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[1] A magnetospheric energy principle is formulated to study hydromagnetic stability of a
magnetospheric plasma. The magnetospheric plasma is either in a two-dimensional or
three-dimensional static equilibrium. It is surrounded by lateral perfectly conducting walls
and ideal ionospheres in both cases and also by dawn-dusk periodic boundaries in the
two-dimensional case. The two-dimensional case has a translational symmetry and has no
unperturbed magnetic field component in the dawn-dusk direction. Unlike the
conventional energy principle for a plasma surrounded by a perfectly conducting wall,
field lines are assumed to vertically thread the ionospheric boundary, which is not a
perfectly conducting rigid wall. Ideal ionospheric boundary conditions are obtained, so
that the force operator becomes self-adjoint and the magnetospheric energy principle is
valid. There are four ideal ionospheric boundary conditions to satisfy these
requirements: horizontally free, conducting, free, and rigid. A change in the potential
energy becomes equal to the sum of the change in the fluid energy and an ionospheric
surface contribution, which is negative and thus destabilizing for horizontally free and free
ionospheric boundary conditions. A minimization condition for the change in the
potential energy is obtained. When an unperturbed field-aligned current vanishes, the
horizontally free, conducting, free, and rigid boundary conditions allow interchange,
incompressible ballooning, incompressible ballooning, and compressible ballooning
modes, respectively. Different characteristics of those three pressure-driven modes are
clarified. Existing interchange stability criteria are compared and results of several
different numerical stability analyses of ballooning instabilities for different
magnetospheric equilibria are discussed systematically in light of the present
magnetospheric energy principle.
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1. Introduction

[2] Magnetospheric regions of interest are characterized
by finite-b plasmas. In such regions, field line-curvature
influences the dynamics of magnetospheric plasmas by its
potentially unstable interaction with plasma pressure gra-
dients. Indeed, the most dangerous electromagnetic insta-
bilities usually involve curvature of the field. Such ideal
magnetohydrodynamic (MHD) instabilities driven by pres-
sure gradients or currents perpendicular to the magnetic
field are called pressure-driven instabilities, which are
subdivided into interchange and ballooning instabilities.
There are subtle kinetic effects due to the field line curva-
ture in collisionless magnetospheric plasmas [Hurricane
et al., 1994; Horton et al., 2001], which invalidate a fluid
description. However, the possibility of ballooning growth
rate being larger than the bounce frequency of the bulk of

ions in the near-Earth magnetosphere within 15RE from the
Earth has recently been shown for a specific magnetospheric
model [Miura, 2004]. This validates a fluid description of
ballooning instability in the near-Earth magnetosphere,
where a substorm onset occurs, and indicates that under
such circumstances, the magnetohydrodynamics (MHD) are
not only references but also real possibilities.
[3] However, even within ideal MHD, the study of

pressure-driven instabilities in the magnetosphere has been
difficult because of their awkward dependence on the
explicit form of the equilibrium. In order to overcome this
difficulty, an energy principle [Bernstein et al., 1958] has
been applied to pressure-driven modes in magnetospheric
plasmas. However, from the point of validity of the appli-
cation of the energy principle to the magnetosphere, a
fundamental point has never been addressed previously, in
particular, concerning proper specification of ionospheric
boundary conditions compatible with the energy principle.
[4] The energy principle [Bernstein et al., 1958] was

originally used in fusion plasmas to study plasma stability
and is a rather general approach based on the variational
principle. A brief review of the energy principle can be
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found in the work of Kadomtsev [1965] and a very
comprehensive review can be found in the work of
Freidberg [1987]. When the plasma is surrounded by a
perfectly conducting wall, magnetic field lines do not thread
the wall and the energy principle becomes particularly
simple. This type of energy principle with a perfectly
conducting wall boundary has been widely used in the
context of fusion plasma applications. However, in the
magnetosphere the plasma is bounded at the earthward ends
by ionospheres. Field lines can thread the ionospheric
boundaries. This is an important difference from a case of
perfectly conducting walls, where the normal component of
the magnetic field at the plasma-wall interface must vanish.
Therefore as noted by Hameiri et al. [1991], boundary
conditions are very different in the magnetosphere from
those used in fusion applications, for example, torus-like
tokamaks, although previous applications of the energy
principle to the magnetosphere have not seriously taken
into account this important difference. Furthermore, the
ionospheric boundary is not a fixed boundary but a free
boundary. Therefore the Lagrangian displacement x = 0
(rigid boundary condition) is not the only allowed iono-
spheric boundary condition. The purpose of this paper is to
formulate a magnetospheric energy principle by taking into
account these fundamental differences peculiar to the mag-
netospheric plasma. Although both interchange and bal-
looning instabilities are described by three-dimensional
ideal MHD equations, they are quite different and have
their own distinct characteristics. This study clarifies that
both instabilities are characterized by different ionospheric
boundary conditions.
[5] When magnetospheric field lines are connected to real

ionospheres with finite conductivities, pressure-driven
modes in the magnetosphere are no longer ideal MHDmodes
because of finite ionospheric energy dissipation, and the
energy principle does not hold. Therefore instead of realis-
tically taking into account ionospheric boundary conditions
due to finite ionospheric conductivities [Southwood and
Kivelson, 1989; Hameiri et al., 1991], this study pursues
to formulate an energy principle for the magnetospheric
stability by obtaining ideal ionospheric boundary conditions
that are necessary for the force operator to be self-adjoint. In
this sense the present ionosphere is ideal and not realistic.
Nevertheless, a consideration of such ionospheric boundary
conditions is helpful for numerical models of ideal MHD
instabilities in the magnetosphere, in which idealized
boundary conditions are imposed at ionospheric boundaries.
Although previous studies [e.g., Hameiri et al., 1991] have
not sought ideal ionospheric boundary conditions to satisfy
the self-adjointness of the ideal MHD force operator, this
study pursues ideal ionospheric boundary conditions so that
the force operator becomes self-adjoint.
[6] The present study does not depend on any specific

model of the magnetospheric equilibrium as long as the
magnetospheric plasma satisfies a static balance. The pres-
ent magnetospheric energy principle is also applicable to
kink modes driven by field-aligned currents, if an equilib-
rium magnetospheric model with currents parallel to the
magnetic field is properly specified. Since the energy
principle obtains a condition by making the variation of
the change in the potential energy zero, the obtained
condition is valid for the most unstable modes.

[7] In his seminal paper, Gold [1959] pointed out the
possibility of spontaneous large-scale interchange motions
of magnetic flux tubes and the plasma contained in them
occuring in the Earth’s magnetosphere. This possibility has
been widely discussed as a potentially important mechanism
for the redistribution of mass in planetary magnetospheres.
The further discussion of interchange instability and its
extension to magnetospheres of rapidly rotating planets such
as Jupiter can be found in literature [e.g., Chandrasekhar,
1960; Sonnerup and Laird, 1963; Melrose, 1967; Hill,
1976; Cheng, 1985; Rogers and Sonnerup, 1986; Southwood
and Kivelson, 1987; Ferrière et al., 2001].
[8] Miura et al. [1989] did a numerical eigenmode

analysis of ballooning instability in the geomagnetic tail.
They have shown that the geomagnetic tail is ballooning
unstable where the plasma b at the equator exceeds a critical
b value, which is calculated approximately. Their numerical
analysis has also shown that the ballooning instability in the
tail grows very rapidly (or exponentiate) in a timescale of
the field line curvature radius divided by the Alfvén speed at
the equator [Miura, 2004], which becomes several to tens of
seconds in the geomagnetic tail, compatible with the rapid
substorm onset timescale. Their numerical stability analysis
and other numerical stability analyses of ballooning insta-
bility solved one-dimensional eigenmode equations numer-
ically [e.g., Miura et al., 1989; Lee, 1998; Cheng and
Zaharia, 2004] or used an initial value approach [Wu et
al., 1998; Zhu et al., 2004] for different boundary condi-
tions, which are imposed at the ionosphere, and for different
tail or magnetospheric models. Other numerical models
[Lee and Wolf, 1992; Schindler and Birn, 2004] calculated
a potential energy functional for a rigid ionospheric bound-
ary condition and for different tail models to study stability
of the geomagnetic tail. Although Miura et al. [1989]
studied incompressible ballooning modes, most other stud-
ies considered compressible ballooning modes. Therefore
whether a ballooning instability related to a substorm onset
occurs in an incompressible manner or in a compressible
manner is controversial.
[9] It is obvious from these observations of previous

studies that complete understanding of pressure-driven insta-
bilities in the magnetosphere, such as interchange and bal-
looning instabilities, is crucial for understanding dynamics
of magnetospheric plasmas.
[10] As a somewhat related subject, the existence of

centrifugally driven instabilities in the Jovian outer magne-
tosphere has been discussed by Melrose [1967] and Hill
[1976] and these studies have shown that when the density
of the outer magnetosphere falls off rapidly enough with
distance from the planet, centrifugally driven instabilities
occur. The existence of such centrifugally driven modes in
magnetospheres of rapidly rotating planets means rich
nature in parameter space. However, even in such a rapidly
rotating magnetosphere, purely pressure-driven modes can
be postulated.McNutt et al. [1987] point out that in Jupiter’s
magnetosphere a pressure-driven incompressible ballooning
mode occurs and is responsible for plasma depletion.
Therefore the present study is focused on formulation of a
magnetospheric energy principle for ideal MHD instabilities
in a static plasma.
[11] In the following, a model of the magnetospheric

physical region of interest, for which an energy principle
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is formulated, is constructed in section 2. Linear stability
equations are presented and the normal-mode formulation
of the linearized MHD stability problem is given in
section 3. Boundary conditions on lateral boundaries of
the physical region of interest in the magnetosphere are
given in section 4. Ideal ionospheric boundary conditions,
that are necessary for the ideal MHD force operator to be
self-adjoint, are obtained in section 5. A magnetospheric
energy principle is formulated in section 6. The condition
for minimization of the change in the potential energy with
respect to xk is obtained in section 7. Discussion is
presented in section 8. Summary and conclusion are
presented in section 9. The calculation of two terms
appearing in the proof of the self-adjointness of the force
operator is given in Appendix A. The condition for the
validity of the magnetospheric energy principle and
physical meaning of the change in the potential energy are
clarified in Appendix B.

2. Model of the Physical Region of Interest

[12] In fusion plasmas, the region of interest can often be
considered surrounded by a rigid, perfectly conducting wall.
However, in the magnetospheric case, the region of interest
is bounded by ionospheres at the earthward ends. Therefore
in this study the region of interest is assumed to be
surrounded by boundaries in the magnetosphere and at the
ionospheres. In the present magnetospheric region of inter-
est the plasma must be under a static force balance. As long
as a magnetospheric configuration is in a static equilibrium,
any magnetospheric configuration, whether it is dipole-like
or tail-like, can be used in the following analysis. Although
steady flows are often present in the magnetospheric regions
of interest, a static equilibrium is assumed in the present
analysis, because the energy principle is based on the self-
adjoint property of the force operator, which leads to the
result that !2 (the square of the frequency of the character-
istic oscillation) is real. This is in contrast to instabilities
driven by an equilibrium flow, such as Kelvin-Helmholtz
instability, which has a complex frequency.
[13] To make a magnetospheric energy principle general,

two types of magnetospheric configurations, which have
often been used for stability analyses of pressure-driven
modes, are used. One is a two-dimensional magnetospheric
model, which is two-dimensional in the midnight meridian
plane and has translational symmetry in the cross-tail or
dawn-dusk direction. There is no magnetic field component
in the dawn-dusk direction. This two-dimensional model
includes, for example, an analytic tail-like equilibrium
model of Kan [1973] and a magnetostatic MHD model of
Voigt [1986]. Since a ballooning mode wavelength in the
dawn-dusk direction is much shorter than the magneto-
spheric size in the dawn-dusk direction, the two-dimensional
model with a periodic perturbation in the dawn-dusk
direction is valid for magnetospheric ballooning instability.
The other configuration is a full three-dimensional magne-
tospheric configuration. The three-dimensional model
includes, for example, a low-b limit of the magnetospheric
configuration, that is, the dipole field configuration. The
dipole model has been used to study the low-b stability of
interchange modes in the magnetosphere [Gold, 1959].
Another example of the three-dimensional model is a

numerical three-dimensional force-balanced magneto-
spheric model of Zaharia and Cheng [2003], which is
not axisymmetric.
[14] Figure 1 shows a cross section of the magnetospheric

region of interest in the midnight meridian plane. The solid
circle is the Earth. The dotted circle is the ionospheric
boundary. For the three-dimensional configuration, the
region of interest is surrounded by two lateral boundaries,
Sout and Sin, which are shown by solid lines. Both boundary
surfaces surround a part of the magnetospheric plasma,
which is in a static equilibrium. These virtual boundaries
are taken to be flux surfaces of the static magnetospheric
equilibrium and are located far enough from disturbed field
lines. Hence these boundaries are not perturbed and there is no
magnetic field component threading these boundaries. There-
fore these virtual boundaries, Sout and Sin, are considered to be
thin perfectly conducting walls. For the two-dimensional
configuration with translational symmetry in the cross-tail
direction, there are two other lateral boundaries Sdawn and
Sdusk at the dawn and dusk ends. At these boundaries,
periodic boundary conditions are imposed on perturbations.
For both two-dimensional and three-dimensional configura-
tions, earthward ends of the region of interest are bounded
by ideal ionospheres, which are shown by a dotted line in
Figure 1. Unlike Sout and Sin, magnetic field lines thread the
ionospheric boundaries.

