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Abstract 

 

Solar sails are a form of spacecraft which deploys a large sail in space and uses solar radiation 

pressure for propulsion. Solar sailing is considered as an ultimate propulsion system since it does not 

require any propellant. In 2010, IKAROS developed and launched by Japan Aerospace Exploration 

Agency (JAXA) has become the first solar sail spacecraft in the world. IKAROS successfully 

achieved its objective to demonstrate various novel technologies regarding solar sailing: the 

deployment of a 200 m2 sail, power generation with thin-film solar cells on the sail, measurement of 

acceleration due to solar radiation pressure, and guidance and control of a solar sail spacecraft in 

interplanetary space. NASA also launched a solar sail spacecraft called NanoSail-D2 into a low 

Earth orbit in 2010. IKAROS and NanoSail-D2 are to be followed by several solar sail projects. The 

importance of solar sails is widely acknowledged, and solar sails are being as popular as ever. 

    This thesis deals with a spinning solar sail in interplanetary space. In general, spinning solar sails 

are considered to have a good prospect compared to three-axis stabilised solar sails. This is because 

the fact that spinning solar sails do not require such rigid structures as booms or masts leads to weigh 

reduction. This is a critical criterion for solar sails since a high sail area-to-mass ratio is necessary to 

use solar radiation pressure for propulsion. 

    In past Japanese deep space missions including IKAROS, it was shown that the spin-axis direction 

of a spinning spacecraft rotates around an equilibrium direction near the Sun direction due to the 

effect of solar radiation pressure. This phenomenon is called an “attitude drift motion”. It is known 

that this attitude motion can be controlled by the spin rate of the spacecraft. The solar radiation 

pressure force on the sail, hence the acceleration gained by the solar sail, is dependent on the attitude 

with respect to the Sun. The orbit of a spinning solar sail can be, therefore, controlled indirectly by 

the spin rate through the attitude drift motion. In this thesis, the attitude and orbit control of a 

spinning solar sail by the spin rate is proposed. 

    Spin rate control laws for optimal attitude and orbit control are determined. Analytical and 

numerical analyses are performed to solve optimal control problems for acceleration and 

deceleration maximisation, orbital elements optimisation, attitude control optimisation and circular 

orbit-to-circular orbit transfer optimisation. The significance of this thesis is that a pure under-

actuated system is investigated. The six degrees of freedom of the attitude and orbital motions are 

controlled only by the spin rate. It provides ultimate redundancy and simplicity for a spinning solar 

sail because it enables the attitude and orbit control of the spacecraft provided that only the spin rate 

is controllable. The control strategy proposed in this thesis, therefore, greatly contributes to the 

guidance and control of future spinning solar sails.  
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Chapter 1 

 

Introduction 

 

1.1 Background 

Solar sails are a form of spacecraft which deploys a large sail in space and uses solar radiation 

pressure for propulsion. They gain momentum by reflecting photons of which Sunlight is composed. 

The momentum that can be gained by a single photon is extremely small. A solar sail spacecraft 

must be light and deploy a large sail in order to be accelerated slowly but continuously by Sunlight. 

Solar sailing is considered as an ultimate propulsion system since it does not require any propellant. 

    The existence of light pressure was shown theoretically by the Scottish physicist James Clark 

Maxwell in 1873, and was proved experimentally by the Russian physicist Peter Lebedew in 1900 

[1 ,2]. In 1921, the famous Russian rocket scientist Konstantin Tsiolkovsky was the first to write 

about propulsion using Sunlight. He proposed that it would be possible to propel with a large shining 

membrane of very thin film using solar radiation pressure [3]. Since then, solar sails have been 

studied by numerous researchers. Studies have demonstrated potential advantages and benefits of 

solar sailing. Solar sails have also appeared in science fiction novels. Notably the famous short story 

The Wind from the Sun published by Arthur C. Clarke in 1963 contributed to the spread of the idea 

of solar sailing. Solar sails were, however, not realised for a long period of time. 

 

 

Fig. 1.1 Small Solar Power Sail Demonstrator IKAROS. 
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    In 2010, the first solar sail spacecraft in the world has finally come true. The name of the 

spacecraft is IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun), shown in Fig. 

1.1 [4, 5]. It was developed by Japan Aerospace Exploration Agency (JAXA) and launched on 21 

May 2010. IKAROS is a spinning solar sail, which is a spin-stabilised spacecraft, and deploys and 

stretches its sail using the centrifugal force due to spinning. The objective of IKAROS was to 

demonstrate various novel technologies regarding solar sailing: the deployment of a 200 m2 sail, 

power generation with thin-film solar cells on the sail, measurement of acceleration due to solar 

radiation pressure, and guidance and control of a solar sail spacecraft in interplanetary space. 

IKAROS achieved the objective successfully and became the first solar sail spacecraft in the world. 

Fig. 1.1 is a real image taken in space with a separation camera [6]. 

 

 

Fig. 1.2 NanoSail-D. 

 

    Whereas IKAROS is a spinning solar sail, another major type of solar sails is a three-axis 

stabilised solar sail, which is composed of booms or masts to deploy and stretch a sail. NanoSail-D2 

shown in Fig. 1.2 was developed by NASA and launched on 20 November 2010 subsequently to the 

loss of NanoSail-D in 2008 due to a rocket malfunction [7]. It is a three-unit CubeSat with a mass of 

4 kg. The main objective was to demonstrate and test the deorbiting capabilities of a sail as a drag 

augmentation device in a low Earth orbit. After more than 240 days in orbit, the spacecraft re-

entered the Earth’s atmosphere. 
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       Fig. 1.3 Sunjammer.              Fig. 1.4 LightSail-1. 

 

           

          Fig.1.5 CubeSail.                  Fig. 1.6 Solar Power Sail. 

 

    In addition, there are several solar sail projects under consideration. Sunjammer in Fig. 1.3 is 

NASA’s first solar sail to deep space [8]. It will demonstrate the deployment of a 1200 m2 sail, the 

largest solar sail as of 2014, and test navigation capabilities. LightSail-1 in Fig. 1.4 is a solar sail 

developed by The Planetary Society [9]. It is a part of LightSail program to develop three separate 

solar sails over several years. The main goal of LightSail-1 is to fly in Earth orbit and demonstrate 

photon propulsion. The Surrey Space Centre in the United Kingdom are developing CubeSail, which 

is shown in Fig. 1.5, with a sail area of 25 m2 to demonstrate photon propulsion and the deorbiting 

capabilities of a sail [10]. Moreover, a solar sail mission to explore Jovian Trojan asteroid is under 

consideration at JAXA to be launched in around 2020 [11]. A 3000 m2 sail will majorly consist of 

thin-film solar cells in order to enable the spacecraft to generate sufficient power to drive an electric 

propulsion system at a distance of approximately 5 AU from the Sun. The importance of solar sails 

as various purposes is widely acknowledged, and solar sails are being as popular as ever. 
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1.2 Problem Statement 

This thesis deals with a spinning solar sail in interplanetary space. In general, spinning solar sails are 

considered to have a good prospect compared to three-axis stabilised solar sails. This is because the 

fact that spinning solar sails do not require such rigid structures as booms or masts leads to weigh 

reduction. This is a critical criterion for solar sails since a high sail area-to-mass ratio is necessary to 

use solar radiation pressure for propulsion. 

