
博士論文

Automatic Verification and Testing for Software

 with Multiple Versions

-- Improving Software Quality in the Era of Multiple Versions --

(複数バ ジョンのあるソフト アの自動検証 検査

-- 複数バ ジョン管理時代のソフト アの品質向上 --)

馬 雷

Lei Ma

Automatic Verification and Testing for Software with

Multiple Versions

-Improving Software Quality in the Era of Multiple Versions-

Lei Ma

A PHD Thesis

in

Electrical Engineering and Information System

Submitted to the Graduate School of Engineering

the University of Tokyo

in

Partial Fulfillment of the Requirements for the

Degree of Doctor of Philosophy

June, 2014

Hiroyuki Sato

Supervisor of Thesis

ABSTRACT

The verification and testing of software systems to improve the software quality

are two major significant activities in the software development cycle. However,

while their significance is widely known, it is also known that occupy large part of

cost in software development and maintenance. According to Lehman’s software

evolution laws, a software system has to be continuously changed to increase its

functionalities, to fix bugs, to and adapt for new requirements over its lifecycle.

Such changes are released as a series of updated software versions that share many

commonalities among multiple versions. As the widely adoption of revision control

system, Software Product Lines, and clone-and-own techniques, more and more

similar version variants are produced. This brings new challenges for conventional

verification and testing techniques, which are only able to analyze one single version.

Separate verification and testing for each individual version would cause many

redundancies in analyzing the same code. In other words, the results from separate

analysis processes are also difficult to be shared among multiple versions. Sharing

common knowledge is important to improve the overall analysis results and achieve

better quality assurance guarantee such as code coverage. Therefore, there is a

strong demand to create and design novel verification and testing techniques for

multiple versions, improving the overall quality guarantee for all versions efficiently.

However, the simultaneous analysis of multiple versions is inherently challenging,

especially for managed languages like Java and C#, and platforms designed to

handle a single version.

In this thesis, we first propose a general concept and framework project central-

ization to manage multiple versions. Project centralization shares commonalities

of multiple versions as much as possible while preserving the behaviors (semantics)

of each version. We formalize the version conflict problem and propose a graph

representation for all versions of products under analysis. Based on this repre-

sentation, we transform the project centralization problem into a graph coloring

problem where existing solutions can be applied to calculate both the optimal and

near optimal solutions. We implement different existing techniques and compare

their effectiveness for project centralization. We can conclude that our proposed

heuristic algorithm is both efficient and effective to calculate the near optimal solu-

tion. Based on this framework, we perform consecutive of studies, implement many

ii

software verification and testing tool chains, and show that the our tools are useful

for improving software quality and correctness of general multiple version software.

Distributed systems are typical complicated software examples that are operated

with multiple versions. By extending project centralization, we further propose

process centralization techniques for such challenging software quality insurance

fields, where large combinational states and interactive network communications

between peers, and concurrency are involved. With combined project centralization

and process centralization approaches, we have successfully applied our tools to

verify some practical distributed applications with multiple versions, demonstrating

the effectiveness of our technique in revealing bugs that are unable to be detected

by using existing techniques.

In additional to verification, testing is also a major approach for detecting soft-

ware defect and improving software quality. Among various testing techniques,

automatic testing techniques like random testing are proved to be useful in finding

bugs and improving software quality. Conventional techniques allow to test only

one single product. We further propose novel program analysis enhanced testing

approaches and centralization based approaches for multiple versions.

We propose fully automatic enhanced automatic testing techniques by adopting

domain knowledge of software under testing. Our technique automatically performs

program analysis on the software under test. Combined with runtime feedback dur-

ing testing, our technique uses both static and dynamic analysis to guide testing.

Our design and implementation outperform the current most advanced fully au-

tomatic random testing tool Randoop after many strict and thorough evaluations

on more than 30 widely used benchmarks and by researchers on their developed

collection products inside Software Competence Center Hagenberg (SCCH).

To perform automatic testing for multiple versions, we further refine our project

centralization techniques and design novel testing strategies for multiple versions.

Our techniques on real-world benchmarks demonstrate that the reuse of analysis

results can improve the overall performance.

In summary, this thesis focuses on the issues to improve software quality, specif-

ically on proposing novel techniques for the management, verification and testing

multiple versions (with version conflicts) in the era of many coexisted version vari-

ants. We summarize the main achievements of our proposed concepts, techniques

and implementations from our consecutive studies on the management, verification

iii

and testing to improve software quality for multiple versions. Our work success-

fully makes steps further and solves important problems for multiple version related

analysis: (1) manage multiple version variants, sharing common code while preserve

the behavior of each version. (2) The verification of distributed application, with

multiple version coexisted and running on multiple peers. (3) Improving automatic

testing techniques and design novel testing approach for multiple versions, although

it may just represent a small piece of the whole iceberg: the verification and testing

research for multiple versions, where many other problems are still needed to be

solved. As more and more problems are caused by the multiple versions recently,

more novel fundamental and practical techniques and solutions are needed from

research community, which is expected to be one of the most important issues and

research topics in software quality insurance in the near future.

iv

Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Version Conflict Issues and Project Centralization 4

1.3 Distributed System and the Challenge in its Verification 8

1.4 Software Testing for Multiple Version Variants 11

1.4.1 Variants of Random Testing 12

1.4.2 Use of Domain Knowledge 13

1.4.3 Symbolic Execution . 14

1.4.4 Automatic Testing Techniques for Multiple Versions 14

1.5 Thesis Outline . 15

1.6 Research Contributions . 16

2 Project Centralization 18

2.1 Concepts in Project Centralization 18

2.1.1 A Worklist Based Project Centralization Algorithm 21

2.2 Graph Coloring Based Approach . 24

2.2.1 Constraint Graph, Constraint Structure 25

2.2.2 D-graph Representation of a Project Set 27

2.3 Algorithm and Optimal Solution . 32

2.4 Experiments on Network Libraries 35

2.5 Case Study in Managing Version Variants 36

3 Process Centralization and Verifying Distributed Applications 40

3.1 Process Centralization Issues . 41

3.2 Implementation . 42

3.3 Comparisons of Runtime Performance 44

v

3.4 Centralization with JPF . 46

4 Program Analysis Enhanced Automatic Testing and Testing Mul-

tiple Versions 48

4.1 Program analysis enhanced random testing 49

4.1.1 Introduction and Motivation 49

4.1.2 Weakness Found in Randoop 51

4.1.3 Our Enhancements . 55

4.1.4 Experiments . 60

4.2 Testing Multiple Versions . 71

4.2.1 Background and Introduction 71

4.2.2 Recent Related Works . 72

4.2.3 Our Approach . 74

4.2.4 Case Study . 77

4.2.5 Results . 78

4.2.6 Discussion . 80

4.2.7 Threats to Validity . 80

4.2.8 Summary . 81

5 Conclusion and Future Direction 82

5.1 Conclusion . 82

5.2 Future Directions . 84

vi

Chapter 1

Introduction

This chapter gives an overview and introduction of this thesis. We present the basic

concepts and background that our research work is based on. Section 1.1 introduces

the issues on multiple versions and the motivation of our work. Section 1.2 gives

a general introduction to multiple versions and version conflict issues. We present

related existing techniques and compare them to our proposed solutions in the later

of this thesis. Section 1.3 introduces the challenges in the analysis and verification

of distributed systems, involving multiple versions, multiple components, multiple

processes, network communications and concurrencies. Section 1.4 introduces auto-

matic software testing and the limitation of existing techniques. It also discusses our

enhanced techniques and novel solutions for testing multiple versions, where test-

ing results can be shared among multiple versions to improve overall performance.

Section 1.5 presents the outline of this thesis. Finally, section 1.6 summarizes the

main contributions of this thesis.

1.1 Background and Motivation

Nowadays, software becomes one of the most important medium in information

and communication technology to improve the labor force. It is widely used to for

many important tasks in industry to manage data, control vehicle engines, schedule

1

network communication, manipulate medical equipment. It affects almost every

aspect of our society and our daily life. Software defects and failures, however, can

cause severe tragedy and loss. Therefore, ensuring software quality becomes very

important.

Formal verification and testing are two major approaches to detect software

defects and to improve software quality, obeying its specification. They occupy a

large part of the cost in software development and maintenance. However, exist-

ing verification and testing techniques support only to analyze a single version of

a product. As the recent widely adoption of revision control system and Software

Product Lines (SPLs), and clone-and-own (widely adopted in software industry)

techniques, more and more similar version variants of a software project are cre-

ated. This causes new challenges in the verification and analysis of these version

variants which share many common codes with differences for each version. Separate

verifications and analyses for each individual version would cause many redundan-

cies in analyzing the common codes. As the result, we cannot share the analysis

results among different versions, failing to improve the overall performance.

In practice, the multiple version variants also cause version conflicts, bringing

program failures. Such conflicts usually happen in a component based system such

as distributed systems and cloud systems, where each component is developed and

maintained separately. Changes during the life-cycle of components require the co-

existence of multiple versions. Many languages and platforms designed to support

only one version also create challenges in representing and executing multiple ver-

sions. Managed languages like Java and C# only support loading each version of a

class once by a class loader. This further creates challenges in analyzing multiple

versions. If each version variant is separately analyzed, it causes redundancies such

as storage and runtime memory. The analysis is also incomplete without analyzing

possible interactions between different versions. For example, the whole semantic

space of a distributed application contains the interaction and communication be-

tween different peers. They are inherently not supported by existing techniques.

It is a challenge to analyze the software systems that are allow the coexistence of

multiple versions.

In this thesis, we propose a general technique to manage multiple versions, that

shares common codes and resolves the version conflict while preserving the behavior

of each version. Based on this general approach, we further perform studies and pro-

2

pose novel verification and testing techniques to solve many real-world problems of

many softwares that have multiple version issues, such as the version conflict (allow-

ing the coexistence of multiple versions) and multiple version analysis duplications

(reduce redundancies in analyzing the common code).

To solve these challenging issues of multiple versions, we first propose and imple-

ment the framework project centralization. It represents multiple version variants

as a single product, resolving the version conflict, sharing their commonality as

much as possible while preserving the behavior and version space of each version.

We formalize the version conflict problem and proposes a graph based approach

to calculate the optimal/near-optimal solution. We implement this approach and

demonstrate its effectiveness by evaluating our method on many practical applica-

tions. We further demonstrate its effectiveness in software verification and testing

software with multiple versions.

The project centralization builds a foundation for our further studies on propos-

ing the techniques and tools for the verification of distributed applications with the

coexisting of multiple versions (one of current most challenging issues in software

verification) and advanced automatic testing for multiple version variants by reusing

testing results.

The distributed applications also involve multiple processes, creating the fur-

ther issue to preserve the semantics of each process in original distributed applica-

tions. We propose process centralization techniques that transform multiple pro-

cesses into a single centralized process. The combined project centralization and

process centralization allow existing verification tools to work on distributed appli-

cations, where multiple versions and processes are involved.

Due to state explosion issues of existing verification techniques (model checking),

they are usually used to solve medium size application with concurrencies such as

distribution applications, where traditional testing techniques are difficult to cover

the overlapping semantic spaces caused by concurrency. For large and practical

industrial software applications, testing is still one of the most important techniques.

Manually producing these test cases is laborious with many defect difficult to be

detected. Automatic testing techniques like random testing are proved to be useful

in finding bugs and improve software quality. However, exiting automatic techniques

suffer from low code coverage, which are unable to uncover many program paths,

leaving many defects never be covered.

3

We further propose our program analysis enhanced automatic testing techniques.

Our technique is fully automatic. It extracts the domain knowledge (both at static

phase and run-time phase) from the software under test to guide run-time test case

generation. Our tools are carefully evaluated on more than 30 practical widely used

software applications and inside SCCH, demonstrating that it represents the state

of the art in automatic testing (randomized) techniques. Based on this solution,

we propose novel testing techniques for multiple versions to share common testing

results of each version and improve the overall testing performance. Although many

automatic testing solution for a single versions exist, to the best of our knowledge,

no previous solution can automatic testing multiple products (more than 3) to share

their testing results and improve overall performance (code coverage). We are the

first to propose automatic testing and sharing results from multiple versions to

improve overall improvements.

In summary, this thesis intends to propose a general technique and framework for

managing multiple versions. Based on this, we further propose novel verification and

testing techniques, both improving existing work and proposing new methods for the

verification and testing software multiple versions that are not handled previously.

Our studies and proposed techniques and tools give the first set of solutions to the

challenging issues of revealing software defects and improving software quality in

the era of multiple versions.

In the rest of this section, we first summarize our major research contributions.

Then, we introduce some basic concepts, related work, and our concerns on each

issues for multiple versions. While our implementation supports programs written

in Java, the concepts and techniques presented in this thesis generalize to other

managed languages and platforms.

1.2 Version Conflict Issues and Project Centraliza-

tion

A software system continuously changes to increase its functionalities, to fix bugs,

and to adapt to new requirements over its life cycle [52]. Such changes are released

as a sequence of updated revisions. Some related product variants are also created

by coping and modifying existing ones (the clone-and-own approach), which is a

4

common practice for developing new software products [74]. As many similar prod-

uct variants are developed, effective management and analysis of these products

become very important. Separately managing each of these products wastes stor-

age by code duplication and causes redundancies for analysis and verification. For

example, if multiple software products have an identical function, independently

executing the same test case for such a function for each product causes redundant

executions [75], because it shows the same implementation and routine behavior in

each occurrence. On the other hand, version conflict occurs when multiple versions

have the functions of the same name, but of different implementations and of run-

time behaviors. This is typically observed when multiple variations of a software

interact interact like component based application and distributed system. The

analysis and verification of these applications also cause a challenge in handling

these multiple versions for analysis tools and execution platforms like Java and C#,

which are designed to handle only single version.

