2.51) how to compute correlation functions in lattice QCD.
The correlation functions are expanded in all the possible ways to pair the quark and
antiquark fields, called Wick contractions, and each pair is associated a weight given
by the Dirac propagator. We illustrate in Fig. 5.14 some of the correlation functions
necessary to our calculations as well as their Wick contractions. The computational
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(a) (b) (c)

Figure 5.15: Computation method for some Wick contractions. Springs link pairs of
points which are projected one on the other by summing over stochastic
noises. Open circles are explicit summations. Straight (resp. broken)
arrows are direct (sequential) propagators.

difficulty of the I = 1 pion-pion channel arises from the presence of the square and
triangle diagrams, which do not appear in the I = 2 channel. These diagrams represent
the possibility of a pair creation and annihilation between the quark and antiquarks
at the time t. They require the computation of the Dirac propagator D−1(x, t;y, t)
between any two points at the sink time t, which is prohibitively expensive. Following
[44], we use stochastic noises as a workaround.

At each spatial point x of the lattice, generate a sequence of random values ξj(x) ∈
U(1) for j = 1, . . . , N . These noises are such that

lim
N→∞

1
N

N∑
j=1

ξ∗j (x)ξj(y) = δx,y. (5.27)

We can therefore use them to approximate the Diract propagators as

D−1(x, t;y, t) = 1
N

N∑
j=1

ξ∗j (y)
[∑
z

D−1(x, t; z, t)ξj(z)
]
, (5.28)

which converges as N → ∞. Instead of computing the Dirac propagator for each
starting point y, we invert the Dirac matrix with a random source and then “project”
it to effectively start at the point y using the conjugate noise ξ∗j (y). Fig. 5.15 shows
some examples of the process.

Numerical setup

The results presented here were computed using the Nf = 2 + 1 full QCD gauge config-
urations of ILDG/JLDG generated by the CP-PACS and JLQCD collaborations [48]
on a 283 × 56 lattice with a RG improved gauge action at β = 2.05 and a O(a) im-
proved Wilson quark action with cSW = 1.628. The lattice spacing is a = 0.0685 fm
which makes for a lowest non-zero momentum of p = 2π/L = 0.65 GeV. The light
quark hopping parameters are κud = 0.1347 and κs = 0.1351, leading to meson masses
mπ = 1.05 GeV and mρ = 1.37 GeV. The lowest energy of two free pions in the center
of mass frame, Wππ, is therefore significantly larger than that of the rho meson at rest.

The quark propagators are computed with temporal Dirichlet boundary condition.
We use U(1) stochastic noises, 6 at the source and 20 at the sink. Wave functions
are projected in the T−1 representation of the cubic group which contains the P-wave.
Statistical errors are computed using the jackknife technique although 2-dimensional
plots are shown without error bars for clarity.
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Figure 5.16: Contribution to the wave functions for the first (left) and second (right)
diagrams of the ππ → ππ correlation function in Fig. 5.14 (upper).
Normalized such that the total wave function has a norm 1. Computed
at t− t0 = 12.
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Figure 5.17: I = 1 pion-pion wave functions on the ground (left) and first excited
(right) states. Normalized to 1. Computed at t− t0 = 10.

5.2.2 Simulation results

Wave functions

We have seen that the BS wave functions are obtained as combinations of the wave
functions computed with the source operators ππ(p) and ρ, themselves computed as
sum of Wick contractions ("diagrams"). The combinations are obtained using the
variational method from the correlation matrices C(t).

Figure 5.16 shows the contribution of the two kind of diagrams appearing in the
ππ → ππ wave function. The left one, corresponding to the "parallel" diagram (the
first one in fig. 5.14), is close to the free wave function. The right one, corresponding
to the box diagram, exhibits a very peaked and short-ranged behaviour. The triangle
diagram is found to lead to a wave function very similar (up to a normalization) to
that of the rectangle one. The rho meson being the ground state, the quark-antiquark
pair propagating in the rectangle and triangle diagrams from t0 to t can be thought of
as forming a rho meson, which could explain why the two diagrams’ wave functions
are similar and short-ranged.

The ground state’s wave function, Fig. 5.17 (left), can be obtained using either
source operator by saturation at large enough time separation. Taking ππ(p) as source
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Figure 5.18: Central potential using only the parallel diagrams at t− t0 = 12. Fit
by a Yukawa potential (the statistical error is shown but very small).

operator, we see that the dominant contribution as time separation increases is from
the rectangle diagram.

The first excited state’s wave function is shown Fig. 5.17 (right). We see that
the dominant contribution is this time coming from the parallel diagram. The wave
functions is obtained with a linear combination of the two source operators, which has
for effect the cancellation of the peaked short-range contribution between the rectangle
and triangle diagrams. However, while the signal from the ground state wave function
is cancelled, the statistical noise remains and grows as e∆W (t−t0) with ∆W the energy
difference between the two lowest eigenstates.

Potential

An approximate potential is obtained by inverting the Schrödinger equation with the
BS wave functions computed on the lattice as input. The wave functions in Fig. 5.17
unfortunately do not allow such a computation. The ground state wave function (left)
is sharply peaked around the origin, leading to huge discretization errors when taking
finite-difference Laplacian operator. The first excited state wave function (right) is
extremely noisy due to large energy separation between the two lowest eigenstates and
the noise is further enhanced by taking the Laplacian.

Using the fact that the main contribution to the first excited state wave function is
from the parallel diagram and that the other diagrams should only contribute to the
short-range part of the potential, we show in Fig. 5.18 the effective central potential
computed using only the parallel diagrams, on both sets of hopping parameters. We
see that a simple Yukawa fit is in very good agreement to the data even at surprisingly
short range. The mass in the Yukawa fit is 1.53(9) GeV.

Discussion

We have shown results of the first application of the HAL QCD method to the I = 1
pion-pion system. The method, which has been successful in the study of baryon-baryon
systems and the I = 2 pion-pion channel, encountered difficulties in this particular
setup. First, the ground state being the rho meson, the wave function is very short-
ranged and the computation of the potential leads to large discretization errors. Then,
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while the first excited state is a scattering state and likely to be well described by a
potential, it is difficult to extract due to the large energy difference.

However, approaching the problem from a different perspective compared to the
other studies, the present results shed a new light on the qualitative understanding of
the system. Furthermore, the above problems may be solved in the region where the
rho meson is a resonance and not the ground state, since the scattering state will be
simply extracted by saturation and the short-ranged component should become less
important. In this case, the potential method could lead to competitive quantitative
results. Further study at smaller pion masses will confirm or invalidate this expectation.

5.3 Search for tetraquark bound states

In this section, we describe the application of the HAL QCD method to another exciting
problem, the search for tetraquark bound states from lattice QCD.

5.3.1 Quark model predictions

Due to confinement, particles in QCD must be composed of quarks and anti-quarks
in a color-singlet configuration. The simplest examples and the only to have been
unambiguously observed so far are mesons qq̄ and baryons qqq. However, it is possible
to form color-singlet states with more than three quarks. Jaffe famously predicted [49]
using the quark bag model that the dibaryon H (udsuds) could be stable against strong
decay. Since then, several other possibly stable multiquark states have been proposed.

