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1 INTRODUCTION 

In this thesis, an emotion recognition method by using electroencephalography 

(EEG) is proposed with high accuracy and it is applied on evaluating collected 

real-world emotional speech data for constructing a Japanese emotional database. 

An emotion recognition method using speech based on segment level feature 

analysis is proposed and validated using proposed database. In this chapter, 

background, research purpose and targets are introduced.  

1.1 SOCIAL BACKGROUND 

In recent years, most developed countries are facing serious issues with the 

increasing number of lifestyle related diseases. In Japan, according to the 

statistics from the Ministry of Health, Labour and Welfare, about 55% of people 

death is due to cancer, heart diseases, and cerebro-vascular diseases, which are 

greatly related to unhealthy lifestyles [1]–[3], more detailed statistics from the 

Ministry of Health in Japan for the year of 2009 are shown in Table 1. It can be 

easily inferred that changing circumstances readily affect human perspective and 

subjective feelings, negative and inconstant emotions directly or indirectly cause 

variety of diseases.  
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Table 1. Top ten reasons for death in Japan. 

 

Health psychologists explain a different health status of an individual in aspects 

of experiencing positive and negative emotions. Negative emotions have 

deleterious effects on health. This hypothesis is started with a phenomenon of 

cardiac disorders of soldiers; it is found that negative emotional experiences such 

as combat experiences have long-term effects on human health in later life [4]. 

Then it follows a large number of researches indicate that negative emotions are 

related to coronary heart disease or cardiovascular disorders. Anger and 

aggressive behavior play an essential role in the hypothesis that emotions 

influence physical health and emotions are a precipitating factor in Menieres 

disease [5].  
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Other than negative emotions, positive emotions play a protective role in 

keeping people from diseases. In a study of relationship between positive 

emotions and health based on 2 years’ medical data from 1014 patients, it 

indicates that higher levels of positive emotions were associated with decreased 

likelihood of diseases such as hypertension and diabetes [6]. Another study 

shows that the happiest group of people had few diseases such as 

hypochondriasis and depression [7]. Furthermore, positive affect such as 

happiness has been argued to be distinguishing factor of depression [8].  

To summarize, there exists much phenomenon or experimental data reflecting 

the fact that the positive emotions are a protective factor for human health while 

negative ones can increase risks for getting various diseases. Besides the direct 

influence of physical or mental health, they also engage in behaviors that damage 

one’s health such as alcoholism, smoking, drug abuse, etc.  

1.2 RESEARCH BACKGROUND 

Recently, many studies on engineering methodologies to recognize emotions 

automatically have been proposed due to the growing needs of improving service 

quality in healthcare, human communication, commercial, etc. [9]–[13]. Emotion 

recognition is an interdisciplinary research evolving many research fields such as 

neuroscience, engineering, design, computer science, and others. Though many 

researchers are interested in exchanging and discussing ideas and making effort 
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to share a roadmap, there are difficulties in standardization and different focuses 

for emotion research regarding different purposes in each research field. In late 

1990s, researchers initially tried to use facial and vocal expressions for emotion 

recognition and it’s known as emotional sensing technology. Lots of discussions 

and disputes still exist in emotion research; a very important reason is that both 

psychology and cognitive sciences have not reached to the common conclusion 

about how emotions are formed. However, it comes to a trace in the research of 

emotion recognition methods where machines are able to detect human emotions 

for improving human life using information technologies.  

The debate on emotion categories or whether emotions can be distinguished is 

far from being resolved in psychology and neurophysiology. As for human 

beings, we try to understand others’ emotions by their ways of speaking, facial 

expressions, gestures, and context information. Basically, human receive all 

possible information and make a proper guess of others’ emotion. And even 

professionals such as analysts and doctors cannot absolutely identify others’ 

emotional status. In addition, as for engineering, there is no research trace of 

mechanism of emotion generations. In this situation, there is no evidence for 

proving exactly a certain emotion or make absolute link to existing evidences 

based on theoretical knowledge. Indeed, people might want to build an implicit 

theory of emotions or implicit personality theory until the theory development 
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came to a point of realizing the role of cognitive evaluations in emotions [14]–

[16]. The scientific theory of emotion is still open. So it is crucial to set 

reasonable emotion categories, gather and validate data by referring as well as 

improving previous research results. More detailed information is introduced in 

each chapter.  

1.3 REMAINING ISSUES 

Emotion monitoring is an important research issue for healthcare, and speech 

monitoring is the most convenient and natural way to realize it. However, 

emotion recognition accuracy using speech signals still needs improvements. In 

order to evaluate the proposed emotion recognition methods, new database 

elicited by real experiences is necessary but not assessable. Moreover, current 

emotion evaluation method for speech, which is called as other persons’ 

assessment, is not effective for real-world emotions. Alternative data assessment 

method is necessary for data selection. 

1.4 RESEARCH PURPOSE 

The purpose of this thesis is to propose a new emotion recognition method 

using speech signals. It has been tackled through the following three targets. 

1. Propose a new classification approach of emotion recognition using speech.  
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Novel method based on segment-level feature extraction and classification for 

speech emotion recognition is proposed and examined. The proposed method is 

validated using a large-scale emotional speech database constructed in this 

research.  

2. Construct an emotion database with natural emotional speech elicited by real 

experiences. 

Experiments have been designed for collecting speech signals under different 

emotional states. In order to build a robust emotion recognition method, a natural 

speech database is necessary for validating the performance. In this thesis, I 

focus on real-world emotions, which is more realistic speech data collected from 

recalling real life situations, instead of acted emotions, to avoid incorrect 

conclusions. Additional method has been applied to select data that is included in 

the following speech emotion recognition method using EEG signals.  

3. Propose a new emotional speech data evaluation method using EEG signals. 

By improving the accuracy from proposing novel method, personal emotional 

states can be recognized using only EEG signals, and this technology enables 

EEG signals to be used as references of emotions. 
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1.5 STRUCTURE OF THIS THESIS 

The structure is demonstrated as follows and the relationship of major chapters 

is illustrated in Figure 1.  

Chapter 1  Introduction 

Previous researches are reviewed and summarized. In addition, research 

purpose and targets, and the structure of this thesis are introduced.  

Chapter 2  Valence and arousal recognition using EEG signals 

Emotion theories and models are reviewed, EEG signals are known as one of 

the most reliable signals for emotion recognition, and they are used as references 

in this study for selecting high quality emotional speech data. For achieving high 

accuracy for emotion recognition using EEG signals, signals from different EEG 

electrodes are considered independently in order to find an optimum combination 

through different levels of wavelet coefficients based on the genetic algorithm 

(GA). A new set of features named the cross-level wavelet feature group (CLWF) 

is proposed. The procedure of selecting one level from eight decomposed 

wavelet coefficients based on GA can be considered as feature selection with 

prior knowledge guidance. In addition, a reduced EEG set using less number of 

electrodes are studied and discussed, the conclusions from analytical results also 
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show the constancy with previous researches; improvements can be made by 

using different statistical parameters according to the distribution of EEG signals. 

Chapter 3  Emotional speech database construction 

In order to evaluate the robustness of proposed speech emotion recognition 

method with emotional speech data elicited by real experiences, I designed 

experiments for collecting speech signals under different emotional states. 

Self-assessments are conducted after emotional experience recalling of each 

emotion, and EEG-assessments are conducted after the onsite experiments. Four 

emotions are defined on the arousal-valence space so that emotions during 

speaking can be identified using EEG signals by arousal and valence recognition 

method developed in Chapter 2. 

Chapter 4  Purely segment-level speech emotion recognition 

Previous speech emotion recognition schemes are reviewed. And the reasons of 

adopting segment-level approach are presented. I address the quantitative 

analysis of various analytical schemes related to segment-level speech emotion 

recognition, and propose an automatic approach for selecting a number of the 

most representative samples in order to improve the classifier generalization 

ability. I propose several segmentation strategies, entropy-based ATIR (eATIR), 
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mutual information-based ATIR (miATIR), and correlation coefficients based 

ATIR (crATIR). 

I established a model using these segment-level speech frames at selected 

positions. The decision for determining the emotion of an utterance is based on 

the prediction of its segments from a classifier by applying the majority vote 

method. Testing on two and four labels emotion recognition has been carried out 

both on a 50-person emotional speech database. Significant improvements in the 

level of accuracy have been achieved. 

Chapter 5  Conclusions 

This thesis is concluded in this chapter.  

Chapter 6  Application perspective: Emotion strength analysis 

Finally, the application perspective of emotion strength analysis is 

demonstrated and discussed. 
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Figure 1. The structure of this thesis 
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2 VALENCE AND AROUSAL RECOGNITION USING 

EEG SIGNALS 

In this chapter, a novel EEG-based emotion recognition method is proposed for 

better performance and understanding unknown aspects of relationship between 

brain activities and human emotions.  

2.1 RESEARCH BACKGROUND 

2.1.1 Emotion theory 

Psychologists and ecologists have introduced different theories of emotions. 

Back to 19th century, Charles Darwin argued that emotions have universal 

cross-cultural counterparts and emotions exist because their beneficial to human 

or animal’s survival [17]. This theory is from the perspective of evolutionary 

theory and it’s the basis for discrete model of emotions. Paul D. MacLean further 

developed this theory by introducing more abstract reasoning and more 

instinctive responses [18]. Major theories are James-Lange theory [19], [20], 

Cannon-Bard theory [21], and Schachter-Singer Two-Factor theory [22], [23].  

James-Lange theory argues that physiological change is primary and emotion is 

secondary. Emotion is experienced after the brain receives information from the 

nervous system. Physiological changes are known as changes in heart rate, 
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perspiration, muscular tension, dryness of mouth, etc. Without physiological 

sensation, the emotion will not be existed according to this theory. The schematic 

is shown as follows in Figure 2.  

 

Figure 2. Illustration of James-Lange theory. 

Cannon-Bard theory also agrees that physiological responses play a very 

important role in emotions, but this theory argues that brain is essential to 

emotions as well as physiological responses generating. It states that an 

emotional expression result from action of subcortical centers while it doesn’t 

consider the primary role of physiological change. Firstly, it considers that bodily 

changes and emotional experiences are separate processes, they do not 

necessarily happen in an absolute order and can happen simultaneously; 

Secondly, thalamic discharge is essential for emotional experience and also for 

bodily changes. The schematic is illustrated in Figure 3. 

 

Figure 3. Illustration of Cannon-Bard theory. 
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Schachter-Singer Two-Factor theory states that physiological arousal and 

cognitive label are two factors for formulating emotion. Based on this theory, 

emotions might be misinterpreted by only body’s physiological state. Human 

beings actually feel or label an emotion from cognitive evaluation based on clues 

from external stimuli. It claims that emotion varies with the same stimuli and 

different cognition. The schematic is shown in Figure 4. 

 

Figure 4. Illustration of Schachter-Singer Two-Factor theory. 

By reviewing the major emotion theories, brain activities play important roles 

across all theories. It can be referred that brain signals are related to human 

emotions. 