3. Linearized Stability Equations

[15] In this section, following Freidberg [1987], the
stability problem is cast into the form of a normal-mode
eigenvalue problem.
[16] To begin, assume that a static ideal MHD equilibrium,

satisfying

J0 � B0 ¼ rp0; ð1Þ

m0J0 ¼ r� B0; ð2Þ

r � B0 ¼ 0; ð3Þ

Figure 1. A cross section of the magnetospheric region of
interest in the midnight meridian plane. The solid circle is
the Earth. The dotted circle is the ionospheric boundary. Two
lateral boundaries, Sout and Sin, which are shown by solid
lines, are considered to be thin perfectly conducting walls.
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v0 ¼ 0; ð4Þ

is given. All quantities are linearized about this background
state: Q(r, t) = Q0(r) + ~Q1(r, t) with ~Q1/Q0 << 1. All
perturbed quantities denoted by subscript 1 are expressed in
terms of a displacement vector x~defined by

~v1 ¼
@~x
@t

: ð5Þ

Using x~ the general linearized equations of motion are cast
into an initial value problem. In this formulation one needs
to specify appropriate initial data. A very convenient choice
of initial data for stability problems is as follows:

~x r; 0ð Þ ¼ ~B1 r; 0ð Þ ¼ ~�1 r; 0ð Þ ¼ ~p1 r; 0ð Þ ¼ 0; ð6Þ

@~x r; 0ð Þ
@t

� ~v1 r; 0ð Þ 6¼ 0: ð7Þ

This corresponds to the situation where at t = 0, the plasma
is in its exact equilibrium position but is moving away with
a small velocity ~v1(r, 0). The linearized momentum
equation, subject to ~x(r, 0) = 0, @~x(r, 0)/@t = ~v1(r, 0), plus
appropriate boundary conditions (as discussed later) con-
stitute the formulation of the general linearized stability
equation as an initial value problem.
[17] A more efficient way to investigate linear stability is

to reformulate the initial value problem as a normal mode
problem. To do this, all perturbed quantities are assumed to
vary as follows:

~Q1 r; tð Þ ¼ Q1 rð Þ exp 
i!tð Þ; ð8Þ

where Q1(r) is a complex quantity in general, whereas
~Q1(r, t) is defined in the real time domain. Then, the
linearized form of the mass conservation equation, energy
relation, and Faraday’s law becomes

�1 ¼ 
r � �xð Þ; ð9Þ

p1 ¼ 
x � rp
 �pr � x; ð10Þ

Q � B1 ¼ r� x � Bð Þ: ð11Þ

In equations (9), (10), and (11) and hereafter, the zero
subscript has been dropped from all equilibrium quantities.
Upon substituting these relations into the momentum
equation, one finds


!2�x ¼ F xð Þ; ð12Þ

where the force operator F(x) is given by

F xð Þ ¼ m
1
0 r�Qð Þ � Bþ m
1

0 r� Bð Þ
�Qþr x � rpþ �pr � xð Þ: ð13Þ

Equations (12) and (13) represent the normal-mode
formulation of the linearized MHD stability problem. In
this approach only appropriate boundary conditions on x
are required.

4. Boundary Conditions on Lateral Boundaries

[18] The energy principle [Bernstein et al., 1958] has
been typically applied to fusion plasmas surrounded by a
perfectly conducting wall. Figure 2 shows a cross section of
plasma surrounded by a perfectly conducting wall. As
shown in this figure, the plasma extends out to a stationary,
perfectly conducting wall located at r = Rw(�, z). The
unperturbed magnetic field B does not thread the conduct-
ing wall. The electromagnetic boundary conditions require
that the tangential electric field and normal magnetic field
vanish at the conducting wall

n� EjRw
¼ 0; ð14Þ

n � BjRw
¼ 0: ð15Þ

Here n is the outward-pointing normal vector on the
boundary. It then follows from the ideal Ohm’s law that n �
E + (n � B)v 
 (n � v)B = 0; that is, the normal component
of velocity also automatically vanishes at the wall:

n � vjRw
¼ 0: ð16Þ

[19] In both two-dimensional and three-dimensional mag-
netospheric configurations, the physical region of interest is
assumed to be surrounded in the meridian plane by the
perfectly conducting walls Sout and Sin as shown in Figure 1.

Figure 2. A cross section of plasma surrounded by a
perfectly conducting wall, which is shown by a large solid
circle. n is the outward-pointing normal vector on the wall
boundary. The magnetic field B does not thread the wall.
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Therefore on these lateral boundaries Sout and Sin at r = Rw,
the following boundary conditions are valid.

n� EjRw
¼ 0; ð17Þ

n � BjRw
¼ 0; ð18Þ

n � vjRw
¼ 0: ð19Þ

In the two-dimensional magnetospheric configuration
defined in section 2, the physical region of interest is also
surrounded by Sdawn and Sdusk at the dawn and dusk ends. In
the two-dimensional configuration the periodic boundary
condition is imposed on perturbations at Sdawn and at Sdusk.
Normal vectors n on the boundary surfaces at the dawn and
dusk ends are opposite each other.

5. Ionospheric Boundary Conditions Necessary
for Self-Adjointness of the Force Operator F

[20] Before deriving ideal ionospheric boundary condi-
tions, it is important to note that a neutral atmosphere exists
below the ionosphere and is bounded by the solid Earth at
the lowest end. This magnetospheric situation is somewhat
similar to a more general configuration in magnetic con-
finement devices, in which the plasma is separated from a
perfectly conducting wall by a vacuum region [Bernstein
et al., 1958; Kadomtsev, 1965; Freidberg, 1987]. For such
a general configuration in magnetic confinement devices, the
validity of the energy principle has been shown by proving
the self-adjointness of the force operator F. That is, the
vectors x and h must satisfy

Z
P

h � F xð Þdr ¼
Z
P

x � F hð Þdr; ð20Þ

where P is the unperturbed plasma volume, which is
surrounded by a plasma-vacuum boundary. In showing
equation (20) three boundary conditions are used [Bernstein
et al., 1958; Kadomtsev, 1965; Freidberg, 1987]. One
boundary condition is obtained by expanding the pressure
balance condition at the perturbed plasma-vacuum boun-
dary, rs = rp + x, where rp is the unperturbed plasma-
vacuum boundary and x = x(rp), in powers of the small
quantity and retaining linear terms based on the assumption
that the acceleration of the boundary remains finite. The
other two boundary conditions are boundary conditions on
vector potential at the outer perfectly conducting wall and at
the unperturbed plasma-vacuum boundary.
[21] In spite of the apparent similarity, the magnetospheric

case is more difficult than the above general magnetic
confinement configuration, because the solid Earth is not
a perfect conductor and the neutral atmosphere is not a
vacuum region. In order to avoid this difficulty, the exis-
tence of a neutral atmosphere below the ionosphere has
been neglected and some boundary conditions have been
imposed at fixed ionospheric boundaries [Miura et al.,
1989; Lee and Wolf, 1992; Bhattacharjee et al., 1998;
Lee, 1998; Wu et al., 1998; Cheng and Zaharia, 2004;

Schindler and Birn, 2004; Zhu et al., 2004]. However,
even with such a simplification, ideal ionospheric boun-
dary conditions compatible with the energy principle have
so far been unknown. The purpose of this and following
sections is to obtain ideal ionospheric boundary condi-
tions on two arbitrary vectors x and h at the unperturbed
ionospheric boundaries, for which the force operator F
becomes self-adjoint. That is, the vectors x and h must
satisfy equation (20), where the integral is calculated for
the unperturbed plasma volume P surrounded by Sout and
Sin in the magnetosphere and the unperturbed ionospheres
in the three-dimensional case and by Sout and Sin, the
unperturbed ionospheres, and unperturbed Sdawn and Sdusk
in the two-dimensional case. For the sake of simplicity,
the unperturbed magnetic field B at the ionospheric
surface is assumed to be everywhere perpendicular to
the local unperturbed ionospheric surface. Therefore n = b,
where b = B/jBj, is assumed on the ionospheric surface in
the Northern Hemisphere and n = 
b is assumed on the
ionospheric surface in the Southern Hemisphere. This
normal incidence of the unperturbed magnetic field on the
ionosphere is the only assumption in the present magneto-
spheric energy principle and the validity of this assumption
is verified in section 8.6. On the lateral boundaries Sout and
Sin, which are thin perfectly conducting walls, x and h,
satisfy n � x = n � h = 0 from equation (19). In the two-
dimensional configuration x and h are periodic at Sdawn
and Sdusk.
[22] When the plasma is assumed to be surrounded by a

perfectly conducting wall, all the boundary terms (surface
integrals) arising from the volume integral of equation (20)
vanish and the force operator F becomes self-adjoint. This
is shown in detail in Appendix A of Freidberg [1987]. For
the above more general magnetic confinement configura-
tion, the self-adjointness of the force operator F is proven
by using the known boundary conditions. The situation is
opposite in the present magnetospheric case, however, and
one is interested in obtaining unknown boundary conditions
at the ideal ionospheric boundary necessary for the force
operator F to become self-adjoint. These additional boun-
dary conditions at the ideal ionospheric boundary are
obtained below. Some parts of the derivation below are
parallel with the derivation in Appendix A of Freidberg
[1987].
[23] The integrand of equation (20) can be written as

h � F xð Þ ¼ h � ½m
1
0 r�Qð Þ � Bþ m
1

0 r� Bð Þ
�Qþr x � rpþ �pr � xð Þ�: ð21Þ

[24] One now writes x = x? + xkb, h = h? + hkb.
Following Appendix A of Freidberg [1987] and using
vector identity one can write

h � F xð Þ ¼ r � �ph r � xð Þ½ � 
 �p r � xð Þ r � hð Þ þ I ; ð22Þ

where I is a function only of the perpendicular components
of x and h:

I x?;h?ð Þ ¼ h? � ½m
1
0 r�Qð Þ � Bþ m
1

0 r� Bð Þ
�Qþr x? � rpð Þ�: ð23Þ
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By rewriting the last term of equation (23) using vector
identity and by using standard vector identity, equation (23)
can be rewritten as

I ¼ m
1
0 h? � Q � rð ÞBþ B � rð ÞQ
r Q � Bð Þ½ �

þr � x? � rpð Þh?½ � 
 x? � rpð Þr � h?:
ð24Þ

If one uses vector identity,

c � rð Þ deð Þ ¼ c � rð Þd½ �eþ d c � rð Þe; ð25Þ

one obtains, after a lengthy but straightforward calculation,

h? � Q � rð ÞB½ � ¼ h? � B � rð Þx?ð Þ � rð ÞB½

 x? � rð ÞBð Þ � rð ÞB�

B2 h? � kð Þr � x?;

ð26Þ

where k = (b � r)b.
[25] Next, one rewrites the second term of equation (24).

Using vector identity

c � rð Þ d � eð Þ ¼ d � c � rð Þe½ � þ e � c � rð Þd½ �; ð27Þ

one obtains, after a straightforward calculation,

h? � B � rð ÞQ½ � ¼ r � h? �Qð ÞB½ � 
 B � rð Þx?½ �
� B � rð Þh?½ � þ x? � rð ÞB½ �
� B � rð Þh?½ � 
 B2 h? � kð Þr � x?: ð28Þ

Since

B �Q ¼ 
B2 r � x?ð Þ 
 B2 x? � kð Þ 
 x? � r B2=2
� �

ð29Þ

is valid, the third term of equation (24) can be rewritten as


h? � r B �Qð Þ½ � ¼ 
r � B �Qð Þh?½ � 
 B2 r � x?ð Þ r � h?ð Þ

 x? � r B2=2ð Þ þ B2 x? � kð Þ½ �r � h?:

ð30Þ

[26] Therefore I can be written by using equations (26),
(28), and (30) as

I ¼ m
1
0 r � h? �Qð ÞB½ � 
 m
1

0 r � B �Qð Þh?½ �
þ r � x? � rpð Þh?½ � 
 m
1

0 B2 r � x?ð Þ r � h?ð Þ

 m
1

0 B � rð Þx?½ � � B � rð Þh?½ �

 2m
1

0 B2 h? � kð Þr � x?

 x? � r pþ m
1

0 B2=2
� �

þ m
1
0 B2 x? � kð Þ

� �
r � h? þ R; ð31Þ

where

m0R ¼ h? � B � rð Þx?ð Þ � rð ÞB
 x? � rð ÞBð Þ � rð ÞB½ �
þ x? � rð ÞBð Þ � B � rð Þh?ð Þ: ð32Þ

[27] In rewriting the first term of equation (32) one notes
that

r � h? � x? � rð ÞBð Þð ÞB½ � ¼ B � rð Þh?½ � � x? � rð ÞB½ �
þh? � B � rð Þx?ð Þ � rð ÞB½ �
þh? � Bx? : rrð ÞB;

ð33Þ

where,

h? � Bx? : rrð ÞB �
X
i

h?i

X
j

X
k

Bjx?k@
2=@xj@xkBi

 !
:

ð34Þ

In rewriting the second term of equation (32) one also notes
that

h? � x? � rð Þ B � rð ÞBð Þ½ � ¼ h? � x? � rð ÞBð Þ � rð ÞB½ �
þ h? � Bx? : rrð ÞB: ð35Þ

Substitution of equations (33) and (35) into equation (32)
yields

m0R ¼ r � h? � x? � rð ÞBð Þð ÞB½ � 
 h? � x? � rð Þ B � rð ÞBð Þ½ �:
ð36Þ

[28] From equation (1) and

B � rð ÞB ¼ B � rBð Þbþ B2k ð37Þ

one obtains

B � rBð Þbþ B2k
 BrB ¼ m0rp: ð38Þ

Therefore equation (36) can be written as

R ¼ m
1
0 r � h? � x? � rð ÞBð Þð ÞB½ �


 h?x? : rrð Þ pþ m
1
0 B2=2

� �
; ð39Þ

where

h?x? : rrð Þ pþ m
1
0 B2=2

� �
�
X
i

X
k

h?ix?k@
2=@xi@xk pþ m
1

0 B2=2
� �

:
ð40Þ

Substituting equations (31) and (39) into equation (22)
yields

h � F xð Þ ¼ T 
 m
1
0 r � B �Qð Þh?½ �

þ r � �ph r � xð Þ½ � þ r � x? � rpð Þh?½ �

 m
1

0 B2 r � x?ð Þ r � h?ð Þ

 m
1

0 B � rð Þx?½ � � B � rð Þh?½ �

 2m
1

0 B2 h? � kð Þr � x?

 x? � r pþ m
1

0 B2=2
� ��

þm
1
0 B2 x? � kð Þ

�
r � h?


 h?x? : rrð Þ pþ m
1
0 B2=2

� �

 �p r � xð Þ r � hð Þ; ð41Þ

where

T ¼ m
1
0 r � h? � x? � rð ÞBð Þð ÞB½ � þ m
1

0 r � h? �Qð ÞB½ �: ð42Þ

[29] Since

Q ¼ r� x � Bð Þ ¼ 
B r � x?ð Þ þ B � rð Þx?½ � 
 x? � rð ÞB
ð43Þ

ð24Þ

ð26Þ
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is valid, one obtains

h? �Q ¼ h? � B � rð Þx?½ � 
 Bh? � x? � rð Þb½ �: ð44Þ

[30] Substitution of equation (44) into equation (42)
yields

T ¼ m
1
0 r � h? � x? � rð ÞBð Þð ÞB½ �

þm
1
0 r � h? � B � rð Þx?ð ÞBð Þ½


B h? � x? � rð Þbð Þð ÞB�:
ð45Þ

Since h? � ((x? � r)B) = Bh? � ((x? � r)b) is valid, the first
and third terms in T cancel each other.
[31] In calculating the integral of equation (41) over the

unperturbed plasma volume P, the contribution from the
second and fourth terms in equation (41) givesZ

