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Abstract. For a two-dimensional transverse configuration in a compressible plasma a 
magnetohydrodynamic simulation of the Kelvin-Helmholtz (K-H) instability has been 
performed for a subfast shear flow. The simulation shows that after the linear growth and 
the subsequent nonlinear saturation of the fastest growing vortices these vortices are 
susceptible to vortex pairings, which occur because of the growth of subharmonics. The 
total kinetic energy remains almost constant in the evolution of the instability, but the 
enstrophy decreases rapidly owing to the selective dissipation by an artificial viscosity, 
which is added to prevent mesh oscillations. Therefore the nonlinear evolution of the two- 
dimensional transverse K-H instability, in particular, the successive pairings of vortices, are 
well described as a self-organization process resulting from the interplay of the 
nonlinearity and the dissipation. After the early stage of the instability development the 
kinetic energy and the squared vorticity cascade toward the long wavelength (inverse 
cascade) to form power law spectra in the wavenumber space. The inverse cascade in the 
wavenumber space corresponds, in the configuration space, to an emergence of a large 
isolated flow vortex and an associated eddy of inertia current out of trains of small-scale 
vortices and current eddies in the early stage. At the end of the simulation run the power 
law exponents in the wavenumber space of the kinetic energy, the squared vorticity, and 
the magnetic energy, which are all integrated across the initial flow direction, become 
-3.89, -2.08, and -4.58, respectively, in the intermediate wavenumber subrange. 

1. Introduction 

The sheared flow is a ubiquitous feature in space and astro- 
physical plasmas such as at the magnetopause, at the bow- 
shock, and in the solar wind. It is also commonly observed 
inside the magnetosphere as a consequence of several different 
magnetospheric dynamical processes. It is well known that 
such shear flows are susceptible to the Kelvin-Helmholtz 
(K-H) instability, which is also called the shear instability in 
hydrodynamics [e.g., Dungey, 1955; Chandrasekhar, 1961; 
Southwood, 1968; Miura and Sato, 1978a, b; Walker, 1981; 
Miura and Pritchett, 1982; Pu and Kivelson, 1983]. Observa- 
tional evidence supporting the occurrence of the K-H instabil- 
ity at the terrestrial and planetary magnetopauses has been 
accumulated [e.g., Lepping and Burlaga, 1979; Schardt et al., 
1984; Chen et al., 1993; Seon et al., 1995; Kivelson and Chen, 
1995]. The study of the nonlinear (finite-amplitude) evolution 
of the K-H instability is important in understanding the trans- 
port of momentum and energy [Miura, 1982, 1984] and an 
emergence of a large-scale order created by the instability. The 

stability is a well-known nonlinear effect. Several hydrody- 
namical experiments have shown that at the late stage of the 
K-H instability, two vortical structures combine to form a sin- 
gle, larger vortical structure [e.g., Winant and Browand, 1974; 
Browand and Weldman, 1976; Ho and Huang, 1982]. Such vor- 
tex pairing has also been reproduced by numerical experiments 
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of the two-dimensional (2-D) hydrodynamics [e.g., Lesieur et 
al., 1988; Lele, 1989] and 2-D magnetohydrodynamics (MHD) 
[Wu, 1986; Belmont and Chanteur, 1989; Manuel and Samson, 
1993]. However, the pairing of vortices has not been studied 
quantitatively, and it is not even questioned why vortices merge 
in the nonlinear stage of the K-H instability. 

The primary objective of the present study is to investigate 
the relevance of self-organization in the two-dimensional 
Navier-Stokes flow [e.g., Rhines, 1975; Bretherton and Haidvo- 
gel, 1976; Kraichnan and Montgomery, 1980; McWilliams, 1984; 
Hasegawa, 1985] to the nonlinear evolution of the K-H insta- 
bility in the 2-D MHD transverse configuration by a 2-D MHD 
simulation and thus to throw a new light on the nonlinear 
evolution of the K-H instability, in particular, the successive 
pairings of vortices from the point of self-organization. Al- 
though the self-organization is a rather subjective concept [Ha- 
segawa, 1985], the underlying concept of the self-organization, 
i.e., the emergence of macroscopic order out of disorder, is an 
important subject in a variety of disciplines from physics and 
chemistry to social sciences [see, e.g., Wiener, 1961; Nicolis and 
Prigogine, 1977; Gell-Mann, 1994; Prigogine, 1997]. The forma- 
tion of life from primordial substances is an example of self- 
organization. Wiener [ 1961] discussed in detail a self-organizing 
process by which narrow, highly specific frequencies are 
formed in brain waves. The usefulness of the methods of the 

calculus of variations in studying the self-organized state is also 
pointed out by Wiener [1961]. In three-dimensional toroidal 
plasmas, Taylor [1974] proposed that the plasma will reach an 
equilibrium or a relaxed state, with minimum magnetic energy, 
by imposing a constraint of constant magnetic helicity. The 
process of relaxation to such a state is a self-organization 
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process. The self-organization processes in MHD and plasma 
have also been studied quite intensively and extensively by 
computer simulations [e.g., Matthaeus and Montgomery, 1980; 
Horiuchi and Sato, 1986] (see also a recent review by Sato and 
the Complexity Simulation Group [1996]). 

The self-organization in the 2-D, incompressible hydrody- 
namic turbulence is well known [e.g., Kraichnan, 1967; Lilly, 
1969; Rhines, 1975; Bretherton and Haidvogel, 1976; Kraichnan 
and Montgomery, 1980; Hasegawa, 1985]. According to the self- 
organization in the 2-D incompressible turbulence, there are 
two inviscid global invariants, i.e., the total kinetic energy and 
the mean or total square vorticity (enstrophy), and when a 
small viscosity is added to the system, the total kinetic energy 
remains approximately constant, but the enstrophy decays rap- 
idly by the selective dissipation [Bretherton and Haidvogel, 
1976; Kraichnan and Montgomery, 1980] because of the viscos- 
ity. In the 2-D, incompressible hydrodynamics, the self- 
organization leads to the fact that the total kinetic energy 
cascades to the long wavelength (inverse energy cascade), or 
the vortex with the similarly signed vorticity must tend to group 
together. Since the total kinetic energy W remains relatively 
invariant but the enstrophy U cascades to short wavelengths 
and is dissipated by the selective dissipation, the appropriate 
variational principle is (SU - h rSW = 0. This leads to the 
equation 

VxVxv=hv (1) 

which describes the minimum enstrophy state, which the 2-D 
turbulence is relaxed into [Hasegawa, 1985]. Here, v is the 2-D 
flow velocity vector, and • is a constant. 

The hydrodynamic and MHD K-H instability including vor- 
tex pairings has been studied quite intensively by computer 
simulations. Metcalfe et al. [1987] did a three-dimensional in- 
compressible hydrodynamic simulation of the temporal evolu- 
tion of the hyperbolic tangent velocity shear layer and found 
that the shear layer is susceptible to the 2-D K-H instability 
and that a vortex pairing occurs in the nonlinear stage when a 
properly tailored 2-D seed perturbation is given initially. They 
measured a spatially averaged Reynolds stress when the vortex 
pairing is inhibited and when it is allowed. Lesieur et al. [1988] 
did a 2-D incompressible hydrodynamic simulation of the tem- 
poral evolution of the hyperbolic tangent velocity shear layer. 
Starting from an initial white-noise perturbation, they found 
that four vortices appear initially in the simulation region and 
then they merge to form two vortices. They found that after the 
first vortex pairing the spatial longitudinal kinetic energy spec- 
trum has a power law spectrum with a slope between k -4 and 
k -3. Lele [1989] did 2-D compressible hydrodynamic simula- 
tions of both temporally growing and spatially growing free 
shear layers. He found that the pressure decreases inside the 
vortex and that vortex pairings occur in the nonlinear stage. He 
calculated energy spectra, but he did not follow the temporal 
evolution of the free shear layer until a single isolated vortex 
was formed by successive vortex pairings. Wu [1986] did 2-D 
compressible MHD simulations of the spatially growing K-H 
instability using a nonperiodic boundary condition for both 
transverse and parallel homogeneous configurations, where 
the initial magnetic field is transverse and parallel to the initial 
flow, respectively. He found in his simulation of the spatially 
growing K-H instability that the vortices excited by the K-H 
instability become larger in the downstream and the relaxation 
of the velocity shear by the instability is larger in the down- 
stream. Belmont and Chanteur [1989] did a 2-D, compressible, 