    In past Japanese deep space missions including IKAROS, it was demonstrated that the spin-axis 

direction of a spinning spacecraft is capable of tracking the Sun direction automatically [12, 13]. The 

spin-axis direction rotates around an equilibrium direction near the Sun direction due to the effect of 

solar radiation pressure. This phenomenon is called an “attitude drift motion”. 

 

Fig. 1.7 Attitude Drift Motion of IKAROS. 

 

Fig. 1.7 shows the attitude history of IKAROS for approximately 2 months. The spin-axis direction 

is seen from the Sun, which is at the origin, and the horizontal axis of the figure is on the orbit plane 

of IKAROS. As can be seen, the spin-axis direction rotates anti-clockwise although no active 

attitude control is performed in this period. 

    As explained in the next chapter, the attitude drift motion of a spinning solar sail is dependent on 

the proportion of a torque induced by solar radiation pressure and the angular momentum of the solar 

sail. It can be, therefore, controlled by the spin rate because the angular momentum varies according 

to the spin rate. Moreover, since the solar radiation pressure force on the sail, hence the acceleration 

gained by the spacecraft, is dependent on the attitude with respect to the Sun, the orbit of a spinning 

solar sail can be controlled indirectly by the spin rate through the attitude drift motion. This is an 

interesting and important characteristic of a spinning solar sail. In this thesis, the attitude and orbit 

control of a spinning solar sail by the spin rate is proposed. 

-30 -20 -10 0 10 20 30
-30

-20

-10

0

10

20

30

In-Orbit-Plane Sun Angle [deg]

O
ut

-o
f-

O
rb

it
-P

la
ne

 S
un

 A
ng

le
 [

de
g]

Sun  

Start 

End 



5 
 

    A method to control the spin rate is not necessarily specified in this thesis. The most conventional 

way is to use chemical thrusters with propellant. This has been performed in operations of IKAROS. 

The use of “reflectivity control device” has also been demonstrated with IKAROS [14]. This is a 

device whose optical parameters can be changed electrically, and it can be used for attitude or spin 

rate control of a spacecraft by generating a torque using solar radiation pressure. It may also be 

possible to use vanes at tips of a sail. While several ideas can be conceived for spin rate control, the 

concept to perform attitude and orbit control by spin rate control is important in this thesis. 

    The significance of this research is that a pure under-actuated system is investigated. The six 

degrees of freedom of the attitude and orbital motions are controlled by single control input, which is 

the spin rate. In other words, the attitude and orbit of a spinning solar sail is controlled by a 

minimum control degree of freedom. Needless to say, it is superior to control the three degrees of 

freedom of attitude motion in terms of control efficiency for attitude and orbit control; however, it 

requires more number of control degree of freedom. The control strategy proposed in this thesis 

provides ultimate redundancy and simplicity for a spinning solar sail because it enables the guidance 

and control of the spacecraft provided that only the spin rate is controllable. 

    It is also possible to realise the attitude and orbit control using the attitude drift motion by 

generating a torque in a perpendicular direction to the spin axis of a spinning solar sail instead of by 

spin rate control. It is, however, known that the spin rate of a spinning solar sail may increase or 

decrease naturally due to the shape deformation of the sail [15]. It is, therefore, required that the spin 

rate is controllable in any case, and the single control input for the attitude and orbit control of a 

spinning solar sail must be the spin rate. 

    In previous work, it is shown that the orbit control by the spin rate is feasible to be applied in 

some cases [16, 17, 18]. It is, however, limited to very specific problems, such as the guidance and 

control of IKAROS to the sphere of influence of the Earth or Venus. On the other hand, the objective 

of this thesis is to determine spin rate control laws for more general problems of attitude and orbit 

control of a spinning solar sail. An approach taken in this thesis is to solve optimal control problems 

for several different purposes analytically, and to perform numerical analyses in order to prove the 

validity of the analytical derivation. The direct collocation with nonlinear programming method is 

used for the numerical analyses [19, 20]. 
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Fig. 1.8 Thesis Overview. 

 

Figure 1.8 summarises the overview of this thesis. As shown in the figure, the work in this thesis is 

divided into the following chapters. 

 

Chapter 2. Attitude and Orbit Dynamics Models 

In this chapter, dynamics models that are used in this thesis are introduced, and equations of attitude 

and orbital motions are shown. With regard to the attitude motion of a spinning solar sail, equations 

of the attitude drift motion are derived to demonstrate the rotational motion of the spin-axis direction 

around an equilibrium direction. The equations show that the attitude drift motion can be controlled 

by the spin rate. The orbital motion of a spinning solar sail is calculated using the two-body problem 

in this thesis. Equations of orbital motion including solar radiation pressure are shown. 

 

Chapter 3. Acceleration and Deceleration Manoeuvres 

As the most fundamental orbit control manoeuvres, optimal spin rate control laws to accelerate and 

decelerate a spinning solar sail are derived by optimising the attitude drift motion. Optimal control 

problems are formulated with cost functions of solar radiation pressure acceleration to maximise the 

acceleration and deceleration in the transverse direction. Analytical derivations and numerical 

analyses prove that simple bang-bang control of the spin rate is optimal as acceleration and 

deceleration manoeuvres. 
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Chapter 4. Orbital Elements Optimisation 

Orbital elements are optimised in this chapter. Optimal spin rate control laws for orbital inclination 

maximisation, orbital eccentricity maximisation, aphelion maximisation and perihelion minimisation 

are determined. In every problem, a locally optimal trajectory is determined by optimising the 

attitude drift motion analytically, and it is followed by a numerical optimisation to determine a 

globally optimal trajectory and to prove the validity of the analytical solution. 

 

Chapter 5. Exact Linearisation of Bilinear System for Attitude Control Manoeuvres 

In this chapter, nonlinear equations of the attitude drift motion are linearised using a method called 

“exact linearisation". It is a method to transform a nonlinear system into an equivalent linear system 

using a coordinate transformation and state feedback. The effectiveness of the exact linearisation is 

demonstrated by formulating an optimal control problem of attitude control manoeuvres that is 

analytically solvable. Since the attitude drift motion can be controlled by the spin rate, attitude 

control can be performed by controlling the spin rate and using the attitude drift motion. An optimal 

spin rate control law to perform attitude control is determined analytically. 

 

Chapter 6. Circular Orbit-to-Circular Orbit Transfer Optimisation 

The exact linearisation is used to linearise equations of the attitude drift motion, and its effectiveness 

is proved with example attitude control manoeuvres in the previous chapter. In this chapter, on the 

other hand, orbit control of a spinning solar sail using the exact linearisation is investigated. Exactly 

linearised equations of the attitude drift motion are combined with the equations of orbital motion. 

The attitude and orbital motions are dealt with analytically simultaneously, and globally optimal 

trajectories for a circular orbit-to-circular orbit transfer are determined. It is assumed that a spinning 

solar sail is initially in a circular orbit in the ecliptic plane with a radius of 1 AU, and it is transferred 

to another circular orbit with a larger radius. 
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Chapter 2 

 

Attitude and Orbit Dynamics Models 

 

2.1 Attitude Drift Motion 

 

2.1.1 Introduction 

The attitude drift motion was used for the first time with Asteroid Explorer Hayabusa (MUSES-C) 

[21]. Hayabusa was developed and launched by JAXA in 2003 to demonstrate novel technologies 

for asteroid exploration and sample return. It accomplished its objectives and successfully returned 

to the Earth with dust grain samples from the asteroid in 2010 [22, 23]. During the journey of 

Hayabusa, one of difficult moments was when it lost most of its fuel for chemical thrusters due to a 

leak problem [24]. Since the spacecraft was required to be pointing to the Sun direction for power 

generation with solar array panels, Xe gas for an electric propulsion system was used as cold gas 

thrusters instead. It was, however, estimated that the amount of Xe gas required would exceed the 

residual if a conventional control scheme was adopted. 