S

x? � rp
 m
1
0 B �Qð Þ

� �
h? � ndS; ð46Þ

where dS = dSn and dS is the surface area element, and the
integral is calculated for the unperturbed surface S
surrounding the unperturbed plasma volume P. The vector
n is the outward-pointing normal vector on the unperturbed
surface S. The contributions to the integral (46) from Sout
and Sin vanish because of h � n = h? � n = 0 on Sout and Sin.
The ionospheric contributions to integral (46) vanish
because of h? � n = 0 on the ionospheric boundary. For
the two-dimensional configuration, h � n changes sign at
Sdawn and Sdusk because of the periodic condition and,
therefore, the contributions to the integral from Sdawn and
Sdusk cancel out. Therefore equation (46) vanishes.
[32] The integration of the first and third terms in

equation (41) over the unperturbed plasma volume P givesZ
S

�p r � xð Þ h � nð Þ þ m
1
0 h? � B � rð Þx?ð Þð Þ B � nð Þ

� �
dS: ð47Þ

For both the three-dimensional and two-dimensional config-
urations, the contributions from Sout and Sin in equation (47)
vanish, because h � n = B � n = 0 on Sout and Sin. For the two-
dimensional configuration, the contributions from Sdawn and
Sdusk cancel out in equation (47). Therefore only the integral
over the ionospheric surface contributes to equation (47).
Therefore equation (47) can be written asZ
North

�phk r � xð Þ þ m
1
0 Bh? � B � rð Þx?ð Þ

h i
dS
Z

South

�phk r � xð Þ þ m
1
0 Bh? � B � rð Þx?ð Þ

h i
dS;

ð48Þ

where ‘‘North’’ and ‘‘South’’ denote unperturbed ionospheric
surfaces in the Northern Hemisphere and the Southern
Hemisphere, respectively.
[33] It is shown here that equation (48) does not vanish

for the special case when there is a symmetry property of
displacement vectors x and h with respect to the equatorial
plane. Such a symmetric case arises when the distribution
of the magnetic field strength B and the pressure p is sym-
metric with respect to the equatorial plane. Since the force
operator F in equation (13) does not change by replacing B
with 
B, the force operator F is a function of B and not B

and is symmetric with respect to the equatorial plane in such
a case. Then, by using a well-known mathematical theorem
for a case when there is only one eigenvector x for each
eigenvalue of a symmetric operator or the eigenvalue is not
degenerate, each component of the displacement eigen-
vector of F is shown to be either symmetric or antisym-
metric with respect to the equatorial plane. Therefore when
B and p are symmetric with respect to the equatorial plane,
there is also a restriction that each component of the
displacement vector x or h be either symmetric or antisym-
metric with respect to the equatorial plane through the
symmetry of the force operator F in addition to the restriction
on x and h by boundary conditions.
[34] For the three-dimensional configuration, a field-aligned

coordinate system (s, �, 	), where s increases along the field
line with the distance from the ionosphere in the Southern
Hemisphere, is defined (see also Appendix A). Unit vectors
of the coordinate system are b, �̂, and 	̂, where 	̂ = b � �̂
directs eastward. In this coordinate system

h ¼ hkbþ h��̂þ h		̂: ð49Þ

[35] Then a symmetric mode, with physically symmetric
displacements in both hemispheres, has an antisymmetric hk
and a symmetric r � h and an antisymmetric mode, with
physically antisymmetric displacements in both hemi-
spheres, has a symmetric hk and an antisymmetric r � h.
Therefore for both symmetric and antisymmetric modes, the
contribution to equation (48) from �phk(r � x) does not
vanish for either symmetric or antisymmetric modes.
[36] Appendix A shows that

h? � B � rð Þx?½ � ¼ B h�
@x�
@s

þ h	
@x	
@s

� �
ð50Þ

in both hemispheres. A symmetric mode, with symmetric
displacements in both hemispheres, has symmetric h� and
h	, and antisymmetric @x�/@s and @x	/@s. An antisymmetric
mode, with antisymmetric displacements in both hemi-
spheres, has antisymmetric h� and h	, and symmetric @x�/@s
and @x	/@s. Therefore from equation (50), the contribution
to equation (48) from m0


1Bh? � ((B � r)x?) does not vanish
for either symmetric or antisymmetric modes.
[37] For the two-dimensional configuration, a field-aligned

coordinate system (s, �, z), where z is the dawn-dusk
direction, is defined (see also Appendix A). Unit vectors
of the coordinate system are b, �̂, and ẑ, where ẑ = b � �̂
directs eastward. In this coordinate system

h ¼ hkbþ h��̂þ hzẑ: ð51Þ

Then, using the same argument as used for the three-
dimensional configuration above and a result in Appendix
A that

h? � B � rð Þx?½ � ¼ B h�
@x�
@s

þ hz
@xz
@s

� �
ð52Þ

for the two-dimensional configuration, it is shown that
equation (48) does not vanish for either symmetric or
antisymmetric modes for the two-dimensional configuration.

ð45Þ

ð48Þ
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[38] Therefore for the special case when there is a
symmetric property in both the three-dimensional and the
two-dimensional configurations, the contributions to equa-
tion (48) from ionospheres in both the Southern Hemisphere
and the Northern Hemisphere do not cancel out.
[39] In general, x and h are arbitrary except for boundary

conditions and they are independent. Therefore equation
(48) vanishes only when

hk ¼ 0 or r � x ¼ 0 ð53Þ

and

h? ¼ 0 or b � rð Þx? ¼ 0 ð54Þ

are satisfied on the unperturbed ionospheric surfaces in both
the hemispheres.
[40] When equations (53) and (54) are satisfied, one

obtains by integrating equation (41)Z
P

h � F xð Þdr ¼ 

Z
P

dr m
1
0 B � rð Þx?ð Þ � B � rð Þh?ð Þ

�
þ �p r � xð Þ r � hð Þ þ m
1

0 B2 r � x?ð
þ2x? � kÞ r � h? þ 2h? � kð Þ

 4m
1

0 B2 x? � kð Þ h? � kð Þ
þ h?x? : rrð Þ pþ m
1

0 B2=2
� ��

; ð55Þ

which is clearly a self-adjoint form by inspection.
[41] In summary, when the vectors x and h satisfy the

boundary conditions (53) and (54) at the unperturbed iono-
spheric boundaries, the force operator F becomes self-adjoint
for both the two-dimensional and the three-dimensional
configurations. This conclusion is valid even for the special
case when B and p are symmetric with respect to the
equatorial plane and the eigenvalue of the symmetric force
operator F is not degenerate and thus the displacement
eigenvector is either symmetric or antisymmetric with
respect to the equatorial plane.

6. A Magnetospheric Energy Principle

6.1. Expression for the Change in the
Potential Energy dW
[42] The physical basis for the energy principle is the fact

that energy is exactly conserved in the ideal MHD model.
The conservation of energy is proven by the following
calculation [Bernstein et al., 1958; Freidberg, 1987], which
is carried out in the real time domain.
[43] Consider the energy H(t), which is the sum of the

kinetic energy K and the change in the potential energy dW,
given by

H ¼ K
@~x
@t

;
@~x
@t

 !
þ dW ~x; ~x

� �

¼ 1

2

Z
P

dr �
@~x
@t

 !2


~x � F ~x
� �2

4
3
5; ð56Þ

where ~x = ~x(r, t) and P represents the unperturbed plasma
volume. A simple calculation that makes use of the self-
adjoint property of F yields

dH

dt
¼
Z
P

dr
@~x
@t

� �
@2~x
@t2


 F ~x
� �" #

¼ 0; ð57Þ

where it is used that F(~x) is linear with respect to ~x. This
equation corresponds to energy conservation. The validity
of this energy conservation is further discussed on the
basis of a rigorous local energy conservation equation in
Appendix B.
[44] On physical grounds one expects that if dW(x*, x)

can be made negative, then the system is unstable. The
energy principle for plasma surrounded by a perfectly
conducting wall is the following: A plasma equilibrium is
stable if and only if

dW x*; x
� �

� 0 ð58Þ

for all allowable displacements (i.e., x bounded in energy and
satisfying appropriate boundary conditions); that is, if the
minimum value of the change in the potential energy is
positive for all displacements, the system is stable. If it is
negative for any of the displacements, the system is unstable.
The proof of this energy principle is given by Bernstein et al.
[1958]. A proof of the energy principle based on the
conservation of energy is given by Laval et al. [1965].
[45] Since the change in the potential energy dW can be

calculated by replacing h with x in equation (20), h in the
boundary conditions (53) and (54) must be replaced with x.
In section 5 the self-adjointness of the force operator F has
been shown to be valid for boundary conditions (53) and
(54). Therefore the energy is conserved in the magneto-
sphere and a magnetospheric energy principle is also valid
if the displacement x satisfies the ionospheric boundary
conditions (53) and (54).
[46] Because of the self-adjointness of F, the normal mode

problem, equations (12) and (13), can be easily cast into the
form of a variational principle [Bernstein et al., 1958;
Freidberg, 1987]. That is, the dot product of equation (13)
with x* is formed and then integrated over the plasma
volume, yielding

!2 ¼
dW x*; x
� �

K x*; x
� � ; ð59Þ

where the change in the potential energy dW(x*, x) can be
written as

dW x*; x
� �

¼ 
 1

2

Z
P

x* � F xð Þdr

¼ 
 1

2

Z
P

x* � m
1
0 r�Qð Þ � Bþ m
1

0 r� Bð Þ �Q
�

þr x � rpþ �pr � xð Þ�dr;
ð60Þ

and K(x*, x), which is proportional to the kinetic energy, is
written as

K x*; x
� �

¼ 1

2

Z
P

�jxj2dr: ð61Þ
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It should be noted that the volume integral appearing in
calculation of dW is calculated for the unperturbed plasma
volume P. Notice in equation (60) that x(r) is treated as
complex in anticipation of cases where, because of
symmetry, several spatial coordinates can be Fourier
analyzed, for example, in the azimuthal direction for the
three-dimensional configuration and in the dawn-dusk
direction for the two-dimensional configuration. From the
self-adjointness of F, !2 is shown to be real. Therefore from
equation (59), it is obvious that negative dW gives an
unstable solution.
[47] The change in the potential energy dW given by

equation (60) depends on ionospheric boundary values. In
order to see this, dW is reduced by taking account of the
boundary conditions. Since

r � x* � B
� �

�Q
h i

¼ Q � r � x* � B
� �h i


 x* � B
� �

� r �Qð Þ ð62Þ

is valid, one obtains

x* � r �Qð Þ � B½ � ¼ r � x* � B
� �

�Q
h i


 jQj2: ð63Þ

One also notes

x* � r �pr � xð Þ½ � ¼ r � �px*r � x
h i


 �pjr � xj2: ð64Þ

Substituting equations (62) and (63) into equation (60), one
obtains

dW x*; x
� �

¼ 1

2

Z
P

dr m
1
0 jQj2 þ �pjr � xj2

h

x* � J�Qþr x � rpð Þð Þ

i

 1

2

Z
S

�p r � xð Þx* � dS


 1

2m0

Z
S

x* � B
� �

�Q
h i

� dS: ð65Þ

In equation (65) one writes

x* � B
� �

�Q ¼ 
 Q � Bð Þx*? 
 Q � x*?
� �

B

� �
: ð66Þ

Substitution of equation (66) into equation (65) yields

dW x*; x
� �

¼ 1

2

Z
P

dr m
1
0 jQj2 þ �pjr � xj2

h

x* � J�Qþr x � rpð Þð Þ

i

 1

2

Z
S

x* � n
� �

�p r � xð ÞdS

þ 1

2m0

Z
S

B �Qð Þx*? � ndS


 1

2m0

Z
S

Q � x*?
� �

n � BdS; ð67Þ

where the second, third, and fourth integrals are surface
integrals depending on the ionospheric boundary values.

[48] Since x = x? + xkb, one obtains

x* � J�Qþr x � rpð Þ½ � ¼ x*? � J�Qð Þ þ x*? � r x � rpð Þ

þ x*k b � J�Qþr x � rpð Þ½ �: ð68Þ

From Appendix A of Freidberg [1987] one obtains

b � J�Qþr x � rpð Þ½ � ¼ 0: ð69Þ

From equations (68) and (69), equation (67) can be
rewritten as

dW x*; x
� �

¼ dWF þ B:T :; ð70Þ

where

dWF ¼ 1

2

Z
P

dr

�
m
1
0 jQj2 þ �pjr � xj2


x*? � J�Qð Þ þ x? � rpð Þr � x*?
�
;

ð71Þ

B:T: ¼ 
 1

2

Z
S

x* � n
� �

�p r � xð ÞdS

þ 1

2

Z
S

m
1
0 B � B1 
 x? � rp

� �
x*? � ndS


 1

2m0

Z
S

B1 � x*?
� �� �

n � BdS:

ð72Þ

The B.T. in equation (72) denotes the boundary term. Here
the second integral vanishes because x � n = x? � n = 0 on
Sout and Sin and x? � n = 0 at the ionosphere, and for the
two-dimensional configuration the normal vectors n are
opposite each other at Sdawn and Sdusk.
[49] Substitution of

B1 � x*? ¼ x*? � B � rð Þx?½ � 
 Bx*? � x? � rð Þb½ �: ð73Þ

into equation (72) yields

B:T: ¼ 
 1

2

Z
S

x* � n
� �

�p r � xð ÞdS 
 1

2
m
1
0

Z
S

B � nð Þ

� x*? � B � rð Þx?ð Þ 
 Bx*? � x? � rð Þbð Þ
� �

dS:
ð74Þ

When the plasma volume is surrounded by a perfectly
conducting wall such as fusion plasmas, B.T. is obviously
zero because of n � x = B � n = 0 at the boundary. However,
for the magnetospheric configuration, B.T. is not necessarily
zero, because n � x = B � n = 0 is not generally satisfied on
the ionospheric surface.
[50] In equation (74), let us denote the contribution from

the last term by dWI. Then

dWI ¼
1

2
m
1
0

Z
S

B x*? � x? � rð Þbð Þ
� �

B � nð ÞdS ð75Þ

[51] Appendix A shows that for the three-dimensional
configuration (x? � r)b = x?/RI in the ionosphere of the
Southern Hemisphere and (x? � r)b = 
x?/RI in the

ð71Þ

ð72Þ

ð74Þ
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ionosphere of the Northern Hemisphere, where RI is the sum
of the Earth’s radius RE and the ionospheric height h (RI =
RE + h � RE). Therefore equation (75) can be written as

dWI ¼ 
 1

2m0

Z
North

B2jx?j
2

RI

dS þ
Z
South

B2jx?j
2

RI

dS

 !
: ð76Þ

For the two-dimensional configuration, using the results of
Appendix A shows that

dWI ¼ 
 1

2m0

Z
North

B2jx?mj
2

RI

dS þ
Z
South

B2jx?mj
2

RI

dS

 !
; ð77Þ

where x?m is a component of x? in the meridian plane.

