

 Object-level visual mining

（オブジェクトレベルのビジュアルマイニング）

by

QUANSHI ZHANG

(張拳石)

THESIS

Presented to the Faculty of the Graduate School of

Engineering, The University of Tokyo

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR of PHILOSOPHY

Department of Civil Engineering

THE UNIVERSITY OF TOKYO

August 2014

博士論文

Abstract

In this thesis, the author focuses on one of ultimate dreams and biggest challenges in

the field of computer vision, i.e., object-level precise visual mining. The author aims to

propose a general platform that can directly mine category models from large, unaligned,

and cluttered images without labeling “what is where” for many visual tasks, rather than

a technique for a specific visual application.

This will be the main breakthrough of computer vision in the era of big data. Based

on the proposed method, people can abandon the conventional style of training category

models from a large number of well prepared of training samples. Instead, the category

model will be automatically mined from big visual data without much cost of human

labeling. In addition, this visual mining idea can be extended from mining category models

for object detection to mining category knowledge for many other visual applications,

such as object tracking, recognition, segmentation, and 3D reconstruction, Therefore, the

proposed object-level visual mining can be also understood as a plausible way efficiently

build a comprehensive knowledge base that contains a huge number of object categories

and can provide the object-level knowledge to guide different kinds of visual tasks.

Conventional studies of model training usually developed algorithms considering the

terms of improving performance or increasing accuracy, and ignored problems with the

choice of the training data. By contrast, the object-level visual mining pays more attention

to loosening the requirement for training data, as without sufficient human labeling, the big

visual data in the internet contains all typical kinds of challenges in the field of computer

vision. For example, the mining process would probably simultaneously suffer from the

intra-category variations in texture, rotation, scale, illumination, pose, and structure. To

some extent, this is the biggest challenge in the field of computer vision, and to the best

of the knowledge, no approaches can automatically overcome all of these intra-category

variations without sufficient human labeling. Some methods related to the concept of visual

iii

mining escape from this challenge by ignoring some of these variations, e.g., the techniques

of object discovery and co-segmentation mainly focus on textural knowledge and ignore the

information of structure and scale. However, in this research, the author aims to develop

visual-mining methods that can make a full use of these kinds of information, rather than

simply ignore some of them. It is because that the author refers to achieve high-level

robustness in model mining, i.e., the mined model should have an ability of dealing with

different kinds of variations, although most model learning methods only seek for low-level

model robustness by applying X-independent methods or X-invariant features.

Therefore, the author has proposed a bunch of algorithms for visual mining, including

“attributed graph mining” and “unsupervised learning for graph matching”. In particular,

attributed graph mining is the core technology. The author first defines the problem of

“maximal-size graph mining” in graph domain of attributed relational graphs (ARGs), as

the attributed graph mining. This extends the boundary of graph theory from previous

graph domain of “labeled graphs”. Attributed graph mining bridges the two main fields

of artificial intelligence, i.e., graph theory and computer vision. The author uses the ARG

to represent an image, and in this case, the model for small common objects inside a

number of unaligned images corresponds to the common subgraph pattern among a set of

ARGs. The typical variations in texture, rotation, scale, illumination, pose, and structure

can be modeled as the attribute variations of the subgraph pattern. In addition, the task

of identifying target objects in unlabeled images can be formulated as a graph matching

problem. In this way, the attributed graph mining can be regarded a general tool for

category discovery and modeling from ubiquitous images

In addition, the proposed technique has a large number of extended applications besides

the basic application of category modeling. Because attributed graph mining can automat-

ically discover the target object in unlabeled images, label the object parts, and determine

inter-image part correspondences, the author uses the part correspondences as input for

further model training for other visual tasks. For example, this method has been success-

fully applied to training models for object tracking and single-view 3D reconstruction. The

iv

proposed method can also be used to recover the model for the whole object from object

fragments.

Furthermore, theoretically speaking, the applications of proposed techniques in this

thesis are not limited to mining from ordinary images. They can be applied to other kinds of

visual data, such as RGB-D images, videos, 3D point clouds, and so on. Their applications

can be even extended to the other fields, for example, mining structural patterns of protein.

These techniques can be used, as long as the people want to mine knowledge from fuzzy

data that can be represented using ARGs.

In this thesis, the author introduces the algorithms of attributed graph mining and

unsupervised learning for graph matching, as well as some technical extensions and appli-

cations of them.

v

Table of Contents

Page

Abstract . iii

Table of Contents . vi

Chapter

1 Introduction . 1

2 A General Platform for Visual Mining: Attributed Graph Mining 5

2.1 Introduction . 6

2.1.1 Views of graph matching & task introduction 6

2.1.2 Views of graph mining & the proposed method 8

2.1.3 Platform for model mining from big visual data 10

2.1.4 Summary . 12

2.2 Related work . 12

2.3 Problem formulation . 14

2.4 Algorithm . 18

2.5 Experiments . 22

2.5.1 Experiment 1: mining edge-based models from cluttered RGB-D images 23

2.5.2 Experiment 2: mining edge-based models from cluttered RGB images 26

2.5.3 Experiment 3: mining general models from web images 27

2.5.4 Quantitative analysis and evaluations 29

2.6 Discussion and conclusions . 33

2.7 APPENDIX: Demonstration of Equation (2.8) 33

3 Secondary Platform: Unsupervised Learning of Graph Matching 37

3.1 Introduction . 38

3.2 Related work . 40

3.3 Preliminary: graph matching problem . 42

vi

3.4 Learning of graph matching . 43

3.4.1 Parameter and attribute estimation 44

3.4.2 Structural modification . 46

3.5 Experiments . 48

3.5.1 Category modeling from RGB & RGB-D images 49

3.5.2 Experiments and quantitative evaluations 49

3.6 Conclusions . 55

4 Visual Mining Beyond RGB Images: Use of RGB-D Images 57

4.1 Introduction . 58

4.2 Related Work . 62

4.3 Graphical model of object edge segments and graph matching 65

4.3.1 Model for object collection from RGB-D images 68

4.3.2 Category model for ordinary RGB images 70

4.3.3 HoG feature extraction . 71

4.4 Model learning algorithms . 71

4.4.1 Basic framework: model learning from RGB-D images 72

4.4.2 Object recognition based on category models 75

4.4.3 Technical extension 1: model learning via knowledge transfer 77

4.4.4 Technical extension 2: initial labeling refinement 79

4.5 Experiments . 82

4.5.1 Data . 83

4.5.2 Competing methods . 83

4.5.3 Experiment 1: learning from a single labeled object 88

4.5.4 Experiment 2: Learning from refined object labeling 93

4.6 Conclusions . 95

5 Extended Application 1: Model Mining for Single-View 3D Reconstruction . . . 97

5.1 Introduction . 98

5.2 Related work . 102

vii

5.3 Training of category detectors . 103

5.4 Learning 3D reconstruction . 106

5.4.1 Object sample collection & pose normalization 107

5.4.2 Model learning . 108

5.4.3 3D reconstruction based on category models 112

5.5 Experiments . 113

5.5.1 Data . 113

5.5.2 Implementation details . 113

5.5.3 Quantitative comparison . 115

5.6 Conclusions . 120

6 Extended Application 2: Mining Deformable Models of Animals 121

6.1 ARG-based deformable model for animals 121

6.2 Experiments . 124

7 Kinect RGB-D image dataset . 125

8 Conclusion and future work . 128

Acknowledgements . 143

Curriculum Vitae . 144

viii

Chapter 1

Introduction

My search direction is “visual mining”. Actually, the concept of visual mining is newly

defined by this thesis, and there is no clear definition of it presented in previous literatures.

Generally speaking, visual mining can be understood as a new academic subfield of artificial

intelligence that ranges across both field of computer vision and the field of data mining.

In other words, visual mining aims to directly mine visual knowledge from ubiquitous and

unlabeled visual data, instead of conventional style of learning from well prepared training

samples.

Visual mining & big data: The concept of visual mining is of great value in the

era of big data, because it provides a plausible solution to one of ultimate dreams in the

field of computer vision, i.e. building a comprehensive model base that can provide object-

level prior knowledge of all the daily-use categories for various visual tasks. Compared to

conventional model training, the idea of mining does not require or just requires a small

amount of human labeling to learn a model for each category. This is very important for

the processing of big visual data that contains a vast number of categories.

However, on the other hand, such visual mining is one of the biggest bottlenecks in

the field of computer vision. The most common case of big visual data is the ubiquitous

images and videos that are casually captured in people daily life. Thus, the visual mining

involves almost all the typical challenges in image processing, such as the unalignment

of objects and the intra-category variations in texture, rotation, scale, and illumination.

These propose continuous challenges to the state-of-the-art algorithms.

Therefore, in this thesis, I propose two visual-mining platforms, each of which simulta-

neously models these challenges using a single algorithm. To the best of my knowledge, my

1

methods are the first techniques that can deal with all of these challenges, which breaks

though conventional “model training” to the level of “model mining”.

Precise object-level visual mining: Considering that the concept of visual mining

is very extensive, in this thesis, I just limit the discussion to the most typical case of visual

mining, i.e. “precise object-level visual mining”. I want to mine model at the object (or

category) level, rather than mine visual knowledge at the image level (e.g. the knowledge

for image retrieval based on the whole scene in the image and that for separating the

texture, shade, and light in an image). Therefore, my study can be regarded as building an

“object-level visual dictionary” that can identify “what is where” in any arbitrary image.

To some extent, people can regard the object-level symbolism based on the visual dictionary

as the first step for high-level artificial intelligence of computer vision.

Actually, some directions of computer vision are close to the idea of visual mining, but

there is still a distance between them and the concept of “precise object-level visual min-

ing”. I need to note that the phrases of “precise” and “object-level” indicate the detailed

knowledge for objects in each category, for example, abilities of accurately localizing target

objects in cluttered environment and providing clear object boundaries. For commercial

purposes, some daily-use objects are designed with various textures and structures. There-

fore, the robustness to structure deformation and intra-category variations in texture and

rotation should also be considered.

Deep learning is a new and hot direction for artificial intelligence and has made a

significant influence on computer vision. However, it mainly learns an optimal set of features

to represent the whole image or some typical kinds of scenes, rather than extract knowledge

of specific small-size objects in large and unlabeled images with considerable intra-category

variations. As one of main applications of deep learning, image recognition, i.e. providing a

set of tag candidates to describe the content of each image, does not contain the knowledge

as detailed as that at the level of “exact” objects, either. Then, topics of object discovery

and co-segmentation can be understood, to some extent, as the mining of object-level

knowledge. However, for the state-of-the-art algorithms, they mainly focus on the textural

2

knowledge, i.e. techniques based on “bag-of-words” models, and it is still a challenge

for them to encode detailed structural knowledge of objects. Therefore, perhaps, I can

understand them as a kind of “fuzzy” object models, rather than “precise” object models

encoding part-level object information with robustness to texture variations.

This is just a general discussion of related work close to visual mining. Please see the

related-work sections of following chapters for detailed analysis.

General platform & extended applications: In spite of the discussion above,

the concept of precise object-level visual mining is still too extensive, because the mining

task can be oriented to many different visual applications, such as object-level tracking,

segmentation, pose estimation, 3D reconstruction, and etc. Each of these applications has

its own algorithms and challenges.

Therefore, I mainly focus on developing a general platform for visual mining, based

on which mining tasks for other visual applications can be performed. In my opinion,

the general platform should mine category models for object detection. It is because that

target objects of different categories can be automatically discovered and labeled using the

mined models, and the labeled objects can be applied to further model training for all the

potential extended applications.

In this thesis, I propose general platforms for visual mining and present two examples

of their extended applications. The rest of this thesis is organized as follows. Chapter 2

and Chapter 3 present two general platforms for visual mining that are based on attributed

graph mining and unsupervised learning of graph matching, respectively. In Chapter 4, I

introduce a visual-mining strategy that uses depth information in RGB-D images to improve

the accuracy of model mining. The mined category models can be applied back to ordinary

RGB images. Then, I introduce the extended applications of the proposed visual-mining

platforms. Chapter 5 focuses on mining category models from ubiquitous RGB-D images for

single-view 3D reconstruction, while Chapter 6 aims to mine deformable animal models from

unlabeled videos. In addition, I have published a Kinect RGB-D image dataset oriented

to challenges in graph matching, which has been used in my previous studies. Chapter 7

3

presents details of the dataset. Finally, the whole thesis if summarized in Chapter 8.

4

Chapter 2

A General Platform for Visual

Mining: Attributed Graph Mining

The concept of “precise object-level visual mining” is extensive and has a wide range of

applications, e.g. mining category models for tracking, segmentation, detection, and 3D

reconstruction.

In this chapter, I design a general platform to guide the model mining from big visual

data for all of these applications, although each of them has its own challenges. I propose

“attributed graph mining” to directly discover a set of key object parts for a category

from unaligned images to construct the category model, simultaneously determining the

corresponding parts in the unaligned images. Actually, the estimated part correspondences

between different images can be regarded as automatic object alignments at the part level

in ubiquitous images. Thus, the models for other visual tasks, such as object tracking, seg-

mentation, and 3D reconstruction, can be further trained using the part correspondences.

I categorize the attributed graph mining from both the view of graph mining and the

view of learning graph matching. I can understand this study as both the first attempt

to formulate the idea of mining maximal frequent subgraphs (MFSs) in challenging graph

domain of attributed relational graphs (ARGs) and a concept extension for unsupervised

learning of graph matching. I define the soft attributed pattern (SAP) to represent the

common subgraph pattern among a set of ARGs, considering both the graphical structure

and graph attributes. Regarding the differences between graph domain of ARGs and con-

ventional labeled graphs, I propose a new mining strategy that directly extracts the SAP

with the maximal graph size without applying node enumeration. Given an initial graph

5

template and a number of ARGs, I modify the graph template into the maximal-size SAP

with good matches to the ARGs in an unsupervised fashion.

The rest of this chapter is organized as follows. The introduction and discussion of

related work are presented in Sections 2.1 and 2.2. Section 2.3 defines the target problem

of attributed graph mining, and Section 2.4 presents the detailed algorithm. In Section 2.5,

I introduce the design of experiments and evaluate the algorithm performance. Finally, the

overall chapter is summarized in Section 2.6.

2.1 Introduction

In the era of big data, do you still plan to label a set of object samples for each category and

train category models one-by-one? In this section, let me locate this research in both the

areas of graph matching and graph mining, and introduce its contributions to ubiquitous

learning from big visual data.

2.1.1 Views of graph matching & task introduction

Attributed relational graphs (ARGs) are widely used. For example, in computer vision,

ARGs can represent either scenes or objects, using the local and pairwise attributes to

describe part features and the spatial relationship between the parts, respectively. The

goal attributed graph matching is to estimate node correspondences between two ARGs,

e.g. a small ARG template of an object and a large ARG of an image, based on the

similarity of local and pairwise attributes.

In the general case1 of ARGs, the graph matching is typically formulated as a quadratic

assignment problem (QAP), which requires global optimization.

Recently, a number of approaches to learning graph matching have been proposed. They

1Unlike ARGs in [1], local attributes in ARGs may not, in general, be sufficiently distinguished to

independently provide matching correspondences or just matching candidates between ARGs without global

optimization.

6

V
iew

s of graph
 th

eory

A
B

C
x

y A
B

C
x

y
A

B

Cx
y

well
matching to

Common subgraphs

Figure 2.1: Overview from views of the graph theory. I define and extract the
soft attributed pattern (SAP) from ARGs, and the size of the SAP is
maximized. This study overcomes a key challenge in graph mining,
as it formulates the idea of mining maximal-size common subgraphs
in challenging graph domain of ARGs. This method also extends the
concept of unsupervised learning for graph matching. Given an initial
graph template and a set of large ARGs, I simultaneously discover the
missing nodes, delete redundant nodes, and train attributes, so as to
obtain a graphical model with good matching performance.

train models or matching parameters to achieve good graph-matching performance, and

their superior performance in terms of improving matching accuracy has been demonstrat-

ed. Indeed, the concept of learning graph matching has been extended. Generally speaking,

I can categorize these approaches to supervised methods [2, 3, 4, 5, 6] and unsupervised

methods [5, 7]. The unsupervised methods do not require people to manually label the

7

matching correspondences of target objects in the ARGs for training, whereas the super-

vised methods do. In this study, I focus on unsupervised approaches, which are analogous

to automatic category modeling from big visual data.

In this chapter, I propose a new concept of learning graph matching that focuses on

the discovery of the missing2 graph parts (nodes) of the common subgraph pattern. Given

a graph template and a number of ARGs, my method simultaneously 1) discovers missing

parts of the template, 2) eliminates redundant parts, and 3) adjusts its attributes in an

unsupervised manner, so as to grow the initial template into the common subgraph pattern

among these ARGs, and achieve good matching performance (Fig. 2.1). In other words,

I focus on the ability to recover a full-size graphical pattern from a fragmentary graph

template, as shown in Fig.2.5. Obviously, this is orthogonal to conventional unsupervised

approaches that learn attribute weights [5] and refine the template structure [7, 8].

2.1.2 Views of graph mining & the proposed method

From another perspective, I can understand the proposed method as the mining of maximal-

size3 subgraph patterns. In fact, this is one of the core branches of graph mining, and many

related techniques have been extensively investigated and developed in the past, including

maximal frequent subgraph (MFS) extraction and maximal clique mining.

However, a bottleneck for mining maximal subgraph patterns lies in the strict constraints

of the target graphs. Pioneering studies are mainly applied to “labeled graphs” (the graphs

that have distinct node labels or edge labels) and the graphs with a list of pre-determined

potential node correspondence candidates. Such graphs are usually generated from tabular

data and have distinguishing structures.

2The missing part discovery is the key issue for growing the current fragmentary subgraph pattern into

the maximal-size subgraph pattern. The missing pattern parts’ the corresponding nodes in different ARGs

should have similar unary and pairwise attributes, so as to maintain the fuzziness of the subgraph pattern.
3The word “maximal” indicates that I should grow the target subgraph pattern until the graph size of

the pattern is maximized.

8

V
iew

s of application
s

Model

E.g. it is applied to the learning of 3D
reconstruction from ubiquitous images

Figure 2.2: Overview from views of applications. The study proposes a platform
for model learning and sample labeling in big visual data, which has a
plenty of potential applications.

By contrast, when I extend this topic to “fuzzier1” graph domain of ARGs, both the

definition of the subgraph pattern and the mining method are much more challenging. First,

the correspondences between the pattern and the target subgraphs embedded in the ARGs

can only be formulated as a QAP based global optimization. Second, conventional judgment

of graph isomorphism between the pattern and these target subgraphs can no longer be

applied to ARGs that have neither distinguishing structures nor node and edge labels, as

shown in Fig. 2.1. Alternatively, I redefine the subgraph pattern as a “soft” attributed pattern

(SAP), which uses a threshold to limit its attribute differences from the target subgraphs and

thereby maintain the pattern’s significance. Consequently, the mining process is actually to

extract the SAP with the maximal graph size among the ARGs.

Moreover, the fuzzy definition of the SAP requests a new graph-mining methodology,

9

as conventional approaches based on node enumeration (or node search) are all hampered

in graph domain of ARGs. Therefore, in this chapter, I design a mining strategy that

grows the pattern size by directly discovering new pattern nodes from ARGs without any

node enumeration. I demonstrate the existence of an approximate solution to this strategy,

when I use the typical squared differences to define the dissimilarity between the SAP and

its target subgraphs.

2.1.3 Platform for model mining from big visual data

I would rather regard this study as a method of “model mining” to differentiate from con-

ventional “model learning”. Perhaps, the boundary between learning and mining is just the

watershed for the era of big visual data.

A main bottleneck for the whole computer vision field facing big visual data is the

difficulty of model learning from ubiquitous images. If people have to prepare a set of

training images to train a model for each category, the great cost of human labeling may

hamper the ultimate goal of building an all-embracing knowledge base to provide object-

level understanding of images. Therefore, it is of great value to mine category models

from ubiquitous images without labeling “what is where” as an efficient way of category

modeling.

However, learning from ubiquitous images involves almost all the typical challenges in

computer vision. Such images are usually casually captured in people’s daily life, and they

are typical of what can be collected from the Internet using search engines. Target objects

are usually small and randomly located in cluttered scenes with considerable intra-category

variations in texture, rotation, and scale.

Therefore, I propose this graph-mining method as a general platform of learning from

ubiquitous images. As shown in Fig. 2.3, the ubiquitous images can be represented by

ARGs, and thus, objects in the target category within these images correspond to the

common subgraphs embedded in the ARGs. Consequently, the maximal-size SAP can be

considered as the category model. A good design of the unary and pairwise attributes in

10

An image can be represented as an attributed
relational graph (ARG), which uses

to represent the
and uses to

represent between
different parts.

All typical challenges in image processing

1) Objects are not aligned
2) Small object sizes
3) Intra-category texture variations
4) Intra-category rotation variations
5) Intra-category scale variations
6) Illumination variations

Graph-Matching Problem

Modeled as attribute
variations among ARGs

Local features
unary attributes

Spatial relationship
pairwise attributes

Each node/edge color indicates
the high-dimensional vector of

an unary/pairwise attribute.

Figure 2.3: ARGs for image representation and common subgraph patterns for
model representation

the ARGs can ensure, to some extent, the robustness to both the feature variations of the

object parts and their spatial relationship changes that are caused by variations in rotation

and scale. In this case, the model-learning problem is equivalent to the mining of the

maximal-size SAP.

Extended applications: Defining graph mining in ARGs has a vast range of ap-

plications. This approach can be applied to many academic fields, when the problems can

be formulated using ARGs. However, in this chapter, I just limit my discussion within the

range of potential extended applications in computer vision.

My method not only learns category models from cluttered scenes, but also simul-

taneously detects object parts. Such part-level object detection can be regarded as the

automatic labeling of training samples in ubiquitous images, thereby being able to guide

the training of many visual tasks, such as object recognition, tracking, segmentation, and

etc. For example, based on this method, I can use the part-level labeling to learn 3D-

reconstruction knowledge of each object category from informally collected RGB-D images,

11

which has be achieved in [9]. I can use this method to recover global object shapes from

fragments, as shown Fig. 2.5.

2.1.4 Summary

I summarize contributions of this chapter as follows. First, I redefine the concept of un-

supervised learning for graph matching in order to idealize the spirit of training graphical

structures. To the best of my knowledge, this study is the first attempt to encode the

discovery of missing parts into the learning of graph matching. Second, in terms of graph

mining, this research extends the mining of maximal-size subgraph patterns to challenging

graph domain of ARGs. I propose the maximal-size SAP to define the subgraph pattern,

and demonstrate the existence of a direct solution that does not require computationally

intensive node enumeration. Both the pattern definition and the mining strategy are to-

tally different from the mining approaches defined in conventional graph domain. Third,

the proposed technique can be understood as a platform for model learning from big visual

data, which automatically labels common objects in ubiquitous images. It can be used to

guide many extended visual tasks.

A preliminary version of this chapter appeared in [10].

2.2 Related work

Views of graph matching: Given a graph template and a number of ARGs, conven-

tional algorithms for learning graph matching [3, 4, 5, 6] mainly train matching parameters,

and Cho et al. [2] proposed to learn a model for matching. Most of them are supervised

methods that require the target subgraphs in ARGs to be labeled for training. Leordeanu

et al. [5] proposed the first unsupervised method that did not require such manual labeling.

[7] considered the structural refinement as a part of the unsupervised learning for graph

matching. [11] utilized a similar idea to mine spatial patterns from ARGs. [8] aimed to

learn the node linkage, and this can also be regarded as structural refinement. However,

12

they only consider the matching between two ARGs.

Essentially, structural refinement just deletes “bad” nodes from the graph template,

rather than recovering the prototype graphical patterns. Therefore, to perfect the learning

of a graph structure, I encode the challenging task, i.e. the discovery of missing parts from

large ARGs, into my definition of learning graph matching.

Views of graph mining: The discovery of missing parts relates this study to the

mining of maximal-size3 subgraph patterns, as it is usually meaningful to mine the pattern

with the maximal graph size. This idea has been realized by MFS extraction [12] and

maximal clique mining [13, 14] in the field of graph mining (reviewed in [15]).

As shown in Fig. 2.1(bottom), MFS extraction [12, 1, 16, 17] is based on graph isomor-

phisms and usually require 1) the distinguishing (topological) structure of the subgraph

pattern, and 2) pre-defined distinct node/edge labels or potential inter-graph node cor-

respondences determined by local consistency. Thus, node numeration is used to mine

the MFS. The distinct graph structure and labels are used to prune the enumeration

range, thereby avoiding possible NP-hard computation. Similarly, maximal clique min-

ing [13, 14, 18, 19] mainly extracts a dense graph clique to maintain geometric consistency

during matching. This method also requires distinguishing local features to pre-determine

local matching correspondence candidates among graphs (as discussed in “Views of appli-

cations”).

In contrast, fuzzily defined ARGs usually have neither distinguishing structures nor

distinct node labels. In many applications, nodes are connected in a uniform style and

have not-so-strong local attributes. Thus, it requires a new mining strategy (without node

enumeration) to deal with the ARGs. Considering the fuzzy condition1, the matching

between ARGs can only be solved by global optimization (i.e. a QAP). Thus, I redefine

the common subgraph pattern as the SAP based on the attributes’ consistency, rather than

a graph isomorphism w.r.t. the structure and labels.

Views of applications: For some certain graph-matching applications, the iterative

methods for estimating common graph structures have been proposed [20, 21], which is a

13

pioneer that discovered common structural patterns of edges from images. In fact, many

visual applications involve the detection of common objects (or co-appearing parts) in a set

of images. However, they are mainly designed with some data-driven techniques oriented

to their own applications. For example, many studies of common object extraction from

images [22, 23, 24, 25, 26, 27] use techniques related to maximal clique mining [13, 14]

to some extent. They thereby require target objects to have high-quality patch features

(with little texture variations), thus pre-determining a set of potential inter-image match-

ing correspondences using local features. In contrast, my approach is formulated in the

theory system of attributed graph matching. Thus, it is not limited to some specific CV

applications, although I use certain ARGs generated from RGB and RGB-D images for

testing.

2.3 Problem formulation

Definition 1 (ARG) An ARG G is a three element tuple G = (V,FV ,FV×V), where V is

the node set. Undirected edges connect each pair of nodes to form a completed graph. G con-

tains NP types of local attributes for each node and NQ types of pairwise attributes for each

edge. FV = {F si |s ∈ V, i = 1, 2, ..., NP} and FV×V = {F stj |s, t ∈ V, s 6= t, j = 1, 2, ..., NQ}

denote the local and pairwise attribute sets, respectively. Each attribute corresponds to a

feature vector.

Actually, this definition can be extended to incomplete graphs with the form G∗ =

(V,E,FV ,FE). I can transform G∗ to my ARG by setting a pairwise attribute F stj = 1 if

edge (s, t)∈E, and 0 otherwise.

Attributed graph matching: Given a set of ARGs GS = {G′k|k = 1, 2, ..., N},

G′k = (Vk,FVk ,FVk×Vk), the graph template G = (V,FV ,FV×V) represents an attribute

pattern among the ARGs in GS, and is not exactly embedded in any G′k. The matching

between G and G′k aims to compute a set of matching assignments between G and G′k,

denoted by xk = {xks |s ∈ V }. Each matching assignment xks ∈ Vk ∪ {none} maps node s

14

in G to a node in G′k or a dummy choice none. none is used when some nodes in G do

not exist in G′k. The attributed graph matching is formulated as a typical QAP with the

following energy function:

E(xk|G,G′k)=
∑
s∈V

Ps(x
k
s |G,G′k)+

∑
(s,t)∈V,s 6=t

Qst(x
k
s , x

k
t |G,G′k) (2.1)

Function E(xk|G,G′k) indicates the total matching energy. The functions Ps(·) and Qst(·, ·)

denote matching penalties for local and pairwise attributes. Various graph matching opti-

mization techniques can solve the energy minimization of E(xk|G,G′k), and I choose TRW-

S [28]. In this study, matching penalties are defined using squared differences.