resistive MHD simulation of the temporally growing K-H in- 
stability for a sheared magnetic configuration including a mag- 
netic field component parallel to the flow and found successive 
pairings of the vortices. Manuel and Samson [1993] did a 2-D 
compressible MHD simulation of a spatially growing K-H in- 
stability using a nonperiodic boundary condition for an inho- 
mogeneous configuration with a sheared magnetic field. They 
found vortex pairings in the downstream and also that the 
tangential stress by the instability becomes larger in the down- 
stream. Miura [1997] clarified in detail the difference between 
the 2-D compressible hydrodynamic K-H instability and the 
2-D compressible MHD transverse K-H instability and per- 
formed a 2-D compressible MHD simulation of the temporally 
growing K-H instability for a homogeneous transverse config- 
uration, where the magnetic field is transverse to the flow. 
Miura [1997] investigated the basic relationship among vortex 
development including vortex pairing, rarefaction, and com- 
pression due to the fast magnetosonic wave, flow enhance- 
me.nt, eddy current, and momentum transport caused by the 
K-H instability in a compressible plasma or, more specifically, 
in a 2-D transverse configuration. In that study the length of 
the simulation system in the direction of the initial flow was 
equal to 4 times as long as the wavelength of the linearly fastest 
growing mode, and two successive vortex pairings were ob- 
served. In spite of these intensive studies of the 2-D hydrody- 
namic and MHD K-H instability, no previous simulations have 
ever calculated the temporal evolution of the 'enstrophy, and 
hence the self-organization process arising from the selective 
dissipation in the 2-D K-H instability was never clarified. Al- 
though Miura [1997] derived a conservation law of the enstro- 
phy for a 2-D compressible MHD transverse configuration, he 
did not follow the temporal and spectral evolutions of two 
inviscid incompressible global invariants, i.e., the total kinetic 
energy and the enstrophy. Therefore the self-organization pro- 
cess in the 2-D MHD transverse K-H instability was not no- 
ticed in his study. 

In order to study the relevance of the self-organization to the 
nonlinear evolution of the K-H instability a compressible 
MHD simulation of the K-H instability is performed in the 
present study for a subfast shear flow in the 2-D MHD trans- 
verse configuration, where the magnetic field is transverse to 
the flow, and both temporal and spectral evolutions of the two 
inviscid incompressible global invariants are studied. In the 
present study the length of the simulation system in the initial 
flow direction is equal to 8 times as long as the wavelength of 
the linearly fastest growing mode and thus twice as long as the 
simulation system used by Miura [1997]. In the present study it 
will be shown that basic physics clarified by Miura [1997] is also 
valid in the present longer simulation system with only a quan- 
titative change. It is important to see that successive vortex 
pairings, i.e., the self-organization and the relaxation to the 
minimum enstrophy state, occur also for a larger simulation 
system for a computational reason. This demonstration of the 
successive vortex pairings for a longer simulation system is also 
important from a practical point of view because in a real 
magnetosphere it is anticipated that vortices created by the 
instability near the subsolar magnetopause undergo four or 
five vortex pairings during the passage of the vortices from the 
subsolar region to the tail of the magnetosphere. 

The necessary condition for the self-organization in contin- 
uous media is the existence of several global invariants when 
there is no dissipation [Hasegawa, 1985]. However, when a 
small dissipation is added to the system, some invariants decay 
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more rapidly than other invariants because of the selective 
dissipation [Montgomery et al., 1978; Riyopoulos et al., 1982]. 
Therefore the existence of the ultimate dissipation is necessary 
in the self-organization, but the detail of the self-organization 
process does not seem to depend on the nature of the dissipa- 
tion processes. In the present numerical simulation the dissi- 
pation needed for the self-organization is an artificial viscosity, 
which is added to prevent mesh oscillations. In the present 
study we do not ask what causes the real dissipation of the 
enstrophy in the collisionless space plasma, i.e., the nature of 
the collisionless viscosity, although it is due to microscopic 
processes (ion kinetics) in space plasmas. We note that this 
interrelationship of the MHD and the dissipation is analogous 
to other problems in space plasmas, such as collisionless shocks 
and reconnection, wherein the ultimate dissipation is neces- 
sary, but the final state attained in those problems is mainly 
determined by the global MHD consideration. We should also 
point out that although the ultimate dissipation of vorticity and 
energy is caused by the real viscosity, which makes the process 
irreversible, the transport of momentum and energy is gov- 
erned by the development of turbulent large-scale eddies or 
vortices. For this reason a "viscosity," which is the measure of 
the transport of momentum and energy, is the anomalous 
viscosity [Miura, 1982, 1984] or the turbulent viscosity [Landau 
and Lifshitz, 1959], which is much larger than the real viscosity. 
It has been shown by the quasilinear analysis [Miura and Sato, 
1978a, b; Horton et al., 1987; Rankin et al., 1997] that the 
anomalous viscosity is proportional to the square of the vortex 
amplitude. The discrepancy regarding the magnitude of the 
momentum transport and the anomalous viscosity caused by 
the K-H instability among previous studies by Miura [1984], 
Wu [1986], and Manuel and Samson [1993] will also be resolved 
in the present study by showing the increase of the momentum 
transport with the vortex pairing. 

The outline of the present paper is as follows: A 2-D trans- 
verse configuration used in the present simulation is described 
and the conservation law of the enstrophy for the 2-D viscid 
compressible plasma (fluid) is derived in section 2. Simulation 
results for the 2-D MHD transverse configuration are shown in 
section 3. Discussion and summary are given in section 4. 

2. Conservation Laws and 2-D Inviscid 

Incompressible Global Invariants 

Figure 1 shows flow velocity and magnetic field in a 2-D 
MHD transverse configuration, which is used in the following 
2-D MHD simulation. An initial uniform magnetic field B o is 
transverse to the simulation plane (x-y plane). The back- 
ground plasma flow is in the y direction, and the flow velocity 
vy is inhomogeneous (sheared) in the x direction. In the 2-D 
transverse configuration the magnetic field B at any time re- 
mains transverse to the simulation plane (i.e., B has the only z 
component Bz), but B is not necessarily uniform because the 
magnetic field may be compressed or rarefied by the 2-D 
plasma motion in the x-y plane. The line bending term (B. V)B 
in the J x B force in the equation of motion vanishes in the 
2-D MHD transverse configuration. Therefore, in the equation 
of motion the effect of the magnetic field appears only in the 
total pressure Pt = P + B2/2/•o, where p is the plasma 
pressure. In the 2-D transverse configuration it is shown that 
the density p and B z remain proportional at any time [Miura, 
1997]. The differences and the similarities between the 2-D 
fluid motion and the plasma motion in the 2-D MHD trans- 
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Figure 1. The sheared flow velocity (thick solid arrows) and 
the initial uniform magnetic field B o in the two-dimensional 
(2-D) MHD transverse configuration. 

verse configuration are discussed in detail by Miura [1997]. In 
short, when the plasma is compressible and the ratio of specific 
heats F -7: 2, B z appears explicitly in the governing equations. 
Therefore, for F -7: 2, there is essentially a difference between 
the K-H instability in the 2-D MHD transverse configuration 
and the K-H instability in the 2-D hydrodynamic configuration. 
When the plasma is incompressible (V-v = 0), the magnetic 
field and the density are not perturbed in the 2-D MHD trans- 
verse configuration, and the plasma behaves like an incom- 
pressible fluid. In the 2-D MHD transverse configuration used 
in the following simulation it is assumed that 0/0z = 0, the 
initial density Po is uniform, and the ratio of specific heats F is 
equal to 5/3. Since p/B• is initially uniform in the following 2-D. 
MHD transverse configuration, p/B• is an invariant of the 
plasma motion; that is, p and B• remain proportional in the 
evolution of the K-H instability. In the 2-D inviscid and incom- 
pressible hydrodynamic flow the total kinetic energy and the 
enstrophy are two invariants of the fluid motion [e.g., Onsager, 
1949; Batchelor, 1953; Kraichnan, 1967; Montgomery, 1989; 
Biskamp, 1993]. For the inviscid compressible plasma in the 
2-D MHD transverse configuration the conservation law of the 
enstrophy was derived [Miura, 1997]. For the general viscid 
compressible plasma (or flow) in the 2-D MHD transverse 
configuration the conservation law of the enstrophy can be 
derived as follows: The equation of motion in the 2-D MHD 
transverse configuration can be written as 

P + (v. V)v = -Vp, + nVv (2) 

The last term in the right-hand side of (2) represents the 
viscous dissipation due to the artificial viscosity, which is added 
to prevent spurious mesh oscillations [Richtmyer and Morton, 
1967; Lapidus, 1967; Miura, 1985]. By dividing (2) by p and by 
taking the curl of the resultant equation we obtain 

O '•p x •p, 
at (V X v) + V X [(v' V)v] : p2 + pV2(V X v) 

(3) 

where the vector product on the right-hand side, Vp x Vpt/p 2, 
is the baroclinic vector and •, = rl/p is the kinematic viscosity. 
For simplicity, let us assume that •, is constant in space and in 
time. From (3) we obtain the following general conservation 
equation of the enstrophy (see Hasegawa [1985] for derivation 
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in the viscid incompressible case and Miura [1997] for deriva- 
tion in the inviscid compressible case). 