 

Fig. 2.1 Attitude Drift Motion of Hayabusa. 
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The project team decided to take advantage of solar radiation pressure to control the attitude motion 

of the spacecraft, and proved that the spin-axis direction of the spacecraft can track the Sun direction 

automatically. The flight data is shown in Fig. 2.1. This invention was crucial for Hayabusa. It was 

possible to track the Sun direction with no fuel use using the attitude drift motion, and it contributed 

to Xe gas saving for the return to the Earth. 

    Moreover, the attitude drift motion was also observed with IKAROS as introduced in the previous 

chapter. The attitude drift motion of IKAROS was slightly different from that of Hayabusa due to 

the shape deformation of the sail. In this thesis, the attitude drift motion with a completely flat sail, 

which is similar to that of Hayabusa, is considered. The dynamics of the attitude drift motion is 

introduced in this section. 

 

2.1.2 Coordinate Systems 

 

Fig. 2.2 Sun-Pointing and Spin-Free Coordinate Systems. 

 

Two coordinate systems used to express the attitude motion are introduced as shown in Fig. 2.2. 

Firstly, the Sun-pointing coordinate system is defined. The origin is at the centre of mass of the 

spacecraft. The z-axis is in the Sun direction, and the y-axis is perpendicular to the orbit plane of the 

spacecraft while the x-axis is defined to form a right-handed coordinate system. 

    Secondly, the spin-free coordinate system is introduced. While the attitude of a spinning 

spacecraft is not required to be described with its three axes, its spin-axis direction is important. In 

the spin-free coordinate system, the origin is defined to be the centre of mass of the spacecraft. A 

coordinate transformation is executed with angles 𝜑 and 𝜓 from the Sun-pointing coordinate system 

so that the z-axis coincides with the spin-axis direction. These angles are called out-of-orbit-plane 

Sun angle and in-orbit-plane Sun angle. In this paper, the attitude motion of a spacecraft is written in 

the spin-free coordinate system and expressed in terms of 𝜑 and 𝜓. 
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2.1.3 Equations of Attitude Drift Motion 

Equations of the attitude drift motion are derived in this subsection. The equations in this subsection 

are written in the spin-free coordinate system. 

    If a solar sail spacecraft has a completely flat sail, the solar radiation pressure force experienced 

by the sail, 𝑭𝑆𝑅𝑃, can be expressed with Eq. (2.1). 

 𝑭𝑆𝑅𝑃 = −
𝑃0𝐴

𝑐
(

𝑅0

𝑟
)

2
(𝒔 ∙ 𝒏){(𝐶𝑎𝑏𝑠 + 𝐶𝑑𝑖𝑓)𝒔 + (

2

3
𝐶𝑑𝑖𝑓 + 2𝐶𝑠𝑝𝑒(𝒔 ∙ 𝒏)) 𝒏} (2.1) 

𝑃0 is the solar constant; 𝐴 is the area of the sail; 𝑐 is the speed of light; 𝑅0  is the mean distance 

between the Sun and the Earth (i.e. 1 AU); 𝑟 is the distance between the Sun and the spacecraft; 𝒔 is 

the spacecraft-to-Sun vector; 𝒏 is a normal vector to the sail; and 𝐶𝑠𝑝𝑒, 𝐶𝑑𝑖𝑓 and 𝐶𝑎𝑏𝑠 are specular 

reflectivity, diffuse reflectivity and absorptivity respectively. 

    The solar radiation pressure torque, which causes the attitude drift motion, is based on an idea that 

there is an offset between the centre of mass of the solar sail spacecraft and the centre of the solar 

radiation pressure on the sail. Given that the sail is flat, the centre of the solar radiation pressure can 

be considered as the centroid of the sail. Thus the centre of the solar radiation pressure is on the spin 

axis, and the lever arm vector, 𝑳, is assumed to be parallel to the spin axis. 

 𝑳 = 𝐿 (
0
0
1

) (2.2) 

where 𝐿 is the distance between the centre of mass of the spacecraft and the centre of the solar 

radiation pressure. The resulting solar radiation pressure torque, 𝑻𝑆𝑅𝑃, is determined with Eq. (2.3). 

 𝑻𝑆𝑅𝑃 = 𝑳 × 𝑭𝑆𝑅𝑃 (2.3) 

 

 

Fig. 2.3 Solar Radiation Pressure Torque. 
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Figure 2.3 represents the idea of the solar radiation pressure torque due to the solar radiation 

pressure force. Using Eqs. (2.1), (2.2) and (2.3), the solar radiation pressure torque can be written 

with Eq. (2.4) using the out-of-orbit-plane and in-orbit-plane Sun angles, 𝜑 and 𝜓 

 𝑻𝑆𝑅𝑃 =
𝑃0𝐴𝐿

𝑐
(

𝑅0

𝑟
)

2
(𝐶𝑎𝑏𝑠 + 𝐶𝑑𝑖𝑓) (

−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠2𝜓
𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓

0

) (2.4) 

Eq. (2.5) shows the Euler’s equation in the spin-free coordinate system. 

 �̇� + �̃� × 𝑯 = 𝑻𝑆𝑅𝑃 (2.5) 

𝑯 is the angular momentum vector of the spacecraft, and �̃� is the angular velocity vector of the spin-

free coordinate system with respect to the inertial frame. Their components are as shown in Eq. (2.6). 

 𝐻 = (

𝐼𝑇𝜔𝑥

𝐼𝑇𝜔𝑦

𝐼𝑆𝛺
) , �̃� = (

𝜔𝑥

𝜔𝑦

0
) (2.6) 

𝐼𝑆  is the moment of inertia around the spin axis, 𝐼𝑇  is the moment of inertia around an axis 

perpendicular to the spin axis, and 𝛺 is the spin rate. Substituting Eqs. (2.4) and (2.6) into Eq. (2.5), 

the x and y components of Eq. (2.5) can be written as follows: 

 
�̇�𝑥 + 𝛺𝑛𝜔𝑦 = −𝑝 𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠2𝜓

�̇�𝑦 − 𝛺𝑛𝜔𝑥 = 𝑝 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓
 (2.7) 

𝛺𝑛 and 𝑝 are parameters introduced for simplification and defined as in Eq. (2.8). 

 𝛺𝑛 =
𝐼𝑆

𝐼𝑇
𝛺, 𝑝 =

𝑃0𝐴𝐿

𝑐𝐼𝑇
(

𝑅0

𝑟
)

2
(𝐶𝑎𝑏𝑠 + 𝐶𝑑𝑖𝑓) (2.8) 

𝑝 is named as “solar radiation pressure parameter”. Using the relationship between the Sun-pointing 

and spin-free coordinate systems, Eq. (2.9) can be derived. 

 𝜔𝑥 = −�̇�, 𝜔𝑦 = (�̇� + 𝜔𝑠)𝑐𝑜𝑠𝜑 (2.9) 

𝜔𝑠 is the angular velocity of the spacecraft in the inertial frame. Substituting Eq. (2.9) into Eq. (2.7), 

Eq. (2.10) can be derived. It is based on an assumption that φ and ψ are small enough, and the 

trigonometric functions are approximated with their first term of the Taylor series. 