Hnetynka et al. [36] originally discussed the component version conflict problem

in Java component-based systems. They adopt the renaming approach by aug-

menting the class name of each component with a version identifier in dynamic

class loading. However, such a trivial renaming solution is not scalable as it can

not share common codes. Loading many classes into a VM will decrease its run-

time performance. Another approach adopts a modified non-standard Java VM

[22,37,84] that allows loading multiple versions of the same named classes multiple

times. However, it does not share common codes. A non-standard VM does not

give correctness guarantee, either.

To share common codes at runtime, Paal et al. [65] have proposed a customiz-

able hierarchical class loader approach to separate the version space so that two

common code of version variants that share the same system class loader share all

the code loaded by the system class loader. However, this approach requires manu-

ally configuring the hierarchy of class loaders. It also lacks flexibility in controlling

the class dependency and loading orders. Such a class loader approach does not

separate the Java core library space either [55].

Deduplication is a general approach to address redundancy in memory contents

at run-time [96]. Deduplication shares identical memory blocks in virtualized execu-

tion environments. This approach is independent of target languages and platforms

and has recently been extended to sharing contents of similar (but not identical)

5

memory blocks as well [33]. However, it is less specific and less efficient than the

project centralization based approach, and is not amenable to program analysis as

it is agnostic of the structure of the underlying data.

Compared with these strategies, other strategies have also been proposed to

manage multiple variants of a software system in the past decades. Some researchers

advocate refactoring them into Software Product Lines (SPL) [27,62,80], and more

researchers manage them in a revision control system [2,3,63], where software merg-

ing techniques are often used. However, none of such approaches preserve behavior

of each version variant which must be satisfied for verification and analysis so that

the the solution is sound. A difficulty of refactoring multiple similar product variants

into an SPL is to extract the commonality and variability that are usually repre-

sented as a feature model. However, this needs domain analysis to identify features

and establish the connections between a feature and its corresponding code, which

proves to be difficult to automate and therefore lacks accuracy. Although the family

based products generation and representation of an SPL can ease some static anal-

ysis, the dynamic verification and testing still have to be applied to each version

variant separately. On the other hand, as a main challenge of software management

using a revision control system, we must resolve version conflicts when merging ex-

isting products. A version control system usually adopts a text-based comparison

to track changes so that different types of documents can be handled. The un-

awareness of underlying language structure hinders further analysis for the multiple

product variants by existing tools. Although some language structure-aware merg-

ing strategies have been developed to handle different languages, these techniques

do not guarantee to preserve the behavior of each product [2,3,63]. Therefore, such

as approach cannot be used for analyzing multiple product variants either.

We propose a project centralization approach by transforming multiple products

into a single one. It manages multiple versions to avoid code redundancies while

preserving the behavior for each of them. Our technique shares common codes

whenever possible while preserving the behavior of each product and resolving their

version conflict for analysis. Our goal is to build a general analysis and verification

framework that can handle multiple versions.

Figure. 1.1 gives an example of a project centralization, which we use in the

rest of this thesis. Each project consists of a set of classes and represent a version

variant of a product. We draw a directed edge from class cl1 to cl2 if cl2 depends

6

P
ro

je
c
t 1

P
ro

je
c
t 2

P
ro

je
c
t 3

(a) Before Centralization (b) After Centralization

Project1

Project3

Figure 1.1: Project Centralization Example.

on cl1, which we use to represents the class dependency. For example, we draw

a directed edge from class A to C in Project1 because class C references A. In

Fig. 1.1(a), Project1 and Project2 can share most of their classes except C, where

we can see that different versions are used. Compared to Project2, Project3 has a

different version of class Main and a new class Unique.

Project centralization transforms multiple projects into a single one, in which

each project preserves its version space while sharing common code whenever pos-

sible. Fig. 1.1(b) shows the centralization result for projects in Fig. 1.1(a). All

projects share class A. Project1 renames its classes to P1.C, P1.B, and P1.Main

7

to separate the version space. Similarly, Project2 and Project3 share classes C and

B, and Project2 renames its class Main to P2.Main. Classes Main and Unique in

Project3 are left unchanged. The centralized result preserves the behavior of each

project.

A trivial solution would entail renaming all classes and duplicating all code for

each project. However, code duplication consumes more storage to represent the

code repository and large runtime memory by loading more classes. This causes this

naive approach difficult to scale up to larger applications. In other words, this ap-

proach cannot reduce the redundancies in program analysis and verification either.

For example, when analyzing a distributed system containing 20 peers, duplicating

all projects from these peers is not necessary as they can reuse some shared classes

with proper transformation, saving both storage and runtime memory. Therefore,

it is worth of thought to share the common class codes.

Our goal is to resolve the class version conflict where necessary while sharing

equivalent classes among projects. Figure. 1.1.(b) shows a project centralization

result without duplicating the code that can be shared. The trivial solution produces

13 classes. However, it is only necessary to keep one version of class A after project

centralization. Similarly, we can keep two versions of class B and C . One version is

shared by Project2 and Project3, and the other version is used for Project1. Actually,

Figure. 1.1.(b) shows an optimal solution, where only 9 classes are needed. Detailed

formalization and illustration of project centralization are discussed in Section 2.

1.3 Distributed System and the Challenge in its

Verification

The term distributed application contains three aspects [10]: firstly, it means an

application whose functionalities are split into a set of cooperating, interacting

functional units. Each unit runs as a process that has its internal state (data) and

operations to manipulate the state. Secondly, these functional units can be assigned

to different machines. A single machine, however, may host several functional units

at the same time. Finally, the functional units communicate with each other through

network.

On modern operating systems, distributed applications are implemented as a

8

system using multiple processes. They usually run on different hosts and commu-

nicate over a network. Nowadays, the distributed and cloud software systems play

a very important role in both industry and our daily life. Most non-trivial software

applications are implemented as distributed, networked applications. Therefore,

developing techniques and tools to improve the software quality of distributed sys-

tems are very important. However, the verification and analysis of the distributed

and cloud system are even more challenging. Multiple processes run concurrently

and use asynchronous communication over network. Activities of processes can be

arbitrarily interleaved and no two executions of the same application need to be

identical. Such nondeterminism from concurrency makes the run-time behavior of

distributed application difficult to understand, predict, debug, and verify. This

problem becomes more exacerbated if multiple threads inside a process are involved

because they create concurrency inside a process as well as between processes.

Although many existing tools like Java PathFinder (JPF) [94], Java Interactive

Profiler (JIP) [87] work on single-process applications, they do not support multi-

process applications. If powerful analysis tools that support a single process were

available to multiple processes, development and analysis of distributed systems

would become easier.

To ensure the software quality of distributed application and enable existing

tools to analyze distributed application, we propose a program transformation tech-

nique process centralization to separate the process runtime space of each component

in distributed application, while preserving its semantics. After such transforma-

tions, existing tools like JPF can be directly applied to verify and analyze the whole

distributed system automatically.

Stoller [82] initially proposes to the concept centralization for verifying dis-

tributed Java applications in Java PathFinder (JPF). Artho et al. [5] improve the

accuracy of centralization and implement an automatic tool for verification by JPF.

However, their solution cannot support distributed applications with multiple ver-

sions. Their implementation uses the outdated SERP bytecode library [78], which

makes it unable to work on current Java applications. Their solution also targets

JPF and cannot support other analysis tools.

Other work on verifying distributed applications in JPF includes net-iocache [6]

and modeling the Java class loader [79]. Both solutions are specific to JPF. Com-

pared with the centralization approach, net-iocache analyzes a single peer of a

9

Figure 1.2: Process Centralization Example

distributed application, which runs faster by sacrificing the completeness of veri-

fying all execution traces. Specifically, we can find bugs that net-iocache cannot

detect, but that centralization can. As a new feature of JPF v7, modeling multiple

processes by using separate class loaders is proposed [79]. It uses class loaders to

separate process name spaces by a roundtrip collaboration between JPF and host

VM, which is useful to enhance net-iocache. However, the cost of this roundtrip

switch between JPF and host VM is expensive, which makes such approaches dif-

ficult to scale up for larger applications. Additional works on startup, shutdown

behavior preservation, and modeling network library are also necessary to verify

distributed applications.

Compared with previous work, we intend to build an automatic centralization

tool for general purpose analysis of distributed applications. Figuare. 1.2 shows

the process centralization of a distributed application containing three components:

one server and two clients. Before centralization, each component runs as a process.

Inside the server process, three threads run concurrently. Thread main creates two

Worker threads to separately serve each connected client. After centralization,

all processes are wrapped as threads and run as one process. Centralization was

initially proposed to exhaustively verify distributed applications. However, a large

number of combinational states limit possible analysis to small applications. We

propose using centralization for a general (not necessarily exhaustive) analysis of

distributed applications.

Centralization enables many distributed applications to be available to existing

10

tools and reduces the difficulty for analyzing them. For example, in a single-process

debugger, a distributed application cannot be paused in a single step; when cen-

tralized this becomes possible. Other dynamic verification tools such as Java Race

Detector [53] and JCarder [45] detect data races and deadlock bugs for single-process

applications. However, they do not support multi-process applications. Meanwhile,

profiling tools [40,87] are useful for gathering the runtime performance of distributed

applications. They only provide methods to separately analyze each component.

This brings additional overhead by creating and destroying multiple VMs and lacks

scalability. Because a centralized application runs on one single VM, these profiling

tools can collect all the related profiles and scale to larger distributed applications.

Finally, visualization tools [47,85] are useful for understanding the runtime behavior

of applications. They extract call graphs of distributed applications automatically,

which helps to understand how its multiple components interact. Centralization

makes it possible to visualize distributed systems also in this case. We will discuss

the process centralization and implementation issues in Seciton 3.

As resolving class conflicts is essential for centralizing larger distributed appli-

cations, we propose our solution and implement it in our tool. We also improve

the process centralization on the transformation issues. Although the large state

space of distributed applications limits software model checkers to small cases, our

centralization approach enables existing dynamic analysis tools to analyze practical

distributed applications.

We will discuss our process centralization solution and implementation issues in

Seciton 3.

1.4 Software Testing for Multiple Version Variants

Software testing has long been recognized as one of the most essential and expensive

activities in the whole software development cycle. According to [1], around 30%

to 90% development efforts are spend on software testing. Especially for complex

software system, many software behaviors must be test and the test input selection

space is very large.

Unit testing is a widely accepted and important measure in software develop-

ment. A unit test consists of a sequence of function calls. Object-oriented functions

called methods operate on an object instance called the receiver instance. Each in-

11

vocation executes a specific path, which depends on the program state. Currently,

most industrial testing code (e.g. at Microsoft, Google) is manually written.

However, Manually crafting test sequences is a labor-intensive task. Random

testing automatically generates test sequences to execute different paths in a method

under test (MUT) [34]. It randomly constructs object instances as the receiver and

input arguments of the MUT. However, we found that existing random techniques

suffer from low code coverage. Reasons are that randomly generated sequences may

not able to set up the receiver in all the required states, or that the required input

arguments for invoking the MUT cannot be generated automatically.

Existing automatic testing techniques suffer low code coverage. To the best of

our knowledge, no techniques support to test multiple versions simultaneously (more

than 2) and study whether sharing testing results from multiple versions can improve

performance. Therefore, our goal is to design novel testing strategy to improve

existing techniques for practical applications and to further extend enhanced testing

techniques for multiple versions.

There exists a large body of work on automated test case generation [11,18,19,

21, 28, 43, 59, 66, 100]. In this section, we discuss work that is closely related to our

approach.

For more related work on automatic test case generation techniques and tools,

we refer readers to representative papers [1,29,61,68], which give a more thorough

introduction.

1.4.1 Variants of Random Testing

The critical step in automatic test case generation for object-oriented programs is

to prepare the input objects with desirable object states. An input object can be

constructed by either direct construction [11,59] or method sequence construction to

return the desired types [66,88,101]. Direct construction approaches like Korat [11]

and TestEra [59] construct objects by directly assigning fields. However, these

approaches require specifications defined in languages like JML or Alloy, so they

are not fully automated.

Most existing random techniques create the required input objects by method

sequence construction [21,66,67,88,100]. JCrasher [21] creates input objects by us-

ing a parameter graph (similar to our method dependency graph in Section 4.1.3.4)

12

to find method input and return type dependencies. Eclat [67] and Randoop [66]

use feedback from previous tests to generate future tests. These approaches are

closest to ours.

Bounded exhaustive approaches [11, 59, 97] generate method sequences exhaus-

tively up to a given length. However, real-world applications may sometimes require

long sequences, making it difficult to determine a limit.

Adaptive random testing (ART) [16] is another variant of random testing. It

selects test inputs evenly across the input space. ART has been shown to improve

the efficiency of random testing and to reduce the number of tests required to reveal

the first error. ARTOO [19] extends the ideas of ART to object-oriented languages

by defining object distances based on types and their matching fields. However,

ART faces the challenge of high-dimensional input spaces, which limits the usage

of ART to larger software.