Ot dxdy (V x v) 2= - dxdy (V x v)2(V ß v) 

+f fcdXdy2(Vxv) ' 
(Vp x 

/9 2 

(4) 

where the left-hand side is proportional to the time derivative 
of the enstrophy (total square vorticity) and C represents a 
region in the x-y plane with -xt, -< x -< xt, and 0 -< y -< Ly 
and A represents the surface surrounding the volume V, which 
consists of a region with -xt, -< x _< xt,, 0 -< y _< Ly, and 0 -< 
z -< 1.0. We assumed, as is also assumed in the following 2-D 
MHD simulation, that v is periodic in the y direction, i.e., v (x, 
y = 0) = v (x, y = Ly), v x = 0 at boundaries in the x 
direction at x = -+xt,, and v is independent of z. We defined 
gl = V x v. Equation (4) gives the general conservation law of 
the enstrophy in C. In deriving the viscous terms in the right- 
hand side of (4) the following vector identity for the 2-D 
configuration was used: 

[v x (v x 

= -(v x + v. x (v x (5) 

In the present 2-D MHD transverse configuration, where the 
initial quantities P0 and B o are uniform, p and B z remain 
proportional. Therefore the baroclinic vector Vp x •7pt/p2 is 
equal to Vp x •7p/p 2, which is the same as the baroclinic 
vector in the hydrodynamic case. If the plasma (fluid) is uni- 
form initially and incompressible (V- v = 0), the density p is 
not perturbed and Vp = 0. Therefore we recover from (4) that 
in the 2-D uniform, inviscid, incompressible plasma (fluid) the 
enstrophy is an invariant of the plasma (fluid) motion. In a 
more general case, where the plasma (fluid) is viscous or the 
plasma (fluid) is compressible or the baroclinic vector is non- 
zero, the enstrophy is not an invariant of the 2-D plasma (fluid) 
motion. 

In the inviscid 2-D MHD transverse configuration (B _1_ v), 
taking the volume integral of the energy conservation equation 
and using the boundary condition in the present simulation 
lead to [Miura, 1997] 

0 i V2 p Ot dxdy •p +•-•0+r - 1:0 (6) 

This is the conservation law of the total energy in the C region. 
In the uniform, incompressible case (F -• c•), B z and p are not 
perturbed and p = P0. Therefore 

Ot dxdy v 2= 0 (7) 

This means that the total kinetic energy is an invariant in the 
2-D uniform, inviscid, incompressible case. Therefore, in the 
inviscid, incompressible, 2-D MHD transverse configuration or 
in the inviscid, incompressible, 2-D fluid, there are two global 
invariants of the plasma (fluid) motion, the enstrophy and the 
total kinetic energy. 

3. Simulation Results 

3.1. Initial Configuration and Initial Perturbation 

A 2-D MHD simulation is performed in the x-y plane per- 
pendicular to the magnetic field. The initial flow velocity roy 
has a hyperbolic tangent shear profile 

roy(X) = (V0/2)[1 - tanh (x/a)] (8) 

and the other initial quantities (B0, P0, and P0) are uniform. 
Therefore the initial velocity shear layer is characterized by the 
finite thickness of the velocity shear layer (2a). We impose a 
boundary condition such that there is no mass flow (v x = O) 
across the boundaries at x = -+xt, - -+ 40a and all quantities 
are periodic in the y direction [Miura, 1984]. Since the real 
frequency of the K-H instability is due to the Doppler shift due 
to the mean bulk flow the dispersion relation gives to r = 
ky[Zo / 2, where for is the real part of the angular frequency. The 
appropriate Mach number for the background flow is the fast 
magnetosonic Mach number defined by Mf -- Vo/¾/Cs 2 q- V• 2 , 
where V•4 = Bo/(•oPo) •/2 and C s = (Fp0/P0) •/2. Notice that 
an important Mach number, which characterizes the intrinsic 
compressibility of the flow, is the convective Mach number Mzc 
= Mr/2, which is the Mach number in a frame of reference 
comoving with the phase velocity of the unstable K-H wave 
[Papamoshou and Roshko, 1988]. 

In the present simulation run we adopt the sound Mach 
number Ms = Vo/Cs = 1.0 and the Alfv6n Mach number M•4 
= Vo/V,4 = 1.0. The fast mode Mach number M• is M• = 
0.71, and the convective fast magnetosonic Mach number is 
Mfc = 0.35. We use a time T normalized by 2a/Vo. For this 
configuration the linearly fastest growing mode occurs at 
2kya • 0.8 with its growth rate equal to 0.17V0/2a [Miura 
and Pritchett, 1982]. Therefore the wavelength of the linearly 
fastest growing mode (FGM) XFG M is equal to 15.7a. The 
length Ly of the simulation system in the y direction is chosen 
equal to 8XFG M = 125.6a. Since the present simulation is an 
MHD simulation it is necessary to give explicitly an initial seed 
perturbation at T = 0. In the present simulation a linear 
superposition of the approximate linear eigenfunction of the 
fastest growing mode in the incompressible case [Miura and 
Sato, 1978a, b] and its subharmonic modes is added to the 
background flow at T = 0 as an initial seed perturbation [see 
also Miura, 1997]. The peak amplitude of the initial flow ve- 
locity perturbation is 0.005V 0. The explicit form of the seed 
perturbation is as follows: 

4 

Vx(X, y) = • 2kn[-dpr(X) sin (k,y) - 4)i(x) COS (kny)] 
n=l 

(9) 

4 [ dt•r(X) dt•i(x) ] vy(x, y) = - • 2 dx cos (k,b') - d• sin (k,b') 

where 
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kn = kFOM/2 n-l= (0.8/2a)/2 •-• n = 1, 2, 3, 4 

(br(X) = •0 exp (--x•2) cos [•sin (•XaX) ] 
(11) 

(12) 

(•3) 

•o is the arbitrary constant to determine the amplitude of the 
initial perturbation, and rr determines the inclination of the 
vortex with respect to the mean flow, which determines 
whether the vortex is growing or decaying [Miura and Sato, 
1978a]. That is, rr = -1 for the growing vortex, and rr - 1 for 
the decaying vortex. The wavenumber kFG M is the wavenum- 
ber of the linearly fastest growing mode. The conservation 
equations of the ideal MHD were solved by using the two-step 
Lax-Wendroff scheme and the number of grids is equal to 
400 x 400. 

3.2. Temporal Evolution of the 2-D Inviscid 
Incompressible Invariants 

Figure 2 shows temporal evolutions of the total energy (dot- 
ted curve), total internal energy (dashed curve), total magnetic 
energy (dot-dashed curve), and the total kinetic energy (solid 
curve) integrated in the whole simulation region. Each total 
energy is normalized by 0.0628a2po . It is obvious from Figure 
2 that there is almost no energy exchange between the total 
magnetic energy and the total kinetic energy. The total kinetic 
energy remains almost constant during the simulation run in 
the present 2-D transverse configuration. 

Figure 3 shows temporal evolutions of the total square vor- 
ticity integrated in the whole simulation region (solid curve), 
the first term in the right-hand side of (4) due to the compress- 
ibility (dotted curve), and the second term in the right-hand 
side of (4) (dashed curve), which includes the baroclinic vector. 
It is obvious in Figure 3 that the enstrophy (total square vor- 
ticity) decreases rapidly with time with a small oscillating com- 
ponent. Comparison of the evolution of the total square vor- 
ticity and the compressible term, which shows a small net 
decrease, in Figure 3, indicates that the oscillating component 
in the enstrophy evolution is due to the compressibility, which 
is expressed by the first term in the right-hand side of (4). It is 
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Figure 2. Temporal evolution of the total energy in the sim- 
ulation region (dotted curve), total internal energy (dashed 
curve), total magnetic energy (dot-dashed curve), and the total 
kinetic energy (solid curve) integrated in the whole simulation 
region. 
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Figure 3. Temporal evolution of the total square vorticity 
(enstrophy) integrated in the whole simulation region (solid 
curve), the first term in the right-hand side of (4) due to the 
compressibility (dotted curve), and the second term (baroclinic 
term) in the right-hand side of (4). 

also seen in Figure 3 that the baroclinic term, which is the 
second term in the right-hand side of (4), is negligible com- 
pared with other terms in (4). Therefore we conclude that the 
large decrease in the enstrophy shown in Figure 3 must be due 
to the viscous dissipation, which is expressed by the last two 
terms in the right-hand side of (4). Notice that although the 
present simulation is done for the ideal MHD without any 
explicit physical viscosity, a small artificial viscosity is added to 
prevent spurious mesh oscillations. Therefore the enstrophy, 
which is the invariant in the 2-D, inviscid, and incompressible 
case, decreases with time because of the selective dissipation 
by the artificial viscosity. The constancy of the total kinetic 
energy shown in Figure 2 and the selective decay of the en- 
strophy shown in Figure 3 indicate that the evolution of the 
K-H instability in the present 2-D MHD transverse configura- 
tion is a self-organization process. 