 
�̈� − 𝛺𝑛�̇� = 𝑝𝜑 + 𝛺𝑛𝜔𝑠

�̈� + 𝛺𝑛�̇� = 𝑝𝜓
 (2.10) 

Transforming Eq. (2.10) into the form shown in Eq. (2.11) and using the relationship in Eq. (2.12), 

the characteristic equation and its solution can be written as in Eq. (2.13). 

 
𝜑(4) + (𝛺𝑛

2 − 2𝑝)𝜑(2) + 𝑝2𝜑 = −𝛺𝑛𝑝𝜔𝑠

𝜓(4) + (𝛺𝑛
2 − 2𝑝)𝜓(2) + 𝑝2𝜓 = 0

 (2.11) 

 
𝑝

𝛺𝑛
2 ≪ 1 (2.12) 
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𝜆4 + (𝛺𝑛

2 − 2𝑝)𝜆(2) + 𝑝2 = 0

𝜆 ≈ ±𝑖𝛺𝑛, ±𝑖
𝑝

𝛺𝑛

 (2.13) 

Therefore, the attitude drift motion can be expressed with Eq. (2.14) where 𝐴 , 𝐵 , 𝐶  and 𝐷  are 

constants of integration. 

 
𝜑 = 𝐴𝑐𝑜𝑠 (

𝑝

𝛺𝑛
𝑡 + 𝐵) + 𝐶𝑐𝑜𝑠(𝛺𝑛𝑡 + 𝐷) −

𝛺𝑛

𝑝
𝜔𝑠

𝜓 = −𝐴𝑠𝑖𝑛 (
𝑝

𝛺𝑛
𝑡 + 𝐵) − 𝐶𝑠𝑖𝑛(𝛺𝑛𝑡 + 𝐷)

 (2.14) 

The first and second terms represent the precession and nutation of the spin axis respectively, which 

result in a rotational motion around an equilibrium direction of (−
𝛺𝑛

𝑝
𝜔𝑠, 0). 

 

Fig. 2.4 Precession and Nutation. 

 

Figure 2.4 shows an example of the attitude drift motion in Eq. (2.14). The larger and slower 

rotational motion corresponds to the precession whereas the smaller and faster motion is the nutation. 

The constants of integration are given arbitrarily for ease of demonstration. Although the nutation is 

greatly exaggerated in the figure, it is in general negligible compared to the precession because its 

amplitude is much smaller than that of the precession. In this paper, it is assumed that the spacecraft 

is always in pure rotation, and only the precession is taken into account as shown in Eq. (2.15). 

 
𝜑 = 𝐴𝑐𝑜𝑠 (

𝑝

𝛺𝑛
𝑡 + 𝐵) −

𝛺𝑛

𝑝
𝜔𝑠

𝜓 = −𝐴𝑠𝑖𝑛 (
𝑝

𝛺𝑛
𝑡 + 𝐵)

 (2.15) 
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Fig. 2.5 Precession. 

 

Eq. (2.15) results in a simple rotation of the spin axis around an equilibrium direction, as shown in 

Fig. 2.5. As can be seen in the equation, the period of the attitude drift motion,  
𝑝

𝛺𝑛
, and the 

equilibrium direction, (−
𝛺𝑛

𝑝
𝜔𝑠, 0), are dependent on the spin rate, 𝛺𝑛. The attitude drift motion can 

be, therefore, controlled by the spin rate. This characteristic enables indirect attitude and orbit 

control of a spinning solar sail by the spin rate through the attitude drift motion. 

    The period and the equilibrium direction are, nevertheless, also a function of the solar radiation 

pressure parameter, 𝑝 . This is because, as introduced in Chapter 1, the attitude drift motion is 

determined with the proportion of the solar radiation pressure torque and the angular momentum of 

the solar sail. This characteristic is shown mathematically in Eq. (2.15). It is, therefore, possible to 

control the attitude drift motion by controlling the centre of mass of the spacecraft with an actuator, 

for example, since the solar radiation pressure parameter, 𝑝, is a function of the distance between the 

centre of mass and the centre of solar radiation pressure, 𝐿. This corresponds to controlling the 

magnitude of the solar radiation pressure torque, and it is totally equivalent to the angular 

momentum control with the spin rate in terms of the control of the attitude drift motion. In this thesis, 

it is suggested to perform the attitude and orbit control through the attitude drift motion by spin rate 

control because it is most likely to be difficult to move the centre of mass of a spacecraft sufficiently 

for such a purpose. Additionally, the spin rate is required to be controllable as the spin rate may 

increase or decrease naturally due to the shape deformation of the sail. The control method proposed 

in this thesis, however, does not have to be performed with spin rate control, and it has flexibility. 

    Differential equations of the attitude drift motion can be derived as follows from Eq. (2.15): 
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�̇� = 𝜔𝜓

�̇� = −𝜔𝜑 − 𝜔𝑠
 (2.16) 

where 

 𝜔 =
𝑝

𝛺𝑛
 (2.17) 

 

2.2 Orbital Motion 

 

2.2.1 Coordinate System 

 

 

Fig. 2.6 Spherical Polar Coordinate System. 

 

The spherical polar coordinate system shown in Fig. 2.6 is used to express the three-dimensional 

orbital motion of a spinning solar sail in this thesis. The origin is defined to be the centre of mass of 

the Sun, and the position of the spacecraft is expressed with the radial distance 𝑟, the azimuth angle 

𝜃 and the elevation angle 𝛿.  
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2.2.2 Equations of Orbital Motion 

In this thesis, the orbital motion of a spinning solar sail is calculated using the Sun-spacecraft two-

body problem. The equations of motion in the spherical polar coordinate system, can be written as 

follows: 

 

�̈� = −
𝜇

𝑟2 + 𝑟�̇�2 + 𝑟�̇�2 cos2 𝛿 + 𝑎𝑟

�̈� = 2�̇��̇�𝑡𝑎𝑛𝛿 −
2

𝑟
�̇��̇� +

𝑎𝜃

𝑟𝑐𝑜𝑠𝛿

�̈� = −�̇�2𝑠𝑖𝑛𝛿𝑐𝑜𝑠𝛿 −
2

𝑟
�̇��̇� +

𝑎𝛿

𝑟

 (2.18) 

where 𝜇 is the standard gravitational parameter of the Sun. The terms 𝑎𝑟, 𝑎𝜃 and 𝑎𝛿 denote the 

solar radiation pressure acceleration experienced by a solar sail spacecraft. They are a function 

of the attitude of the spacecraft with respect to the Sun and are expressed using the out-of-orbit-

plane and in-orbit-plane Sun angles. 

 

𝑎𝑟 =
𝑃0𝐴

𝑚𝑐
(

𝑅0

𝑟
)

2
(2𝐶𝑠𝑝𝑒𝑐𝑜𝑠3𝜑𝑐𝑜𝑠3𝜓 +

2

3
𝐶𝑑𝑖𝑓𝑐𝑜𝑠2𝜑𝑐𝑜𝑠2𝜓 + (𝐶𝑎𝑏𝑠 + 𝐶𝑑𝑖𝑓)𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜓)

𝑎𝜃 =
𝑃0𝐴

𝑚𝑐
(

𝑅0

𝑟
)

2
(2𝐶𝑠𝑝𝑒𝑠𝑖𝑛𝜓𝑐𝑜𝑠3𝜑𝑐𝑜𝑠2𝜓 +

2

3
𝐶𝑑𝑖𝑓𝑠𝑖𝑛𝜓𝑐𝑜𝑠2𝜑𝑐𝑜𝑠𝜓)

𝑎𝛿 =
𝑃0𝐴

𝑚𝑐
(

𝑅0

𝑟
)

2
(−2𝐶𝑠𝑝𝑒𝑠𝑖𝑛𝜑𝑐𝑜𝑠2𝜑𝑐𝑜𝑠2𝜓 −

2

3
𝐶𝑑𝑖𝑓𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜓)

 (2.19) 

where 𝑚 is the mass of the spacecraft. 