6.2. Possible Ideal Ionospheric Boundary Conditions
Compatible With the Magnetospheric Energy Principle

[52] There are four possible combinations of the boundary
conditions, i.e., combinations of either one of the equations
(53) and (54), for which the force operator F becomes self-
adjoint. In equations (53) and (54), h must be replaced with
x. In the following, it is clarified that B.T. becomes equal to
dWI for all combinations of the boundary conditions.
[53] Both integrands of equation (74) vanish at the

perfectly conducting walls Sout and Sin. The contribution
to B.T. in equation (74) from Sdawn and Sdusk also vanishes
for the two-dimensional configuration. Therefore only the
ionospheric boundary contributes to B.T. in equation (74).
Equation (74) can be written as

B:T: ¼
 1

2

Z
S

�
�p r � xð Þx*k þ m
1

0 Bx*?

� B � rð Þx?ð Þ
�
b � nð ÞdS þ dWI: ð78Þ

[54] From equation (78) it is obvious that B.T. becomes
equal to dWI for all combinations of either one of the
equations (53) and (54), i.e.,

xk ¼ 0 and b � rð Þx? ¼ 0; ð79Þ

r � x ¼ 0 and b � rð Þx? ¼ 0; ð80Þ

r � x ¼ 0 and x? ¼ 0; ð81Þ

xk ¼ 0 and x? ¼ 0 ð82Þ

on the unperturbed ionospheric surface in both hemispheres.
[55] For the above four ideal ionospheric boundary con-

ditions, the self-adjointness of the force operator defined for
the magnetospheric plasma volume P is satisfied and the
energy is conserved within the magnetospheric system.
Therefore the problem is closed without considering the
existence of a neutral atmosphere below the ionosphere.
[56] Let us consider the physical meaning of each of the

boundary conditions (79), (80), (81), and (82). From the
linearization of the ideal Ohm’s law one obtains

E1? þ v1? � B ¼ 0; ð83Þ

where the subscript 1 denotes a perturbed part. Therefore
the boundary condition (81) means that E1? = 0. For this
reason the boundary condition (81) is called a conducting
ionospheric boundary condition. A similar usage of the
conducting boundary condition was made in the study of the
stability of a pressure-driven mode in tandem mirrors
[Nevins and Pearlstein, 1988]. Note that the conducting
boundary condition (81) is different from the conducting
boundary condition used in Hameiri et al. [1991], which is
defined by using ionospheric conductivity.
[57] On the other hand, from equation (43) one obtains

B1 ¼ 
Bb r � x?ð Þ þ B b � rð Þx? 
 B x? � rð Þb
 b x? � rð ÞB:
ð84Þ

For the boundary condition (79), equation (84) becomes

B1 ¼ 
Bb r � x?ð Þ 
 B x? � rð Þb
 b x? � rð ÞB: ð85Þ

Here the second term, which is equal to B(x? � r)b, is of
a much smaller order than Bb(r � x?), because (x? � r)b
is O(jx?j/RI) for the three-dimensional configuration and
O(jx?mj/RI) for the two-dimensional configuration and
b(r � x?) is O(jx?j/4‘) with 4‘ being a typical width of
the auroral zone and 4‘ (�500 km) � RI (�6500 km).
Therefore the B1? component arising from B(x? � r)b is
small. If B1? is exactly zero, there is no surface current in
the ionosphere and this boundary condition should be
called an insulating boundary condition as used by Nevins
and Pearlstein [1988]. However, since B1? is nonzero for
the present spherical or cylindrical ionospheric boundary
surface and is essential for nonzero dWI as shown by equation
(75), when the ionospheric x? is nonzero, the boundary
condition (79) is called a horizontally free boundary
condition.
[58] The boundary condition (80) is called a free bound-

ary condition, because xk 6¼ 0 and x? 6¼ 0. The boundary
condition (82) also means E1? = 0. However, this condition
is called a rigid or fixed boundary condition, because x = 0
means mechanically that the ionosphere is a rigid surface.
The rigid boundary condition has been used to model a
photospheric boundary by Schindler et al. [1983]. The rigid
boundary condition and an approximate boundary condition
of x? = 0 and xk 6¼ 0, which is somewhat similar to the
conducting boundary condition, have also been used by
Hood [1986] to model a photospheric boundary for
ballooning instability. Since the timescale of a change in
the equilibrium state is much longer than the timescale of
perturbations, an equilibrium state with a normal component
of the equilibrium field B0 is considered to be given a priori
at the ionospheric boundary regardless of the boundary
condition for the perturbation as has been assumed for both
magnetospheric and solar plasmas. For both conducting,
horizontally free, free, and rigid ionospheric boundary
conditions, the boundary conditions (53) and (54), for which
the force operator F becomes self-adjoint, are satisfied.
Therefore for both conducting, horizontally free, free, and
rigid boundary conditions, the magnetospheric energy
principle is valid without the need to consider the existence
of the neutral atmosphere below the ionosphere and the
change in the potential energy is simply given by dWF + dWI.
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6.3. Magnetospheric Energy Principle Expressed by an
Intuitive Form of dWF

[59] According to Freidberg [1987], one obtains

dWF ¼ 1

2

Z
P

dr
�
m
1
0 jQ?j2 þ m
1

0 B2jr � x? þ 2x? � kj2

þ �pjr � xj2 
 2
�
x? � rp

��
k � x*?

�

Jk

�
x*? � b

�
�Q?

�
:

ð86Þ

This is the intuitive form of dWF originally suggested by
Furth et al. [1965] and Greene and Johnson [1968].
[60] The last two terms in the integrand of equation (86)

can be positive or negative and thus can drive instabilities.
The first of these is proportional to rp � J? � B while the
second is proportional to Jk. Thus either perpendicular or
parallel currents represent potential sources of instability.
The former type are sometimes referred to as pressure-
driven modes and the latter as current-driven modes or kink
modes.
[61] The surface contribution dWI is negative for both

horizontally free and free boundary conditions when the
curved finite ionospheric surface area is taken into account.
Therefore this term is destabilizing for these boundary
conditions. Since RI appears in equations (76) and (77),
this destabilizing effect by dWI occurs for a spherical iono-
spheric surface for the three-dimensional configuration or
for a cylindrical ionospheric surface for the two-dimensional
configuration. The surface contribution dWI obviously
vanishes for a fictitious flat ionospheric surface without any
curvature (or in the limit of RI ! 1).
[62] In summary, the magnetospheric energy principle

states that a plasma equilibrium is stable if and only if
dW(x*, x) = dWF + dWI � 0 for all allowable displacements
(i.e., x bounded in energy and satisfying one of the
appropriate boundary conditions, i.e., (79), (80), (81), or
(82)), where dWF is calculated for the unperturbed plasma
volume P for both the two-dimensional and three-dimen-
sional configurations and dWI is calculated for the unper-
turbed ionospheric surfaces. The single assumption of this
magnetospheric energy principle is that the unperturbed
magnetic field is perpendicular to the ionospheric surface
over the whole ionosphere, the validity of which is verified
in section 8.6.

7. Minimization of the Change in the Potential
Energy dW with Respect to xk
[63] In order to obtain a condition, which is satisfied by

the most unstable mode, the change in the potential energy
dW = dWF + dWI is minimized with respect to xk for the
magnetospheric geometry shown in Figure 1. The mini-
mizing condition follows from letting xk ! xk + dxk in dW =
dWF + dWI and then setting the corresponding variation
d(dW)xk to zero. Since there are four possible boundary
conditions at the ionosphere, i.e., horizontally free,
conducting, free, and rigid boundary conditions, careful
attention must be paid to the definition of the variation of xk,
i.e., dxk, at the ionospheric boundary for each case. For
horizontally free and rigid boundary conditions xk = 0 at the
ionospheric boundary. Therefore it is necessary to choose
dxk so as to satisfy dxk = 0 at the ionospheric boundary for

these two ionospheric boundary conditions. Except for that
constraint on dxk at the ionospheric boundary, dxk is
arbitrary elsewhere. For the conducting and free ionospheric
boundary conditions, xk is not fixed at the ionospheric
boundary. Therefore dxk is arbitrary everywhere including
the ionospheric boundary.
[64] Keeping these constraints on dxk in mind, let us

calculate the variation of dW with respect to xk. Following
Freidberg [1987] and noting that xk appears only in the
�pjr � xj2 term, one finds

d dWð Þxk ¼ dWF xk þ dxk
� �


 dWF xk
� �

¼ 1

2

Z
P

dr�p jr � x? þr � xk þ dxk
� �

b
� �

j2
h


jr � x? þr � xkb
� �

j2
i

¼ 1

2

Z
P

dr�p jr � x þr � dxkb
� �

j2 
 jr � xj2
� �

ffi 1

2

Z
P

dr�p r � xð Þr � dx*k b
� ��

þ r � x*
� �

r � dxkb
� �i

: ð87Þ

In equation (87) one obtains

r � x*
� �

r �
dxk
B

B

� �� �
¼r � r � x*

� � dxk
B

B

� �


 r r � x*
� �h i

�
dxk
B

B: ð88Þ

It follows from equations (87) and (88) that

d dWð Þxk¼ 
 1

2

Z
P

dr�p
dxk
B

B � rð Þ r � x*
� ��

þ
dx*k
B

B � rð Þ r � xð Þ
�

þ 1

2

Z
S

�p
dxk
B

r � x*
� �

þ
dx*k
B

r � xð Þ

2
64

3
75B � ndS: ð89Þ

In equation (89), the second integral represents the boundary
term. The contribution to this boundary term from perfectly
conducting walls vanishes because of B � n = 0 at that
boundary for the two-dimensional and three-dimensional
configurations. For the two-dimensional configuration, con-
tributions to the integrals from the dawn and dusk boundaries
cancel out because of periodic conditions. For the horizon-
tally free and rigid ionospheric boundary conditions this
boundary term becomes zero because dxk = 0 at the
ionospheric boundary. For the conducting and free iono-
spheric boundary conditions this boundary term also becomes
zero becauser � x = 0 at the ionospheric boundary. Therefore
for all the possible ionospheric boundary conditions

d dWð Þxk¼ 
 1

2

Z
P

dr�p
dxk
B

B � rð Þ r � x*
� ��

þ
dx*k
B

B � rð Þ r � xð Þ
�
: ð90Þ
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Since dxk and dx*k are arbitrary in the integrand of
equation (90), equation (90) becomes zero only when

B � rð Þr � x ¼ 0 ð91Þ

within the unperturbed plasma volume P.
[65] The condition (91) represents the minimizing condi-

tion of the change in the potential energy dW with respect to
xk. Equation (91) means that for the most unstable mode r �
x = const. along the field line. For the conducting and free
ionospheric boundary conditions, r � x = 0 on the
ionospheric boundary. Therefore r � x = 0 holds along
the entire field line for the conducting and free ionospheric
boundary conditions. For the horizontally free and rigid
ionospheric boundary conditions, r � x = const. 6¼ 0 holds
along the entire field line.

8. Discussion

8.1. Energy Principle and Pressure-Driven Modes

[66] Although the present energy principle has sought
ionospheric boundary conditions to satisfy the self-adjoint-
ness of the force operator, it might be possible that there are
other physically realizable boundary conditions for which
the operator F(x) is not self-adjoint, so that no energy
criterion exists and eigenvalues become complex. Such a
case might nevertheless be relevant for magnetospheric
stability or instability. For example, when there is an
unperturbed flow in the magnetosphere and there is a shear
in the flow velocity, Kelvin-Helmholtz instability occurs and
the instability has a complex frequency. Such a case cannot
have a self-adjoint force operator but the magnetospheric
plasma may still be subject to such an ideal MHD instability.
As an other example, let us consider a more realistic
ionosphere with a finite Pedersen conductivity SP. For such
a case, an energy principle does not exist obviously, because
there is a finite energy dissipation in the ionosphere, and the
force operator cannot be self-adjoint. However, the magne-
tosphere might still be subject to MHD instability. Although
there may be other examples, the mentioning of these two
examples would be sufficient to show that there are iono-
spheric boundary conditions, which do not satisfy the self-
adjointness of the force operator, but nevertheless are
relevant for magnetospheric stability or instability. Since
these cases cannot be studied by an energy principle, the
following discussions focus on ideal MHD instabilities,
which are able to be studied by an energy principle.
[67] Let us consider the stability of magnetospheric

plasma in the physical region of interest shown in Figure 1.
For the sake of simplicity, magnetospheric models with Jk =
0 are considered, although such magnetospheric models
may be atypical [Birn, 1991]. If one assumes that the static
equilibrium has no Jk in equation (86), then the kink mode
is excluded. Therefore apart from the destabilizing influence
of dWI for horizontally free and free ionospheric boundary
conditions, the only possible instability modes for such an
equilibrium are pressure-driven modes such as interchange
and ballooning modes. It is shown in the following three
subsections that the four different ionospheric boundary
conditions, i.e., horizontally free, conducting, free, and rigid
boundary conditions, correspond to interchange, incom-
pressible ballooning, incompressible ballooning, and com-

pressible ballooningmodes, respectively. Since equation (91)
is used, the discussion in the following subsections is focused
on the most unstable modes.
[68] Except for the study of a low-b limit of the magneto-

spheric stability, which can be studied by using the dipole
field, it is necessary to properly specify a finite b magneto-
spheric equilibrium in order to study the stability of pressure-
driven modes in the finite-b magnetosphere. There have been
several different stability analyses for different magneto-
spheric equilibria. Since the present magnetospheric energy
principle is valid for any magnetospheric equilibrium, these
models are discussed in light of the present magnetospheric
energy principle. Some numerical stability analyses using
ballooning eigenmode equations have studied the stability of
a single field line and thus are different from the present analysis
studying the stability of a finite volume plasma in the magne-
tosphere. However, it is expected that knowledge obtained
about boundary conditions and the minimizing condition by
the present study is applicable to those stability analyses.
[69] In the following two subsections, the destabilizing

influence by dWI is neglected for horizontally free and free
ionospheric boundary conditions on the assumption that a
finite x? at the ionosphere is confined in a narrow
latitudinal region, so that the surface integral (76) or (77)
is negligible. Such an assumption is strictly valid for
stability discussion of a single field line. The destabilizing
influence by dWI is discussed in section 8.7.