3.3. Evolution in the Wavenumber Space 

Let us define the kinetic energy spectrum integrated along x. 
According to the Parseval relation in the Fourier analysis we 
obtain 

1 • 2 f0 Ly 5aø(x)2 + Z [an(X) 2 + bn(x) 2] : n=• •yy [f(x, y)]2 dy 
(14) 

where any function f(x, y) defined in the x-y plane is ex- 
pressed by the Fourier series as 

f(x, y) = 5 ao(x) + • an(X ) COS Ly n=l 

+ b•(x) sin Ly (15) 

an(X ) = •yy f(x, y) cos Ly ] dy (16) 
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Figure 4. Temporal evolution of the amplitudes of the fast- 
est growing mode with k = kFG M (solid curve), the first 
subharmonic with k = kFGM/2 (dot-dashed curve), the second 
subharmonic with k = kFGM/4 (dotted curve), the third sub- 
harmonic with k = kFGM/8 (double dot-dashed curve), and the 
Fourier mode with k = 3kFGM/8 (dashed curve) of the kinetic 
energy integrated along x. All amplitudes are normalized by 
2apo. 

bn(x) = •yy f(x, y) sin Ly } dy 

By integrating (14) from x = -x b to x - xb we obtain 

:x• clx 5 aø(x)• + [a•(x)• + b•(x)•] 
--Xb 

(]7) 

= dx •yy [f(x, y)]2 dy 
Xb 

If we define 

:b S, 2 = dx Jan(x) 2 + b,(x) 2] (19) 
Xb 

S• 2 is equal to the contribution of the nth Fourier harmonic to 
F(y), where 

b F(y) = dx [f(x, y)]2 (20) 
Xb 

Therefore, if we take 

f(x, y) = •p(x, y) 2 2 Vz 2) (21) 2 (Vx+Vy+ 

then according to (18) and (19), (19) represents the contribu- 
tion of the n th harmonic to the total kinetic energy. Similarly, 
if we take 

f(x, y) = (V x v)-i (22) 

(19) represents the contribution of the nth harmonic to the 
total square vorticity (enstrophy). 

Figure 4 shows temporal evolutions of Fourier amplitudes 
S• 2 of the kinetic energy integrated along x. The five modes 
have the wavenumbers k equal to kFGM/8 (double dot-dashed 

curve), kFGM/4 (dotted curve), 3kFGM/8 (dashed curve), 
kFGM/2 (dot-dashed curve), and kFG M (solid curve), where 
kFG M is the wavenumber of the linearly fastest growing mode. 
Each mode amplitude is normalized by 2apo. At T = 0, four 
modes with k -- kFG M (fastest growing mode), kFGM/2 (first 
subharmonic), kFGM/4 (second subharmonic), and kFGM/8 
(third subharmonic) have the same amplitudes (see (9)-(13)). 
The fastest growing and first subharmonic modes grow almost 
linearly in their linear phases. The growth rates of those modes 
were calculated from their linear slopes in the initial growth 
phases. The calculated growth rates are 0.1611/o/2a and 
0.108 l/o/2a for the fastest growing mode and the first sub- 
harmonic mode, respectively. The growth rates obtained by 
linear analysis for these two modes are 0.171/o/2a and 
O. 12 l/o/2a, respectively [Miura and Pritchett, 1982]. Therefore 
there is good agreement between the predicted linear growth 
rates and the linear growth rates obtained from the simulation 
run. Although the fastest growing mode (solid curve) has the 
largest growth rate, the third subharmonic reaches the largest 
amplitude during the simulation run. 

Figure 5 shows the spectral amplitudes S• 2 of the integrated 
kinetic energy versus the wavenumber in the spectral space at 
six different times. The amplitude is normalized by 2apo. In 
Figure 5, kmi n is the wavenumber of the third subharmonic, 
which is equal to kFGM/8. At T = 0 a velocity perturbation, as 
defined by (9)-(13), with small amplitude was added to the 
background flow velocity. As is shown by (9) and (10), the 
velocity perturbation is a linear combination of the fastest 
growing mode and the three subharmonics. The amplitudes of 
those modes were taken to be equal at T - 0. Therefore it is 
seen at T = 0 that there are four discrete peaks of the spectral 
amplitudes at k - kmin, 2kmin, 4kmin, and 8kmi n with the same 
amplitudes. It is also seen at T - 0 that there are irregular 
noise components at large k values (k/kmi n > 90). These noise 
components appeared possibly because of the round off errors' 
or the inaccurate representation of the trigonometric functions 
in calculations of (16) and (17) by the finite difference method. 
Since these noise components are much smaller in amplitude 
than the initial seed perturbations at k = kmin, 2kmin, 4kmin, 
and 8kmi n by more than 4 or 5 orders of magnitude, these 
irregular noise components do not play any important role in 
the present simulation. Since these noise components ap- 
peared at T = 0 before the numerical integration they are not 
due to the inaccuracy of the two-step Lax-Wendroff scheme. 
At T = 20, when the fastest growing mode has an initial peak 
in Figure 4, the spectral component with k = 8kmi n peaks, but 
later the spectral peak shifts to the smaller wavenumber, and 
finally, at T -- 600 the spectral component at k = kmi n peaks 
owing to the inverse cascade of the integrated kinetic energy. 
Figure 5 shows that there are multiple discrete spectral peaks 
at the higher harmonics of the fastest growing modes and the 
subharmonics until T = 90. However, the spectral distribution 
becomes more continuous after T - 90 owing to the nonlinear 
coupling among higher harmonics. At T = 600 the spectral 
distribution becomes almost continuous and is well repre- 
sented by a power law distribution. It can be seen in this figure 
that in the k space the kinetic energy cascades toward the short 
wavelength (direct cascade) in the early stage of the instability 
development, but the kinetic energy cascades toward the long 
wavelength (inverse cascade) after the early stage of the insta- 
bility development. 

Figure 6 shows the spectral amplitudes S• 2 of the enstrophy 
(total square vorticity) versus the wavenumber in the spectral 
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Figure 5. The spectral amplitudes S• 2 of the kinetic energy integrated along x versus the wavenumber in the 
wavenumber space at six different times. The wavenumber is normalized by krnin = kFGM/8. 

space at six different times. The spectral amplitude (19) is 
calculated by using (22). The amplitude is normalized by (V o/ 
2a)2. The spectral amplitude is shown in the same format as 
Figure 5. At T = 0, there are four discrete peaks at k - kmin, 

2kmin, 4krnin , and 8krnin. It is also seen at T = 0 that there are 
noise components at large k values (k/kmi n > 90) as was seen 
in Figure 5. These noise components at the initial Fourier 
spectra of the enstrophy are again possibly due to the round off 
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Figure 6. The spectral amplitudes S• 2 of the enstrophy (total square vorticity) versus the wavenumber in the 
spectral space at six different times. The wavenumber is normalized by kmi n = kFGM/8. 
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Since the continuous spectra of both total kinetic energy and 
the enstrophy at T = 600 show power law distributions it is 
possible to obtain the power law exponents of those spectra at 
T = 600. The solid line in Figure 7a shows the spectral 
distribution of the total kinetic energy shown in Figure 5 at 
medium subrange of the wavenumber from k/kmi n = 10 to 50 
at T = 600. The dashed line is a regression line, which fits 
most to the spectral distribution of the total kinetic energy. 
This line has a power law exponent -3.88689. The solid line in 
Figure 7b shows the spectral distribution of the enstrophy 
shown in Figure 6 at medium subrange of the wavenumber 
from k/kmi n = 10 to 50 at T -- 600. The dashed line is a 
regression line, which fits most to the spectral distribution of 
the enstrophy. This line has a power law exponent -2.08465. 
Since the enstrophy is an integral of the square of the curl of 
v the observed fact that the power law exponent of the enstro- 
phy is nearly equal to the power law exponent of the total 
kinetic energy plus 2 is reasonable. 