Ps(x
k
s |G,G′k)=


∑NP

i=1w
P
i ‖F si −F

xks
i ‖2, xks∈Vk

Pnone, xks =none
(2.2a)

Qst(x
k
s , x

k
t |G,G′k)=


∑NQ
j=1w

Q
j ‖F

st
j−F

xksx
k
t

j ‖2

‖V ‖−1
, xks 6=xkt∈Vk

+∞, xks = xkt ∈ Vk
Qnone
‖V ‖−1

, xks orxkt =none

(2.2b)

where Pnone and Qnone are relatively large constant penalties for matching to none. ‖ · ‖ is

the Euclidean norm. I use infinite penalties to avoid many-to-one matching assignments.

wPi and wQj denote the weights for local and pairwise attribute differences. I require the

pairwise penalty to be symmetric, i.e. Qst(xs,xt|G,G′k) =Qts(xt,xs|G,G′k), and to be nor-

malized4 by (‖V ‖ − 1).

Definition 2 (SAP) Given a set of ARGs GS = {G′k|k = 1, 2, ..., N} and a threshold τ ,

a graph template G = (V,FV ,FV×V) is an SAP among the ARGs in GS, iff

(a) x̂k = argminxk E(xk|G,G′k); I set x̂k={xks |s ∈ V, k = 1, 2, ..., N};
4During the learning process, I insert missing nodes into G and simultaneously delete redundant nodes

to obtain the maximal-size SAP. However, the operation of node insertion (or delete) will increase (or

decrease) the overall weights for pairwise attributes in both the graph matching (2.1) and the calculation of

Es({x̂k}|G,GS), causing an unstable performance. Therefore, I normalize Qst(xs, xt|G,G′
k) using (‖V ‖−1)

to prevent such effects.

15

For clarity, we omit most of the node
attributes and edge attributes in ARGs

ARG 3

ARG 2

ARG 1

Pattern Definition (a):
The soft attributed pattern is
defined based on node
correspondences generated
by graph matching (arrows
in the figure).

Definition (b):
The pattern should represent
the average attributes among
all the ARGs.

Node
None

Definition (c):
For each pattern node, the average
difference between its related
attributes and the corresponding
attributes in ARGs should be
smaller than a threshold.

In addition:
A dummy matching choice (none) is
used to ensure the pattern s
robustness, when not all the pattern
nodes can be well matched to an ARG

none

Average
difference < a

threshold

Part of the
pattern

Part of
ARG 1

Part of
ARG 2

Part of
ARG 3

Figure 2.4: Visualization of the SAP in Definition 2. Colors in ARGs denote differ-
ent local and pairwise attributes. Note that in graph matching, I use
pairwise attributes (edge colors), rather than only geometric distances
between nodes (although such distances can be used as one of the NQ

types of pairwise attributes).

(b) (FV,FV×V)←argminFV,FV×V

∑N
k=1 E(x̂k|G,G′k);

(c) ∀s ∈ V , Es({x̂k}|G,GS) ≤ τ ;

where Es({x̂k}|G,GS) is defined as the average matching penalty related to node s in G

among all the ARGs in GS.

Es({x̂k}|G,GS)=
1

N

N∑
k=1

[
Ps(x̂

k
s |G,G′k)+

∑
t∈V,t6=s

Qst(x̂
k
s,x̂

k
t |G,G′k)

]

16

Maximal SAP: The definition of the SAP can be visualized in Fig. 2.4, and I

introduce the physical meaning of each item in Definition 2, as follows.

Condition (a) directly matches the SAP G to each large ARG G′k in GS to determine

the SAP’s corresponding subgraphs embedded in these ARGs.

Condition (b) trains the local and pairwise attributes of the SAP G. G should

represent the average attribute pattern among all its corresponding subgraphs determined

by Condition (a). In other words, the SAP’s attributes (FV ,FV×V) should minimize the

total matching energy, given all the matches between G and the ARGs in GS.

Condition (c) sets a threshold τ to control the fuzziness of G. I require each node s

in the SAP to have a low average matching penalty among all the matches to ensure that

all the SAP’s nodes represent the common parts in the ARGs.

With these preliminaries, my goal is to mine the SAP G with maximal graph

size ‖V ‖, i.e. the largest common subgraph pattern among the ARGs.

Figure 2.5: Structure modification from different graph templates (object frag-
ments) to SAPs (fuzziness τ = 0.4).

17

Algorithm 1 Maximal SAP extraction

Input: The initial graph template G = (V,FV ,FV×V); a set of ARGs GS = {G′k|k =

1, 2, ..., N}, where G′k = (Vk,FVk ,FVk×Vk); a threshold τ controlling the SAP’s fuzziness;

the maximum iteration number M .

for iteration = 1 to M do

1. Use the current G to estimate matching assignments in all the N ARGs as {x̂k}

(see Definition 2(a)).

2. Given {x̂k}, update the attribute sets FV and FV×V of G (see (2.3) and Defini-

tion 2(b)).

3. With the updated attributes, compute the local matching penalty Es({x̂k}|G,GS)

of each node s in G matching the ARGs in GS. Select the worst node ŝ =

arg maxs∈V Es({x̂k}|G,GS), and if Eŝ({x̂k}|G,GS) > τ , then delete ŝ from G (see

Definition 2(c)).

4. Create a new node y as the potential missing node of G, and thus construct Gnew.

Estimate the optimal attributes and matching correspondences for y (see (2.6) and

(2.8)). If Ey({xknew}|Gnew, GS) ≤ τ , then insert node y into G. (see Definition 2(c))

end for

2.4 Algorithm

To extract a maximal SAP, the initial graph template G is modified in the following EM

framework. In each iteration, I use the current G to estimate the matching assignments in

the ARGs in GS, {x̂k}, and then use {x̂k} to update the attribute sets of FV and FV×V

of G. The new FV and FV×V are finally used as feedback to modify the structure of G by

(probably) discovering a missing node from the ARGs, or deleting a redundant one. Thus,

the initial graph template G is iteratively modified to the maximal SAP (see Fig. 2.5).

Attribute estimation: According to Definition 2(a), matching assignments {x̂k}

are first estimated based on the current G. I then use Definition 2(b) to estimate the local

and pairwise attributes of G, given {x̂k}. As E(x̂k|G,G′k) is a convex function with respect

18

to FV and FV×V (see (2.1) and (2.2)), the minimization problem can be directly solved by

∂
∑N
k=1 E(x̂k|G,G′k)

∂Fsi
= 0 and

∂
∑N
k=1 E(x̂k|G,G′k)

∂Fsti
= 0. I thus have that G’s attributes are equal to

the average attributes among all subgraphs matched to G in the ARGs.

F si = average
k:δ(x̂ks)=1

F x̂
k
s

i

F sti = average
k:δ(x̂ks)δ(x̂kt)=1

F x̂
k
s x̂
k
t

i

(2.3)

where δ(·) indicates whether a node in G is matched to none. If x̂ks = none, δ(x̂ks) is set to

0; otherwise 1.

Structure modification: I grow the initial G into the maximal SAP using a greedy

strategy (see Algorithm 1). In each iteration, I delete the “worst” (not well matched to

the ARGs) node from G, and insert the “most probable” missing node. Both the insertion

and elimination depend on the unified requirement for the local matching quality in Defi-

nition 2(c). I choose node ŝ = arg maxs∈V Es({x̂k}|G,GS) in G. If Eŝ({x̂k}|G,GS) > τ , I

delete ŝ from G; otherwise, this node is retained.

The key part is the node insertion. This involves two issues, i.e. the attribute estimation

of the new node and the determination of its matching assignments to the ARGs. However,

this has the appearance of a chicken-and-egg problem. On the one hand, the local and

pairwise attributes related to the new node represent the pattern of their corresponding

nodes and edges in ARGs5. They are thus determined by the matching assignments of the

new node (see Definition 2(b)). On the other hand, the matching of the new node cannot

be applied without knowing its attributes.

Fortunately, I have developed an efficient solution that simultaneously determines the

attributes and matching assignments of the missing node, thus overcoming the chicken-

and-egg problem. Let y be the missing node of G, and let Fy = {Fyi |1≤ i≤NP} and

5Conventional enumeration of the new nodes in the graphs cannot ensure the algorithm’s stability, as

the attributes of the enumerated nodes may be greatly biased. Moreover, owing to the existence of the

dummy matching choice (“none”), I cannot limit the node enumeration within any single ARG to reduce

computation.

19

F{y}×V = {Fytj ,F
ty
j |t ∈ V, 1≤j≤NQ} denote the local and pairwise attribute sets related

to y. Consequently, in ARG G′k, the node matched by y can be denoted by xky ∈ Vk \ x̂k

(x̂k = {x̂ks |s ∈ V }). Thus, y’s matching assignments in all the ARGs are denoted by

{xky|k = 1, 2, .., N}.

I use Gnew=(V new,FV new,FV new×V new) to denote the dummy enlarged model after node

insertion. I define the notation for Gnew in the same way as that for G: V new = V ∪ {y},

FV new = FV ∪ Fy, FV new×V new = FV×V ∪ F{y}×V , xknew = x̂k∪{xky}.

Thus, the local matching penalty of y is transformed to

Ey({xknew}|Gnew, GS) = Py +
∑

t∈V
Qyt

Py =
∑N

k=1
Py(x

k
y|Gnew, G′k)/N

Qyt =
∑N

k=1
Qyt(x

k
y, x̂

k
t |Gnew, G′k)/N

(2.4)

The goal of node insertion is transformed to

arg min
Fy ,F{y}×V

∑N

k=1
E(xknew|Gnew, G′k) (2.5a)

argmin
{xky}

Ey({xknew}|Gnew, GS) (2.5b)

Equation 2.5a corresponds to Definition 2(b). Given the matching assignments of y in

the ARGs ({xky}), y’s attributes (Fy,F{y}×V) are trained to minimize the matching energy,

i.e. representing the attributed pattern among the ARGs.

Equation 2.5b estimates y’s matching assignments ({xky}) based on Definition 2(c).

Given the attributes of y, the nodes in ARGs matched by y ({xky}) should have simi-

lar attributes to y. In other words, they should minimize the local matching penalty

(Ey({xknew}|Gnew, GS)). If Ey({xknew}|Gnew, GS) < τ , then y satisfies Definition 2(c).

Similar to (2.3), attributes in Fy and F{y}×V are represented by xky as the solution to

(2.5a).

Fyi = average
k:δ(xky)=1

Fx
k
y

i =
∑N

k=1F
xky
i /N

20

Nodes in ARG 1 that
are not matched to
nodes (a–e) of

ARG 2

ARG

ARG 3

ARG 4

Need to estimate the local
and pairwise attributes of

the new node
Local

attribute set
Pairwise

attribute set

New node

a b

c

de

1
yx 2

yx 3
yx

4
yx

N
yx

Figure 2.6: Discovery of the missing node y in G. I have demonstrated a direct
solution to the determination of y’s matching assignments {xky} in the
N ARGs that minimize Ey({xknew}|Gnew, GS), without requiring any
prior knowledge of y’s attributes. The ARGs are connected to each
other to construct a Markov random field that solves this problem.

Fyti = average
k:δ(xky)δ(x̂kt)=1

Fx
k
y x̂
k
t

i =average
k:δ(x̂kt)=1

Fx
k
y x̂
k
t

i (2.6)

F tyi = average
k:δ(x̂kt)δ(xky)=1

F x̂
k
t x
k
y

i =average
k:δ(x̂kt)=1

F x̂
k
t x
k
y

i

where δ(xky)=1, k=1,2,...,N . This is because, as the new node y should be well matched to

most of the ARGs, I approximate Fyi , Fyti , and F tyi by ignoring the possibility of matching

y to none, so as to simplify the calculation. I substitute Fyi and Fyti into Py and Qyt in

(2.4). In the appendix, I demonstrate that

Py =
1

2N2

NP∑
i=1

wPi
∑

1≤k,l≤N

‖Fx
k
y

i −F
xly
i ‖2 (2.7)

Qyt =

∑NQ
i=1w

Q
i

∑
k,l:δ(x̂kt)δ(x̂lt)=1‖F

xky x̂
k
t

i −Fx
l
yx̂
l
t

i ‖2

2‖V ‖N
∑

j δ(x̂
j
t)

+ Ct

where Ct =
∑

k:δ(x̂kt)=0
Qnone
‖V ‖N =

Qnone
∑
k(1−δ(x̂kt))

‖V ‖N is a constant w.r.t. xky, given {x̂k}. Because

21

Ct is a constant w.r.t. {xky}, I insert Py and Qyt into (2.4) and (2.5b), and obtain

argmin
{xky}

Ey({xknew}|Gnew, GS)

=argmin
{xky}

{
Py +

∑
t∈V

Qyt

}
=argmin

{xky}

∑
1≤k,l≤N

Mkl(x
k
y, x

l
y),

where Mkl(x
k
y, x

l
y) =

1

2N2

NP∑
i=1

wPi ‖F
xky
i −F

xly
i ‖2

+
∑

t∈V :δ(x̂kt)δ(x̂lt)=1

∑NQ
i=1w

Q
i ‖F

xky x̂
k
t

i −Fx
l
yx̂
l
t

i ‖2

2‖V ‖N
∑

j δ(x̂
j
t)

(2.8)

Thus, the problem of (2.5b) is transformed to a QAP, which can be directly solved using a

Markov random field (MRF). As shown in Fig. 2.6, the ARGs are connected to each other

to construct the MRF and determine y’s matching assignments {xky}. In this study, I use

TRW-S [28] to solve the energy minimization of the MRF. y’s attributes Fy and F{y}×V

are computed by (2.6). If Ey({xknew}|Gnew, GS) ≤ τ , I replace G by the enlarged graph

template Gnew.

2.5 Experiments

The proposed method is meaningful in the field of computer vision, enabling the discovery

of a general category model for image matching when the target objects are randomly

placed in large and cluttered scenes. In particular, my technique satisfies the condition of

relatively weak local attributes for matching. I have designed two experiments to validate

the proposed method on the ARGs generated from RGB and RGB-D images. I compare

the proposed method with unsupervised approaches to learning graph matching, although

the discovery of missing nodes is orthogonal to conventional learning of attribute weights.

I design different experiments to evaluate the proposed method in different visual tasks.

In Experiments 1 and 2, I test my method for mining category models (i.e. maximal-

22

size SAPs) from cluttered RGB-D and RGB images, respectively. The category model is

constructed using object edge segments as graph nodes, and thus it has good performance

of detecting objects with clear edges. Then, in Experiment 3, I extend the model-mining

task to more general images, i.e. the images searched by search engines from the Internet.

Therefore, I propose another ARG model, which takes interesting points of SIFT features

as graph nodes, to describe objects in general images.

2.5.1 Experiment 1: mining edge-based models from cluttered

RGB-D images

Dataset

As introduced in Chapter 7, I use the category dataset of Kinect RGB-D images [30, 29],

published as a standard RGB-D object dataset6 for graph-matching-based model learning.

This dataset have been applied with [29] and the competing method [7]. The seven largest

categories—notebook PC, drink box, basket, bucket, sprayer, dustpan, and bicycle—in this

dataset contain enough RGB-D objects, and are chosen for training. These images de-

pict cluttered scenes containing objects with different textures and rotations, and both

experiments were performed on these scenes.

ARG-based category models

I have designed the ARGs to represent objects in RGB-D images in my previous studies [29,

7]. The category model is mined as the SAP among the ARGs. Besides, I also further

propose a method for model-based object recognition, i.e. identifying whether the object

matched by the model is a true detection of the target category.

The ARGs are designed as follows. I first use the edge extraction method [31] to

extract object edges from images and then discretize continuous edges into line segments

as the graph nodes, as illustrated in Fig. 2.7. Technical details for edge segmentation

6This is one of the largest RGB-D object datasets, and fits the requirements of learning graph matching.

23

G no
de

node

2D
 ce

nte
rlin

e

len
gth

2D angle

2D
 le

ng
th

D
st
2

ce
nte

r

lD
sl2]

,
[

B s

A s


 center
sH

O
G

 fe
at

ur
es

of

 lo
ca

l p
at

ch
es

no
de

ce
nte

rlin
e

de
fin

ed
 in

 a
loc

al

co
ord

ina
te

sy
ste

m

stc

D
st
3

spatial
angle

le
ng

th
:

D
sl3

A
s

HOG features of
local patches

collected at the
two terminals of
the line segment

B
s

node

Notations for learning from
RGBD images

Notations for learning from
ordinary RGB images

The maximal ASP

The ARG takes object edge
segments as nodes

t
x

s
x

Note

N
ot

e

Matching

Discretization of
object edges

Figure 2.7: Notation for the ARGs based on line segments of object edges in RGB
and RGB-D images [7]. Please see [29, 7] for more details of attribute
settings.

are introduced in [29]. I connect each pair of the graph nodes to construct a complete

graph. Two local features (NP = 2) and three pairwise attributes (NQ = 3) are designed

to describe local features and spatial relationship between local parts in images.

The first unary attribute is the HOG features [32] of two local patches collected at

24

line segment terminals of node s, denoted by F s1 = [$A
s , $

B
s]7. The HoG features [32] are

extracted using 5 × 5 cells, each of which covers half of its neighboring cells. I use four

orientation bins (from 0◦ to 180◦) to compute the gradient histogram in each cell. Because

the patch is locally collected without significant illumination changes, I normalize all of

the cells within a single block. The second unary attribute is given by F s2 = log l3Ds , where

l3Ds is the spatial length of the line segment of node s. The first of the three pairwise

attributes, F st1 = θ3D
st , denotes the spatial angle between the line segments of nodes s and

t in the 3D space. For each edge (s, t), I define the centerline as the line connecting the

centers of the line segments of s and t. I measure the centerline in a local 3D coordinate

system independent of the global object rotation, as the relative spatial translation between

two nodes, denoted by cst. Based on this, the second and third pairwise attributes, i.e.

F st2 = ‖cst‖ and F st3 = cst/‖cst‖, represent the length and local orientation of the centerline,

respectively. I set the attribute weights as wP1 = 0.2, wP2 = 0.1, wQj=1,2,3 = 1, and set Pnone

and Qnone as 0.4 and 0.2, respectively, which are uniformly applied to the model mining

for all the categories.

Technical details

I use different thresholds τ from during the mining process to mine the category model (i.e.

the maximal-size SAP) with different loose constraints. Larger threshold values τ indicate

a fuzzier level of the maximal-size SAP, and lead to a larger graph size.

Given each specific setting of τ , I perform the evaluation via cross validation, as in

[7, 29]. I pick each RGB-D image in a category to start an individual mining process, thus

obtaining a set of maximal-size SAPs. To extract each maximal-size SAP, the target object

7Actually, this attribute is affected by the order of the two terminals, but there is no good ways to

pre-define this order without considering terminal orders of other nodes. Therefore, I slightly modify the

distance measurement of Fs
1 in Equation 2.2 to ‖Fs

1−F
xk
s

1 ‖2 to min{‖Fs
1−[$A

xk
s
, $B

xk
s
]‖2, ‖Fs

1−[$B
xk
s
, $A

xk
s
]‖2}.

The final terminal order of each node x̂ks in ARG G′
k is determined as the order that best matches to node

s in G.

25

in the picked image is labeled as the initial graph template, and I then randomly select 2/3

and 1/3 of the remaining images for training and testing, respectively. I design different

evaluation metrics, which will be introduced in Section 2.5.4. Based on these metrics, the

proposed method is evaluated using the average performance among all the mined SAPs.

2.5.2 Experiment 2: mining edge-based models from cluttered

RGB images

This experiment is very similar to Experiment 1 in Section 2.5.1. I use the same dataset of

Kinect RGB-D images, but only the RGB channels of the RGB-D images are used in this

experiment. Therefore, I design a new type of ARGs for object representation in the RGB

images. I test the model-mining performance under different settings of the parameter τ .

The overall performance is also evaluated via cross validation.

ARG-based category models

The category model for RGB images is designed in the same way as the model for RGB-D

images. The model uses edge segments as graph nodes, and I use one unary attribute

(nU = 1) and three pairwise attributes (nP = 3) for the model. The notation is also

illustrated in Fig. 2.7. The only attribute is the HOG features collected at the terminals

of line segments, the same as the first unary attribute for RGB-D images. The first of the

three pairwise attributes between nodes s and t is the angle between their line segments,

denoted by F st1 = θ2D
st . The second pairwise attribute describes the angles between the

centerline and the node line segments, denoted by F st2 = [θcenters , θcentert], where θcenters is

the angle between the line segment of s and the centerline. The third pairwise attribute

represents relative segment lengths, and is denoted by F st3 = 1
lcenter

[l2Ds , l2Dt], where l2Ds and

lcenter are the lengths of the line segment of s and the centerline, respectively. The attribute

weights are simply set to wP1 = 0.2 and wQj=1,2,3 = 1. Pnone and Qnone are set as 0.4 and 0.2,

respectively, just like the model for RGB-D images. These parameter settings are uniformly

26

used for model mining of all the categories.

2.5.3 Experiment 3: mining general models from web images

Web images

In this experiment, I focus on a more common case of ubiquitous images, i.e. the images

collected from the Internet by search engines. I use ten keywords—“bag”, “boot”, “camer-

a”, “coca cola”, “glasses”, “hamster”, “iphone”, “panda”, “sailboat”, “spider”—to collect

images of ten categories. I simply select the 200 top-ranked images for each category.

ARG-based model for general images

Generally speaking, the images collected from the Internet are fuzzier than those in my

Kinect RGB-D images dataset [30, 29]. Therefore, I design a new type of ARGs for image

representation, which take SIFT points, rather than edge segments, as graph nodes. These

SIFT-based ARGs are oriented to more general images, especially to those not containing

clear edges in them.

The SIFT points are detected all over the images at different scales. I connect each pair

of points in an image to construct an ARG. Two unary attributes (NP = 2) and five pairwise

attributes (NQ = 5) are designed to describe local features and spatial relationship between

local parts in images. The notation is illustrated in Fig. 2.8. The two unary attributes

are the 128-dimensional descriptor and the orientation of the SIFT feature, denoted by

F s1 = fs and F s2 = os. The first of the five pairwise attributes, F st1 = angle(os, ot), denotes

the spatial angle between the SIFT orientations of nodes s and t. For each edge (s, t), I use

dst and ost to represent its length and orientation. I directly set the second pairwise attribute

as F st2 = ost. Then, the third pairwise attribute, F st3 = [angle(ost, os), angle(ost, ot)]
T , is

defined as the angle between edge (s, t) and each of SIFT orientations of nodes s and t.

Let ss and st denote the SIFT scales of nodes s and t. I set the fourth and fifth attributes

as F st4 = log(ss/st) and F st5 = [log(ss/dst), log(st/dst)]
T , respectively. I set the attribute

27

Maximal-size soft attributed
pattern among different ARGs

No
de

Node

SIFT
scale

t
s

SI
FT

sc

ale
ss

SI
FT

de

sc
rip

to
r

&
or

ien
ta

tio
n

sf so

SIFT
descriptor

& orientation t
f
t
o

distance std
stoorientation

Figure 2.8: Notation for the ARGs that take the interesting points of SIFT features
as graph nodes

weights as follows. wP1 = 3, wP2 = 1, wQj=1,2,4 = 0.5, and wQj=3,5 = 1. Pnone and Qnone are set

as 3 and 5, respectively. These parameter settings are uniformly used for model mining of

all the categories.

Technical details

I set the threshold τ to be 2.5 in this experiment. Furthermore, considering the fuzzy cases

of web images, I cannot ensure that each image contains an object in the target category.

Therefore, in each iteration of model mining, not all the images can be used for model

mining, and I set two criterions to control the quality of the images. The first criterion is

that when I match the model to the image, the ratio of model nodes are matched to none

should be greater than 40%. The second criterion is that in this iteration, the number of

web images used for model mining should be no more than 20. I simply select 20 top-ranked

images among all the collected web images, i.e. the 20 images whose ARGs can match the

current model (graph template) with the lowest energy. All of these settings are uniformly

28

applied to the mining of models for all the ten categories.

2.5.4 Quantitative analysis and evaluations

Competing methods

I compare the proposed method with totally seven approaches ranging across broad fields

in graph matching and graph mining, although my graph-mining method is orthogonal to

the learning concepts in the competing methods. All the competing method should follow

the scenario of “learning graphical models (or target patterns) from large-size ARGs with

a single labeled graph template”, to enable a fair comparison. All the competing methods

use the same initial graph templates and the same training and testing ARGs to start each

learning process in cross validation.

Therefore, in the field of graph matching, I limit my comparison to unsupervised learning

of graph matching, which does not require the labeling of matching assignments. From this

view, six competing methods are applied. They mainly train matching parameters for

the model to improve matching accuracy, and the learning of graphical structures is not

involved. First, I take graph matching without training, denoted by MA, as the baseline.

MA uses TRW-S [28] to match the initial graph template to the target objects in images.

As the benchmark method in unsupervised learning for graph matching, [5], proposed

by Leordeanu et al., is also used for comparison. This iteratively trains the attribute

weights for matching, i.e. wPi and wQj in the matching penalties Ps(xs) and Qst(xs, xt).

Different from my energy minimization in (2.1), their graph-matching assignments are

computed based on another typical form, i.e. compatibility maximization argmaxx C(x)=∑
s,te
−Ps(xs)−Pt(xt)−Qst(xs,xt), where Ps(·) and Qst(·, ·) are defined using absolute differences.

Thus, based on [5], the two competing approaches of LS and LT are obtained by applying

spectral techniques [33] and TRW-S [28], respectively, to solve the matching optimization

argmaxx C(x). Note that the original version of [5] applies a uniform initialization for

wPi and wQj , but risks biased learning (which will be discussed later). To enable a fair

29

comparison and ease the bias-learning problem, LS and LT are further modified to perform

with the same weight initialization as my method8, denoted by LS-O and LT-O. Finally,

I further use the part of my method for iteratively estimating model attributes, according

to Definition 2(a,b), as another competing framework, namely SM.

In addition, in the field of graph mining, the competing method should be formulated

oriented to graph domain of ARGs without typical tricks, such as using the similarities be-

tween unary attributes to pre-determine a set of matching assignment candidates. Thus, I

compare my approach to structural refinement [7], denoted by SR. This method locates on

the boundary between graph mining and learning graph matching, as it only trains match-

ing parameters and attributes, and deletes “bad” nodes to refine the model’s structure,

rather than a method to mine new nodes from ARGs. From this perspective, the mining of

maximal-size iSAP proposed in this study is more close to the spirit of graph mining. Note

that my method can mine iSAPs with different graph sizes by setting different thresholds τ .

Therefore, to enable a fair comparison, SR is required to modify the initial graph template

to a model containing the same number of nodes as the iSAP trained by my method, given

a specific value of τ .

Evaluation metrics

Generally speaking, I can use the graph-size changes to illustrate the performance of my

method using different settings of threshold τ .

I use the average matching rate (AMR) to evaluate the matching performance. This is

widely used for the evaluation of learning graph matching [7, 5, 4]. The AMR is measured

across all matching results produced by the extracted maximal SAP in the cross validation.

8As a tradeoff, I apply a raw setting for the weights of just one or two attributes to ease the bias learning

problem.

30

0 1 2 3 4 5 6 7 8 9 10
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
-0.6

-0.3

0

0.3

0.6

0.9

1.2

1.5



Size change rate of
the graph template

Threshold

Node
insertion

Node
elimination

Iteration number

Notebook
PC

Drink
box Basket Bucket 2.0 3.0 4.0 5.0

Figure 2.9: Size change rates of the graph template with different thresholds (τ) (a)
and the rates of node insertion and elimination in different iterations
(b). Vertical axes in both (a) and (b) indicate the percentage of the
graph size changes, relative to the initial graph template. Solid and
dotted lines in (b) indicate the effects of node insertion and elimination,
respectively.

Results

Fig. 2.9 shows the size growth of the SAP with an increase of the threshold in Experiment 1.