2.1.2 Emotion model 

There exist multiple strategies for labeling human emotions such as 

dimensional and discrete emotion models.  

Discrete emotion model [24], [25] assumes that there are limited numbers of 

core emotions while thousands of other emotions can be derived by these core 

emotions. In Darwin’s study [26], this model was initialed by describing several 
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behavior and physiological processes that are associated with several kinds of 

emotions of human and animals. Then many researchers further developed this 

model. William McDougall was the first to believe biological instincts cause 

emotions. Aristotle claimed that emotions associate with certain types of bodily 

reactions. William James also believes in discrete model, he considered emotions 

were made from mental events. However, he thought these events are being 

broken down to smaller elements that are not a certain emotion. James and 

Deway considered that the emotions are not only associated with different 

neutral and physiological processes but also related to different experiences. 

There exist more researchers believe discrete emotion model and try to define a 

number of basic emotions [27]–[31]. Human emotions are complex and mixed 

with many factors such as inner thoughts or personal traits. It is possible, 

however, that all emotions could be understood by recognizing basic emotions 

shared across different cultures based on discrete model of emotions. Ekman et al. 

published a paper describing six basic emotions such as surprise, fear, happiness, 

sadness, anger and disgust after a series of cross-cultural studies [28].  

Another kind of emotion model called dimensional model describing emotions 

using multiple fundamental properties shared among all emotions [32]. Most 

researchers agree that emotion has at least two dimensions: valence and arousal 

[33]–[37]. Both valence and arousal can be defined as subjective experiences. 
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Valence is a subjective feeling varies from pleasantness to unpleasantness; 

Arousal is a subjective state of feeling varies from activate to deactivate. It has 

been reported that human emotions can be reflected individually by subjective 

experiences of valence and arousal.  

 

Figure 5. Emotion dimensional model. 

2.1.3 Emotion recognition using EEG signals 

Emotion recognition from brain activities is a challenging task, but it draws 

more attention lately because of the latest significant developments in 

brain-computer-interface (BCI) researches and also the eager of researchers for 

understanding how brain activities reflect human emotions with the latest 

developments in data analysis methods and neurosciences [38]–[42]. EEG is one 

of the most popular brain signals that have many advantages such as less noisy, 
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non-invasive, high temporal resolution, etc. Even though, it is a relatively new 

research field of EEG-based emotion recognition [43]–[53]. Previous researches 

are summarized as follows.  

1. Features 

Statistical-based features. Many researches adopt statistical-based features for 

EEG-based emotion recognition such as the mean, the standard deviation, the 

mean of the absolute values of the first differences of the raw signal, the mean of 

the absolute values of the first differences of the standardized signal, the mean of 

the absolute values of the second differences of the raw signal, the mean of the 

absolute values of the second differences of the standardized signal, and so on. 

Frequency domain features. EEG bands have been defined for better 

understanding brain activities. They are delta, theta, alpha, beta, and gamma; 

each of them represents different range of frequencies. Power spectral density 

values or relative power values have been applied extensively on multiple 

channels for emotion recognition. Moreover, more features such as peak alpha 

frequency, alpha power have been used.  

Time-frequency domain features. EEG signals have been transformed using 

wavelet transformations. The features including wavelet energy and wavelet 

entropy are extracted from the transformed signals which contain both time and 
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frequency domain information. Some researches propose statistical features 

directly on transformed signals based on wavelet transformation.  

2. Channel selection 

EEG-based emotion recognition has its own special characteristics other than 

speech emotion recognition or other physiological signal based emotion 

recognition. EEG signals are collected from multiple electrodes placing along the 

scalp; there are typical EEG electrodes set such as International 10-20 system 

designed for commonly using in different researchers for comparisons of 

performances. Researchers have special interests in reducing the number of 

electrodes used for EEG-based emotion recognition. Different areas were 

analyzed for studying the effects of emotions. For instance, 12 clusters (six 

cortical zones for each hemisphere) were separated for statistical analysis 

including anterotemporal, frontal, central, parietal-temporal, parietal, and 

occipital for each hemisphere [54].   

To summarize, current EEG-based emotion recognition performance shows the 

potential of using EEG signals for emotion recognition; however, further efforts 

have to be made to improve the performance such as feature selection. 
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2.2 ADOPTED METHODS 

The methods used for proposing novel EEG-based emotion recognition 

algorithm are demonstrated in this session.  

2.2.1 Wavelet analysis 

I adopted discrete wavelet decomposition [55] to better understand the 

frequency and location information of the EEG signals. Wavelets are a 

mathematical tool that can be used to extract information from many kinds of 

data, such as those from audio and images. As wavelet transform contains 

information on both time and frequency domains, it represents a powerful tool to 

analyze and observe details on non-periodic signals. This technology has also 

been proved to be powerful when applied to the field of emotion classification 

[45], [48], [50], [56], [57]. In this study we used a discrete wavelet 

transformation (DWT) whose definition is 

    , ,m n m nT f t t dt



    (1) 

    /2
, 0 0 0

m m
m n t a a t nb      (2) 

Where     is a wavelet function, the integer m  controls wavelet 

dilation and n  controls translation. Here, 0a  is a specified fixed dilation step 

parameter set at a value greater than one, and 0b  is the location parameter, 

which must be greater than zero. ,m nT  are the discrete wavelet values given on a 
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scale-location grid of index m , n  and known as wavelet coefficients or detail 

coefficients. 

The decomposition of approximation coefficients into approximation and 

detail coefficients at subsequent levels can be schematically illustrated as follows 

in Figure 6;  1cA cA n  are approximate coefficients and  1cD cD n are 

detail coefficients. The signal at each level is decomposed into low and high 

frequencies.  

 

Figure 6. Illustration of wavelet decomposition. 

Wavelet analysis has been successfully used for feature extraction and for 

many classification tasks based on EEG. I selected Daubechies 5 wavelet (Db5) 
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since it has been adopted successfully for modeling complex signals such as 

EEG signals [46], and I applied seven levels of wavelet decomposition, which is 

determined by taking the EEG frequency bands into consideration.  

2.2.2 Statistical parameters 

Statistical parameters shows effectiveness on demonstrating affective states 

from physiological signals [58]. Several statistical parameters including the mean, 

the standard deviation (std), the skewness, and the kurtosis are used in this study 

to demonstrate the characteristics of transformed EEG signals using discrete 

wavelet decomposition. The formula is shown as follows.  

1. The mean of raw signal 

  
1

1 N

n
X X n

N



    (3) 

2. The standard deviation of raw signal 

   
2

1

1 N

X xn
X n

N
 


     (4) 

3. The skewness of raw signal 

 3
1 3/2

2





   (5) 
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where i  is the thi  central moment. A moment n  of a univariate 

probability density function  P x  taken about the mean 1   , 

    
n

n x P x dx     (6) 

4. The kurtosis of raw signal 

 4
2 2

2





   (7) 

where i  is the thi  central moment. 

2.2.3 Genetic algorithm 

I adopted a genetic algorithm [59] for feature selection. The GA mimics the 

process of natural evolution to find beneficial adaptations to a complex 

environment. A chromosome in GA is an encoding that represents the decision 

variable of an optimization problem. A finite set of chromosomes in GA is called 

a population. Each chromosome is rated by the fitness function on its ‘fitness’, 

which determines how good it is in solving the optimization problem. Crossover 

refers to the generation of two new offspring by mating two parental 

chromosomes. A mutation simply flips randomly the binary value of one or more 

bits. Crossover and mutation provide opportunities for chromosomes that have 

higher fitness values to evolve. 
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The reasons why I adopt GA are shown as follows. According to previous 

studies, the correlation theory of brain activities asymmetry and emotions were 

proved by researchers [60]. GA allows us to realize the idea to select appropriate 

information from each EEG electrode and eventually obtain the overall pattern of 

brain activities monitored by multiple EEG electrodes. Other data-driven feature 

selection approaches cannot give attention to the overall pattern of brain 

activities. The selected features can be only extracted from one or several EEG 

electrodes so that it fails to demonstrate the whole brain activities asymmetry 

since there is no priori biological knowledge applied on those algorithms. These 

considerations are supported by a recent paper proposed in a similar application 

concerning neuroimaging [61], as they have two findings related to feature 

selection including data-driven feature selection was no better than adopting 

whole data and a priori biological knowledge was effective to guide feature 

selection. As for the implementation of GA with proposed features, I generalized 

the problem of wavelet level selection according to different EEG positions to an 

optimization issue of minimizing the fitness function.  

2.2.4 Principal component analysis (PCA) 

PCA [62] is a common visualization method that is applied through 

dimensionality reduction by performing a covariance analysis between factors. 

Technically, a principal component can be defined as a linear combination of 
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optimally weighted observed variables, the first k principal components capture 

the greatest variance in the data among all k-dimensional orthonormal linear 

combinations of the original variables. In this research, PCA was used for feature 

space visualization to observe the separability of different valence levels by 

specific features.  

Suppose that x  is a vector of p  variables. The first step is to search 

linear function x  of the elements of x  having maximum variance, where 

1  is a vector of p constants 11 12 1, , , p    and '  denotes a transpose, so 

that 

 1 11 1 12 2 1 11

p

p p j jj
x x x x x    


        (8) 

The next step is to search linear function 2x  , which is uncorrelated with 

1x  having maximum variance; the thk  stage, which is linear function k x is 

found that has maximum variance subject to being uncorrelated with 

1 2 1, , , kx x x   
    . The thk  derived variable, 1x , is the thk  PC. 

2.2.5 Probabilistic neural network (PNN) 

Artificial neural networks are effective when used with such signals as EEG 

since they are very robust in dealing with non-linear and complex signals. 

Moreover, the fault tolerance of artificial neural networks is necessary in order to 
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reduce the influence of noise. PNN [63] is one kind of artificial neural network 

that has been proven to be suitable for classification tasks by many researchers 

[64]–[66]. The operations are designed into a multi-layered feed-forward 

network with four layers. The illustration with input features X is shown in 

Figure 7. 

 

Figure 7. PNN structure. 

In this work, PNN is adopted considering its characteristics of fast training 

process and additional training samples can be added without extensive 

retraining, which make it practical for model improvement when we have large 

training database. The inputs of PNN were the optimized features, and the output 

was the predicted valence level. 
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2.3  PROPOSED EEG-BASED EMOTION RECOGNITION METHOD 

After listing all the methods necessary for the new proposed emotion 

recognition method, the classification scheme is demonstrated in this section.  

2.3.1 Cross-level wavelet feature extraction 

The statistical parameters have been shown to be useful for extracting features 

from raw or processed EEG signals. Although time or frequency domain features 

from EEG signals failed to provide good accuracy for valence detection [43], 

[52], [67], we explore new possibilities in time-frequency domain features. A 

study tries to cluster different emotions by wavelet features from EEG signals 

using 24 and 63 channels [68] and represented the potential of time-frequency 

features for identifying emotions. The theory of wavelet decomposition can 

roughly takes into consideration EEG frequency bands. The frequency 

information of decomposition levels is listed in Table 2.  
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Table 2. Frequency range of different wavelet decomposition levels with EEG frequency band 

information. 