Since S• 2 represents the contribution or weight of the nth 
Fourier component to the total kinetic energy or the enstrophy 
the average wavenumber of the total kinetic energy or the 
enstrophy is calculated by the following formulae 

(k) = 

E knSn 2 
n=l 

E 

(23) 

Figure 7. (a) The spectral distribution of the kinetic energy 
integrated along x shown in Figure 5 at medium range of the 
wavenumber from k/kmi n = 10 to 50 at T -- 600. The dashed 
line is a regression line, which fits most to the spectral distri- 
bution. The regression line has a power law exponent of 
-3.88689. (b) The spectral distribution of the enstrophy shown 
in Figure 6 at medium range of the wavenumber from k/kmi n 
= 10 to 50 at T = 600. The dashed line is a regression line, 
which fits most to the spectral distribution. The regression line 
has a power law exponent -2.08465. 

errors or the inaccurate representation of the trigonometric 
functions in calculations of (16) and (17) by the finite differ- 
ence method. Since these noise components are smaller than 
the initial seed perturbation at k = kmin, 2kmin, 4kmin, and 
8kmi n by more than 7 or 8 orders of magnitude they do not play 
any important role in the present calculation. They are again 
not due to the inaccuracy of the two-step Lax-Wendroff 
scheme. At T = 20 the spectral component at k - 8kmi n 
peaks. There are multiple discrete spectral peaks at the higher 
harmonics of the fastest growing mode and the subharmonics 
until T = 90. However, the spectral distribution becomes 
more continuous owing to the nonlinear coupling among 
higher harmonics after T = 90. At T = 600 the spectral 
distribution becomes almost continuous and is well repre- 
sented by a power law. In contrast to the spectral distribution 
at T - 600 of the integrated kinetic energy shown in Figure 5, 
the spectral peak at k = kmi n of the enstrophy is not sharp. It 
can be seen in Figure 6 that in the k space the enstrophy 
cascades toward the short wavelength (direct cascade) in the 
early stage of the instability development, but the enstrophy 
cascades toward the long wavelength (inverse cascade) after 
the early stage of the instability development. 

Figure 8 shows the time evolutions of the average wavenum- 
bers obtained by (23). The average wavenumbers are normal- 
ized by kFG M. The solid line is the average wavenumber 
weighted by the integrated kinetic energy spectrum. Initially, 
the average wavenumber increases rapidly (direct cascade) and 
reaches 1.0 when the fastest growing mode is peaked, but 
thereafter, the average wavenumber decreases with time (in- 
verse cascade). This gives evidence of the inverse energy cas- 
cade in the nonlinear stage. The dashed line is the average 
wavenumber weighted by the integrated square vorticity. The 
average wavenumber increases rapidly in the linear phase (di- 
rect cascade), but thereafter, the average wavenumber de- 
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Figure 8. The time evolution of the wavenumbers averaged 
by using the spectral weight of integrated kinetic energy (solid 
curve) and the integrated square vorticity (dashed curve). The 
average wavenumbers are normalized by kFG M. 
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Figure 9. Contour lines of the z component of the vorticity at four different times from T = 30 to T = 600. 
The contour lines are plotted for negative vorticity (counterclockwise rotation). 

creases with time (inverse cascade). Notice that the direct 
enstrophy cascade in the early stage is much stronger than that 
of the kinetic energy owing to the selective decay. 

3.4. Evolution in the Configuration Space 

Figure 9 shows contour lines of the z component of the 
vorticity f•z at four different times from T - 30 to T = 600. 
In the 2-D transverse configuration, •z is calculated from the 
frozen-in law as 

1 /x0 
l•z = •' (V x v) = -• V. E + •- (J.v•). (24) 

where E is the electric field satisfying the frozen-in law and J is 
the electric current density. Therefore, in the 2-D incompress- 
ible plasma, where the density p and B are not perturbed, the 
perturbation is electrostatic, J is zero, and the vorticity is pro- 
portional to the space charge density. In Figure 9 the contour 
lines are plotted for negative vorticity (counterclockwise rota- 
tion). By T - 30 the initial straight vorticity layer (velocity 
shear layer) has developed into a vortex train. Eight vortices 
appear in the early phase as predicted by th• • linear theory. 
Note that the fastest growing Fourier mode of the total kinetic 
energy reaches its peak amplitude around T = 30 (see Figure 
4). At T - 90, four vortices appear after two neighboring 
vortices merged. Each vortex rotates counterclockwise, and at 
T - 240, after the second subharmonic reaches its peak 
amplitude (see Figure 4), two vortices are formed. At T = 600 
a large isolated vortex appears after three consecutive vortex 
pairings. 

Figure 10 shows contour lines of (a) pressure, (b) flow ve- 
locity vectors, and (c) current vectors at T - 40. The pressure 

is normalized by the initial uniform pressure P o, and the ve- 
locity vectors are normalized by V o. Figure 10a shows that 
eight pairs of low-pressure (rarefied) and high-pressure (com- 
pressed) regions appear along x - 0. Figure 10a shows the 
local minimum pressure by L and the local maximum pressure 
by H. The rarefied region has a much steeper pressure gradi- 
ent than the compressed region. The B• component is reduced 
in the low-pressure region as well, and it is enhanced in the 
high-pressure region, because only the fast magnetosonic 
mode with the change of the magnetic pressure in phase with 
the thermal pressure is excited by the instability in the 2-D 
MHD transverse configuration [Miura and Pritchett, 1982]. Al- 
though not clearly seen, Figure 10b shows that the initial ve- 
locity shear layer undulates and eight vortices rotating coun- 
terclockwise appear along x - 0 at T = 40. Note that the 
vortical flow appears only in the rarefied region in Figure 10a. 
Figure 10c shows that the eddy current flowing counterclock- 
wise is associated with each vortex in Figure 10b. From the 
equation of motion the electric current Jñ is calculated as 

B dv B 

J_•=p•x•-+•xVp (25) 

Since the direction of B x Vp is clockwise in the rarefied 
region and thus opposite to the direction of the observed eddy 
current the eddy current observed in the rarefied region in 
Figure 10c, associated with each flow vortex, must be the in- 
ertia current (first term of the right-hand side of (25)). In other 
words, the centrifugal force by the counterclockwise rotation, 
which is responsible for expelling the plasma outward from 
inside the vortex, is balanced by the sum of J x B force and 
-Vp force directed to the center of the vortex. 
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Figure 10. (a) Contour lines of pressure, (b) flow velocity 
vectors, and (c) current vectors at T = 40. H and L in Figure 
10a represent the positions of maximum and minimum pres- 
sures, respectively. 

Figure 11 shows the same physical quantities as are plotted 
in Figure 10 in the same format as Figure 10 but at T - 90. 
Figure 11a shows that four pairs of low- and high-pressure 
regions appear at T = 90 after the first vortex pairing. As is 
true at T - 40 (see Figure 10a), the pressure gradient is much 
stronger in the rarefied region than in the compressed region. 
In the rarefied region, large vortices rotating counterclockwise 
appear (Figure lib). As is described in more detail later, it is 
seen in Figure lib that the flow velocity is slightly enhanced or 
the plasma is slightly accelerated at the periphery of the vortex 
inx < 0 at T - 90. Figure 11c shows that four current eddies 
appear in the low-pressure regions in association with the large 

vortical flows, although the center of the current eddy is 
slightly shifted from the center of the flow vortex. 

Figure 12 shows the same physical quantities as are plotted 
in Figure 10 in the same format as Figure 10 but at T - 600. 
Figure 12a shows that a pair of low- and high-pressure regions 
develops at T - 600. As is true at T = 40 and T = 90 (see 
Figures 10a and 11a), the pressure gradient is much stronger in 
the rarefied region than in the compressed region. In the rar- 
efied region a large isolated vortex rotating counterclockwise 
appears (Figure 12b). Figure 12b also shows that in the com- 
pressed region between vortices the large flow momentum in 
the y direction in x < 0 is transported to x > 0. As is described 
in more detail later, it is seen in Figure 12b that the flow 
velocity is enhanced or the plasma is accelerated at the periph- 
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Figure 11. (a) Contour lines of pressure, (b) flow velocity 
vectors, and (c) current vectors at T = 90. H and L in Figure 
11a represent the positions of maximum and minimum pres- 
sures, respectively. 
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ery of the vortex in x < 0 at T = 600. The flow enhancement 
is stronger at T = 600 than at T - 90. Figure 12c shows that 4o 
a large isolated current eddy appears in the low-pressure re- 
gion in association with the large isolated vertical flow. Notice 3o 
as we noticed in Figure 11c that the center of the current eddy 2o 
is located atx - 0, whereas the center of the vortex in Figure lO 
12b is located at x > 0. This is because the flow velocity vector 
is dependent on the inertial frame of reference, but the electric • o 
current is independent of the inertial frame of reference. If we 
use an inertial frame of reference, wherein the background -2o 
flow is antisymmetric, the center of the vertical flow will be 
located at x - 0. 

