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[1] In order to answer why and how “the minimum angle rotation of the magnetic field”
is realized in a current sheet with a sheared magnetic field, Taylor’s helicity constraint,
which is valid for low-3 plasmas, is applied to a one-dimensional planar current sheet with
a sheared magnetic field. A single constant helicity is defined for the total rectangular
volume surrounding the current sheet and is shown to be gauge-invariant. The
minimization of the magnetic energy with the constraint of the constant total helicity
shows that the field is described by the constant « force-free equation and that the current
sheet is a special class of tangential discontinuities with a constant field strength, or a
“perpendicular rotational discontinuity.” The total rotational angle of the magnetic field
across the current sheet is proportional to the ratio of the total magnetic energy/helicity in
the force-free state. It is proposed that among an infinite number of force-free states the

current sheet relaxes into a unique force-free state with the absolute minimum ratio of
energy/helicity and thus into the absolute minimum energy state for a given constant
helicity. Therefore, in the relaxed state the total rotational angle of the magnetic field
across the current sheet is minimum and less than 180°. Although the present study of the
relaxed state is applicable only to a tangential discontinuity, a qualitative resemblance of
the model prediction with observations in situ and simulations of quasi-perpendicular
rotational discontinuities suggests that the observed minimum angle rotation of the
magnetic field in a current sheet with a sheared magnetic field is an emergence of plasma

relaxation or self-organization in space plasmas.

INDEX TERMS.: 7811 Space Plasma Physics:

Discontinuities; 2109 Interplanetary Physics: Discontinuities; 2724 Magnetospheric Physics: Magnetopause,
cusp, and boundary layers; 7524 Solar Physics, Astrophysics, and Astronomy: Magnetic fields; 2708
Magnetospheric Physics: Current systems (2409); KEYWORDS: current sheet, discontinuities, self-organization,

helicity, force-free magnetic field, minimum energy state

1. Introduction

[2] The current sheet in magnetized plasmas is a typical
example of a nonequilibrium system in the thermodynamic
sense and it is observed in space, astrophysical, and labo-
ratory plasmas. Current sheets occurring in nature have a
finite thickness and internal field structure, because the zero
thickness creates an infinite current density, which is
unphysical, or because intrinsic kinetic scale lengths such
as the ion Larmor radius are finite. The most well studied
current sheet is the Harris sheet [Harris, 1962], which is the
one-dimensional current sheet with a one-directional field
and a hyperbolic-tangent field profile. Concerning the field
structure in current sheets, a remarkable finding of Son-
nerup and Ledley [1979] is the continuous rotation of the
magnetic field across the current sheet at the magnetopause.
They found in outbound magnetopause crossings, in which
the magnetosheath side of the magnetopause is approached,
that when the sheath field is almost antiparallel to that in the
magnetosphere (northward field), the field reverses direc-
tion across the magnetopause by a rotation through the
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magnetopause rather than by a decrease of the northward
field to zero followed by an increasing southward field as
expected for the Harris sheet. Berchem and Russell [1982a]
further showed that the sense of the magnetic field rotation
through the current layer in the magnetopause is simply
controlled by the relative orientation of the magnetosheath
and magnetospheric fields and that the rotation angle is
minimized when the magnetic field changes from one
orientation to the other, i.e., that the magnetic field rotates
so that the total rotational angle becomes minimum or less
than 180°. These findings of “the minimum angle rotation
of the magnetic field” have been further confirmed by other
magnetopause observations and the field rotations with
rotation angles larger than 180° have seldom been observed.
These findings have also been confirmed by field observa-
tions of rotating field structures in the solar wind [e.g.,
Neugebauer and Buti, 1990] and in the heliospheric current
sheet [e.g., Smith, 2001]. In spite of these extensive obser-
vations of the minimum angle rotation of the magnetic field,
the physics of the field rotation with the minimum field
rotation or shear has not been clear. The primary objective
of this paper is to present a new approach based on Taylor’s
helicity constraint or self-organization principle to answer
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why and how the minimum angle rotation must be realized
among an infinite number of possible rotations in a current
sheet with a sheared magnetic field. More specifically, we
show that the field rotation with the minimum rotation angle
in the current sheet is explained simply by requiring that the
magnetic field there is force-free and the absolute value of
the ratio of the magnetic energy/helicity is absolutely
minimum or that the magnetic energy is absolutely mini-
mum for a given constant helicity. Therefore, the present
study enables us to answer the fundamental question of how
the external magnetic field outside the magnetopause
adjusts itself to the magnetic field inside the magnetopause
in the transition region from the magnetosheath to the
magnetosphere. Although it has been suggested that the
heliospheric current sheet is force-free [Smith, 2001] and, as
a related problem, there are models of interplanetary mag-
netic clouds solved by force-free fields [Burlaga, 1988], this
paper specifically applies Taylor’s helicity constraint and
force-free fields to explanation of the minimum angle
rotation of the magnetic field.