  

The strategy is to formulate a novel cross-level wavelet feature group (CLWF) 

for valence detection based on GA, as opposed to the strategy of extracting a 

mono-level wavelet feature group (MLWF), whose levels are the same through 

all electrodes for each subject. EEG consists of a multi-channel system that can 

record a great deal of information with a lot of noise. Many researches have 

focused on how to omit a number of electrodes and select the most useful ones in 

order to achieve a moderate level of performance [69]. The studies that have 

adopted wavelet features have only considered a single decomposition level or 

have combined levels from all EEG electrodes [56]. However, those studies 

ignore the fact that useful information for classification may be represented in 
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different frequency ranges among different EEG electrodes. If we implement this 

idea by a brute-force search, the order of magnitude for the searching cases will 

be mn , where m  is the number of EEG electrodes, and n  represents the 

levels of wavelet decomposition. For instance, there will be 152,587,890,625 

cases with 16 EEG electrodes and 5 levels of wavelet decomposition, which 

makes it extremely difficult to find the optimized feature combinations. Thus, 

GA is introduced in this step to solve this optimization issue. The fitness function 

is designed as follows. 

 1Fitness Accuracy    (9) 

Accuracy is calculated using the leave-one-out cross validation (LOOCV) 

method based on PNN. The input feature for GA is a matrix with n  levels of 

wavelet decomposition for all EEG electrodes. A chromosome is an array of 

numbers that represent levels of wavelet coefficients related to EEG electrodes; 

the GA will select one level from each electrode to formulate the optimized 

CLWF. For chromosome design, three binary digits represent 8 levels where GA 

will select.  

A relatively limited population size (100) and high mutation rate (0.8) as well 

as the LOOCV design in the fitness function are for preventing over-fitting in 

GA. A schematic of the entire process of feature estimation is illustrated in 

Figure 8. In this figure, EEG signals from positions O2, F3, and Fp1 are used as 
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examples to illustrate the feature extraction process. The best combination of 

wavelet coefficients (those indicated in red in Figure 8 are selected based on GA 

from a huge number of combinations, and the statistical parameters are 

calculated for a later classification process.  

2.3.2 Classification 

Since each EEG record corresponds to picture stimulation from IAPS, it is easy 

to give labels to the classification tasks. The approach is to consider two testing 

scenarios for each individual including two valence levels (level 1: displeasure, 

level 3: pleasure) and three valence levels (level 1: displeasure, level 2: neutral, 

level 3: pleasure) for model validation by calculating the accuracy based on 

LOOCV using PNN. The same scenarios are tested also on two and three arousal 

levels.   
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Figure 8. Schematic of cross-level wavelet feature estimation from EEG signals. 

2.4 EXPERIMENTS 

In order to develop and validate the methods, EEG signals are collected 

according to the following described procedures. 

2.4.1 Valence elicitation 

Three levels of valence and arousal have been defined based on 

arousal-valence space based on the emotion model proposed by Russell [32]. The 

most widely adopted emotion elicitation technique is to use pictures to evoke 

various emotion states based on valence-arousal space. I adopted a very popular 

picture-based, emotion-evoking database called the International Affective 

Picture System (IAPS) [70], which contains pictures labeled with values of 

valence and arousal and extensively adopted by many researchers [34], [71]–[75]. 

The IAPS labels respective pictures for males and females, so we selected 

different pictures for male and female subjects in order to achieve the same 

valence level elicitation. The positioning in terms of valence of the pictures 
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selected for the three levels of valence are illustrated in and against all pictures 

for males and females, respectively. 

 

Figure 9. Indication of pictures selected from IAPS for valence stimulation (Males). The red dots 

represent the pictures selected from IAPS among all pictures, shown as gray dots. 

 

Figure 10. Indication of pictures selected from IAPS for valence stimulation (Females). The red dots 

represent the selected pictures among all pictures, shown as gray dots. 
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2.4.2 Experimental protocols 

The experiments were designed to stimulate a certain level of valence from 

viewing multiple pictures from the IAPS database. The subjects were required to 

sit in a dark room and look at the pictures that appeared on a screen. The protocol 

of the stimulation procedure used with each subject is illustrated in Figure 11. I 

collected EEG signals from 50 healthy Japanese subjects (35 males and 15 

females). The ages of the subjects ranged from the 20s to the 70s. The EEG 

signals were recorded by a Nihon Kohden EEG-1200 using electrodes placed 

according to the international 10-20 system; the sampling rate of EEG signal 

acquisition was 1000 Hz. This experiment was conducted with the permission 

from Research Ethics and Safety committee of The University of Tokyo. 

 

Figure 11. Emotional valence and arousal stimulation procedure. 
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2.4.3 EEG dataset 

EEG signals are affected by noise such as pulses, line noise, and artifacts. The 

noise generated from eye blinks is the most difficult type to deal with by using 

signal processing techniques such as wavelet analysis. For this reason, the 

subjects were asked to refrain from blinking their eyes during the experiments. A 

filter was applied to delete the line noise at 50 Hz. On the basis of the correlation 

theory of brain activity asymmetry and emotions [41], [60], [76]–[78]. Moreover, 

previous research [51] shows that the emotions are not only correlated to the 

brain activity recorded in the frontal area but also to that recorded in other areas, 

and therefore, higher accuracy was obtained by using EEG electrodes along all 

the scalp. We used 16 channels (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, 

F8, T3, T4, T5, and T6) for analysis based on the International 10-20 system. My 

approach is to compare the frontal area, the posterior area, and the entire area of 

brain activity to gain a better understanding of how emotion states can be 

interpreted using EEG signals in different areas. The test cases using different 

combinations of EEG electrodes are illustrated in Figure 12.  

 

Figure 12. Test cases of brain activity in different areas with their notations. 
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2.5 RESULTS 

2.5.1 Valence recognition results 

My goal is to formulate robust features for valence detection using EEG signals, 

so the discernibility of different valence levels achieved by the proposed features 

was visualized using PCA. From the PCA results shown in Figure 13, there 

exists no distinct structures in feature space by using statistical measurements 

such as the mean, the kurtosis, and the skewness (Figure 13(a), Figure 13(b), and 

Figure 13(c)) based on raw EEG signals, however, a clearer structure can be 

observed using the std (standard deviation), although there are also overlaps 

between different valence levels (Figure 13(d)). The test results from the 

simplest two-level valence detection show that by using these four statistical 

measurements, 80% accuracy was obtained by using the std, while near or 

slightly better than chance accuracy (ranging from 50% to 60%) was obtained by 

using the other three statistical measurements. 
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Figure 13. Visualization of feature space using PCA. (a)-(d) were calculated from raw EEG signals, (e) 

MLWF was the std calculated using the best performance level after wavelet decomposition, and (f) CLWF 

was the std calculated using the cross-level decomposed signals from discrete wavelet decomposition 

selected using GA. 



 

 

 

35

Based on these facts, the std was selected for further analysis in order to 

develop our new strategy for feature extraction. After applying wavelet 

decomposition, we tested the performance using PNN by LOOCV and selected 

the optimum performance wavelet decomposed level. Then the features were 

visualized using PCA (Figure 13(e)), which indicate that the discernibility was 

further improved compared to the original features extracted based on raw EEG 

signals. Figure 13(f) illustrates the proposed cross-level wavelet features in this 

work. Clearer clusters have been obtained by plotting them using the first three 

principal components, which proves the robustness of the proposed strategy to 

extract features. Table 3 contains the results of the two and three classes of 

different valences using the frontal area, posterior area, and entire area of EEG 

signals.  
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Figure 14. Average results for valence detection on 50 participants using different feature groups and 

EEG sets. a, Average accuracy for 3-level valence detection using 12 different feature groups (mean  

s.e.m). b, Comparisons of effectiveness for 3-level valence detection using EEG signals in different brain 

areas by proposed features (CLWF); ****p<0.00001, *****p<0.000001 by anaysis of variance (ANOVA) 

plus Tukey's Honestly Significant Difference (HSD) test. c, Comparison of 2-level (L1: 98.4% and L3: 97.8% 

respectively) and 3-level (L1: 94.0%, L2: 86.6%, and L3: 90.2% respectively) overall valence classification 

accuracy using proposed features (CLWF); *****p<0.000001 by paired t-test. 
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Figure 14a shows the average accuracy by adopting different groups of features 

for three valence levels classification using PNN ( =0.15). To study the results 

illustrated by Figure 14a, we firstly apply analysis of variance (ANOVA) to 

check if the means representing average accuracy are unequal. It turns out that at 

least one mean is different by p<0.000001, and then we apply Tukey's Honestly 

Significant Difference (HSD) test to find which means are unequal. We found 

that every pair of means including proposed feature group are significantly 

different by p<0.000001. Some pairs of means are not significantly different by 

the condition of p>0.05, they are A7 and D6, Raw and D6, Raw and A7, pairs 

between D1, D2, D3, D4, and D5. 
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Table 3. Average results (mean  std) for two-level and three-level valence detection under different 

stimulations (50 subjects). 
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Different statistical parameters are tested and the most effective one is selected 

above, I further propose a strategy that dynamically selects statistical parameters 

for wavelet coefficients of EEG signals. An automatic statistical parameter 

selection method by prior identifying the signal data distribution by Lilliefors 

tests [79]. Statistical parameters such as the mean and the std are selected if the 

signal data obeying Gaussian distribution, and the skewness and the kurtosis are 

used elsewise. The accuracy can be improved from 90% to 93% for 3-level 

valence recognition. The results are shown in Figure 15. 

 

Figure 15. Results of comparing valence recognition performance with std using dynamic statistical 

parameter selection.  

2.5.2 Comparisons  

For comparison study, I compared with a different classifiers (SVM) as well as 

different features selection methods. The results illustrating the comparison with 
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SVM using the std are shown in Figure 16. The SVM performance has potential 

to be further improved by optimization of parameters, limited parameters are 

tested in this research to only show the robustness of proposed features. 

 

Figure 16. Comparison results of valence recognition with std using SVM and PNN. 

The feature selection methods for comparisons are listed in Table 4 and the 

comparison results for 3-level valence recognition are illustrated in Figure 17.  

Table 4. Feature selection methods for control study 

 

60

70

80

90

100

A
cc

u
ra

c
y
 (

%
)



 

 

 

41

 

Figure 17. Comparisons of different feature selection methods. 

2.5.3 Study on the effectiveness of EEG electrodes 

Different sets of EEG electrodes are explored in this study to further 

understand the functional area for emotional activities, and reduce the number of 

EEG electrodes for the convenience of users and computational simplicity. 