Figure 13a shows contour lines of the plasma density at T = -4o 
600, which is normalized by the initial density Po. In the 2-D 
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Figure 12. (a) Contour lines of pressure, (b) flow velocity 
vectors, and (c) current vectors at T = 600. H and L in Figure 
12a represent the positions of maximum and minimum pres- 
sures, respectively. 

Figure 13. Contour lines of (a) density and (b) temperature 
at T - 600. L in Figures 13a and 13b represent the positions 
of density and temperature minimums, respectively. 

MHD transverse configuration the plasma density p and B z 
remain proportional. Therefore Figure 13a also shows contour 
lines of Bz normalized by the initial uniform magnetic field B o 
at T = 600. The low-density region located at the flow vortex 
has a much steeper density gradient than in the high-density 
region. Figure 13b shows contour lines of the plasma temper- 
ature Tp normalized by the initial uniform temperature To at 
T = 600. The adiabatic cooling of the plasma occurs inside 
the flow vortex, and the adiabatic heating occurs between vor- 
tices. The low-temperature region located at the isolated flow 
vortex has a much steeper temperature gradient than the high- 
temperature region. 

Figure 14a shows profiles in the y direction of pressure p 
(dot-dashed curve)normalized bypo, temperature Tp (double 
dot-dashed curve) normalized by To, density p (dotted curve) 
normalized by Po, and the y component of the velocity Vy (solid 
curve) normalized by V o at x = 0 and at T = 20, when the 
fastest growing mode reaches a first peak (see Figure 4). The 
density and B z remain proportional. Therefore the profile of 
the normalized B z is the same as the profile of the normalized 
density p. As is obvious, normalized p, p, B z, and Tp become 
<1.0, which is their original value, at their minima inside the 
vortex owing to a rarefaction due to the fast magnetosonic 
wave excited by the instability, but they become slightly larger 
than 1.0 at their peaks owing to a compression due to the fast 
magnetosonic wave. As is predicted by the linear analysis, eight 
pairs of local maximum and minimum of p, p, B z, and Tp 
appear in the simulation box in the early phase at T = 20. The 
velocity component Vy at x - 0 undulates owing to a devel- 
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Figure 14. Profiles in the y direction of pressure p (dot- 
dashed curve) normalized bypo, temperature Tp (double dot- 
dashed curve) normalized by To, density p (dotted curve) nor- 
malized by Po, and y component of the velocity Vy (solid curve) 
normalized by Vo at (a)x = 0 at T = 20 and (b)x = -10a 
at T = 600. 

opment of vortices, and there is about •r/2 phase difference 
between the peaks of p, p, Bz, and Tp and the peak of Vy. 
Figure 14b shows the same profiles as in Figure 14a at x = 
- 10a, which is off the vortex center, and at T - 600. At this 

time, p, p, Bz, and Tp have deep minima at y - 95a, and they 
have broad peaks near y --- 40a. The normalized pressure p 
becomes as low as 60% of the original value (1.0) at y --- 95a 
because of the fast magnetosonic rarefaction. The temperature 
also decreases considerably within this rarefied region located 
at the vortex owing to an adiabatic cooling. Originally, the 
normalized peak velocity Vy was equal to 1.0, and therefore the 
plasma is strongly accelerated locally near the periphery of the 
vortex and the peak velocity becomes ---1.3 at T = 600. There 
is an antiphase relationship between the minima of p, p, B•, 
and Tp and the maximum of Vy. Since the original flow speed 
did not exceed 1.0 this is strong evidence that the compressible 
K-H instability in the transverse configuration leads to a 
plasma flow acceleration or the flow enhancement near the 
periphery of the vortex owing to the fast magnetosonic rarefac- 
tion. In other words, where the perturbed vortex motion asso- 
ciated with the excited fast wave is in the same direction as the 

background flow, the flow velocity is enhanced. 
Figure 15a shows the temporal evolution of the Reynolds 

(tangential) stress (momentum flux) r = {pVxVy) at x = 0, 

where the angular brackets denote the spatial average over the 
y direction. The Reynolds stress is normalized by PoVo 2. In the 
present 2-D transverse configuration we obtain from the equa- 
tion of motion 

0 

at (pry) = - •xx (pVxVy) (26) 

Therefore the Reynolds stress is responsible for the momen- 
tum transport [Miura, 1982, 1984; Horton et al., 1987]. During 
the initial linear phase the Reynolds stress grows exponentially, 
and after reaching a peak it decreases toward zero. It becomes 
zero at T --- 30, when the amplitude of the fastest growing 
mode reaches its peak (see Figure 4). When the vortices begin 
to coalesce or when the amplitude of the first subharmonic 
exceeds the amplitude of the fundamental mode (see Figure 
4), it begins to increase again. After reaching a peak amplitude 
at T - 50 it decreases and becomes zero at T --- 55, when the 
amplitude of the first subharmonic reaches its peak. Thereafter 
the Reynolds stress becomes negative. The Reynolds stress 
begins to increase when the amplitude of the second subhar- 
monic exceeds that of the first subharmonic at T --- 100 (see 
Figure 4). After reaching a peak at T --- 130 the Reynolds 
stress becomes zero at T --- 150. Notice that after the initial 

peak of the Reynolds stress at T --- 25 the subsequent peaks of 
the Reynolds stress are about twice as large as the first peak at 
T --- 25. Figure 15b shows the time integral of the averaged 
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Figure 15. (a) Temporal evolution of the normalized Reyn- 
olds stress at x = 0 averaged over the y direction. (b) Tem- 
poral evolution of the normalized time integral of the averaged 
tangential stress at x = 0, which is equal to the total flow 
momentum in the positive y direction in x > 0. 
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Figure 16. Temporal evolution of the normalized anomalous 
viscosity at x = 0 as a function of the normalized time. 

Reynolds stress z at x - 0, which is equal to the increase of the 
total flow momentum in the positive y direction in x > 0. This 
quantity is normalized by 40aLyPoVo. As long as the fastest 
growing mode is growing or the vortex pairing continues, the 
total flow momentum in the y direction in x > 0 increases. 
Therefore the net momentum transport from x < 0 to x > 0 
occurs by the instability. However, after the completion of the 
last vortex pairing at T --• 340 the Reynolds stress becomes 
small and the total flow momentum in x > 0 stays nearly at a 
constant value. This means that after the completion of the last 
vortex pairing the net momentum transport vanishes because 
no more vortex pairing or no more growth of a subharmonic 
with k = kFc•t/16 is allowed in the system owing to the finite 
Ly. Notice that the total flow momentum in the positive y 
direction inx > 0 has local peaks at T--- 30, 60,150, and 360 
when the amplitudes of the fundamental mode, the first sub- 
harmonic, the second subharmonic, and the third subharmonic 
have their peak values, respectively (see Figure 4), and when 
the Reynolds stress becomes zero (see Figure 15a). 

In order to measure quantitatively the momentum transport 
by the K-H instability an anomalous viscosity is defined by the 
following equation: 

ldanø •--' --(PVxVY) •XX (pvy) (27) 

This expression is analogous to the definition of the eddy 
viscosity [Lamb, 1932] in the hydrodynamics. However, the 
eddy viscosity is a semiempirical constant relating the Reyn- 
olds stress to the gradient of the flow momentum linearly, and 
it is assumed to be constant both in time and in space. Here the 
anomalous viscosity (27) is calculated from the simulation re- 
sults, and it depends both on time and on space. Figure 16 
shows the temporal evolution of the anomalous viscosity Idano 
at x -- 0. It is normalized by 2aVo. At T --- 30, Idano reaches 
---0.03 ß 2aVo. However, at T --- 50, when the first vortex 
pairing begins and the first subharmonic is growing (see Figure 
4), it becomes much larger than that at T --- 20 and reaches 
---0.35 ß 2a Vo. At T --- 140, when the second vortex pairing 
begins, it reaches "-2aVo. At T --- 360, when the third sub- 
harmonic peaks, it reaches ---1.5 ß 2aVo. This is ---50 times 
larger than that due to the growth of the linearly fastest grow- 
ing mode. Note that the anomalous viscosity becomes negative 
when the Reynolds stress is negative. During this time, steep- 

ening of (Vy) rather than relaxation of (Vy) occurs. After the 
completion of the third vortex pairing by T - 400 the anom- 
alous viscosity fluctuates around zero with a small amplitude, 
and there is no net momentum transport after T - 400. 