8.2. Interchange Mode

[70] Gold [1959] first studied interchange instability in
magnetospheric plasmas. Figure 3 is a slight modification of

Figure 3. A slight modification of Figure 1 byGold [1959].
The ionosphere is shown by a dashed circle. Two flux tubes A
and B change their positions by interchange instability.
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an original figure in the work of Gold [1959]. The dashed
line is the ionospheric boundary. In this figure, it is shown
that two flux tubes A and B, which are assumed to contain
the same magnetic flux, are changing their positions by
interchange instability. Since the interchange mode involves
the motion of a flux tube as a whole, as shown in this figure,
this instability requires x? 6¼ 0 at the ionospheric
boundaries. Otherwise, the field lines are fixed at the
ionospheric boundaries and the interchange of flux tubes is
not possible. Among the four possible ionospheric boundary
conditions, only the horizontally free and free boundary
conditions [equations (79) and (80)] satisfy this require-
ment. Notice, in particular, that the rigid ionospheric
boundary condition, i.e., x = 0 at the ionospheric boundary,
is not valid for interchange mode.
[71] However, in the magnetosphere, there is no line

bending or B1? � 0 for interchange instability [Freidberg,
1987] and the perturbed magnetic field of the interchange
mode virtually has only a component parallel to the
equilibrium magnetic field. This kind of perturbation
corresponds to the definition of an interchange motion in
the sense that the geometrical shape of the field line is
unchanged [Hameiri et al., 1991]. From equation (84) one
has

B1k ¼ b � B1 ¼ 
Br � x? þ m0

B
x? � rp
 2Bx? � k; ð92Þ

where the first term originates from the r � x term.
Therefore in order to have B1k of the interchange mode in
the low-altitude region, where the plasma b is much smaller
than unity and the curvature of the field line is weak, the
nonzero r � x is necessary. Since the most unstable mode
satisfies equation (91), this means that the interchange
mode, which is the most unstable, is compressible in the
magnetospheric plasma. Therefore between the horizontally
free and free boundary conditions only the horizontally free
ionospheric boundary condition allows the existence of
interchange modes. Figure 4 is a schematic of the midnight

meridian plane and shows an unperturbed field line (solid
line) and a field line (dashed line) perturbed by an
interchange mode. The amplitude of perturbation is
exaggerated in this figure.
[72] Since r � x is nonzero, this mode suffers a stabilizing

influence of compressibility due to the �pjr � xj2 term in
equation (86).When the destabilizing term2(x? � rp)(k � x*?)
in equation (86) overcomes this stabilizing term, inter-
change instability occurs. For an axisymmetric system with
periodicity in the direction of the axis of symmetry,
Bernstein et al. [1958] showed that the system is stable if
and only if L > 0 for all values of the flux function y, where

L ¼ �p V 00 
 p0L0ð Þ V 00=V 0 þ p0= �pð Þð Þ
V 0 þ �pL0

: ð93Þ

Here L0 and V 0 are both positive and the prime denotes d/dy.
The flux function y represents the flux out to a given flux
surface, so y is a flux label, and V(y) is the volume
enclosed by the surface in one period along the symmetry
axis. The specific volume of a magnetic tube or the volume
of a flux tube per flux U(y) is defined by

U yð Þ ¼
I

d‘

B
; ð94Þ

where the integration is taken for one period along the
symmetry axis and ‘ is the distance along the field line. It is
shown that V0 = U(y) [e.g., Kulsrud, 2005].
[73] For a general system with closed field lines, Hameiri

et al. [1991] obtained that a sufficient condition for stability
is

U 0 
 Up0
1

B2

� �� �
�pU 0 þ p0Uð Þ > 0: ð95Þ

Here U(y) is given by equation (94), where now the
integration is taken for a closed field line and h f i �H
fB
1d‘/U. The full expression (95) was originally derived

by Spies [1971]. It is easily shown that L > 0 is equivalent
to equation (95) in the axisymmetric system considering
that V 0 = U.
[74] In the limit of small plasma pressure, the first

parenthesis in equation (95) may be replaced by U 0 and
the expression becomes the familiar low-b interchange
stability criterion [Rosenbluth and Longmire, 1957]

dUd pU�ð Þ > 0: ð96Þ

Here the integration in the calculation of U(y) is taken for
one period because an axisymmetric system case, which is
periodic along the axis of symmetry, is considered.
[75] In the above three calculations there is no boundary

where the field line is anchored. This assumption was
necessary in the above three calculations to allow the
existence of interchange modes. Therefore the integration
in equation (94) must strictly be taken for either one period
or a closed field line. However, the present magnetospheric
energy principle shows that the horizontally free iono-
spheric boundary condition gives an interchange mode.
Therefore if the horizontally free boundary condition is

Figure 4. The solid line shows an unperturbed field line in
the magnetosphere. The dotted circle is the ionospheric
boundary. Shown schematically by a dashed line is a field
line perturbed by an interchange mode. The amplitude of
perturbation is exaggerated.
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imposed at the ionosphere, the specific volume U(y) can be
defined as

U yð Þ ¼
Z

d‘

B
; ð97Þ

where now the integration is taken from the ionosphere in
the Southern Hemisphere to the ionosphere in the Northern
Hemisphere. By this reasoning, it is possible to apply the
above stability criteria to a magnetosphere with ionospheric
boundaries.
[76] From the equivalence of L > 0 and equation (95), it is

obvious that the stability criterion L > 0 is also valid for a
two-dimensional system. Hurricane et al. [1996] have
shown that an approximate two-dimensional magnetostatic
equilibrium tail model of Lembège and Pellat [1982] gives
L < 0 and thus is unstable. More specifically, they have
shown that p0 + �pV 00/V 0 < 0 in their tail model, noting that
V 00 > p0L. Although they do not discuss how U(y) should be
calculated to avoid a boundary problem inhibiting inter-
change modes, the integration in equation (97) can be taken
between the two ionospheres, if the horizontally free boun-
dary condition is imposed at the ionospheric boundaries.
[77] For a point dipole, the magnetic field strength Beq at

the equator is proportional to R
3 and thus the specific flux
tube volume U / Beq


1R is proportional to R4 [Gold, 1959],
where R is the distance from the Earth’s center in the
equatorial plane. In the low-b limit, the stability criterion
can be written as equation (96), which is also valid for
closed field lines like equation (95). Since dU/dR > 0,
equation (96) becomes d(pU �)/dR > 0 for the instability.
Substitution of U / R4 into d(pU �)/dR > 0 yields

d‘np Rð Þ
d‘nR

> 
4� ð98Þ

as an interchange stability criterion in the low-b limit of the
magnetosphere, i.e., in the dipole field configuration
[Kadomtsev, 1965]. Although Kadomtsev [1965] calculated
U(y) for a closed field line by using equation (94), U(y) can
be calculated by using equation (97), if a horizontally free
boundary condition is imposed at the ionosphere. Therefore
the three-dimensional system will be stable when the energy
density or the pressure falls off with increasing radius more
slowly than R
20/3 for the adiabatic case (� = 5/3), or R
4

for the isothermal case (� = 1) as has been shown by Gold
[1959].
[78] By defining entropy Se by

Se ¼ ‘n pU�ð Þ; ð99Þ

Schindler and Birn [2004] showed that the sufficient
condition for interchange stability in the geomagnetic tail
can be written as

dSe

dp
< 0: ð100Þ

Since y increases as R increases in the tail, this is equivalent
to dSe/dy > 0 because of dp/dy < 0. By dividing both sides
of equation (95) by pU�, this stability criterion is valid when

U 0 > Up0
1

B2

� �
: ð101Þ

For a typical tail configuration Beq is decreasing with
increasing R and the specific flux tube volume U(y), which
is nearly proportional to Beq


1, increases with the distance
from the Earth or U 0 = V 00 > 0. Also, p0 < 0 holds for a
typical tail configuration. Therefore for a typical geomag-
netic tail configuration the interchange stability criterion
expressed by the flux tube entropy in equation (100) is a
sufficient stability criterion for interchange instability as
Schindler and Birn [2004] argue. However, for an atypical
tail configuration as used byWu et al. [1998], in which V 00 =
U 0 < 0, equation (100) is a sufficient stability criterion only
when equation (101) is valid.
[79] The high-b stabilization of interchange mode by

compressibility in the tail flux tube has been discussed by
using the MHD potential energy functional dW by Horton et
al. [1999] and Miura [2000, 2001] for specific tail field
models. They assumed no line bending or B1? � 0 for
interchange instability [Freidberg, 1987]. Both studies have
shown that the tail flux tube is stable when b is larger than a
critical b value. A slight difference in their critical b values
is due to the difference of the specific field models.

8.3. Incompressible Ballooning Mode

[80] When either the conducting or free ionospheric
boundary condition is used, the most unstable mode
becomes incompressible along the entire field line because
of equation (91), which is equivalent to a condition given in
the Appendix of Schindler and Birn [2004]. Since the
interchange mode is compressible, this mode is not an
interchange mode but an incompressible ballooning mode.
[81] The incompressible ballooning mode does not need

to satisfy the interchange instability criterion and it occurs
even when the interchange instability criterion is not satis-
fied. As Kulsrud [2005] argues, if the interchange instability
criterion is not satisfied, then altering the displacement from
the pure interchange to emphasize the curvature dominated
regions of the magnetic field can lead to a negative change
in the potential energy. If this is large enough to overcome
the change in the magnetic energy associated with this
altered magnetic field then the plasma becomes unstable.
[82] Miura et al. [1989] solved an incompressible bal-

looning mode equation by imposing x? = 0 at the
ionospheric boundary. This is equivalent to solving ideal
MHD equations for the conducting ionospheric boundary
condition x? = r � x = 0, since the magnetospheric energy
principle requires r � x = 0 along the entire field line. For
this mode, the m0


1jQ?j2 term in equation (86) gives a
stabilizing influence due to the field line tension. They used
a tail-like equilibrium model of Kan [1973] and found that
all tail field lines are unstable and the growth rate decreases
with increasing distance from the Earth. For any tail-like
equilibrium, in which the pressure gradient force is balanced
with the field line curvature force, the field line becomes
unstable when the plasma b at the equator satisfies
approximately

b > bcr ¼ Lp=Rc; ð102Þ

where Lp is the pressure gradient scale length at the equator
and Rc is the field line curvature radius at the equator
[Miura, 2004].
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[83] According to Miura et al. [1989], the unstable mode
is bound near the equator (see Figure 7 of Miura et al.
[1989]) and is exponentially decreasing toward the iono-
spheric boundary. Therefore this mode strucure is compat-
ible with x? = 0 at the ionosphere. Figure 5 is a schematic
of the midnight meridian plane and shows a stretched field
line (dashed line) perturbed by an incompressible balloon-
ing mode. The solid circle is the Earth and the dotted circle
is the ionospheric boundary. The highly localized nature of
this incompressible ballooning perturbation near the
equatorial plane is inferred from the results of Figure 7 in
Miura et al. [1989]. The solid line in this figure shows an
unperturbed field line. In Figure 5 only the perturbed field
line projected on the midnight meridian plane is shown. The
amplitude of perturbation is exaggerated in this figure.
Since the perturbed region near the equator is so remote
from the ionosphere, the incompressible ballooning mode is
expected to be rather insensitive to the ionospheric
boundary condition on x?, although it is sensitive to the
ionospheric boundary condition on r � x or xk through
equation (91). Therefore it is expected that both the
conducting and free boundary conditions allow the
existence of an incompressible ballooning mode. This
insensitivity of the incompressible ballooning mode to the
ionospheric boundary condition on x? means that this mode
is robust.
[84] Lee and Wolf [1992] argue, based on the consider-

ation of perturbations in the magnetosphere and the neglect
of a magnetic field deformation near the equator, that the
xk 6¼ 0 condition of conducting and free ionospheric boun-
dary conditions is inapplicable. However, this specification
of the most realistic ionospheric boundary condition cannot
be made by considering the behavior of the magnetospheric
plasma. That is, a boundary condition on partial differential
equations cannot be determined by the consideration of the
equations themselves.
[85] Employing a growth phase magnetospheric equilib-

rium including Jk 6¼ 0 [Zaharia and Cheng, 2003], Cheng
and Zaharia [2004] solved ballooning eigenmode equations
numerically. Their ballooning mode equations were ob-
tained by the WKB-ballooning formalism [Dewar and

Glasser, 1983], which does not contain the kink term in the
lowest order. They found that all field lines beyond ’6RE

radius down the tail in the nightside, where the equatorial
beq � 1, are unstable. The most unstable region is located in
the strong cross-tail current sheet region, which maps into
the ionosphere in the transition area between Region-1 and
Region-2 currents. They used the conducting ionospheric
boundary condition, i.e., x? = r � x = 0. However, whether
or not the most unstable mode between Region-1 and
Region-2 currents is a ballooning mode is not clear, because
the effect of kink term Jk (x*? � b) � Q? in equation (86)
cannot be neglected when Jk is nonzero. Their ballooning
eigenmode equations do not contain the kink term due to Jk.
Their results show that for the same boundary conditions the
inner region is stable. This is simply explained by the fact
that ballooning modes are stabilized by field line tension
represented by the term m0


1jQ?j2 in equation (86). Since
Miura et al. [1989] treated only tail regions with distance
from the Earth greater than a certain distance, where the
field line tension is not strong enough to stabilize the mode,
they could not find any stable modes.
[86] It is important to note here that in discussing bal-

looning modes in a magnetic confinement device with an
axisymmetric toroidal configuration, Coppi [1977] takes
into account only the convective or incompressible contri-
bution x � rp in equation (10) by neglecting the compress-
ible term �pr � x in equation (10). The same assumption
has also been made by Miura et al. [1989] in deriving the
incompressible ballooning eigenmode equation for a two-
dimensional configuration.