    The values of constants, such as the optical parameters and the moment of inertia, used throughout 

this thesis are based on the design of IKAROS, which is summarised in Appendix A. Only 

exceptions are the sail area and mass. The performance of a solar sail is critically determined with 

the sail area-to-mass ratio since the magnitude of the solar radiation pressure acceleration is 

dominated with this ratio as shown in Eq. (2.19). This is a crucial design parameter, and the 

performance of a solar sail is generally evaluated with a parameter called “characteristic acceleration” 

introduced in Eq. (2.20). 

 𝑎0 =
𝑃0𝐴

𝑚𝑐
(2𝐶𝑠𝑝𝑒 +

5

3
𝐶𝑑𝑖𝑓 + 𝐶𝑎𝑏𝑠) (2.20) 

The characteristic acceleration denotes the solar radiation pressure acceleration experienced by a 

solar sail spacecraft when facing the Sun at the distance of 1 AU from the Sun. In this thesis, the 

characteristic acceleration of 1 mm/s2 is assumed for orbital motion calculations unless it is noted. 

This is because the characteristic acceleration of IKAROS is 6.08×10-3 mm/s2, which is too low for 

orbit control using the solar radiation pressure. In other words, the performance of IKAROS as a 

solar sail is not high because it was launched as a demonstration spacecraft to prove various new 

technologies required for solar sails. In fact, although IKAROS demonstrated photon propulsion 

using solar radiation pressure and has become the world’s first solar sail, orbit control using solar 

radiation pressure has been limited. 
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Chapter 3 

 

Acceleration and Deceleration Manoeuvres 

 

Since the work in this chapter is to be published as a peer-reviewed paper, it is deleted in this 

abridged version of thesis. 
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Chapter 4 

 

Orbital Elements Optimisation 

 

Since the work in this chapter is to be published as a peer-reviewed paper, it is deleted in this 

abridged version of thesis. 
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Chapter 5 

 

Exact Linearisation of Bilinear System for Attitude 

Control Manoeuvres 

 

5.1 Introduction 

In previous chapters, the orbit control of a spinning solar sail is investigated, and it is determined 

that the bang-bang control of the spin rate is an optimal solution of several orbit control problems. It 

is, however, difficult to perform sophisticated control that satisfies initial and final conditions with 

the bang-bang control of the spin rate. This is because the maximum and minimum spin rate is 

switched over to one after the other purely according to a switching function. In this chapter, 

linearisation of the equations of the attitude drift motion is performed using a method called “exact 

linearisation" in order to solve a two-point boundary value problem with initial and final conditions 

to be satisfied. The effectiveness of the method is examined by applying it to example attitude 

control manoeuvres. 

    As it is shown throughout this thesis, the attitude drift motion of a spinning solar sail can be 

controlled by the spin rate. In other words, attitude control can be performed by controlling the spin 

rate and using the attitude drift motion. An optimal spin rate control law to perform attitude control 

is determined analytically in this chapter [27]. 

 

5.2 Exact Linearisation of Attitude Drift Motion 

The equations of the attitude drift motion are shown in Eq. (5.1). 

 
�̇� = 𝜔𝜓

�̇� = −𝜔𝜑 − 𝑛
 (5.1) 

In Eq. (5.1), the out-of-orbit-plane and in-orbit-plane Sun angles, 𝜙 and 𝜓, are state variables while 

𝜔 is control input since it is a function of the spin rate. Hence this is a type of nonlinear systems 
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called a bilinear system. It is defined as a class of nonlinear systems, in which nonlinear terms are 

constructed by a multiplication of state variables and control input. 

    In general, it is impossible to solve an optimal control problem analytically for nonlinear systems 

except for the simplest problems. An approach to be taken in such a case is a method called exact 

linearisation [28]. It is a technique to transform a nonlinear system into an equivalent linear system 

using a coordinate transformation and state feedback. For example, an approximation using the first-

order Taylor expansion around a steady state is effective only in a small region; the accuracy 

degrades as it leaves from the steady state. There is, however, no approximation in the exact 

linearisation, and nonlinear characteristics of a nonlinear system are rigorously preserved. An 

optimal control problem for a nonlinear system becomes analytically solvable by linearising the 

system. 

    A general nonlinear system is written in Eq. (5.2). 

 
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥) + 𝑔(𝑥)𝑢 (5.2) 

where 𝑥 is an 𝑛-dimensional state vector, 𝑢 is scalar control input, and 𝑓(𝑥) and 𝑔(𝑥) are functions 

of the state vector. It is known that the following necessary and sufficient conditions must be 

satisfied for such a nonlinear system to be exactly linearised [29, 30, 31]. 

1. {𝑎𝑑𝑓
0𝑔, 𝑎𝑑𝑓

1𝑔, 𝑎𝑑𝑓
2𝑔, ⋯ , 𝑎𝑑𝑓

𝑛−1𝑔}(𝑥) is linearly independent for all 𝑥 

2. {𝑎𝑑𝑓
0𝑔, 𝑎𝑑𝑓

1𝑔, 𝑎𝑑𝑓
2𝑔, ⋯ , 𝑎𝑑𝑓

𝑛−2𝑔}(𝑥) is involutive 

where 

 𝑎𝑑𝑓
0𝑔 = 𝑔(𝑥) (5.3) 

 𝑎𝑑𝑓
𝑖+1𝑔 = [𝑓, 𝑎𝑑𝑓

𝑖 𝑔] (5.4) 

 [𝑓, 𝑔] =
𝜕𝑔

𝜕𝑥
𝑓(𝑥) −

𝜕𝑓

𝜕𝑥
𝑔(𝑥) (5.5) 

[𝑓, 𝑔] is the Lie bracket which functions as the commutator of vector fields. The equations below 

shows that the equations of the attitude drift motion meet the two conditions above. 

 
𝑑

𝑑𝑡
(

𝜙
𝜓

) = (
0

−𝑛
) + (

𝜓
−𝜙

) 𝜔 (5.6) 

Eq. (5.6) shows the equations of the attitude drift motion in a different form. 

  𝑎𝑑𝑓
0𝑔 = 𝑔(𝑥) = (

𝜓
−𝜙

) (5.7) 

 𝑎𝑑𝑓
1𝑔 = [𝑓, 𝑔](𝑥) =

𝜕𝑔

𝜕𝑥
𝑓(𝑥) −

𝜕𝑓

𝜕𝑥
𝑔(𝑥) = (

−𝑛
0

) (5.8) 

From Eqs. (5.7) and (5.8), it is confirmed that {𝑎𝑑𝑓
0𝑔, 𝑎𝑑𝑓

1𝑔}(𝑥) is linearly independent. 

 [𝑎𝑑𝑓
0𝑔, 𝑎𝑑𝑓

0𝑔](𝑥) = 0 (5.9) 
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Moreover, Eq. (5.9) proves that [𝑎𝑑𝑓
0𝑔, 𝑎𝑑𝑓

0𝑔](𝑥)  is involutive. Thus the two necessary and 

sufficient conditions are satisfied, and the equations of the attitude drift motion can be exactly 

linearised. 