Fig. 2.10 illustrates the object detection performance of the maximal SAPs extracted using

RGB-D images in Experiment 1. Table 2.1 lists the quantitative results for comparison,

where the threshold τ is set to 0.25 for the learning of all the categories using RGB-D and

RGB images in Experiments 1 and 2. Except SR, the competing methods do not have the

ability to refine the topological structure of the graph template. Thus, they are sensitive

to the bias in the initial graph template, including biased attributes, occluded nodes, and

redundant nodes. The biased graph template may produce a biased matching, and this

would, in turn, increase learning bias, thus propagating into a significant bias. In contrast,

my method modifies the biased structure in early iterations to reduce the prevalence of

biased matching in further iterations. Besides the elimination of “bad” parts as in SR, my

approach also discover missing parts, thereby exhibiting better performance.

31

Category From RGB-D images

Method NP DB BA BU SP DU BI

MA 69.00 75.25 57.97 75.33 72.65 83.96 77.78

LS 57.40 55.66 56.99 59.15 none none none

LS-O 64.63 74.18 60.75 77.99 76.48 84.53 87.61

LT 61.94 57.91 59.59 60.51 none none none

LT-O 69.04 75.09 65.37 80.44 77.31 85.47 89.33

SR 72.23 85.84 88.65 86.91 84.69 95.47 91.05

SM 89.05 85.97 75.61 84.95 90.85 95.31 94.82

Mine 99.06 98.74 98.57 96.76 93.62 96.65 97.69

Category From RGB images

Method NP DB BA BU SP DU BI

MA 44.30 69.93 45.44 68.71 66.88 58.43 58.94

LS 46.40 49.46 50.25 54.74 none none none

LS-O 53.62 69.52 55.21 70.74 71.31 73.24 81.44

LT 48.83 51.24 50.97 56.39 none none none

LT-O 56.57 73.01 57.35 73.66 72.84 80.15 82.60

SR 60.31 79.38 79.59 85.92 91.76 93.43 84.15

SM 72.02 85.90 72.16 83.56 79.87 83.91 71.75

Mine 72.91 96.18 91.49 91.18 94.45 99.01 88.99

Table 2.1: Comparison of average matching rates in Experiments 1 and 2. NP,
DB, BA, BU, SP, DU, and BI indicate the notebook PC, drink box,
basket, bucket, sprayer, dustpan, and bicycle categories.

In addition, Fig. 2.11 shows the model-mining performance on web images collected

from the Internet in Experiment 3.

32

2.6 Discussion and conclusions

In this chapter, I redefined the unsupervised learning of graph matching to model the

discovery of missing parts, and thus idealize the spirit of structural learning.

The proposed method corrects errors in the topological structure of the initial graph

template. As the threshold τ controls the fuzziness of the maximal SAP, it should be set up

corresponding to the maximal graph (object) deformability in the ARGs. Given a suitable

setting of τ , my method exhibits very good performance.

In terms of graph mining, this study can also be understood as the mining of maximal-

size subgraph patterns. I proposed the SAP as the subgraph pattern of fuzzy ARGs,

and demonstrated a plausible method of achieving the idea of mining the maximal-size

subgraph pattern in the challenging graph domain of ARGs. I provided an approximate

solution for maximal SAP extraction that does not require node enumeration. Another

difference between conventional graph mining methods and my approach lies in the need

for the graph template. This is because the matching between ARGs is formulated as a

QAP, meaning that this graph matching can only be reliably achieved when an approximate

area of interest for the subgraph pattern has been provided.

2.7 APPENDIX: Demonstration of Equation (2.8)

It is easy to prove

N∑
k=1

‖Fx
k
y

i −
1

N

N∑
l=1

Fx
l
y

i ‖2

=
1

2N

∑
1≤k,l≤N

‖Fx
k
y

i −F
xly
i ‖2

and ∑
k:δ(x̂kt)=1

‖Fx
k
y x̂
k
t

i −Fyti ‖2

33

=
1

2
∑

k δ(x̂
k
t)

∑
k, l :

δ(x̂kt)δ(x̂
l
t) = 1

‖Fx
k
y x̂
k
t

i −Fx
l
yx̂
l
t

i ‖2

Thus, I can obtain

Py =
1

N

N∑
k=1

Py(x
k
y|Gnew, G′k)

=
1

N

N∑
k=1

NP∑
i=1

wPi ‖F
xky
i −F

y
i ‖2

=
1

N

NP∑
i=1

wPi

N∑
k=1

‖Fx
k
y

i −
1

N

N∑
l=1

Fx
l
y

i ‖2

=
1

N

NP∑
i=1

wPi
1

2N

∑
1≤k,l≤N

‖Fx
k
y

i −F
xly
i ‖2

=
1

2N2

NP∑
i=1

wPi
∑

1≤k,l≤N

‖Fx
k
y

i −F
xly
i ‖2

Qyt =
1

N

N∑
k=1

Qyt(x
k
y, x̂

k
t |Gnew, G′k)

=
1

N

NQ∑
i=1

[wQi
‖V ‖

∑
k:δ(x̂kt)=1

‖Fx
k
y x̂
k
t

i −Fyti ‖2 +
∑

k:δ(x̂kt)=0

Qnone

‖V ‖

]

=
1

‖V ‖N

NQ∑
i=1

wQi
∑

k:δ(x̂kt)=1

‖Fx
k
y x̂
k
t

i −Fyti ‖2+Ct

=

∑NQ
i=1w

Q
i

∑
k:δ(x̂kt)=1‖F

xky x̂
k
t

i −
∑
l:δ(x̂lt)=1

F
xlyx̂

l
t

i∑N
l′=1 δ(x̂

l′
t)
‖2

‖V ‖N
+Ct

=

∑NQ
i=1w

Q
i

∑
k,l:δ(x̂kt)δ(x̂lt)=1‖F

xky x̂
k
t

i −Fx
l
yx̂
l
t

i ‖2

2‖V ‖N
∑

k δ(x̂
k
t)

+ Ct

where Ct =
∑

k:δ(x̂kt)=0
Qnone
‖V ‖N =

Qnone
∑
k(1−δ(x̂kt))

‖V ‖N is a constant with respect to xky, given {x̂k}.

34

Notebook PC

Drink box

Basket

Bucket

Sprayer

Dustpan

Bicycle

Figure 2.10: Object detection performance on the maximal SAPs trained from RGB-
D images in Experiment 1. The second image in each category shows
the depth images corresponding to the first image.

35

Figure 2.11: Category mining performance on web images in Experiment 3.

36

Chapter 3

Secondary Platform: Unsupervised

Learning of Graph Matching

In the previous chapter, I have introduced the general platform for visual mining, which is

based on attributed graph mining. In this chapter, I will present the secondary choice for

visual mining. I extend the concept of unsupervised learning of graph matching, so as to

make it applicable to the task of visual mining.

Graph matching is a fundamental problem in pattern recognition, and has drawn broad

interest from many fields. However, there is still no other techniques bridging the idea of

graph matching and the concept of visual mining. In addition, the literature of learning

graph matching has not received much attention, although its superior performance has

been demonstrated in pioneering studies.

Hence, in order to apply the concept of learning graph matching to the task of visual

mining, I make the following two extensions. First, the learning process should be achieved

in an unsupervised9 fashion without labeling “what is where” in the ubiquitous images.

Second, the prototype model, which represents the common pattern of a category, should be

trained during the learning process. Third, the proposed method combines the refinement

of graph structure as a part of learning graph matching, so as to estimate the best structure

of the category model. In this way, the learning method is oriented toward both matching

and recognition performance.

9In the context of learning graph matching, the term “unsupervised” [5] refers to the ability to learn the

model without manually specifying each individual matching assignment within the graphs, rather than

the labeling of positive and negative graphs.

37

By the way, as mentioned in the previous chapter, attributed graph mining can be

understood as a type of unsupervised learning of graph matching. However, attributed

graph mining can only be applied, when people use squared attribute difference to con-

struct matching penalties. In contrast, the method proposed in this chapter formulates

the problem of graph matching in a more general form, i.e. the maximization of match-

ing compatibilities in (3.1). Therefore, theoretically, this method can be applied to more

graph-matching cases.

The rest of this chapter is organized as follows. The introduction and discussion of

related work are presented in Sections 3.1 and 3.2. Section 3.3 defines the general case

of graph matching, and Section 3.4 presents the detailed algorithm. In Section 3.5, I

introduce the design of experiments and evaluate the algorithm performance. Finally, the

overall chapter is summarized in Section 3.6.

3.1 Introduction

Attributed graph matching is a fundamental problem ranging across broad fields in comput-

er vision and data mining, and numerous approaches have been proposed for the problem

of graph matching optimization [34]. Even so, the literature on learning graph matching

remains limited, despite the demonstrated power of learning techniques in this area. The

few pioneering studies of learning graph matching mainly aimed to train matching param-

eters, so as to obtain correct matching assignments for mapping from a graph template to

a number of relatively large target graphs.

In this research, I approach the learning of graph matching from the perspective of

category modeling. My aim is to incrementally modify the graph template to produce

a graphical model representing the general structural knowledge of the targets objects in

target graphs, and not merely train matching parameters. Therefore, this research is of

great significance for object knowledge mining from cluttered scenes.

In so doing, I also aim to transform the conventional concept of learning for graph

38

Figure 3.1: Concept extension from pure attributed graph matching (a) to the
proposed learning of graph matching (c). Different from convention-
al learning of graph matching (b), my method aims to modify the
initial graph template into a graphical model, so as to achieve good
performance in both matching and recognition. Thus, this research
establishes a bridge between the learning of graph matching and the
category modeling from cluttered scenes.

matching to learning based on graph matching for both object matching and recognition.

Here, object recognition refers to determining whether a graph contains the target object,

based on the trained model. I call the graphs that contain target objects positive graphs,

and those that do not negative graphs. This idea for learning gives consideration to both

matching performance and recognition performance.

The goal of this chapter can be described as follows. Given an initial graph template

and a number of positive and negative graphs for training, I aim to 1) learn matching

parameters in an unsupervised9 fashion, 2) incrementally refine the local and pairwise

39

attributes of the graph template, and simultaneously 3) modify the structure of the graph

template by eliminating incorrect or redundant parts, thus generating a model that achieves

good performance in both matching and recognition.

To perform estimates of both matching parameters and model attributes, my work

extends the unsupervised9 learning of graph matching proposed by Leordeanu et al. [5].

Meanwhile, my approach to structural modification of the graph template uses a novel

technique based on the mechanism of object recognition.

The contributions of this chapter can be summarized as follows. I redefine the learn-

ing of graph matching as a category modeling problem that is oriented toward not only

conventional matching performance, but also object recognition. It includes the estima-

tion of matching parameters, attributes, and graphical structure. In particular, this is the

first attempt to use negative graphs in the learning of graph matching, to the best of my

knowledge.

A preliminary version of this chapter appeared in [7].

3.2 Related work

Most conventional algorithms for the learning of graph matching are supervised9 meth-

ods that require detailed labeling of each template node’s matching assignment in each

positive graph for training. [3], [6], and [4] used large-margin methods [35], non-linear

inverse optimization [36], and smoothing-based techniques to train matching parameters

in a supervised fashion, respectively. Compared to supervised methods, the unsupervised9

method [5] does not require a large amount of node-level labeling. Thus, it is closer to my

approach and resembles, at least philosophically, my idea of category knowledge mining

from cluttered scenes. Indeed, I can derive another type of supervised learning from [5] as

a compromise, greatly reducing manual interactions by applying object-level labeling, and

thereby supporting fairer comparison.

All studies mentioned above are focused on training matching parameters for good

40

matching performance. By contrast, my approach emphasizes ont only the matching rate,

but also the recognition performance of the trained, matching-based model. In addition

to training the matching parameters, I modify the model (graph template) structure and

estimate model attributes.

Then, I give an in-depth discussion on the structural modification, which is the main

part of the learning process. To be exact, if I simplify the problem by only considering

the matching between two graphs, the structural modification is related to the progressive

graph matching [8] proposed by Cho et al., which made a great contribution to the selection

of reliable nodes and edges for a more efficient matching. If I do not limit my discussion

within the range of general-form graph matching, this problem is also related to category

modeling for recognition [20], the model training for the Hough-style matching [37], and

common object extraction from two images based on maximal clique mining [13, 14], such

as [18, 19]. Most methods for object extraction from multiple images [23, 24, 25, 26, 27]

related to clique mining uses a combination of two-image matching results. [22] extracted

object models from images based on page-rank mechanisms. [1, 11, 16, 17] aim to learn the

maximal frequent subgraph among several graphs with distinct node or edge labels. Above

all, most of these methods mentioned above limit their interests to the geometric consistency

and similarity of local patches. As thus, they usually need additional data constraints.

E.g. [20, 37] require there is no roll rotations for matching, and object extraction methods

usually require the local features in images to be distinguishing enough to determine a set

of potential image matching assignments during the preprocessing.

In contrast, by emphasizing a general algorithm for learning graph matching, my ap-

proach remains free of such constraints. I formulate the learning problem strictly under a

common paradigm of graph matching based on various local and pairwise attributes, and

so are able to apply my method to cluttered scenes containing target objects with different

scales, textures, and rotations simply by designing a set of suitable attributes. Nevertheless,

I still compare my recognition-oriented structural modification strategy with strategies of

the related studies in experiments.

41

3.3 Preliminary: graph matching problem

The objective of graph matching is to find correspondences between a graph template (the

category model) G = (V,E, FV , FE) and an attributed graph G′ = (V ′, E ′, FV ′ , FE′). V and

E denote the node set and the edge set of G, respectively. FV and FE denote the attribute

sets for local and pairwise attributes. Let G have nv nodes, V ={1, 2, ..., nv}, and G′ have

nv′ nodes, V ′={1, 2, ..., nv′}. Each node i ∈ V of G has nU unary attributes (f
(k)
i ∈ FV, k=

1, 2, ..., nU) and each edge (i, j) ∈ E has nP pairwise attributes (f
(l)
ij ∈ FE, l = 1, 2, ..., nP).

The matching assignments between G and G′ are represented by a binary matching matrix

Y ∈ {0, 1}nv×nv′ . If node i ∈ V matches node i′ ∈ V ′, then Yi,i′ = 1, otherwise Yi,i′ = 0.

In fact, I use a column-wise vectorized replica of Y, denoted by y ∈ {0, 1}nvnv′ . yii′ in

y corresponds to Yi,i′ in Y. Thus, I obtain a typical form [33, 8, 5] of attributed graph

matching as follows:

ŷ = argmax
y

C(y|G,G′), C(y|G,G′) = yTMy

s.t. ∀i ∈ V,
∑
i′∈V ′

yii′ ≤ 1, ∀i′ ∈ V ′,
∑
i∈V

yii′ ≤ 1
(3.1)

This is a quadratic assignment problem, where C(x|G,G′) is the function measuring the

matching compatibility between G and G′. M is a (nvnv′)-by-(nvnv′) compatibility matrix

containing non-negative elements. In most cases [33, 8], the matching compatibility Mii′,jj′

can be represented as a function of attribute distances as follows.

Mii′,jj′=

ΦP (dii′,jj′ |wP), (i, j) ∈ E, (i′, j′) ∈ E ′

0, Otherwise

Mii′,ii′=ΦU(dii′ |wU), i ∈ V, i′ ∈ V ′
(3.2)

where ΦU(dii′ |wU) is set on the diagonal of M and measures the unary compatibility for a

node pair of i ∈ V and i′ ∈ V ′; the non-diagonal element of M, ΦP (dii′,jj′ |wP), measures

the pairwise compatibility for an edge pair of (i, j) ∈ E and (i′, j′) ∈ E ′.

I define dii′ = [d
(1)
ii′ , d

(2)
ii′ , ..., d

(nU)
ii′]T as the Euclidean distances of the unary attributes,

d
(k)
ii′ = ‖f (k)

i −f
(k)
i′ ‖. Whereas dii′,jj′ = [d

(1)
ii′,jj′ , d

(2)
ii′,jj′ , ..., d

(nP)
ii′,jj′]

T denote the Euclidean dis-

42

tances of the pairwise attributes, d
(l)
ii′,jj′ = ‖f

(l)
ij −f

(l)
i′j′‖. wU = [wU1 , w

U
2 , ..., w

U
nU]T and wP =

[wP1 , w
P
2 , ..., w

P
nP]T denote the weights for each unary and pairwise attribute, respectively.

As in [5], without loss of generality, I transform (3.2) to absorb the unary compati-

bilities into the pairwise compatibilities and leave zeros on the diagonal, achieving better

performance.

Mii′,jj′=

Φ(dii′,djj′,dii′,jj′|wU,wP), (i, j)∈E, (i′, j′)∈E ′

0, Otherwise
(3.3)

Note that when the structure of the graph template G is not well segmented and needs

further modification, it is meaningful to bring in a dummy choice—none—for the matching

assignments of nodes in G. Without an accurate structure, G may have some redundant

nodes that should be matched to none. Thus, I re-write (3.1) and (3.3) as:

x̂ = argmax
x
C ′(x|G,G′)

C ′(x|G,G′) =
∑

i,j∈V ∪{none}

cij(xi, xj|G,G′)

cij(xi, xj|G,G′) =


Mixi,jxj , xi 6= xj ∈ V ′

−∞, xi = xj ∈ V ′
λ(1TM1)

n2
vn

2
v′

, xi orxj = none

(3.4)

where xi indicates the matching assignment of node i ∈ V , and xi = i′ ∈ V ′ if and only if

yii′ = 1. λ is the parameter weighting for the matching compatibility of none. The setting

of none reduces incorrect matching and eases the bias learning problem that commonly

afflicts the unsupervised learning of graph matching (which will be explained later).

The maximization of the compatibility function C ′(x|G,G′) can be achieved using var-

ious graph matching optimization techniques, and I choose TRW-S [28] here.

3.4 Learning of graph matching

Given an initial graph template G = (V,E,FV ,FE), a set of N+ positive graphs PG =

{G+
k |k = 1, 2, ..., N+}, G+

k = (V +
k ,E

+
k ,FV +

k
,FE+

k
), and a set of N− negative graphs, NG =

43

{G−l |l = 1, 2, ..., N−}, G−l = (V −l ,E
−
l ,FV −l

,FE−l
), the objective for learning graph matching

is to estimate an induced subgraph of G, G̃= (Ṽ ,Ẽ,FṼ ,FẼ), Ṽ ⊆V, Ẽ⊆E, as the category

model, simultaneously training matching parameters {wU ,wP} and modifying model at-

tributes {FṼ ,FẼ}, so as to achieve good matching performance in positive graphs in PG

and high recognition accuracy among graphs in PG and NG.

3.4.1 Parameter and attribute estimation

For the matching between the current G and G+
k based on (3.1), let the principal eigenvector

of M be ak. According to [33], its element akii′ can be taken as the confidence value of the

corresponding assignment between node i ∈ V and node i′ ∈ V +
k . Leordeanu et al. [5]

proposed to increase the elements corresponding to the correct assignments. Meanwhile, as

‖ak‖ is normalized to 1, the elements for incorrect assignments will decrease, thus achieving

greater reliability in matching.

To reduce the large computation, an approximate principal eigenvector is calculated as

ak = Mn1√
(Mn1)T (Mn1)

. Thus, the partial derivative of ak is computed as follows:

(ak)′=
(Mn1)′‖Mn1‖ − ((Mn1)T (Mn1)′)Mn1/‖Mn1‖

‖Mn1‖2

(Mn1)′ = M′(Mn−11) + M(Mn−11)′ (3.5)

Here, I choose n = 10, as in [5].

The benchmark method for unsupervised learning of graph matching [5] proposed by

Leordeanu et al. focuses exclusively on learning matching parameters. I extend this method

to include the learning of model attributes {wU ,wP , FV , FE}, which is similar to [29]. The

objective is to maximize the following function:

G(wU,wP,FV ,FE)=
N+∑
k=1

∑
i∈V

x̂k
i
6=none

akix̂ki
(wU,wP,FV ,FE) (3.6)

where x̂k = {x̂ki ∈ V +
k |i ∈ V } is the predicted assignments between the current G and G+

k

based on (3.4).

44

Algorithm 2 Learning of graph matching

Input: An initial graph template G∗; a set of N+ positive graphs, PG; a set of N−

negative graphs, NG; the iteration number T for the estimation of matching parameters

and attributes; a threshold τ .

Output: The category model G̃.

Set initial leave-one-out (LOO) classification accuracy as Ã = 1 and node reliability of

G as ∀i∈V, R̃i = −∞.

repeat

1. Initialize the category model G = G∗ and the weights for unary and pairwise

attributes wU =1nU×1, wP =1nP×1.

for iteration = 1 to T do

2.1. Use the current G to predict the matching assignments to G+
k , X̂, based on

(3.4).

2.2. With X̂, update the matching parameters wU,wP and attributes FV ,FE of G,

based on (3.7).

end for

3. Match the current G to graphs in PG and NG based on (3.4)10 and obtain X̂ and

X̊.

4. Given X̂ and X̊, train the classifier with the normal vector W and a new LOO

accuracy A, based on (3.10).

5. If A < Ã and mini R̃i > τ then break.

6. Given W , update node reliability R̃i, based on (3.11). Update G̃ = G and Ã = A.

7. Eliminate node i∗ = argmini∈VRi from G∗ and set it as the induced subgraph

G∗ ← G∗(V \{i∗}).

until nv = 2

As shown in Algorithm 2, I can achieve the maximization of G(wU,wP,FV ,FE) iteratively.

In each iteration, I use the currentG to predict the matching assignments x̂k, k = 1, 2..., N+,

45

and then modify the matching parameters wU,wP and attributes FV ,FE via gradient ascent:

wUk ← wUk + ζ
∑N+

k′=1

∑
i′∈V

x̂k
′
i′
6=none

∂ak
′

i′x̂k′
i′

(wU,wP,FV ,FE)

∂wUk

wPl ← wPl + ζ
∑N+

k′=1

∑
i′∈V

x̂k
′
i′
6=none

∂ak
′

i′x̂k′
i′

(wU,wP,FV ,FE)

∂wPl
(3.7)

f
(k)
i ← f

(k)
i + ζ

∑N+

k′=1

∑
i′∈V

x̂k
′
i′
6=none

∂ak
′

i′x̂k′
i′

(wU,wP,FV ,FE)

∂f
(k)
i

f
(l)
ij ← f

(l)
ij + ζ

∑N+

k′=1

∑
i′∈V

x̂k
′
i′
6=none

∂ak
′

i′x̂k′
i′

(wU,wP,FV ,FE)

∂f
(l)
ij

3.4.2 Structural modification

In this subsection, I use the matching results of the current G to train a classifier for object

recognition. In order to train the model for good recognition performance, I propose a new

method that uses the parameters of the classifier to guide the structural modification of G.

There are a variety of approaches to classification based on graph matching [38, 39], and

I will obtain different classification performances by applying different classifiers to different

feature. In order to achieve a natural connection between the structural modification of G

and the classification mechanism, I select the linear-SVM classifier and attribute distances

as my target features.

Feature extraction: Let X̂ = {x̂k|k= 1, 2..., N+} and X̊ = {̊xl|l= 1, 2..., N−} denote

a set of predicted assignments matching to positive graphs G+
k ∈PG and a set of predicted

assignments matching to negative graphs G−l ∈ NG, based on graph matching10. Thus,

according to (3.3), dix̂ki indicates the distance of the unary attributes for matching node

i ∈ V to node x̂ki in positive graph G+
k . di̊xli is for the matching to negative graph G−l .

Similarly, dix̂ki ,jx̂kj and di̊xli,jx̊lj are for pairwise attribute distances.

Features for object recognition are generated from these attribute distances. I define

10Note that graph matching based on (3.4) is applied by setting λ = −∞ in (3.4) to avoid x̂ki or x̂li = none.

46

the feature vector to recognize the matching between G and G+
k as follows:

F̂k = [ûk1, p̂
k
1, û

k
2, p̂

k
2, ..., û

k
nv , p̂

k
nv]

T

ûki =dTix̂ki
, p̂ki =

∑
j:j 6=i

dTix̂ki ,jx̂kj
/
∑

j:(i,j)∈E
(x̂k
i
,x̂k
j
)∈E+

k

1
(3.8)

For the matching between nodes i∈V and x̂kj ∈V +
k , ûki and p̂ki , (i = 1, 2, ..., nv ∈ V), are

two nU -dimension and nP -dimension vectors for node i ∈ V , indicating the distance of the

nU unary attributes and the marginal penalty for the distance of the pairwise attributes,

respectively.

Similarly, the feature vector for the matching between G and G−l is represented as

F̊ l = [̊ul1, p̊
l
1, ů

l
2, p̊

l
2, ..., ů

l
nv , p̊

l
nv]

T (3.9)

Both F̂k and F̊ l are vectors with nv(n
U + nP) dimensions.

Classification for object recognition: I train a linear-SVM classifier for object

recognition as follows.

min
W,ξ,b

{1

2
‖W‖2 + C

N++N−∑
k=1

ξk

}
,

s.t. ∀k=1, 2, ..., N+,W·F̂k−b≥1−ξk, ξk≥0;

∀k=1, 2, ..., N−,−(W·F̊k−b)≥1−ξk+N+, ξk+N+≥0

(3.10)

where W = [µ1,ρ1,µ1,ρ1, ...,µnv ,ρnv]
T represent the normal vector to the hyperplane.

µi is a nU -dimension vector and corresponds to the weights for the nU unary attribute

distances in ûki and ůli. ρi is a nP -dimension vector for pairwise attribute distances in p̂ki

and p̊li.

Classifier-guided structural modification: Here, I combine graph matching and

the SVM-based classification to identify reliable and unreliable nodes in G, as follows.

Clearly, G should be better matched to positive graphs G+
k ∈ PG than negative ones

G−l ∈ NG. In other words, attribute distances for matching to positive graphs (i.e. ûki

and p̂ki) should be less than those for matching to negative graphs (̊uli and p̊li), when node

47

i is a reliable node in G. Consequently, the weights of node i (i.e. µi and ρi) should be

negative, according to (3.10).

Therefore, I use the following metric to evaluate the reliability of node i ∈ V :

Ri = −
√
nv
‖W‖

[nU∑
j=1

µ
(j)
i +

nP∑
j=1

ρ
(j)
i

]
(3.11)

where µ
(j)
i , ρ

(j)
i are the j-th elements of µi,ρi. Ri is normalized by

√
nv
‖W‖ to make it invariable

to size changes of G.

I perform structural modification iteratively. In each iteration, after the estimation

of matching parameters and attributes (see Section 3.4.1), I eliminate the node with the

lowest reliability i∗ = argmini∈VRi from the template, and use this induced subgraph of the

template to retrain a new model, thereby replacing current model. Meanwhile, I calculate

the classification accuracy in a leave-one-out (LOO) cross validation for each of the models.

The stopping condition is that Ri∗ is greater than a threshold τ and the elimination of node

i∗ would decrease the LOO accuracy. Please see Algorithm 2 for details.

3.5 Experiments

The proposed method is especially useful in the field of computer vision, enabling the

discovery of general object structures for image matching when the target objects are

randomly placed in cluttered scenes. To evaluate my method in this regard, I designed

two category modeling experiments, one using ordinary RGB images and the other using

RGB-D images captured by a Kinect device [40].

As introduced in Chapter 7, I used the category dataset of Kinect RGB-D images,

published in [29] as a standard RGB-D object dataset oriented to graph matching11. Four

largest categories—notebook PC, drink box, basket, and bucket—in this dataset contained

enough RGB-D objects and were chosen to construct both the positive and the negative

11This is one of the largest RGB-D object datasets, and fits the requirements of graph matching well.

http://sites.google.com/site/quanshizhang

48

graph sets for training. These images depicted cluttered scenes containing target objects

with different textures and rotations, and the both experiments were performed on these

scenes.

I compared the proposed method with other approaches to learning graph matching

and various common strategies in object extraction12.