8.4. Compressible Ballooning Mode

[87] When the rigid ionospheric boundary condition is
imposed, r � x 6¼ 0 at the ionosphere and the most unstable
mode becomes compressible along the entire field line
because of equation (91). Since x? = 0 is used at the
ionosphere, this mode is not an interchange mode but a
compressible ballooning mode.
[88] Assuming that r � x is constant along the field line

and xk = 0 at the ionosphere, the compressibility factorr � x
can be calculated with integration along the field line [see
equation (104)]. The compressibility factor so obtained
enables one to arrive at an eigenmode equation for
compressible ballooning modes and a corresponding ideal
MHD potential energy functional [e.g., Schindler et al.,
1983; Lee and Wolf, 1992; Bhattacharjee et al., 1998;
Miura, 2000]. The obtained compressible ballooning
eigenmode equation has been used in some stability
analyses of compressible ballooning modes. For compres-
sible ballooning modes, stability analyses have been made
for two basic configurations as shown below. One is a tail
configuration with stretched field lines and the other is a
near-Earth tail configuration including the dipole field.
[89] Lee and Wolf [1992] could not find an unstable

solution for Kan’s two-dimensional tail model. Wu et al.
[1998] showed, by a linearized ideal MHD simulation
(initial value approach), that a pressure-driven mode grows
in the region where an interchange instability criterion L < 0
is satisfied. They employed, as an equilibrium state, a
current sheet structure obtained by particle simulations,
which is an approximate magnetostatic equilibrium. In their
case Beq is increasing with increasing distance and V 00 = U 0

Figure 5. The solid line shows an unperturbed field line in
the magnetosphere. The dotted circle is the ionospheric
boundary. Shown schematically by a dashed line is a
stretched field line perturbed by an incompressible
ballooning mode. The amplitude of the perturbation is
exaggerated. Only the perturbed field line projected on the
midnight meridian plane is shown in this figure.
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< 0 unlike a typical tail. However, since their tail is high-b,

p0L0 factor dominates in the first parenthesis in the
numerator of equation (93) and the system becomes unstable.
Although their numerical outer boundaries are not flux
surfaces such as Sout and Sin, their boundaries are located
far enough from the disturbed region, so that the present
magnetospheric energy principle can reasonably be applied.
Since the rigid boundary condition is used at the earthward
boundary in their calculation, their unstable mode is a
compressible ballooning mode. They found that the growth
rate becomes smaller as the wavelength in the dawn-dusk
direction becomes larger. They obtained a rapid growth time
of about 29 s for compressible ballooning modes in a highly
stretched tail field configuration, which is comparable to a
rapid ballooning mode growth time obtained for the tail by
Miura et al. [1989]. Therefore it needs to be clarified
whether such a rapid growth rate of the compressible
ballooning mode is due to their atypical tail configuration,
where Beq is increasing with distance, or due to the fact that
an incompressible limit is attained in their configuration.
[90] Schindler and Birn [2004] studied the stability of a

two-dimensional equilibrium tail configuration with
stretched field lines. By numerically minimizing the
corresponding MHD potential energy functional for three
different equilibrium models, they found that the stability of
the symmetric mode was governed by the interchange
criterion based on entropy. They showed for specific numer-
ical examples that the interchange criterion based on entropy
[equation (100)] is not only a sufficient but also a necessary
condition for stability of compressible ballooning modes, at
least within an excellent approximation. They showed by
numerical minimization that for specific highly stretched tail
models, in which the flux tube entropy decreases with
distance from the Earth, the tail is ballooning unstable.
[91] Lee [1998] obtained an unstable compressible bal-

looning mode in the near-earth region by using an equilib-
rium model of Voigt [1986] including the two-dimensional
(line) dipole field. Zhu et al. [2004] studied linear character-
istics of compressible ballooning modes by employing the
same initial value approach and the same rigid boundary
conditions as used by Wu et al. [1998]. However, they used
an exact two-dimensional magnetostatic equilibrium of
Voigt [1986] including the two-dimensional dipole field in
the near-Earth region. They found unstable compressible
ballooning modes where the condition, L < 0, is satisfied.
However, unlike the atypical tail treated byWu et al. [1998],
where Beq is increasing with distance, their case has Beq

decreasing with distance. They found the same wavelength
dependence of the growth rate as that of Wu et al. [1998].
They also found a dependence of the instability growth rate
on plasma b and the ratio of specific heats �.
[92] Figure 6 is a schematic of the midnight meridian

plane and shows a field line (dashed line) perturbed by a
compressible ballooning mode. The solid circle is the Earth
and the dotted circle is the ionospheric boundary. The solid
line is an unperturbed field line. Unlike the case of an
incompressible ballooning mode shown in Figure 5, the
compressible ballooning mode is not strongly localized near
the equator and has a broad distribution along the field line
with fixed ends at the ionospheres (see, for example,
Figure 4 of Schindler and Birn [2004]). The amplitude of
perturbation is exaggerated in this figure.

8.5. Symmetric Versus Antisymmetric Mode

[93] A special case, when the distribution of B and p is
symmetric with respect to the equatorial plane, is considered
here. When an eigenvalue !2 of the symmetric force
operator F in such a case is not degenerate, the displacement
eigenvector x of the eigenmode equation (12) is either
symmetric or antisymmetric with respect to the equatorial
plane.
[94] Let us consider the conducting and free ionospheric

boundary conditions, in which r � x = 0 is satisfied at the
unperturbed ionospheric surface. The most unstable mode,
which satisfies equation (91), is incompressible along the
entire field line. Therefore only the field line tension is a
stabilizing force for this mode. Since the field line tension is
the weakest at the equator and the equator is the curvature
dominated region, the field line displacement is likely to
peak at the equator and therefore, the most unstable mode is
likely to be a symmetric mode. For the two-dimensional
configuration in the limit of a large wave number in the
dawn-dusk direction, this property of the most unstable
incompressible mode being a symmetric mode is rigorously
proven by Schindler and Birn [2004].
[95] Next, let us consider the horizontally free and rigid

boundary conditions, in which xk = 0 is satisfied at the
unperturbed ionospheric surface. By dividing by B and then
integrating both sides of an identity

r � x ¼ r � x? þ B � rð Þ xk=B
� �

ð103Þ

from s = 
sb to s = sb, where s is the distance along the field
line and s = 
sb is the ionosphere in the Southern
Hemisphere and s = sb is the ionosphere in the Northern
Hemisphere, one obtains for the most unstable mode

r � x ¼
R sb

sb

B
1r� x?dsR sb

sb

B
1ds
: ð104Þ

If the most unstable mode is an antisymmetric mode, this
mode is shown to be incompressible from equation (104) by
using x?(
s) = 
x?(s). However, this is unlikely, because
for r � x = 0 at the ionosphere, the most unstable mode is

Figure 6. The solid line shows an unperturbed field line in
the magnetosphere. The dotted circle is the ionospheric
boundary. Shown schematically by a dashed line is a field
line perturbed by a compressible ballooning mode. The
amplitude of perturbation is exaggerated.
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likely to be the symmetric mode as has been discussed
above for conducting and free ionospheric boundary
conditions. Therefore for the horizontally free and rigid
boundary conditions, this possibility of the most unstable
mode being an incompressible antisymmetric mode is
excluded. Hence for the horizontally free and rigid
boundary conditions the most unstable mode is a symmetric
mode. This mode is an interchange mode for horizontally
free boundary conditions and a compressible ballooning
mode for rigid boundary conditions. This is compatible with
an intuition that the interchange mode is a symmetric mode
by definition (see Figures 3 and 4).
[96] In short, when the distribution of B and p is sym-

metric with respect to the equatoral plane, the most unstable
mode is likely to be a symmetric mode for all the possible
ideal ionospheric boundary conditions.

8.6. Condition for Validity of the Assumption of the
Normal Incidence of the Unperturbed Magnetic Field
on the Ionospheric Surface

[97] The present energy principle is applicable to any
static magnetospheric equilibrium. The only assumption
about the equilibrium is that the unperturbed magnetic field
is incident vertically on the unperturbed ionospheric surface.
This assumption imposes some restrictions on a magneto-
spheric equilibrium model near the ionospheric surface.
[98] Let us assume, for the sake of simplicity, that an

unperturbed magnetic field is axisymmetric near the iono-
spheric surface for the three-dimensional configuration.
Then, one can assume that the unperturbed magnetic field
at the ionosphere of the Northern Hemisphere is given by
B0 = B0(r, l)b = 
B0(r, l)er at r = RI and at lin � l � lout,
where r is the geocentric distance, er is the unit vector in the
radial direction, l is the latitude, and lin and lout are the
latitudes, where Sin and Sout intersect the spherical iono-
spheric surface. From the continuity of the normal compo-
nent of the magnetic field, one can also assume that the
unperturbed magnetic field near the ionosphere of the
Northern Hemisphere is given by B0 = B0(r, l)b =

B0(r, l)er in the neighborhood of r � RI and at lin �
l � lout. Substitution of this magnetic field into r � B0 =
0 yields B0(r) = a(l)r
2, where a(l) is a function of l.
Therefore B0 = 
a(l)r
2er at r � RI and lin � l � lout.
Since the region between lateral boundaries at l = lin and
l = lout is a narrow latitutinal zone, one can assume further
that a(l) is a constant. This means that B0 is a monopolar
field at r � RI and lin � l � lout. Since this is a potential
field, J0 = m0


1r � B0 = 0 near the ionospheric surface.
[99] For the two-dimensional configuration with transla-

tional symmetry in the dawn-dusk direction, a similar
argument leads to B0(r) = a(l)r
1 at r � RI and lin � l �
lout. Therefore B0 = 
a(l)r
1er. This is also a potential
field and J0 = 0, when a(l) is a constant.
[100] Therefore for both the two-dimensional and three-

dimensional configurations, the assumption of the normal
incidence of the unperturbed magnetic field on the iono-
sphere with a narrow latitudinal width requires J0 � B0 = 0
at r = RI and lin � jlj � lout. Since p0 is nonzero and
nonuniform in the direction perpendicular to the unper-
turbed magnetic field for pressure-driven instabilities, this
is compatible with the magnetostatic equilibrium satisfying
J0 � B0 = rp0 only when the ionospheric plasma beta, bI,

is much smaller than one and the rp0 term is neglected in
the force balance equation.
[101] By assuming b � 1 at r � 10RE in the equatorial

plane and also a dipole field with B0 / r
3 in the magneto-
sphere, the ionospheric b becomes �10
6 on the same field
line. Therefore the present assumption of the normal inci-
dence of the unperturbed magnetic field on the ionospheric
surface is well justified owing to this low-b nature of the
ionosphere in the present magnetospheric energy principle.

8.7. Energy Balance

[102] There are three possible combinations of dWF

(x*, x), dWI(x*?, x?), and dW(x*, x): (1) dWF(x*, x) < 0,
dWI(x*?, x?)� 0, dW(x*, x) = dWF + dWI < 0, (2) dWF(x*, x) >
0, dWI(x*?, x?) � 0, dW(x*, x) = dWF + dWI > 0, (3)
dWF(x*, x) > 0, dWI(x*?, x?) < 0, dW(x*, x) = dWF + dWI < 0.
Energy balance of each of these cases is briefly discussed
below.
[103] Let us first consider case 1. This case includes an

unstable mode, which grows exponentially, as is obvious
from equation (59). For a single field line with dWI = 0, the
existence of such pressure-driven unstable modes have been
shown either analytically or numerically as has been dis-
cussed in detail in sections 8.2 through 8.4.
[104] When the curved finite ionospheric surface area

is taken into account in case 1 and ~x?2 at the ionospheric
surface increases with time for nonzero ~x? ionospheric
boundary conditions, @dWI(~x?, ~x?)/@t is negative. There-
fore equation (B30) shows that there is a net upward parallel
Poynting flux into the magnetosphere across the ionospheric
surface (notice from equation (B38) that the first order
Poynting vector across the ionospheric surface vanishes). In
this sense, the ionospheric contribution is destabilizing,
although the instability itself may be pressure-driven. In
other words, the kinetic energy of the magnetospheric
plasma increases with a decrease in the potential energy of
the magnetospheric system (see Appendix B for details).
[105] Since the relationship between Poynting vector

across the ionospheric surface and the temporal change of
~x? is important to understand the energy balance in the
magnetospheric system, let us consider a physical picture of
the relationship. One first notes that the second order linear
perturbation of Poynting vector ~s2 is expressed by

~s2 ¼ m
1
0

~E1 � ~B1 þ ~E2 � B0

� �
; ð105Þ

where the subscripts 1 and 2 denote the first order linear
perturbation and the second order linear perturbation,
respectively, and the subscript 0 denotes an unperturbed
quantity. Since one is interested in the parallel component of
Poynting vector, only the first term in equation (105) is
relevant in the following discussion.
[106] Let us consider an interchange mode, which occurs

for the horizontally free ionospheric boundary condition.
Figure 7 shows a physical picture to explain the direction of
Poynting vector across the ionospheric surface when the
amplitude of ~x? is increasing. The solid arc in this figure
represents an ionospheric surface in the meridian plane of
the Northern Hemisphere. Field lines and field vectors in the
neighborhood of point A on the ionospheric surface are
shown in this figure. An enlarged plot is also shown in the
left-bottom corner of this figure. The straight line AB

A06234 MIURA: MAGNETOSPHERIC ENERGY PRINCIPLE

17 of 25

A06234



represents an unperturbed field line incident vertically on
the ionospheric surface at point A. Assume that a straight
line A0B0 represents an unperturbed field line in the
neighborhood of field line AB. Since n = b is assumed on
the entire ionospheric surface in the Northern Hemisphere,
line A0B0 is also incident vertically on the ionospheric
surface at point A0. Let us assume that ~x?(rA, t) is directed
toward a higher latitude as shown in Figure 7 and its
amplitude is increasing. Then, ~x0? = ~x?(r0A, t) is also directed
toward a higher latitude and its amplitude is increasing,
since the plasma moves as a whole in interchange
instability. Point A0 is taken, so that the distance between
A and A0 along the ionospheric surface is nearly equal to
j~x?(rA0, t)j. Since the amplitude of ~x?(rA, t) is increasing,
~v1?(rA, t) is parallel to ~x?(rA, t) as shown in Figure 7.
Therefore ~E1(rA, t) = 
~v1? � B0 is directed into the page as
shown in Figure 7, where B0 is the unperturbed magnetic
field at point A. If time t is not very different from the time
of the start of the instability, the unperturbed field line A0B0

has been moving toward line AB by time t in the interchange
instability. Therefore at time t, line A0B0 takes a position
represented by the dashed line passing through point A.
Since the boundary condition (b � r)~x? = 0 is also valid at
point A0, the dashed line passing through point A is parallel
with line A0B0. Therefore a perturbed magnetic field at
point A at time t is shown by the dashed vector denoted by
B = B(rA, t) in Figure 7. Since

~B1 rA; tð Þ ¼ B rA; tð Þ 
 B0 rAð Þ; ð106Þ

~B1(rA, t) is shown by ~B1 in Figure 7. Thus, it is obvious that
~E1 � ~B1, which has a component parallel to the unperturbed

magnetic field, is directed upward into the magnetosphere at
point A as shown in Figure 7. Therefore one notes physically
that the second order linear perturbation of Poynting vector
at point A has an upward component when the amplitude of
~x?(rA, t) is increasing. Thus when the curved finite
ionospheric surface area is taken into account in the
interchange instability, the magnetospheric and ionospheric
plasmas participate cooperatively in an increase in the
kinetic energy of the magnetospheric plasma in the present
magnetospheric system.
[107] For case 2, ! is pure real as is obvious from

equation (59). Therefore ! = !r, where the subscript r
denotes the real part, and the magnetosphere is stable. In
this case, ~x?(r, t) at the ionosphere can be written as

~x? r; tð Þ ¼ c rð Þ cos !rtð Þ: ð107Þ

Therefore,

~x2? r; tð Þ ¼ c2 rð Þ cos2 !rtð Þ ¼ 1

2
c2 rð Þ 1þ cos 2!rtð Þ½ �: ð108Þ

By substituting this into equation (B30) one notes that the
total parallel Poynting flux across the ionosphere surface
changes sign periodically. When ~x?2 at the ionosphere is
decreasing, the parallel Poynting flux across the ionospheric
surface, which is integrated over the whole ionospheric
surface, is downward from the magnetosphere. The time
average of the total Poynting flux across the ionospheric
surface vanishes in this case.
[108] Figure 8 shows a physical picture to explain the

direction of Poynting vector across the ionospheric surface
when the amplitude of ~x? is decreasing in the same format

Figure 7. A physical picture showing that Poynting vector
across the ionospheric surface is upward into the magneto-
sphere when the amplitude of the displacement vector ~x? is
increasing with time in the interchange instability and the
curved finite ionospheric surface area is taken into account.