[3] Self-organization processes always occur in systems
far from thermodynamic equilibrium, and by these pro-
cesses a plasma relaxes into a self-organized state. Since the
self-organization needs dissipation, the self-organization
and dissipation are interconnected. Therefore, the complete
understanding of the transport processes at the current sheet
requires the understanding of self-organization processes.
The study of the plasma relaxation into a force-free state
[Taylor, 1974], based on an earlier study of Woltjer [1958],
is a remarkable example of the self-organization of a plasma
[Hasegawa, 1985]. According to the plasma relaxation the
turbulence, allied with finite but small enough resistivity,
allows the plasma rapid access to a particular minimum-
energy state, where the plasma is stable. In that relaxation
process the magnetic energy becomes minimum with a
constraint that the global magnetic helicity is invariant.
The concept of the magnetic helicity was first discussed
for astrophysical plasmas by Woltjer [1958]. Since the
helicity in general depends on the choice of the gauge
function [Berger and Field, 1984; Heyvaerts and Priest,
1984; Finn and Antonsen, 1985], the helicity has a physical
significance only when it is gauge-invariant. The use of the
magnetic helicity in the general theory of magnetic recon-
nection in space plasmas has been discussed by Schindler et
al. [1988]. Taylor [1974, 1986] showed that the spontaneous
generation of reversed fields in toroidal plasmas is a
consequence of such a relaxation process under helicity
constraints. Such a theory of the plasma relaxation or self-
organization into a force-free state has been successfully
applied to plasmas in many different laboratory systems and
to astrophysical plasmas, in particular, to the solar corona
[e.g., Heyvaerts and Priest, 1984].

[4] Although a “discontinuity” observed in space plasmas
has a finite thickness, the MHD jump conditions across the
ideal ““discontinuity” are also valid for a finite thick “dis-
continuity” as long as the “discontinuity” is one-dimen-
sional, since the contributions to the surface or line integrals
of quantities from the portion within the discontinuity, from
which the jump conditions of the quantities are obtained,
cancel out owing to the one-dimensional assumption. There-
fore, an important magnetic field characteristic of the tangen-
tial discontinuity that the tangential field can change its
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magnitude and direction across the discontinuity is also
applicable to the finite thick tangential “discontinuity’’. Also,
the important field characteristics of the rotational disconti-
nuity that the normal field component B,, and the magnitude
of the tangential field are equal across the discontinuity
[Landau and Lifshitz, 1984] are applicable to the finite thick
rotational ““discontinuity”. Following the conventional def-
inition, we call the rotational discontinuity having a normal
vector nearly perpendicular to the total magnetic field a
“quasi-perpendicular rotational discontinuity” [Neugebauer
and Buti, 1990]. Furthermore, it may be appropriate to call a
special rotational discontinuity having B,, = 0 and a constant
tangential field strength (with the normal vector perpendic-
ular to the total magnetic field) a “perpendicular rotational
discontinuity”, which is also a special class of tangential
discontinuities with a constant field strength.

[s] Since the magnetic field structure in discontinuities at
the magnetopause has traditionally been studied using a
kinetic approach and those results are very relevant to the
present study, it is necessary here to describe a brief history
of the kinetic approach. Su and Sonnerup [1968] showed
that in the case of a rotational discontinuity, which is a large
amplitude standing Alfvén wave, the tangential magnetic
field has a polarization, which is the same as that of the
electron whistler mode. Swift and Lee [1983] investigated
the magnetic field rotation by a one-dimensional particle
simulation for the rotational discontinuities whose normal
vectors are nearly perpendicular to the total field direction
and found that the initial rotational discontinuity with the
rotational angle larger than 180° becomes unstable, while
the rotational discontinuity with the rotational angle smaller
than 180° is stable. Richter and Scholer [1989] investigated
the stability of symmetric rotational discontinuities in which
the magnetic field rotates by 180° via hybrid simulations.
They found that those rotational discontinuities with large
angle Oy, between the discontinuity normal vector and the
total magnetic field (quasi-perpendicular rotational discon-
tinuity) are stable, while those with small Oy, are not stable.
Goodrich and Cargill [1991] investigated the structure of
rotational discontinuities by using hybrid simulations for a
range of Oy, and plasma (3. On the basis of simulations of
rotational discontinuities with small ion B, Vasquez and
Cargill [1993] examined the evolution of rotational dis-
continuities with various ©y,, plasma (3, and the ion to
electron temperature ratio. Krauss-Varban et al. [1995]
studied the properties of rotational discontinuities with
Opn, = 60° and 80° by using hybrid simulations, which
adopt a dynamic formation mechanism with a piston
method, and found that the rotational discontinuities choose
the sense of rotation that corresponds to the minimum angle
between the upstream and downstream field vector. Lin and
Lee [2000] studied, by using hybrid simulations, the evo-
lution of magnetic field rotations in rotational discontinu-
ities whose initial field rotation angles are larger than 180°
for different Oy, and found that the rotational discontinu-
ities evolve until smaller rotation angles less than 180° are
reached. Omidi [1992] extended hybrid simulations of
quasi-perpendicular rotational discontinuities to include a
temperature anisotropy in the magnetosheath without a
priori assumptions regarding the initial structure of the
rotational discontinuity. The results are in agreement with
both the observations [e.g., Berchem and Russell, 1982a]
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and previous simulation studies that show the tendency of
the minimum angle rotation of the magnetic field. There-
fore, for quasi-perpendicular rotational discontinuities many
hybrid simulations have confirmed the minimum angle
rotation of the magnetic field.