Like most related tools, our enhancements conform to the declared access modi-

fiers by not calling private or protected methods. Previous work reveals that directly

testing these methods (by changing non-public modifiers to public) increases code

coverage [42]. However, such tests are difficult to validate. By convention, a pub-

lic method should throw an exception if a precondition is violated.1 Non-public

methods may also use assertions, which normally indicate an internal flaw in the

software, and thus a failed test.2

1.4.2 Use of Domain Knowledge

Existing test cases contain information on valid test sequences. To explore more

valid sequences and generate more diverse object states, MSeqGen [88] mines fre-

quently used sequence patterns from the code base to guide sequence generation.

RecGen [101] performs lightweight analysis on fields accesses by different methods

and favors testing those methods that access the same fields together. Palus [100]

performs dynamic analysis from provided sample test cases to train method invoca-

tion models, and static analysis to identify method relevance based on field accesses.

Both results are used to guide run-time test case generation. OCAT [43] adopts

object-capture and replay techniques, where object states are captured from the

1http://www.oracle.com/technetwork/java/effective-exceptions-092345.html
2http://docs.oracle.com/javase/7/docs/technotes/guides/language/assert.html

13

running sample test cases, and then used as input for further testing. Yet other

work modifies Randoop to generate oracles for regression tests [72].

Evolutionary approaches [7,28,30,90,90] like Evosuite take a test suite and evolve

new test sequences from it, trying to generate new sequences with diverse object

states.

Compared to these techniques, our approach does not depend on existing test

cases written by a human, which are often biased towards certain types of test

sequences [14].

1.4.3 Symbolic Execution

Symbolic execution represents input as symbolic values and executes the program

based on abstract semantics, computing path conditions based on input parame-

ters by leveraging constraint solvers. Tools like Java PathFinder [95] and Symbolic

PathFinder [56] generate test cases this way. Hybrid approaches of random (con-

crete) and symbolic execution, called concolic execution, are implemented by tools

like DART [31], Cute and JCute [76,77], and Pex [89].

Our approach uses a light-weight static analysis instead of symbolic techniques

to approximate path conditions.

1.4.4 Automatic Testing Techniques for Multiple Versions

With the more widely application of revision control system and Software Prod-

uct Lines, more similar product variants would be created. Therefore, our goal

is to develop a testing strategy and tool that can work for multiple product vari-

ants, sharing their testing results and improving the testing performance like cod

coverage.

However, to the best of our knowledge, none of existing testing approaches is

able to test multiple software projects simultaneously. The key issue is to share the

testing results among multiple projects and reduce the testing redundancies. A pre-

vious work [43] has demonstrated the testing result from existing test cases of one

project (through object serialization) can further increase the testing performance

(code coverage) of the same project. This work mentioned the potential challenges

in testing results sharing during version update. However, it does not prove the use-

fulness of a testing result in improving the testing performance of related projects.

14

Another challenge issue is the redundancies in testing multiple projects, where the

redundancies include code redundancies, test case execution redundancies, analysis

redundancies, and so on. Furthermore, deciding the testing priority for the code of

multiple projects under the given resources (time and cost) constraint is difficult

problem.

Although test case augmentation [75, 99] provides a partial solution for gener-

ating new test cases for version update. However, it is still challenging to auto-

matically work for multiple versions and accurately identify which test cases can

be shared, especially for Software Product Lines with too many version variants,

limiting such an approach only to small cases.

Compared to existing works, our goal is to develop an automatic testing frame-

work for multiple versions, sharing testing results to improve overall performance

while reducing the testing redundancies among multiple versions. More details are

presented in Section 4.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Section 2 first discusses and formalizes

the version conflict problem. Then the project centralization based approach are

proposed and formalized. A simple project centralization is first given. More ad-

vanced graph representation is then proposed the corresponding is also given. Based

on this, we discuss the optimal solution and an heuristic algorithm. We evaluate

these proposed algorithms on practical software projects to compare their effective-

ness. In addition, we explore the usefulness of our proposed approach to manage

version variants from software evolution and SPLs. Section 3 discusses the process

centralization issues and challenges. We presents our implementation and applied

it to verify practical distributed systems with multiple versions. The effectiveness

of different project centralization solution based process centralization results are

also compared in their runtime performance. Section 4 first presents our program

analysis enhanced automatic testing techniques and its evaluations. Then it fur-

ther presents the improvement of project centralization and its combined tool chain

with automatic testing techniques for multiple versions. The evaluations on version

variants from both software evolution and Software Product Lines demonstrate its

effectiveness, showing that our techniques can reduce testing redundancies, and also

15

share testing results to improve overall performance. Finally, Section 5 concludes

the thesis and points out future challenges and research directions.

1.6 Research Contributions

The contributions of this thesis are summarized as follows:

• Multiple version management and version conflict resolution:

1. We formalize the version conflict problem and classify the classes of each

version variant into three categories.

2. We propose and formalize our project centralization approach to manage

multiple product version variants and resolve their version conflict.

3. We formalize the solutions that can be achieved in representing mul-

tiple products while preserving their behaviors. We first propose and

implement a worklist based project centralization algorithm. We further

propose and formalize a D-graph representation for all products under

analysis. Based on the formalization, we transform project centraliza-

tion into the graph coloring problem. A corresponding D-graph based

project centralization algorithm (optimal solution and heuristic one) is

also proposed and implemented. Various experiments are conducted to

demonstrate the effectiveness of our approach.

4. We conduct case studies to explore the effectiveness of project centraliza-

tion in managing real world software products during software evolutions

and Software Product Lines (SPL). Experiments on real world projects

are also performed to compare effectiveness of different approaches.

• The analysis and verification of distributed applications with mul-

tiple versions

1. We propose and implement process centralization transformation ap-

proach to separate the runtime space of each process in a distributed

application. We summarize the essential issues to preserve the process

semantics by program transformation.

16

2. We implement an automatic process centralization tool. Furthermore,

we integrate project centralization and process centralization as a tool

chain.

3. We evaluate our tools on real world distributed applications. We apply

Java PathFinder (one of the current representative model checking tools

for software verification) to our centralized applications and successfully

find bugs which cannot be detected by conventional techniques.

4. We thoroughly evaluate and compare the run-time performance of dif-

ferently proposed centralization techniques and the original application

without centralization.

• Enhanced automatic testing and testing multiple versions

1. We propose and implement a combined static and dynamic analysis

guided random test case generation tools.

2. We demonstrate effectiveness and practical values of improving coverage

and bug finding capability on 30 widely used real-world software and

software inside Software Competence Center Hagenberg (SCCH).

3. We report the bugs found and get confirmed from several developer

groups including Apache, Google to demonstrate the usefulness of our

tool in revealing both known and unknown bugs in their products.

4. We further refine the accuracy of project centralization to method level

to share more common methods, which is required for automatic test

case generation for multiple versions.

5. We implement multiple version testing based on project centralization

tool chain, which reduces redundancies in testing common code while

sharing the testing results among multiple version to improve overall

performance.

6. We evaluate the effectiveness of our techniques on many Software Prod-

uct Lines and software evolutions, showing that our technique improves

the overall performance in testing multiple versions and reducing testing

redundancies.

17

Chapter 2

Project Centralization

The concurrent usage of different versions of a software product is common, es-

pecially in a component-based systems, where each component is developed and

managed independently. Analyzing such multiple software version variants causes

version conflict on a single VM, where each class loader is allowed to load one

version of a class. The project centralization resolves possible version conflicts by

separating the version space of each component, while sharing common code among

different systems.

In this section, first formalize version conflict problem and project centralization.

Then, we discuss a simple worklist based algorithm. Furthermore, the D-graph rep-

resentation is proposed and formalized. The corresponding graph based algorithm

is also proposed and discussed. Experiments on real-world version variants compare

the effectiveness of these approaches. Finally, we make case study on 3 large bench-

marks from software evolution and SPLs to demonstrate the usefulness of project

centralization in managing multiple version variants.

2.1 Concepts in Project Centralization

To formally define the version conflict problem, we summarize several important

concepts in project centralization and define the optimal solution in project cen-

18

tralization.

2.1.0.1 Definition of Project Centralization and its optimal solution

A Java class is uniquely identified by its name (including package name) and im-

plementation. For a class cl , we use cl .name and cl .code to denote its class name

and implementation, respectively.

Given two classes cl1 and cl2, cl1 and cl2 are equivalent, denoted by cl1 = cl2,

if they form a Type-1 clone pair [73], where cl1.name is identical to cl2.name, and

cl1.code and cl2.code are also identical except for variations in whitespace, layout

and comments.

Definition 2.1.1. A project consists of a unique identity and a set of classes, in

which each class has a distinct name. Given a project p, we write #p as the number

of classes in p, and denote a class cl in p by p.cl . Two projects p and q are identical,

denoted by p ≡ q, if they hold the same set of classes. We write p ̸≡ q if p and q

are not identical.

A project represents an abstract view of the class repository of a version compo-

nent. Each version is represented by a project. Furthermore, the combination of all

versions can be represented by one centralized project by merging small projects.

Two versions may use code from either the same project or different projects. In

both cases, code repositories of multiple components can be represented as a cen-

tralized project, sharing common code.

We use project to abstract the class repository of a component-based application,

that contains multiple components.

Definition 2.1.2. Let p be a project. We define NAME(p) = {cl .name|cl ∈ p}

as the set that contains all class names in p. For a class name cln ∈ NAME(p),

we define GetClass(p, cln) = p.cl , where p.cl .name = cln, as a function to get

the class named cln in p. Let P be a set of projects. We define NAMES(P) =

∪p∈PNAME(p) as the set containing all the class names in P , and P ↑cln = {p ∈

P |cln ∈ NAME(p)} as the set of all projects that contain the class named cln.

Definition 2.1.3. Process centralization is the transformation of multiple processes

into a single one with equivalent runtime behavior.

19

Previous work [5] assumes all the processes run under the same project, where

each class has only one version. To centralize processes containing classes with

multiple versions, we propose to perform project centralization. Before defining

project centralization, we first define project renaming substitution and project

equivalence.

Definition 2.1.4. Let p be a project, and cln1 and cln2 be two class names. Project

renaming substitution p[cln1/cln2] is defined as a project in which p substitutes its

class name cln1 for cln2. Substitution includes class names and references to them.

A renaming substitution p[cln1/cln2] is a normal substitution if cln1 /∈ NAME(p)

and cln2 ∈ NAME(p).

Definition 2.1.5. Let p1 and p2 be two projects; p1 is equivalent to p2, denoted by

p1 = p2, if they can be renamed to identical projects by normal substitutions It is

not difficult to prove that this is an equivalence relation that is reflexive, symmetric,

and transitive.

Definition 2.1.6. Project centralization transforms a set of projects P = {p1, p2, . . . , pn}

P into one single project pcentr such that ∀p ∈ P. ∃p′ ⊆ pcentr . p = p′. We denote all

the centralized results of P that satisfy this condition by CENTR(P).

Project centralization requires preservation of the class version space for each

project. Each component-based application that runs as the original project can also

run as the centralized project with the same runtime behavior. The projects to be

centralized can either be different versions of a component or different components.

We define the class dependency in a project as follows.

Definition 2.1.7. Let cl1 and cl2 be two classes in a project p. Class cl1 depends

on cl2, denoted by cl2 → cl1 if cl1.code references cl2.name.

Given two classes cl1,cl2, cl1 → cl2 represent that cl1 depends on cl2 so that

if cl1 is renamed, all references of cl1 in cl2 must also be renamed to preserve the

behavior.

Let P be a set of projects to be centralized. To separate the version space of

each project, we classify the classes of a project p ∈ P into the following categories:

1. Unique Class. UNIQUE(p, P) = {cl ∈ p|∀q ∈ P\p. cl .name /∈ NAME(q)}. A

unique class of project p ∈ P has a unique name across all projects in P .

20

2. Conflict Class. CONFLICT(p, P) ={cl ∈ p|∃q ∈ P. cl .name ∈ (NAME(p) ∩

NAME(q)) ∧ p.cl ̸= GetClass(q, cl .name)}. The name of a conflict class

appears in multiple projects, including p, but with different implementations.

3. Shared Class. SHARED(p, P) = {cl ∈ p|∃q ∈ P\p. cl .name ∈ (NAME(p) ∩

NAME(q)) ∧ p.cl = GetClass(q, cl .name)}. A shared class of p shares both

its name and implementation with other projects in P .

In our example in Fig. 1.1(a), classes A and B are shared classes in all projects.

The cases for classes C and Main are more complex: class C is a conflict class

in Project1, but it is both shared and a conflict class in Project2 and Project3.

Similarly, class Main is a conflict class in Project3, and it is both shared and a

conflict class in Project1 and Project2. Informally, a version conflict happens when

we try to make project centralization on a project set, whose element contains

conflict classes.

Definition 2.1.8. Let P be a set of projects to be centralized. Centralized project

pcentr is minimal (optimal) if pcentr ∈ CENTR(P) and ∀p ′centr ∈ CENTR(P).

#pcentr ≤ #p ′centr .

Consider a general scenario of centralizing a set of projects P = {p1, p2, . . . , pn}.