In this section we are interested in tetraquark states of the form qqq̄q̄ with a diquark
pair qq in the color 3 representation and an diquark q̄q̄ in the color 3∗ representation.
It has long been suggested from model calculations [50, 51] that such states should be
stable in the case where the two quarks are much heavier than the two anti-quarks. We
will briefly present the diquark picture [52], which is a simple phenomenological model
that could explain the stability of such states. This model describe the mass difference
of hadrons by a color-spin interaction between the constituent quarks

− CH
∑
i>j

si · sj
1

mimj
, (5.29)

where si and mi are the spin and mass of the quarks. The constant CH takes the value
CM for qq̄ pairs and CB for qq diquarks. As the names suggest, these two constants
are respectively fitted from the mass difference of mesons and baryons, resulting in
CM ' 3CB. With only one parameter in each case, this model is found to reproduce
the experimental data for the hadron differences quite well. It can then be used to
predict the binding energy of tetraquark states.

Let Q1,2 be two heavy quarks and q̄1,2 two light anti-quarks. The interaction (5.29)
is suppressed for large quark masses, attractive for S = 0 and repulsive for S = 1 qq̄ pairs
or qq diquarks. Therefore, a tetraquark Q1Q2q̄1q̄2 composed of an O(1) attractive q̄1q̄2
diquark and a O(1/m2

Q) attractive or repulsive Q1Q2 diquark could be bound compared
to the threshold given by the two mesons with O(1/mQ) attractive or repulsive pairs
Q1q̄1 and Q2q̄2. Candidate tetraquarks with charm (but no bottom) quarks would be

• Tcc (JP = 1+, I = 0) with a strongly attractive scalar ūd̄ and a weakly repulsive
axial vector cc could be bound with respect to the D −D∗ threshold,

• Tcs (JP = 1+, I = 0) with a strongly attractive scalar ūd̄ and a weakly repulsive
axial vector cs could be bound with respect to the K̄ −D∗ threshold,
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• Tcs (JP = 0+, I = 0) with a strongly attractive scalar ūd̄ and a weakly attractive
scalar cs could be bound with respect to the K̄ −D threshold.

Phenomenological models give wildly varying predictions for the existence of such bound
states and if applicable their binding energies. In the wait of experimental verification,
a definite conclusion could only be drawn with fully dynamical lattice QCD simulations
at the physical point. Our work is a first step in this direction.

5.3.2 Simulation details

Heavy quarks on the lattice

We have presented in section 2.2 how to perform lattice simulations of QCD for an
arbitrary number of quark flavors. However, typical corrections of the order O(mfa)
become problementic when we consider quark flavors with particularly heavy masses
such as the charm and bottom quarks. The earliest attempts to treat heavy quarks
on the lattice included taking the static approximation mc,b → ∞ [53], using a non-
relativistic action for these flavors [54] or lattices with large anisotropy parameters [55].
Each of these approaches leads to sizable corrections and cannot be used in precision
calculations.

A more careful approach was proposed in ref. [56] by introducing a relativistic
heavy-quark (RHQ) action designed to avoid corrections in powers of mfa. Following
the Symanzik improvement program [57], the lattice theory is described by a local
effective action

Seff = S0 +
∑
k≤1,i

ak
∫
d4x c4+k,i(g)O4+k,i(x), (5.30)

where S0 is the continuum action and O4+k,i(x) are local composite operators of dimen-
sion 4 + k. Considering only operators up to dimension 5 allowed by the symmetries
of the theory, the action for a heavy quark Q can be written with the appropriate
normalization of the fields as

SQ =
∑
x

[
ψ̄Q(x)ψQ(x)− κQ

∑
±

3∑
i=1

ψ̄Q(x)(rs ∓ νγi)U±i(x)ψQ(x± î) (5.31)

− κQ
∑
±
ψ̄Q(x)(rt ∓ νγ4)U±4(x)ψQ(x± 4̂) (5.32)

− κQψ̄Q(x)
(
cB
∑
i,j

Fijσij + cE
∑
i

Fi4σi4
)
ψQ(x)

]
. (5.33)

using the notations of section 2.2 and lattice units where a = 1. The parameter rt can
be set to 1. Then, we see that if rs = rt and cB = cE = 0, we recover the action (2.48)
for Wilson fermions. If rs = rt and cB = cE (≡ cSW) 6= 0, we obtain the action for
clover fermions which are an improvement over the Wilson fermions as discussed in
section 2.2.

The parameters of the RHQ action can be determined non-pertubatively to reduce
the corrections of order O((mQa)n) with arbitrary n in the Wilson or clover action to
corrections of order O(f(mQa)(aΛQCD)2) where f is a function analytic at mQa = 0.
This means that we only require the lattice spacing to satisfy aΛQCD � 1, a significant
improvement over the usual requirement amQ � 1.
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Lattice setup

Our calculations are based on Nf = 2 + 1 QCD gauge configurations generated by
the PACS-CS collaboration [43] on a 323 × 64 lattice using the Iwasaki gauge action
at β = 1.9 and clover fermions for the sea quarks u, d, s with parameter cSW = 1.715.
The associated lattice spacing is a = 0.0907 fm making for a spatial extent L '
2.9 fm. We use three set of configurations, with three different sea quark hopping
parameters (κud, κs). The parameter values are (0.13754, 0.13640), (0.13727, 0.13640),
and (0.13700, 0.13640) which lead to a pion mass of 410, 570 and 700 MeV respectively.

For the non-dynamical charm quark, we use the RHQ action described previously.
The parameters of the action are chosen similarly as in ref. [58], κQ = 0.10959947,
rs = 1.1881607, ν = 1.1450511, cB = 1.9849139 and cE = 1.7819512. These were tuned
to reproduce the 1S charmonium mass and dispersion relation when the light sea quarks
are at the physical point. Note that our three sets of light quark masses are heavier
than at the physical point but we can choose the same RHQ action parameters and
decrease the light quark masses to get the correct overall trend towards the physical
point. Furthermore, the sea quark parameters would only mildly affect the charm quark
parameters if the latter were to be tuned for each set.

We investigate the interaction in the following channels
- D-D with JP = 0+, I = 1,
- K̄-D with JP = 0+, I = 0 and I = 1,
- D-D∗ with JP = 1+, I = 0 and I = 1,
- K̄-D∗ with JP = 1+, I = 0 and I = 1.

The three channels with isospin I = 0 are those where the candidate tetraquarks Tcs
and Tcc discussed previously could be bound. We also consider the isospin I = 1
channels to have a more general understanding of the interaction.

To study a meson-meson channel A−B, we apply the time-dependent HAL QCD
method described in section 3.3.2. The correlators (3.112) are computed using local
interpolators qΓq for the mesons at the sink and operators qwΓqw with quark walls
defined as (5.2) at the source. The operators are projected on the desired isospin
channel and the A+

1 representation of the cubic group which principally contains the
S-wave.

Assuming that the Schrödinger equation (3.113) is well approximated for A = 1,
we extract from the correlators the leading term V0(r) of the potential defined with
M0,n = δn,0. The term V0(r) corresponds to a central approximation of the potential,
which we will note VC(r).