Figure 8. A physical picture showing that Poynting vector
across the ionospheric surface is downward from the
magnetosphere when the amplitude of the displacement
vector ~x? is decreasing with time and the curved finite
ionospheric surface area is taken into account.
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as Figure 7. Since the amplitude of ~x?(rA, t) is decreasing,
~v1?(rA, t) is directed opposite of ~x?(rA, t) as shown in
Figure 8. Therefore ~E1(rA, t) is directed out of page as
shown in this figure. Hence the direction of ~E1(rA, t) is
opposite to that shown in Figure 7. Since ~x?(rA, t) is still
directed toward a higher latitude as shown in Figure 8,
~x?(rA0, t) is also directed toward a higher latitude. Therefore
at time t, the dashed line, which is parallel to field line A0B0,
represents a perturbed field line passing through point A.
Hence the direction of ~B1(rA, t) is the same as that shown in
Figure 7. Thus the Poyning vector m0


1~E1 � ~B1 is directed
downward at point A. Thus one notes physically that
Poynting vector m0


1~E1 � ~B1 is directed downward from the
magnetosphere when the amplitude of ~x? is decreasing at
point A.
[109] In case 3, the energy balance equation shows that

the entire energy that goes into the increase of kinetic
energy comes from the ionospheric term. However, unlike
case 1 as discussed above, it is not certain in the present
study whether there is indeed such a perturbation h(r) that
makes dWF(h*, h) > 0, dWI(h*?, h?) < 0, dW(h*, h) = dWF +
dWI < 0 possible. Since the displacement h(r) must be
nonzero at the ionosphere, magnetic field lines just above
the ionosphere must be distorted. Since B is very large in the
low-altitude region, a stabilizing term in dWF, i.e., m0


1jQ?j2
term in equation (86), becomes very large. Therefore it
would be very difficult to make dWI + dWF < 0. Thus it is
not certain whether there is indeed such a perturbation h(r),
which makes dWI + dWF < 0 possible. Therefore the
feasibility of case 3 is not clear in the present study, which
has mainly focused on pressure-driven instabilities in the
magnetosphere. Thus case 3 is not discussed further in the
present study and the main focus in the present study in
previous subsections has been case 1 as discussed above,
i.e., pressure-driven modes.

9. Summary and Conclusion

[110] A magnetospheric energy principle has been formu-
lated to study hydromagnetic stability problems in a general
magnetospheric equilibrium by taking into account the fact
that field lines thread the ionospheric boundary, which is not
a perfectly conducting rigid wall. This is peculiar to the
magnetospheric system. The formulation is based on the
assumption that the unperturbed magnetic field is perpen-
dicular to the ionospheric surface over the whole iono-
sphere. This is justified by the low-b nature of the
ionospheric plasma. Ideal ionospheric boundary conditions
at the unperturbed ionospheric boundary are obtained, so
that the force operator F becomes self-adjoint. There are
four possible ionospheric boundary conditions which satisfy
this requirement: horizontally free, conducting, free, and
rigid boundary conditions. For these ionospheric boundary
conditions the energy, H(t) = K(~v1, ~v1) + dW(~x, ~x), is
conserved within the unperturbed magnetospheric plasma
volume P and the stability problem is closed without the
need to consider the existence of a neutral atmosphere
below the ionosphere. The magnetospheric energy principle
states that for all allowable plasma displacements x satisfy-
ing either a horizontally free, conducting, free, or rigid
ionospheric boundary condition, an equilibrium is stable if
and only if dW(x*, x) = dWF(x*, x) + dWI(x*?, x?) � 0. That

is, if the minimum value of the change in the potential
energy is positive for all displacements, the system is stable.
If it is negative for any of the displacements, the system is
unstable. The ionospheric surface contribution dWI to the
change in the potential energy is negative and thus
destabilizing for horizontally free and free ionospheric
boundary conditions. The Poynting flux across the iono-
spheric surface is expressed by the temporal change of
dWI(~x?, ~x?) after integration over the ionospheric surface
under the assumption that the unperturbed magnetic field is
incident vertically on the ionospheric surface. In particular,
when the curved finite ionospheric surface area is taken into
account, the Poynting flux across the ionospheric surface
directs upward into the magnetosphere in interchange
instability. Therefore the magnetospheric and ionospheric
plasmas move as a whole and participate cooperatively in
the instability. Thus the kinetic energy of the magneto-
spheric plasma increases with a decrease in the potential
energy of the magnetospheric system. By minimizing dW
with respect to xk, it is found that the most unstable mode
satisfiesr � x = const. along the field line andr � x is equal to
its ionospheric value for all ionospheric boundary conditions.
[111] Next, by setting Jk = 0 in the magnetosphere, and

thus excluding kink modes, pressure-driven modes in the
magnetosphere such as interchange and ballooning modes
are studied. The dWI contribution to dW is neglected by
assuming that a nonzero x? is limited to a very narrow
latitudinal region in the ionosphere for both horizontally
free and free boundary conditions.
[112] Interchange modes satisfy the horizontally free

ionospheric boundary condition and r � x = const. 6¼ 0
along the field line. Incompressible ballooning modes
satisfy the conducting or free ionospheric boundary condi-
tion and r � x = 0 along the field line. Compressible
ballooning modes satisfy the rigid ionospheric boundary
condition. Existing interchange stability criteria have been
compared and it is shown that the integral appearing in the
calculation of a specific flux tube volume can be calculated
by integrating between the two ionospheric ends. The
results of several different numerical stability analyses of
ballooning instabilities for different magnetospheric equi-
libria have been discussed systematically in light of the
present magnetospheric energy principle. In particular, the
incompressible ballooning mode does not need to satisfy the
interchange instability criterion.
[113] The present magnetospheric energy principle is an

extension of the ideal MHD energy principle to more general
boundary conditions, which may apply to the ionospheric
boundary of magnetospheric configurations. Whether or not
a magnetospheric plasma is stable is determined by magne-
tospheric conditions, for example, by interchange stability
criteria for interchange modes or by an approximate critical
b criterion for incompressible ballooning modes in a tail-like
configuration, when the ionospheric surface contribution
dWI is negligible. However, the magnetospheric energy
principle leads to the result that the ionospheric boundary
condition plays a very important role in limiting the possible
modes of pressure-driven ideal MHD instabilities in the
magnetosphere.
[114] Since the ionospheric boundary conditions obtained

in this study are ideal ionospheric boundary conditions, the
value of the present energy priniciple extended to a mag-
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netospheric plasma depends on the physical feasibility of
those different ionospheric boundary conditions, which
satisfy the self-adjointness of the force operator.

Appendix A: Calculation of h? � [(B � r)x?] and
(x? � r)b on the Ionospheric Surface

[115] Let us assume that the ionospheric unperturbed
magnetic field is vertical to the unperturbed ionospheric
plane and the ionospheric surface is a spherical surface of
radius RI for the three-dimensional configuration, and a
cylindrical surface of radius RI for the two-dimensional
configuration. In order to calculate h? � [(B � r)x?] and
(x? � r)b on the ionospheric surface of both hemispheres,
a common coordinate system must be used in both
hemispheres.
[116] For the three-dimensional configuration, let us define

a field-aligned coordinate system (s, �, 	), where s increases
along the field line with the distance from the ionosphere in
the Southern Hemisphere. Unit vectors of the coordinate
system are b, �̂, and 	̂, where 	̂ = b � �̂ directs eastward. In
this coordinate system

x ¼ xkbþ x��̂þ x		̂: ðA1Þ

[117] In the ionosphere of the Southern Hemisphere, this
coordinate system agrees with the spherical coordinate
system represented by (r, �, 	). Therefore,

x ¼ xker þ x�e� þ x	e	 ðA2Þ

where er, e�, and e	 are unit vectors in the spherical coordinate
system. Thus, x? = x�e� + x	e	 and h? = h�e� + h	e	.
Therefore,

x? � rð Þb ¼ x? � rð Þer
¼ x?

RI

ðA3Þ

and

h? � B � rð Þx?½ � ¼ B h�
@x�
@r

þ h	
@x	
@r

� �

¼ B h�
@x�
@s

þ h	
@x	
@s

� �
ðA4Þ

in the ionosphere in the Southern Hemisphere, since b � r =
er � r = @/@r = @/@s.
[118] In the Northern Hemisphere, b = 
er, �̂ = 
e�, and

	̂ = e	. Therefore x? = 
x�e� + x	e	 and h? = 
h�e� + h	e	.
Therefore,

x? � rð Þb ¼ 
 x? � rð Þer
¼ 
 x?

RI

ðA5Þ

and

h? � B � rð Þx?½ � ¼ 
B h�
@x�
@r

þ h	
@x	
@r

� �

¼ B h�
@x�
@s

þ h	
@x	
@s

� �
ðA6Þ

in the ionosphere in the Northern Hemisphere, since b � r =

er � r = 
@/@r = @/@s.
[119] For the two-dimensional configuration, let us define

a field-aligned coordinate system (s, �, z), where z is the
dawn-dusk direction. Unit vectors of the coordinate system
are b, �̂, and ẑ, where ẑ = b � �̂ directs eastward. In this
coordinate system

x ¼ xkbþ x��̂þ xzẑ: ðA7Þ

[120] In the ionosphere of the Southern Hemisphere, this
coordinate system agrees with the cylindrical coordinate
system represented by (r, �, z), where z is the dawn-dusk
direction. Since there is no variation of b in the z direction,

x? � rð Þb ¼ x? � rð Þer
¼ x?m

RI

;
ðA8Þ

where x?m is the component of x? in the meridian plane.
Also,

h? � B � rð Þx?½ � ¼ B h�
@x�
@r

þ hz
@xz
@r

� �

¼ B h�
@x�
@s

þ hz
@xz
@s

� �
:

ðA9Þ

[121] In the Northern Hemisphere, b = 
er and �̂ = 
e�.
Therefore

x? � rð Þb ¼ 
 x? � rð Þer
¼ 
 x?m

RI

ðA10Þ

and

h? � B � rð Þx?½ � ¼ 
B h�
@x�
@r

þ hz
@xz
@r

� �

¼ B h�
@x�
@s

þ hz
@xz
@s

� �
ðA11Þ

in the ionosphere in the Northern Hemisphere, since b � r =

er � r = 
@/@r = @/@s.

Appendix B: Condition for Validity of the
Magnetospheric Energy Principle and Physical
Meaning of the Change in the Potential Energy
dW(~x, ~x)

[122] The energy conservation equation (57) is derived
from the self-adjointness of the force operator and it means
that H(t) = K(~v1, ~v1) + dW(~x, ~x) = K + dWF + dWI, where
dW(~x, ~x) =
1/2

R
P
~x � F(~x)dr, is conserved. This is the basis of

the present magnetospheric energy principle. In this Appen-
dix, the validity of the sufficiency of the self-adjointness of
the force operator for energy conservation is discussed on the
basis of a rigorous nonlinear MHD equation describing
the time evolution of total energy. Thus the relevance of the
change in the potential energy dW(~x, ~x) = dWF + dWI to the
sum of the second order perturbations of internal energy and
magnetic energy is clarified (see, also, question 5.3.1 of
Bateman [1978]). In the following, K, dW, dWF, and dWI
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denote K(~v1, ~v1), dW(~x, ~x), dWF(~x, ~x), and dWI(~x?, ~x?),
respectively.
[123] Since a perturbation of kinetic energy is a quadratic

of ~v1 in a static equilibrium, let us first calculate the
temporal change of a second order linear perturbation ~w2,
which is the sum of the second order perturbations of
internal energy and magnetic energy, i.e.,

~w2 ¼
~p2

� 
 1
þ 1

2m0

2B0 � ~B2 þ ~B2
1

� �
; ðB1Þ

where

@~p2
@t

¼ 
~v1 � r~p1 
 �~p1r � ~v1; ðB2Þ

@~B1

@t
¼ r� ~v1 � B0ð Þ; ðB3Þ

@~B2

@t
¼ r� ~v1 � ~B1

� �
: ðB4Þ

Notice that, contrary to the notation in the main text, the
subscript 0 is added explicitly to the unperturbed quantity in
this Appendix in order to avoid confusion. Subscripts 1 and
2 denote the first order linear perturbation and the second
order linear perturbation, respectively, and the tilde on the
perturbation means that the calculation is done in the real
time domain and the perturbation is a function of position r
and time t.
[124] Using equations (10) and (11) and vector identities,

it is straightforward to show after some algebra that

@~w2

@t
¼
 ~v1 � F ~x

� �

 �

� 
 1
r � ~p1~v1ð Þ þ 1

m0

r

� ~v1 � ~B1

� �
� B0 þ ~v1 � B0ð Þ � ~B1

� �
; ðB5Þ

where F(~x) is given by replacing x with ~x in equation (13).
Here,

~v1 � F ~x
� �

¼ �0
@~x
@t

� @
2~x
@t2

¼ @

@t

1

2
�0~v

2
1

� �
: ðB6Þ

Therefore equation (B5) can be rewritten as

@

@t

1

2
�0~v

2
1 þ ~w2

� �
¼ 
 �

� 
 1
r � ~p1~v1ð Þ þ 1

m0

r

� ~v1 � ~B1

� �
� B0 þ ~v1 � B0ð Þ � ~B1

� �
: ðB7Þ

This equation is also obtained by taking the second order
linear perturbation of a nonlinear MHD equation describing
the time evolution of total energy at any point in space

@

@t

1

2
�v2 þ p

� 
 1
þ B2

2m0

� �

¼ 
r � 1

2
�v2 þ pþ p

� 
 1

� �
vþ 1

m0

E� B

� �
; ðB8Þ

where, contrary to the notation used in the main text, �, p, B,
v, E, and B are all total quantities, which are functions of
position r and time t and not unperturbed quantities.
Therefore equation (B7) represents the second order linear
perturbation of a rigorous local energy conservation
equation (B8).
[125] Let us define the second order perturbation ~u2 of the

energy flux density by

~u2 ¼
�

� 
 1
~p1~v1ð Þ 
 1

m0

~v1 � ~B1

� �
� B0 þ ~v1 � B0ð Þ � ~B1

� �
;