[6] The field rotation in the tangential discontinuity has
also been investigated using a kinetic approach. Roth [1978]
generalized a Vlasov-Maxwell approach introduced by
Sestero [1964, 1966] and showed that the arbitrary angle
of the magnetic field rotation is created by suitably choosing
distribution functions. On the basis of Vlasov-Maxwell
equations, Lee and Kan [1979] showed for the tangential
discontinuity that the presence of trapped particle popula-
tions inside the magnetopause is required in order to allow
the magnetic field to rotate more than a certain critical angle
(~90°). Kuznetsova et al. [1994] considered the effect of the
velocity shear at the magnetopause on the structure of the
tangential discontinuity based on Vlasov-Maxwell equa-
tions and such a kinetic analysis has been further extended
to more realistic configurations by De Keyser and Roth
[1997]. De Keyser and Roth [1998] further give precise
predictions concerning the sense and the magnitude of the
magnetic field rotation based on assumptions concerning
the velocity distributions. Although these kinetic analyses
based on Vlasov-Maxwell equations are self-consistent,
they remain complicated and not completely conclusive as
they depend on the features of the particle distributions,
boundary conditions, and many unavoidable simplifying
assumptions. Therefore, in spite of these detailed kinetic
studies of the field rotation, the physics of the field rotation
has not been clarified, specifically concerning why the
minimum angle rotation must occur.

[7] When the internal energy of plasma and hence Vp are
neglected in the current sheet, an assumption valid for low-3
plasmas, the requirement of a minimum magnetic energy
with the constraint of the constant magnetic helicity, yields
that the magnetic field in the steady state is force-free and is
characterized by a single constant o [Zaylor, 1974]. Then,
only the magnetic field rotation is allowed inside the one-
dimensional current sheet, because the magnetic field
strength must be uniform. Therefore, the solution of the
internal structure and rotation of the magnetic field appears
to be uniquely determined and trivial. However, this is not
the case, because the rotation angles of any multiples of
360° can be added to the field rotation angle without
violating the field directions imposed at both ends of the
current sheet. Furthermore, the clockwise and counter
clockwise rotations are allowed as different solutions.
Therefore, there are an infinite number of possible force-
free solutions with different field rotations within the
current sheet. Among such infinite solutions, nature must
realize a unique solution and a current sheet with the
minimum rotation angle has been predominantly observed.
Since the force-free equation itself, which allows an infinite
number of solutions, cannot determine a unique rotation
among the infinite number of solutions, which unique
solution of the field rotation is realized in the current sheet
must be determined by an independent physical discussion.
In this study we show that there is a clear relationship
between the magnetic energy, the helicity, and the total
rotational angle of the magnetic field in a current sheet with
a sheared magnetic field in the constant « force-free states
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and that a physical consideration about the relationship
between the helicity and the magnetic energy leads to the
unique determination of the minimum energy state for the
given helicity. Although the present study is a basic study
clarifying the field structure inside the ideally simplified
current sheet with spatially constant field strength, the
present results are applicable to magnetopause current
layers, current layers in the solar wind, and current layers
in space and astrophysical plasmas at least when the
magnetic field strength in those current layers is constant
and B, = 0. Such a magnetopause crossing with a nearly
constant field strength and B,, ~ 0 has often been observed
at the magnetopause [e.g., Sonnerup and Ledley, 1979].