There may exist multiple solutions that satisfy Definition 2.1.6. Among these so-

lutions, the optimal solution outputs the minimal number of classes. which is also

the optimal solution to solve version conflict and share the common code among all

projects in P . If ∀pi ∈ P .CONFLICT(pi ,P) = ∅, the optimal result is the union

of all projects in P ,
∪n

i=1 pi. If conflicts are present, ∃p ∈ P.CONFLICT(p, P) ̸= ∅,

the goal is to separate all conflict classes in P while maximizing the sharing of

classes.

2.1.1 A Worklist Based Project Centralization Algorithm

The main issue of resolving version conflict is to properly separate the class version

for each project. This entails renaming the conflict classes and all their references

to separate their versions. However, such renaming may cause shared classes not

shareable anymore, as their internal references to other classes are renamed differ-

ently across projects. Consider the example in Fig. 1.1: Project1 and Project2 can

share class B before project centralization. They have to rename their class C to

21

Algorithm 1 Worklist Based Project Centralization Algorithm
1: procedure SimpleProjectCentralization

Input: A project set P = {p1, p2, . . . , pn}
Output: A renamed project set P ′ = {p′1, p

′

2, . . . , p
′
n},

where ∀i ∈ {1, . . . , n}.pi = p′
i
∧Conflict(p′

i
, P ′) = ∅

2: for i← 1, n− 1 do

3: P ← P/pi
4: worklist w ← ∅
5: queue q ← ∅
6: w ← Conflict(pi ,P)

▷ add the conflict classes of pi into worklist
7: q ← w ▷ add each element of w to q for renaming
8: while w ̸= ∅ do

9: Pick and Remove cl from w

10: for all cl ′ ∈ depends(cl , pi) do

11: if cl ′ ∈ Shared(pi ,P)
12: ∧ cl ′ /∈ q then

13: q.enque(cl ′)
14: w ← w ∪ {cl ′}
15: end if

16: end for

17: end while

18: p′

i
= renameProject(q, pi)

19: ▷ make normal renaming substitution of pi for all classes in q
20: end for

21: P ′ ← ∪n
i=1p

′

i

22: end procedure

a different name to solve version conflict, though. After that step, B cannot be

shared anymore as it references C. Therefore, it is necessary to rename the conflict

classes and propagate their renaming effect in each project.

Alg. 1 gives our initial solution that uses a worklist based algorithm to propagate

the renaming effect. It renames all the conflict classes and propagate and rename

all those shared classes until no conflict classes exist.

The input of this algorithm is a set of projects to be centralized. The output is

the renamed projects containing no conflict classes, and each of them is equivalent

to the project before renaming. Given a project set P with #P = n, the algorithm

iterates and renames each of the first (n − 1) projects. We use the worklist w for

traversing the class dependency relation, and the queue q for storing the classes

needing renaming, respectively.

For each project, the algorithm first calculates all the conflict classes of the

current project and put them into q for renaming. For each conflict class, its

renaming effect then propagates to all the shared classes. The renaming effect fully

propagates until the worklist w becomes empty. After finding all the classes needing

renaming, renameProject(q, pi) in Fig. 1 performs normal renaming substitution on

project pi according to the renaming queue q.

22

Each class of a project pi is added to the worklist at most once and only those

classes that are either shared or conflicting can be added to the worklist. The output

condition is also guaranteed to hold. There is no class version conflict because all

conflict classes and their propagation effect are resolved. In addition, projects before

and after renaming are equivalent by normal substitution.

For complexity, we consider analyzing a project set P with #P = n which

includes m class names in total. All input projects are internal data structures

that represent class raw files. The class classifications and dependency relations

are pre-calculated during the preprocessing phase. The complexity for checking the

existence of a class in set Conflict(p, P) or Shared(p, P) is O(m). The dependency

relation set DEPENEDS(cl , pi) for class cl in project pi contains at most (m − 1)

classes (excluding the class self dependency). In the worst case, the complexity for

traversing the class dependency relation in the loop of worklist is O(m2). Therefore,

the complexity for calculating the renaming decision of project set P is O(m2 · n).

After class renaming, no two projects hold conflict classes and all projects can be

centralized into one project by taking the union of all their classes.

This algorithm correctly separates the version space of all input projects. How-

ever, it does not always output a satisfactory solution. The limitation of this algo-

rithm is caused by a lack of version linkage of classes among all projects. It renames

a class as long it is a conflict class even though a conflict class is still possible to be

shared.

The optimized solution separates the project version space while sharing classes

whenever possible. A class in a project can be both a conflict class and a shared

class. This algorithm does not distinguish a conflict class and a class that is both

shared and conflicted. It simply renames the class as long as it is a conflict class.

Consider the example in Fig. 2.1(a). P is a project set to be centralized, where

P = {p1, p2, p4, p3} and each project pi ∈ P has one class A. There exist two

versions of A in P , where p1, p2 hold one version, and p3, p4 hold the other version.

We represent different versions of a class by different colors. The simple algorithm

renames all A’s in p1, p2, p3, but not in p4, resulting three classes after project

centralization as shown in Fig. 2.1(b). However, an optimized solution produces

only two classes (the two versions of A): one is shared by p1 and p2 and the other is

shared by p3 and p4 as shown in Fig.2.1(c). The limitation of this algorithm is caused

by a lack of version linkage of classes among all projects. We present our improved

23

A

A

A

A

p1

p2

p3

p4

A1 A2 A A

p1 p2 p3 p4

A1 A1 A A

p1 p2 p3 p4

(a)

(b)

(c)

Figure 2.1: Worklist based Algorithm Example

solution in next section. Suppose there exists a class A in P ′ = {p′1, p
′
2, . . . , p

′
n}

with n versions. Theoretically, renaming any (n − 1) versions of A can resolve

version conflict. However, properly selecting the (n − 1) versions for renaming

is a difficult problem. Whenever a class is renamed, its effects propagate in the

project, which may result in more classes that must be renamed. To obtain an

optimal solution, we need to search all possible version combinations of classes in

all projects for renaming. When centralizing a project with m names each with n

versions, the complexity for searching the optimal combination of class renaming

actions is O(nm). Algorithm in Fig. 1 approximates this by simply renaming all

classes that are both shared and conflicting.

2.2 Graph Coloring Based Approach

To obtain the optimal solution of project centralization to share more common code,

we further propose a D-graph representation for projects and transform project cen-

tralization into a graph coloring problem. Project centralization is an optimization

problem. The goal is to obtain a centralized project with the minimal number of

classes under given version constraints. We formalize the D-graph representation for

projects and transform project centralization into a graph coloring problem. Then,

we present a corresponding algorithm based on existing graph coloring solutions.

In the rest this section, we arbitrarily fix a set of projects P for centralization.

24

2.2.1 Constraint Graph, Constraint Structure

A constraint structure represents a graph node of a D-graph. Each constraint struc-

ture contains a name to represent all classes with the same name. It also contains a

constraint graph represents the version relation of all classes with the same name in

P . In a constraint graph, the nodes are all projects that contains the classes with

that node name. We use the edge to represent the version relations of all classes

with the same name from different projects so that two classes are connected if

they are different versions. Given a project set P , we can initially built all D-graph

nodes by analyze all classes and their relations.

We show that all constraint graphs of a class name in P form a complete lattice,

and extend the constraint graph to a constraint structure, which represents a node

of a D-graph, as defined below.

Definition 2.2.1. Let cln be a class name in P . A constraint graph of cln in P

consists of a pair of node set P ↑cln and edge set CE , denoted by ⟨P ↑cln ,CE ⟩,

such that if there exist two projects p, p′ ∈ P ↑cln and (p, p′) ∈ CE , p and p′ cannot

share the class named cln.

Each node in a constraint graph of name cln is a project containing a class

named cln. Two project nodes that are connected by an edge, cannot share the

same version of the class named cln. Edges in a constraint graph are undirected;

given any two project nodes m and n, (m,n) and (n,m) represent the same edge.

Let G = ⟨P ↑cln ,CE ⟩ be a constraint graph of cln in P , and P ′ be a project

set. We write the subgraph of G to P ′ as ⟨P ′′,CE ′⟩ (denoted by G ↑P ′), where

P ′′ = P ′ ∩ P , and CE ′ is a restriction of CE to P ′′.

Given a class name cln, it is not difficult to observe that there exist multiple

constraint graphs of cln that satisfy Definition 2.2.1, sharing the same node set but

differing in their edge sets. We define their least upper bound and partial order

relation, respectively.

We define the partial order relations over constraint graphs and write CGcln as

the constraint domain of cln in P , respectively.

Definition 2.2.2. We define ⊑cg∈ CG × CG as a binary relation such that for

any two constraint graphs G1, G2 ∈ CG with G1 = ⟨P1,CE 1⟩ and G2 = ⟨P2, CE2⟩,

G1 ⊑cg G2 if P1 ⊆ P2 and CE 1 ⊆ CE 2. We denote the least upper bound of G1

and G2 by G1 ⊔cg G2 = ⟨P1 ∪ P2,CE 1 ∪ CE 2⟩.

25

It is not difficult to prove that ⊑cg∈ CG ×CG is a partial order and (CG,⊑cg)

is a partially ordered set.

Definition 2.2.3. Let G = ⟨P ↑cln ,CE ⟩ and G′ = ⟨P ↑cln , CE ′⟩ be two con-

straint graphs of a class name cln. We define their least upper bound as G⊔cg G
′ =

⟨P ↑cln ,CE ∪ CE ′⟩, which is also a constraint graph of cln. We denote the con-

straint graph domain of cln by CGcln , which contains all the constraint graphs of

cln in P .

Definition 2.2.4. Let CGcln be the constraint graph domain of the class name

cln in P . We define ⊑cg∈ CGcln × CGcln as a binary relation such that ∀Gc, G
′
c ∈

CGcln . G = ⟨P ↑cln , CE ⟩ ∧G′ = ⟨P ↑cln ,CE ′⟩ ∧ CE ⊆ CE ′ ⇒ G ⊑cg G
′.

It is not difficult to prove that ⊑cg∈ CGcln × CGcln is a partial order and

(CGcln ,⊑cg) is a partially ordered set.

Let cln be a class name in P ; we write CGcln as the subdomain of CG, where

CGcln ⊆ CG and ∀G ∈ CGcln . G = ⟨P ′, CE ′⟩ ⇒ P ′ = P ↑cln . It is not difficult to

prove that the partially ordered set (CGcln ,⊑cg ,⊔cg ,⊓cg , ⊥
cln
cg ,⊤cln

cg) is a complete

lattice [8] with, ∀X ⊆ G, X = {x1, x2, . . . , xn}:

• a least upper bound ⊔cgX = x1 ⊔cg x2 ⊔cg . . . ⊔cg xn,

• a greatest lower bound

⊓cgX = ⊔cg{y|∀x ∈ X. y ⊑cg x},

• a least element ⊥cln
cg = ⟨P ↑cln , ∅⟩,

• a greatest element ⊤cln
cg = ⟨P ↑cln ,CE greatest⟩, where CE greatest = {(m,n)|n,m ∈

P ↑cln ∧m ̸= n}.

We extend the constraint graph to a constraint structure.

Definition 2.2.5. A constraint structure CS in a project set P consists of a

name in NAMES(P) (denoted by CS .name) and a constraint graph of the name

CS .name (denoted by CS .CG). We write ⟨CS .name,CS .CG⟩ for the structure.

We define the partial order relation and least upper bound for constraint struc-

tures.

26

Definition 2.2.6. Let CS 1 and CS 2 be two constraint structures. We define the

partial order relation (constructed from the partial order of the constraint graph)

CS 1 ⊑cs CS 2 if CS 1.name = CS 2.name and CS 1.CG ⊑cg CS 2.CG . The least

upper bound of CS 1 and CS 2 is defined as CS 1 ⊔cs CS 2 = ⟨CS 1.name, CS 1.CG ⊔cg

CS 2.CG⟩ if CS 1.name = CS 2.name.

For a class name cln in P , it can be shown that all constraint structures that

share cln also form a complete lattice.

Definition 2.2.7. Given a constraint graph set Gc of a project set P and a class

name classname, ∀Gc, G
′
c ∈ Gc where Gc =< P,Ec > and G′c =< P,E ′c >, we

define least upper bound of Gc and G′c as Gc ⊔G′c =< P,Ec ∪c E
′
c >. We generalize

the definition of least upper bound to a set. ∀X ⊆c Gc where X = {x1, x2, . . . , xn},

the least upper bound of set X is defined as ⊔cX = x1 ⊔c x2 ⊔c . . . ⊔c xn.

For a constraint graph set Gc of a project set P and a class name classname, it

is not difficult to prove that the partially ordered set (Gc,⊑c,⊔c,⊓c,⊥c,⊤c) forms

a complete lattice [8] such that ∀X ⊆ Gc with:

• a least upper bound ⊔cX.

• a greatest lower bound ⊓cX = ⊔c{y|∀x ∈ X, y ⊑c x}.

• a least element ⊥c =< P, ∅ >.

• a greatest element ⊤c = Gc, where Gc is the complete graph over node set P .