ðB9Þ

then, equation (B7) can be written as

@

@t

1

2
�0~v

2
1 þ ~w2

� �
¼ 
r � ~u2: ðB10Þ

By integrating equation (B10) over the unperturbed plasma
volume P, one obtains

@

@t

Z
P

1

2
�0~v

2
1 þ ~w2

� �
dr ¼ 


Z
S

~u2 � ndS: ðB11Þ

[126] Equation (B9) can be rewritten as

~u2 ¼
�

� 
 1
~p1~v1ð Þ þ 1

m0

2~v1 B0 � ~B1

� ��

B0 ~v1 � ~B1

� �

 ~B1 ~v1 � B0ð Þ

�
: ðB12Þ

Using vector identities, it is straightforward to show that

2~v1 B0 � ~B1

� �

 B0 ~v1 � ~B1

� �

 ~B1 ~v1 � B0ð Þ

¼ 2~v1? 
B2
0 r � ~x?
� �


 B2
0
~x? � k
 B0

~x? � r
� �

B0

� �� �

 ~v1kB

2
0b

~x? � k
� �


 B0b ~v1? � B0 � rð Þ~x?
� ��


B0~v1? � ~x? � r
� �

b
� ��


 B2
0~v1k b � rð Þ~x? 
 ~x? � r

� �
b

� �
:

ðB13Þ

Therefore on Sout and Sin, one obtains

~u2 � n ¼ 
m
1
0 B2

0~v1k 
~x? � b � rð Þnð Þ 
 n � ~x? � r
� �

b
� �� �

;

ðB14Þ

where ~v1 � n = ~v1? � n = 0 on Sout and Sin was used. Since ~x? =
0 on Sout and Sin, ~u2 � n = 0 on Sout and Sin. For the two-
dimensional configuration, contributions to the right hand
side of equation (B11) from Sdawn and Sdusk cancel each other
owing to the periodic condition in the dawn-dusk direction.
Therefore only the integral over the ionospheric surface
contributes to the right hand side of equation (B11).
[127] For the rigid ionospheric boundary condition satis-

fying ~v1 = 0 at the unperturbed ionosphere, equation (B12)
shows that ~u2 � n = 0 at the ionospheric boundary. Therefore
from equation (B11), K + W, where W �

R
P

~w2dr, is
conserved. Comparing this with equation (57), one obtains

dW ~x; ~x
� �

¼ dWF
~x; ~x
� �

¼ W þ const: ðB15Þ
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If one takes the const., so that dW = W at t = 0, one obtains
const. = 0. Therefore one has dW(~x, ~x) = dWF(~x, ~x) = W for
the rigid boundary condition.
[128] However, the assumption of normal incidence of the

unperturbed magnetic field on the ionospheric surface also
validates the energy conservation for other ionospheric
boundary conditions as shown below. Since n = b is
assumed on the ionosphere of the Northern Hemisphere in
the present magnetospheric energy principle, one obtains
from equation (B13) that

2~v1 B0 � ~B1

� �

 B0 ~v1 � ~B1

� �

 ~B1 ~v1 � B0ð Þ

� �
� n

¼ 
B2
0 ~v1? � b � rð Þ~x?

� �

 ~v1? � ~x? � r

� �
b

� �� �
ðB16Þ

by using vector identities. Therefore on the ionosphere of
the Northern Hemisphere one obtains

~u2 � n ¼
 �

� 
 1
~x? � rp0 þ �p0r � ~x
� �

~v1k


 B2
0

m0

~v1? � b � rð Þ~x?
� �


 ~v1? � ~x? � r
� �

b
� �� �

: ðB17Þ

On the ionosphere of the Southern Hemisphere, the sign of
the right hand side of equation (B17) reverses.
[129] For the conducting ionospheric boundary condition,

equation (B17) shows that ~u2 � n vanishes on the ionospheric
surface. Therefore as in the case of a rigid boundary condi-
tion, K +W is conserved and one has dW(~x, ~x) = dWF(~x, ~x) =
W for the conducting ionospheric boundary condition.
[130] For the horizontally free ionospheric boundary

condition

~u2 � n ¼ m
1
0 B2

0~v1? � ~x? � r
� �

b
� �

ðB18Þ

is valid on the ionosphere of the Northern Hemisphere. On
the ionosphere of the Southern Hemisphere, the sign of the
right hand side reverses. Since (~x? � r)b is equal to 
~x?/RI

and ~x?/RI on the ionospheres of the Northern Hemisphere
and Southern Hemisphere, respectively, for the three-
dimensional configuration, substitution of equation (B18)
into equation (B11) yields

@

@t

Z
P

1

2
�0~v

2
1 þ ~w2

� �
dr ¼ 
 @

@t
dWI

~x?; ~x?
� �

; ðB19Þ

where

dWI
~x?; ~x?
� �

¼ 
 1

2m0

Z
North

B2
0
~x2?
RI

dS þ
Z
South

B2
0
~x2?
RI

dS

 !
:

ðB20Þ

For the two-dimensional configuration ~x? must be replaced
with ~x?m in equation (B20). This means that for the
horizontally free boundary condition, a second order
contribution from Poynting vector given by equation
(B18) is expressed by the temporal change of dWI after
integration over the ionospheric surface. Therefore in this
case, equation (B19) shows that K + W + dWI is conserved.
The comparison of equation (B19) with the energy
conservation equation (57) resulting from the self-adjointness

of the force operator yields dWF(~x, ~x?) � dW 
 dWI =W for
the horizontally free ionospheric boundary condition.
[131] For the free ionospheric boundary condition

~u2 � n ¼ 
 �

� 
 1
~v1k~x? � rp0 þ m
1

0 B2
0~v1? � ~x? � r

� �
b

� �
ðB21Þ

is valid on the ionosphere of the Northern Hemisphere. On
the ionosphere of the Southern Hemisphere, the sign of the
right hand side reverses. Substitution of equation (B21) into
equation (B11) yields

@

@t

Z
P

1

2
�0~v

2
1 þ ~w2

� �
dr

¼ @

@t
K þWð Þ

¼ �

� 
 1

Z
North

@~xk
@t

~x? � rp0dS

 


Z
South

@~xk
@t

~x? � rp0dS

!


 @

@t
dWI

~x?; ~x?
� �

: ðB22Þ

Therefore in this case K + W + dWI is not conserved. But as
is obvious from equation (57), H = K + dW = K + dWF +
dWI is conserved. Comparing equation (B22) with the
energy conservation equation (57), one obtains

@

@t
dWF ¼ @W

@t

 �

� 
 1

Z
North

@~xk
@t

~x? � rp0dS

 



Z
South

@~xk
@t

~x? � rp0dS

!
ðB23Þ

for the free boundary condition. Therefore for the free
boundary condition, dWF is not simply equal to W as is the
case for the other three ionospheric boundary conditions.
This means that for the free boundary condition, no form of
energy conservation is obtained from the local energy
conservation in equation (B8). This seems to contradict the
conservation of H = K + dW = K + dWF + dWI derived from
the self-adjointness of the force operator.
[132] This contradiction in the case of the free ionospheric

boundary condition is due to the fact that, as has been
discussed in section 8.6, the normal incidence of the
unperturbed magnetic field on the entire ionospheric surface
is valid only when J0 � B0 � 0 at the ionosphere. Since the
force operator is defined by assuming J0 � B0 = rp0
everywhere including the ionospheric surface, the sufficien-
cy of the self-adjointness of the force-operator for the
energy conservation for the free ionospheric boundary
condition is valid only when the ionospheric plasma beta
is much smaller than one and J0 � B0 � 0 is satisfied at the
ionosphere. For such a low-b ionosphere, equation (B23)
shows that the ionospheric surface contribution by nonzero
rp0 on the right hand side can be neglected and dWF � dW

 d WI ’ W holds for the free boundary condition.
[133] This condition for the validity of dWF ’ W for the

free boundary condition can be obtained more rigorously as
follows. When the first term can be neglected in comparison
with the second term on the right hand side of equation (B21),
the last two terms on the right hand side of equation (B23)
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can be neglected. The condition, for which the first term
can be neglected in comparison with the second term in
equation (B21), can be written as

bI � 2
‘0?
RI

‘?
‘k

; ðB24Þ

where bI is the plasma beta at the ionosphere, ‘0? is the
perpendicular scale length of p0 in the ionosphere, ‘k and ‘?
are a parallel scale length of ~v1k and a perpendicular scale
length of ~v1? at the ionosphere, respectively, andr � ~v1 = 0 at
the ionosphere is used. For reasonable parameters, the
ionospheric beta, bI � 10
6, obtained in section 8.6 is small
enough to satisfy equation (B24). Therefore for such a low-b
ionosphere, dWF ’ W holds even for the free ionospheric
boundary condition and energy conservation is also obtained
from the rigorous equation (B8) describing the time evolution
of total energy and thus the above contradiction in the case
of the free ionospheric boundary condition is resolved.
[134] Since a second order perturbation of Poynting flux

is related to the temporal change of dWI(~x?, ~x?), an explicit
form of Poynting vector perturbation is given here. A
second order perturbation of Poynting vector ~s2 is expressed
from equation (B12) as

~s2 ¼ m
1
0 2~v1 B0 � ~B1

� �

 B0 ~v1 � ~B1

� �

 ~B1 ~v1 � B0ð Þ

� �
: ðB25Þ

Therefore one has

~s2 � n ¼ m
1
0 2 ~v1 � nð Þ B0 � ~B1

� �

 B0 � nð Þ

�
� ~v1 � ~B1

� �

 ~B1 � n
� �

~v1 � B0ð Þ
�
: ðB26Þ

By using conditions (18) and (19), one finds that ~s2 � n = 0 on
Sout and Sin. Also, for the two-dimensional configuration, contri-
butions to

R
S
~s2 � ndS from Sdawn and Sdusk cancel each other

owing to the periodic condition in the dawn-dusk direction.
[135] From equation (B26) one finds that ~s2 � n vanishes

exactly on the unperturbed ionospheric surface for the rigid
ionospheric boundary condition. Since n = b is assumed on
the ionospheric surface of the Northern Hemisphere in the
present energy principle, one obtains from equation (B17)

~s2 � n ¼ ~s2 � b ¼ 
m
1
0 B2

0 ~v1? � b � rð Þ~x?
� �


 ~v1? � ~x? � r
� �

b
� �� �

:

ðB27Þ

Therefore one also obtains ~s2 � n = 0 on the ionospheric
surface for the conducting ionospheric boundary condition.
For the horizontally free and free boundary conditions, the
first term on the right hand side of equation (B27) vanishes.
Thus for all ionospheric boundary conditions, one obtains

~s2 � n ¼ m
1
0 B2

0 ~v1? � ~x? � r
� �

b
� �� �

ðB28Þ

on the ionospheric surface of the Northern Hemisphere. On
the ionospheric surface of the Southern Hemisphere, the
sign of the right hand side of equation (B28) reverses.
Therefore one obtains

~s2 � n ¼ 
 1

2m0

B2
0

RI

@

@t
~x2? ðB29Þ

on the ionospheric surfaces of both hemispheres. By
integrating over the ionospheric surface and adding
contributions from both hemispheres, one obtains

Z
North

~s2 � ndS þ
Z
South

~s2 � ndS ¼ @

@t
dWI

~x?; ~x?
� �

: ðB30Þ

[136] From equation (B29) it is obvious that when ~x?2 is
increasing at the ionosphere, the parallel component of

2220Poynting vector across the ionospheric surface is upward
into the magnetosphere. Equation (B30) means that when
dWI(~x?, ~x?) is decreasing, the net parallel Poynting flux
integrated over the ionospheric surface is upward into the
magnetosphere.
[137] While first order energy conservation has no direct

effect on the second order terms and the discussion of
stability based on these, first order terms are lower order
than second order terms. Therefore it is necessary to check
whether or not the first order energy conservation is valid. If
one takes a first order perturbation of equation (B8), one
obtains

@~w1

@t
¼ 
r � ~u1; ðB31Þ

where ~u1 is the first order perturbation of the energy flux
density expressed by

~u1 ¼
�

� 
 1
p0~v1 


1

m0

~v1 � B0ð Þ � B0; ðB32Þ

and ~w1 is the first order perturbation of the sum of the
internal energy and magnetic energy expressed by

~w1 ¼
~p1

� 
 1
þ 1

m0

B0 � ~B1: ðB33Þ

[138] It is straightforward to show that

~u1 ¼
�

� 
 1
p0~v1 þ

1

m0

B2
0~v1?: ðB34Þ

Therefore on the ionospheric surface, one has

~u1 � n ¼ �

� 
 1
p0~v1 � nþ 1

m0

B2
0~v1? � n: ðB35Þ

Since

@

@t

Z
P

~w1dr ¼ 

Z
S

~u1 � ndS ðB36Þ

holds,
R
P

~w1dr is conserved for the rigid boundary
condition. Since n = b is assumed on the ionospheric
surface of the Northern Hemisphere, one obtains

~u1 � n ¼ ~u1 � b ¼ �

� 
 1
p0~v1k: ðB37Þ

Therefore for the horizontally free ionospheric boundary
condition ~u1 � n also vanishes on the ionospheric surface
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and
R
P

~w1dr is conserved. For the conducting and free
ionospheric boundary conditions ~u1 � n does not vanish andR
P

~w1dr is not precisely conserved. However, if one
assumes O(~v1) � O(~v1?) in equation (B34), the first term is
O(�bI/2(� 
 1)) smaller than the second term of the right
hand side of equation (B34). Since bI � 10
6, one obtains

~u1 ’ m
1
0 B2

0~v1? ¼ ~s1 ðB38Þ

on the ionospheric surface. This means that at the
ionospheric surface the first order energy flux density is
nearly equal to the first order perturbation of Poynting
vector ~s1.
[139] Since n = b is assumed on the ionospheric surface in

the Northern Hemisphere, one obtains ~u1 � n ’ ~s1 � n = 0
from equation (B38). This means that the normal component
of the first order Poynting vector on the ionospheric surface
vanishes. Therefore the low-b nature of the ionosphere leads
to the result that

R
P
~w1dr is also nearly conserved for the

conducting and free ionospheric boundary conditions.
Although in this approximation procedure, one neglects
the first term on the right hand side of equation (B34)
compared with the second term, which eventually vanishes
after taking the dot product with n = b, the very small value
of bI compared with unity would validate the above
approximation procedure. Therefore one notes that for all
ionospheric boundary conditions, the first order energy
conservation (conservation of

R
P
~w1dr) is well satisfied.

[140] In summary, the first order energy conservation is
nearly satisfied for a low-b ionospheric plasma. In the
second order, the energy conservation derived from the
self-adjointness of the force operator is consistent with
the rigorous MHD nonlinear equation (B8) describing the
time evolution of total energy, when the ionospheric plasma
beta is much smaller than one. For such a low-b ionospheric
plasma, H = K + dW is conserved for all ideal ionospheric
boundary conditions. Here dW = dWF = W for the rigid and
conducting ionospheric boundary conditions, but dW =
dWF + dWI = W + dWI for the horizontally free and free
ionospheric boundary conditions.
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