5.3.3 Numerical results

The central potentials VC in all the channels considered are computed from the cor-
relators and shown at the time slice t = 16 in figures 5.19 and 5.20, along with their
statistical error estimated using a jackknife analysis. These potentials reach a relatively
time-independent plateau in the region t = 13−18 and the remaining time-dependence
will later be considered as a systematic error.

We can readily observe that all the channels with isospin I = 0 present an attraction
while all the channels with isospin I = 1 present a repulsion. In the diquark model, an
isospin I = 0 (resp. I = 1) enforces a light diquark q̄q̄ with spin S = 0 (resp. S = 1)
which is strongly attractive (resp. repulsive). Therefore, our results are qualitatively
in agreement with the predictions of this simple model. The quark mass dependence
of the potentials in all channels is rather minor in the pion mass range 410− 700 MeV
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Figure 5.19: Potentials VC at t = 16. Left column for the D-D (square) and K̄-D
(circle) channels with (JP , I) = (0+, 1). Right column for the D-D∗

(square) and K̄-D∗ (circle) channels with (JP , I) = (1+, 1). Each row
corresponds to a set of configuration, with pion masses mπ = 410 MeV,
mπ = 570 MeV and mπ = 700 MeV from top to bottom.
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Figure 5.20: Potentials VC at t = 16. Left column for the K̄-D channel with
(JP , I) = (0+, 0). Right column for the D-D∗ (square) and K̄-D∗

(circle) channels with (JP , I) = (1+, 0). Same layout as fig.5.19 for the
rows.
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Figure 5.21: S-wave I = 0 scattering phase shifts in the (a) K̄-D, (b) K̄-D∗ and (c)
D-D∗ channels. Vertical error bars represent the cumulated statistical
and systematic errors.

except at very small distances r
In each channel and at each time slice, the potential is fitted by an analytic radial

function, neglecting the contribution of partial waves with l ≥ 4. The fit functions
are chosen as multi-range Gaussians, i.e. g(r) ≡

∑Nmax
n=1 Vn · exp(−νnr2), for which we

obtain good fits with Nmax = 4. Using these fit functions as potential, we solve the
radial Schrödinger equation in infinite volume to obtain the S-wave scattering phase
shifts. For a given channel, our estimation of the phase shift is obtained by fitting a
plateau made by the phase shifts obtained from the potentials at different time slices.
As discussed earlier, there is a plateau in the time range t = 13 − 18 which we use
for the fit. A full jackknife analysis is performed to compute the statistical error on
this estimation. The statistical error is evaluated using the difference between the
estimations obtained from the two fit ranges t = 13− 15 and t = 16− 18.

Our results for the phase shifts are presented in fig. 5.21. We can see that the
attraction is the strongest in the I = 0 D −D∗ channel, which is consistent with the
diquark model. However, we do not observe bound states or resonances in any of the
studied channels. The phase shifts seem to increase as the quark masses decrease, a
sign of the attraction becoming stronger. This leaves open the possibility that a bound
state could be present at the physical point, especially in the I = 0 D −D∗ channel
for which the tetraquark Tcc (JP = 1+, I = 0) would be a possible explanation.

Although only calculations at the physical point can draw a definite conclusion, we
can get some insight by looking at the quark-mass dependence of our results. Fig. 5.22
presents the quark-mass dependence of the scattering length in the attractive channels.
The estimation of the statistical and systematic error is the same as for the scattering
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phase shifts. As expected from the direct observation of the potentials, the quark-mass
dependence is not significative and casts doubts on the possibility of a bound state at
the physical point.
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Chapter 6

Summary

In this thesis, we have numerically investigated the interaction in two pion-pion
channels and searched for tetraquark bound states from first principles using the HAL
QCD method. We have also proposed several new methods or extensions to existing
methods with the purpose of improving the available tools for the general study of
two-particle channels in lattice QCD. We have provided a comprehensive numerical
comparison of these tools to the existing ones in order to prove their effectiveness. It is
our hope that they will be used in the future in diverse settings and contribute toward
an extensive ab-initio description of our world.

In Chapter 5, we have seen how the HAL QCD method could be successfully
applied to the pion-pion channel with isospin I = 2 and various meson-meson channels
in which tetraquark bound states have been predicted by quark model calculations.
These results echo the success of the HAL QCD method in the study of various baryon-
baryon channels [59–61], including the important nucleon-nucleon channel. However,
we have also seen how this method faced difficulties in the rho meson channel. The
issues could be mainly explained by the predominance of the inelastic contribution of
the rho meson and by the inadequate treatment of sharply-peaked Bethe-Salpeter wave
functions due to the lattice discretization. We conclude that the HAL QCD approach
may not be generally applicable but can be powerful in the study of channels dominated
by low-energy elastic scattering.

While the investigation of the rho meson channel only resulted in a qualitative
understanding of the interaction, we could extract numerical predictions for the other
two channels. In the I = 2 pion-pion channel, we successfully mapped the scattering
phase shifts in a large energy region at a pion mass of mπ = 700 MeV. As the
computational power available increases, the very same method will likely lead to
precise predictions at the physical point which can be compared to experimental values.
Finally, we investigated the presence of bound charmed tetraquark states and did not
find any bound state in the pion mass range mπ = 410 ∼ 700 MeV. Our study of
the quark mass dependence does not suggest that bound states would appear at the
physical point although only future simulations can definitely decide on this matter.

A major shortcoming of the HAL QCD method is its inability to deal with states
above the inelastic threshold. In section 4.1, we have proposed an extension of the
method to deal with such states. In the general case, we have seen how the formulation
of this extension requires a non-relativistic approximation which may not be valid in
practice. However, the formulation is simplified and does not require a non-relativistic
approximation in the case where the inelastic thresholds correspond to the opening
of new two-particle channels. Numerical studies of such coupled two-particle channels
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using this extension have already been achieved [62] with successful results.
Even in its area of applicability, the direct application of the HAL QCD method

can raise some concerns. While an energy-independent and non-local potential for
the BS wave functions has been constructed, it does not satisfy any of the properties
required for the velocity expansion, such as Hermicity, fast decay in non-locality, etc.
Since the potential is not unique, the method therefore relies on the assumed existence
of another energy-independent and non-local potential which has these properties and
can be approximated with a truncation of the velocity expansion. Other concerns
include the dependence on a fit function to relate the finite-volume potential to the
infinite-volume one. Additionally, the mixing of the angular momentum channels in
finite-volume is not properly addressed. Finally, it is not clear how the method can deal
with a large number of source operators in lattice simulations, a important aspect for
future precision calculations. We have proposed two methods to answer these concerns
while retaining the core ideas of the HAL QCD method.