2.2.2 D-graph Representation of a Project Set

We formalize the D-graph representation for projects, and propose constraint equa-

tions to calculate the minimal D-graph that satisfies version constraints. We then

transform project centralization into a graph coloring problem. After explaining all

the D-graphs of a project set forms a complete lattice, we show the calculation pro-

cedure to get minimal D-graph that satisfies all version constraints of classes in the

project set. Based on this, we propose a graph coloring based project centralization

algorithm and discuss its optimal solution.

We show that all D-graphs of a given project set form a complete lattice, con-

structed by the tensor product of constraint structures. Based on this representa-

tion, we prove the NP-completeness to calculate the optimal solution of the project

27

B

P1 P2

P1
P3

A

{P1,P2,P3}

P1P1 P2

P1
P3

C

P1P1 P2

P1
P3

P1P1 P2

P1
P3

Main

P1P1 P2

P1
P3

Unique

P1
P3

{P1,P2,P3}

{P1,P2,P3}

{P
3

}

{P
3

}

{P
1 ,P

2 }

A

{P1,P2,P3}

P1P1 P2

P1
P3

C

P1P1 P2

P1
P3

P1P1 P2

P1
P3

Main

P1P1

P1
P3

Unique

P1
P3

{P1,P2,P3}

{P1,P2,P3}

{P
3

}

{P
3

}
{P

1 ,P
2 }

A

{P1,P2,P3}

P1P1 P2

P1
P3

B

P2

P1
P3

C

P2

P1
P3

P1P1

P1
P3

Main

P1
P3

Unique

P1
P3

{P1,P2,P3}

{P1,P2,P3}

{P
3

}

{P
3

}

{P
1 ,P

2 }

A

{P1,P2,P3}

P1P1 P2

P1
P3

C

P1P1 P2

P1
P3

P1P1 P2

P1
P3

Main

P1P1 P2

P1
P3

Unique

P1
P3

{P1,P2,P3}

{P1,P2,P3}

{P
3

}

{P
3

}

{P
1 ,P

2 }

(a) Initialization (b1) Solving Constraint Equation

(b2) Solving Constraint Equation (c) Graph Coloring

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

B

P1 P2

P1
P3

B

P1 P2

P1
P3

P1

P2

Figure 2.2: D-graph Representation Example

centralization for version separation by transforming it into the graph coloring prob-

lem.

Definition 2.2.8. A D-graph of a set of projects P consists a node set N of con-

straint structures and an edge set E (denoted by ⟨N,E⟩) with each edge e =

(l,m) ∈ E associated with a set of projects e.set = {p ∈ (P ↑l .name ∩P ↑m.name)

|GetClass(p, l .name) → GetClass(p,m.name)} such that:

1. Name set {n.name|n ∈ N} is the same as NAMES(P).

2. ∀i, j ∈ N. e = (i, j) ∧ e.set ̸= ∅ ⇒ e ∈ E.

Let G = ⟨N,E⟩ be a D-graph of P . Each node n ∈ N is a constraint structure

that represents all versions of the classes with that node name n.name. Its con-

straint graph is used to keeps the version relation of these classes. For two nodes

28

m,n ∈ N , the existence of an edge (m,n) from m to n entails that the classes

named m.name and n.name have a dependency relation in a project p ∈ P , and

p have both classes named m.name and n.name. Edges in E are directed: (n,m)

and (m,n) are different edges.

Fig. 2.2(a) gives the corresponding initial D-graph of the project set in Fig. 1.1(a).

The larger node is the constraint structure node, inside which its name and con-

straint graph are shown. For example, the node named A with its constraint graph

indicates that its name exists in projects P1, P2 and P3. No edge exists between

these projects, meaning all these projects initially have the same version of class

named A. The label of an edge in a D-graph shows the projects in which the two

constraint structure nodes connected by that edge have a dependency relation. For

example, the edge from node B to Main indicates that classes named B and Main

have a dependency relation in both P1 and P2.

We next define the underlying graph of a D-graph.

Definition 2.2.9. Let G = ⟨N,E⟩ be a D-graph of P . We define its underlying

graph as the graph of G by ignoring the constraint graph of each constraint structure

node in N , denoted by |G| = ⟨|N |, E⟩, where |N | represents the nodes of G that

ignore all their constraint graphs.

The underlying graph |G| for a project set P is unique. There are multiple

D-graphs that share |G|, differing in their constraint structures. We use G|G| to

represent the domain all D-graphs of P such that they share |G| as the underlying

graph. We simply write G if |G| is clear from context. We continue to define a

partial order over G and show that all its D-graphs also form a complete lattice.

Given a node n ∈ N , we use N to represent the node set that share the same

|n|.

Definition 2.2.10. Let G be a D-graph domain of P , and G = ⟨N,E⟩ and G′ =

⟨N ′, E⟩ be arbitrary two D-graphs in G. G and G′ have the binary relation G ⊑ G′

if and ∀n ∈ N.∀n′ ∈ N ′.n.name = n ′.name ⇒ n ⊑cs n
′. The least upper bound of

G and G′ is G⊔G′ = ⟨N ′′, E⟩, where N ′′ = {m⊔cs n|n ∈ N ∧m ∈ N ′ ∧m.name =

n.name}.

Assuming NAMES(P) = {cln1, cln2, . . . , clnk}, the constraint graph domain

and underlying graph of P be G and |G| = ⟨|N |, E⟩, respectively. It is not difficult

29

to prove that (G,⊑,⊔,⊓,⊥,⊤) (constructed by the Cartesian product all constraint

structures in N) is a complete lattice [8].

such that ∀X ⊆ G where X = {x1, x2, . . . , xn} with:

• a least upper bound ⊔X = x1 ⊔ x2 ⊔ . . . ⊔ xn,

• a greatest lower bound ⊓X = ⊔{y|∀x ∈ X. y ⊑ x},

• a least element ⊥ =

⟨{⟨cln1,⊥
cln1
cg ⟩, ⟨cln2,⊥

cln2
cg ⟩, . . . , ⟨clnk ,⊥

clnk

cg ⟩}, E⟩,

• a greatest element ⊤ =

⟨{⟨cln1,⊤
cln1
cg ⟩, ⟨cln2,⊥

cln2
cg ⟩, . . . , ⟨clnk ,⊤

clnk

cg ⟩}, E⟩.

For a directed graph G, we refer G as the set of directed graphs that share |G|.

Since the possible constraint graphs of each node in G form a complete lattice,

< G,⊑ ⊔,⊓,⊥,⊤ > also forms a complete lattice, which is constructed by the

tensor product of the constraint graphs of all nodes [8] such that ∀X ⊆ G where

X = {x1, x2, . . . , xn} with:

• a least upper bound ⊔X = x1 ⊔ x2 ⊔ . . . ⊔ xn.

• a greatest lower bound ⊓X = ⊔{y|∀x ∈ X, y ⊑ x}.

• a least element ⊥ =< ⊥x1
c ×⊥x2

c × . . .×⊥xn

c >.

• a greatest element ⊤ =< ⊤x1
c ×⊤x2

c × . . .×⊤xn

c >

Correct project centralization requires separating the version spaces of each

project by renaming. Renaming a class also entails renaming all references to it

accordingly. We use conflict edges to represent version constraint conditions. Such

constraints capture the effect that different versions of a class are not separated due

to the version separation of another class that this class depends on.

Definition 2.2.11. Let G = ⟨N,E⟩ be a D-graph of P . Let e ∈ E be an edge and

e = (m,n), where m.CG = ⟨P ↑m.name , CE ⟩ and n.CG = ⟨P ↑n.name ,CE ′⟩.

The edge e is a conflict edge if ∃p, q ∈ e.set. (p, q) ∈ CE ∧ (p, q) /∈ CE ′.

An edge e = (m,n) in a D-graph of P is a conflict edge, if there exist two

projects p, p′ such that they are connected by an edge in m.CG but not in n.CG.

30

For example, the dashed edge from node C to B in Fig. 2.2(a) is a conflict edge. P1

and P3 must hold a different version of class C, as they are connected by an edge

in C .CG . This entails renaming their C to a different name; furthermore, as C is

referenced in the code of B , P1 and P3 must also be connected in B .CG to separate

version space. To ensure the correctness of project centralization, all such version

constraints must be resolved.

Definition 2.2.12. A D-graph G = ⟨N,E⟩ of P is valid if there does not exist an

edge e ∈ E such that e is a conflict edge.

Correct project centralization requires finding a valid D-graph given a set of

projects, such that all version constraints are resolved. An optimal solution requires

a D-graph that is both valid and minimal. This entails propagating the minimal

version constraints so that each constraint structure node n in that D-graph satisfies

the equations in (2.2.1), where IN(n) and OUT(n) are the incoming and outgoing

constraint conditions (represented by the constraint graphs) of node n, and IN0(n)

and OUT0(n) are the corresponding initial conditions, respectively. The functions

in equational system (1) are monotonically increasing over complete lattices with

finite height. Therefore, a minimal solution exists and can be computed by iterating

the equation system [86] until reaching its least fixed point.

IN(n) = (
⊔

cg

m∈Pred(n)

OUT(m))
x

(m,n).set

OUT(n) = IN(n) ⊔OUT(n)

IN0(n) = ∅

OUT0(n) = n.CG

(2.2.1)

The constraint equations defines the minimal constraint for each node to sepa-

rate the project version space correctly. Initially, the incoming constraint for each

node n ∈ N is empty and the outgoing constraint equals n.CG . The constraint

graph n.CG is initialized during the construction of the D-graph such that two

project nodes are connected by an edge in n.CG if they hold a different version

of the class named n.name. The initial D-graph of the example in Fig. 1.1(a) is

depicted in Fig. 2.2(a). The constraint equations are solved iteratively until no con-

flict edge exists. Fig. 2.2(b1) and Fig. 2.2(b2) show such steps to solve constraint

equations for node B and Main, respectively. The minimal valid result is given in

Fig. 2.2(c).

31

The remaining task is to ensure no two nodes connected by an edge in a con-

straint graph of the minimal valid D-graph share the same version. This is equiv-

alent to coloring the graph such that two nodes connected by an edge are colored

differently. After coloring, all the nodes in a constraint graph with the same color

can share the same version of a class, and nodes colored differently cannot share the

same class and should be renamed accordingly. In our example, all three projects

share class A; class B outputs two versions, one of which is for P1 and the other

version is shared by P2 and P3 as shown in Fig. 2.2(c). Therefore, we transform the

project centralization problem into a graph coloring problem.

The optimal version separation is to find the chromatic number k for each con-

straint graph in the directed graph. All the nodes in a constraint graph with the

same color can share the same version of a class. Given a constraint graph Gc, we

denote MinimalColorOutput(Gc) as the minimal number of colors to ensure no two

connected points share the same color.

2.3 Algorithm and Optimal Solution

For a project set P , the optimal solution of project centralization is to separate the

version space of each project while keeping share the common classes as many as

possible. It entails to output the least number of classes while keeping the version

space of each project separate.

Given a constraint graph G, we denote MinimalColorOutput(G) as the minimal

number of colors to ensure no two nodes connected by an edge share the same color.

Definition 2.3.1. Given a directed graph G =< N,E > of project set P , G is an

optimal graph iff there exists no conflict edges in G, and for any directed graph G′ of

P without conflict edges, where G ̸= G′∧|G| = |G′|,
∑

n∈N MinimalColorOutput(n.CG) <
∑

n′∈N ′ MinimalColorOutput(n′.CG)

Based on the D-graph representation for a set of projects, obtaining the project

centralization solution for version separation entails the following steps:

1. Solve the constraint equation for each node to get the minimal valid D-graph.

2. Color the constraint graph in each constraint structure node n of the D-graph

such that any two nodes connected by an edge in n.CG are colored differently.

32

Algorithm 2 Graph Coloring Based Project Centralization
1: procedure ProjectCentralization

Input: A set of projects P = {p1, p2, . . . , pn}
Output: The centralized project pcentr ,

where ∀p ∈ P. ∃p′ ⊆ pcentr. p = p′

2: DGraph ← ∅
3: nameSet ← collectName(P) ▷ Collect all class names
4: DGraph.nodeSet ← ∅
5: for all name ∈ nameSet do ▷ Build a node for each name
6: DGraph.nodeSet ← DGraph.nodeSet

∪ {createNode(name, P)}
7: end for

8: for all src ∈ DGraph.nodeSet do ▷ Add edges
9: for all targ ∈ DGraph.nodeSet\src do

10: tempSet ← {p|p ∈ (P ↑src.name ∩ P ↑targ.name)
11: ∧GetClass(p, src.name)→ GetClass(p, targ.name)}

12: if tempSet ̸= ∅ then

13: (src, targ).set = tempSet

14: Dgraph.edgeSet ← Dgraph.edgeSet ∪ {(src, targ)}
15: end if

16: end for

17: end for

18: Initialize IN(n) and OUT(n) for each n ∈ DGraph.nodeSet
19: SCCs ← calculateSCC(DGraph)
20: TopoSCCs ← calculateTopologicalOrder(SCCs)
21: Dgraph ← EquationSolver(Dgraph,TopoSCCs) ▷ Alg. 3 solves constraint equations until reaching the least

fixed point
22: for all node ∈ DGraph.nodeSet do

23: graphColoring(node.CG)
▷ Color each output constraint graph by existing algorithm

24: end for

25: pcentr ← NormalRenaming(DGraph)
▷ Perform normal substitution according to the coloring results

26: return pcentr
27: end procedure

3. Perform normal renaming substitution for each constraint graph such that

project nodes with the same color still share the same class after renaming

while nodes with different colors do not.