3.5.1 Category modeling from RGB & RGB-D images

In cluttered scenes, objects in the same category usually contain a variety of textures, and

may be positioned at various rotations. Considering the need for robustness with respect to

texture variations, I applied two graphical models proposed in Sections 2.5.2 and 2.5.1, each

of which uses [31] to extract object edges and then discretizes continuous edges into line

segments to produce the graph nodes. The two models use different attributes to represent

objects in RGB and RGB-D images, respectively. The model for RGB images contains one

local attribute and three pairwise attributes, while the model for RGB-D images contains

two local attributes and three pairwise attributes. Please see Sections 2.5.2 and 2.5.1 for

detailed settings of the attributes.

3.5.2 Experiments and quantitative evaluations

For both two experiments, I used the following compatibility function, corresponding to

(3.3).

Φ(dii′ ,djj′ ,dii′,jj′ |wU ,wP)

= exp
(
−(wU)Td2

ii′−(wU)Td2
jj′−(wP)Td2

ii′,jj′

) (3.12)

There is, in fact, a fair variety of compatibility functions (e.g. exp(−wTd) and α/(β +

wTd)). Note that my proposed method is not limited to the particular compatibility

function used in these experiments. Any compatibility function that can be cast into the

form of (3.2) or (3.3) will do.

12Please see Section “Related work” for more discussion.

49

I set the iteration number as T = 5 and the parameter for matching to none as λ = 5.

The iteration number T is a general setting for [5] and is applied to all competing techniques

of [5], so as to ensure fair comparison.

Figure 3.2: Process of node elimination. The bottom-right number indicates the
model node number.

Cross validation and evaluation metrics: Each labeling of the target object in a

given RGB or RGB-D image can produce an initial graph template and begin an individual

model learning process. I labeled the images for a given category in sequence to begin

multiple learning processes. In each of these processes, the remaining (i.e. unlabeled)

images of this category were used to generate positive graphs. I then randomly selected

the same number of images from other categories to generate negative graphs. I used 2/3

and 1/3 of these graphs for training and testing in this learning process, respectively. The

end result is a set of models for the evaluation of the category.

I used the average matching rate (AMR) to evaluate the matching performance in

positive graphs. AMR is widely used to evaluate the learning of graph matching [5, 4]. The

matching rate of each individual matching result indicates the proportion of model nodes

that are correctly matched to the target object. AMR represents the average of individual

50

matching rates across all matching results produced by the trained models. Similarly, the

average recognition accuracy (ARA) (i.e. the average value for recognition accuracy in the

cross validation) was used to evaluate model-based recognition performance among both

positive and negative graphs.

Category MA LS LT WM SU Mineavg

M
at

ch
in

g Notebook PC 56.05 46.40 48.83 49.93 52.90 50.74

Drink box 56.15 49.46 51.24 58.55 52.70 89.11

Basket 55.28 50.25 50.97 59.60 51.68 81.33

Bucket 58.02 54.74 56.39 61.76 56.80 86.85

R
ec

og
n
it

io
n Notebook PC 67.63 67.36 66.60 77.07 67.98 75.21

Drink box 72.74 69.73 68.75 82.47 72.05 89.53

Basket 63.95 67.13 67.01 74.94 66.32 76.39

Bucket 80.90 78.96 77.83 86.12 78.54 89.07

Table 3.1: Comparison of average matching rates and average recognition accuracy
in the experiment of category modeling from RGB images.

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

 

Av
er

ag
e

m
od

el
 s

iz
e Notebook PC

Drink box
Basket
Bucket

vn

Figure 3.3: Average model size learned by using different thresholds of τ . (a) For
2D models learned from RBD images and (b) for 3D models learned
from RGB-D images.

Competing methods: In the first step of the evaluation, I compared my method to

51

Category MA LS LT WM SU Mineavg

M
at

ch
in

g Notebook PC 62.02 57.40 61.94 61.91 67.71 67.79

Drink box 59.11 55.66 57.91 62.41 60.68 88.25

Basket 60.88 56.99 59.59 66.10 61.52 88.61

Bucket 61.13 59.15 60.51 64.41 61.90 89.36

R
ec

og
n
it

io
n Notebook PC 75.41 70.94 72.11 82.78 76.79 81.51

Drink box 80.09 76.33 78.36 87.73 78.65 93.42

Basket 73.09 70.66 74.59 86.11 71.88 87.71

Bucket 75.52 78.34 77.18 84.63 77.36 87.97

Table 3.2: Comparison of average matching rates and average recognition accuracy
in the experiment of category modeling from RGB-D images.

several competing approaches to the learning of graph matching across both experiments.

First, I performed graph matching without training, denoted by MA, to establish a baseline.

MA uses TRW-S [28] to match the initial graph template to the target objects in images.

Second, as the benchmark method for unsupervised learning of graph matching, I used [5]

proposed by Leordeanu et al., which does not modify model structure, but rather iteratively

train the attribute weights for matching, i.e. wU and wP . Two competing approaches were

obtained by applying spectral techniques [33] (LS) and TRW-S [28] (LT), respectively, to

solve the matching optimization of (3.4). Third, I designed a framework that iteratively es-

timates matching parameters wU ,wP and model attributes FV , FE according to techniques

presented in Section 3.4.1, but did not perform structural modification (WM). The final

competing technique involved supervised learning of graph matching (SU) based on [5].

SU required to label target objects in positive graphs and regarded matching assignments

mapped onto target objects as correct ones.

In the second step of the evaluation, I compared the performances of the proposed

method using different structural modification strategies. The first strategy, (CB), is based

52

Methods Average recognition accuracy

Notebook Drink box Basket Bucket

T
h

e
av

er
ag

e

p
er

fo
rm

an
ce R

G
B

im
ag

es

Mine+CBavg 60.96 81.72 72.51 85.58

Mine+WBavg 75.36 87.38 73.87 88.18

Mineavg 75.21 89.53 76.39 89.07
R

G
B

-D

im
ag

es
Mine+CBavg 76.46 85.80 85.67 86.48

Mine+WBavg 80.63 90.64 86.51 86.77

Mineavg 81.51 93.42 87.71 87.97

T
h

e
b

es
t

p
er

fo
rm

an
ce R

G
B

im
ag

es

Mine+CBbest 76.17 85.76 78.94 89.01

Mine+WBbest 80.03 87.91 77.84 89.67

Minebest 82.16 90.45 82.52 91.81

R
G

B
-D

im
ag

es

Mine+CBbest 84.92 91.32 89.77 88.56

Mine+WBbest 84.78 91.78 89.06 88.57

Minebest 88.57 94.85 92.01 90.63

Table 3.3: Recognition performance of different structural modification strategies
that can be applied to the proposed learning framework.

on the matching compatibility/penalty, and has been widely used by [11, 24, 18]. CB

eliminates the node with the lowest average compatibility by replacing (3.11) with Ri =∑
k

∑
j∈V cij(x̂

k
i , x̂

k
j |G,G+

k)/nv. The second strategy [41], (WB), is oriented toward linear

SVM, and uses weights W for feature selection. WB eliminates the node with the smallest

weight amplitude by replacing (3.11) with Ri = ‖[µi,ρi]
T‖. Note that for this step of the

evaluation, all learning components expect the above structural modification strategies are

fixed.

Comparison details: Since my method can obtain different models by setting dif-

ferent values of τ for structural modification, I set τ to be 0, 0.2, 0.4, ..., 2 during training.

This produced different matching and recognition performances, i.e. different AMRs and

53

Methods Average matching rate

Notebook Drink box Basket Bucket

T
h

e
av

er
ag

e

p
er

fo
rm

an
ce R

G
B

im
ag

es

Mine+CBavg 37.90 87.75 82.56 88.11

Mine+WBavg 49.12 82.89 74.20 84.50

Mineavg 50.74 89.11 81.33 86.85
R

G
B

-D

im
ag

es
Mine+CBavg 63.71 88.06 93.44 90.62

Mine+WBavg 65.12 84.75 87.69 86.89

Mineavg 67.79 88.25 88.61 89.36

T
h

e
b

es
t

p
er

fo
rm

an
ce R

G
B

im
ag

es

Mine+CBbest 50.39 90.72 85.45 89.78

Mine+WBbest 51.71 86.81 76.09 86.29

Minebest 56.12 94.10 84.37 90.22

R
G

B
-D

im
ag

es

Mine+CBbest 74.40 93.07 96.16 91.34

Mine+WBbest 67.74 89.59 90.40 89.64

Minebest 76.92 93.02 92.40 90.69

Table 3.4: Matching performance of different structural modification strategies
that can be applied to the proposed learning framework.

ARAs. Fig. 3.3 shows the changes in model size according to τ , and Fig. 3.2 illustrates

the models in the node elimination process. Larger values of τ indicate stricter structural

constraints and lead to smaller models.

I used the average/best performance among all settings of τ (i.e. the average/largest

values for AMR and ARA) to evaluate the proposed method, denoted by Mineavg/Minebest.

To ensure a fair comparison, for each given τ , CB and WB were allowed to eliminate n-

odes until they obtained models with the same size as that produced by Mine. Similar to

Mineavg/Minebest, CBavg/CBbest and WBavg/WBbest correspond to the average/best perfor-

mance among all setting of τ . For the comparison of recognition performance, I trained

the proposed classifiers using the matching results produced by the competing methods.

54

Fig. 3.4 illustrates the object detection performances, and Tables 3.1, 3.2, 3.3, and 3.4

list quantitative comparison. Because the competing methods for learning graph matching

(MA,LS,LT,WM,SU) do not have the ability to refine the topological structure of the graph

template, they are sensitive to the bias of the initially labeled graph template (including

biased attributes and redundant nodes), especially for the unsupervised methods LS,LT,and

WM. This bias may produce matching errors, which, in turn, increase the bias in the

unsupervised model learning, thus propagating into a significant model bias. In contrast,

my method modifies biased structure in early iterations by eliminating badly matched

parts, thereby reducing the prevalence of biased matching in later iterations. As a result,

my method exhibits better performance.

3.6 Conclusions

In this chapter, I proposed an algorithm for the learning of graph matching. This method

trains the structure and attributes of the graph template, as well as matching parameters,

to obtain a graphical model. By including negative graphs in the learning process, I orient

the model learning toward both object matching and recognition. Experiments show that

my approach outperforms competing methods.

My strategy for structural modification is based on the recognition mechanisms between

positive and negative graphs, and exhibits better performance than conventional structural

modification strategies based only on positive graphs. As the proposed strategy iteratively

corrected errors in the topological structure of the initial graph template, it reduced the

bias learning problem, which so afflicted pioneering studies in the field.

55

Notebook PC

Basket

Drink box

Bucket

Incorrect cases

Figure 3.4: Object detection performance in RGB-D images. I only show depth
images corresponding to the first RGB image in each category.

56

Chapter 4

Visual Mining Beyond RGB Images:

Use of RGB-D Images

In this chapter, I focus on another direction, i.e. using RGB-D images to avoid suffer-

ing typical challenges in visual mining. The idea about how to make full use of depth

information for visual mining is orthogonal to previous attempts to develop visual-mining

platforms that are introduced at the algorithm level in Chapters 2 and 3.

Generally speaking, the additional depth information contains the explicit spatial struc-

tures of objects, thereby increasing the robustness to problems of scale and rotation changes

in conventional 2D images. Meanwhile, depth information also provides clear object bound-

aries to guide object segmentation.

Therefore, in this chapter, I propose a strategy that mines the category model from u-

biquitous RGB-D images, whereas applies it to object detection and recognition in ordinary

RGB images.

The rest of this chapter is organized as follows. The introduction and discussion of

related work are presented in Sections 4.1 and 4.2. Section 4.3 introduces the graphical

models for RGB-D and RGB images. The basic algorithm for model learning and its

technical extensions, as well as model-based recognition, are presented in Sections 4.4.

Section 4.5 presents the experiments and the overall study is summarized in Section 4.6.

57

4.1 Introduction

Knowledge mining of big visual data presents a significant challenge to the field of artificial

intelligence. Cognition-level symbolization of visual data is considerably more difficult

than that of text data. A number of pioneering studies, such as those involved with deep

learning [42] and a variety of visual data mining techniques based on attributed graph

mining [10, 9], have addressed this challenge in recent years. However, without sufficient

manual labeling and training, the gap between feature-level image processing and object-

level visual knowledge remains large. To bridge this gap, I propose use of RGB-D image

data, instead of conventional RGB data, as a more productive basis for training.

To be precise, I focus on the problem to construct a category model base that can

provide a high-level guidance for many visual tasks, such as image understanding and

object recognition. The construction of such a category base poses three main challenges,

illustrated in Fig. 4.1.

• Single labeling: Model base construction requires some minimum amount of man-

ual labeling, but given a more idealized implementation of semi-supervised learning,

can I learn a category model from just one labeled object and a large set of clut-

tered images? Such images are typical of what can be retrieved using most search

engines. The target objects they contain are usually small, and require significant

hand-cropping and manual alignment for detailed learning, since automatic image

segmentation usually cannot ensure object-level results.

• Structural knowledge: In many cases, it is structures, rather than textures, that

determine functions and categories, especially for many daily-use commercial objects

that have regular shapes but a variety of textures. For this reason, I hope to model

structural knowledge of different object categories, unlike the conventional mining of

“bag-of-words” knowledge.

• Bias problem: With the first two challenges, model learning in RGB images is

58

1) Label a single object
for each category

2) Big visual data captured in
large and cluttered scenes

(b) Model
learning from

RGB-D images

Training

...

...

...

3) Objects are small with various textures and rotations. Existing models
trained using

RGB-D images

(d) Model
learning via
knowledge

transfer

Training
Transferred knowledge

(a) Challenges for learning from cluttered scenes
with a single labeling

A labeled RGB
object & a set
of cluttered

RGB scenes

Category
model

(e) Object detection
& recognition in

RGB images

(c) Refine the structure
of the initial labeling

A labeled RGB-D object
& a set of cluttered

RGB-D scenes

Figure 4.1: How can a system learn a structure-based category model from a single
labeled object and a number of cluttered scenes? (a) I need to correctly
detect and incrementally collect more object samples for training, but
since my target objects in large scenes are usually captured informally,
they will show large variations in texture and rotation. (b, green part)
Thus, I can use 3D shapes in RGB-D images to guide model learning.
(c) In particular, I propose a method to refine the initially labeled
object using the cluttered RGB-D images, in order to remove inaccuracy
or subjective bias in manual labeling. (d, yellow part) When a large
number of RGB-D images cannot be collected for a category, I can
use knowledge transfer to learn the category model directly from RGB
images. The knowledge is transferred from the models that are pre-
trained from RGB-D images to guide the training sample collection for
a new category. (e, white part) The trained category model can be
applied to ordinary RGB images.

caught in a dilemma, which makes the bias problem extremely serious. On one hand,

training the structure-based model requires a large collection of small target objects

from the image pool, as well as the extraction of part correspondences between these

objects, so as to overcome intra-category variations. On the other hand, without

sufficient labeling and training, object detection and matching based on a single

labeling is hampered by large variations in texture and rotation, both great challenges

even for state-of-the-art algorithms. Thus, in this case, bias in object collection in

59

early learning steps will affect subsequent steps, and accumulate into significant model

bias.

Thus, the goal of this chapter is to present an approach to learning a structure-based category

model from a single labeled object and a number of large, cluttered images with significant

variations in texture and rotation.

To deal with these variations, I make use of the Kinect [40] device to detect the 3D

shape of the object. Kinect RGB-D images provide explicit spatial structures that are

robust across variations in texture, 2D scale, and viewpoint. In many cases, the use of 3D

structure can greatly improve the reliability of category detection. Meanwhile, ordinary

RGB images are more widely used than RGB-D images.

Therefore, I attempt to build a bridge between the two formats, and employ a model

learning strategy where the model is trained with RGB-D images and is then applied to

ordinary RGB images (Fig. 4.1). I explore this problem at the following three levels.

First, the general idea of this strategy is simple. I use the more reliable 3D matching

results to guide the learning of the less discriminative image-based models, as illustrated

in Fig. 4.2. I begin by using structure-based 3D matching to collect objects from RGB-D

images, simultaneously obtaining part correspondences, even in the presence of significant

texture variations. This yields a local codebook of visual words learned for each part of

the object. The part correspondences in 3D space are then used to train the 2D structural

knowledge in the category model. The category model can be applied to object matching

in RGB images, and we can also encode the knowledge for object recognition in the model

by combining a set of negative13 RGB images for training.

The second important issue is transfer learning. RGB-D images are used less widely

than RGB images, and sometimes I can only collect RGB images for model training. In this

case, I need to design a method for transferring the knowledge extracted from the existing

category models to guide the training of new category models.

13In this case, negative RGB images are RGB images that do not contain objects in the target category,

which can be collected directly by search engines.

60

Finally, I focus on the problem of the inaccuracy of initial labeling. The training

object collection is based on and sensitive to the labeling of the single initial object. Thus,

inaccurate initial labeling may lead to a major bias in model learning. Therefore, I develop

a method that uses the cluttered RGB-D images to refine the labeled object into a good

category detector for the further object collection. This method deletes the redundant

parts of the object, while simultaneously modifying the local textures and structures of the

other parts.

O O OX X

Pre-trained
models

Object part correspondence extraction via matchingSingle labeled
object

Object detection
in RGB images

(object recognition
is further trained)

Directly use the RGB
object to collect
training samples ...

Category
model

Figure 4.2: Flowchart of the proposed method. First, for model learning from
RGB-D images (green part), I use the 3D structure of the labeled ob-
ject to match other objects in the RGB-D images. I then use the part
correspondences to train a category model. Second, for model learning
via knowledge transfer (yellow part), I label the RGB object to col-
lect training objects directly from RGB images. The models that are
trained for other categories provide knowledge to identify the correct
and incorrect object matches during sample collection.

To implement these learning strategies, I apply a graphical model that uses object edges

as its basic and concise structural elements. Compared to texture features, object edges

have a closer relationship to the overall object structure, especially where large texture

variations exist. We also develop different sets of attributes to guide the 3D object collection

from RGB-D images and the training of 2D category models.

In this study, I use graph matching techniques to achieve both 3D object collection and

model-based object matching. Given a template graph (the category model) and multiple

target graphs, conventional methods for learning graph matching [5, 43, 3, 6] primarily

train matching parameters (e.g. the weights of different graphical attributes). In contrast,

61

my method estimates a prototype of the category model and eliminate the specificity of

the labeled object in an unsupervised manner. Therefore, I extend the method proposed

by [5] to learn model attributes. We have also combined my previous study [7] with this

research to refine the structure of the initially labeled object.

The contributions of this chapter can be summarized as follows. I propose three model

learning strategies to avoid the bias problem caused by texture variations and various rigid

transformations. If RGB-D images in the target category can be collected, I use depth

information in the RGB-D images to assist the training of the category model for RGB

images. Otherwise, I transfer the knowledge extracted from models of other categories to

guide model learning. In particular, when the initial object labeling is inaccurate, I can

refine the structure of the labeled object using the cluttered RGB-D images.

A preliminary version of this chapter appeared in [29] and [44].

4.2 Related Work

Visual mining: Learning category models is a familiar problem in the field of computer

vision, and many approaches have been proposed over the last few decades. In this section,

I limit my discussion to those techniques related to the concept of data mining of big

visual data. Generally speaking, these techniques should 1) have loose requirements for

training data, and 2) limit the amount of human labeling, perhaps even to the point where

unsupervised learning is possible.

The effort to minimize manual labeling makes visual mining related to one-shot learn-

ing [45]. Then, for totally unsupervised approaches, object discovery (reviewed by [46]) is

a familiar goal in object-level knowledge mining. Most methods that have achieved this

goal use bag-of-words models [47] for category representation. Others [48, 49, 50, 51] have

managed to detect repetitive objects based on similarities in appearance and visual con-

text. [52, 48, 53] used unsupervised segmentation to generate object candidates, relying on

foreground-background discrimination.

62

In lieu of conventional learning from a large sample pool, Li et al. [47] and Grauman et

al. [54] proposed to collect training images using image search engines via semi-supervised

or active learning. These were more efficient ways of constructing a category model base.

Approaches to co-segmentation [55, 56, 57, 58, 59] have provided a plausible way to detect

and segment common objects from a big image set collected using a search engine.

Most methods for object discovery, one-shot learning, and co-segmentation have proven

to be relatively poor for learning structural knowledge of objects. It is much easier to encode

the structural knowledge using link analysis (or graph mining) techniques in visual mining.

When images are modeled as graphs, it is possible to extract the frequent sub-graphs within

these graphs as common objects [1, 11, 22, 23, 24, 25, 18, 19, 26, 20].

However, most of the above methods rely heavily on the similarity of object textures.

Many object discovery and one-shot learning methods have directly used bag-of-words

models, and co-segmentation approaches have leveraged texture distribution as the primary

feature. Even most approaches based on graph link analysis have had to use the inter-image

consistency of local patches to generate potential patch correspondences between images,

in order to prune the search space of frequent subgraphs. Thus, these approaches are not

suitable for mining daily-use objects with large texture variations.

Moreover, I focus on the extraction of precise structural models from large cluttered

scenes, rather than the observing probability of patch textures. I use the depth information

in RGB-D images to guide the learning process, thus avoiding errors caused by variations

in texture, scale, and rotation.

Actually, the RGB-D images have been widely used for object detection and classifi-

cation. However, conventional methods [60, 61] mainly learned category models from well

labeled training samples. In other words, they required a great amount of human labeling

to prepare training samples for each category. Whereas, my method is close to the spirit of

“model learning”, which aims to directly mine the category models from cluttered scenes (a

kind of big visual data) without much labeling of “what is where”. Model mining involves

almost all of the typical issues in computer vision, such as lack of manual alignments and

63

intra-category variations in texture, rotation, scale, and illumination. Thus, it proposes

continuous challenges for the state-of-the-art algorithms. In recent years, people began to

apply RGB-D images to some “mining” tasks. For example, Fouhey et al. [62] and Zhang

et al. [9] proposed learning reconstruction knowledge from RGB-D images for single-view

3D reconstruction on RGB images.

Category modeling: In this part, I compare different types of category models, and

analyze their applicability to informally captured scenes.

Bag-of-words models [47] have been widely used to model categories without encoding

structural information. The global structures of objects can be simply represented by

the histograms of oriented gradients (HoG) templates [32] or silhouette templates[20, 63,

64]. Hough-style methods [65, 66, 67, 37, 68, 69] have more recently been developed as a

sophisticated, supervised means of modeling the spatial relationship between object parts.

[70, 71] directly used a 3D model to detect objects in 2D images, whereas [72, 73] used

object multi-view appearances to estimate the 3D structure. Recently, the appearance of

RGB-D imaging technology has made object detection considerably easier [74, 75, 76], such

that some low-level segmentation techniques [77, 61, 78] can roughly achieve object-level

results.

However, when I just use a single labeled object to start the category modeling, it

can only provide specific 2D structure and appearance from one viewpoint. Thus, the

category model should 1) encode the structural information, 2) be able to detect objects

with various scales and rotations (even roll rotations), and 3) be learned without further

manual labeling.

Graph matching satisfies the first two requirements and has been widely used [38, 79, 80,

81, 82]. The third requirement has been solved by [5], who first proposed an unsupervised14

14In the context of learning graph matching, the term “unsupervised” [5] refers to the ability to learn the

model without manually specifying each individual matching assignment from the model to target graphs

(cluttered scenes). In other words, under unsupervised learning, I do not have to manually label target

objects in the cluttered scenes.

64

method for learning graph-matching-based models. Though I can use graphical models to

represent object categories in both RGB and RGB-D images, 2D object structures in RGB

images are not robust with respect to viewpoint changes. Thus, I use a 3D model based

on RGB-D images to collect training samples for the learning of 2D models.

4.3 Graphical model of object edge segments and graph

matching

I use a graphical model to encode the local and pairwise attributes of objects, i.e. the

part features and the spatial relationship between them. The model-based object detection

is thus achieved via graph matching. This design ensures the robustness of viewpoint

variation and roll rotations. In contrast to previous studies based on POI in images,

voxels, or surfaces [83, 84] in point clouds, my model uses object edges to represent object

structures. I use [31] to extract object edges in RGB images15 and then discretize them

into line segments. The line segments are used as graph nodes, as shown in Fig. 4.3.

I connect each pair of edge segments in the labeled object to generate a complete

undirected graph G as the initial category model, in which parameters will be trained

later. Given a target scene, let its corresponding target graph be G′. fi and fij denote

the local attributes of node i and pairwise attributes of edge ij in G, respectively. The

matching assignments between G and G′ can be defined using a matching matrix y, where

yii′ ∈ {0, 1}. Further, yii′ = 1 if node i in G maps to node i′ in G′, otherwise yii′ = 0. I set∑
i′ yii′ = 1 for all i. Therefore, the graph matching is formulated as

ŷ = argmax
y
C, C =

∑
ii′

ρii′yii′ +
∑
ii′jj′

ρii′jj′yii′yjj′ (4.1)

15Actually, object edges can be directly extracted in 4D space (i.e. RGB-D space) [61], but I simply

extract edges just from RGB images. This is because I have to ensure edge extraction procedure for training

is the same to that for testing in RGB images, in order to avoid potential differences between training and

testing.

65

where ρii′ and ρii′jj′ denote attribute compatibility for the unary assignment i → i′ and

the pairwise assignment ij → i′j′, respectively. In general, they are functions of graph

attributes.

ρii′ = Φ1(fi, fi′ ; w
U), ρii′jj′ = Φ2(fij, fi′j′ ; w

P) (4.2)

where wU and wP are parameter weightings for attributes.

In my study, I bring in an additional dummy matching choice—none—that is organized

as a node in G′. This is necessary because some parts of the target objects in large cluttered

scenes may be occluded; therefore some model nodes should not be matched to target

scenes.

ρi,none = κE(ρii′), ρi,none,jj′ = ρii′j,none = κE(ρii′jj′) (4.3)

where κ (= 116, here) controls the matching priority of none.

Note that many-to-one matches may introduce errors to the learning of pairwise at-

tributes. Considering that the compatibility in (4.2) is positive in my study, I simply

modify unary compatibility as ρii′jj′ = −1 if and only if i′ = j′ to avoid many-to-one

matches.

I design two sets of local and pairwise attributes for the graphical model, so that the

model can be applied to object collection (from RGB-D images) and object matching (from

RGB images), respectively.

Edge segmentation: I use the local growth strategy to achieve edge segmentation.

First, I initialize each pair of neighboring edge points as a tiny line segment, and then

gradually merge neighboring segments into longer and straighter lines. I finally map the

edge segments in RGB images to the depth space to represent the 3D object structure.

Note that there is local non-smoothness on the edges due to low image quality and

texture variations. I therefore design a penalty metric to overcome such non-smoothness

in the segment-merging process. As illustrated in Fig. 4.3, I merge neighboring segments u

and v into a longer segment. Because angles between shorter segments are more sensitive to

16In this chapter, most parameters are simply set to 1, and I only manually set a few parameters, such

as τ , η, β, and k. This parameter setting is equally applied to all the categories.

66

vu,
Triangle height

Segment

New segment

Segment v
*
ul

*
vl

Edge extraction &
segmentation Take line segments

as graph nodes

Figure 4.3: Edge segmentation and illustration of variables. (left) Edge extraction
and segmentation. (middle) Notation for edge segmentation. (right)
Line segments are taken as the graph nodes.

local perturbations, the penalty of their supplementary angle θu,v is calculated as Penangle
u,v =

θu,v(1− Uu,v), where Uu,v = e−τ min{l∗u,l∗v} measures the noise level for segment pair of u and

v, τ (= 0.2, here) controls the decrease speed, and l∗u and l∗v are the projected lengths of

segments u and v on the new segment.

In addition, I propose another penalty metric that prevents from connecting a very

short segment to a long one, as Penlength
u,v = l∗u

l∗u+l∗v
log l∗u

l∗u+l∗v
+ l∗v

l∗u+l∗v
log l∗v

l∗u+l∗v
. This metric

is created, because the orientation measurement of long segments suffers less from local

non-smoothness than that of short segments. I want to avoid transfering the orientation

unreliability from the short segment to the long segment during the merge process.