[8] The structure of the present paper is as follows. In
section 2 we summarize briefly Taylor’s helicity constraint.
In section 3 a model of the one-dimensional current sheet
with sheared magnetic field is described and a constant o
force-free state is defined. In section 4 the physical meaning
of the constant « is clarified and multiple solutions of the
constant o force-free equations are obtained. In section 5
the magnetic energy and the helicity in a specific volume in
the current sheet, when it is a force-free state, are defined
and the relationship between the total magnetic energy and
the gauge-invariant helicity is clarified. In section 6 hodo-
grams of the force-free magnetic field in the current sheet
including the minimum energy state are shown for a
representative case. In section 7 a discussion is given and
the possible relevance of the present results to observations
and simulations is discussed. In section 8 a summary is
given. In Appendix A the constant o force-free field is
given by using the present notation of variables.

2. Taylor’s Helicity Constraint

[o] Taylor [1974] conjectured that when the plasma is not
in stable equilibrium and when it is released, the plasma will
move and dissipate energy before coming to rest. Only
when its energy is a minimum is it incapable of further rapid
movement. Hence the final state must be one which makes
the energy a minimum subject to any constraints which are
imposed on the allowed motion. The major problem, of
course, lies in determining and applying these constraints.
Taylor [1974] has shown that the ideal MHD frozen-in
constraint can be replaced by an infinite set of integral
constraints involving the field line helicity defined for
arbitrary individual flux tube volume. Therefore, when the
plasma is perfectly conducting and the internal energy is
neglected, the plasma state, in which the total magnetic
energy is a minimum with a constraint of the invariance of
the field line helicity defined for arbitrary individual flux
tube volume, is given by [Taylor, 1974; Freidberg, 1987]

V x B=XB (1)

where X is a function of each field line, i.e., a function of
position, and has a different value on different field lines (B -
VX = 0). Hence when all the constraints appropriate to a
perfectly conducting fluid are observed, the state of the
minimum magnetic energy is some force-free configuration.
In other words, if the magnetic energy is a minimum, the
field can produce no motions, and therefore the Lorentz
force must vanish, or the field must be force-free.
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[10] Now let us consider how the situation is modified by
small departures from the perfect-conductivity approxima-
tion. The main consequence of any small departure from
perfect conductivity is that topological properties of the
magnetic field are no longer preserved and lines of force
may break and coalesce. The field line helicity defined for
each flux tube is no longer an invariant for each line of
force. In such systems field line topology need no longer be
preserved as the plasma moves so that a much wider class of
lower energy states is now accessible. Taylor [1974]
assumed that an infinite number of individual field line
helicities, conserved in the case of infinite conductivity, are
reduced to the single global helicity integral defined for the
total volume V of the system due to finite but small enough
resistivity in the system. Then minimizing the energy under
constant global helicity defined for the total volume V of the
system using the appropriate Lagrange multiplier function
[Woltjer, 1958] yields

V xB=aB (2)

where « is now a single constant having the same value on
all field lines. Thus, when topological constraints are
relaxed, the final state is no longer any force-free
configuration but a specific one completely determined
once the constant o and the boundary conditions are known.

3. Model of the One-Dimensional Current Sheet
With Force-Free Sheared Magnetic Field

[11] Let us assume that the current sheet is planar and has
a thickness of 2b. Figure 1 shows a model of the one-
dimensional current sheet used in the present calculation.
The current sheet exists between x = —b and x = b. Two
planes shown in Figure 1 are parallel to the y-z plane.
Magnetic field vectors at x = —b and x = b, which lie in
the y-z plane, are shown by B in Figure 1. We use the one-
dimensional assumption, i.e., that the magnetic field B(x) is
the function of only x. The total volume V used in the present
problem is a region with [x| <b,0 <y <l,and 0 <z < 1.
By minimizing the magnetic energy under constraint of
constant global helicity defined for V using the appropriate
Lagrange multiplier function, we obtain (2). Substitution of
B = (By, By, B,) into (2) and the one-dimensional assump-
tion, i.c., that the quantities are functions of only x, yield

B, =0 3)

Next, by taking the cross product of B with (2) and using
the one-dimensional assumption we obtain VB?*(x) = 0,
which yields

Bf,(x) + B%(x) = B} = const.(By > 0) (4)

where By is the constant magnetic field strength, which is
independent of x, but is in general a function of a.
Therefore, the present one-dimensional model of the current
layer with a force-free magnetic field is the tangential
discontinuity with a constant field strength or the rotational
discontinuity with zero normal magnetic field component
(“perpendicular rotational discontinuity”).
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[12] Let us define the phase angle 6 of the magnetic field,
which is the angle between the magnetic field vector and the
z axis. We assume that 6 =0, atx = —band 6 =0, at x =b.
Then the magnetic fields at x = b and —b are

B(—b) = By(0, sin 0y, cos 0;) (5)
B(b) = By(0, sin 05, cos 0,) (6)

We obtain by taking curl of (2)
V’B +o’B =0 (7)

We obtain d/dx (cos 0) = —a sin 6 from the y-component of
(2). Therefore, we obtain

do

ax a (8)
which means that the field rotation occurs with a constant
rotation rate. Therefore, when 0, and 0, are different, the
possible solution of the field configuration is the rotating
magnetic field, which has a uniform strength and rotates
continuously from 0; to 6, with the constant rotation rate .