The effective potential method, introduced in section 4.2, is designed to combine
the strongest points of the finite-size and the HAL QCD approaches. The scattering
phase shifts are computed from the finite-volume spectrum with the finite-size formula
as in Lüscher’s approach but the spectrum is not extracted with the usual variational
method. Inspired by the HAL QCD method, we use the time-dependence of arbitrary
rectangular correlation matrices to construct an effective Hamiltonian operator in a
certain subspace of the Hilbert space of physical states. This is in contrast with the
variational method which relies on square correlation matrices to determine the mixing
of the source states and the Hamiltonian eigenstates. Our approach has two main
advantages: (i) rectangular correlation matrices allow to use more information from
lattice simulation at little additional cost in several practical situations and (ii) the
effective subspace treated by the method is larger than for square matrices so that
more eigenstates may be accessible for the same number of source operators. The
effective potential method is a particular case of this approach where the correlation
matrices can be interpreted as wave functions and the effective Hamiltonian is given
the form of the quantum mechanical Hamiltonian with a non-local potential. In this
case, the effective potential has no particular interpretation, it is merely used as a fit
to obtain the spectrum. Furthermore, it is not related to any infinite-volume quantity,
the formulation being purely restricted to the finite lattice. In doing so, we avoid most
of the assumptions of the HAL QCD method.

We have proposed in section 4.3 another approach called the kernel approximation
method. This method provides an alternative to the HAL QCD method based on an
extensive theoretical study of the finite-volume correlators. The BS wave functions
are found to satisfy a Schrödinger equation with a non-local and energy-dependent
potential. This potential is directly related to the Bethe-Salpeter kernel so that its
properties are explicitly proven. It is found that it can be expanded as a power series in
both non-locality and energy, enabling to approximate it by truncation. Furthermore,
the method relies on the spatial interpolation of the lattice wave function which allows
to project them on specific angular momentum channels and avoid any dependence
on fit functions. We prove that the mixing of the angular momentum channels by the
cubic group is exponentially suppressed with the volume so that the interaction in each
channel can be treated separately as in infinite volume. These properties lead to a
well-defined strategy to extract the scattering phase shifts from lattice simulations.

In section 5.1, the two newly proposed methods have been compared numerically to
the existing finite-size and HAL QCD methods in the context of the two-pion channel
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with isospin I = 2. We found that the theoretical advantages of our methods are
well supported by practical results and we are confident that similar advantages would
be encountered in the application to other systems. We hope that this efficiency,
combined with the rigorous theoretical basis presented in this thesis, will convince
other researchers to adopt these methods.

For lattice practitioners, Moore’s law does not mean that we can keep the same
methods and the computer will progressively give better results. An increase in com-
puter power represents new opportunities along with new challenges and the methods
of yesterday may not measure up to the challenges of tomorrow.

∗ ∗ ∗

The publication status and attribution of the work presented in this thesis is as
follows.

• Section 4.1 is the result of a collaboration lead by S. Aoki, who introduced
the original idea. I helped improving the formalism and proposed alternative
constructions of the potential. It was published in ref. [3] although the version
given here is freely adapted from the published one.

• Sections 4.2 to 5.2 are personal projects. A preliminary version of the content of
section 4.2 was published in ref. [2] and a more complete article is in the works.
The content of the sections 4.3 and 5.1 is yet unpublished but corresponding
articles are in preparation. The results of section 5.2 have been reported in
ref. [1].

• Section 5.3 is the fruit of a collaboration lead by Y. Ikeda. He instigated this
research and performed simulations for the two sets at the heaviest quark masses.
I developed code to tackle the more computationally challenging set with the
lightest quark mass, performed the associated simulations and designed a scheme
for the evaluation of the statistical and systematic errors. The results have been
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Appendix A

Details for the effective potential method

A.1 Effective Hamiltonian perturbation

A.1.1 Notations and preliminary result

For two integers M ≥ N , let {vn}Nn=1 be a basis of an N -dimensional subspace Σ of
RM . Define V the matrix representing this basis in the canonical basis and V + its
Moore-Penrose pseudoinverse. Then the columns {v̄n}Nn=1 of [V +]† form the dual basis
of {vn}Nn=1, i.e. 〈v̄n, vp〉 = δnp where 〈·, ·〉 is the canonical inner product.

For any two non-zero vectors a and b of RM , we will show that if PV b 6= 0,

min
n,〈v̄n,b〉6=0

∣∣∣∣〈v̄n, a〉〈v̄n, b〉

∣∣∣∣ ≤ κ(V ) ‖PV a‖
‖PV b‖

, (A.1)

where κ(V ) = ‖V ‖‖V +‖ is the condition number of V and PV = V V + is the orthogonal
projector on the column space of V , i.e. Σ.

First, define the coefficients

βn = 〈v̄n, a〉
〈v̄n, b〉

, n = 1, . . . , N. (A.2)

with βn = ε−1 for some ε > 0 if 〈v̄n, b〉 = 0. If there is an n such that βn = 0, (A.1) is
trivial. If all βn are non-zero, we have

V D(β−1)V +PV a = PV b+O(ε), (A.3)

where D(β−1) is the N -dimensional diagonal matrix with elements [D(β−1)]nn = β−1
n .

Using the properties of the operator norm, it follows that

‖V D(β−1)V +PV a‖ ≤ κ(V )‖D(β−1)‖‖PV a‖, (A.4)
‖D(β−1)‖ = max

n
|β−1
n |. (A.5)

and after rearrangement,

min
n
|βn| ≤ κ(V ) ‖PV a‖

‖V D(β−1)V +PV a‖
. (A.6)

In the limit of ε→ 0, we obtain (A.1).
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A.1.2 General case

Consider the full generalized eigenvalue problem (GEVP) for two M ×N matrices A
and B,

Bw = λAw, (A.7)

with M ≥ N . These matrices are such that they can be decomposed as

A = A(0) +A(1), B = B(0) +B(1), (A.8)

and there are N linearly-independent solutions to the reduced GEVP

B(0)w(0)
n = λ(0)

n A(0)w(0)
n , n = 1, . . . , N, (A.9)

while there may not be any solution to the full GEVP.
Now, suppose there exist an M ×M matrix H such that

HA = B. (A.10)

Assuming that A(0) has full column rank, we can decompose the matrix H as,

H = H(0) +H(1), (A.11)
H(0) = B(0)A(0)+ +H(1−A(0)A(0)+), (A.12)
H(1) = (B(1) −HA(1))A(0)+, (A.13)

so that we obtain a reduced form of eq. (A.10),

H(0)A(0) = B(0). (A.14)

It follows from the decomposition of H that for n = 1, . . . , N

HA(0)w(0)
n = λ(0)

n A(0)w(0)
n +H(1)A(0)w(0)

n . (A.15)

Denote by {vm}Mm=1 a basis of normalized eigenvectors of the matrix H, {λm}Mm=1
their associated eigenvalues, {v̄m}Mm=1 its dual basis and V its matrix representation.
We can expand the previous relation on this basis to obtain for n = 1, . . . , N

λm = λ(0)
n + 〈v̄m, H

(1)A(0)w
(0)
n 〉

〈v̄m, A(0)w
(0)
n 〉

. (A.16)

Using the preliminary result (A.1) and the expression (A.13),

min
m=1,...,M

〈v̄m,A(0)w
(0)
n 〉6=0

∣∣∣∣∣〈v̄m, H(1)A(0)w
(0)
n 〉

〈v̄m, A(0)w
(0)
n 〉

∣∣∣∣∣ ≤ κ(V )‖(B
(1) −HA(1))w(0)

n ‖
‖A(0)w

(0)
n ‖

. (A.17)