Therefore, the total penalty is calculated as follows.

Penu,v = Penangle
u,v + ηPenlength

u,v (4.4)

where η (= 0.5, here) is a weighting for the two penalty metrics. Segment pairs with lower

penalty scores are merged earlier. I set the stopping criterion as follows. For each merge,

the height of the triangle consisting of old and new segments should not be greater than

six pixel units (Fig. 4.3). Finally, I consider the line segments longer than 15 pixel units to

be reliable ones, and select them as graph nodes.

67

A large number of
patches obtained from
all the collected objects

1st local patch

centerlin
e

ijO
local

coordinate
system

ijT
ij

spatial
angle

i
segment j
length:

j
l

segment i
length: il

2nd local patch

A

B

AB

BA

A

B
A

B

A

B

se
gm

en
t i

segment j

2D
 ce

nte
rlin

es

len
gth

2D
angle2D length img

j
l

2D
 le

ng
th

img
ij

im
g

ijT

im
g

il

Local attribute : a local
codebook containing

different texture styles of
these patches

j

j

Style 1

Style 2
Node: the edge segment

on the labeled object

Figure 4.4: Graphical models. (left) Line segments in RGB-D/RGB images are tak-
en as the nodes in a complete graph. The red squares indicate the image
patches collected at terminals of the line segments. (middle) Model for
object collection from RGB-D images. (right) Category model trained
for ordinary RGB images.

4.3.1 Model for object collection from RGB-D images

The graphical model proposed above is a paradigm, and I design a set of attributes to

adapt it for collecting objects in RGB-D scenes, while simultaneously extracting the cor-

respondences of local patches between objects for further learning. Please see Fig. 4.4 for

the notation of this model.

Spatial length: I take the spatial length, denoted by li, as a local attribute. The

length penalty for assignment i → i′ is calculated as | log
li′
li
|. I can thus obtain length

attributes’ matching compatibility as

P length
ii′ = e−| log li−log li′ |/β (4.5)

where β (= 2, here) responds to the deformability level.

Patch features: I collect two local patches at the terminal points of each edge

segment and then normalize them to their right orientations. I use their HoG features [32]

as another type of local attributes (details follow in Section 4.3.3). Let Ωi = {$A
i , $

B
i }

denote the HoG features of the two patches of node i in G. I formulate the patch features’

compatibility using a Gaussian distribution as

P patch
ii′ =G([dist($A

i ,Ωi′), dist($
B
i ,Ωi′)]

T |µ = 0, (σpatch)2I) (4.6a)

68

dist($i,Ωi′) = min
$i′∈Ωi′

‖$i −$i′‖2 (4.6b)

where G(·) denotes a Gaussian function, and (σpatch)2 (= 1, here) is the covariance. dist(·, ·)

is a metric for distance measurement between patch features.

Spatial angle: The spatial angle between nodes i and j in G, θij, is a widely used

pairwise attribute. I assume its compatibility to follow a Gaussian distribution.

P angle
ii′jj′ = G(θi′j′|µ = θij, (σ

angle)2) (4.7)

where (σangle)2 (= 1, here) is the variation.

Centerline: Another pairwise attribute describes the relative spatial translation

between two nodes. I use the centerline—connecting the centers of two node segments—to

measure the translation. I define a local 3D coordinate system based on the segments, in

order to make the centerline’s measurement independent of the global rotation of the object.

Let oi and oj denote the unit 3D orientation of node segments i and j. The three orthogonal

unit vectors of this coordinate system are calculated as Oij = [
oi+oj

‖oi+oj‖2
,

oi−oj

‖oi−oj‖2
,oi × oj].

Thus, the 3D translation Tij can be measured as dij = OT
ijTij. Note that I have two choices

to define the orientation of node segment i, oi and −oi; therefore, we instead use cij =

[min{|dij1 |, |d
ij
2 |},max{|dij1 |, |d

ij
2 |}, |d

ij
3 |]T as the centerline coordinates. The compatibility of

centerline coordinates is also assumed to follow a Gaussian distribution.

P center
ii′jj′ = G(ci′j′ |µ = cij, (σ

cen
ij)2I), (σcen

ij)2 = (α‖cij‖2)2 + (σnoise)2 (4.8)

In fact, the variation is caused by both the structural deformability and noise, and I use

parameters α = 1 and σnoise = 5 to control the two factors, respectively.

Now, I summarize the model for 3D objects as follows. Its local and pairwise attributes

are defined as fi = [li,Ωi], fij = [θij, cij], and the parameters are denoted by wU = [β, σpatch],

wP = [σangle, σnoise, α]. I thus calculate the overall compatibility for unary and pairwise

assignments as

ρii′ = Φ1(fi, fi′ ; w
U) = P length

ii′ P patch
ii′ , ρii′jj′ = Φ2(fij, fi′j′ ; w

P) = P angle
ii′jj′ P

center
ii′jj′ (4.9)

69

Because the local and pairwise attributes are designed based on the explicit 3D object

structures, the problem of scale changes in RGB images can be overcome. Φ1(·) and Φ2(·)

are positive bounded functions. I can therefore transform the compatibility maximization

in (4.1) to an energy minimization problem and solve it by TRW-S [28]. Finally, I use the

matching rate Υ to ensure the overall matching quality: Υ = Ndetect/(Ndetect + Nnone),

where Ndetect and Nnone denote the number of nodes that are matched to real segments in

images and none, respectively. An incorrect match will produce a large Nnone and thus a

small Υ. Therefore, I only select those matches with Υ ≥ 0.7 as reliable results for further

model learning. Please see Fig.4.6 for object collection performances.

4.3.2 Category model for ordinary RGB images

In ordinary RGB images, depth information can no longer be used. I thereby design new

local and pairwise attributes to match objects in RGB images. Please see Fig. 4.4 for the

notations.

I learn a local codebook for each node i in G as the only local attribute, which consists

of a set of patch features Ωi = {$k
i }, (k = 1, 2, ...). The codebook contains different local

texture styles to overcome texture variations. Details follow in Section 4.4.1.

I then define three types of pairwise attributes as follows. 1) θimgij represents the angle

between nodes i and j in G on the image plane. 2) The other pairwise attribute is [λAij, λ
B
ij] =

1

T imgij

[limgi , limgj], where limgi denotes the segment length of node i, and T imgij denotes the length

of the centerline between nodes i and j in G. Considering scale changes in RGB images,

the length measurement is normalized by T imgij . 3) The third pairwise attribute describes

the relative angles between the centerline and line segments of nodes i and j, denoted by

[θAij, θ
B
ij].

I absorb local compatibilities into the pairwise compatibilities, fij = {θimgij , λAij, λ
B
ij, θ

A
ij,

70

θBij , Ωi, Ωj}.

ρii′ = 0, ρii′jj′ = Φ2(fij, fi′j′ ; w) =e
−w1|θimgij −θ

img

i′j′ |
2−

∑
k∈{A,B}

{
w2|λkij−λki′j′ |

2

+w3|θkij−θki′j′ |
2+w4[dist2($k

i′ ,Ωi)+dist
2($k

j′ ,Ωj)]
} (4.10)

The distance between the local codebook dist(·, ·) is defined in (4.6b). Similar to the model

for RGB-D images, I use the TRW-S [28] to solve the maximization problem.

4.3.3 HoG feature extraction

This subsection introduces the details of HoG feature extraction that is present in both the

graphical model for RGB-D images and the one for RGB images. For each model node,

I extract a set of patches from its matched node segments in the target scenes, as shown

in Fig. 4.6. I first extract these patches from the two terminals of the edge segment, and

then normalize them to their right orientations to eliminate rotation effects. As shown in

Fig. 4.5, the patches are collected using a square, which is rotated to the orientation of the

edge segment.

HoG features [32] are extracted using 5× 5 cells, each of which covers half of its neigh-

boring cells. I use four orientation bins (from 0◦ to 180◦) to compute the gradient histogram

in each cell. Because the patch is locally collected without significant illumination changes,

I normalize all of the cells within a single block.

4.4 Model learning algorithms

In this section, I focus on the model-learning algorithm and its several technical extensions.

The framework of the basic algorithm, i.e. model learning from RGB-D images, is proposed

in Section 4.4.1. Then, in Section 4.4.2, I present the recognition method based on the

trained models. In addition, I further extend the basic model-learning method to overcome

two main challenges of visual mining by applying the strategy of knowledge transfer and

initial labeling refinement, which are presented in Sections 4.4.3 and 4.4.4, respectively.

71

4.4.1 Basic framework: model learning from RGB-D images

In this subsection, I use relatively reliable 3D matches to guide the training of the category

model for ordinary RGB images, in order to avoid the bias problem. Based on the part

correspondences estimated in 3D matching, I construct a local codebook for each model

node that covers all possible local texture styles. [5] is then extended for the training of

both matching parameters and model attributes.

(a)

(b)

(c) (d)

heve

D2

Orientation
normalization

Figure 4.5: Local codebook extraction. (a) The bicycle is detected by 3D match-
ing. Patches (red) are extracted at terminals of the detected segments
(blue). Yellow sides indicate patch orientations. (b) A detailed view.
(c) Patch orientation normalization. (d) Given images patches corre-
sponding to each of the two bicycle parts, I use k-means clustering
(k = 2 for clarity) to obtain two texture styles as a sparse local code-
book. I use the HoG template to represent the texture style of its
surrounding image patches.

Local codebook extraction

During RGB-D object collection, I collect a set of image patches that correspond to each

node in the category model. I then cluster the HoG features of each node i’s patches via

k-means clustering (k = 5). Consequently, the cluster centers represent a sparse set of

visual words for this node, which compose the local codebook Ωi. Fig. 4.5(d) shows that

I use a set of HoG patterns to describe an object part’s different texture styles exhibited

72

in different images. The local codebook therefore contains sufficient texture patterns to

overcome texture variations during object detection.

Figure 4.6: Object collection. Given the single labeled object (to the left of the
red line), target objects are detected using the 3D structure (1st and
4th rows), and local patches are collected for each object part (2nd

and 5th rows). The 3rd and 6th rows show detailed views of patch
extraction. Patches (red) are extracted at terminals of the detected
segments (blue). Yellow sides indicate patch orientations.

Model-learning algorithm

I can rewrite the model-based graph matching defined by (4.1) and (4.10) as

arg max
y
C = arg max

y
yTMy (4.11)

where M(ii′),(jj′) = ρii′jj′ . In this equation, y is transformed from a matching matrix to a

vector.

73

According to [33], elements of the principal eigenvector x of M, e.g. xii′ , can be taken

as the confidence value of the assignment i → i′17. To reduce the large computation, I

apply the approximate principal eigenvector used in [5].

x = Mn1/

√
(Mn1)T (Mn1) (4.12)

The partial derivatives of x are thus computed as

x′ =
[
(Mn1)′‖Mn1‖ − ((Mn1)T (Mn1)′)Mn1/‖Mn1‖

]
/‖Mn1‖2 (4.13)

where (Mn1)′=M′(Mn−11)+M(Mn−11)′ and n=10, as in [5].

Leordeanu et al. [5] proposed training matching parameters w to increase confidence

values xii′ of the correct assignments. At the same time, confidence values of incorrect as-

signments will decrease, as x is normalized. I extend this idea to learn both the parameters

and the model attributes {w, f} by maximizing the following function.

F(w, f) =
N∑
i=1

(x(i)(w, f))T t(i) (4.14)

where i = 1, 2, ..., N indicates each target scene for training, and t(i) denotes the predicted

matching assignment in scene i.

I implement the whole model training framework as follows. I first initialize {w, f} using

the labeled object, and then iteratively modify {w, f} to maximize F(w, f). Intuitively,

I can directly predict the correct matching assignments as the 3D matching results in

the RGB-D image, t(i) = ŷ3D,(i). However, some categories may have several potential

assignment states, owing to their symmetric 3D structures, e.g. notebook PCs. These

matching states are equivalent in terms of the 3D structure; however, they may show

different matching compatibilities for ordinary 2D image matching. Thus, the matching

assignments predicted by the category model (denoted by ŷimg,(i)) are not always the same

as ŷ3D,(i).

17Note that ρi,none,jj′ and ρii′j,none are not involved in M .

74

I therefore use ŷimg,(i) to compute t(i). Errors in ŷimg,(i) are detected and eliminated by

ŷ3D,(i) to avoid the bias problem. I use the following criterion to identify correct matches

from ŷimg,(i). Correct 2D matches in ŷimg,(i) should match the nodes in image i that are

also matched by 3D matching ŷ3D,(i). Thus, I get

t(i) = diag{a(i)
jj′}ŷ

img,(i), a
(i)
jj′ =

∑
j

ŷ
3D,(i)
jj′ (4.15)

In the k-th iteration, I use (4.15) to estimate matching assignment t(i),k and modify

each w∈w and f ∈ f via gradient ascent.

wk+1←wk + ζ
N∑
i=1

(t(i),k)T
∂x(i),k(w, f)

∂w
, fk+1←fk + ζ

N∑
i=1

(t(i),k)T
∂x(i),k(w, f)

∂f
(4.16)

4.4.2 Object recognition based on category models

Originally, the category model is trained for object detection in RGB images. This section

introduces three methods to further train object recognition, given the trained category

models. Successful object recognition is defined as the correct determination of whether an

image contains the target object of a model. Given a category model, I use a set of positive

RGB images and the same number of negative RGB images to train object recognition. The

positive images are the RGB channels of the training RGB-D images used in Section 4.4.1.

The negative images are the images that do not contain the target objects, which are

selected randomly from the RGB image sets of other categories.

The most popular and simplest method for object recognition is based on matching

compatibility18 [11, 24, 18]. Given a testing RGB image, I compute the matching compat-

ibility C in (4.1) between this image and the model. If C−µC
σC

is greater than a threshold

υ, the matching results are considered to represent the true detection of the target object,

otherwise a false detection. µC and σC are the mean and standard deviation of C when I

18This recognition approach can be used, if the target function of graph matching is designed to maximize

the matching compatibilities or to minimize the matching penalties.

75

match the model to all of the positive and negative training images19.

The second method trains a kernel-based support vector machine (SVM) for object

recognition as

f(y) = sgn
(∑

i+

αi+K(yi+ ,y)−
∑
i−

αi−K(yi− ,y) + b
)

(4.17)

where y denotes the matching results in the testing image computed in (4.1); yi+ and yi−

are the matching results in each positive and negative image, respectively.

I modify the kernel for graph matching proposed in [85, 38] to classify the matching

results in positive and negative images.

K(y,y′) =
∑
ij

exp
{
− w1|θimgy(i)y(j) − θ

img
y′(i)y′(j)|

2 − w4|
1

2

∑
k∈{A,B}

($k
y(i) −$k

y′(i))|2

−
∑

k∈{A,B}

[
w2|λky(i)y(j) − λky′(i)y′(j)|2 + w3|θky(i)y(j) − θky′(i)y′(j)|2

]} (4.18)

This is a Mercer kernel (please see [85] for the proof), which measures the similarity

between the corresponding parts of y and y′. The functions y(i) and y′(i) denote the

matching assignments of model node i w.r.t. y and y′. Let k be a node in an im-

age. y(i) = k, if and only if yik = 1. The other notation is presented in (4.10). Note

that I simply define fy(i)y(j) = −1, if y(i) or y(j) is equal to none for any fy(i)y(j) ∈

{θimgy(i)y(j), λ
A
y(i)y(j), λ

B
y(i)y(j), θ

A
y(i)y(j), θ

B
y(i)y(j),Ωy(i),Ωy(j)}.

The final approach for the recognition of graph matching results is the technique used

in [7]. This method designs a set of features to measure the matching quality of each

graph matching result, and then trains a linear SVM for object recognition. The features

of matching result y are defined as f ′ =< f ′i >, where f ′i denotes the feature for node i of

the category model, and Nmodel is the node number of the model. f ′i is computed as

f ′i = sqrt
{
w4

∑
k∈{A,B}

dist2($k
y(i),Ωi) +

1

Nmodel

∑
j

[
w1|θimgij − θ

img
y(i)y(j)|

2

+
∑

k∈{A,B}

(
w2|λkij − λky(i)y(j)|2 + w3|θkij − θky(i)y(j)|2

)]} (4.19)

19The value range of C varies among models, because of variations in the value of w, but the normalization

of C aims to remove such effects.

76

4.4.3 Technical extension 1: model learning via knowledge trans-

fer

In this subsection, I focus on model learning from ordinary RGB images, because it is not

realistic to obtain a large number of RGB-D training images for every category. The RGB

images can be easily collected using search engines20. However, without the guidance of 3D

structural information, the bias problem in model learning becomes severe due to incorrect

object collection (graph matching) in large and cluttered scenes (which is demonstrated by

the experimental results later). Fortunately, I can transfer some common knowledge from

the existing models of some categories (trained using RGB-D images) to guide the model

learning for a new category. I use this knowledge to identify incorrect matches, which

reduces the bias problem to some extent.

Model attributes and parameters of the existing models only contain information re-

lated to their own categories, not the new category. However, they have similar rules for

identifying correct and incorrect graph matching. In general, if graph matching is correct,

the attribute difference between two matched graphs is small, whereas it is large otherwise.

Thus, for each type of attribute, I can learn the value ranges of the attribute differences

for correct and incorrect graph matching. I define the following feature for the matching

result y to measure the attribute differences.

Fy = [mean
ij

(F 1
ij), var

ij
(F 1

ij),mean
ij

(F 2
ij), var

ij
(F 2

ij),mean
ij

(F 3
ij), var

ij
(F 3

ij),mean
i

(F 4
i), var

i
(F 4

i)]T

(4.20)

where the functions mean(·) and var(·) compute the mean and variation, and y(i) denotes

the matching assignments of model node i w.r.t. y, which is similar to that in (4.18). F 1
ij=

|θimgy(i)y(j)−θ
img
ij |, F 2

ij=
∑

k∈{A,B} |λky(i)y(j)−λ
k
ij |, F 3

ij=
∑

k∈{A,B} |θky(i)y(j)−θ
k
ij |, F 4

i = |
∑

k∈{A,B}($
k
y(i)−

$k
i)|.

Therefore, I can use feature Fŷimg,(i) to identify the correctness of the model’s matching

result in image i. I prepare a set of correct (positive) and incorrect (negative) matching

20I use the RGB channels of the RGB-D images in the dataset [30] as the training images in experiments.

77

results21 for each existing model. Thus, I obtain a high number of matching results based

on the existing models to train a nonlinear SVM for classifying the matching results.

min
w,b,ξ

1

2
wTw + C1

∑
i+

ξi+ + C2

∑
i−

ξi−

subject to wTφ(Fi+) + b ≥ 1− ξi+ ; −(wTφ(Fi−) + b) ≥ 1− ξi− ; ξi+ , ξi− ≥ 0

(4.21)

where KRBF (·, ·) = φ(·)Tφ(·) is a radial basis function (RBF) kernel. I set C1 = 1 and C2 =

10, which consider the unavoidable incorrect matching results produced by the existing

models. Fi+ and Fi− denote the positive and negative training samples22, respectively.

I modify the algorithm for “learning from RGB-D images” proposed in Section 4.4.1

to implement this knowledge-transfer-based learning. Two modifications are applied, as

follows. First, I modify the learning of model parameters and attributes in the k-th iteration

from Equation (4.16) to

wk+1←wk+ζ
N∑
i=1

πki (ŷimg,(i),k)T
∂x(i),k(w, f)

∂w
, fk+1←fk+ζ

N∑
i=1

πki (ŷimg,(i),k)T
∂x(i),k(w, f)

∂f

(4.22)

where ŷimg,(i),k denotes the matching assignments in image i determined by the category

model in the k-th iteration, which is the same as the notation in (4.15). The parameter

πki corresponds to the transferred knowledge. πki is the reliability of the matching results

ŷimg,(i),k, which is used to assign a low weight to a possibly biased matching result in the

learning process. πki is computed using the decision value of the SVM, as described in [86].

πki =1/
{

1+exp
{
−A[

∑
i+

αi+KRBF (Fi+ , Fŷimg,(i),k)−
∑
i−

αi−KRBF (Fi− , Fŷimg,(i),k)+b]
}}

(4.23)

I set A = 3 in this case.

21The correct and incorrect matching results are the matching results in the positive and negative RGB

images w.r.t the category of the model, which are the same as those described in Section 4.4.2.
22The existing models are all well trained, which means that they usually produce smaller attribute

differences than a target model that is still in training. Thus, during the preparation of each training sample

(Fi+ or Fi−), I randomly select another positive matching result y+, and use the matched attributes of y+ to

replace the model attributes. In other words, (4.20) is modified, e.g. F1
ij= |θ

img
y(i)y(j)

−θimg
ij | → F1

ij= |θ
img
y(i)y(j)

−θimg

y′(i)y′(j)|.

78

Second, I cannot pre-train a local texture codebook for each node in the category

model for preprocessing, because the part correspondences between training images cannot

be extracted reliably without depth information. Instead, I simply set the local codebook

as the patch features Ωi = {$A
i , $

B
i } for each node i, and train Ωi based on (4.22), just as

other parameters wj.

4.4.4 Technical extension 2: initial labeling refinement

The basic model learning method introduced in Section 4.4.1 demands appropriate labeling

of the initial RGB-D object to avoid bias during training object collection. People are

capable of accurate labeling in most cases, but subjective labeling cannot be guaranteed to

reflect the underlying structural features of a category in all cases. Therefore, I also utilize

my previous method [7] to refine the initial labeling before model learning.

Initial Refined Initial Refined Initial Refined Initial Refined
Over-

segmented
lines

Uncommon
parts

Lines in
background

Initially
labeled object

A set of cluttered
RGB-D scenes

Refined object

Learning matching weights
& object attributes

Deleting redundant parts (nodes)

Figure 4.7: Structure refinement of the initially labeled object. The flowchart is
shown on the left, and the results are shown on the right.

In addition to the set of positive RGB-D images (containing target objects), I collect

a set of negative (background) RGB-D images for learning. I train the local and pairwise

attributes of the labeled RGB-D object, which is similar to the method introduced in

Section 4.4.1. Further, I modify the object structure at the same time. The labeled object

should comprise the object parts (nodes) that perform most reliably during graph matching,

thereby facilitating appropriate guidance when training RGB object models.

Graph matching in RGB-D images: Similar to (4.1) and (4.11), I re-write the

79

graph matching between the labeled object G(V,E) and an RGB-D image G′(V ′, E ′), as

follows.

ŷ = argmax
y

C(y|G,G′), C(y|G,G′) = yTMy

s.t. ∀i ∈ V,
∑
i′∈V ′

yii′ ≤ 1, ∀i′ ∈ V ′,
∑
i∈V

yii′ ≤ 1
(4.24)

In graph G, I use the local and pairwise attributes introduced in Section 4.3.1, including two

local attributes (nU = 2) and three pairwise attributes (nP = 3). I clarify the notation as

follows. The local attributes of node i include the HoG patch features f
(1)
i = Ωi and segment

length f
(2)
i = log li. The three pairwise attributes comprise the segment angle f

(1)
ij = θij

and the centerline’s attributes f
(2)
ij = ‖cij‖, f (3)

ij = cij/‖cij‖. FV = {f (k)
i |k = 1, 2; i ∈ V },

FE = {f (k)
ij |k = 1, 2, 3; (i, j) ∈ E}. Thus, I apply the following matching compatibility

matrix.

Mii′,jj′ =

 exp
(
−(wU)Td2

ii′−(wU)Td2
jj′−(wP)Td2

ii′,jj′

)
, (i, j) ∈ E, (i′, j′) ∈ E ′

0, Otherwise
(4.25)

where I define dii′ = [d
(1)
ii′ , d

(2)
ii′ , ..., d

(nU)
ii′]T as the distances of the corresponding unary at-

tributes during matching, d
(k)
ii′ =‖f (k)

i −f
(k)
i′ ‖23. In addition, dii′,jj′=[d

(1)
ii′,jj′ , d

(2)
ii′,jj′ , ..., d

(nP)
ii′,jj′]

T

denote the distances of the pairwise attributes, d
(l)
ii′,jj′=‖f

(l)
ij−f

(l)
i′j′‖. wU =[wU1 , w

U
2 , ..., w

U
nU]T

and wP = [wP1 , w
P
2 , ..., w

P
nP]T denote the weights for each unary and pairwise attribute,

respectively.

During the actual application of graph matching, I add a dummy node none and a

penalty for many-to-one matches. Equation (4.24) is re-formulated as

â = argmax
a

∑
i,j∈V ∪{none}

Cij, Cij =


Miai,jaj , ai 6= aj ∈ V ′

−∞, ai = aj ∈ V ′
λ(1TM1)

n2
vn

2
v′

, ai or aj = none

(4.26)

where ai indicates the matching assignment of node i ∈ V and ai = i′ ∈ V ′, if and only if

yii′ = 1. λ (= 5) is the parameter weighting for the penalty of none. nv and nv′ denote the

node number of G and G′, respectively.

23Note that, the distance of patch features f
(1)
i = Ωi is defined in (4.6b).

80

Learning matching weights and attributes: The method used for the learning the

matching weights and attributes is similar to that described in Section 4.4.1. Let x denote

the principal eigenvector of M, which is approximated by x = Mn1/
√

(Mn1)T (Mn1).

The learning process is performed iteratively. During each iteration, I use the current G to

predict the matching assignments, and then, I modify the matching weights (w ∈ wU ∪wP)

and attributes (f ∈ FV ∪ FE) by gradient ascent:

wk+1←wk + ζ
∑
i+

(t(i+),k)T
∂x(i+),k

∂w
, fk+1←fk + ζ

∑
i+

(t(i+),k)T
∂x(i+),k

∂f
(4.27)

where similar to (4.16), t(i+),k denotes the predicted matching assignments for positive

image i+ computed in iteration k. t
(i+),k
jj′ is set to 1, if aj = j′, 0 otherwise. Please see [7]

for further details.

Structure modification: Structure modification is combined with the iterative frame-

work for training weights and attributes. During each iteration, after parameter regression

in (4.27), I delete a redundant part (node) of G, until G has the pre-determined number

of nodes. I identify the redundant node based on the assumption that a redundant n-

ode usually contributes less than other nodes to the classification of positive and negative

images.

First, I need to define the features of each node for classification. Let Â = {âki |k =

1, 2..., N+, i ∈ V } and Å= {̊ali|l=1, 2..., N−, i ∈ V } denote the predicted matching assign-

ments of G, where âki and åli indicate the assignment mapping node i to positive graph k

and that to negative graph l based on (4.26)24. Thus, according to (4.25), diâki indicates

the distance of the unary attributes for matching node i ∈ V to node âki in positive graph

k. di̊ali indicates such distance for matching to the negative graph l. Similarly, diâki ,jâkj and

di̊ali,jålj denote the pairwise attribute distances in positive and negative graphs, respectively.

Therefore, I use ûki and p̂ki (nU -dimensional and nP -dimensional vectors) as the matching

incompatibilities of the unary and pairwise attributes, respectively, for the match between

24In this case, I set λ = −∞ to avoid matching with none.

81

node i ∈ V and node âkj .

ûki =dTiâki
, p̂ki =

∑
j:j 6=i

dTiâki ,jâkj
/
∑

j:j 6=i
1 (4.28)

The features for recognizing matches with positive graph k and negative graph l are defined

as

F̂k = [ûk1, p̂
k
1, û

k
2, p̂

k
2, ..., û

k
nv , p̂

k
nv]

T , F̊ l = [̊ul1, p̊
l
1, ů

l
2, p̊

l
2, ..., ů

l
nv , p̊

l
nv]

T (4.29)

Consequently, I use these features to train a linear-SVM classifier for match classification

and then, I use this classifier to find the redundant node in G.

min
W,ξ,b

{1

2
‖W‖2 +C

N++N−∑
k=1

ξk

}
,

s.t. ∀k=1, 2, ..., N+,W·F̂k−b≥1−ξk, ξk≥0;

∀k=1, 2, ..., N−,−(W·F̊k−b)≥1−ξk+N+, ξk+N+≥0
(4.30)

I represent the normal vector w.r.t. the hyperplane W as [µT
1 ,ρ

T
1 ,µ

T
1 ,ρ

T
1 , ...,µ

T
nv ,ρ

T
nv]

T .