4. Physical Meaning of Constant o and Multiple
Solutions of Constant o Force-Free Equation

[13] We obtain from (2) that

B-(VxB) Mol

TR B ©)
where j is the field-aligned current density. Therefore, the
constant «, which is the constant rotation rate of the
magnetic field, is also proportional to the field-aligned
current density. The quantity ab gives the eigenvalue o in
the present eigenvalue problem (7). Since any multiples of
27 can be added to 6, at x = b, we obtain in general

0=0,+2nm(n=0,£1,£2,...)atx =b (10)

By integrating (8) from x = —b to x = b we obtain

0, — 0 +2nmw = 2ab (n =0, +1,42,...) (11)
This means that for the same 0; and 0, there are an infinite
number of constant « force-free fields characterized by
different n values. This gives the general solution of a.. The
equation (11) means that ab is equal to half of the total
rotation angle of the magnetic field as x changes from —b to
b. Notice that the negative ab indicates that the rotation of
the magnetic field through the current sheet as x increases
from x = —b to x = b is counter clockwise in the By-B,
plane. The positive ab indicates that the rotation of the
magnetic field is clockwise in the By-B, plane. We obtain
from (8) by using 6 = 0; at x = —b

0=a(x+b)+0 (n=0+1,42,...) (12)
The solutions of the force-free equation (2) for constant
which is reduced to (7), are given in Appendix A by using
the present notation of variables. The force-free solution
((A1) and (A2)) appears to be unique. However, this is not
the case, because there are an infinite number of possible
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Figure 1.
B is a function of x.

eigenvalues « characterized by different n values, which
characterize the clockwise and counterclockwise rotations
as different solutions. Therefore, there are an infinite
number of possible force-free solutions with local minimum
energies. The force-free equation (2) itself cannot determine
which particular n is realized in nature and an independent
physical consideration is necessary to determine a unique
solution, which is realized in nature.

5. Relationship Between the Magnetic Energy,
Helicity, and Constant o in the Force-Free State

[14] In the calculus of variations of Woltjer [1958], the
total magnetic energy and the helicity are calculated in a
specific volume V. Let us use the vector potential A, which
satisfies

B=V x A (13)

We define the total magnetic energy Wy, in the volume V by

B2 b B2
WM:///—dV:/ B
v 29 —b 2Hg

We also define the helicity Ky in this volume by

1 1 /b
Kp == A-Bdv=- | A-Bd
w=y [ [ [amav=y [ ame

Since the definition of the vector potential A allows the
choice of an arbitrary gauge function, the helicity Ky is in
general gauge-dependent, when B - n # 0 at the surface of
the volume V, where n is the surface normal vector.

[15] From (2) and (13) we obtain

(14)

(15)

VxA—1vVxB (16)
Q
at —b < x < b, when a # 0. Since « is constant, this yields

AfluB=Vq:>(x) (17)

-l
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One-dimensional model of a current sheet with a sheared magnetic field. The magnetic field

Here, @(x) is an arbitrary function of x and the appearance
of Vp(x) in the right hand side reflects the fact that A is
gauge-dependent. By substituting (17) into (15) we obtain

1 ("1 1 b
Ky — — B Bdx=— | B 18
y z/_bL +v«p<x)} L

where the gauge-dependent term vanishes and the helicity
Ky is gauge-invariant in the present one-dimensional planar
model of the force-free current sheet.

[16] Using (14), (18) becomes simply

W
m_ & (19)
Km o

This important relationship means that the ratio of the total
magnetic energy Wy and the helicity Ky of each force-free
state is gauge-invariant and is proportional to the constant .
Since the total magnetic energy Wy, is positive, o and the
helicity Ky, in the same force-free state must have the same
signs. This relationship can determine a unique solution of v
in the force-free equation in a physically meaningful way as
follows. Taylor [1974] conjectures that the plasma will
evolve to that particular state which has the lowest absolute
value of the magnetic energy. Therefore, by assuming that
different rotation states have the same Ky, we find from (19)
that the state with the absolute minimum |«| has the lowest
Wwum. On the basis of this conjecture we propose in the
present problem of the field rotation in a force-free current
sheet with a sheared magnetic field that the state with the
absolute minimum energy or the minimum rotation angle is
the final unique force-free rotation state, which is realized in
nature among an infinite number of force-free states.