Besides two comparison sets of frontal and posterior areas, the same GA 

approach is performed to find another optimized set of EEG electrodes 

placement for each subject. The input for GA is a matrix with n  levels of 

wavelet decomposition for all EEG electrodes; the GA will select less than a 

certain number of electrodes for the reduced set. Multiple electrodes are needed 

to understand the difference of brain activities in different brain areas, I consider 

6 electrodes are appropriate based on preliminary attempts and for comparisons 

with the other two sets using 6 electrodes mentioned in Figure 12.  
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Electrodes selected by GA for each subject are illustrated in a in which a blue 

dot indicates “a selected electrode” and the results using the reduced set of EEG 

electrodes for 3-level emotional valence detection are illustrated in Figure 18b 

for comparisons with other set of electrodes. 

 

Figure 18. GA based EEG electrodes reduction. a, GA-reduced EEG electrodes distribution; no. 1-16: Fp1, 

Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6. b, Comparison results of GA-reduced EEG 

sets; ****p<0.00001 by ANOVA plus Tukey's HSD throughout the figure. c, Selected electrodes' brain area 

summary. 
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2.6 DISCUSSION 

Generally, the EEG signals from the frontal area are more effective for valence 

detection than the ones from the posterior area. However, just as in the research 

results demonstrated by Murugappan et al. [51], [68]. Our classification results 

also indicate that the accuracy can be improved by covering the entire area with 

more EEG electrodes. This finding is also supported by the emotion theory 

proposed by Heller, which argues that the frontal and parieto-temporal regions 

are involved in emotion [80]. The features extracted from raw EEG signals are 

not robust enough to get the best results, in contrast to the features extracted from 

decomposed signals by discrete wavelet decomposition. The overall results 

obtained using the 50 healthy volunteers who were presented with sets of 

elicitation pictures from IAPS indicate that the D2, D3, and D4 levels of the 

wavelet coefficients provide more information for the classifier compared to 

other levels, which represent the information in the frequency bands of gamma 

and lambda. Previously studies also support our findings by showing the 

effectiveness of the gamma band EEG for recognizing emotion activity. The 

gamma rhythm is widespread in areas associated with emotional processing [81], 

and the gamma band was further reported to have connections to emotions with a 

special emphasis on negative emotional processing [82], [83]. The gamma band 

power has been shown to decrease during periods of processing or imagining 
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negative emotional material [84]. Muller et al. also suggested that a significant 

valence due to hemisphere interaction emerged in the gamma band [85]. By 

contrast, very little research has been done on emotion analysis using the lambda 

band.  

My proposed cross-level wavelet feature group (CLWF) that is searched from 

decomposed wavelet coefficients from each EEG electrode based on GA. It can 

search useful information related to different EEG bands and lead to a largely 

improvement of the classification performance to an accuracy of 98% with 

two-level and 90% with three-level valence detection. Figure 14c illustrates the 

comparison of 2-level and 3-level valence detection using proposed features with 

p<0.000001 by paired t-test. In contrast, the accuracy can be improved very 

much comparing to simply combining all the levels from D1-D5 shown in Figure 

14a. The results demonstrate the importance and practicability of the cross-level 

strategy for extracting features in the time-frequency domain for valence level 

detection using EEG signals. A possible explanation for this is that the affective 

information that describes emotions is represented in different frequency ranges 

within different brain areas, although this issue is still unresolved because of the 

uncertainty of EEG signal interpretations. The results in this work demonstrate 

the importance and practicability of the cross-level strategy for extracting 

features in the time-frequency domain for valence level detection using EEG 
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signals, although the strategy does not provide a concrete interpretation of 

physiological meaning. This is because of the variation in the selected levels of 

wavelet coefficients for each EEG electrode that are used for feature extraction 

among different subjects. However, there are several points supporting the 

effectiveness of our proposal. Our analytical results show that the frontal area are 

more robust in recognizing emotions. In addition, It provide higher accuracy by 

using EEG signals collected from the entire area, which is supported by an 

important statement in Borod's emotion model [86], in which emotions are 

represented in cortico-limbic networks rather than in particular areas of the brain. 

Such a network produces spread, rather than focal cortical activity.  

As we can see in Figure 18, a better accuracy (86.1%) can be achieved using 

the reduced set of EEG electrodes compared with frontal and posterior area EEG 

electrodes. On the other hand, as far as we know, the deep limbic system (DLS) 

plays a major role in a person's emotion states, and the prefrontal cortex (PFC) 

has functions to control emotion. However, there is no precise correspondence 

between these findings and the patterns in EEG signals reported in the literature. 

In our study, the reduced EEG set is selected based on our proposal of the 

wavelet coefficient selection from all EEG electrodes, the statistical 

summarization of the electrodes selected from 50 subjects shows that more 

frontal area electrodes (65.7%) are selected compared with posterior area 
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electrodes (34.3%), which is also consistent with the viewpoint that frontal area 

brain activities can better demonstrate emotion [80]. The analytical results also 

indicate the effectiveness of our proposed method.  

2.7 APPLICATION ON EMOTIONAL AROUSAL DETECTION 

The same method developed for emotional valence detection is applied on 

arousal detection. By using emotional valence and arousal, detailed emotion can 

be defined. Selected pictures for evoking arousal are illustrated in Figure 19 and 

Figure 20. 

 

Figure 19. Indication of pictures selected from IAPS for arousal stimulation (Males). The red dots 

represent the pictures selected from IAPS among all pictures, shown as gray dots. 
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Figure 20. Indication of pictures selected from IAPS for arousal stimulation (Females). The red dots 

represent the selected pictures among all pictures, shown as gray dots. 

The results for 2 and 3 level arousal recognition calculated using the same 

proposed method as for valence recognition are illustrated in Figure 21. 

 

Figure 21. Results of arousal recognition. 
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2.8 SUMMARY 

I proposed a new strategy to extract time-frequency domain features from EEG 

signals in cross levels of wavelet decomposition coefficients with different EEG 

electrodes for valence level detection. The proposed features (CLWF) 

substantially increase the accuracy compared to conventional features extracted 

directly from EEG signals or from transformed signals in the time-frequency 

domain. 93% accuracy for three-level valence detection and 99% accuracy for 

two-level valence detection are achieved by using the proposed features.  

The results show the importance of taking into consideration information in 

different frequency bands with different EEG electrodes, as it results in higher 

accuracy than that achieved when only considering a single level or combined 

levels of wavelet decomposed signals from different EEG electrodes.  

The results achieved in this research would be interests of practitioners in a 

number of related fields such as health informatics and BCI. This work gives 

hints of many paths for future model development.  
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3 EMOTIONAL SPEECH DATABASE CONSTRUCTION 

In this chapter, a Japanese emotional database is constructed that contains 

speech and physiological signals that can be used to develop algorithms for 

emotion recognition using audio, physiological signals, or several combined 

signals. 

3.1 RESEARCH BACKGROUND AND REMAINING ISSUES 

According to different research purposes, lots of emotional databases have 

been established [87]–[93]. The most important discussion issues for building an 

emotional database are demonstrated as follows.  

Firstly, it usually has two different patterns of the database design, which are 

real-world emotions or acted emotions. They are indeed different concerning 

many aspects. William and Stevens states that acted emotions tend to be more 

exaggerated than real ones.  

Secondly, how the speech signals are simulated? The most databases of 

emotional speech are not naturally recorded in daily life and not obtained during 

a conversation. Thus, how to get speech signals under nature emotions is very 

important for an emotional database. As for the database design, one strategy is 

to use emotional speech from experienced actors act as if they are in a specific 

emotional state. Another strategy is to induce an actor or ordinary person to a 
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certain emotion state using stimuli such as pictures, videos, computer games, etc. 

The latter one is known as more similar as real-world emotions.  

Thirdly, whether the database emphasizes the speaking contents? Researchers 

sometimes regulate the speaking contents in order to avoid the perceived emotion 

influenced by its lexical content. Some corpus is designed to include same 

number of utterances for each emotion. Both strategies must predefine the 

contents that examinee speaks, which are the situations will not happen in a real 

world.  

Currently most emotional speech databases are not accessible to the public. 

Mainstream databases are summarized in Table 5.  
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Table 5. Summary of existing emotion databases (DB). 

 

3.2 PROCEDURE OF EXPERIMENTS 

The experiments consisted of two parts, which were an online survey and 

onsite experiments. The Internet survey was designed to collect materials 

representing participants' real emotional experiences. After the materials for 

emotion elicitation were collected, the onsite experiments were arranged to 

collect the speech and physiological signals. 

3.2.1 Online survey 

Basic information such as that on gender and age ranges was collected from an 

online survey. Simple questions to collect information on participants' real 
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emotional experiences were asked in forms such as “Please explain one or two 

memories that aroused your deepest emotions of happiness”. 

3.2.2 Onsite experiment 

There is a photograph of the onsite environment setting for an experiment in 

Figure 22. An assistant introduced the experimental protocols, how the sensors 

were worn, and checked the sensor signals for participants, while a coordinator 

helped to elicit their emotions. 

 

Figure 22. Environment setting for experiment from viewpoint of coordinator. 

The participants recalled their emotional experiences and described them 

during the experiment, and the coordinator asked questions and made small talk 

about the same emotions with prior knowledge from the survey that they had 
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previously completed. The procedure for eliciting the six emotions is outlined in 

Figure 23. 

 

Figure 23. Procedure for eliciting emotions by recalling experiences. 

Eight signals were collected in the experiments including those from 

electroencephalography (EEG), speech, electrocardiography (ECG), 

electromyography (EMG) skin temperature, respiration, blood volume pulse, and 

skin conductance. Where the sensors were worn and what signals were collected 
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are illustrated in the photographs in Figure 24. Finally, the participants 

completed a five-point Likert scale for self-assessment. 

 

 

Figure 24. Placement of sensors and signals that were collected. 

3.3 DESCRIPTION OF SIGNALS 

How signals were collected and explained in the following. Examples are also 

given. The EEG and ECG signals are collected using Nihon Kohden EEG-1200. 

Physiological signals such as respiration, EMG, blood volume pulse, skin 

temperature signals are collected by Bioplux (Figure 25).  
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Figure 25. Image of bioplux. 

Detailed information of collected signals is demonstrated as follows.  
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Speech signals. Speech signals are very popular in emotion research since they 

are easy to obtain in daily life for making applications. The speech signals were 

recorded during participants’ recalling real-world emotional experiences. I 

collected long fragments of speech signals for the six emotions (Figure 26) in 

this database.  

 

Figure 26. Example of collected speech signals. 

EEG signals. EEG measures voltage fluctuations resulting from ionic current 

flows within the neurons of the brain. Much research [94] has revealed that there 

is a relationship between EEG signals and different kinds of emotions and it is 

advantageous to use these as it is difficult for people to manipulate EEG signals. 

Figure 27 illustrates the positions at which the EEG signals were collected 

according to 10-20 International system and provides examples of collected 

signals. The reference electrode was A1.  
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Figure 27. Example of collected EEG signals. 

ECG signals. ECG is used to measure the electrical activities of the heart. QRS 

positions and other features have been reported to have a correlation to emotions 

[95]. ECG was also used with other signals such as speech for improving 

emotion recognition performance. Figure 28 has an example ECG with QRS 

positions. 
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Figure 28. ECG signal with QRS positions. 