µi is a nU -dimensional vector, which weights for the matching incompatibility of node

i’s unary attributes (ûki or ůli), whereas the nP -dimensional ρi weights for the matching

incompatibility of its pairwise attributes (p̂ki or p̊li).

Clearly, a good node i in G should match better with positive graphs than negative

graphs. In general, therefore, ûki and p̂ki should be less than ůli and p̊li, respectively. Thus,

the weights of node i (i.e. µi and ρi) should be negative, according to (4.30). Therefore, I

use the following metric to evaluate the reliability of node i ∈ V .

Ri = −
√
nv(1

Tµ
(j)
i + 1Tρ

(j)
i)/‖W‖ (4.31)

Iterative structural modification is performed as follows. During each iteration, I eliminate

the node with the lowest reliability from G, i.e., i∗ = argmini∈VRi, thereby updating the

structure of G as the induced subgraph. Please see [7] for further details.

4.5 Experiments

I perform two experiments to evaluate the object matching and object recognition per-

formance of the trained category models. I test the models trained using the strategies

82

proposed in Sections 4.4.1, 4.4.3, and 4.4.4. Six competing methods are designed to train

the category models, including semi-supervised and supervised approaches.

4.5.1 Data

As introduced in Chapter 7, I use the RGB-D image dataset [30], published as a standard

Kinect RGB-D object dataset oriented to graph matching25. I use five categories in the

dataset that are large enough for training and testing, i.e. notebook PC, drink box, basket,

bucket, and bicycle. These categories contain 33, 36, 36, 67, and 92 scenes, respectively,

which are enough for training and testing.

4.5.2 Competing methods

As discussed in Section 4.2, the scenario of learning from large and cluttered RGB-D or

RGB scenes proposes several high-level requirements for competing methods. Generally

speaking, only four styles of methods (i.e. object discovery26, one-shot learning, multi-

image co-segmentation, and learning graph matching) can be used to learn from large and

cluttered images where the target objects are not manually aligned. However, except for

learning graph matching, these styles are usually hampered by large texture variations (e.g.

texture variations in the drink box category) in the informally captured training images,

because they rely heavily on the texture consistency between objects and some related

studies have even directly used “bag-of-words” models. I therefore limited my comparison

to approaches of learning graph matching that make good use of structural information.

Both supervised and semi-supervised methods for learning graph matching are used as

competing methods.

25This is one of the largest RGB-D object datasets, containing about 900 objects in complex environ-

ments. http://sites.google.com/site/quanshizhang. It is produced mainly for the testing of graph

matching.
26I regard the semi-supervised learning [47] and active learning [54] from results of image search engines

as an extension of the object discovery, here.

83

0 0.5 1
0

0.5

1

Detection rate

Er
ro

r r
at

e

N
ot

eb
oo

k
PC

D
rin

k
bo

x
Ba

sk
et

Bu
ck

et
Bi

cy
cl

e
Matching
+TRW-S

SemiSup
+Spectral

SemiSup
+TRW-S Ours Supervised Supervised

+NIO

Model parameter space for the
Notebook PC category

Ours
SemiSup+TRW-S

A single labeling A complete labeling
Our

transfer

Figure 4.8: Bias problems for different approaches. (Main part) Distribution of
the detection (matching) rate and error rate for the learned models.
In cross validation, a set of models is learned for each category by
setting different initial labeling, and the object matching of each target
RGB image based on any of these models produces a pair of detection
and error rates (Please see Section 4.5.3 for details). The sub-figure
shows the distribution of the detection and error rates. The existence
of low detection rates and high error rates is mainly caused by the
biased models. Note that, despite being based on a single labeling,
Mine outperforms other semi-supervised methods, even approaches the
performance of supervised methods with complete labeling. Except for
the learning of notebook PC models, My transfer does not show an
obvious bias in model learning. (Bottom right) Model parameters (w)
of the notebook PC category projected onto a 2D space. Different points
indicate the values for w learned from a different initial labeling. Note
that the values for w learned by Mine are more convergent, whereas
the outliers provided by SemiSup+TRW-S indicate biased models.

I use Mine, My transfer, and Mine+GraphRefine to denote the model learning method

based on RGB-D images (proposed in Section 4.4.1), the method based on knowledge

84

N
ot

eb
oo

k
PC

D
rin

k
bo

x
Ba

sk
et

Figure 4.9: Object matching results.

transfer (proposed in Section 4.4.3), and the model learning combined with initial label-

ing refinement (proposed in Section 4.4.4), respectively. Then, I introduce five compet-

85

Bi
cy
cl
e

Bu
ck
et

Figure 4.10: Object matching results.

ing methods. Pure graph matching based on TRW-S [28] (without learning) is used as

my benchmark method, denoted by Matching+TRW-S. I then use four typical methods of

semi-supervised and supervised learning of graph matching as the competing methods. The

two methods based on [5] learn graph matching in an unsupervised manner, using spectral

techniques [33] and TRW-S [28], respectively, to solve graph matching. I call these methods

“semi-supervised” approaches, because they require a pre-provided template graph as in

my methods. Thus, I refer to them as SemiSup+Spectral and SemiSup+TRW-S. In partic-

ular, I also apply my previous work for semi-supervised learning of graph structures from

RGB images [7], denoted by GraphRefine, as a competing method for Mine+GraphRefine.

The remaining two methods perform supervised learning of the proposed category model.

86

Supervised is an extension of [5] that uses the ground truth, instead of 3D matching as-

signments, to guide model learning. Whereas, Supervised+NIO chooses nonlinear inverse

optimization (NIO) to learn models, as introduced in [6, 36].

In particular, I simply set w = 1 for Matching+TRW-S, because Matching+TRW-

S does not learn the matching weights. I transform my semi-supervised learning into

supervised learning, Supervised. In Supervised, ajj′ in (4.15) is redefined as 1 or 0 depending

on whether the matched node j′ in the image is a true detection of the target object

part. Finally, in Supervised+NIO, model parameters and attributes are trained using the

NIO [36]. The NIO minimizes the compatibility gap between the true assignments and

predicted assignments, as given by

arg min
fij ,w

N∑
k=1

{
max

y
C(fij,w,y|G

′(k))− C(fij,w,y(k)
truth|G

′(k))
}

(4.32)

where C(·) denotes the matching compatibility in (4.1), G
′(k) denotes the k-th target graph

for matching, and y
(k)
truth represents the matching ground truth of G

′(k).

M
at

ch
in

g
er

ro
rs

Figure 4.11: Error results of object matching. Detection results are shown in cyan,
and other edge segments in images are shown in dark blue.

87

4.5.3 Experiment 1: learning from a single labeled object

This experiment tests the performance of “model learning from a single labeled object” us-

ing different methods, including Mine, My transfer, and the other five competing methods.

Note that method performance is sensitive to the initial labels; therefore, I uniformly apply

the object labels used in [29] to all the competing methods to ensure a fair comparison. All

the object labeling is published in [30].

Evaluation 1: object matching

This experiment tests object matching between a trained model and RGB images known

to contain the target objects. The object matching performance is evaluated via cross

validation. For the method Mine, I use each RGB-D image to start a single model learning

process, and I thus obtain a set of models for each category for cross validation. The

training process for each model is performed as follows. Given an RGB-D image, I use the

labeled object in this image as the template graph. I then randomly select 2/3 and 1/3 of

the remaining RGB-D images in this category for training and testing, respectively. Note

that only the RGB channels of the RGB-D images are used for testing.

The cross-validation of the other competing methods is similar to that for Mine. The

only difference is that I only use RGB channels in the RGB-D images for training. In

particular, for the method My transfer, I transfer the knowledge extracted from the existing

models in any four of the five categories to guide the model learning of the fifth category.

The existing models are trained using the method Mine, and I use the RGB channels of

the RGB-D images in the fifth category as the training images for model learning.

According to convention, I calculate the average detection (matching) rate (ADR) as

a measurement of matching performance27 [5, 4, 7, 29]. Each detection rate is defined

as DR = NT/min{Nmodel, N target}, indicating the proportion of model nodes that are

correctly matched to the target object. NT denotes the number of nodes in the model that

27Note that the matching rate in [7] is defined as MR = NT /Nmodel, which has a slight difference to

the detection rate used in [29] and this work.

88

NP DB BA BU BI

A
ve

ra
ge

d
et

ec
ti

on
ra

te
↑

Matching+TRW-S 56.17 84.84 74.12 73.43 67.62

SemiSup+Spectral 41.89 78.01 61.69 74.60 76.28

SemiSup+TRW-S 43.57 77.95 62.87 69.47 61.37

My transfer 51.25 97.97 87.92 80.38 72.45

Mine 74.24 98.03 88.04 87.99 81.56

Supervised 73.13 98.61 87.21 87.69 80.98

Supervised+NIO 78.11 95.54 92.05 79.08 82.68

Object matching in RGB-D images

3D matching 93.68 90.57 90.35 96.12 93.87

A
ve

ra
ge

er
ro

r
ra

te
↓

Matching+TRW-S 42.82 14.93 24.67 22.76 18.31

SemiSup+Spectral 58.16 21.99 39.11 30.17 23.72

SemiSup+TRW-S 54.43 20.89 30.83 22.41 20.40

My transfer 48.80 2.03 13.45 24.52 27.55

Mine 25.98 1.97 13.22 17.77 18.44

Supervised 27.08 1.39 14.15 18.04 19.02

Supervised+NIO 22.13 4.46 9.42 25.55 17.31

Object matching in RGB-D images

3D matching 6.49 9.43 11.00 10.57 4.58

Table 4.1: Object matching performance in Experiment 1 “learning from a single
labeled object”. This table lists the average detection and error rates
of different categories, where NP, DB, BA, BU, and BI indicate the
notebook PC, drink box, basket, bucket, and bicycle categories. The
models are trained using initial labeling of [29]. Mine starts with a
minimal labeling, but achieves nearly as well as supervised methods
that require to manually label all the training samples. In general, My
transfer outperforms the other semi-supervised methods.

are matched to the target object; Nmodel and N target indicate the total number of segments

89

in the model and the target object. The ADR represents the average of individual detection

rates across all matching results produced by the trained models of a category.

Given the inclusion of none as a matching choice, I also care about the average error

rate (AER). The error rate of an individual matching result is ER = NB

Nmodel , where NB is

the number of nodes matched to the background. Note that NT + NB ≤ Nmodel, as some

model nodes may be matched to none. Similarly, AER is the average of ER.

Fig. 4.9 and Fig. 4.10 illustrate object matching using the category models learned by

Mine. Error matching cases are shown in Fig. 4.11. Table 4.1 shows the quantitative

results, and demonstrates that the performance of 3D matching from RGB-D images is

good enough to guide the learning of category models. As shown in Fig. 4.8, conventional

semi-supervised methods suffer greatly from accumulated bias, whereas the strategy of

learning from RGB-D images and that of learning based on knowledge transfer make Mine

and My transfer outperform the other semi-supervised methods. Mine approaches the

performance of supervised methods with complete labeling, and except for the notebook

PC category, My transfer does not show an obvious bias in model learning. Note that for

some categories, Mine exhibits a better performance than Supervised. This is because for

Supervised, the labeling of ground truth only determines a subset of line segments in target

scenes as target objects, whereas Mine uses 3D matching to provide the exact matching

assignments that more fit the target model. Moreover, in [5], the regression of the prototype

model is not sensitive to outliers in training samples; therefore, Mine performs even better

than 3D matching for the drink box category.

Evaluation 2: object recognition

I combine each competing method with the three object recognition approaches proposed in

Section 4.4.2 to compare their object recognition performance. To test each model trained

with each competing method, I use the testing RGB images from Experiment 1 as the

positive images. I then randomly select the same number of negative images from the

image sets in the other four categories.

90

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.12: Comparison of object recognition performance. I use the curve, tri-
angle, and circle to represent the first, second, and third methods for
object recognition. These methods are used to evaluate the trained
category models. The left subgraph shows the overall recognition per-
formance based on the three recognition methods proposed in Sec-
tion 4.4.2, and the other subgraphs show recognition performance for
different categories. Generally speaking, Mine and My transfer ap-
proach the performance of Supervised that require complete labeling,
and exhibit superior performance to other competing methods.

In the same manner as object matching, object recognition is evaluated by cross valida-

tion. I generate a curve of the recall and error rate by setting different values of threshold

υ to assess the matching-compatibility-based object recognition. All of the models trained

for a category28 are used in the cross validation. Given a specific value of υ, each model

produces a set of object recognition results, and I can obtain a high number of recognition

results from all the models. I compute the curve based on all of these results to represent

the overall recognition performance. Next, to assess the [85, 38]-based and [7]-based object

recognition methods, I compute the average recall and error rates for all of the trained

models.

Object recognition performances of different competing methods are compared in Fig. 4.12.

Fig.4.13 shows the object recognition performance of Mine for each category. Except for

the bicycle category, Mine and My transfer outperform the other semi-supervised meth-

28Please see Experiment 1 for the training of these models in the same category.

91

Figure 4.13: Recognition performance for each category. Different colors indicate
different categories: notebook PC (cyan), drink box (blue), basket (red),
bucket (yellow), and bicycle (green). The last two rows show some error
results.

ods, and even approaches the performance of the Supervised method. For the learning of

the bicycle models, SemiSup+Spectral and SemiSup+TRW-S are usually biased to some

specific parts of the bicycle, but these parts are often more distinguishing than the entire

shape of the bicycle. Therefore, SemiSup+Spectral and SemiSup+TRW-S exhibit better

performance for the bicycle category. Based on the NIO, Supervised+NIO is prone to forc-

92

ing “bad” parts of objects to be well matched, rather than achieving a high value of total

matching compatibility. Thus, Supervised+NIO has poor performance for complex objects

(with many edge segments) i.e. bucket and bicycle.

4.5.4 Experiment 2: Learning from refined object labeling

In this experiment, I also test the performance of “model learning from inaccurately labeled

objects”. I compare the proposed Mine+GraphRefine with the original method Mine and

other competing methods.

I apply the “inaccurate object labeling” used in [7], which is also published in [30],

in the experiment. I evaluate the object matching performance of models trained using

different methods. The object-matching performance is evaluated by cross validation. The

design of the cross validation is the same as the one described in Section 4.5.3. I select

each image to start a single model-learning process, and use the same distribution of the

training and testing images as before. The only difference is that the initial template is not

accurately labeled in the selected image as it was in Section 4.5.3.

In addition to ADR and AER, I also use the average matching rate (AMR) described

in [7] as an evaluation metric. Each matching rate is defined as MR = NT/Nmodel, where

NT and Nmodel denote the model node number that match to the target object and the

total model node number, respectively. In the same manner as ADR and AER, the AMR

is the average of MR.

I set the proposed method Mine+GraphRefine to refine the initial labeled objects in

the notebook PC, drink box, basket, and bucket categories to yield five, four, five, and nine

parts (nodes), respectively. These settings are also applied to GraphRefine, which learns

the graph structure from RGB images, thereby ensuring a fair comparison.

Table 4.2 provides the quantitative comparisons, demonstrating the superior perfor-

mance of the proposed Mine+GraphRefine. Generally speaking, compared to results in

Table 4.1, the results in Table 4.2 show higher error rates and lower detection rates, due

to the inaccurate manual labeling. Note that in Table 4.2, the bucket category shows

93

Average (detection↑ / error↓ / matching↑) rate

Notebook PC Drink box

Matching+TRW-S 57.6 / 44.0 / 56.1 69.1 / 43.9 / 56.2

SemiSup+Spectral 47.8 / 53.6 / 46.4 61.1 / 50.5 / 49.5

SemiSup+TRW-S 50.2 / 51.2 / 48.8 63.3 / 48.8 / 51.2

GraphRefine 54.5 / 43.8 / 54.5 83.4 / 16.6 / 83.4

Mine 57.9 / 43.8 / 56.1 71.8 / 42.0 / 57.8

Mine+GraphRefine 68.6 / 31.2 / 68.6 89.0 / 11.0 / 89.0

Supervised 54.5 / 47.1 / 52.9 65.0 / 47.3 / 52.7

Basket Bucket

Matching+TRW-S 67.3 / 44.7 / 55.3 72.7 / 42.0 / 58.0

SemiSup+Spectral 61.2 / 49.8 / 50.3 69.5 / 45.3 / 54.7

SemiSup+TRW-S 62.1 / 49.0 / 51.0 71.5 / 43.6 / 56.4

GraphRefine 81.8 / 18.0 / 81.8 77.4 / 28.1 / 70.4

Mine 75.8 / 38.3 / 61.7 78.9 / 37.4 / 62.5

Mine+GraphRefine 86.3 / 13.7 / 86.3 78.6 / 28.4 / 71.6

Supervised 62.9 / 48.3 / 51.7 72.0 / 43.2 / 56.8

Table 4.2: Object matching performance in Experiment 2 “learning from refined
object labeling”. This table lists detection, error, and matching rates.
Category models trained are trained using initial labeling of [7].

lower detection rates for Matching+TRW-S and SemiSup+TRW-S, they also exhibit sig-

nificantly lower error rates. Only for the Notebook PC category, I see Matching+TRW-S,

SemiSup+Spectral, and SemiSup+TRW-S exhibiting better performance in Table 4.2 than

in Table 4.1. However, because Matching+TRW-S directly matches initially labeled tem-

plates without training, its superior performance for the Notebook PC category in Table 4.2

demonstrates that compared to subjectively well labeled notebook PCs in [29], subjectively

inaccurate labeling of PCs provide by [7] can actually produce a better fit to the target

94

objects in cluttered images, in some cases.

Then, I limit my comparison to the results given in Table 4.2. Compared to Mine,

Mine+GraphRefine clearly benefits from the [7] technique, thereby exhibiting more robust-

ness under inaccurate manual labeling.

4.6 Conclusions

In this study, I developed a method for category model learning that proceeds from a

single labeled object to a number of informally captured RGB-D images. I used the RGB-

D information to guide the training of the category model, which was applied to ordinary

RGB images. The trained category models were also used to provide knowledge to guide

the model training for new categories, if users could only obtain RGB images in these

categories. All of these techniques were designed to facilitate efficient model learning. The

minimization of labeling saves considerable human labor during the construction of the

model base. Both the depth information obtained from RGB-D images and the knowledge

transferred from other category models can guide the learning framework to overcome the

problem of bias. The effectiveness of the proposed method has been demonstrated in various

experiments.

In this study, I only used the trained model to match a single object in an image for

testing. However, graph matching can easily be extended to matching multiple objects in

the same image in real applications. I can use the model directly to match a new object,

if I remove all the parts (nodes) of the previously matched object from the target image

(graph). Recognizing that most objects in daily use have standard and recognizable shapes,

but may have a variety of tones and textures, I designed my category model to focus on

structural information, namely, object edge segments. This design makes the model robust

across texture variations. However, it is difficult for my category model to describe largely

occluded objects or objects with highly deformable or irregular shapes, such as natural

scenes and animals. Therefore, I need to develop more kinds of graphical models with new

95

local and pairwise attributes to represent these irregular and deformable objects in the

future work.

96

Chapter 5

Extended Application 1: Model

Mining for Single-View 3D

Reconstruction

The studies in Chapters 2, 3, and 4 focus on the methods automatically discovering com-

mon objects hidden in ubiquitous images and simultaneously training the category model

for object detection. I call these methods general platforms for visual mining, because

the mined category models and the automatically labeled objects can be directly used to

guide other model-learning tasks for a diversity of applications, such as object tracking,

segmentation, and 3D reconstruction.

Therefore, in the following chapters, I will introduce some extended applications based

on the platform of visual mining. In particular, this chapter introduces a method to mine

category models for single-view 3D reconstruction from ubiquitous RGB-D images. Actu-

ally, this study is similar to the one in Chapter 4. They both mine models from ubiquitous

RGB-D images but apply the mined models to ordinary RGB images.

In this research, I aim to extract the knowledge about how to use a single 2D appearance

of an object (i.e. the 2D spatial relationship between different object parts, here) to

estimate its pose (i.e. the object rotation) and 3D structure deformation. In addition, the

2D object appearance may suffer from intra-category texture variations, this knowledge

should also be robust to such variations.

Obviously, this knowledge cannot be pre-provided, as objects in different categories

have different structures and thus correspond to different category-specific regulations for

97

3D reconstruction. Therefore, I propose a method that directly mines a category model

from ubiquitous RGB-D images, so as to encode such knowledge for each category. This

method only requires the labeling of a single object to start the model mining for each

category. Thus, the low cost of human labeling makes it plausible to achieve the ultimate

goal of this study, i.e. building a comprehensive model base that can provide the 3D

reconstruction knowledge for each arbitrary daily-use object in each arbitrary RGB image.

The rest of this chapter is organized as follows. The introduction and discussion of

related work are presented in Sections 5.1 and 5.2. The whole algorithm consists of the

mining of category detectors and the training of category models, which are presented in

Section 5.3 and Section 5.4, respectively. Then, Section 5.5 presents the experiments and

the overall study is summarized in Section 5.6.

5.1 Introduction

3D reconstruction is a classical area in the field of computer vision, but 3D reconstruction

from a single image still has great challenges. In this chapter, I re-consider the problem of

single-view 3D reconstruction in terms of two CV areas: category modeling and knowledge

mining from big visual data (see Fig. 5.1).

Category modeling & task output: For the bottleneck in single-view 3D recon-

struction, i.e. the reconstruction of objects with irregular29 structures, I have to return to

the concept of “category modeling”.

Therefore, the objective is to train a model to detect objects in the target category

in large images, while simultaneously projecting their 2D shapes into the 3D space at the

pixel level. The category model encodes the knowledge of how intra-category structure

deformation and object rotations affect 2D object shapes.

29The word “irregular” is used to indicate that my approach focuses on general object categories without

setting strong assumptions for object shapes. In contrast, Cheeger-set-based methods focus on ball-like

surfaces, and perspective-based methods require vanishing points.

98

Informally captured
RGB-D images

Collected RGB-D
object samples

Category
model

2D shape

3D structure

Category
detector

Category
detectorA RGB

image

Figure 5.1: Flowchart for training (cyan arrows) and testing (green arrows) process-
es. Single-view 3D reconstruction is hampered by objects with irregular
shapes. Therefore, for objects in each category, I aim to learn a specific
category model for 3D reconstruction. I propose to directly train the
category model from “informally captured” RGB-D images (where tar-
get objects are NOT aligned) to save human labeling, thereby ensuring
high efficiency in model learning. I first mine the category detector from
informally captured RGB-D images to collect RGB-D objects, and then
use these object samples to train the category model. For testing, the
category detector and category model are used in sequence to localize
the target object and estimate its 3D structure.

Mining from big visual data & task input: Another bottleneck lies in efficiently

learning the category-specific knowledge of 3D reconstruction for a huge number of cate-

gories. Ideally, I would need to train a model for each object category in daily use, so as

to construct a knowledge base to provide a 3D reconstruction service for arbitrary RGB

images. Therefore, I hope to learn from big visual data30 to avoid the labor of manually

preparing training samples (e.g. well built 3D models), and thus ensure a high learning

30Actually, learning from “big visual data” is still in the early stages of development, and its scope is

quite extensive. It usually involves two aspects. This first is learning from a large amount of web data, such

as the widely used deep learning [42]. The second is learning under challenging conditions of “informally

captured” images that contain small objects and are ubiquitous in everyday life, as is the case in my

method. [29] also provides detailed description of the second aspect.

99

Automatic category modeling
from cluttered scenes

Robustness to intra-
category variations

Estimate deformation
& remove object-rotation
effects in 3D reconstruct

Learn with depth
measurement noises

Detailed view of sprayer samples

Input images for training
D

us
tp

an
S

pr
ay

er

Detailed view of dustpan samples

Figure 5.2: Overview of challenges.

efficiency.

In this chapter, I train category models directly from informally captured and “un-

aligned” RGB-D images. I use the phrase “informally captured” to describe loose re-

quirements for ubiquitous30 images. They are typical of what can be directly collected by

search engines (Figures 5.1 and 5.2).

The informally captured images are not manually aligned, and they consist of small ob-

jects that are randomly positioned. In particular, these daily-use objects are usually designed

with texture variations, various rotations, and some structure deformation for commercial

purposes. Technically speaking, these images can be loosely regarded as a kind of big visual

data30.

Challenge analysis: Just like the training, the RGB images for testing 3D recon-

100

struction are also such kind of informally captured images in this research. The use of

informally captured images raises a number of challenges, as shown in Fig. 5.2.

For application purposes, the category model should have the ability to detect small

target objects with various textures, rotations, and scales in large RGB images before 3D

reconstruction. Similarly, the learning process should also be able to handle these challenges

to collect RGB-D objects in cluttered RGB-D images. Moreover, this detection has to be

accurate to the part level, since 3D reconstruction uses the parts’ 2D positions to estimate

the pose and 3D structure of an object.

Then, I analyze the challenges of learning 3D reconstruction knowledge from the col-

lected RGB-D objects31. I need to simultaneously consider the following three factors that

affect the correspondence between the 2D and 3D structure of the object. 1) Rotation

changes. This is the primary factor. 2) Deformation of 3D object structures. 3) Depth

errors near object edges in training samples (measured by the Kinect)

Proposed method: As shown in Fig. 5.1, the training of category detectors is the first

step. The category detectors collect31 RGB-D/RGB object samples from the informally

captured RGB-D/RGB images, which serves as the basis for further training/testing of

3D reconstruction. I use unsupervised category modeling based on graph matching [10] to

train the category detector (specified in [29]). This algorithm automatically discovers a set

of relatively distinguishing parts (namely key parts) of objects for each category. Thus, the

category detector achieves a part-level detection. I then train the category model to use

the parts’ 2D positions to determine the object’s pose and 3D structure.

Unlike conventional methods that use well built 3D models to provide multi-view object

appearances and prior regularity of 3D structure deformation, my approach needs to learn

this knowledge in an unsupervised manner. In other words, I need to train the category

model to simultaneously remove the effects of viewpoint changes, and estimate the 3D

structure deformation using the 2D shape of an object. The category model consists of

31In my study, these objects are collected from RGB images (or RGB dimensions of the RGB-D images)

using the trained category detectors. The 3D object structure is projected into the 2D shape afterwards.

101

a number of estimators, each corresponding to a specific position inside the 2D shape.

These estimators use the spatial relationship between key object parts to estimate the

corresponding 3D coordinates of their positions. I connect neighboring estimators to form

a continuous Markov random field (MRF) and thus train these estimators.

The contributions of this chapter can be summarized as follows. I regard 3D recon-

struction from a single image as a category modeling problem to overcome the difficulties

in the reconstruction of irregular29 shapes. To ensure a high learning efficiency and a wide

application, this is the first attempt to learn category models from informally captured

RGB-D images, and then apply the category model back to the informally captured RGB

images for 3D reconstruction. I explore a new set of challenges raised by my choice of

training and testing data, and provide a solution.

5.2 Related work

3D reconstruction is a large area in the field of computer vision. However, in this chap-

ter, I limit my discussion to 3D reconstruction from a single image. Many methods for

single-view 3D reconstruction have strong assumptions for the image environment. For ex-

ample, “shapes from shading” methods [87, 88, 89, 90] had special requirements for lighting

conditions and textures. A large number of studies use the perspective principle for 3D

reconstruction. They were typically based on the vanishing points in images, and there-

fore assumed that these images contained enough cues to extract vanishing points [91, 92].

Such methods were mainly applied to large-scale indoor and urban environments. In addi-

tion, some studies used the ground/vertical assumption to assist in vanishing point extrac-

tion [93, 94, 95, 96]. Saxena et al. [97] proposed to learn an MRF for 3D reconstruction in

large-scale environments. Fouhey et al. [62] proposed to learn 3D primitives from RGB-D

images for single-view reconstruction of indoor environment.