    Now the coordinate transformation and state feedback required for the linearisation are 

determined using the Lie derivative.  

 𝐿𝑎𝑑𝑓
0𝑔𝛷(𝑥) = (

𝜕𝛷

𝜕𝜙

𝜕𝛷

𝜕𝜓
) (

𝜓
−𝜙

) =
𝜕𝛷

𝜕𝜙
𝜓 −

𝜕𝛷

𝜕𝜓
𝜙 = 0 (5.10) 

 𝐿𝑎𝑑𝑓
1𝑔𝛷(𝑥) = (

𝜕𝛷

𝜕𝜙

𝜕𝛷

𝜕𝜓
) (

−𝑛
0

) = −
𝜕𝛷

𝜕𝜙
𝑛 ≠ 0 (5.11) 

𝛷(𝑥) must satisfy Eqs. (5.10) and (5.11). A solution can be chosen as in Eq. (5.12). 

 𝛷 = 𝜙2 + 𝜓2 (5.12) 

Since 

 
𝜕𝛷

𝜕𝜙
= 2𝜙 (5.13) 

 
𝜕𝛷

𝜕𝜓
= 2𝜓 (5.14) 

Eq. (5.12) satisfies Eqs. (5.10) and (5.11). The coordinate transformation and state feedback are, 

therefore, determined as follows: 

 (
𝜉1

𝜉2
) = (

𝛷(𝑥)

𝐿𝑓𝛷(𝑥)) = (
𝜙2 + 𝜓2

−2𝑛𝜓
) (5.15) 

 𝜔 =
−𝐿𝑓

2 𝛷(𝑥)+𝜔′

𝑳𝒈𝐿𝑓
1 𝛷(𝑥)

= −
2𝑛2+𝜔′

2𝑛𝜙
 (5.16) 

where 

 𝐿𝑓𝛷(𝑥) =
𝜕𝛷

𝜕𝑥
𝑓(𝑥)(2𝜙 2𝜓) (

0
−𝑛

) = −2𝑛𝜓 (5.17) 

 𝐿𝑓
2𝛷(𝑥) = 𝐿𝑓{𝐿𝑓𝛷(𝑥)} = (0 −2𝑛) (

0
−𝑛

) = 2𝑛2 (5.18) 

 𝐿𝑔𝐿𝑓𝛷(𝑥) = (0 −2𝑛) (
𝜓

−𝜙
) = 2𝑛𝜙 (5.19) 

Finally, the equations of the attitude drift motion can be exactly linearised using Eqs. (5.15) and 

(5.16). 

 
𝜉1̇ = 𝜉2

𝜉2̇ = 𝜔′
 (5.20) 

𝜉1 and 𝜉2 are new state variables, and 𝜔′ is new control input. As can be seen, the bilinear system in 

Eq. (5.1) is transformed into a simple linear system. Hence it enables an optical control problem that 

is analytically solvable to be formulated. 
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    A time derivative of 𝜔′ is taken, and a linear system to be controlled is as follows. 

 

𝜉1̇ = 𝜉2

𝜉2̇ = 𝜉3

𝜉3̇ = 𝜔′′

 (5.21) 

where 

 (

𝜉1

𝜉2

𝜉3

) = (

𝜑2 + 𝜓2

−2𝑛𝜓

2𝑛2 + 2𝑛𝜔𝜑

) (5.22) 

In Eq (5.21), 𝜔′′ is to be control input. It is essentially the angular acceleration of the in-orbit-plane 

Sun angle since 𝜔′′ = −2𝑛�̈�. 

 

5.3 Analytical Derivation 

In this section, Eq. (5.21) is used instead of Eq. (5.1) as the equations of the attitude drift motion. An 

optimal control problem is formulated for attitude control manoeuvres and the effectiveness of the 

exact linearisation is shown. 

    The orbital motion is neglected in this chapter because it is focused on the attitude control. An 

optimal control problem is solved analytically using the Pontryagin’s minimum principle. 

 𝐽 =
1

2
∫ 𝜔′′2 𝑑𝑡 (5.23) 

The cost function is defined as in Eq. (5.23). With this cost function, since 𝜔′′  is the angular 

acceleration of the in-orbit-plane Sun angle, �̈�2 will be minimised. This is an important factor since 

a general spacecraft generates electricity with solar cells, and it is required that the attitude of the 

spacecraft is pointing near to the Sun direction. By using the exact linearisation, such an optimal 

control problem can be solved analytically and rigorously. It would not be possible to solve the same 

problem analytically using the original bilinear system in Eq. (5.1). This is a powerful effectiveness 

of the exact linearisation. In addition, 𝜔′′ is a function of the change in the spin rate, �̇�, as shown 

below. 

 𝜔′′ = 𝜔′̇ = −2𝑛�̈� = 2𝑛(�̇�𝜑 + 𝜔�̇�) = 2𝑛(�̇�𝜑 + 𝜔2𝜓) ≈ 2𝑛�̇�𝜑 (5.24) 

The second term in the equation is neglected assuming a relationship of  �̇�𝜑 ≫ 𝜔2𝜓 is likely to hold 

true. Hence it may contribute to the minimisation of the spin rate change to minimise the cost 

function in Eq. (5.23). 

 𝐻 =
1

2
𝜔′′2 + +𝜆𝜉1

𝜉2 + 𝜆𝜉2
𝜉3 + 𝜆𝜉3

𝜔′′ (5.25) 

The Hamiltonian is defined in Eq. (5.25) using the co-state variables, 𝜆𝜉1
, 𝜆𝜉2

 and 𝜆𝜉3
. The optimal 

control input can be, therefore, derived as follows: 
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𝜕𝐻

𝜕𝜔′′
= 𝜔′′ + 𝜆𝜉3

= 0

𝜔′′ = −𝜆𝜉3

 (5.26) 

The differential equations of the co-state variables are shown in Eq. (5.27) using Eqs. (5.21) and 

(5.26). 

 

𝜉1̇ = 𝜉2

𝜉2̇ = 𝜉3

𝜉3̇ = −𝜆𝜉3

𝜆𝜉1
̇ = 0

𝜆𝜉2
̇ = −𝜆𝜉1

𝜆𝜉3
̇ = −𝜆𝜉2

 (5.27) 

Eq. (5.27) can be solved analytically as follows: 

 

𝜉1 = −
1

120
𝐶𝜆𝜉1

𝑡5 +
1

24
𝐶𝜆𝜉2

𝑡4 −
1

6
𝐶𝜆𝜉3

𝑡3 +
1

2
𝜉3(𝑡0)𝑡2 + 𝜉2(𝑡0)𝑡 + 𝜉1(𝑡0)

𝜉2 = −
1

24
𝐶𝜆𝜉1

𝑡4 +
1

6
𝐶𝜆𝜉2

𝑡3 −
1

2
𝐶𝜆𝜉3

𝑡2 + 𝜉3(𝑡0)𝑡 + 𝜉2(𝑡0)

𝜉3 = −
1

6
𝐶𝜆𝜉1

𝑡3 +
1

2
𝐶𝜆𝜉2

𝑡2 − 𝐶𝜆𝜉3
𝑡 + 𝜉3(𝑡0)

𝜆𝜉1
= 𝐶𝜆𝜉1

𝜆𝜉2
= −𝐶𝜆𝜉1

𝑡 + 𝐶𝜆𝜉2

𝜆𝜉3
=

1

2
𝐶𝜆𝜉1

𝑡2 − 𝐶𝜆𝜉2
𝑡 + 𝐶𝜆𝜉3

 (5.28) 

where 𝐶𝜆𝜉1
, 𝐶𝜆𝜉2

 and 𝐶𝜆𝜉3
 are constants of integration, and 𝜉1(𝑡0), 𝜉2(𝑡0) and 𝜉3(𝑡0) are initial values 

of 𝜉1, 𝜉2 and 𝜉3 at time 𝑡0. The optimal control input is, therefore, derived as in Eq. (5.29) 

 𝜔′′ = −
1

2
𝐶𝜆𝜉1

𝑡2 + 𝐶𝜆𝜉2
𝑡 − 𝐶𝜆𝜉3

 (5.29) 

    To perform attitude control with specified initial and final conditions, final state constraints must 

be imposed as shown in Eq. (5.30). 