Respiration signals. Respiration signals record the activity of the lungs. Different 

respiration patterns also provide emotion information. It's usually used together 

with other physiological signals for emotion recognition [96]. A respiration 

signal was recorded with a belt-type sensor, as shown in Figure 29. 

 

Figure 29. Respiration signal with explanations. 
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Electromyography (EMG) signals. EMG is a technique for evaluating and 

recording the electrical activity produced by skeletal muscles. Research has 

indicated the frequency of muscle tension, action potential amplitude, and the 

duration of action potential have a relationship with emotions [97]. A sample of 

collected EMG signal is shown in Figure 30. 

 

Figure 30. EMG signal illustration. 

Skin temperature signals. The literature has indicated that skin temperature is 

dependent on the emotional state [98]. We measured skin temperature at the 

finger tips. 

 

Figure 31. Skin temperature signal. 

Blood volume pulse (BVP) signals. Photoplethysmography (PPG) is used to 

bounce infrared light against the skin surface and measure the amount of 

reflected light. The literature has indicated that high values for blood volume 

pulse represent anger and stress, while low values represent happiness and 
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relaxation [96]. The signal from a blood volume pulse from a finger tip is given 

in Figure 32. 

 

Figure 32. Signal from blood volume pulse. 

3.4 DESCRIPTION OF DATA 

Speech and physiological signals from fifty healthy Japanese participants were 

successfully collected. EEG and ECG signals were recorded by a Nihon kohden 

EEG-1200 using electrodes placed according to the international 10-20 system; 

other physiological signals were recorded using Bioplux. This experiment was 

conducted with the permission from Research Ethics and Safety committee of 

The University of Tokyo. 

Figure 33 has pie charts of the age and gender distributions of participants in 

the experiments. Most of the participants were in their 20s and 30s and 70% were 

male and 30% were female. 
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Figure 33. Data distribution related to gender and age. 

A self-assessment survey was administered immediately after each experiment. 

The question of "Did you successfully arouse the emotion of happiness?" was 

asked after each emotion stimulation. Then, five levels of confidence could be 

selected as answers, where level 1 (L1) represented the lowest confidence level 

of a participant's assessment and level 5 (L5) represented the highest confidence 

level. Figure 34, Figure 35, and Figure 36 plot the answers from the participants. 

 

Figure 34. Summary of self-assessments. 
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Figure 35. Summary of self-assessment results according to gender. Data (y-axis) indicate percentage of 

confidence levels no less than three. 

  

Figure 36. Summary of self-assessment results according to two age groups of less and greater than 30. 

Data (y-axis) indicate percentage of confidence levels no less than three. 
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I could easily see from the self-assessment result of Figure 34 that the majority 

of participants (80%) were confident emotions were elicited with a confidence 

level of not less than three. Japanese participants were more confident about their 

emotional arousal of happiness and sadness out of all six emotions, and very 

confident of their emotional arousal of fear and disgust. They found it relatively 

more difficult to reach the emotion of anger than the other emotions, and surprise 

was difficult to arouse during the experiments. In Figure 35, female participants 

were generally more sensitive to emotions such as happiness, fear, disgust, and 

anger, while male participants were more confident of surprising experiences. 

Male participants were less confident about fear experiences than female 

participants as expected since males are usually stronger and more difficult to 

scare. However, it seems that male participants were more confident of 

surprising experiences. This seems difficult to understand at first glance, but it 

might be due to careful preparations of surprising scenarios arranged by their 

families. A fact supporting this hypothesis was that most surprising situations 

were arranged by females based on our survey. Another phenomenon was that 

more female participants were confident of their anger experiences than male 

participants. This could have been caused by fewer ways for them to release their 

emotion of anger compared to male participants. We divided the participants into 

two groups of different ages with ages younger and older than 30. We found that 
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younger people had more confidence about the majority of emotions according to 

statistical analysis (Figure 36), especially stronger emotions such as disgust, 

anger, and surprise. However, older participants retained more happy 

experiences and had lower confidence with strong negative emotions and 

surprising experiences. 

I introduced a Japanese database with signals involving six basic human 

emotions elicited by real experiences to develop an algorithm for health-care 

oriented applications. Speech signals and a variety of physiological signals were 

included in the database. Since other people's assessments create errors in real 

emotion targets, I only carried out self-assessments and analyzed the results.  

Self-assessments are very reliable for labeling data on real emotions. In the 

following sections, other than subjective methods of evaluation such as 

self-assessments, and further objective methods of selecting high quality speech 

signals will be proposed to obtain a more reliable database, other physiological 

signals are also included for further researches. 

3.5 SPEECH DATA SELECTION 

In order to include high quality speech data in the database, additional data 

selection procedure is added besides self-assessment. By reviewing emotion 

theories, no agreement of schematic for emotions was reached. However, 
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emotional experiences happen at the same time with other bodily changes, which 

means some clues for emotional activities can be found by bodily changes. The 

latest emotion theories claim brain is the center for emotional experiences and 

physiological signals are also highly evolved with emotional experiences. With 

the development of emotion theories, more researches consider the emotional 

experiences are involving cognitive evaluation. So there exist conflicts of the 

relationship between physiological responses and emotional experiences since 

different emotions might be experienced by different cognitive evaluations with 

the same physiological responses. In the sense, it’s more reliable to identify 

whether certain kind of emotion is indeed experienced by using brain activities. 

There are multiple technologies developed for studying human brain activities 

including EEG, functional magnetic resonance imaging (fMRI) and near-infrared 

spectroscopy (NIRS). The pros and cons are demonstrated in Table 6.  
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Table 6. The advantages and disadvantages of different brain activity sensing technologies. 

Technique Advantages Disadvantages 

EEG 

 Non-invasive 

 Inexpensive 

 High sensitivity 

 Graphs brainwaves – no 

images 

 Poor resolution 

 Low signal-to-noise ratio 

fMRI 

 Non-invasive 

 Excellent resolution 

 Shows brain activity 

 Multidirectional 

 Lengthy procedure 

 Not for those with mental 

implants 

 Large noise 

NIRS 

 Non-invasive  Technology still in 

development 

fMRI provides more information of brain activities, but it’s not suitable for the 

situation of speech signal collection due to its large noise. And NIRS is a 

relatively new technology that is still under development. Moreover, it usually 

detects only the frontal brain activities. The EEG signals are adopted for 

assessing the emotional status of the participants.  

3.5.1 Strategy for speech data selection 

In the database, the labels of emotional data with real experience recalling are 

discrete. For evoking different emotional states of participants, IAPS database is 

adopted for EEG signals collecting as described in Chapter 2. It’s agreed that 

discrete emotions can be represented using dimensional model with axis of 

valence and arousal. In the following, literatures are reviewed for defining 
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different discrete emotions on valence and arousal space [99]–[104]. There exists 

common agreement on the positions of happiness, anger, and sadness. However, 

researchers have different opinions on the position of surprise. Lots of 

researchers consider it has positive arousal. In this research, it is assumed that 

surprise is in the position of positive valence and negative arousal. Arousing 

emotions are often described as ‘hot’ or ‘warm’, higher arousal makes people 

want to talk and communicate more; and not arousing ones as ‘cold’ or ‘cool’, 

lower arousal makes people silence. When surprising events happen, people’s 

reactions are often silence and holding the breath. The defined positions are 

shown in Table 7. 

Table 7. Representation of emotions in dimensional space. 

 

The procedure for EEG assessment is illustrated in Figure 37. 
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Figure 37. Illustration of data selection. 

3.5.2 Results 

The selected number of samples is illustrated in the following Figure 38.  

 

Figure 38. Illustration of data selection results. 
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3.6 SUMMARY 

An emotional speech database is constructed. Variety of physiological signals 

is also included for further research. The data is validated not only by 

self-assessment but also by assessing by brain activities. In some other similar 

studies, another way for data validation called other persons’ assessment is 

adopted. The reason why I replace other persons’ assessment by EEG assessment 

is because of the difficulty to decide proper candidates for other persons’ 

assessment. Other persons’ assessment itself is a subjective procedure; the group 

of people selected for other persons’ assessment will largely influence the 

evaluation results. Moreover, it’s more difficult to evaluate the real-world 

emotions, which are related to the human health. 
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4 PURELY SEGMENT-LEVEL SPEECH EMOTION 

RECOGNITION 

Recognizing human emotion from speech introduces promising applications of 

emotion analysis such as healthcare system, commercial conversations, virtual 

humans, emotion-based indexing, and in information retrieval. However, it’s a 

challenging field and current status of emotion recognition performance still 

needs to be improved.  

4.1 RESEARCH BACKGROUND 

Recently, increasing attention has been drawn to identify emotions by using 

speech signals. There are many reasons for the popularity of speech signals for 

emotion recognition. It’s the most natural and important way for human 

communications. As shown above, many researchers’ purpose is for providing 

better healthcare system. In addition, with the tremendous research on speech 

recognition since the late fifties, emotion seems to be a huge gap between human 

and machines [105]. So computer scientists also have great interests in emotion 

recognition. Motivations vary among different researchers, but they are 

fundamentally same in terms of technologies [89], [106]–[115]. The information 

is summarized concerning features, and classification procedures.  

1. Features  



 

 

 

71

A large amount of features for characterizing emotional content of speech was 

tried by different researchers. The features can be grouped as follows.  

Time-depended speech features. Well known features are pitch-related and 

energy-related features. Commonly used global features are the mean, the 

median, the standard deviation, the maximum, the minimum, the range, the mean 

of first difference, the linear regression coefficients, etc.  

Spectral-based speech features. Emotional content of an utterance may have an 

impact on the shape of the spectral energy. These kind of features can be 

extracted in multiple ways such as linear predictor coefficients (LPC) [112].  

Cepstral-based speech features. The bandwidth of filter is following the 

modified Mel-frequency scale instead of linear scale since the human perception 

of pitch doesn’t follow it. Common used features are linear predictor ceptral 

coefficients (LPCC) [116] and Mel-frequency cepstrum coefficients (MFCC) 

[111].  

There exist other approaches to extract features for characterizing emotional 

contents by detecting whether a voice is breathy by signal level (amplitude) and 

durations of a certain signal level.  

2. Classification procedures 
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The whole classification procedure includes feature extraction and 

classification. After extracting the features, the approaches for detecting the 

emotional contents from speech utterances are introduced in details. It’s common 

that researchers prefer extracting features from small frames divided from long 

speech signals because speech signals are not stationary. After extracting features 

from each frame, there are usually two ways to use them. One is to use all 

features directly and form a vector as local features; another is to calculate 

statistics of all speech features from all frames that are called as global features. 

Other than extracting features from same length frames, some researchers tried to 

extract features based on phonemes and voiced speech segments using previous 

demonstrated strategies. Since lots of the proposed work using global features 

shows higher performance, increasing number of researchers adopt global 

features in their research. Global features overlook the dynamic nature of a 

multivariate time-series (features) extracted from small frames of an utterance. 