Figures 17a and 17c show profiles across x of the Reynolds 
stress normalized by poVo 2 at T = 30 and at T = 360, 
respectively. Figure 17b shows the flow momentum profile 
(pry) normalized by poVo (dotted curve), the flow velocity 
profile (Vy) normalized by Vo (solid curve), and the x compo- 
nent of the electric field (Ex) normalized by VoBo (dot-dashed 
curve), which is responsible for the E x B drift in the y direc- 
tion, at T = 30. The dashed curve shows the profile (Vy) at 
T = 0, which is also equal to the initial profile of (pry). The 
double dot-dashed curve shows the profile of (E x) at T = 0. 
Figure 17d shows the same quantities as those in Figure 17b at 
I - 360 in the same format as Figure 17b. Although the net 
momentum is transported from x < 0 to x > 0 by the growth 
of the fastest growing mode at T = 30 (Figure 17b) [Miura, 
1982, 1984], much larger flow momentum is transported across 
x - 0 by the coalescence of vortices and by the growth of 
subharmonics at T = 360 (Figure 17d). Therefore a much 
larger relaxation of the gradient of the average of the flow 
momentum (pry) and (Vy) occurs at T = 360 (Figure 17d). 
Notice that at T = 360 (Figure 17d), there is a large pene- 
tration of (E x) into the region of x > 0, which is responsible 
for the momentum transport from x < 0 to x > 0. 

4. Discussion and Summary 
The present study has established that the successive vortex 

pairings in the 2-D MHD transverse K-H instability are a 
self-organization process. In the parallel configuration, where 
the initial magnetic field is parallel to the initial shear flow, 
Frank et al. [1996], Ryu et al. [1995], and Jones et al. [1997] have 
shown by 2-D compressible MHD simulations that the initial 
flow relaxed to a nearly laminar flow condition in which the 
magnetic helicity is nearly maximized and the magnetic field is 
aligned with the flow. Similar simulations have also been done 
by Malagoli et al. [1996] and Min and Lee [1996]. In their 
simulations the primary source of the dissipation is a numerical 
resistivity. However, since their simulations were done for a 
system length equal to the wavelength of the linearly fastest 
growing mode and did not allow for the growth of the subhar- 
monics and inverse energy cascade, that their final state, sug- 
gesting a dynamical alignment [Dobrowolny et al., 1980], is the 
self-organized state does not seem to have been rigorously 
established in the parallel configuration and a further study 
seems to be necessary. In the present MHD transverse config- 
uration it is possible in principle to add a small resistivity to the 
induction equation of the magnetic field. In such a case, there 
are two dissipation processes, i.e., the viscous dissipation and 
the resistive dissipation. It is not obvious how the selective 
dissipation, which now includes also the dissipation of the 
magnetic energy, would be changed in the presence of both 
viscosity and resistivity. Although the present study shows the 
self-organization in the 2-D MHD transverse configuration, it 
is not certain whether such a self-organization is possible in the 
3-D MHD flow. In the 3-D hydrodynamics the enstrophy is no 
longer an inviscid invariant, and the vortex pairing does not 
occur in the 3-D hydrodynamic turbulence, unless a properly 
tailored 2-D seed perturbation is given initially, so that a purely 
2-D disturbance can grow in the 3-D configuration [Metcalfe et 
al., 1987]. However, the situation might be different in the 3-D 
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Figure 17. Profiles acrossx of the averaged Reynolds stress (pVxVy) at (a) T - 30 and (c) T - 360. Profiles 
of the x component of the averaged electric field (Ex) (dot-dashed curve), the averaged flow momentum {pVy) 
(dotted curve), and the averaged flow velocity (Vy) (solid curve) at (b) T = 30 and (d) T = 360. The dashed 
profiles in Figures 17b and 17d show their initial (T = 0) profiles. 

MHD because the force of J x B forces plasma to flow in a 
direction perpendicular to the magnetic field, and thus the 
2-dimensionality of the flow in the plane perpendicular to the 
magnetic field may well be maintained even in the 3-D MHD 
when there is a strong background magnetic field. 

An initial perturbation in the present simulation run, which 
is given by a superposition of the fundamental mode and its 
subharmonics, is rather artificial. A simulation run starting 
from a random noise has been done by Belmont and Chanteur 
[1989] for an initial configuration with a magnetic field com- 
ponent parallel to the flow. In their study the inverse energy 
cascade and the pairing of vortices have also been observed. 
The present simulation shows that the total kinetic energy 
spectrum in the final stage is well represented by a power law 
with the power law exponent of -3.89. This exponent is close 
to the value -4 obtained in the previous simulation using the 
Fourier spectrum method for the electrostatic K-H instability 
in the 2-D transverse configuration [Miura and Sato, 1978b]. In 
that simulation, physical quantities in the two-fluid equations 
were expanded by Fourier series in the initial flow direction, 
and the time evolution of each Fourier component and the 
Fourier spectrum of the kinetic energy were calculated locally 
at several x. In the present simulation the square amplitude of 
the Fourier component of the total kinetic energy is integrated 
along x, and therefore the Fourier spectra shown in Figure 5 
are more or less average in the x direction. In spite of these 
technical differences between the present simulation and the 
previous one [Miura and Sato, 1978b], there is a good agree- 
ment of the spectral distribution of the total kinetic energy. 
Lesieur et al. [1988] also did an incompressible 2-D hydrody- 

namic simulation of the K-H instability starting from an initial 
white-noise perturbation and obtained the longitudinal kinetic 
energy spectrum with a power law exponent between -3 and 
-4, which is consistent with the present study. In the present 
simulation the magnetic field component B z is also perturbed. 
The spectral distribution of the magnetic energy at T = 600 in 
the same wavenumber subrange as used in Figure 7 was found 
to be a power law form, and its power law exponent was equal 
to -4.58 in the present study. 

Regarding the artificial viscosity added to the system, which 
is necessary for the selective dissipation, we should point out 
that in order to obtain a clear third vortex pairing after two 
consecutive vortex pairings the magnitude of the artificial vis- 
cosity (more precisely, the magnitude of the multiplier • in 
front of the artificial viscosity term [Miura, 1985]) in the 
present run had to be increased to 8 times as large as that used 
in the previous simulation run with a half system length [Miura, 
1997]. Although the relationship between the magnitude of the 
dissipation (viscosity in the present case) and the self- 
organization or the realization of the minimum energy state 
should be put into a more quantitative basis in the future, this 
fact might suggest the delicate role of a selective dissipation in 
the self-organization process. If a much larger artificial viscos- 
ity is used in the simulation, the K-H instability will be damped 
completely and will not be observed at all because it is known 
that the viscosity decreases the growth rate of the K-H insta- 
bility [Chandrasekhar, 1961]. For such a large viscosity the 
system will reach an ultimate thermodynamic equilibrium state 
where the plasma is at rest and there is no structure. Therefore 
a finite viscosity is necessary for the self-organization, but too 
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large a viscosity does not lead to the self-organization. Since 
the viscous dissipation is larger for a higher k mode than a 
lower k mode it is reasonable that the enstrophy, whose spec- 
trum has a larger power law exponent than that of the inte- 
grated kinetic energy spectrum, decays more quickly than the 
total kinetic energy. In the present simulation the dissipation 
necessary for the self-organization is provided by the artificial 
viscosity, which is added to prevent mesh oscillations. Al- 
though we do not ask here the nature of the viscosity in a real 
collisionless space plasma, previous particle and hybrid simu- 
lations [Pritchett and Coroniti, 1984; Horton et al., 1987; Tajima 
et al., 1991; Thomas and Winske, 1993; Cai et al., 1993; Fujimoto 
and Terasawa, 1995; Wilber and Winglee, 1995] show the pairing 
of vortices in the 2-D transverse K-H instability. The nature of 
the viscosity, which must be due to ion kinetics in such colli- 
sionless plasma simulations, is unknown; however, those sim- 
ulations suggest that the successive pairings of vortices or the 
self-organization in the K-H instability are possible in a real 
collisionless space plasma. In spite of the differences in the 
magnitude of the artificial viscosity and the length of the sim- 
ulation system between the present simulation and the previ- 
ous one [Miura, 1997] the basic characteristics obtained in the 
configuration space in those two simulation runs are similar 
with only a quantitative change. Therefore we anticipate from 
those two simulations with different system lengths that the 
basic results obtained in the simulations of the 2-D MHD 

transverse K-H instability regarding the vortex pairing, mo- 
mentum transport, fast magnetosonic rarefaction inside the 
vortex, appearance of the current eddy associated with the 
vortex, and the flow acceleration near the periphery of the 
vortex remain valid for longer simulation systems. 