6. Example of Hodograms for the
Force-Free Field

[17] We assume that 0, is an arbitrary angle and that 6, is
equal to 0. This corresponds to the ideal magnetopause
situation, in which 0; is an arbitrary polar angle of the
magnetosheath magnetic field and 6, is the polar angle of
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(a) Hodogram of the magnetic field for ab = —m/4 when 0, = 7/2 and 6, = 0. (b) Hodogram of

the magnetic field for ab = 3w/4 when 6; = ©/2 and 6, = 0.

the magnetospheric field, which is due north. Without loss
of generality we can assume that 0 < 6; — 6, < 2x. In the
following we obtain force-free fields for a particular case
with 6; = ©/2. In this case we obtain from (11) that

ab=—"tnm(n=0,%1,+2,..)

: (20)

6.1. Negative Helicity States With n =0, —1, -2, ...

[18] The state with n = 0 gives ab = —mn/4 and has the
minimum absolute value of the ratio of energy/helicity. This
state has the absolute minimum rotation angle of the
magnetic field within the current sheet and is therefore the
rotation state, which is realized according to the discussion
in section 5. The eigenmode solutions of By (x) and B, (x) in
this case is obtained by substituting ab = —n/4 into (A1) and
(A2). The hodogram of the magnetic field at —b < x < b is
shown in Figure 2a. The tip of the normalized magnetic field
at x = —b is located at (1, 0) in the normalized B, —B, plane.
The tip of the magnetic field vector at x =b is located at (0, 1)
in the same plane. The trace of the tip of the magnetic field in
the B,—B, plane is a quarter circle, which has the minimum
rotation angle for transition from x = —b to x = b.

6.2. Positive Helicity States Withn =1, 2, ...

[19] The smallest positive value of the ratio of energy/
helicity in this case occurs for n = 1 in (20), i.e., ab = 31/4.
Figure 2b shows the hodogram of the magnetic field in this
state. The total rotation angle for this state is 3w/2 and the
rotation occurs clockwise from (1, 0) to (0, 1) in the
normalized By—B, plane. As is obvious, this is not the state
with the minimum absolute ratio of the magnetic energy/
helicity. The total rotation angle of the magnetic field is
larger than T in this case and therefore is not the rotation
state, which is realized in nature, according to the discussion
in section 5.

7. Discussion

[20] The present analysis is an eigenmode analysis
obtaining the lowest energy state among an infinite number

of force-free eigenstates for given boundary conditions. For
a given constant helicity the lowest energy state is the force-
free state with the minimum rotation angle of the sheared
magnetic field. We obtained the minimum rotation angle |«
and the corresponding minimum magnetic energy according
to equation (19) for a given constant helicity. It is obvious
that we give only 6, and 6, at the boundaries and the field
strength By is not given at the boundaries and hence the
magnetic energy (14), which is proportional to B}, is a
quantity to be obtained. This is more evidently seen by
writing the present eigenmode equation (2) with the con-
stant field strength explicitly in the form not including By as
follows;

V xb=ab (21)
where b is the magnetic field normalized by the constant B,
i.e., b = B/By.

7.1. Stability of Force-Free States

[21] The stability argument of force-free states shows that
for higher energy states there does exist an infinitesimal
helicity-preserving perturbation that decreases the magnetic
energy [e.g., Kriiger, 1976; Bondeson et al., 1981; Berger,
1985]. Therefore, the system relaxes eventually to the
absolute minimum energy state. The small changes in the
helicity or boundary conditions cannot trigger an instability
from the minimum energy state and, therefore, the minimum
energy state is stable [Berger, 1985]. Although the present
analysis is not a time dependent analysis, the above stability
argument supports the present conjecture in section 5 that
the current sheet with a sheared field relaxes into a unique
force-free state with the absolute minimum magnetic energy
for a given constant helicity and hence with the minimum
rotation angle of the sheared field. In other words, the
magnetic field rotation in a current sheet with a sheared
field occurs so that the total rotation angle becomes mini-
mum or less than 180°. Since the total rotational angle is
proportional to the field-aligned current density, this also
means that the magnetic field rotation occurs to realize the
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minimum absolute value of the field-aligned current density
in the current sheet with a sheared magnetic field. However,
this conjecture would not be contradictory to a field rotation
of more than 180°, because such a state can be a higher
energy state, which may eventually relax into the lowest
energy state, although such a higher energy state has seldom
been observed in situ.