Recent researches indicate that improvements can be made by adding segment 

level features to the common utterance level features using super utterance level 

features. The procedures are demonstrated and illustrated as follows. 

The idea is from doubting whether the mainstream global features are proper 

for extracting enough information to detect emotional contents from speech 

signals. This approach adds segment level features into the feature vector of 



 

 

 

73

global features. There are multiple segmentation strategies for extracting and 

utilizing segment level features. Absolute time intervals (ATI) segmentation of 

speech signals is the most straightforward way. Another approach is called 

relative time intervals (RTI), segment features are extracted from fixed relative 

positions from an utterance. A variant is called ATIR, which combines absolute 

time intervals and relative positions. Illustrates of these approaches are shown in 

Figure 39. 

 

Figure 39. Feature extraction schemes illustrations of a short and a long utterances.  
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Many classifiers have been tested for speech emotion recognition such as 

support vector machine (SVM), artificial neural networks, hidden Markov model 

(HMM), Gaussian mixture models (GMM), k-nearest neighbors’ algorithm, and 

so forth. Classifiers such as HMM are widely used in automatic speech 

recognition, therefore many works targeting automatic emotion recognition also 

adopt HMM. However, there are many issues for applying it on emotion 

recognition. The differences between automatic speech recognition and emotion 

recognition are obvious; HMM states in automatic speech recognition are aligned 

with acoustic features corresponding to phonemes or syllables. The accuracy 

adopting HMM on emotion recognition has no obvious advantage compared to 

other classification technologies such as SVM and neural networks. Take 

artificial neural network for example, they are proved to be more robust in 

modeling non-liner patterns, and the classification accuracy is better than HMM. 

SVM is also a very powerful classifier that have been applied extensively in 

many applications, it uses certain kind of kernel functions to map the original 

features to a high-dimensional space nonlinearly and then classify them using a 

linear classifier.  

To summarize, speech emotion recognition is a very difficult task based on the 

following facts. Aside from the non-technical problems such as cultural 

difference among speakers, the disputes of emotion definition, there are many 
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technical issues to be solved. Firstly, it’s not clear how to use speech features for 

classifying emotions. Speaking contents, speaking styles, and also speaking 

speed largely influence the acoustic features. For instance, common features such 

as pitch and energy contours are affected by the speaking speed. Secondly, 

multiple emotions can be represented in the same utterance. In this case, each 

portion can convey different emotional information so that it is not clear what 

kind of emotion should be detect from an automatic emotion recognizer.  

4.2 DEFINING TERMINOLOGY OF EMOTIONS 

An essential issue for conducting research to realize automatic emotion 

recognition from certain signal or multiple signals is to determine a set of the 

important emotions to be classified. By reviewing previous researches in the 

field of ecologists and psychologists, we know that multiple categories of 

emotions exist though there is no universally agreed theoretical definition. In 

order to fulfill different parts of this research, I utilize both discrete and 

dimensional models. Emotional categories are adopted in this thesis are from 

anger, disgust, happiness, sadness, fear, and surprise.  

Discrete emotion model enables us to define a set of separated emotions that 

human beings are able to feel. Several researchers propose typical emotion states 

that are about 300 categories. It’s not easy to directly classify such huge number 

of emotions; especially the technologies are still far from maturated. Additionally, 
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for developing emotion recognition methods, the defined emotion categories 

have to have the property of differentiable. Based on previous researchers and 

experiments, it is shown that many emotions cannot be separated easily even by 

human. It’s a difficult task to confirm whether discrete emotional experiences 

exist since individual differences occur in emotional experiences. Moreover, 

each individual has his or her own definition of different emotions. By 

summarizing multiple theories, emotions can be considered uniquely by 

individuals such as happiness, angry, surprise, fear, disgust, and sadness. Ekman 

argues that cross-cultural basic emotions exist in the judgment of facial 

expression and these emotions are argued to be different from each other, 

characteristics can be described which are useful in distinguishing them.  

  Dimensional model of emotion draws more researchers’ attention recently. 

Ekman, who is one of the founders of discrete emotion model, also consider it is 

enough to describe different emotions with a pleasant-unpleasant and 

active-passive scale. It shows the possibility to define some region for different 

emotion categories. The individual differences can also be considered and 

summarized in order to represent these “basic” emotions on dimensional model 

with a spatial region.  
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To summarize, we selected 4 human basic emotions including happiness, angry, 

surprise and sadness, which can be represented in dimensional model using 

valence and arousal axis and validated by using the proposed EEG assessment. 

4.3 UTTERANCE LEVEL OR SEGMENT LEVEL? 

The utterances (phrases, short sentences, etc) referred to in current research 

papers is often considered the fundamental unit and is recognized based on the 

global utterance-wise statistics of derived segment low-level descriptors (LLD), 

so the segment features are transformed into a single feature vector for each 

emotional utterance [12], [106], [109], [110], [117]. Most of these works rely on 

this assumption although lots of evidence indicates that the human brain (neurons 

networks) sometimes processes information and reacts within a second less than 

the utterance time. In recent research, an increasing number of scientists and 

psychologists have been arguing that emotion activity changes occur within a 

very short period of time are very important. Several studies have emphasized 

the importance of the temporal dynamics of emotions [118], [119]. Furthermore, 

one study that illustrates that emotions are inherently dynamic [120], the paper 

contains an illustration showing that within 2.6 seconds a person went through 

several emotional activities, such as surprise, fear, aggressive stance, and 

relaxation. In addition, a proposed method demonstrates that the emotion affect 

occurs within hundreds of milliseconds [121]. 
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Motivated by these findings, we focus on a novel scheme to improve speech 

emotion recognition using segment level features instead of the strategy that 

includes ensemble learning from different classifiers using the same 

utterance-wise features [90], [108], [115]. Many researchers have recently been 

focusing on an issue that questions whether or not the utterance level is the right 

choice for modeling emotions [114]. They are concerned with this because of the 

difficulties with utterance-wise statistics in avoiding influence from spoken 

content, which requires accurate partitioning of an utterance for segmentation. 

Moreover, valuable but neglected information could be utilized in the 

segment-level feature extraction approach rather than calculating only the 

utterance-wise statistics. This hypothesis is also supported by many researches 

[111], [113], [114], based on the fact that improvements can be made by adding 

segment-level features to the common utterance-level features. The different 

schemes for obtaining these segments that have been discussed by these 

researchers are the global time interval (GTI), absolute time intervals (ATI), 

relative time intervals (RTI), and these schemes were used for constructing 

super-vectors, including the fusion of all segment features plus the global 

features (GRTI), and the fusion of the segment features from the absolute time 

intervals at relative positions plus the global features (GATIR). In addition to 

these super-vector features with a single classifier such as support vector 
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machine (SVM), some researchers have also used classifier ensembles that 

combine several base classification schemes into a larger meta classifier for 

utilizing both the utterance level and segment level information. Another 

approach for the decision model uses two classifiers for both the utterance level 

and segment level information, and then a decision fusion is used based on the 

results from the two classifiers [122]. 

I took into consideration a purely segment level strategy for speech emotion 

recognition and abandoned the utterance-wise features in order to reduce the 

noises from spoken content and utilize the neglected information in calculation 

of the utterance-wise statistics in this study. An issue raised when using 

segment-level speech emotion recognition is that it increases the difficulties for 

training to a large extent because a single utterance is divided into a number of 

segments. The aim of this paper is to properly design an approach for utterance 

level emotion recognition that is based on aggregating the segment level labels 

without introducing a huge computational complexity. 

4.4 SEGMENT LEVEL BASED SPEECH EMOTION RECOGNITION 

4.4.1 Experimental data for evoking emotions 

A well-annotated database is needed to construct a robust model for 

recognizing emotions using speech signals. The experiment emphasizes natural 
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speaking. The participants are prevented from being aware that they are in an 

experimental environment during the experiments, which is much more realistic 

than experiments that were conducted with scripted acting speech [123]. Natural 

speech is difficult to analyze, but more suitable than scripted acting speech for 

validating the robustness of an emotion analysis method. 

4.4.1.1 Experimental protocols 

The experimental setup is composed of one instructor, one coordinator, and 

two participants. The coordinator cooperates with the participants in order to 

help better stimulate their emotions. The coordinator pretends to be one of the 

participants in the experiment to avoid being an extra obstruction for the real 

participants. The stimulation process unfolds through conversations with the aid 

of videos. The steps are demonstrated as follows. 

 The instructor setups the experiment's environment, such as a projector 

for the videos and microphones for collecting the speech signals, and 

gives instructions to the participants. 

 The instructor also explains the steps to the participants, including the 

coordinator, for freely providing their impressions related to the videos. 

 For building an easy speaking atmosphere, self-introductions are made. 
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 After watching each emotion evoking video, which lasts several 

minutes, the speech signals are recorded from the impressions. 

After the experiment, the emotion corresponding to each utterance from the 

recorded speech signals is not only self-assessed by the participants but also by 

10 other people.  

4.4.1.2 Data information 

Ninety-six people participated in the experiments, which included 53 males and 

43 females ranging from their early teens to 40s. We provided the sample 

selections to obtain reliable data in two steps. First, only the samples with the 

same label (pleasure or displeasure) based on the self-assessment and 

others-assessment were taken into consideration. Second, for maintaining a 

balance of the sample numbers for each label, we selected 300 utterances with 

higher rankings using the others-assessment, which consisted of 150 utterances 

as pleasure data and 150 utterances as displeasure data from 50 participants. Ten 

specialists put a label each for every utterance in the others-assessment, and the 

rank for each utterance was calculated based on the ratio of the numbers from the 

specialists who gave labels that were consistent with the label set from the 

self-assessment. 
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4.4.2 Methodology 

The proposed methodology for emotion recognition is based on purely 

segment-level speech frames, and the important issues for consideration here are 

the increased number of samples that raise the computational burden in terms of 

both the memory capacity and execution speed, and the decline in the 

generalization ability of the classifier. In this work, I address the quantitative 

analysis of various analytical schemes related to segment level speech emotion 

recognition, and I propose an automatic approach for decreasing the number of 

samples in order to reduce the computational complexity and improve the 

classifier generalization ability. 

4.4.2.1 Feature extraction 

We focused on a set of 162 acoustic features from speech signals, including 50 

Mel-Frequency Spectral Coefficients (MFCC), 50 Linear Predictive Coefficients 

(LPC), 10 statistical features (mode, median, mean, range, interquartile range, 

standard deviation, variation, absolute deviation, skewness, and Kurtosis) 

calculated from each of the five levels of detailed wavelet coefficients by using 

the Discrete Wavelet Decomposition (DWT), pitch, energy, zero-crossing rate 

(ZCR), the first seven formants, centroid, and 95%-roll-off-point from 

FFT-spectrum. 
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4.4.2.2 Segmentation approach 

1. Existing segmentation schemes 

Several segmentation strategies were proposed in a previous study [114]. In 

this research, I paid particular attention to the strategies on the segment level, and 

compared them with the utterance level approach. The proposed segmentation 

schemes in the previous study are demonstrated as follows and illustrated in 

Figure 40. 