We propose a project centralization algorithm based on graph coloring (see

Alg. 2). Given a set of projects as input, the algorithm first initializes the nodes

and edges of the D-graph (lines 2–17), and the IN and OUT constraints for each of

its nodes. To improve convergence towards the fix point, we calculate all Strongly

Connected Components (SCC) and sort them in a topological order. Next, function

EquationSolver (see Alg. 3) is called to solve the constraint equations iteratively for

the ordered nodes until reaching the least fixed point (lines 18–21). The last step

colors the constraint graph of each node and performs normal renaming substitu-

tion (lines 22–25).

Alg. 2 is guaranteed to terminate. For the complexity of our algorithm, we

assume the D-graph is initialized and it is only necessary to calculate the renaming

33

Algorithm 3 Solve Constraint Equations
1: function EquationSolver

▷ Solve constraints for a given graph in SCCs’ topological order
Input: graph: a D-graph,

TopoSCCs: the topological order of SCCs for graph

Output: graph: the minimal valid D-graph
2: for SCC ∈ TopoSCCs do

▷ Visit each SCC in topological order
3: repeat ▷ Repeat if constraints of a node in SCC change
4: for n ∈ graph.nodeSet ∧ n ∈ SCC do

5: IN(n)← (
⊔

m∈Pred(n) OUT(m))
x

(m,n).set

6: OUT(n)← IN(n) ⊔OUT(n)
7: n.CG ← OUT(n)
8: end for

9: until ∀n ∈ (graph.nodeSet ∩ SCC). IN(n) and
OUT(n) do not change

10: end for

▷ Function terminates when no constraint conditions change
11: return graph
12: end function

decision for further processing. The D-graph initialization (lines 2–17) and renaming

substitution (line 25) are specific to the given projects and operating system, so we

do not consider them in the complexity analysis.

Let P be the input projects with #P = n, and its initial D-graph be G = ⟨N,E⟩

with #N = m and #E = l. It iteratively solves constraint equations for each node

of G in order until reaching a fix point. As the constraint functions in Alg. 3

are monotonically increasing over a complete lattice with finite height, the least

fixed point can be reached in no more than n2 · m iterations. The complexity of

computing the constraint conditions for a node is O(n2 ·m). Computing the SCCs

and their topological cost O(m · l). Assuming the complexity of adopted graph

coloring algorithm for a k-vertex and t-edge graph is α(k, t), the total complexity of

solving a given D-graph and making the renaming decision is α(n, l) ·m+O(n4 ·m3).

The complexity of the iterative framework analysis depends on the graph structure

of a given D-graph. Proving a tighter upper bound for complexity is beyond the

scope of this paper and is future work.

To obtain the optimal project centralization result, it is necessary to apply an

exact graph coloring algorithm on the achieved minimal D-graph so that the number

of classes in the output is minimal. We adopt an existing optimal algorithm [9],

which solves the problem of a k-vertex graph in PSPACE and in time O(5.283k).

However, the exact graph coloring is an NP-complete problem and its complexity is

exponential. Therefore, we also provide the option to use the Greedy Independent

Sets (GIS) coloring approach [50] with complexity O(k ·v), where k and v represent

34

the number of vertexes and edges, respectively.

2.4 Experiments on Network Libraries

We have implemented the proposed algorithms in Java and applied them on seven

real-world Java projects as benchmarks. Our implementation transforms the Java

bytecode of the target applications. As our tool does not require the source code

of the application, it also works for languages other than Java that compile to Java

bytecode. Table 2.1 summarizes the benchmarks which are all network libraries

that can be used as a component of a distributed application. The project size and

number of classes are listed. All experiments in this thesis were run on an Intel

Core i7 Mac 2.4 GHz with 8 GB of RAM, running Mac OS X 10.8.3 and Oracle’s

Java VM, version 1.7.0 21.

To quantify and compare the effectiveness of each algorithm in sharing common

code, we define Shared as the ratio of shared classes to output classes: Shared =
#ClassShared

#OutputClass
, we also use S.F. for simplicity. A class named cln is counted as shared if

at least two projects share that class in the renaming decision. Consider the graph

coloring results in Fig. 2.2(c), classes A, B, C are shared because multiple projects

are colored the same in their constraint graph, but class Unique and Main are not.

Shared ranges from 0 to 1; the larger its value, the more classes are shared. The

trivial renaming approach renames all classes of each projects and shares no classes,

Shared is therefore 0. We run the experiment to centralize projects of each bench-

mark with a different number of instances per version. Each experiment is repeated

60 times to collect the Shared value, run time, and storage saving ratio (project

size before centralization/after centralization). After choosing a benchmark with a

specific setting, the Shared value and storage ratio of a given project centralization

algorithm are unique. As for the run time, we discard the data of the first 10 runs,

which may be influenced by disk I/O to read the input, and take the average of the

other results.

The overall experimental result is summarized in Table 2.2. We have five experi-

mental settings for each benchmarks with two versions of a project, from centralizing

one and two project instances, to seven instances of both versions. The performance

of the three approaches for each setting is listed in columns Shared, Storage Ra-

tio, and Time, respectively, which can be compared horizontally and vertically. To

35

interpret the data, we take the project centralization of Edtftpj-2.3.0 and Edtftpj-

2.4.0 as an example. we apply three approaches on each We have five settings for

each benchmark, from centralizing one and two project instances, to seven instances

of both Edtftpj-2.3.0 and Edtftpj-2.4.0. For example, on the setting in row five,

the optimal algorithm and greedy algorithm only use 17.0% of the total storage

but the simple algorithm uses 43.1%. We can draw the same conclusion for other

benchmarks in Table 2.2.

For each experimental setting, the greedy coloring approach outperforms the

simple solution and performs as well as the optimal solution in sharing common code

and saving storage, as shown by Shared value and the storage ratio. As the number

of project instances for centralization increases in each benchmark, the Shared value

of the simple algorithm decreases. It indicates that some classes are not sharable

by the simple solution when centralizing more class instances, but they still can be

shared by the greedy solution and the optimal solution. The storage saving ratio

of each approach increases as there is a growth in the number of project instances.

Compared with the simple solution, the greedy solution and optimal solution both

have a larger value of storage saving ratio, meaning that they saves more storage

than the simple solution. The greedy approach and the optimal approach are both

more effective in sharing common code than the simple algorithm. As for run

time, the simple algorithm is the most efficient one, and the optimal algorithm does

not scale. Consistent with the complexity analysis in Section 2.2, the run time of

the optimal algorithm grows exponentially in the number of projects in Table 2.2.

The optimal algorithm cannot solve larger settings in a reasonable time (1 hour).

Compared with the other two approaches, the greedy centralization is effective in

sharing common code and efficient in practice.

Table 2.1: Summarization of Bechmarks

Project name / version
Edtftp Ganymed-ss2 Jsmpp Kryonet Mime4j-core Xnio Netx

2.3.0 2.4.0 build209 build210 2.0 2.1 2.08 2.20 0.7.1 0.7.2 2.0.0CR2 2.1.0CR1 0.4 0.5

Bytecode size[KB] 352 391 305 345 457 458 206 252 154 154 249 254 240 246
#Cl. (*.class) 106 113 115 133 201 202 79 104 61 61 72 74 91 88

2.5 Case Study in Managing Version Variants

In this section, we present the case studies we have conducted to investigate the

feasibility of managing product variants from software are evolutionary and Software

36

Table 2.2: Experimental Results of Project Centralization

Project name / version Inst. Shared [%] Strorage Ratio Time [ms]
Simple Greedy Optimal Simple Greedy Optimal Simple Greedy Optimal

Edtftpj-2.3.0 2.4.0 1 2 69.3 69.3 69.3 1.79 1.79 1.79 1.07 7.65 10.65
Edtftpj-2.3.0 2.4.0 2 2 53.1 69.9 69.9 1.70 2.35 2.35 1.51 9.71 51.00
Edtftpj-2.3.0 2.4.0 3 3 43.0 69.9 69.9 2.00 3.52 3.52 2.80 11.72 139.06
Edtftpj-2.3.0 2.4.0 5 5 31.1 69.9 69.9 2.32 5.87 5.87 6.77 20.70 5349.42
Edtftpj-2.3.0 2.4.0 7 7 24.4 69.9 N.A. 2.50 8.22 N.A. 12.60 32.30 > 1 h
Ganymed-ss2-build209 build210 1 2 76.0 76.0 76.0 1.94 1.94 1.94 1.02 8.85 12.02
Ganymed-ss2-build209 build210 2 2 61.3 76.0 76.0 1.91 2.54 2.54 1.38 9.65 52.97
Ganymed-ss2-build209 build210 3 3 51.4 76.0 76.0 2.30 3.81 3.81 2.60 12.49 138.04
Ganymed-ss2-build209 build210 5 5 38.8 76.0 76.0 2.75 6.35 6.35 6.39 20.06 5073.64
Ganymed-ss2-build209 build210 7 7 31.1 76.0 N.A. 3.01 8.88 N.A. 12.16 32.13 > 1 h
Jsmpp-2.0 2.1 1 2 89.4 89.4 89.4 2.53 2.53 2.53 1.18 17.68 23.13
Jsmpp-2.0 2.1 2 2 80.8 89.4 89.4 2.92 3.37 3.37 1.88 20.79 83.28
Jsmpp-2.0 2.1 3 3 73.7 89.4 89.4 3.86 5.06 5.06 3.99 28.39 188.76
Jsmpp-2.0 2.1 5 5 62.7 89.4 89.4 5.20 8.43 8.43 10.79 44.76 7109.86
Jsmpp-2.0 2.1 7 7 54.6 89.4 N.A. 6.11 11.80 N.A. 21.67 67.16 > 1 h
Kryonet-2.08 2.20 1 2 58.1 58.1 58.1 1.56 1.56 1.56 0.95 7.45 17.48
Kryonet-2.08 2.20 2 2 41.5 62.6 62.6 1.40 2.02 2.02 1.48 9.83 48.52
Kryonet-2.08 2.20 3 3 32.1 62.6 62.6 1.61 3.02 3.02 2.42 13.40 144.54
Kryonet-2.08 2.20 5 5 22.1 62.6 62.6 1.83 5.04 5.04 4.55 26.39 5119.54
Kryonet-2.08 2.20 7 7 16.9 62.6 N.A. 1.94 7.06 N.A. 8.59 42.94 > 1 h
Mime4j-core-0.7.1 0.7.2 1 2 98.4 98.4 98.4 2.88 2.88 2.88 0.84 3.89 5.74
Mime4j-core-0.7.1 0.7.2 2 2 96.8 98.4 98.4 3.70 3.84 3.84 0.92 4.41 24.94
Mime4j-core-0.7.1 0.7.2 3 3 95.3 98.4 98.4 5.35 5.77 5.77 1.58 5.32 45.27
Mime4j-core-0.7.1 0.7.2 5 5 92.4 98.4 98.4 8.31 9.61 9.61 3.56 6.72 1797.52
Mime4j-core-0.7.1 0.7.2 7 7 89.7 98.4 N.A. 10.90 13.45 N.A. 6.65 10.6 > 1 h
Netx-0.4 0.5 1 2 57.5 57.5 57.5 1.60 1.60 1.60 0.98 8.63 15.46
Netx-0.4 0.5 2 2 45.7 65.4 65.4 1.52 2.13 2.13 1.34 8.68 45.49
Netx-0.4 0.5 3 3 36.0 65.4 65.4 1.77 3.19 3.19 2.18 10.20 130.22
Netx-0.4 0.5 5 5 25.2 65.4 65.4 2.05 5.32 5.32 4.49 18.02 4790.91
Netx-0.4 0.5 7 7 19.4 65.4 N.A. 2.19 7.45 N.A. 8.28 29.10 > 1 h
Xnio-2.0.0CR2 2.1.0CR1 1 2 51.4 51.4 51.4 1.51 1.51 1.51 1.43 4.28 12.33
Xnio-2.0.0CR2 2.1.0CR1 2 2 35.2 54.9 54.9 1.35 2.01 2.01 1.54 5.37 42.03
Xnio-2.0.0CR2 2.1.0CR1 3 3 26.6 54.9 54.9 1.52 3.01 3.01 2.24 9.84 131.10
Xnio-2.0.0CR2 2.1.0CR1 5 5 17.9 54.9 54.9 1.70 5.02 5.02 4.76 17.65 4804.70
Xnio-2.0.0CR2 2.1.0CR1 7 7 13.4 54.9 N.A. 1.78 7.02 N.A. 8.31 28.58 > 1 h

Product Lines by project centralization. The motivation of this case study is to

show the effectiveness of project centralization and its potential usage for analyzing

multiple version variants without redundancies. The case study shows the usefulness

of our approaches as the basic for further study.

The overview of product variants in our case studies is summarized in Table

I, which contains both version variants and product variants from a SPL. Column

two gives brief descriptions of product variants for each software system by enabling

and disabling some features. Column three shows the lines of source code (without

comments and whitespaces) for each product. Column four and five list the product

size and number of classes (*.class files), respectively.