7.2. Relevance to Observations and Simulations

[22] In considering the relevance of the present self-
organization or plasma relaxation model to field rotations
observed in situ and in simulations, we should note that the
present model current sheet with a constant field strength B,
and B, = 0 is a special class of tangential discontinuities
with a constant field strength or a perpendicular rotational
discontinuity. Therefore, the present results are strictly
applicable only to those rotational field structures with
B, = 0. The present results are supported by preliminary
observations that the principle of the minimum angle
rotation is valid for several magnetopause crossings when
the magnetopause is clearly a tangential discontinuity with-
out normal magnetic field components (H. Kawano, per-
sonal communication, 1999). There is also a suggestion
based on analyses of solar wind discontinuities that tangen-
tial discontinuities with constant field strength or perpen-
dicular rotational discontinuities resemble rotational
discontinuities with small B,, in some of their characteristics
[Neugebauer et al., 1984; De Keyser et al., 1998]. If this
suggestion is the case and there is indeed a similarity
between the tangential discontinuities with constant field
strength (or perpendicular rotational discontinuities) and
rotational discontinuities with small B,,, the present analysis
for the self-organization in the one-dimensional force-free
current sheet with B, = 0 might be relevant to observational
results of rotating field structures at the magnetopause and
in the solar wind when B, is small.

[23] Concerning the simulation results described in sec-
tion 1, special attention must be paid to the boundary
condition used in those simulations. In most simulations,
except the simulations of Omidi [1992] and Krauss-Varban
et al. [1995] using a piston method, the magnetic fields at
the boundaries (x = +b in the present notation) are fixed.
In those one-dimensional simulations, there is a freedom in
which the magnetic field strength |B(x)| is not constant in
—b <x <b and is allowed to change as a function of x. This
is indeed observed in hodograms in those simulations. For
example, hodograms in Figure 7 of Swift and Lee [1983]
and Figures 1 and 3 of Lin and Lee [2000] show that
although |B] is fixed at the two boundaries throughout their
simulations, the field strength |B| is reduced substantially in
—b <x <b from its initial strength and finally the minimum
angle rotation is realized in those regions of reduced |B| at
the last stage of their simulations. Therefore, although the
magnetic field strength is not allowed to relax near the
boundaries in these simulations, the total magnetic energy
can relax to lower energy so as to become consistent with
the plasma relaxation theory of Taylor [1974].

7.3. Self-Organization and Dissipation

[24] According to the self-organization theory [Zaylor,
1974; Hasegawa, 1985] the plasma relaxation into the
force-free state is realized by the selective dissipation
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process [Rivopoulos et al., 1982]. Taylor [1974, 1986]
conjectured that the turbulence, allied with finite but small
enough resistivity, allows the plasma rapid access to a
particular minimum energy state in the toroidal fusion
plasma. In space plasmas such as the magnetopause and
the solar wind, the plasma is collisionless and a required
resistivity may be due to wave-particle interactions, which
involve momentum transfer between ions and electrons and
can be expressed as an effective resistivity, which is a fluid
term in the generalized Ohm’s law or the equation of motion
of the electron fluid. Another possibility may be that the
required dissipation is due to electron inertia. While Taylor
[1986] suggested that reconnection is involved in such a
decay (dissipation) process for the toroidal plasma, the
observations of the current layer at the magnetopause
suggest that the magnetopause is not always a rotational
discontinuity as expected from the reconnection, but often a
tangential discontinuity [Sonnerup and Cahill, 1968].
Therefore, it is not certain whether such a selective decay
process in the current layer at the magnetopause may always
involve reconnection or may simply be a resistive dissipa-
tion process.

[25] The present study based on the one-dimensional
assumption shows that the relaxed state is only possible
for B, = 0 (or B; = 0 in the present notation) and therefore
the observed rotating structures with non-zero B,, cannot be
the relaxed states. It may be conjectured that the observed
rotating field structures tending to have minimum rotation
angle and a small B, are still in the process of relaxation
into the minimum energy state with B, = 0, if the field line
breaking and coalescence during the relaxation process
require non-zero B;,.