 

Figure 40. Illustrations of segmentation schemes. 

GTI segmentation (Utterance-level segmentation). The speech signals are 

segmented by pauses during the speech without word or syllable boundary 

detection. 

ATI segmentation. Different from utterance-level segmentation, speech 

utterances are segmented at the same fixed time interval. 
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RTI segmentation. Speech utterances are segmented at the fixed relative 

positions. 

ATIR segmentation. ATIR segmentation combines the ideas of ATI and RTI 

segmentation. Fixed length segments are constructed at fixed relative positions, 

and this overcomes the drawback of different segment lengths and numbers 

obtained from different utterance lengths. 

2. Proposed segmentation approach 

The following two difficulties must be overcome in order to carry out segment 

level based speech emotion recognition. The first one is the computation burden 

imposed on the decision model is caused by a large increase in the number of 

segments. The second one, which is a more difficult issue, concerns defining the 

labels of the segments representing the classifiers. The proposed approach is 

illustrated in Figure 41. 

 

Figure 41. Illustration of proposed segmentation approach. 

I propose the novel segmentation strategies, entropy based ATIR (eATIR), 

mutual information based ATIR (miATIR), and correlation coefficients based 

ATIR (crATIR) inspired from the ATIR segmentation method due to the 
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advantages of getting a smaller and fixed number of segments from an utterance. 

Moreover, it’s assumed that some segments do not share the same label as the 

utterance. More precisely labels can be defined when taking into consideration a 

much smaller number of selected segments and these segments can better 

represent the utterance label than simply assuming the labels to all the segments 

obtained using the ATI segmentation method are the same as the utterance level 

label.  

A classifier is trained by using the learning from the information contained in 

the input feature vectors to build a model. In the real world, the final uncertainty 

will not be ideally zero after training because of insufficient input information. In 

addition, the classifier might be "confused" due to ambiguities in the input 

information. The most likely solution is to increase the number of training 

samples, but this is not desirable in our case since the large increase in the 

number of training samples by splitting the utterance into segments has already 

been a great computational burden. However, a more efficient way is to find 

more informative segments by minimizing the amount of mutual information 

between the two feature vectors. In this study, fixed length segments are 

constructed at selected positions based on the designed indexes. So, not all the 

parts of the utterance are used in the analysis. Framing is used after dividing the 
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utterance into several sections to deal with the utterance signal. A 10-ms window 

with no overlap is used for calculating the ranking of the fixed length segment.  

I use several measuring indexes on the extracted features to get the most 

representative ones among all the segments, and the average of the index values 

within each segment is used for the selection. The indexes are introduced in the 

following paragraphs. 

Entropy index. Entropy is a measure of the information content, which is 

introduced as "a measure of how much 'choice' is involved in the selection of an 

event" [124]. In order to model an emotion with segments that are represented by 

an unknown probability distribution, we have to determine how to obtain the best 

approximation for creating the model. One approach is to have the distribution 

with the maximum entropy ensure that the approximation satisfies and subjects 

to any constraints on the unknown distribution [125]. In our study, the 

approximate distribution of acoustic features within a frame is defined as f , 

which assigns a probability  f x  to each feature x  from feature vector X . 

The entropy of f  is defined as  

      ln
x X

H f f x f x


    (10) 

where ln  is the natural logarithm. A number of top ranked segments is 

selected after calculating the entropy of the segment features. 
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Mutual information index. The mutual information measures the "lumpiness" of 

the joint distribution, which is defined in terms of the entropy as follows for two 

feature vectors  and .  

        ; ,X Y X Y X YI f f H f H f H f f     (11) 

where Xf  and Yf  are the approximate distribution of X  and Y , and the 

joint entropy can be defined as  

      , , ln ,X Y
x X y Y

H f f f x y f x y
 

    (12) 

Thus, several of the most informative segments can be selected by minimizing 

the redundant information. 

Correlation coefficient index. The correlation coefficient [126], which is also 

known as the Pearson product-moment correlation coefficient, is a measure of 

the linear dependence between two feature vectors. It is defined as 

 
  

   
,x X y Y

x X y Y

x X y Y

x X y Y
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Where n  is the number of features. This index shares the same concept with 

the mutual information for reducing the redundancy. 

The concept of the proposed segmentation methods is illustrated in Figure 42. 

 

Figure 42. Fixed length segment positions illustration using proposed segmentation approaches 

(20-segment selecting situation is shown and the positions are represented using grey lines). 'S' is included 

in the abbreviation to represent the purely segment-level concept. 

4.4.2.3 Decision model 

The decision for the utterance is based on the prediction of its segments from a 

classifier. I simply use the efficiency approach called the majority vote, which 

determines the label of the utterance from the label in majority, in order to pay 

more attention to examining the effectiveness of the proposed segment-level 

approaches for speech emotion recognition. The decision model is shown in 
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Figure 43. Our decision model is based on a classifier called the probabilistic 

neural network (PNN) [63]. The PNN operations are designed into a 

multi-layered feed-forward network with four layers. It has many advantages 

compared to other kinds of artificial neural networks and nonlinear learning 

algorithms, including a very fast learning speed and less parameters. 

 

Figure 43. Illustration of segment-level classification concept for decision model. 

4.4.3 Results 

A 10-fold cross validation is used to evaluate and test our proposed approaches 

as well as make comparisons with previous researches because it is used in many 
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other emotion recognition researches for validating general models [113]. We 

reviewed all the most recent research on the aspect of classifiers for making a 

solid illustration and found that the support vector machine (SVM) is one of the 

most robust and popular classifiers in the field of affective researches, and it 

beats out many other kinds of classifiers in terms of the recognition accuracy  

[10]. Thus, our evaluation results based on PNN are compared with those based 

on SVM. Figure 44 clarifies the results with our proposed 162 acoustic features 

applied to the existing schemes, such as GTI and segment-level features that 

include schemes such as GRTI and GATIR. 500-ms segments are constructed at 

fixed relative positions for GATIR [114]. 

 

Figure 44. Comparison of emotion recognition accuracy between existing segmentation schemes using 

segment features with global features. 
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As shown in Figure 44, both classifiers succeeded in classifying emotions, 

while PNN performs a little better. These results are also consistent with other 

similar researches, which show a better potential for use as segment features for 

emotion recognition extracted by using RTI segmentation. However, this idea 

doesn't share the common goal of our research, which aims at reducing the 

computational complexity and better labeling the segments by selecting only 

partial information from within an utterance. Hereafter, we begin our pure 

segment features with a name beginning with S  in order to discriminate those 

from global features or both proposed in previous researches. SATI (ATI) is used 

with different time intervals to conduct a first scenario that is different from that 

in utterance-level analysis. Figure 45 illustrates the obtained utterance-level 

emotion recognition results aggregated by a majority vote from the 

segment-level results with four different segment lengths. These results indicate 

that a higher level of accuracy can be achieved by using our proposed decision 

model with purely segment-level features than using segment features together 

with global features. In addition, this indicates that using a larger number of 

segments for training does not guarantee a higher level of accuracy and a longer 

segment will reduce the accuracy when using purely segment-level features. I, 

therefore, choose 50 ms as the segment length for our analysis. 
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Figure 45. Speech emotion recognition accuracy based on segment-level analysis using absolute interval 

segment features (SATI). 

I compare our proposed segment-level feature extraction strategies, which 

generate feature groups called eSATIR, miSATIR, and crSATIR in the sentences 

and paragraphs that follow. I also compare them with a segment-level feature 

extraction approach named SATIR directly inspired from previous research. I 

have to define the number of segments we want to generate from each utterance 

before applying the proposed strategies. Since a majority vote is used in the 

decision model, 10 segments are considered as reasonable for use as the smallest 

number for voting. It is also taken note of the fact that some utterance lengths are 

as short as one second, and thus, 20 segments is considered to be the largest 
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number for a majority vote. Figure 46 provides a comparison of the emotion 

recognition accuracy between different segmentation schemes using purely 

segmented features. According to these comparison results, high performance is 

achieved using both 10 and 20 segments for voting. The results also show that 

miSATIR and crSATIR can greatly increase the utterance-level speech emotion 

recognition accuracy, where crSATIR leads to the best results.  

 

Figure 46. Comparison of emotion recognition accuracy between different segmentation schemes using 

purely segmented features and PNN ( =0.2). 

4.4.4 Discussion 

Previous research has reported on the strategies for improving the speech 

emotion recognition accuracy by utilizing segment-level features together with 

global features extracted from utterances. The effectiveness of these strategies 

was proved in many reports [113], [114]. This research further develops a new 
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approach that totally abandons the global features from the utterances. The 

analytical results in 4.4.3 indicate the robustness of this advancement, which 

leads to a higher level of recognition accuracy by only using segment-level 

features in the proposed decision model. I tested different segment lengths for 

SATI in order to discover the proper one for extracting features, which also 

changes the number of obtained segments. According to the results illustrated in 

Figure 45, the highest number of training samples did not lead to the best level of 

accuracy, which might be explained by the redundant information existing 

among all the segments. The accuracy also decreases when the length of 

segments is longer. The reasons for this are that the number of segments for the 

decision model decreases, and the features are more likely to be similar to the 

global ones (GTI) from the utterance. We finally choose 50 ms as the segment 

length not only based on the better level of accuracy, but also based on 

consideration of the emotional variability and content. A shorter duration such as 

may lack the emotional content necessary for learning a decision model. While a 

longer length of segment may influenced by the time vary characteristic of 

speech signals or contain redundant information for representing the utterance 

label, the analytical results also show that the performance of the decision model 

is adversely affected. 
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In order to select propose segments in the large increased number of training 

samples by splitting the utterances and minimizing the redundancy, I proposed 

several approaches for segmentation in order to select the appropriate number of 

segments within an utterance. SATIR is simply extracted from the selected 

segments at fixed positions according to the length of the utterance, and the 

recognition results can be seen as a reference. Two kinds of features are 

introduced from the segmentation approaches that are based on information 

theory including eSATIR and miSATIR, but the improvement when using 

miSATIR is much larger than that for eSATIR, where eSATIR can only slightly 

increase the level of accuracy compared to SATIR. Since eSATIR doesn't 

consider the relationship between the utterance and its segments, the segments 

generated by only considering the maximum entropy have a higher chance to 

obtain confusing information such as noise or non-representative information for 

the utterance label and this might be the cause for the difference. However, the 

miSATIR and crSATIR approaches generate segments with less redundant 

information for the decision model, which contributes to a better understanding 

of the utterance label, and a better comprehensibility of the learned model. 