A number of methods relied on the assumption that the object structure in question

had smooth surfaces. They usually extracted object-level structures from locally captured

102

images that contained no perspective cues. For example, the Cheeger Set approach [98]

assumed that the target object had ball-like surfaces. Given the object contour and the

object volume, it computed the 3D structure with the minimum surface area. However, such

assumptions for object structure are usually not valid for the reconstruction of irregular29

shapes. Therefore, many methods [99, 100, 101, 90] combined human interactions with

these assumptions to guide the 3D reconstruction.

By and large, the lack of cues for the estimation of irregular29 object structures is the

main challenge for single-view 3D reconstruction. From this perspective, my research is

related to the example-based methods [102, 103, 104]. They required a comprehensive

dataset of 3D object samples that were captured in all poses from different viewpoints.

The 3D structure knowledge of a target object was extracted via a large number of com-

parisons between the object and the samples in the dataset. Chen et al. [105, 106] learned

3D reconstruction knowledge from well built 3D object models. These 3D object models

provided knowledge on structure deformation and the multi-view appearance. In this way,

they learned to match the 2D shape of a given object to the 3D object models, and thus

estimate the object’s viewpoint, pose, and 3D structure.

In contrast, I apply much less supervision to idealize the concept of automatic “category

modeling” in terms of training. Learning from informally captured RGB-D images without

manual alignment saves great labor for preparation for 3D object models or a large 3D-

example dataset. The challenges of object detection, rotation changes, and the estimation

of 3D structure deformation are all involved in the training process. The trained category

model is then applied back to the informally captured RGB images for 3D reconstruction,

without example comparison.

5.3 Training of category detectors

Category detectors are not only trained from, but also applied to informally captured and

unaligned images. The category models for 3D reconstruction are designed on the basis of

103

category detectors. In my study, I use the graphical model defined in [29] as the category

detector, considering the need for robustness to shape deformations and rotations in the

informally captured images. I then apply unsupervised learning for graph matching [10] to

mine the category detectors. In reality, I simply use the RGB channels of RGB-D images

for training. The detector is trained to encode the pattern for the common objects in all

the images. A set of key object parts are discovered to form the pattern for a category (see

Fig. 5.3(c)).

as
 in

 (b
)

N
ode

N
ode

s
i

t
i

tNode

sNode

st
j

Nod
e

s
i

st
j

New node/edge
features

s
i

st
j

Old node/edge
features

SA
P

(includes
texture features)

s
i

Figure 5.3: Object detectors. (a) Graph-based image representation. Object edge
segments (cyan) form the graph nodes. (b) Notation for the graphi-
cal model. The initial graphical model consists of five nodes (colored
lines) and edges (dotted lines) between them. (c) Learning the graph-
ical model (category detector). The algorithm modifies (i) the initial
graphical model into (ii) the SAP (G). The node set and node/edge
features are modified so that 1) the node number (size) of G is maxi-
mized and 2) all the node/edge features represent common patterns in
all the graphs.

104

Category detectors: As shown in Fig. 5.3(a), the image is represented as a complete

attributed relational graph (ARG). In Fig. 5.3(b), continuous object edges (magenta) are

discretized into line segments (black), and these line segments form the graph nodes. Thus

the objects within it are represented as sub-graphs.

The category detector is a graphical model in [29], which will be automatically trained to

be the soft attributed pattern (SAP) among the target sub-graphs (or objects) in different

images. Let graph G with node set V denote the model. G is described by a set of node

and edge features. Let {F si } and {F stj } (i = 1, 2, ..., NP , j = 1, 2, ..., NQ) denote the i-th

node feature for node s and the j-th edge feature for edge (s, t), respectively. Here, NP and

NQ indicate the feature numbers for each node and edge, respectively. FV = {F si }
⋃
{F stj },

∀s, t ∈ V . Note that F si includes the texture features on the terminals of lines segments.

The category detector thus also contains the textural knowledge. (Please see [29] for details

of the feature settings.)

Object detection: Object detection is achieved via graph matching. Given a target

RGB image represented by graph G′ with a node set V ′, graph matching is performed to

compute the matching assignments between G and G′. Let x denote the label set, and

let the label xs ∈ x denote the matched node in G′ for node s in G. Graph matching is

formulated as the minimization of the following energy function w.r.t x.

E(x|FV,FV ′)=
∑
s∈V

Ps(xs|FV,FV ′)+
∑

s,t∈V,s 6=t

Qst(xs,xt|FV,FV ′) (5.1)

This is a typical formula for graph matching, where the functions Ps(·|·, ·) and Qst(·, ·|·, ·)

measure matching penalties (feature dissimilarity) between the two matched nodes and

edges. These are generally defined using squared differences. E.g. Ps(xs|FV,FV ′) =

wT [‖F s1 −F
xks
1 ‖2, ...,‖F sNP −F

xks
NP
‖2]. (Please see [10] for details.)

Learning graph matching with SAPs: As shown in Fig. 5.3(c), [10] proposed an

algorithm for mining SAPs. The SAP is a fuzzy attributed pattern, which describes the

common sub-graphs in a set of ARGs, in which node and edge features have considerable

variations. In other words, the category detector (i.e. the SAP) represents a set of key

105

object parts (nodes) that frequently appear in training images of the entire category. The

category detector is trained taking into account the robustness to texture variations and

structure deformations.

To start the training process, this method requires people only to label the sub-graph

of a single object for initializing the graphical model G. [10] is designed to modify G from

the specific shape of the labeled object into the SAP among all graphs. Given a set of N

training images, each image is denoted by {G′k} (k = 1, 2, ..., N) with node set V ′k . FV ′k
are

the attribute sets of G′k, and xks ∈ xk ∈ X indicates the node in V ′k matched by s ∈ V .

The “frequency” of node s in G is defined as the average penalty for matching s to all the

{G′k}, as follows.

Es(X̂,F̂V)=
1

N

N∑
k=1

[
Ps(x̂

k
s |F̂V ,FV ′k

)+
∑

t∈V,t6=s

Qst(x̂
k
s , x̂

k
t |F̂V ,FV ′k

)
]

If Es(X̂, F̂V) is less than a given threshold τ , node s is regarded as a frequently appearing

part; otherwise not. Hence, the goal of learning graph matching is to train the node set V

and attributes FV of model G, in such a manner that 1) all nodes of G frequently appear

in graphs {G′k} and 2) the size of G is maximized.

max
V
‖V ‖

s.t. (F̂V , X̂) = argmin
FV ,X={xk}

∑N

k=1
E(xk|FV ,FV ′k

);

∀s ∈ V, Es(X̂, F̂V) ≤ τ.

(5.2)

[10] proposes an EM framework to solve (5.2).

5.4 Learning 3D reconstruction

I introduce the preparation of training samples, model learning, and the application of 3D

reconstruction in the following three subsections.

106

5.4.1 Object sample collection & pose normalization

The preparation of training samples involves two steps, i.e. object sample collection and

3D pose normalization. In the first step, I use the trained category detector to collec-

t RGB-D samples from informally captured RGB-D images for training. Each training

sample contains its 2D shape and the 3D coordinates of each 2D pixel within it. The 3D

coordinates are measured in the global coordinate system of each RGB-D image, rather

than a coordinate system w.r.t the object. Therefore, in the second step, I compute the 3D

pose of the object, and thereby normalize the 3D coordinates into the object coordinate

system.

Object sample collection: I use the category detector to match a set of key object

parts (graph nodes) in each image by applying (5.1). However, as mentioned above, the

key parts consist of line segments on the object, and do not comprise the entire object

body. Therefore, I first recover the entire body area of the object from the detected line

segments, before the further learning. Actually, a number of methods for interactive32 ob-

ject segmentation are oriented to this application. Nevertheless, in order to make a reliable

evaluation of the proposed 3D reconstruction method, I need to simplify the whole system

and thereby avoid bringing in uncertainties related to object segmentation. Consequently,

given the key line segments of the object, I roughly estimate its body area as the convex

hull of the line terminals (see Fig. 5.4(c)).

3D pose normalization: I define centers and 3D poses for the object samples in the

RGB-D images, thus constructing a relative coordinate system for each sample, as shown

in Fig. 5.4(f,bottom). I then project 3D point clouds of the objects onto these coordinate

systems, as the ground truth of their 3D structures.

Fig. 5.4(e) shows the notation. The center of an object is defined as the mean of the 3D

coordinates of its key parts c=
∑

1≤s≤m ps/m, where m is the part (node) number and ps

denotes the center coordinates of part s. I define the orientations of the three orthogonal

32The key object parts can be labeled as the foreground.

107

coordinate axes <v1,v2,v3> as follows.

v1 =u(v′1 + v′2), v2 =u(v′1 − v′2), v3 =v′1×v′2 (5.3)

where function u(·) normalizes a vector to a unit vector, v′1 = u(
∑

1≤s<t≤m u(pt − ps)),

v′2 =u(
∑

1≤s<t≤m(ot×os)), and os denotes the 3D orientation of line segment s.

5.4.2 Model learning

I train a category model from RGB-D object samples to estimate the pixel-level 3D recon-

struction. Essentially, even if I are given a prior 3D structure for a category, 3D recon-

struction from a single image still has great challenges. There are two general hypotheses,

i.e. object rotations and structure deformations, to interpreting a specific 2D object shape

in 3D reconstruction. Each hypothesis can independently estimate the 3D object struc-

ture from the 2D shape (e.g. computing the rotation or 3D deformation of the prior 3D

structure that best fits the contour of the 2D shape).

Obviously, the 3D reconstruction needs to combine the both hypotheses. Unlike [106,

105] using well built 3D object models to provide or train prior regularity of structure

deformation, I need to train the category model to simultaneously identify the effects of

object rotations and structure deformations from 2D shapes, without prior knowledge. This

greatly increases the challenge.

Fig. 5.5 shows the basic design of the category model. The category model handles

both the effects and directly projects each 2D pixel into a 3D space. Considering the

model’s robustness to shape deformation, I use a set of local 2D coordinate systems to

simultaneously localize each pixel inside the 2D shape. Each local 2D coordinate system

is constructed using each pair of key object parts. For each point in every 2D coordinate

system, I train a local regressor to estimate its 3D coordinates from its point features.

The point features are designed to represent the spatial relationship between the point

and key objects parts, as well as the 2D shape of these key object parts. Thus, the point

features contain sufficient cues for object rotations and structure deformation to guide the

108

Almost perpendicular
to the pan

Almost
parallel to

the pan

to

sosp
tp

s

t C
enterline

Local 2D
coordinate

system

a b c

d e f

Lean against a box

Lean
against
a box

Figure 5.4: Some steps in learning 3D reconstruction. (a,b) Visualization of the
detected key object parts in the RGB and depth image. (c) Recovery
of the object body area. (d) Notation for the local 2D coordinate
system. (e) Notation for determining the local 3D coordinate system.
(f) Three axes of the local 3D coordinate system. (bottom) Local 3D
coordinate systems of three objects.

estimation of the 3D coordinates of each 2D point. For point p in the local 2D coordinate

system w.r.t key parts s and t of a given object sample, its point features are defined as

θpst = [ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, 1]T . ϑ1 and ϑ2 denote the lengths of s and t, respectively, and ϑ3

denotes the angle between s and t. ϑ4 and ϑ5 measure the distance between p and the line

109

j

s

t

i

s

node t

p
stM q

stM

p,(j)
st

q,(j)
st

p

p s,t

p,(i)
st

q,(i)
st

node tnode snode u
node v

Six local 2D
coordinate

systems st
p

su
p

sv
p

tv
p

uv
p

tu
p

Figure 5.5: Learning 3D reconstruction. The category model uses different local 2D
coordinate systems (bottom) to localize the 2D points, and estimates
the 3D structure in these coordinate systems. Given a specific 2D
coordinate system w.r.t each pair of key parts s and t, I generate a
MRF to train the parameter Mp

st for the local regressor Fp
st(·) in each

different point p. Fp
st(·) uses the point feature θ

p,(i)
st in object sample

i to estimate 3D coordinates of p, thus overcoming i’s specific object
rotations, structure deformation, and depth errors.

segments s and t, respectively. ϑ1, ϑ2, ϑ4, and ϑ5 are normalized by the centerline length

110

between s and t (Fig. 5.4(d)).

Then, the local regressor Fp
st(·) is modeled as a linear regression of the 3D coordinates

of p using θpst:

Fp
st(θ

p
st) = (θpst)

TMp
st (5.4)

where matrix Mp
st is the parameter for the function Fp

st(·).

The local regressor Fp
st(·) is the basic element of the category model. The category

model is formulated as a linear combination of these local regressors, as follows.

Y(x) =
1

Z

∑
1≤s<t≤m

wp
stF

p
st(θ

p
st)|p=pst(x) (5.5)

where Z =
∑

1≤s<t≤mw
p=pst(x)
st . x is a pixel inside the 2D object shape, and Y(x) estimates

its 3D coordinates. s and t indicate two key parts of the object; m denotes the key

part number. Given the local coordinate system constructed using s and t, function pst(x)

determines the 2D position of x in this coordinate system. Thus, function Fp
st(·) is the local

regressor of 3D coordinates for point p in the coordinate system of s and t, as mentioned

above. wp
st measures the reliability of the local regressor Fp

st(·) and is regarded as its weight.

Local 2D coordinate system: As shown in Fig. 5.4(d), given the line segments of

each pair of key parts s and t (1 ≤ s < t ≤ m), I generate a local 2D coordinate system.

The line segment connecting the center of s to that of t is called the centerline between s

and t. The origin of the local coordinate system w.r.t s and t is defined as the center of

the centerline. I take the centerline’s orientation as the orientation of the first coordinate

axis, and determine the orientation of the second axis using the right-hand rule. The unit

vector of the first axis is normalized using the centerline length, and that of the second axis

is normalized using the average segment length of s and t.

Model learning based on a continuous MRF: In the local 2D coordinate system

determined by the key parts s and t, the local regressors of the neighboring positions

are connected to form an MRF. I generate the following objective function to learn the

111

parameters of the regressors.

argmax
Mst

∑
p∈V

φ1(Mp
st) +

∑
(p,q)∈E

φ2(Mp
st,M

q
st) (5.6)

where Mst = {Mp
st|p ∈ V}; V and E denote node and edge sets of the MRF, respectively.

In the MRF, the unary term φ1(·) measures the similarities between the ground truth

and the 3D coordinates estimated by the regressor for each point p.

φ1(Mp
st) =

1

‖S‖
∑
i∈S

exp(−η‖Fp
st(θ

p,(i)
st)− ypi ‖) (5.7)

where S is the set of training samples. For each object sample i, θ
p,(i)
st and ypi denote the

point feature and true 3D coordinates of p, respectively. η is a scaling parameter.

The pairwise term φ2(·, ·) is a smoothing term between neighboring points.

φ2(Mp
st,M

q
st) = −λ(Mp

st −Mq
st)

2 exp[−α(Up + Uq)2]

Up =
1

‖S‖
∑
i∈S

max
(p,p′)∈E

‖ypi − y
p′

i ‖ (5.8)

where Up use true 3D structures of the training samples to measure the discontinuity

around point p. Object areas with high discontinuity, such as object edges, have low

weights for smoothing. λ and α are scaling parameters. I use the MCMC method to solve

the continuous MRF.

Finally, when the regressor Fp
st(·) has been trained, the weight for Fp

st(·) in (5.5) is

computed as

wp
st =

1

‖S‖
∑
i∈S

exp[−η(Fp
st(θ

p,(i)
st)− ypi)2] (5.9)

5.4.3 3D reconstruction based on category models

As shown in Fig. 5.1, I use a trained category model to directly perform 3D reconstruction

on testing RGB images. I first use the trained category detector to collect target objects

in the RGB images, and simultaneously determine the body area of the objects (see Sec-

tion 5.4.1). I then use the category model in (5.5) to estimate the 3D coordinates for each

pixel inside the object.

112

5.5 Experiments

5.5.1 Data

As introduced in Chapter 7, I use the category dataset of Kinect RGB-D images [30,

29], which is published as a standard RGB-D object dataset33 for the learning of graph-

matching-based models, such as [29, 7]. These RGB-D images depict cluttered scenes

containing objects with different textures and rotations. Four categories—notebook PC,

drink box, sprayer, and dustpan—in this dataset contain a sufficient number of RGB-D

objects for training and are thus chosen in the experiments.

5.5.2 Implementation details

Training of category detectors: I train the SAP (category detector) from a set of large

graphs (informally captured images). Parameter τ controls the graph size of the SAP, or

in other word, the number of key object parts contained by the category detector. When

I set a higher value for τ , I can extract more key parts for a category, but the key parts

are less reliable in part detection. To simplify the learning process, I require the SAPs

(detectors) to have four nodes (key parts) for all the four categories. I try different values

of τ in the training process, until the category detector satisfies this requirement. Hence,

I can detect four key parts for each object, and the rotation and deformation of the object

are determined by the complex spatial relationship between the four key parts.

Learning 3D reconstruction: As shown in Fig. 5.5, in each local 2D coordinate

system, I divide the entire object area comprising of 50× 50 grids to identify different 2D

points. A local regressor with parameter Mp
st is generated for each grid p, and I thus use

the local regressors construct the MRF. For the application of 3D reconstruction, many

pixels in the 2D shape are not accurately localized in the grid centers. To achieve accurate

pixel-level 3D reconstruction, I interpolate the regressor parameter value for each 2D pixel

33Compared to other RGB-D datasets i.e. [60, 107], this is one of the largest RGB-D object datasets,

and reflects challenges of graph matching.

113

c9

b7

b5

Estimate structure deformation from 2D shapes

Learn texture
knowledge for

object detection

a1 a2 a3 a4 a5

a6 a7 a8 a9

b1 b2 b3 b4

b6
b8

b9

c1 c2 c3 c4 c5

c6 c7 c8

Figure 5.6: 3D reconstruction performance. (a1–9) Object detection (cyan lines)
in RGB images. (b1–9) Detailed view of the target objects. (c1–9)
Reconstruction results of the proposed method.

from the trained parameters Mp
st of the nearby grids. I set parameter α as 0.1 for all the

categories in model learning, and use different values of λ and η to test the system.

114

Figure 5.7: Object detection performance based on the mined dustpan detector
(top) and the detailed view of the detected objects (bottom).

5.5.3 Quantitative comparison

Competing method: I compare my approach with conventional methods for 3D recon-

struction from a single image. As discussed in Section 5.2, most related techniques have

115

Figure 5.8: Object detection performance based on the mined drink box detector
and the detailed view of the detected objects (bottom).

their own specific assumptions for the target image and are thus not suitable for 3D re-

construction of irregular29 shapes. From this viewpoint, example-based 3D reconstruction

is close to my method, but conventional techniques are hampered by the use of informal-

116

Figure 5.9: 3D reconstruction performance based on the mined dustpan model. The
results correspond to the detected dustpans in Fig. 5.7. Some objects
are not correctly reconstructed because of errors in the detection of
object parts.

ly captured RGB-D images for training. Nevertheless, considering the challenges in the

training dataset, I design a competing method that achieves a rough idea of the example-

based 3D reconstruction, as follows. First, given a RGB image, I use the category detector

trained in Section 5.3 to detect the target object in it, as well as its key object parts. I

then randomly select an RGB-D object from the training sample set as the example for

3D reconstruction. The 3D coordinate estimation is based on (5.5), just like the proposed

method. However, without training, the weight for local regressors (wp
st) is set to 1. The

local regressors Fp
st is redefined as a constant, i.e. the 3D coordinate for point p on the

example, rather than a function in (5.4) w.r.t. point features θpst.

Pixel-level evaluation: I evaluate the reconstruction errors and surface roughness

(non-smoothness) of the proposed approach at the pixel level. Reconstruction errors are

widely used to evaluate 3D reconstruction. I manually prepare the ground the truth of

the 3D structure for each object using the Kinect measurement. I measure the distance

117

Figure 5.10: 3D reconstruction performance based on the mined box model. The
results correspond to the detected drink boxes in Fig. 5.8. Some objects
are not correctly reconstructed because of errors in the detection of
object parts.

between the estimated 3D coordinates of each pixel and its true coordinates, as the pixel

reconstruction error. I define the reconstruction error of an object as the average recon-

struction error of its constituent pixels. The reconstruction error of a category is defined as

the average reconstruction error of all its objects. The other evaluation metric is the surface

roughness. The roughness of pixel p is measured as rp = ‖Yp − 1
N(p)

∑
q∈N(p) Yq‖, where

pixel N(p) is the set of 4-connectivity neighboring pixels of p, Yp denotes the estimated

3D coordinates of pixel p on the object. Just like the reconstruction error, the object

roughness is the average of the pixel roughness, and the surface roughness of a category is

defined as the average of object-level roughness.

The evaluation is achieved via cross validation. Just as in [29, 7], I randomly select 2/3

and 1/3 of the RGB-D images in the entire dataset as a pair of sample pools for training

and testing, respectively. Each pair of sample pools can train a category model, and provide

values of the reconstruction error and surface roughness for the category. I prepare different

118

Notebook PC Drink box

Sprayer Dustpan

R
ec

on
st

ru
ct

io
n

er
ro

rs
 (c

m
)

Su
rfa

ce

ro
ug

hn
es

s
(c

m
)

0 0.02 0.06 0.1 0.14 0.18
0

0.02

0.04

0.06

0 0.02 0.06 0.1 0.14 0.18

3

4

5

6

7

0 0.02 0.06 0.1 0.14 0.18
0

0.02

0.04

0.06

0 0.02 0.06 0.1 0.14 0.18

3

4

5

6

7

0 0.02 0.06 0.1 0.14 0.18
0

0.02

0.04

0.06

0 0.02 0.06 0.1 0.14 0.18

3

4

5

6

7

0 0.02 0.06 0.1 0.14 0.18
0

0.05

0.1

0.15

0.2
0 0.02 0.06 0.1 0.14 0.18

10

12

14

16

18

Example-
based

2.0
Ours

Ours
1.0

3.0
Ours



 





R
ec

on
st

ru
ct

io
n

er
ro

rs
 (c

m
)

Su
rfa

ce

ro
ug

hn
es

s
(c

m
)

Figure 5.11: 3D reconstruction comparison. The proposed method exhibits smaller
reconstruction errors and surface roughness than the example-based
method. The learning of category models is not sensitive to different
settings of parameters λ and η. λ and η are not involved in the example-
based method.

pairs of training and testing pools and compute the average performance by cross validation.

Fig. 5.11 and Fig. 5.6 show the comparison of 3D reconstruction performance. Without

sufficient learning, the competing method cannot correctly estimate structure deformation

for objects, and suffers from the unavoidable errors in Kinect’s depth measurement.

Figures 5.7, 5.8, 5.9, and 5.10 show the object detection and 3D reconstruction perfor-

mance on different RGB images of the dustpan and drink box categories.

119

5.6 Conclusions

In this chapter, I proposed to learn a category model for single-view 3D reconstruc-

tion, which encoded knowledge for structure deformation, texture variations, and rotation

changes. The category model was both trained from and applied to the informally captured

images. Experiments demonstrated the effectiveness of the proposed method.

For the training of category detectors, I used various node and edge features. These

included texture features on local image patches. Thus, the texture information contributes

to the extraction of key object parts. However, textures contribute much less in further 3D

reconstruction, as many daily-use objects (e.g. the drink box) are designed with different

textures that are unrelated to object structures for commercial purposes. The spatial

relationship between key object parts was, therefore, taken as more reliable cues for 3D

reconstruction and used in model learning.

I did not apply object segmentation and thus avoided the uncertainties related to it,

so as to simplify the system and enable a reliable evaluation. The category model did not

performed so well on object edges as in other object area due to the time-of-the-flight errors

and calibration errors between 3D points and RGB images.

120

Chapter 6

Extended Application 2: Mining

Deformable Models of Animals

The algorithm of attributed graph matching proposed in Chapter 2 is a general platform for

visual mining from big data, and in Chapter 5, I have designed a method that applies this

platform to learning category models for single-view 3D reconstruction. In this chapter, I

present another extended application of attributed graph matching, i.e. mining deformable

models of animals from unlabeled videos.

I design a new type of ARGs to represent frames of a video, where the target objects are

not manually aligned. Consequently, the maximal-size soft attributed pattern corresponds

to the deformable animal model. I label the target object in the first frame to construct

the initial graph template, and then use the attributed graph mining to mine the category

model.

6.1 ARG-based deformable model for animals

I design a new type of ARGs to represent the deformable animal in unlabeled video frames,

which take SIFT points as graph nodes. The SIFT points are detected all over the frames

at different scales. I connect each pair of SIFT points in a frame to construct an ARG. One

unary attribute (NP = 2) and four pairwise attributes (NQ = 4) are designed to describe

local features and spatial relationship between local parts in video frames.

The notation is illustrated in Fig. 6.1. The only unary attribute is the 128-dimensional

descriptor of the SIFT feature of node s, denoted by F s1 = fs. Let ss and os denote the scale

121

Maximal-size soft attributed
pattern among different ARGs

No
de

Node

SIFT
scale

t
s

SI
FT

sc

ale
ss

SI
FT

de

sc
rip

to
r

&
or

ien
ta

tio
n

sf so

SIFT
descriptor

& orientation t
f
t
o

distance std
stoorientation

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

Figure 6.1: Notation for the ARGs that take the interesting points of SIFT features
as graph nodes. The ARGs are designed for deformable animals.

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

Figure 6.2: The single labeled object that is used to construct the initial graph
template. Only three SIFT points are labeled.

and orientation for node s, respectively. The first of the four pairwise attributes is set as the

spatial angle between the SIFT orientations of nodes s and t, i.e. F st1 = angle(os, ot). For

each edge (s, t), I use dst and ost to represent its length and orientation. The second pairwise

attribute, F st2 = [angle(ost, os), angle(ost, ot)]
T , is defined as the angle between edge (s, t)

and each of SIFT orientations of nodes s and t. Then, the third and fourth pairwise

attributes are set as F st3 = log(ss/st) and F st4 = [log(ss/dst), log(st/dst)]
T , respectively. I

122

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

Figure 6.3: Detection of the cheetah in video frames based on the trained de-
formable model.

123

set the attribute weights as wP1 = 2 and ∀j, wQj = 1. Penalties for matching to none are

set as Pnone = 2 and Qnone = 4.

6.2 Experiments

I set the threshold τ to be 4.0 in this experiment. Fig. 6.2 illustrates the initial graph

template, which only consists of three SIFT points. The algorithm of attributed graph

mining automatically discovers new parts of objects from video frames. Fig. 6.3 shows the

detection of the cheetah in video frames based on the trained deformable model, where the

whole body of the animal has been recovered.

124

Chapter 7

Kinect RGB-D image dataset

I have published a dataset of Kinect RGB-D images. This is one of the largest RGB-D

object datasets, and fits the requirements of learning graph matching. This dataset consists

of RGB-D images containing about 1200 objects. These RGB-D images are collected in

different environments, indoors and outdoors. There are ten large categories, such as

basket, bucket, drink box, bicycle, scanner, fridge, notebook PC, sprayer, dustpan, and

platform lorry. Each category has a large number of objects. The RGB-D image is in the

size of 640 × 480. Objects inside a category usually have different textures, and they are

placed in complex environments with different translations and rotations. Moreover, objects

within some categories have large intra-category variations in size and local structure. For

example, bicycles for men have beams, while those for women do not. Small bicycles are

usually with simpler structures, and compared to other parts, the wheel radius changes

most in size among different bicycles.

Actually, a number of RGB-D datasets have been built in recent years. Lai et al. built a

large RGB-D object dataset containing 300 objects in 50 categories [60], as well as an RGB-

D scene dataset, primarily for use in object recognition. Koppula et al., Silberman et al.,

and Browatzki et al. constructed RGB-D image sets of indoor environments [108, 109, 110].

A dataset for the perception challenge [111] consists of 35 objects for training; the UBC

robot vision survey dataset [112] contains four categories of objects; and the 3D table-top

dataset [113] covers three categories without significant variation in viewpoint. Janoch et

al. [114] and Wohlkinger et al. [115] also built large datasets.