Assuming A has full column rank and since the vectors {w(0)
n }Nn=1 are linearly-

independent, the vectors {un = Aw
(0)
n /‖A(0)w

(0)
n ‖}Nn=1 form a basis of the column space

of A. Let {ūn}Nn=1 be its dual basis and U its matrix representation. For n = 1, . . . , N
we have

Hun = λ(0)
n un + (B(1) − λ(0)

n A(1))w(0)
n

‖A(0)w
(0)
n ‖

. (A.18)
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Now, take any eigenvector v ofH and λ its associated eigenvalue. It can be expanded
as

v =
N∑
n=1
〈ūn, v〉un + (1− PA)v (A.19)

where PA = AA+ is the orthogonal projector on the column space of A. From this, we
obtain for any n = 1, . . . , N

λ

[
1− 〈ūn, H(1− PA)v〉

〈ūn, λv〉

]
= λ(0)

n + 〈ūn, (B
(1) − λ(0)

n A(1))w(0)
n 〉

‖A(0)w
(0)
n ‖

, (A.20)

and, as previously, we have the upper bound

min
n=1,...,N
〈ūn,v〉6=0

∣∣∣∣〈ūn, H(1− PA)v〉
〈ūn, λv〉

∣∣∣∣ ≤ κ(U)‖PAH(1− PA)v‖
‖λPAv‖

. (A.21)

Finally, it follows from the Cauchy-Schwartz inequality and the definition of κ(U)
that

|〈ūn, (B(1) − λ(0)
n A(1))w(0)

n 〉|
‖A(0)w

(0)
n ‖

≤ κ(U)‖(B
(1) − λ(0)

n A(1))w(0)
n ‖

‖Aw(0)
n ‖

. (A.22)

A.1.3 Effective Hamiltonian

For the study of an effective Hamiltonian operator, we set

A = C(t), A(0) = C(0)(t), B = −∂tC(t), B(0) = −∂tC(0)(t), (A.23)

with C(t) the correlation matrix at some time t and C(0)(t) the same correlation matrix
but only including the contributions of the N lower energy eigenstates. The solutions
to the reduced GEVP (A.9) are w(0)

n = Q(0)−1
en and λ(0)

n = Wn for n = 1, . . . , N and
at all times t (en is the n-th vector of the canonical basis and see section 4.2.1 for other
notations). We have the following large time behaviours

A(1) = O(e−WN+1t), B(1) = O(e−WN+1t), (A.24)

due to the contributions of eigenstates with energies higher than WN and for any
n = 1, . . . , N ,

A(0)w(0)
n = e−WntP (0)en, un = P (0)en

‖P (0)en‖
+O(e−WN+1t). (A.25)

where P (0)en is a constant. We do not write explicitly the time-dependence of the
objects introduced in the previous subsection, e.g. A(0), for notational consistency.

The construction of the effective Hamiltonian H is abstracted as the result of a
function f(A,B) such that f(A,B)A = B. Assuming that the construction is such that
f(A(0), B(0)) is constant in time, the asymptotic behaviour of H in time is O(1), and so
is that of κ(V ). Combining this and the asymptotic behaviours previously mentioned,
we deduce that the right-hand sides of eq. (A.17) and (A.22) are O(e−(WN+1−Wn)t).

For each time t and eigenstate index n = 1, . . . , N , define λ∗n(t) the eigenvalue λm
of H(t) associated to the index m which realizes the minimum on the left-hand side of
eq. (A.17). All previous results lead to the asymptotic behaviours

λ∗n(t) = Wn +O(e−(WN+1−Wn)t). (A.26)
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This ensures that the Hamiltonian eigenstates energies are included amongst the
eigenvalues of the matrix H, up to corrections exponentially decreasing with t. Since
the matrix H has M ≥ N eigenvalues, there may be other eigenvalues which are not
related to the eigen-energies.

At each time t, let {(λm(t), vm(t))}Mm=1 be pairs of eigenvalues and eigenvectors of
H(t), ordered by eigenvalue. For each index m = 1, . . . ,M , define νm(t) the index n
which realizes the minimum on the left-hand side of eq. (A.21) with λ = λm(t) and
v = vm(t). With νm = limt→∞ νm(t), these satisfy the inequality∣∣∣∣1− λ∗νm

λm(t)

∣∣∣∣ ≤ κ(U)Rm(t), Rm(t) = ‖PAH(1− PA)vm(t)‖
‖λm(t)PAvm(t)‖ +O(e−(WN+1−Wνm )t).

(A.27)
where it is clear from its definition that κ(U) = O(1).

We can interpret (A.26) and (A.27) as follows for asymptotic t, i.e. for t large enough.
Assuming M > N , the spectrum of H contains some eigenvalues which are associated
to the N first eigen-energies, and some which are not, i.e {λ∗n(t)}Nn=1 ( {λm(t)}Mm=1. If
an eigenvalue λm(t) of H is associated to an eigen-energy, i.e. λm(t) = λ∗n(t) for some
n, we have νm = n. As a sort of weak converse, if a pair (λm(t), vm(t)) is such that

‖PAH(1− PA)vm(t)‖
‖λm(t)PAvm(t)‖ � 1, (A.28)

then λm(t) = λ∗νm(t), i.e. it is associated to the νm-th eigen-energy. The condition
(A.28) thus gives a way to identify which eigenvalues of H are associated to eigen-
energies. It is a sufficient condition but not necessary in general.

We finally note that the convergence rate of the effective energies λ∗n(t) is influenced
by κ(V ), which is minimal when H is Hermitian.

A.2 Lattice operators and cubic symmetry

A.2.1 Open boundary conditions

Let Λ = {(x, y, z) |x, y, z ∈ {−N, . . . , N}} be the set of the sites of a lattice of volume
V = (2N + 1)3 with open boundary conditions and u a bijection from Λ to the set of
integers {1, . . . , V }. Then for any lattice wave function Φ, i.e. a function from Λ to
R, we can define the vector φ with elements φr = Φ ◦ u−1(r) for r = 1, . . . , V . Any
operator acting on lattice wave function can then be represented by a V × V matrix.

Each rotation g of the cubic group Oh is associated to a permutation matrix Rg.
Define the action of g on the indices r = 1, . . . V by writing the elements of Rg as
(Rg)r,r′ = δr,gr′ . Then, an operator transforms covariantly under the action of the cubic
group if its associated matrix U commutes with all the matrices Rg, which is equivalent
to

Ugr,gr′ = Ur,r′foranyg ∈ Oh, (r, r′) ∈ {1, . . . , V }2. (A.29)
The matrices Rg define a representation R of the cubic group on RV . For any index

r = 1, . . . , V define r̄ its orbit under the action of the cubic group, i.e. r̄ = {gr | g ∈
Oh}. It is trivial that we have the following decomposition of R on the irreducible
representations of the cubic group

R = ⊕r̄∈Λ̄ ⊕Γ N(Γ, r̄)× Γ, (A.30)

with a direct sum over Λ̄, the set of all unique orbits, and N(Γ, r̄) the number of
occurrences of the irreducible representation Γ in the subrepresentation of R associated
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¯̄r A+
1 A+

2 E+ T+
1 T+

2 A−1 A−2 E− T−1 T−2
(0, 0, 0) 1
(0, 0, a) 1 1 1
(0, a, a) 1 1 1 1 1
(a, a, a) 1 1 1 1
(0, a, b) 1 1 2 1 1 2 2

(a, b, b) or (a, a, b) 1 1 1 2 1 1 2 1
(a, b, c) 1 1 2 3 3 1 1 2 3 3

Table A.1: Number of occurrences N(Γ, r̄) of the irreducible representation Γ of the
cubic group appearing in the decomposition (A.30). Empty cells mean
zeros. The first column shows the kind of the representative of the orbit
r̄, with 0 < a < b < c.

to r̄. Each orbit r̄ contains an unique element ¯̄r = (x, y, z) with 0 ≤ x ≤ y ≤ z, which
will be taken as the representative of the orbit. Table A.1 summarizes the coefficients
N(Γ, r̄) depending on the representative of r̄.