 𝛷[𝝃(𝑡𝑓), 𝑡𝑓] = 𝟎 (5.30) 

The co-state variables at the final time are also defined in Eq. (5.31) using an undetermined 

multiplier vector, 𝝂. 

 𝝀𝑻(𝑡𝑓) = [𝝂𝑻 𝜕𝜱

𝜕𝝃
]

𝒕=𝒕𝒇

 (5.31) 

Using Eqs. (5.30) and (5.31), the constants of integration in Eqs. (5.28) and (5.29) can be written in 

terms of 𝜈1, 𝜈2 and 𝜈3. 

 

𝜆𝜉1
(𝑡𝑓) = 𝐶𝜆𝜉1

= 𝜈1

𝜆𝜉2
(𝑡𝑓) = −𝐶𝜆𝜉1

𝑡𝑓 + 𝐶𝜆𝜉2
= 𝜈2

𝜆𝜉3
(𝑡𝑓) =

1

2
𝐶𝜆𝜉1

𝑡𝑓
2 − 𝐶𝜆𝜉2

𝑡𝑓 + 𝐶𝜆𝜉3
= 𝜈3

 (5.32) 
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Substituting Eq. (5.32) into the first three lines in Eq. (5.28), the equations can be solved as 

simultaneous equations in terms of the undetermined multipliers.  

 

𝜈1 = (720𝜉1(𝑡0) − 720𝜉1(𝑡𝑓) + 360𝜉2(𝑡0)𝑡𝑓 + 360𝜉2(𝑡𝑓)𝑡𝑓

           +60𝜉3(𝑡0)𝑡𝑓
2 − 60𝜉3(𝑡𝑓)𝑡𝑓

2)/𝑡𝑓
5

𝜈2 = (−360𝜉1(𝑡0) + 360𝜉1(𝑡𝑓) − 168𝜉2(𝑡0)𝑡𝑓 − 192𝜉2(𝑡𝑓)𝑡𝑓

           −24𝜉3(𝑡0)𝑡𝑓
2 + 36𝜉3(𝑡𝑓)𝑡𝑓

2)/𝑡𝑓
4

𝜈3 = (60𝜉1(𝑡0) − 60𝜉1(𝑡𝑓) + 24𝜉2(𝑡0)𝑡𝑓 + 36𝜉2(𝑡𝑓)𝑡𝑓

           +3𝜉3(𝑡0)𝑡𝑓
2 − 9𝜉3(𝑡𝑓)𝑡𝑓

2)/𝑡𝑓
3

 (5.33) 

Consequently, the undetermined multipliers are expressed in terms of initial and final conditions of 

the state variables and the final time, as shown in Eq. (5.33). Thus the constants of integration can be 

determined by substituting the solutions into Eq. (5.34), which is a rearranged form of Eq. (5.32). 

 

𝐶𝜆𝜉1
= 𝜈1

𝐶𝜆𝜉2
= 𝐶𝜆𝜉1

𝑡𝑓 + 𝜈2

𝐶𝜆𝜉3
= −

1

2
𝐶𝜆𝜉1

𝑡𝑓
2 + 𝐶𝜆𝜉2

𝑡𝑓 + 𝜈3

 (5.34) 

The time histories of the state variables and the optimal control input in Eqs. (5.28) and (5.29) can be, 

therefore, determined. If initial and final conditions and a control time are given, the undetermined 

multipliers in Eq. (5.33) are determined, and they can be used to calculate the constants of 

integration in Eq. (5.34). Finally the constants of integration are substituted into Eqs. (5.28) and 

(5.29) to determine the time histories of the state variables and the optimal control input. 

    The significance of this analytical solution is that the optimal control problem of attitude control 

manoeuvres is solved completely and analytically including the boundary conditions at initial and 

final time. As mentioned above, the optimal spin rate control law can be determined immediately if 

initial and final conditions and a control time are given. Since there are only three constants of 

integration in the first three lines in Eq. (5.28), the time histories of the state variables can be 

determined uniquely. 

 

5.4 Example Attitude Control Manoeuvres 

Example attitude control manoeuvres are performed numerically in order to demonstrate the 

analytical solution. 
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Table 5.1 Example Attitude Control Manoeuvres. 

 Initial attitude 

(𝜙, 𝜓) [deg] 
Final attitude 

(𝜙, 𝜓) [deg] 
Initial Spin 

Rate [rpm] 

Final Spin 

Rate [rpm] 

Time [day] 

Case 1 (10, 30) (30, 5) 1 1 2.08 

Case 2 (15, 20) (5, -30) 1 1 18.40 

Case 3 (-10, -10) (-25, -5) 1 1 21.45 

Case 4 (-15, 5) (-5, 5) 1 1 15.25 

Case 5 (-10, -40) (-5, 30) 1 1 57.30 

 

The example attitude control manoeuvres examined are summarised in Table 5.1. Attitude at initial 

and final time is given arbitrarily. The initial and final spin rate is defined to be 1 rpm, for instance. 

The time taken for the attitude control is varied in a certain range, and the time that gives a solution 

with the minimum spin rate change is selected and written in Table 5.1. These boundary conditions 

and control time are substituted into the equations in the previous section to determine the control 

history. 

 

 

Fig. 5.1 Attitude History (Case 1, 2, 3, 4 and 5). 

 

    The attitude histories in the five control cases are plotted in Fig. 5.1. In general, it is not 

straightforward to determine the optimal spin rate control law that satisfies certain boundary 
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conditions; however, the unique time histories of the state variables and control input can be 

determined easily with the analytical solution if the boundary conditions are given.  
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Fig. 5.2 Attitude History (Case 2). 

 

 

Fig. 5.3 Spin Rate History (Case 2). 
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    Figures 5.2 and 5.3 show the attitude and spin rate histories in Case 2, for example, respectively. 

The red line in Fig. 5.2 shows the attitude history in a case where the spin rate is not controlled and 

remained at 1 rpm. It is simply a circular motion around an equilibrium direction, and the final 

attitude is not achieved. The blue line, on the other hand, shows the attitude history with appropriate 

spin rate control. The spin rate is controlled as shown in Fig. 5.3. As can be seen, the initial and final 

conditions of the attitude and spin rate are satisfied in Figs. 5.2 and 5.3. 

    In the cases summarised in Table 5.1, the attitude is always drifted even at the initial and final 

attitude due to the effect of solar radiation pressure. The attitude motion of a spinning solar sail is 

never fixed in the Sun-pointing coordinate system unless it is pointing exactly in the equilibrium 

direction. Now equilibrium direction-to-equilibrium direction attitude control is investigated. 