However, in my scenario of model mining from large and cluttered RGB-D (or RGB)

scenes, I have two requirements for the dataset. First, the target objects in the dataset

125

Figure 7.1: Some object samples in the Kinect RGB-D image dataset

126

should not be hand-cropped or aligned, and they should have different scales, textures, and

rotations. Second, each category should include a large number of samples for training

(whereas in most existing datasets, each category contains only a few objects). A relatively

large number of training images can ensure stability of model-mining processes, although

theoretically, my methods of model mining can be successfully applied, just given two

cluttered scenes for each category as training images. Therefore, I need to construct this

RGB-D image dataset.

127

Chapter 8

Conclusion and future work

In this thesis, I have defined the concept of “precise object-level visual mining”. I have

proposed two general platforms and a mining strategy for visual mining. All the proposed

algorithms have a large number of extended applications of visual mining, and thus of

board interests in the whole field of computer vision. The typical application of mining

category models for object detection from big data, as well as two extended applications of

mining models for 3D reconstruction and pose estimation, has been tested in experiments,

which demonstrates the superior performance and universal applicability of the proposed

platforms.

Technically speaking, my methods, for the first time, propose a strategy to simultane-

ously model all the typical challenges in image processing, which breaks though conventional

“model training” to the level of “model mining”.

I use the graph theory to model these typical challenges. The problem with the un-

aligned small-size objects in large and cluttered images can be modeled as a graph matching

problem. Then, as I use ARGs to represent ubiquitous images, the intra-category varia-

tions in texture, rotation, structure, scale, and illumination can be modeled as attribute

variations in ARGs.

However, this is just a new strategy to simultaneously model these challenges, and it is

still far from a perfect solution to all of these challenges. It is because that theoretically, my

methods can only deal with the challenges when they are able to formulated using ARGs.

This is the biggest limitation of this study.

In the future work, I will continue this study to improve the theory of attributed graph

mining and apply the general visual-mining platform to more applications, such as object

128

segmentation, and object recognition, and object-level image retrieval.

129

References

[1] H. Jiang, C.-W. Ngo, Image mining using inexact maximal common subgraph of

multiple args, In International conference on visual information system (2003) 63–

76.

[2] M. Cho, K. Alahari, J. Ponce, Learning graphs to match, In ICCV.

[3] T. S. Caetano, J. J. McAuley, L. Cheng, Q. V. Le, A. J. Smola, Learning graph

matching, In IEEE Transactions on Pattern Analysis and Machine Intelligence (PA-

MI) 31 (6) (2009) 1048–1058.

[4] M. Leordeanu, M. Hebert, Smoothing-based optimization, In Proc. of IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR) (2008) 1–8.

[5] M. Leordeanu, M. Hebert, Unsupervised learning for graph matching, In International

Journal of Computer Vision 96 (1) (January 2012) 28–45.

[6] L. Torresani, V. Kolmogorov, C. Rother, Feature correspondence via graph matching:

Models and global optimization, In Proceedings of the 10th European Conference on

Computer Vision (ECCV) (2008) 596–609.

[7] Q. Zhang, X. Song, X. Shao, H. Zhao, R. Shibasaki, Learning graph matching for

category modeling from cluttered scenes, In Proc. of IEEE International Conference

on Computer Vision (ICCV).

[8] M. Cho, K. M. Lee, Progressive graph matching: Making a move of graphs via

probabilistic voting, In Proc. of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR).

130

[9] Q. Zhang, X. Song, X. Shao, H. Zhao, R. Shibasaki, When 3d reconstruction meets u-

biquitous rgb-d images, In International Conference on Computer Vision and Pattern

Recognition (CVPR).

[10] Q. Zhang, X. Song, X. Shao, H. Zhao, R. Shibasaki, Attributed graph mining and

matching: An attempt to define and extract soft attributed patterns, In International

Conference on Computer Vision and Pattern Recognition (CVPR).

[11] P. Hong, T. S. Huang, Spatial pattern discovery by learning a probabilistic parametric

model from multiple attributed relational graphs, In Discrete Applied Mathematics

139 (2004) 113–135.

[12] L. Thomas, Maximal frequent subgraph mining, International Institute of Informa-

tion Technology, Hyderabad, India.

[13] J. Wang, Z. Zeng, L. Zhou, Clan: An algorithm for mining closed cliques from large

dense graph databases, In ACM SIGKDD.

[14] Z. Zeng, J. Wang, L. Zhou, G. Karypis, Coherent closed quasi-clique discovery from

large dense graph databases, In ACM SIGKDD.

[15] C. Jiang, F. Coenen, M. Zito, A survey of frequent subgraph mining algorithms, In

The Knowledge Engineering Review (2012) 1–31.

[16] J. Huan, W. Wang, J. Prins, J. Yang, Spin: Mining maximal frequent subgraphs

from graph databases, In ACM SIGKDD.

[17] L. Thomas, S. Valluri, K. Karlapalem, Margin: Maximal frequent subgraph mining,

In Transactions on KDD 4 (3).

[18] H. Xie, K. Gao, Y. Zhang, J. Li, H. Ren, Common visual pattern discovery via graph

matching, In ACM Multimedia (2012) 1385–1388.

131

[19] H. Liu, S. Yan, Common visual pattern discovery via spatially coherent correspon-

dences, In Proc. of IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2010) 1609–1616.

[20] M. Leordeanu, M. Hebert, R. Sukthankar, Beyond local appearance: category recog-

nition from pairwise interactions of simple features, In Proc. of IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (2007) 1–8.

[21] W. Brendel, S. Todorovic, Learning spatiotemporal graphs of human activities, In

ICCV.

[22] G. Kim, C. Faloutsos, M. Hebert, Unsupervised modeling of object categories us-

ing link analysis techniques, In Proc. of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (2008) 1–8.

[23] H.-K. Tan, C.-W. Ngo, Localized matching using earth movers distance towards

discovery of common patterns from small image samples, In Image and Vision Com-

puting 27 (2009) 1470–1483.

[24] J. Yuan, G. Zhao, Y. Fu, Z. Li, A. Katsaggelos, Y. Wu, Discovering thematic ob-

jects in image collections and videos, In IEEE Transactions on Pattern Analysis and

Machine Intelligence (PAMI) 21 (4) (2012) 2207–2219.

[25] G. Zhao, J. Yuan, Mining and cropping common objects from images, In ACM Mul-

timedia (2010) 975–978.

[26] M. Cho, Y. M. Shin, K. M. Lee, Unsupervised detection and segmentation of identical

objects, In International Conference on Computer Vision and Pattern Recognition

(CVPR) (2010) 1617–1624.

[27] D. Parikh, C. Zitnick, T. Chen, Unsupervised learning of hierarchical spatial struc-

tures in images, In Proc. of IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR) (2009) 2743–2750.

132

[28] V. Kolmogorov, Convergent tree-reweighted message passing for energy minimization,

In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 28 (10)

(2006) 1568–1583.

[29] Q. Zhang, X. Song, X. Shao, R. Shibasaki, H. Zhao, Category modeling from just a

single labeling: Use depth information to guide the learning of 2d models, In IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2013) 193–200.

[30] Q. Zhang, Category dataset of kinect rgbd images,

http://sites.google.com/site/quanshizhang.

[31] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image

segmentation, In IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI) 33 (5) (2011) 898–916.

[32] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection, In Proc.

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2005)

886–893.

[33] M. Leordeanu, M. Hebert, A spectral technique for correspondence problems using

pairwise constraints, In 10th International Conference on Computer Vision (ICCV)

(2005) 1482–1489.

[34] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tap-

pen, C. Rother, A comparative study of energy minimization methods for markov

random fields, In ECCV.

[35] I. Tsochantaridis, T. Joachims, T. Hofmann, Y. Altun, Large margin methods for

structured and interdependent output variables, In J. Machine Learning Research 6

(2005) 1453–1484.

133

[36] Z. P. C. K. Liu, A. Hertzmann, Learning physics-based motion style with nonlin-

ear inverse optimization, In ACM Transactions on Graphics (TOG)—Proceedings of

ACM SIGGRAPH 24 (3) (2005) 1071–1081.

[37] C. S. Vittorio Ferrari, Frederic Jurie, From images to shape models for object detec-

tion, In International Journal on Computer Vision (IJCV) 87 (3) (2010) 284–303.

[38] O. Duchenne, A. Joulin, J. Ponce, A graph-matching kernel for object categorization,

In Proc. of IEEE International Conference on Computer Vision (ICCV) (2011) 1792–

1799.

[39] B. G. Park, K. M. Lee, S. U. Lee, J. H. Lee, Recognition of partially occluded objects

using probabilistic arg-based matching, In Computer Vision and Image Understand-

ing (CVIU) 90 (3) (2003) 217–241.

[40] Microsoft, Introducing kinect for xbox 360, http://www.xbox.com/en-US/Kinect/.

[41] J. Brank, M. Grobelnik, N. Milic-Frayling, D. Mladenic, Feature selection using sup-

port vector machines, In international conf. on data mining methods and databases

for engineering.

[42] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, A. Ng,

Building high-level features using large scale unsupervised learning, In ICML.

[43] M. Cho, K. Alahari, J. Ponce, Learning graphs to match, In Proc. of International

Conference on Computer Vision (ICCV).

[44] Q. Zhang, X. Song, X. Shao, H. Zhao, R. Shibasaki, From rgb-d images to rgb

images: Single labeling for mining visual models, to appear in ACM Transactions on

Intelligent Systems and Technology (TIST).

[45] F.-F. Li, R. Fergus, P. Perona, One-shot learning of object categories, In IEEE Trans-

actions on Pattern Analysis and Machine Intelligence (PAMI) 28 (4) (2006) 594–611.

134

[46] T. Tuytelaars, C. H. Lampert, M. B. Blaschko, W. Buntine, Unsupervised object

discovery: A comparison, In International Journal on Computer Vision 88 (2) (2010)

284–302.

[47] L.-J. Li, G. Wang, F.-F. Li, Optimol: automatic online picture collection via incre-

mental model learning, In International Journal on Computer Vision (IJCV) 88 (2)

(2010) 147–154.

[48] H. Kang, M. Hebert, T. Kanade, Discovering object instances from scenes of daily

living, In 13th International Conference on Computer Vision (ICCV) (2011) 762–769.

[49] C. Li, D. Parikh, T. Chen, Automatic discovery of groups of objects for scene under-

standing, In International Conference on Computer Vision and Pattern Recognition

(CVPR) (2012) 2735–2742.

[50] A. Faktor, M. Irani, ”clustering by composition”–unsupervised discovery of image

categories, In 12th European Conference on Computer Vision (ECCV) (2012) 474–

487.

[51] J.-Y. Zhu, J. Wu, Y. Wei, E. Chang, Z. Tu, Unsupervised object class discovery

via saliency-guided multiple class learning, In International Conference on Computer

Vision and Pattern Recognition (CVPR) (2012) 3218–3225.

[52] Y. J. Lee, K. Grauman, Learning the easy things first: Self-paced visual category

discovery, In International Conference on Computer Vision and Pattern Recognition

(CVPR) (2011) 1721–1728.

[53] Z.Liao, A.Farhadi, Y.Wang, I.Endres, D.Forsyth, Building a dictionary of image frag-

ments, In International Conference on Computer Vision and Pattern Recognition

(CVPR) (2012) 3442–3449.

135

[54] S. Vijayanarasimhan, K. Grauman, Large-scale live active learning: Training object

detectors with crawled data and crowds, In International Conference on Computer

Vision and Pattern Recognition (CVPR) (2011) 1449–1456.

[55] G. Kim, E. P. Xing, L. Fei-Fei, T. Kanade, Distributed cosegmentation via submodu-

lar optimization on anisotropic diffusion, In Proc. of IEEE International Conference

on Computer Vision (ICCV) (2011) 169–176.

[56] W.-C. Chiu, M. Fritz, Multi-class video co-segmentation with a generative multi-

video model, In 2013 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2013) 321–328.

[57] A. Joulin, F. Bach, J. Ponce, Multi-class cosegmentation, In International Conference

on Computer Vision and Pattern Recognition (CVPR) (2012) 542–549.

[58] G. Kim, E. Xing, On multiple foreground cosegmentation, In International Confer-

ence on Computer Vision and Pattern Recognition (CVPR) (2012) 837–844.

[59] L. Mukherjee, V. Singh, J. Xu, M. Collins, Analyzing the subspace structure of

related images: Concurrent segmentation of image sets, In 12th European Conference

on Computer Vision (ECCV) (2012) 128–142.

[60] K. Lai, L. Bo, X. Ren, D. Fox, A large-scale hierarchical multi-view rgb-d object

dataset, In Proc. of IEEE International Conference on Robotics and Automation

(ICRA) (2011) 1817–1824.

[61] X. Ren, L. Bo, D. Fox, Rgb-(d) scene labeling: Features and algorithms, In Proc.

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

2759–2766.

[62] D. Fouhey, A. Gupta, M. Hebert, Data-driven 3d primitives for single image under-

standing, In Proc. of International Conference on Computer Vision (ICCV).

136

[63] X. Wang, X. Bai, T. Ma, W. Liu, L. J. Latecki, Fan shape model for object detection,

In Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2012) 151–158.

[64] Y. Xu, Y. Quan, Z. Zhang, H. Ji, Contour-based recognition, In Proc. of IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2012) 3402–3409.

[65] S. Maji, J. Malik, Object detection using a max-margin hough transform, In Proc.

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

1038–1045.

[66] N. Razavi, J. Gall, P. Kohli, L. v. Gool, Latent hough transform for object detection,

In 12th European Conference on Computer Vision (ECCV) (2012) 312–325.

[67] K. Liu, Q. Wang, W. Driever, O. Ronneberger, 2d/3d rotation-invariant detection

using equivariant filters and kernelweighted mapping, In Proc. of IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) (2012) 917–924.

[68] T. Wang, X. He, N. Barnes, Learning structured hough voting for joint object detec-

tion and occlusion reasoning, In Proc. of IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (2013) 1790–1797.

[69] H.-Y. Chen, Y.-Y. Lin, B.-Y. Chen, Robust feature matching with alternate hough

and inverted hough transforms, In Proc. of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (2013) 2762–2769.

[70] K. Lai, D. Fox, Object recognition in 3d point clouds using web data and domain

adaptation, In Proceedings of International Journal of Robotic Research 29 (8) (2010)

1019–1037.

[71] E. Hsiao, A. Collet, M. Hebert, Making specific features less discriminative to improve

point-based 3d object recognition, In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR) (2010) 2653–2660.

137

[72] W. Hu, Learning 3d object templates by hierarchical quantization of geometry and

appearance spaces, In Proc. of IEEE Conference on Computer Vision and Pattern

Recognition (CVPR) (2012) 2336–2343.

[73] B. Pepik, P. Gehler, M. Stark, B. Schiele, 3d2pm—3d deformable part models, In

12th European Conference on Computer Vision (ECCV) (2012) 356–370.

[74] A. Aldoma, F. Tombari, L. D. Stefano, M. Vincze, A global hypotheses verification

method for 3d object recognition, In 12th European Conference on Computer Vision

(ECCV) (2012) 511–524.

[75] K. Lai, L. Bo, X. Ren, D. Fox, Sparse distance learning for object recognition com-

bining rgb and depth information, In Proc. of IEEE International Conference on

Robotics and Automation (ICRA) (2011) 4007–4013.

[76] W. Susanto, M. Rohrbach, B. Schiele, 3d object detection with multiple kinects, In

12th European Conference on Computer Vision (ECCV) (2012) 93–102.

[77] A. Collet, S. S. Srinivasay, M. Hebert, Structure discovery in multi-modal data: a

region-based approach, In ICRA.

[78] N. Silberman, D. Hoiem, P. Kohli, R. Fergus, Indoor segmentation and support infer-

ence from rgbd images, In 12th European Conference on Computer Vision (ECCV)

(2012) 746–760.

[79] K. I. Kim, J. Tompkin, M. Theobald, J. Kautz, C. Theobalt, Match graph construc-

tion for large image databases, In 12th European Conference on Computer Vision

(ECCV) (2012) 272–285.

[80] M. Cho, K. M. Lee, Progressive graph matching: Making a move of graphs via prob-

abilistic voting, In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2012) 398–405.

138

[81] N. Hu, R. M. Rustamov, L. Guibas, Graph matching with anchor nodes: A learning

approach, In IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2013) 2906–2913.

[82] F. Zhou, F. D. la Torre, Deformable graph matching, In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) (2013) 2922–2929.

[83] C. Olsson, Y. Boykov, Curvature-based regularization for surface approximation, In

Proc. of IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(2012) 1576–1583.

[84] H. Liu, S. Yan, Efficient structure detection via random consensus graph, In Proc.

of IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

574–581.

[85] C. Wallraven, B. Caputo, Recognition with local features: the kernel recipe, In 9th

International Conference on Computer Vision (ICCV) (2003) 257–264.

[86] C.-J. Lin, R. C. Weng, Simple probabilistic predictions for support vector regression,

In Technical report Department of Computer Science, National Taiwan University.

[87] A. Varol, A. Shaji, M. Salzmann, P. Fua, Monocular 3d reconstruction of locally

textured surfaces, In PAMI 34 (6) (2012) 1118–1130.

[88] J. T. Barron, J. Malik, Shape, albedo, and illumination from a single image of an

unknown object, In CVPR.

[89] J. T. Barron, J. Malik, Color constancy, intrinsic images, and shape estimation, In

ECCV.

[90] K. Karsch, Z. Liao, J. Rock, J. T. Barron, D. Hoiem, Boundary cues for 3d object

shape recovery, In CVPR.

139

[91] T. Xue, J. Liu, X. Tang, Symmetric piecewise planar object reconstruction from a

single image, In CVPR.

[92] K. Köser, C. Zach, M. Pollefeys, Dense 3d reconstruction of symmetric scenes from

a single image, In DAGM.

[93] D. Hoiem, A. Efros, M. Hebert, Geometric context from a single image, In ICCV.

[94] O. Barinova, V. Konushin, A. Yakubenko, K. Lee, H. Lim, A. Konushin, Fast auto-

matic single-view 3-d reconstruction of urban scenes, In ECCV.

[95] E. Delage, H. Lee, A. Ng, Automatic single-image 3d reconstructions of indoor man-

hattan world scenes, In Robotics Research.

[96] E. Delage, H. Lee, A. Ng, A dynamic bayesian network model for autonomous 3d

reconstruction from a single indoor image, In CVPR.

[97] A. Saxena, M. Sun, A. Y. Ng, Make3d: Learning 3d scene structure from a single

still image, In PAMI 31 (5) (2009) 824–840.

[98] M. R. Oswald, E. Töppe, D. Cremers, Fast and globally optimal single view recon-

struction of curved objects, In CVPR.

[99] L. Zhang, G. Dugas-Phocion, J.-S. Samson, S. M. Seitz, Single view modeling of

free-form scenes, In CVPR.

[100] E. Töppe, M. R. Oswald, D. Cremers, C. Rother, Image-based 3d modeling via

cheeger sets, In ACCV.

[101] E. Toppe, C. Nieuwenhuis, D. Cremers, Relative volume constraints for single view

3d reconstruction, In CVPR.

[102] T. Hassner, R. Basri, Single view depth estimation from examples, In CoRR, ab-

s/1304.3915.

140

[103] T. Hassner, R. Basri, Example based 3d reconstruction from single 2d images, In

CVPR workshop.

[104] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, L. Gool, Shape-from recognition:

Recognition enables meta-data transfer, In CVIU.

[105] Y. Chen, T.-K. Kim, R. Cipolla, Inferring 3d shapes and deformations from single

views, In ECCV.

[106] Y. Chen, R. Cipolla, Single and sparse view 3d reconstruction by learning shape

priors, In CVIU 115 (5) (2011) 586–602.

[107] E. Herbst, X. Ren, D. Fox, Rgb-d object discovery via multi-scene analysis, In IROS.

[108] H. S. Koppula, A. Anand, T. Joachims, A. Saxena, Semantic labeling of 3d point

clouds for indoor scenes, In Neural Information Processing Systems (NIPS) (2011)

244–252.

[109] N. Silberman, R. Fergus, Indoor scenen segmentation using a structrued light sensor,

In IEEE International Conference on Computer Vision Workshop (ICCV Workshops)

(2011) 601–608.

[110] B. Browatzki, J. Fischer, G. Birgit, H. Bulthoff, C.Wallraven, Going into depth:

Evaluating 2d and 3d cues for object classification on a new, large-scale object dataset,

In IEEE International Conference on Computer Vision Workshop (ICCV Workshops)

(2011) 1189–1195.

[111] G. Bradski, T. Hong, Nist and willow garage: Solution in perception

challenge, http://www.willowgarage.com/blog/2011/02/28/nist-and-willow-garage-

solutions-perception-challenge.

[112] S. Helmer, D. Meger, M. Muja, J. J. Little, D. G. Lowe, Ubc robot vision survey,

http://www.cs.ubc.ca/labs/lci/vrs/index.html.

141

[113] M. Sun, G. Bradski, B.-X. Xu, S. Savarese, Depth-encoded hough voting for joint

object detection and shape recovery, In The 11th European Conference on Computer

Vision (ECCV) (2010) 658–671.

[114] A. Janoch, The berkeley 3d object dataset. http://www.eecs.berkeley.edu/Pubs/

TechRpts/2012/EECS-2012-85.html, Master’s thesis, EECS Department, Universi-

ty of California, Berkeley (May 2012).

[115] W. Wohlkinger, A. Aldoma, R. Rusu, M. Vincze, Large-scale object class recogni-

tion from cad models, In Proc. of IEEE International Conference on Robotics and

Automation (ICRA) (2012) 5384–5391.

142

Acknowledgements

Within these five years, I have forgotten how many times I doubted about my research.

“Can my current topics really make some changes to this field?” “Based on current method-

ologies, has this filed fallen into a bottleneck or does it still have any hidden hope for new

technical breakthroughs?” I have changed my topics from the field of robotics to the fields

of computer vision and machine learning. I have tried to search the hope in directions of

intelligent vehicles, 3D point cloud processing, RGB-D image processing, pedestrian de-

tection, pose estimation, motion capture, and object recognition, and then escaped from

them.

Thanks to the God, who I may know or may not know, after the first three years of

continuous failure and depression, I can finally find the topic of visual mining and obtain

the gift to invent the powerful tool of attributed graph mining to deal with all the challenges

related to visual mining, which makes the impossible task possible.

The person who I would like to thank most is my supervisor, Prof. Shibasaki Ryosuke.

He has made a loose and free research environment for me, which made me be able to

survive with great pressure and self-doubt deep in my mind in these years.

I have received much academic guidance from Dr. Xuan Song. He made me keep confi-

dent when I had experienced much failure and could not determine my research direction.

Many ideas in my studies are inspired by discussion between us.

I also want to thank Dr. Xiaowei Shao, Dr. Yulin Duan, and Prof. Huijing Zhao for

their supports.

143

Curriculum Vitae

Brief Background Description

My name is Quanshi Zhang. I was born on 22, October 1986, and received the Bachelor of

Science from the School of Electronics Engineering and Computer Science, Peking Universi-

ty, China, in 2009, and the Master of Engineering, from the Civil Engineering Department,

University of Tokyo, in 2011. From 2011 to 2014, I am a doctoral student in Center for S-

patial Information Science, Civil Engineering Department, University of Tokyo, supervised

by Prof. Ryosuke Shibasaki. I will get the doctoral degree in September 2014. My main

research interests are computer vision, machine learning, and robotics, especially on the

graph theory and visual knowledge mining from big visual data.

Education

9/2005—8/2009 Peking University

Undergraduate student in Department of Computer Intelligence Science (CIS), School of

Electronics Engineering & Computer Science (EECS)

10/2009—9/2011 University of Tokyo

Master student in Department of Civil Engineering

10/2011—9/2014 University of Tokyo

Doctoral student in Department of Civil Engineering

Publication List

Journal paper:

(1) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

144

“From RGB-D Images to RGB Images: Single Labeling for Mining Visual Models”, to

appear in ACM Transactions on Intelligent Systems and Technology (TIST), 2014.

(2) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

“Unsupervised skeleton extraction and motion capture from 3D deformable matching”,

Neurocomputing, Elsevier, pp.170–182 2013.

(3) Xuan Song, Quanshi Zhang, Y. Sekimoto, T. Horanont, S. Ueyama, Ryosuke Shibasa-

ki, “An Intelligent System for Large-scale Disaster Behavior Analysis and Reasoning”, ac-

cepted by IEEE Intelligent Systems.

(4) Xuan Song, Xiaowei Shao, Quanshi Zhang, Ryosuke Shibasaki, Huijing Zhao, Jinshi

Cui, Hongbin Zha, “A Fully Online and Unsupervised System for Large and High Density

Area Surveillance: Tracking, Semantic Scene Learning and Abnormality Detection”, ACM

Transactions on Intelligent Systems and Technology (ACM-TIST), 4(2): 20, 2013.

(5) Xuan Song, Xiaowei Shao, Quanshi Zhang, Ryosuke Shibasaki, Huijing Zhao, Hongbin

Zha, “A Novel Dynamic Model for Multiple Pedestrians Tracking in Extremely Crowded

Scenarios”, Information Fusion, Elsevier, 2012.

Conference paper:

(6) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

“Unsupervised Learning for Graph Matching: An Attempt to Define and Extract Soft

Attributed Patterns”, in Proc. of IEEE International Conference on Computer Vision and

Pattern Recognition (CVPR) 2014.

(7) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

“When 3D Reconstruction Meets Ubiquitous RGB-D Images”, in Proc. of IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition (CVPR) 2014.

(8) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

“Start from Minimum Labeling: Learning of 3D Object Models and Point Labeling from a

Large and Complex Environment”, in Proc. of IEEE International Conference on Robotics

145

and Automation (ICRA) 2014.

(9) X. Song, Quanshi Zhang, Y. Sekimoto, R. Shibasaki, “Prediction of Human Emer-

gency Behavior and their Mobility following Large-scale Disaster”, to appear in Proc. of

20th SIGKDD conference on Knowledge Discovery and Data Mining (KDD 2014), 2014.

(10) Xuan Song, Quanshi Zhang, Y. Sekimoto and Ryosuke Shibasaki, “Intelligent System

for Urban Emergency Management During Large-scale Disaster”, in Proc. of Twenty-

Eighth AAAI Conference on Artificial Intelligence (AAAI) 2014.

(11) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

“Learning Graph Matching for Category Modeling from Cluttered Scenes”, in Proc. of

14th International Conference on Computer Vision (ICCV) 2013.

(12) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

“Category Modeling from just a Single Labeling: Use Depth Information to Guide the

Learning of 2D Models”, in Proc. of IEEE International Conference on Computer Vision

and Pattern Recognition (CVPR) 2013.

(13) Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, and Ryosuke Shibasaki,

“Unsupervised 3D Category Discovery and Point Labeling from a Large Urban Environ-

ment”, in Proc. of IEEE International Conference on Robotics and Automation (ICRA)

2013.

(14) Xuan Song, Quanshi Zhang, Y. Sekimoto, T. Horanont, S. Ueyama, Ryosuke Shibasa-

ki, “Modeling and Probabilistic Reasoning of Population Evacuation During Large-scale

Disaster”, in Proc. of 19th SIGKDD conference on Knowledge Discovery and Data Mining

(KDD 2013). (full paper)

(15) Xuan Song, X. Shao, Quanshi Zhang, Ryosuke Shibasaki, Huijing Zhao, Hongbin

Zha, “Laser-based Intelligent Surveillance and Abnormality Detection in Extremely Crowd-

ed Scenarios”, in Proc. of IEEE International Conference on Robotics and Automation

(ICRA), pp. 2170-2176, 2012.

(16) Huijing Zhao, Quanshi Zhang, M. Chiba, Ryosuke Shibasaki, Jinshi Cui, Hongbin

Zha, “Moving Object Classification using Horizontal Laser Scan Data”, in Proc. of IEEE

146

International Conference on Robotics and Automation (ICRA), 2009.

147