7.4. Limitation of the Model

[26] Taylor’s helicity constraint is derived by assuming
that the plasma (3 is small and the internal energy can be
neglected. Concerning the role of plasma pressure and Vp
in Taylor’s theory we should mention the following reason-
ing by Ortolani and Schnack [1993]. According to the
general force balance equation Vp = j x B, the pressure
becomes constant along flux tubes, but can vary from tube
to tube in a way determined by the initial conditions. There
are again many possible equilibrium states associated with a
given set of externally applied parameters. However, when
finite resistivity is introduced, the breaking and connection
of field lines associated with the relaxation process allow
the pressure to equilibrate over the entire plasma volume.
Thus relaxed states with uniform pressure (Vp = 0) are
obtained even when the plasma 3 is not small. Although this
reasoning by Ortolani and Schnack [1993] seems persua-
sive, direct proof of Taylor’s [1974] conjecture for finite
pressure plasmas is still lacking and therefore the effect of
the nonzero pressure in the present problem should be
investigated in future. In this regard the applicability of
the present simple model to the subsolar magnetopause is
limited to a particular case when the plasma pressure out-
side the subsolar magnetopause is balanced with the plasma
pressure inside the magnetopause, because the j x B force
is nearly zero in such a case. Although such a case is not
predominant, a magnetic field rotation with a systematic
variation of both By and B, with Bf, + B2 approximately
constant even for total rotation angles close to 180° as the
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satellite passes through the magnetopause, is often observed
at the magnetopause (see, for example, Figure 5 of Son-
nerup and Ledley [1979]).

[27] Since the finite pressure or high-3 effect also means
the importance of resonant particles and kinetic effects, the
self-organization for high-3 finite pressure system may be
more complicated partly owing to the kinetic effects.

7.5. Further Extension of the Model

[28] The present approach may be extended in several
ways to include other essential features at the current sheet
in space plasmas. In the real magnetopause or in disconti-
nuities in the solar wind, the bulk velocity is nonzero and it
varies. In such a case the present self-organization model
neglecting flow seems not applicable. However, it is possi-
ble to generalize the present variational approach to include
the variations of both magnetic field and velocity. In such a
case we need two Lagrange multipliers, corresponding to
the fact that there are now two global invariants, i.e., the
magnetic helicity and the cross helicity [e.g., Biskamp,
1993]. Since the magnetic helicity is still an invariant in
such a general configuration, we expect that the magnetic
field in such a case is still described by the force-free
equation. Therefore, the minimum angle rotation of the
magnetic field is still valid even in the presence of a sheared
flow velocity. Furthermore, the constraint on the current
sheet thickness in the present model may be unnecessary. In
the present problem, the thickness of the current sheet 2b is
given arbitrarily. According to observations at the magneto-
pause, this thickness of the current sheet at the magneto-
pause is several times larger than the ion Larmor radius
[e.g., Russell and Elphic, 1978; Paschmann et al., 1978;
Berchem and Russell, 1982b]. Whereas the present analysis
has clarified the self-organizing internal structure of the
magnetic field when the magnetic field directions at two
boundaries of the current sheet with given thickness are
specified, it might be possible to construct a variational
approach to determine also the current sheet thickness at the
magnetopause by including the spatial magnetic field var-
iation in the magnetosphere and minimizing a quantity
related to magnetic energy.

8. Summary

[29] The field rotation across the one-dimensional cur-
rent sheet with a sheared magnetic field was investigated
by using Taylor’s helicity constraint (self-organization
principle). When the topological properties of the magnetic
field are no longer preserved owing to any small depar-
tures from the perfect-conductivity approximation and
when the total helicity defined for the total volume
surrounding the current sheet is conserved, the plasma
relaxes into a constant-o force-free state, which is a
tangential discontinuity with a constant field strength
(perpendicular rotational discontinuity) for the present
one-dimensional planar configuration. For the absolute
minimum energy force-free state and force-free states with
higher energies, the magnetic energy is proportional to the
total rotation angle of the magnetic field and thus only
discrete values of the magnetic energy are allowed in the
force-free states, because only discrete values of the total
rotation angle are possible (see equation (11)). It is
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proposed that among an infinite number of possible
force-free states, a one-dimensional current sheet with a
sheared magnetic field relaxes into a unique force-free
state with B, = 0 and having the absolute minimum
magnetic energy, in which the minimum angle rotation
of the magnetic field occurs and the absolute value of the
field-aligned current density becomes minimum. It is
conjectured that the observed rotating field structures
tending to have minimum rotation angle and a small B,
may still be in the process of relaxation into the minimum
energy state with B, = 0. In order to understand com-
pletely the relevance of plasma relaxation or self-organ-
ization to the observed minimum angle rotation of the
magnetic field in the current sheet with a sheared magnetic
field, further study of the self-organization process for
high-3 (finite pressure) space plasmas is necessary.

Appendix A

[30] Since the phase angle 6 of the magnetic field, which
is measured from the z axis, is given by (12), B, and B, of
the constant « solution of (7) can be written as

By(x) = By sin 0 = By sin (ax + ab + 0;) (A1)

B,(x) = By cos 6 = By cos (ax + ab + 0;) (A2)

Since every solution of the second order differential
equation (7) is not necessarily a solution of the force-free
equation (2) [Chandrasekhar and Kendall, 1957], we
inserted the solutions (Al), (A2) into (2) and found that
the solutions (A1), (A2) are indeed solutions of the force-
free equation (2).
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