 

Table 5.2 Example Equilibrium Direction-to-Equilibrium Direction 

Attitude Control Manoeuvres. 

 Initial attitude 

(𝜙, 𝜓) [deg] 
Final attitude 

(𝜙, 𝜓) [deg] 
Initial Spin 

Rate [rpm] 

Final Spin 

Rate [rpm] 

Time [day] 

Case 6 (-40, 0) (-10, 0) 5.98 1.50 120.80 

Case 7 (-5, 0) (-30, 0) 0.75 4.49 77.40 

 

Example equilibrium direction-to-equilibrium direction attitude control manoeuvres examined are 

summarised in Table 5.2. The initial and final spin rate is determined with the following equation 

from the initial and final attitude, respectively. 

 𝛺 =
𝑝𝐼𝑡

𝜔𝑠𝐼𝑠
𝜙𝑒 (5.36) 

Eq. (5.36) shows the spin rate required to be pointing exactly in the equilibrium direction of 

(−𝜙𝑒, 0). Numerical simulation results are shown in the following figures. 
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Fig. 5.4 Attitude History (Case 6 and 7). 

 

 

Fig. 5.5 Spin Rate History (Case 6). 
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Fig. 5.6 Spin Rate History (Case 7). 

 

    Figure 5.4 shows the attitude histories of Case 6 and 7. The spin rate histories in the two cases are 

plotted in Figs. 5.5 and 5.6. As opposed to Case 1 to 5, the attitude drift motion is stopped at the 

initial and final attitude because the initial and final conditions of the spin rate are satisfied. 

    The equilibrium direction-to-equilibrium direction attitude control manoeuvres can only be 

performed by controlling the spin rate. It is possible to control the attitude of a spinning solar sail to 

an objective equilibrium direction also by generating a torque in a perpendicular direction to the 

spin-axis direction; however, the attitude motion does not stop at the objective equilibrium direction 

because the attitude continues to be drifted unless the angular momentum is balanced with the solar 

radiation pressure. 

    Moreover, an important point in this chapter is that an analytical solution of the equilibrium 

direction-to-equilibrium direction attitude control manoeuvres is determined and the manoeuvres can 

be realised with optimal yet simple spin rate control. The most conventional method to perform an 

equilibrium direction-to-equilibrium direction attitude control manoeuvre is to control the spin rate 

instantaneously from initial to final values that are set to track initial and final equilibrium directions 

respectively using chemical thrusters. If such spin rate control is performed, the spin-axis direction 

of a spacecraft starts rotating around the objective equilibrium direction, and the precession must be 

damped actively in order to point in the objective equilibrium direction eventually. The spin-axis 

direction continues to be drifted until the active damping is successfully performed. Hence the spin 

rate control law derived analytically and rigorously in this chapter is superior to the conventional 

control method. It is demonstrated that a control manoeuvre that is achieved with the sequence of 

spin rate control and precession damping in the conventional method can be performed with simple 

spin rate control in Figs. 5.5 and 5.6, for instance. 
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    The significance of this chapter is that the effectiveness of the exact linearisation to solve a two-

point boundary value problem is demonstrated. An optimal control problem of an originally bilinear 

system in Eq. (5.1) is solved analytically and rigorously by using the exact linearisation. In the next 

chapter, the exact linearisation is applied to orbit control of a spinning solar sail. 
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Chapter 6 

 

Circular Orbit-to-Circular Orbit Transfer 

Optimisation 

 

Since the work in this chapter is to be published as a peer-reviewed paper, it is deleted in this 

abridged version of thesis. 
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Chapter 7 

 

Conclusions 

 

In this thesis, the attitude and orbit control of a spinning solar sail by spin rate control is proposed. 

Since the attitude drift motion can be controlled by the spin rate, the attitude and orbital motions can 

be controlled indirectly by the spin rate through the attitude drift motion. 

    Firstly, it is shown that the acceleration and deceleration manoeuvres can be performed by the 

bang-bang control of the spin rate in Chapter 3. The simple spin rate control scheme can be used for 

orbit control of a spinning solar sail. 

    Secondly, in Chapter 4, the optimal spin rate control laws for orbital inclination maximisation, 

orbital eccentricity maximisation, aphelion maximisation and perihelion minimisation are 

determined. It is demonstrated that such control can be performed by the bang-bang control of the 

spin rate according to appropriate switching functions. With the results in Chapter 3, it is shown that 

the simple bang-bang control of the spin rate can perform several manoeuvres and generate optimal 

trajectories. 

    Thirdly, the nonlinear equations of the attitude drift motion are linearised using the exact 

linearisation in Chapter 5. The exact linearisation enables it to formulate an optimal control problem 

of attitude control manoeuvres that is analytically solvable, and the effectiveness of the exact 

lineatisation is demonstrated. In this Chapter, the equilibrium direction-to-equilibrium direction 

manoeuvres are also shown as examples. 

    Finally, a circular orbit-to-circular orbit transfer is optimised in Chapter 6. The attitude and orbital 

motions are dealt with simultaneously in the analytical derivation. This is enabled by the 

linearisation of the equations of motion using the exact linearisation. Globally optimal trajectories 

are also determined numerically, and it is shown that a spinning solar sail can be transferred to a 

circular orbit with a radius of 1.4 AU from 1 AU with the modest control of the spin rate. The 

numerical optimisation also shows that the final orbit radius can be maximised up to approximately 

1.5 AU in the maximum-radius orbit transfer problem. 

    The work in this thesis can be divided into two major parts. In the first part, it is shown that the 

bang-bang control of the spin rate, which is optimal yet simple, can be applied to several orbit 
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control manoeuvres. This is useful in real-life operations because the control scheme is as 

straightforward as to switch maximum and minimum spin rate over to one after the other according 

to an appropriate switching function. In the second part, the exact linearisation is used to solve two-

point boundary value problems. It is shown analytically and numerically that attitude and orbit 

control with initial and final boundary conditions to be satisfied can be realised only by controlling 

the spin rate. 

    The significance of this research is that a pure under-actuated system is investigated. The six 

degrees of freedom of the attitude and orbital motions are controlled by single control input, the spin 

rate. In other words, the attitude and orbit of a spinning solar sail is controlled by a minimum control 

degree of freedom. It provides ultimate redundancy and simplicity for a spinning solar sail because it 

enables the guidance and control of the spacecraft provided that only the spin rate is controllable. 

The control strategy proposed in this thesis, therefore, greatly contributes to the guidance and control 

of future spinning solar sails. 
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Appendix A 

 

Parameters of IKAROS 

 

The parameters of IKAROS are summarised in the table below. 

 

Table A.1 Parameters of IKAROS 

Mass 307 [kg] 

Sail Area 184 [m2] 

Moment of Inertia around Spin Axis 404 [kgm2] 

Moment of Inertia around Perpendicular Axis to 

Spin Axis 

780 [kgm2] 

Solar Radiation Pressure Parameter 3.68×10-7 [s-2] 

Specular Reflectivity 0.719 

Diffuse Reflectivity 0.117 

Absorptivity 0.162 

 

The parameters of IKAROS are used for the calculation in this thesis. Only exceptions are the values 

of mass and sail area that are not used for orbital motion calculation. This is because the sail area-to-

mass ratio of IKAROS is too low for orbit control using solar radiation pressure. 
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Appendix B 

 

Orbital Elements Histories 

 

Since the work in this appendix is to be published as a peer-reviewed paper, it is deleted in this 

abridged version of thesis. 
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