DrJava [24] in our first case study is a lightweight development environment

for writing Java programs. We use its most recent ten version variants released

in the last four years. In the second and third case studies, we use the product

variants generated from existing software product line ArgoUML-SPL [4, 20] and

Health-Watcher [15, 35], respectively. ArgoUML-SPL is the software product line

for the UML modeling tool ArgoUML, and HealthWatcher is a cloud computing ap-

37

plication that manages health records and complaints. Experimental results, where

project centralization algorithms are applied to all the selected products of a soft-

ware project, are summarized in Table II. For each input project set, we give its

total number of classes (*.class files), storage usage, and average dependency in

columns three, four and five, respectively. We compare the simple algorithm and

greedy algorithm in the number output classes, S.F., storage saving ratio, and algo-

rithm execution time and total time. We show these results in columns OUTPUT

#Class, S.F., Storage, Alg.Time and Total Time, respectively.

According to the input metrics, DrJava and ArgoUML are both large-size projects.

Although the number of input classes for DrJava is twice as large as in ArgoUML,

the average dependency for classes in DrJava is much larger. In all experimental

settings, the greedy algorithm performs better by outputting fewer classes, sharing

more common code and saving more storage. Compared with the simple algorithm

on each project set, the greedy algorithm shares 21.9%, 22.9% and 35.2% more

classes as indicated by column S.F. The optimized algorithm also saves 22.0%,

12.9% and 29.2% more storage indicated by column Storage. However, the algo-

rithm execution time and total time of the simple algorithm is faster. As the greedy

algorithm needs to resolve conflict edges iteratively in the D-graph, the execution

time depends on the average dependency between input project sets. Its execution

time becomes slow when the number of input classes and average dependency in the

input project set are large. From these case studies, we concludes that our greedy

algorithm is efficient enough to handle large project sets, and effective in sharing

common code and saving storage.

38

Pro. DrJava Product Description LOC SIZE(KB) #cl.
P1 Release 20130901-r5756 98793 11895 3936
P2 Release 20120818-r5686 89786 11895 3925
P3 Release 20110822-r5448 89736 11886 3925
P4 Release 20100913-r5387 88401 11659 3877
P5 Release 20100816-r5366 88275 11655 3877
P6 Release 20100711-r5314 87556 11572 3837
P7 Release 20100507-r5246 87258 11499 3824
P8 Release 20100415-r5220 85622 11506 3792
P9 Release 20090821-r5004 81239 9798 3251
P10 Release 20090803-r4975 81044 9711 3242
Pro. ArgoUML Product Description LOC SIZE(KB) #cl.
P1 All optional feature enable 120348 5147 1915
P2 All optional feature disable 82924 3669 1494
P3 Only Logging disabled 118189 5018 1915
P4 Only Cognitive disabled 104029 4431 1678
P5 Only Sequence Diagram disabled 114969 5033 1881
P6 Only Use Case Diagram disabled 117636 5032 1874
P7 Only Deployment Diagram disabled 117201 5024 1882
P8 Only Collaboration Diagram disabled 118769 5086 1896
P9 Only State Diagram disabled 116431 5008 1880
P10 Only Activity Diagram disabled 118066 5036 1897
Pro. HealthWatcher Product Description LOC SIZE(KB) #cl.
P1 Base - no extensions applied 5288 261 90
P2 Command pattern applied 5646 273 94
P3 State pattern applied 6112 302 106
P4 Observer pattern applied 6222 309 108
P5 Adapter pattern applied 6379 314 110
P6 Abstract Factory pattern applied 6417 318 114
P7 Adapter pattern applied 6441 319 118
P8 Abstract Factory pattern applied 6468 321 122
P9 Evolution- new functionality added 7709 389 134
P10 Exception Handling applied 7591 389 137

Table 2.3: Version Variants from Software Evolution and SPLs

Project Algorithm
INPUT OUTPUT Alg. Time Total Time S.F. Storage

#cl. SIZE(KB) A.D. #cl. (ms) (ms) (%) (%)

DrJava
Simple

37486 113076 17199
29194 6920 10949 6.7 82.2

Greedy 22247 37166 40063 28.6 60.2

ArgoUML
Simple

18312 48484 3121
6399 2273 3286 27.7 43.0

Greedy 4485 6959 7706 50.6 30.1

HealthWatcher
Simple

1133 3195 373
771 1128 1242 10.9 82.1

Greedy 448 1513 1585 46.1 53.8

Table 2.4: Project Centralization Results and Comparison

39

Chapter 3

Process Centralization and

Verifying Distributed

Applications

In this section, we summarize our process centralization solution and its application

to enable existing tools to analyze and verify distributed application with multiple

versions. Experiments with JPF demonstrate that out approach enables existing

tools to verify a distributed application with multiple versions, showing that some

defects can be found with centralization that are missed with single-process anal-

ysis. We first give a general discussion of process centralization issues. Then the

implementation process centralization tool is discussed. Experiments on real world

distributed applications , where applying centralization tool to network benchmarks,

prove the effectiveness of tool automation, showing that the centralized application

is more efficient in terms of run time and memory compared with the counterpart

without centralization. Finally, we perform two groups of experiments to show the

runtime performance of centralization program and verify real world distributed

applications by model checkers.

40

3.1 Process Centralization Issues

This section summarizes the problems that have to be solved to implement cen-

tralization of distributed applications correctly. The term process centralization is

defined as follows.

Definition 3.1.1. Process centralization is the transformation of multiple processes

into a single one with the equivalent runtime behavior.

We refer the centralized program as the program after centralization. Central-

ization must preserve the semantics of original program. For each execution in the

original program, there exists an execution trace in centralized program with the

same behavior, and vice versa. To satisfy this requirement, the following issues

must be solved.

(1) Version separation. Each peer of distributed application can consist of mul-

tiple components, where each component is developed and managed independently.

In software maintenance and evolution, each component of a component-based sys-

tem needs to be continually changed over its lifetime to improve its functional

capability to satisfy the users’ requirements [52]. This can result in conflicts be-

tween different versions of the same product that are active at the same time. The

problem becomes more exacerbated in a distributed system, where installations

are duplicated over many peers. Each application is asynchronously updated in

a “rolling update”. This creates multiple versions of the components in a system,

including both their used libraries and application code. Dumitraş et al. [25, 26]

point out that most update failures are not caused by a software defect, but by

version conflicts during the update procedure where the main code or library code

changes. We adopt our project centralization to resolve version conflict for multiple

component in distributed applications. The relation of accuracy of project and the

runtime performance of the centralized program is studied in Section 3.3.

(2) Process Memory space separation. In a multi-process system, the operating

system separates the memory spaces of all processes. This separation is absent in

the centralized program but can be emulated by program transformation. In Java-

like systems, memory space separation is only necessary on static data, which exists

once per VM. Static fields and class descriptors are shared as a single instance of a

given class. Accessing these data by different processes without proper separation

in the centralized program would cause data races. Therefore, centralization should

41

keep the memory space of each process separate. We discuss our refinement in

Section 3.2.

(3) Runtime behavior : Startup and shutdown. Centralization wraps each pro-

cess of an original program as a group of threads and starts them in the same way

before the centralization. We denote each group of such threads by a centralized

process which has the same runtime behavior as its corresponding process before

centralization. Multiple centralized processes run on a single VM after centraliza-

tion. To manage different centralized processes, Stoller [82] proposes a solution by

defining the additional class CentralizedProcess . Each application in the original

program is wrapped as a CentralizedProcess by centralization. Each centralized

process holds a unique field as the process ID , which is used to identify each appli-

cation at runtime. The main issues are to start centralized processes in a required

order and to preserve the shutdown semantics after centralization. For the analysis

of network applications, ensuring that a server is initialized before clients try to con-

nect is important. Otherwise, the client exits prematurely after failing to connect

to the server. Shutdown semantics [5] concern the termination of the centralized

application. In the Java standard library, invoking methods like Runtime.exit and

Runtime.halt [41] terminates the entire VM: the first one runs any previously reg-

istered shutdown hooks, and tasks that free resources during application shutdown;

the second one halts the VM abruptly, without freeing any resources [32]. Central-

ization should preserve the shutdown behavior of the original program by proper

transformation.

3.2 Implementation

We implement our process centralization solution as a four-pass transformation tool,

which performs bytecode transformation by using the ASM bytecode library [51].

Before centralization starts, the centralizer parses a user-defined script into a Java

startup class file which defines how each process starts. The centralizer trans-

forms all the classes of all projects as described in the script, as defined in previous

work [5, 82]. After transformation, the centralized program can be executed from

the synthesized startup program.

• Class Statistics. The first pass reads in the classes from all projects and builds

their internal data structures accordingly. Some statistical information like the

42

number of class files, the size of each project, and the number of static fields, is

calculated in this pass. This provides the user with information about the number

of modifications during transformation.

• Project Centralization The second pass integrates the project centralization

implementation from last section. It reads the data structure built in the first pass

and performs project centralization. It provides options to use either the simple

algorithm in Alg. 1 or the optimized algorithm (or the optimal solution) in Alg. 2.

After project centralization, all projects are represented by one single centralized

project data structure for further transformation.

• Static Fields and Class Descriptors. The third pass transforms static fields and

class descriptors as [5,82]. For static fields, we transform them into arrays and add

one extra dimension if the field is an array. We refine the initialization semantics

of static fields by analyzing and transforming the static initializer. We also do not

transform static final fields if they store the immutable data. The static final fields

that store mutable data are transformed because they can still cause data races

when multiple threads access such data. We also transform static fields that are

generated by the Java compiler (synthetic fields). Previous work transforms all

static fields without such distinctions.

For class descriptors used as locks, they cannot simply be duplicated like static

fields [41]. We adopt the proxy lock approach [5]. Whenever a class descriptor is

used as a lock, we use the proxy lock instead. The usage of a class descriptor as a

lock or for reflection is distinguished by analyzing instructions of the bytecode. If

the class descriptor is on the top of current stack frame and the next instruction is

monitorenter , it uses the class descriptor as a lock to enter the critical region. Oth-

erwise, the class descriptor is used for reflection which should not be transformed.

• Startup and Shutdown Semantics. The last pass implements the startup and

shutdown semantics. For the startup semantics, the main issue is to ensure the

centralized processes start up in the desired order such that dependencies between

them are satisfied; for example, a server needs to be ready to accept connection

before its clients are started. A previous implementation [5] is specialized for Java

PathFinder by modeling the Java network library. It does not work for other tools

than Java PathFinder. We perform instrumentation to a few key network functions.

Whenever a component application tries to connect to a port, it creates an external

process to check the port status. If the port is open, it continues to connect,

43

otherwise it waits until the port is open. This approach does not modify the Java

network library and can be applied to tools other than Java PathFinder. Shutdown

semantics require that a process that calls Java library methods Runtime.exit and

Runtime.halt to terminate, only terminates all its threads while other processes may

continue running. This requires killing all its threads belonging to the centralized

process. In Java, a simple way for a thread to terminate itself is to throw an

exception of type ThreadDeathException. For the shutdown hooks and allocated

resources, we perform code instrumentation so that when a process calls to exit, it

call its shutdown hooks and release all its allocated resources.

Table 3.1: Runtime performance comparison

App. Bytec.
Size
[KB]

#cl.
v.1

#cl.
v.2

Simple Greedy
Without
Centralization

Tran.
Time
[s]

Trans.
Mem.
[MB]

Exce.
Time
[s]

Exce.
Mem.
[MB]

Stora.
[KB]

Tran.
time
[s]

Trans.
Mem.
[MB]

Exce.
Time
[s]

Exce.
Mem.
[MB]

Stora.
[KB]

Exce.
Time
[s]

Exce.
Mem.
[MB]

Echo 1 1 0.37 33.59 0.14 22.79 5.35 0.40 36.93 0.14 22.77 5.35 0.27 64.08

Server 2.17 2 2 0.37 34.15 0.14 23.33 6.82 0.41 37.37 0.14 23.02 5.35 0.41 107.82
cl.v1 1.49 4 4 0.38 34.34 0.14 24.15 9.79 0.42 37.93 0.14 24.02 5.35 0.68 195.14
cl.v2 1.49 8 8 0.41 36.27 0.14 25.33 15.70 0.43 38.96 0.14 25.27 5.35 1.22 369.93

Daytime 1 1 0.37 33.24 0.15 24.28 3.90 0.40 36.45 0.19 24.36 3.90 0.36 66.03

Server 1.63 2 2 0.38 33.94 0.16 25.13 5.05 0.41 37.32 0.19 24.88 3.90 0.53 109.60
#cl.v.1 1.16 4 4 0.38 34.27 0.16 26.19 7.34 0.41 37.41 0.19 26.19 3.90 0.87 196.93
#cl.v.2 1.16 8 8 0.40 35.66 0.16 28.62 11.92 0.43 38.56 0.19 28.30 3.90 1.53 371.78

Chat 1 1 0.37 33.91 0.14 23.18 8.39 0.41 37.66 0.14 23.13 8.39 0.63 64.23

Server 3.99 2 2 0.38 34.23 0.15 24.18 10.56 0.42 37.96 0.14 23.91 8.39 0.66 108.30
#cl.v.1 1.98 4 4 0.40 36.09 0.15 25.62 14.93 0.44 38.98 0.14 25.38 8.39 0.72 196.85
#cl.v.2 1.98 8 8 0.44 44.62 0.17 30.12 23.64 0.46 46.50 0.17 28.49 8.39 0.96 373.75

Alphabet 1 1 0.38 35.82 0.42 23.41 8.51 0.42 39.14 0.45 23.53 8.51 0.57 64.60

Server 3.20 2 2 0.40 36.14 0.62 23.83 9.99 0.43 39.19 0.65 23.77 8.51 0.94 108.81
#cl.v.1 3.46 4 4 0.41 38.23 1.02 24.67 12.97 0.45 41.23 1.06 24.54 8.51 1.69 196.95
#cl.v.2 3.46 8 8 0.45 52.45 1.83 26.37 18.91 0.49 57.29 1.87 26.04 8.51 3.14 373.60

3.3 Comparisons of Runtime Performance

In this section, we perform experiment to apply our tool on actual networked appli-

cations to compare the runtime performance (including execution time and memory

consumption) of the centralized applications transformed by two proposed algo-

rithms and the corresponding one without centralization.