Each occurrence of an irreducible representation Γ is associated to a pair r̃ = (r̄, ν)
for r̄ ∈ Λ̄ and ν = 1, . . . , N(Γ, r̄). Let Λ̃Γ be the set of all those pairs so that

R = ⊕Γ ⊕r̃∈Λ̃Γ
Γ. (A.31)

The decomposition (A.31) implies the existence of an orthonormal basis of RV
consisting of vectors ψΓαr̃ with α = 1, . . . , dΓ (dΓ is the dimension of the irreducible
representation Γ) and r̃ ∈ Λ̃Γ. Let Ψ be the unitary matrix whose columns are the
vectors ψΓαr̃. For any matrix U satisfying (A.29), one can use Schur’s lemma to show
that

[ψΓαr̃]†UψΓ′α′r̃′ = δΓΓ′δαα′Ũ
Γ
r̃,r̃′ . (A.32)

Therefore, the matrix Ũ = Ψ†UΨ is block-diagonal with blocks ŨΓ each appearing dΓ
times. The elements of ŨΓ for each irreducible representation Γ are the actual degrees
of freedom of U . Compare

[
∑

Γ dΓ
∑
r̄N(Γ, r̄)]2 = V 2 = (2N + 1)6 ∼ 64N6, (A.33)

the dimension of the set of all matrices of RV , to∑
ΓN(Γ)2 ∼ 4

3N
6, (A.34)

the dimension of the subset of those which satisfy (A.29). Here, ∼ denotes the equiva-
lence at large N and N(Γ) =

∑
r̄N(Γ, r̄) ∼ dΓ

6 N
2 is the number of degrees of freedom

for each irreducible representation.

A.2.2 Periodic boundary conditions

In this subsection, we consider a cubic lattice with periodic boundary conditions con-
taining (2N)3 sites in each periodicity cell. A lattice wave function Φ can still be
represented by a V -dimensional vector φ, using notations from the previous subsection,
with the following constraint imposed by the boundary conditions:

∀n ∈ Z3, ∀r ∈ Λ, r + 2Nn ∈ Λ =⇒ φu(r) = φu(r+2Nn). (A.35)
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¯̄r A+
1 A+

2 E+ T+
1 T+

2 A−1 A−2 E− T−1 T−2
(0, 0, N) or (0, N,N) 1 1

(N,N,N) 1
(a,N,N) 1 1 1
(0, a,N) 1 1 2 1 1
(a, a,N) 1 1 1 1 1
(a, b,N) 1 1 2 1 1 2 2

Table A.2: Number of occurrences N(Γ, r̄) of the irreducible representation Γ of the
cubic group appearing in the decomposition (A.30) when periodic bound-
ary are enforced and the orbit r̄ contains sites at the boundary. Empty
cells mean zeros. The first column shows the kind of the representative
of the orbit r̄, with 0 < a < b < N .

Define the functions τn for n ∈ Z3 such that for r = 1, . . . , V , τn(r) = u(u−1(r) +
2Nn) if u−1(r) + 2Nn ∈ Λ and τn(r) = r otherwise. These functions implement the
translations by vectors 2Nn on the indices in {1, . . . , V } through the bijection u. Now,
define the matrices Tn with elements Tnrr′ = δr,τn(r′) for n ∈ Z3. Then, the vectors of
RV which can be identified with lattice wave functions are those left invariant by the
matrices Tn for n ∈ {−1, 0, 1}3.

An operator acting on lattice wave functions can again be represented by a V × V
matrix U which acts similarly on the V -dimensional-vector representations of the wave
functions. To transform covariantly both under the cubic group rotations and the
translations by 2NZ3 required by the periodic boundary conditions, the matrix U
must, in addition to (A.29), commute with the matrices Tn, which is equivalent to

Uτn(r),τn(r′) = Ur,r′ for any n ∈ {−1, 0, 1}3, (r, r′) ∈ {1, . . . , V }2. (A.36)

The matrices Rg combined with the matrices Tn define a representation R′ on RV
of the direct sum of the cubic group and some other group. For the purpose of this
paper, it suffice to say that this representation is equivalent to a representation R of the
cubic group, which has the decomposition described in (A.30), albeit with a different
function N(Γ, r̄) when r̄ is an orbit associated to lattice sites at the boundary. The
changes are summarized in Table A.2.

All results from the previous subsection can then be transposed to the case of
periodic boundary conditions, including the asymptotic behaviours in N since the
boundary has a negligible effect. Note that the number of occurrences N(Γ, r̄) at the
boundary, and thus the number of actual degrees of freedom of U are logically decreased
due to the additional constraint (A.36). Furthermore, the open or periodic boundary
conditions make no difference for N(Γ, r̄) when Γ is A+

1 , A
+
2 or E+.

A.3 Inversion problems

A.3.1 Basic strategy

Suppose that we are given Nsrc pairs of lattice wave functions (Φi, Xi). We wish to find
an operator Û transforming covariantly under cubic symmetry such that ÛΦi = Xi for
i = 0, . . . , Nsrc.

Let (φi, χi) be the associated pairs of vectors of RV as defined in sec. A.2. The goal
is then to find a V × V matrix U in C such that

∀i ∈ {1, . . . , Nsrc}, Uφi = χi. (A.37)
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The lattice wave functions are assumed to transform as an irreducible representation
(Γ, α) of the cubic group (with α in 1, . . . , dΓ), i.e.

∀i ∈ {1, . . . , Nsrc}, PΓ,αφi = φi, PΓ,αχi = χi, (A.38)

using the orthogonal projectors PΓ,α =
∑
r̃∈Λ̃Γ

ψΓαr̃[ψΓαr̃]†. This means that the
vectors can be expanded as

∀i ∈ {1, . . . , Nsrc}, φi =
∑
r̃∈Λ̃Γ

φ̃ir̃ ψ
Γαr̃, χi =

∑
r̃∈Λ̃Γ

χ̃ir̃ ψ
Γαr̃, (A.39)

and the constraint (A.37) is reduced to

∀i ∈ {1, . . . , Nsrc}, ŨΓφ̃i = χ̃i, (A.40)

where ŨΓ is the N(Γ)×N(Γ) matrix defined in (A.32). This matrix is ∼ ( 48
dΓ

)2 times
smaller than U . The purpose of appendix A.2 which led to this reduction is not only
to drastically reduce the computational cost of the inversion but also to identify the
independent degrees of freedom of the lattice wave functions in order to facilitate the
inversion.