As can be seen in Figure 46, the results of crSATIR outperform those of 

miSATIR. This phenomenon seems hard to explain at first glance. In lots of 

situations, they share the same purposes and the mutual information makes it 
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more powerful for detecting the complex non-linear relationships between two 

feature vectors, and this helps in problem solving for a lot of difficult issues such 

as in network analysis [126], [127]. However, the situation for feature extraction 

is different from that in our case, with the aim of better extracting information for 

representing an utterance label. The mutual information, which is the strategy 

adopted in our research in order to reduce the redundant information when 

extracting features from segments, is able to detect these non-linear relationships 

and avoid them to a large extent. However, the correlation coefficients strategy 

investigates whether a linear relationship between feature vectors exists and 

minimizes it. In our case, two feature vectors with a small or no linear 

relationship might have a strong non-linear relationship, and this dynamic 

relationship can be considered useful information for better representing the 

utterance labels, which might benefit the decision model learning so that using 

crSATIR leads to an improved level of accuracy compared with using miSATIR. 

I used a 162-dimension feature set for a complete analysis, but a remaining 

point is that we are not including a feature selection procedure before the 

segmentation. The full set of extracted features is chosen instead and let the 

segmentation algorithm decide on the more appropriate segments for 

representing the utterance labels, and this is appropriate with respect to feature 

dimensions with a large number of sample. However, the interaction between the 
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feature selection and segmentation approaches and its meaning will be discussed 

as a future issue. 

The analytical results show the effectiveness of 50ms in segment-level emotion 

recognition. A research demonstrates that emotion effect happens in hundreds of 

milliseconds [121]. A shorter time interval for studying emotions have not been 

studied so far in neuroscience. From the view of typical frame size for extracting 

acoustic features, 50ms is an appropriate frame size due to it contains several 

fundamental periods of the audio signals. If it is too short such as less than 10ms, 

some features cannot be correctly estimated such as pitch. And if the frame 

duration is too big, the time-varying characteristics of the speech signals may 

influence the features. However, More discussions of proper frame length need 

to be discussed.  

The majority voting based on 20 segments outperforms that based on 10 

segments using proposed segment selection approaches. As for entropy based 

segment selection method, a consecutive part of speech signal may contain larger 

entropy as shown in Figure 42. If less number of segments are used for voting, it 

highly possible that all segments are selected from that consecutive part so that it 

overlooks the overall emotional information of an utterance. In the other two 

methods including mutual information and correlation coefficient based selection, 

they can be less influence by this matter by selecting a segments with have less 
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dependency. This explains that the improvements are larger for entropy based 

selection when using 20 segments. However, the improvements will become less 

if the number of segment increases. In majority of the testing, 20 segments can 

overcome the demonstrated problem and give better fault-tolerance. Considering 

the segment length and numbers as well as utterance length, 20 segment voting is 

adopted for avoiding situations that the total segment length is larger than 

utterance length. 

4.5 REAL-WORLD SPEECH EMOTION RECOGNITION BY PROPOSED 

METHODS 

The proposed method is further evaluated using the emotion speech with 4 

labels elicited using real experiences. The results are calculated using 10-fold 

cross validation. The selected database contains 1491 utterances (29820 

segments). 

4.5.1 Results of four-emotion recognition 

The segment-level emotion recognition accuracy is illustrated in Figure 47 and 

the emotion recognition accuracy of utterances using majority voting is shown in 

Figure 48.  
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Figure 47. Confusion matrix of four-emotion recognition in segment level (10-fold cross validation). 

 

Figure 48. Confusion matrix of four-emotion recognition in utterance level (10-fold cross validation). 

4.5.2 Comparison results 

As for comparisons, accuracies with optimized conventional method 

(utterance-level features) are calculated. The utterance-level features are selected 

using RELIEF according to the performance among feature selection methods 

that are shown in Table 4. The results are shown in Figure 49.  
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Figure 49. Comparison of conventional and proposed methods. 

4.5.3 Results of database evaluation 

In order to evaluate the quality of selected database, DB quality is defined as 

testing accuracy of the following scenario. 18000 samples are selected randomly 

in each database shown in Figure 50 for training, and 2000 samples are selected 

randomly in the original database. There is no overlap samples between training 

and testing databases. Emotion recognition performances in segment level using 

selected and unselected database (control) are shown in Figure 51. 

 

Figure 50. Illustration of original and selected speech databases. 
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Figure 51. Emotion recognition performance using different databases. 

4.5.4 Further validation of four-emotion recognition 

Additional validation has been carried out on a more severe scenario. Since in 

the real case, the testing samples cannot be selected in advance, the testing 

samples (2000 samples) are selected randomly in the original database, and 

training database are selected randomly in the selected database (18000 database). 

There is no overlap between training and testing databases. The detailed results 

of the validation using PNN is shown in Figure 52. 

 

Figure 52. Confusion matrix of four-emotion recognition. 
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4.5.5 Discussions 

The proposed purely segment-level method is further validated using emotional 

speech data elicited by real experiences, which is more similar to real-world 

emotions that are not exaggerate. The segment-level accuracy is more than 80% 

and utterance-level accuracy is more than 90%, while the classification of 4 

emotions failed using global features extracted from utterances. The accuracy in 

utterance-level is more than 80% on the unselected testing database using a 

different training database. 

The performance using selected and unselected databases indicates that the 

selected data can be better modeled compared to the unselected original database, 

which shows the effectiveness of the proposed data selection method using EEG 

signals. Self-assessments can also improve the performance of cross-validation, 

the quality of selected emotional speech database is further ensured together with 

self-assessments. 

4.6 APPLICATION PERSPECTIVE: EMOTION STRENGTH ANALYSIS 

A very interesting potential application area is emotion strength analysis by 

using segment-level speech emotion recognition. Majority voting is used for the 

utterance labels prediction with the assumption that the label of the most 

predicted segments represents the utterance label. For better understanding the 

segment labels, we further look into the ratio of the most predicted label that can 
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represent the strength of the utterance emotion. SATI is used because we want to 

examine all the segments in terms of the emotions. 

4.6.1 Experimental data 

I used the International Affective Picture System (IAPS) [70] for evoking 

emotions with different strengths. The IAPS is an emotion stimulation system 

built from the results of many emotion experiments. The picture system is 

composed of about 1000 pictures labeled with a standard scale of valence 

(pleasure-displeasure) and arousal (exciting-sleepy). Therefore, it meets our 

requirement for stimulating emotions with different strengths.  shows the four 

kinds of emotions we defined using the IAPS. 

 

Figure 53. Defined emotion strength based on IAPS. 
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The experimental approach was made up of four parts according to the pleasure 

and displeasure emotion stimulation, which includes the defined emotion 

strength (weak and strong). The detailed experimental protocol is shown in . The 

pictures selected from the IAPS during the stimulation period were projected on 

a screen to evoke emotions and the speech signals were then collected when the 

participants were reading designed scripts with their evoked emotion after 

viewing each picture, and they were requested to close their eyes to relax during 

the control time. Seven Japanese males took part in the experiment. Data was 

collected using the previously described procedures for estimating the emotional 

strength, which contains 312 samples including 156 pleasure (78 strong, 78 weak) 

and 156 displeasure (78 strong, 78 weak) data. 

 

Figure 54. Experimental protocols. 
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4.6.2 Results 

I statistically analyzed the components of all the samples and then visualized 

the information using a bar chart with a standard deviation to illustrate the 

correlations between stimulations (Figure 55) and the output of the emotion 

components represented by segment-level predictions within an utterance using 

the proposed segment-level speech emotion recognition method.  

 

Figure 55. Statistical analysis for emotion components using segment-level speech emotion analysis for 

all speech samples. 

4.6.3 Discussions 

The emotion recognition of utterances is one of the more attractive topics in 

speech analysis for HCI. However, emotion strength analysis has been a very 

essential but difficult research area. We discussed the potential for using 

segment-level frames for the emotion strength analysis within utterances. As 
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shown in Figure 55, the proposed method can indeed reflect the strengths of 

emotions in utterance clusters for a number of spoken phrases or short sentences 

over a short period of time. However, difficulties still exist in applying it to a 

single utterance because of the variances in the emotional components regarding 

the utterances. Although further validation is necessary for collecting more solid 

findings in terms of the emotion strength analysis of utterances, segment level 

speech emotion analysis creates a new focus for better recognizing human 

emotion strength using machines.  

4.7 SUMMARY 

A purely segment level speech emotion recognition method is proposed in the 

first time. In order to make the proposed method more efficient and accurate, 

advanced relative segmentation method is firstly introduced by using mutual 

information (miSATRI) and correlation coefficients (crSARTI). Fixed length 

segment selection at relative positions is proposed, which is essential for 

realizing the purely segment level approach. The proposed method can greatly 

increase the emotion recognition accuracy of four-emotion recognition to more 

than 80% using a validation database with speech signals from 50 participates. 

The proposed method also showed the effectiveness of determining the emotion 

strength of utterances over a period of time.  
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5 CONCLUSIONS 

1. EEG based emotion recognition method is proposed with high accuracy 

According to variety of emotion theories and researchers, brain activities are 

considered as the most reliable signals for emotion recognition. EEG signals are 

extensively studied for demonstrating brain activities. However, emotion 

recognition accuracy by using only EEG signals are still not high enough as a 

reference for the purpose of data selection for building high quality database. For 

increasing the EEG-based emotion recognition accuracy, cross-level wavelet 

features are proposed. This approach increases emotional valence and arousal 

recognition accuracy to more than 90%, whereas previous research accuracy is 

from 40% to 70%. The high accuracy enables EEG signals to be used as a 

reference signal for selecting high quality data in the database. Moreover, it has 

more candidate applications. Additional emotion information can be extracted 

using current brain computer interfaces.  

2. A natural emotional speech database is presented 

Recent popularity of researches on human machine interfaces promotes many 

researchers to design emotional databases for algorithm evaluations. Current 

public emotional databases mostly include acting emotions for this demonstrated 

purpose. Increasing researches indicate that acting emotions have less or no 

influence of human health, and real-world emotions are usually not as exaggerate 
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as acting emotions. For the purpose of evaluating the developed emotion 

recognition approach, a database with natural speech and real-world emotions is 

necessary. Thus, a new database with natural speech under emotions evoked by 

real experiences is presented. EEG signals are recorded as a reference for 

ensuring the quality of collected emotional data.  

3. Purely segment level emotion recognition using speech is achieved 

For achieving a higher accuracy of speech emotion recognition, the 

classification scheme is evaluated. Purely segment level classification is 

proposed in this thesis, although it has been a long time for treating utterances as 

classification targets. Current features extracted from speech signals have been 

proved effective in speech recognition and further applied in most of emotion 

recognition researches. However, popular features for speech recognition and 

emotion recognition largely influenced by each individual’s speaking content, 

speaking speed, speaking style, etc. Moreover, the emotional activity in brain 

changes in much shorter time than an utterance; voice is directly influenced by 

these changes. Utterance features are not efficient for capturing such information. 

Thus, a new emotion recognition approach using segments are proposed in order 

to overcome the described issues. In the proposed approach, utterance level 

features are totally abandoned, large improvements of classification accuracy 

compared to current emotion recognition approaches using speech, more than 80% 
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accuracy is achieved for recognizing human emotions from speech during real 

emotional experience recalling.  
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