The present simulation shows that the anomalous viscosity 
defined by (27) becomes negative during the evolution of the 
K-H instability. This means that the velocity shear is at times 
increased with time rather than relaxed during the evolution of 
the K-H instability. In addition, the plasma density and the 
pressure inside the vortex become smaller and smaller with the 
development of the vortex pairing, and thus the density gradi- 
ent increases with time. These two features, which seem to 
contradict the second law of thermodynamics, arise because 
the present system with flow is not in the thermodynamic 
equilibrium state and indeed the system is far from equilib- 
rium. If a much larger artificial viscosity is added to the system 
or a sufficiently long time elapses, it will reach an ultimate 
thermodynamic equilibrium state where the plasma is at rest 
and there is no structure. The present final self-organized state 
characterized by the appearance of a large isolated vortex is a 
metaequilibrium state [Fine et al., 1995]. 

It should be emphasized here that a real viscosity determines 
only ultimate dissipation of vorticity and energy at small scales, 
but the transport of momentum and energy itself is governed 
by macroscopic vortices excited by the K-H instability. This is 
analogous to the ordinary hydrodynamics, wherein the kine- 
matic viscosity determines only the ultimate dissipation of vor- 
ticity and energy at small scales but the transport of momen- 
tum itself is essentially due to turbulent eddies. Figure 16 
shows that when the linearly fastest growing mode (vortex) is 
growing, the anomalous viscosity •'ano at x = 0 reaches 
---0.03 ß 2aVo. When the third vortex pairing begins, it 
reaches 1.5 ß 2a Vo. If a further vortex pairing and growth of 
a subharmonic with a longer wavelength are allowed, the 
anomalous viscosity will become larger than this value. This 
increase of the anomalous viscosity with the vortex pairings 

reconciles the apparent inconsistency between the simulation 
of Miura [1984] and the simulations of Wu [1986] and Manuel 
and Samson [1993] regarding the magnitude of the momentum 
transport by the instability. Wu [1986] suggested on the basis of 
simulations of the spatially evolving K-H instability that the 
momentum transport associated with the K-H instability is 
much more important than that calculated by Miura [1984], 
and Manuel and Samson [1995] obtained an anomalous viscos- 
ity much larger than that obtained by Miura [1984]. This dis- 
crepancy between simulation results of Miura [1984] and those 
of Wu [1986] and Manuel and Samson [1993] regarding the 
magnitude of the anomalous momentum transport by the in- 
stability is ascribable to the fact that in the simulation of Miura 
[1984] the vortex pairing was not allowed and therefore the 
anomalous viscosity obtained by his study is small because it is 
due only to the growth of the fastest growing vortex, while the 
simulations of spatial development of the K-H instability by 
Wu [1986] and Manuel and Samson [1993] allowed the vortex 
pairings and thus yielded a much larger momentum transport 
or the anomalous viscosity. 

The present self-organization mechanism in the 2-D K-H 
instability may be applicable to a wide variety of phenomena 
observed in space, which are due to sheared flow. For example, 
it has been suggested [e.g., Prigogine, 1980] that an emergence 
of a large vortex out of small vortices excited by the K-H 
instability in the wind shear may be responsible for the appear- 
ance of the great red spot in Jupiter's atmosphere. In practical 
problems such as the K-H instability at the magnetopause and 
at the bow shock [Leboeuf et al., 1981; Murawski and Steinolf- 
son, 1996] the spatial growth of the K-H instability [Brown and 
Roshko, 1974; Wu, 1986; Manuel and Samson, 1993; Thomas 
and Winske, 1993; Wei and Lee, 1993] is more common than the 
temporal growth as treated here. Since those simulations of the 
spatial growth of the K-H instability using the nonperiodic 
boundary condition [Wu, 1986; Manuel and Samson, 1993; 
Thomas and Winske, 1993; Wei and Lee, 1993] show vortex 
pairings in the downstream the appearance of the successive 
vortex pairings or the self-organization in the 2-D K-H insta- 
bility is rather insensitive to the choice of the boundary con- 
dition in the initial flow direction. In such spatial growth of the 
K-H instability the large momentum transport by the vortex 
pairing in the K-H instability is expected in the downstream 
region of the sheared plasma flow. It follows that a very large 
momentum transport is expected across the distant tail mag- 
netopause because the vortices undergo several vortex pairings 
before they reach the tail magnetopause. Since the temporal 
evolution of the K-H instability in the present study can be 
transformed to a spatial growth along the velocity shear layer 
[Miura, 1997] it is suggested that small-scale vortices created by 
the instability near the subsolar magnetopause evolve into glo- 
bal-scale vortices in the distant magnetospheric tail. The sim- 
ple estimate based on the simulation results suggests that the 
four or five vortex pairings occur before the vortices reach the 
distant tail magnetopause. Therefore the wavelength of the 
vortex becomes 2 4 "- 25 = 16 --- 32 times as long as the 
wavelength of the linearly fastest growing vortex. If the fastest 
growing vortex has a wavelength of 1.ORe near the dayside 
magnetopause, its wavelength becomes ---32Re in the distant 
tail magnetopause, which is comparable to the size of the 
magnetosphere. Therefore the basic characteristics of the K-H 
instability such as the momentum transport appears on a global 
scale at the distant tail magnetopause. The relevance of the 
self-organization, which is manifest on the nonlinear develop- 
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ment of the K-H instability, to observed phenomena in space, 
such as the magnetopause K-H instability, will be discussed 
more quantitatively elsewhere. In particular, this self- 
organization hypothesis of the magnetopause K-H instability 
will be tested against reported observations of the magneto- 
pause oscillation in a later publication. Notice that the present 
simulation, wherein the initial magnetic field is assumed to be 
everywhere perpendicular to the flow is considered to be a case 
for interplanetary magnetic field (IMF) due north, when the 
magnetopause is most susceptible to the K-H instability 
[Miura, 1995a, b]. Notice also in Figures 10-12 that the vorti- 
ces or vortical flows are located inside the velocity shear re- 
gion, i.e., in the magnetospheric region, while the center of the 
vorticity in Figure 9 and the centers of current eddies in Fig- 
ures 10-12 are located at the center of the velocity shear 
region, i.e., at the magnetopause. This is because the vorticity, 
the magnetic field, and the electric current are independent of 
an observing inertial frame, i.e., invariant for the Galilean 
transformation, whereas the flow velocity, the vortical flow, 
and hence the location of the vortex are dependent on an 
observing inertial frame (Galilean variant). Although the vor- 
tical flows are located in the magnetosphere inside the velocity 
shear layer when the rest frame of the magnetosphere is used 
as an inertial frame as in the present simulation [see also 
Miura, 1992, 1995b], the centers of the vortical flows are lo- 
cated at the center of the velocity shear layer, i.e., at the 
magnetopause, when a simulation is done in an inertial frame 
in which the flow is antisymmetric and the vortices are station- 
ary [Miura, 1984]. 

In summary, the present study has established that the suc- 
cessive vortex pairings in the nonlinear evolution of the two- 
dimensional MHD transverse K-H instability are an emer- 
gence of the self-organization process resulting from the 
interplay of the nonlinearity and the dissipation (viscosity in 
the present case), which causes the irreversibility. Although the 
K-H instability is essentially an inviscid phenomenon (viscosity 
plays only a stabilizing role and not a destabilizing role), the 
self-organization in its nonlinear stage, i.e., the successive vor- 
tex pairings in the nonlinear stage, is due to viscosity, which 
leads to selective dissipation. The self-organization leads to an 
emergence of a large-scale vortex out of a train of small-scale 
vortices in the early stage by the inverse cascade. The depen- 
dence of the self-organization on the magnitude of the viscosity 
(Reynolds number) and the compressibility (Mach number) 
should be investigated in a more quantitative manner in the 
future. The effect of using a different initial seed perturbation 
and the effect of the initial magnetic field parallel to the flow 
on the self-organization process should also be investigated in 
order to understand completely the self-organization process 
in the K-H instability in more realistic configurations in space 
plasmas. 
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