We propose a matrix ŨΓ of the form

ŨΓ =
Ndof∑
j=1

VjM
j , (A.41)

for some unknown coefficients Vj and a predetermined set of linearly independent
matrices M j . Ndof = Nsrc × N(Γ) is the number of degrees of freedom fixed by the
constraint (A.40).

The coefficients Vj needed to satisfy (A.40) are then found as solutions of the linear
system

∀i ∈ {1, . . . , Nsrc}, ∀r̃ ∈ Λ̃Γ,
Ndof∑
j=1

Kir̃,jVj = χ̃ir̃, (A.42)

where the Ndof ×Ndof matrix K is defined by its elements

Kir̃,j =
∑
r̃′∈Λ̃Γ

M j
r̃,r̃′ φ̃

i
r̃′ . (A.43)

There is now a freedom to chose a set of matrices M j such that
– Û inherits some desired properties,
– K has a moderate condition number to allow a stable numerical solution of
(A.42).

A.3.2 Inversion with locality constraint

In this subsection, we discuss choices for matrices M j such that the operator Û is only
moderately non-local. We translate the non-locality of the operator to the non-locality
of the matrix ŨΓ using the indicator R[ŨΓ] which is defined as

R[A] = max
{
d(r̃, r̃′) | r̃, r̃′ ∈ Λ̃Γ, Ãr̃,r̃′ 6= 0

}
. (A.44)

where the distance between r̃ = (r̄, ν) and r̃′ = (r̄′, ν ′) in Λ̃Γ is d(r̃, r̃′) = ‖¯̄r − ¯̄′r‖, the
distance between the representatives of the orbits r̄ and r̄′.
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For each r̃ in Λ̃Γ, define a bijection l 7→ ωr̃l from {1, . . . , N(Γ)} to Λ̃Γ such that
d(r̃, ωr̃l ) is increasing with l. We can then define matrices M (r̃,l) for l = 1, . . . , N(Γ)
with elements M (r̃,l)

r̃′,r̃′′ = δr̃′,r̃δr̃′′,ωr̃
l
for which the non-locality R[M (r̃,l)] increases with l.

With some irrelevant numbering r̃k of the elements of Λ̃Γ, a natural choice of matrices
M j for j = 1, . . . , Ndof is M lN(Γ)+k = M (r̃k,l). As the number of wave functions Nsrc
increases, this set includes matrices with increasing non-locality. The elements of the
matrix K are then

Kir̃,lN(Γ)+k = δr̃,r̃k φ̃
i
ωr̃
l
, (A.45)

so that K is block diagonal with a block for each element of Λ̃Γ. The linear system
(A.42) can thus be solved efficiently block by block.

In practice, this construction is found to be numerically unstable due to large
condition numbers for some blocks of K. To overcome this problem, we allow slightly
more non-locality in order to find an optimal set of matrices M j . For each r̃ in Λ̃Γ,
we have previously only considered matrices M (r̃,l) with l up to Nsrc. Instead, we now
consider all indices l up to N(r̃, Rmax) = max {l ∈ {1, . . . , N(Γ)} | d(r̃, ωr̃l ) ≤ Rmax},
i.e. all matrices with a non-locality less than or equal to Rmax. We then build the
Nsrc ×N(r̃, Rmax) matrix K r̃ with elements

K r̃
i,l = φ̃iωr̃

l
. (A.46)

Note that Rmax must be large enough that N(r̃, Rmax) ≥ Nsrc for all r̃. Now, consider
the singular value decomposition (SVD) of K r̃ as K r̃ = Ar̃Dr̃[Br̃]† with the diagonal
elements of Dr̃ in decreasing order. The coefficients in the Nsrc first columns of Br̃

allow to chose a set of matrices M j with a non-locality bounded by Rmax and such
that K has a minimal condition number. This choice is

M lN(Γ)+k =
N(r̃k,Rmax)∑

l′=1
[Br̃k ]l′,l M (r̃k,l′). (A.47)

so that the elements of K become Kir̃,lN(Γ)+k = δr̃,r̃k [Ar̃Dr̃]il.
With Rmax � N , as is usually the case, all the considered matrices are sparse,

which allows fast implementations of this method.

A.3.3 Inversion with Hermiticity and locality constraints

In this subsection, we add a constraint of Hermiticity on the operator Û . For this, we
choose a set of matrices M j which are symmetric and moderately non-local. Consider
the set of unordered pairs (r̃l, r̃′l) ∈ Λ̃2

Γ indexed by l = 1, . . . , 1
2N(Γ)(N(Γ)+1) such that

d(r̃l, r̃′l) increases with l. Then, a choice of matrices M j are the matrices with elements
M j
r̃,r̃′ = δr̃,r̃jδr̃′,r̃′j + (r̃ ↔ r̃′). These matrices are symmetric and their non-locality

increases with j. The matrix K then has elements

Kir̃,j = δr̃,r̃l φ̃
i
r̃′
l
+ δr̃,r̃′

l
φ̃ir̃l . (A.48)

Contrary to the previous section, the matrix K is not block diagonal so that the system
(A.42) must be solved as a whole. Furthermore, this leads in practice to very high
condition numbers for K.

As previously, a way to reduce the condition number of K is to allow more non-
local matrices and select the optimal ones. This can be done by enlarging K as a
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rectangular matrix with elements Kir̃,j for j > Ndof . The SVD of this rectangular
matrix K leads the optimal set of matrices M j . However, it is found in practice that
even such a construction suffers from large condition numbers forK. Hopefully, another
construction might lead to a practical way to extract an Hermitian operator Û with
locality constraints.
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Appendix B

Details for the kernel approximation
method

B.1 Fourier transform of a 3D compactly supported function

In this section, we prove Proposition 4.2 which is mostly a corrolary of the Paley-
Wiener theorem. The expansion of the Fourier transform ĥ on the spherical harmonics
is written by

ĥ(p) =
∑
l=0

l∑
m=−l

[ĥ]lm(p)Ylm(p̂), (B.1)

where the radial functions are related to those of h by

[ĥ]lm(p) = 4π(−i)l
∫ R

0
drr2jl(pr)[h]lm(r) for p ∈ [0,∞[, (B.2)

and reciprocally

[h]lm(r) = il

2π2

∫ ∞
0

dpp2jl(pr)[ĥ]lm(p) for r ∈ [0,∞[. (B.3)

Take l ≥ 0 any angular momentum and any m = −l, . . . , l. Since h is smooth,
[ĥ]lm(p) decays at large p faster than any power of p−1. We can then use Lebesgue’s
dominated convergence theorem and the well-known behavior of jl at the origin to
show that

lim
r→0

r−l[h]lm(r) = il

2π2

∫ ∞
0

dp
pl+2

(2l + 1)!! [ĥ]lm(p) <∞. (B.4)

Using Rayleigh’s formula for jl, we can rewrite (B.2) as

[ĥ]lm(p) = 4π(−ip)l
(
−1
p

d

dp

)l 1
2ipIlm(p) (B.5)

with the integral

Ilm(p) = 2ip
∫ R

0
drj0(pr)r2−l[h]lm(r). (B.6)

Extend the function [h]lm to [−R,R] by [h]lm(−r) = (−1)l[h]lm(r) so that

Ilm(p) =
∫ R

−R
dreiprr1−l[h]lm(r). (B.7)
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[h]lm is continuous on [0, R] and given its behavior at the origin (B.4), r1−l[h]lm(r)
is square-integrable on [−R,R]. We can then use the Paley-Wiener theorem to con-
clude that Ilm(p) can be extended on the complex plane to an entire function of p of
exponential type R.

Since Ilm(p) is odd, let

Ilm(p) =
∞∑
n=0

anp
2n+1. (B.8)

Using (B.5) we obtain for any real p > 0,

flm(p) ≡ p−l[ĥ]lm(p) = −π(2i)l+1
∞∑
n=0

(n+ l)!
n! an+lp

2n. (B.9)

Given the properties of Ilm(p), it is straightforward to conclude that flm can also be
extended to an (even) entire function of p of exponential type R.

Combining results for all pairs (l,m), we obtain the desired result

ĥ(p) =
∑
l=0

l∑
m=−l

plflm(p)Ylm(p̂). (B.10)

B.2 Relation between the finite- and infinite-volume 4-point func-
tions

The “projected” infinite-volume 4-point function G̃4 is composed of the following inte-
grals

In(p′,p) ≡
∫ n∏

i=1

d3ki
(2π)3 Ũ(p′,k1)R(k1)Ũ(k1,k2) · · ·R(kn)Ũ(kn,p) (B.11)

where n ≥ 1, p′ and p in R3. For n = 0, we set I0 = Ũ . Using (4.88), we can define
the infinite matrices In, I◦•n , I•◦n and I••n .

We first analyze the integral for n = 1, i.e. with integration over only one momentum,
following [38] and [63]. Expand the dependence on the integrated momentum over the
spherical harmonics as

I1(p′,p) ≡
∫

d3k

(2π)3 Ũ(p′,k)R(k)Ũ(k,p) =
∑
lm

∫
d3k

(2π)3 flm(k) klYlm(k̂)
k2 − q2 − iε

, (B.12)

for some radial functions flm related to Ũ . Remember that W = 2ωq + iε.
Add and substract a function then reorganize the terms to obtain

I1(p′,p) =
∑
lm

flm(q)
∫

d3k

(2π)3
klYlm(k̂)eα(q2−k2)

k2 − q2 − iε

+
∑
lm

∫
d3k

(2π)3

[
flm(k)− flm(q)eα(q2−k2)

] klYlm(k̂)
k2 − q2 − iε

, (B.13)

where α > 0. This function is chosen such that the integrands in the second term are
not singular anymore. Relating them to Ũ , we can work out from Theorem 4.1 their
analycity domain and use Proposition 4.3 to convert the integral into a sum, up to
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corrections decaying exponentially with the volume. Neglecting these corrections, we
get

I1(p′,p) = iqf00(q)
8π3/2 +

∑
lm

flm(q) PV
∫

d3k

(2π)3k
lYlm(k̂)e

α(q2−k2)

k2 − q2

+
∑
lm

1
L3

∑
k∈Λ

[
flm(k)− flm(q)eα(q2−k2)

] klYlm(k̂)
k2 − q2 , (B.14)

where PV denotes the principal value. To obtain the first two terms, we used 1
k2−q2−iε =

iπδ(k2 − q2) + PV 1
k2−q2 on the first term of (B.13). Rearranging the terms we finally

obtain

I1(p′,p) = 1
L3

∑
k∈Λ

∑
lm

flm(k)k
lYlm(k̂)
k2 − q2 + iqf00(q)

8π3/2 +
∑
lm

flm(q)clm(1; q), (B.15)

where

clm(s; q) =

PV
∫

d3k

(2π)3 −
1
L3

∑
k∈Λ

 klYlm(k̂)eα(q2−k2)s

(k2 − q2)s (B.16)

is defined for Re s > 0. Note that clm(s; q) does not actually depend on α > 0 (derive
by α to see this). Furthermore, in the complex region Re 2s > l + 3, we can take the
limit α→ 0 to obtain1

clm(s; q) = − 1
L3

(2π
L

)l−2s
Zlm

(
s; qL2π

)
, (B.17)

with the Zeta function
Zlm(s;x) =

∑
k∈Z3

klYlm(k̂)
(k2 − x2)s . (B.18)

In the rest of the complex plane for s, Zlm(s;x) can be analytically continued so
that (B.17) still holds at s = 1.

We can now express flm back in terms of Ũ in (B.15) to get

I1(p′,p) = 1
L3

∑
k∈Λ

Ũ(p′,k)R(k)Ũ(k,p)

+
∑
l1m1

∑
l2m2

[∫
dq̂ Ũ(p′, q)Yl1m1(q̂)

]
[M••]l1m1,l2m2

[∫
dq̂ Y ∗l2m2

(q̂)Ũ(q,p)
]
, (B.19)

where q = qq̂ is on-shell and the matrixM•• has elements

[M••]l1m1,l2m2 = imq

(4π)2

[
δl1m1,l2m2 +

∑
lm

(4π)2

iql+1 clm(1; q)
∫
dq̂Y ∗l1m1(q̂)Y ∗lm(q̂)Yl2m2(q̂)

]
.

(B.20)
Note thatM•• = imq

(4π)2 (1 + iM) where M is the matrix used in eq. (4.10) of ref. [9].
Equation (B.19) may be summarized in terms of matrices as

I1 = Ũ R Ũ + Ũ◦•M•• Ũ•◦ = I0RI0 + I◦•0 M•• I•◦0 . (B.21)

and similar relations for I◦•1 , etc.
1 It is straightforward for l ≥ 1 but more involved for l = 0.
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For n ≥ 2, In is an integral over several continuous momenta. We can choose any one
of these momenta and apply the same argument as before to replace its integration by
a sum and an on-shell projection, while leaving the integration over the other momenta
unchanged. This leads to the relation

Im+n+1 = ImRIn + I◦•mM•• I•◦n , (B.22)

and similar ones for I◦•n , etc.
The “projected” finite-volume 4-point function G̃4L is composed of the following

sums over Λ
Jn ≡ Ũ(RŨ)n = I0(RI0)n. (B.23)

Using (B.22), it is easy to prove by recurrence the following expression of Jn in terms
of the integrals In

Jn = In +
n∑

m=1
(−1)m

∑
n0+···+nm=n−m

ni=0,1,...

I◦•n0M
•• I••n1M

•• · · · I••nm−1M
•• I•◦nm . (B.24)

Note that this relation still holds if we replace In by În = (−1)n+1In and Jn by
Ĵn = (−1)n+1Jn. Summing over n, we finally get

∞∑
n=0
Ĵn =

∞∑
n=0
În +

∞∑
m=1

(−1)m
[ ∞∑
n=0
Î◦•n

] {
M••

∞∑
n=0
Î••n

}m−1

M••
[ ∞∑
n=0
Î•◦n

]
, (B.25)

which is nothing but

G̃4L = G̃4 +
∞∑
m=1

(−1)mG̃◦•4
{
M•• G̃••4

}m−1
M•• G̃•◦4 . (B.26)

We have thus proven equation (4.89).
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