The networked applications used in this experiment are summarized as follows :

• The Echo server sends all input back to client. The Echo client is a test client

that connects to the server and sends predefined text to it (RFC 862).

• The Daytime Sever returns the current time back. The Daytime client requests

the current time from the server (RFC 867).

44

• The Chat server returns the input of one client to all connected clients. The

chat client is a test client that connects to the server, sends predefined text

to it, and disconnects after having received a certain number of lines.

• The alphabet server returns the nth letter of alphabet, and the client sends

fixed requests.

All experiments of each setting are repeated 50 times (including both centraliza-

tion transformation and execution of the centralized application), and the averaged

results are summarized in Table 3.1. The column Bytec. Size lists project size of

each component application in a benchmark in bytecodes. Consider the Echo Server

Client benchmark as an example. The size of its server is 2.17KB, and the size of

each client version is 1.49KB. For each benchmark, we have four settings with dif-

ferent number of instances for each version of a client. The total benchmark size

can therefore be calculated by taking size summation for all its projects. The trans-

formation time and memory of cost for each algorithm are shown in columns Trans.

Time and Trans. Mem.. We find that the greedy centralization takes more time

and memory to perform transformation. The execution time and memory cost of

the centralized application are shown in columns Exec. Time and Exec. Mem.. The

execution time is the averaged real time for program execution and the memory

consumption is the averaged peak memory consumption of the whole VM. They

are measured by using GNU time tool. The storage refers to the memory cost (in

KB) to store all class files of the centralized application. The execution time of the

centralized applications does not show the significant difference for both transfor-

mation algorithms. The execution memory cost of the simple algorithm is slightly

larger than the greedy solution because it produces more classes, which need to be

loaded in to VM during runtime. The execution time and memory of the original

program are larger than for their centralized counterpart. Without centralization,

each application runs on its own VM which produces additional overhead. Each VM

also loads its own version of classes, many of which are duplicated among different

applications. Therefore, the runtime and memory consumption grows linearly with

the number of applications.

45

Table 3.2: Application of centralization to JPF

App. Bytec.
Size
[KB]

JPF. Opt. Centra.

Time
[h:mm:ss]

Mem.
[MB]

Time
[s]

Mem.
[MB]

Echo Server
Client

5.15 00:00:07 328 0.40 36.92

Chat Server
Client

7.94 01:10:19 471 0.41 37.66

Chat Server
Client v.1

7.94 00:00:01 82 0.42 37.95

Daytime
Server
Client

3.95 00:00:58 343 0.40 36.76

Daytime
LeapSecond

6.13 00:00:14 366 0.41 37.00

Alphabet
Server
Client

10.11 N.A. N.A. 0.43 39.20

Alphabet
Server
Client
v.1

10.11 05:29:58 1023 0.42 39.28

3.4 Centralization with JPF

To show the usefulness of our centralization tool in verifying distributed application,

we perform experiment on Echo client/server, Daytime client/server, Chat Server

and Alphabet client/server [6] as the test beds. Each benchmark consists of one

server and two clients with different versions. The verification results of JPF on the

centralized application is summarized in Table 3.2. Column Bytec. Size shows the

total size (including the server and two clients) of each benchmark, which can be

calculated by summing up the size of each its application presented in Table 3.1. For

a small application like the Echo client/server system, JPF finishes its verification

in 7 seconds. Similarly, it takes about 1 minute for the Daytime case. The other

applications are much more complex. The chat server features a high degree of

internal concurrency because each request is sent back to all currently connected

clients. The state space therefore contains all possibilities for concurrent client

connections, with all possible permutations for establishing a connection, and for

each message to be interleaved with other messages. Because of this, it takes more

than one hour to finish searching the state space. The state space of Alphabet

is even larger, because each client is implemented using producer and consumer

threads. For the case with two active clients, this involves three threads for each

application: on the server side, the main thread and two worker threads are used,

46

and each client uses a main thread, a producer, and a consumer thread. Because

the state space is exponential in the number of threads, this case is too large for

JPF to handle: After 14 hours, it reports that it has run out of memory (given 1 GB

of heap space). However, while full verification is out of reach for such applications,

finding defects is still possible.

We cover that use case by seeding some faults into these benchmarks. Chat.

v.1 is the buggy version that has a race condition on a shared array field that

stores active connections. In the failure scenario, one client disconnects, causing

the server worker thread handling that client to remove that entry. Because the

“remove” operation is not synchronized, another worker thread (serving a different

client) checks the contents of that field (which is non-null at first) before using it.

Between the check and use, the unsynchronized remove operation sets the field to

null, causing the NullPointerException in the other worker thread later. In Daytime

LeapSecond, the server produces a time with leap second with low probability, and

one client checks the format of the time it receives. The client crashes if the time

format is incorrect. These two bugs could be found by JPF quickly. However,

when a large number of threads is involved, it may take more time to find a defect

in a large state space. The benchmarks of Alphabet. v.1 consists more than then

threads (including a wrapper thread), and it takes more than 5 hours to find the

seeded bug. Previous work [5] does not support centralizing distributed applications

with multiple versions. The net-iocache approach [6] analyzes each peer separately,

which cannot find these bugs, either. By using our centralization approach, we can

successfully find these described bugs.

47

Chapter 4

Program Analysis Enhanced

Automatic Testing and Testing

Multiple Versions

Although verification can exhaustive explore all program state such as concurrency

state overlapping between different processes, it limits to medium or small size ap-

plication by its state explosion problem. Therefore, software testing is still widely

used and is one of the most important tasks during software development to im-

prove the reliability and correctness of software system. Compared to verification,

testing techniques are more robust and scalable, while verification is more widely

used for concurrent systems, resulting both approaches has their own application

scenario. Continued last section, this section proposes and discusses our techniques

in testing multiple version variants, sharing testing results among multiple versions

while reduce the redundancies in testing the common code. We first discuss our

program analysis enhanced random testing techniques and then discuss our refined

project centralization based techniques for testing multiple versions.

With the increasing application of revision control system like SVN, Github,

Mercurial, and Software Product Lines, more and more similar product variants

are created, where these products share some common code and features. Testing

these similar product variants separately, however, causes lots of redundancies in

testing their common code, which may loose the chance to testing their variabil-

48

Successful sequence

Method

pool

Method

execution

Result

evalution

Sequence

generation
Method

selection

Input

selection

Object

pool

Run-time phase

Figure 4.1: Flow of default Randoop.

ity under the cost constraint. To the best of our knowledge, existing automatic

software testing and test case generation techniques can only test one product at

a time. Although they could be applied testing each of the similar products sep-

arately, they cause redundancies in code representation and test case execution.

They cannot share the testing results to further improve the testing performance

of another products, either. When testing multiple products, we may generate

test cases towards multiple optimization goals, like average code coverage, test case

length, memory consumptions, and so on.

4.1 Program analysis enhanced random testing

4.1.1 Introduction and Motivation

Manually crafting test sequences is a labor-intensive task. Random testing auto-

matically generates test sequences to execute different paths in a method under

test (MUT) [34]. It randomly constructs object instances as the receiver and input

arguments of the MUT. However, we found that existing random techniques suffer

from low code coverage. Reasons are that randomly generated sequences may not

able to set up the receiver in all the required states, or that the required input

arguments for invoking the MUT cannot be generated automatically.

Feedback directed Random testing approaches and its tool Randoop represent

the state of the art in automatic random testing. Randoop [66] implements a

random testing approach for method sequence generation. Given the software to

test, Randoop first extracts all publicly visible API methods and puts them into a

49

fixed method pool, which contains all methods to be considered for testing. Randoop

also includes simple primitive values and a few simple objects such as strings, in its

initial object pool (see Fig. 4.11).

Randoop tests MUTs by randomly selecting a method m(T1 . . . Tk) to test from

its method pool. All input objects with type T1 . . . Tk must also be prepared to test

m. Randoop randomly selects the corresponding inputs from its object pool and

concatenates previously known input sequences to derive these known objects, to

test m. If there exists no object with the required type in the object pool, Randoop

skips m and selects the next method. Upon successful input construction, m is

executed. Execution results of each method call are analyzed against a few prede-

fined contracts. If the generated sequence is new and its execution does not cause

any failures, it adds these successful sequences to the object pool (see Fig. 4.11).1

Randoop continues to test more methods until a time limit is hit.

We found that Randoop shows several limitations in practical applications de-

spite its versatility:

1. Small constant pool. Randoop uses a small pool of predefined constants and

primitive values observed at run-time as inputs. Many relevant values are

missed.

2. No distinction between methods with and without side effects. Pure methods

do not change the object state and may add long redundant subsequences to

a test.

3. Static type management. This limits coverage in cases where the dynamic

type differs from the declared type.

4. Fixed method pool. An unordered, fixed set of methods to test may prevent

some methods from ever being executed due to unfulfilled dependencies.

5. Lengthy input sequences. Randoop has no bias towards light-weight methods,

which in general results in long test sequence execution times at a later phase.

6. No run-time coverage guidance. Randoop selects the methods to test with

no bias, choosing easily covered and hard-to-cover methods with the same

probability.

1It is assumed that execution sequences are deterministic.

50

1 package org . apache . commons . c l i ;
2 public class PatternOptionBui lder {
3 public stat ic f ina l Class STRING_VAL=Str ing . class ;
4 public stat ic f ina l Class OBJECT_VAL=Object . class ;
5 // 7 more s im i l a r f i e l d s omit ted .
6 public stat ic Object getValueClass (char ch) {
7 switch (ch) {
8 case ’@ ’ : return PatternOptionBui lder .OBJECT_VAL;
9 case ’ : ’ : return PatternOptionBui lder .STRING_VAL;

10 // 7 more case branches omit ted .
11 }
12 return null ;
13 } } // 2 more methods omit ted .
14 public class TypeHandler {
15 // 1 method omit ted .
16 public stat ic Object c reateVa l (S t r ing s , Class c) {
17 i f (PatternOptionBui lder .STRING_VAL == c)
18 return s ;
19 else i f (PatternOptionBui lder .OBJECT_VAL == c)
20 return c rea teObjec t (s) ;
21 // 7 more e l s e i f branches omit ted .
22 else return null ; } } // 7 more methods omit ted .

Figure 4.2: Two classes from Apache cli. Branch coverage requires both domain knowledge on
constant values and accurate type management.

To address these limitations, we first perform a static analysis on the classes

under test. This step extracts domain knowledge such as possible constants dur-

ing execution, method side effects, and their dependencies. The results are later

combined with the run-time input, demand-driven object construction, and cov-

erage information techniques, to guide testing to those MUTs with low coverage.

We manage the generated sequences based on the dynamic type information and

favor sequences with low execution time as input to other MUTs. Our approach is

fully automated and requires no specification of possible inputs. We implement our

techniques as pluggable options based on Randoop. The evaluation of our approach

on 30 popular real-world applications demonstrates its effectiveness.

4.1.2 Weakness Found in Randoop

Existing random testing techniques suffer from low structural coverage on practical

programs, where many diverse input object states are required to cover all code.

Although formal specifications with well-defined input and method invocation con-

51

1 package org . apache . commons . compress . u t i l s ;
2 public f ina l class IOUt i l s {
3 private IOUt i l s () { }
4 public stat ic long copy (f ina l InputStream input ,
5 f ina l OutputStream output) throws IOException {
6 return copy (input , output , 8024) ; }
7 public stat ic long sk ip (InputStream input , long n)
8 long av a i l a b l e = n ;
9 while (n > 0) {

10 long skipped = input . sk ip (n) ;
11 i f (sk ipped == 0) break ;
12 n −= skipped ;
13 }
14 return av a i l a b l e − n ; } } // 5 methods omit ted .

Figure 4.3: Methods in Apache compress that require inputs outside the fixed method pool of
Randoop.

straints enhance random testing by shrinking the possible input space, they are

often unavailable or incomplete in practice. This limits their applicability.

Randoop is fully automated, using no specification or model. This makes Ran-

doop very easy to use; however, there are still areas in which code coverage is less

than optimal.

4.1.2.1 Small Initial Value Pool

Randoop stores a small set of simple constants for primitive types in the initial

prefixed value pool, such as -1, 0, 1, 10, 100 for bytes, or "hi!" and "" for strings.

It incrementally grows its initial object pool by storing objects derived from ex-

ecuted test sequences. However, the lack of diversity in the beginning causes it

to miss many branch conditions. Furthermore, Randoop cannot observe primitive

temporary values that are used inside a method. Therefore, even when including all

initial values and the values obtained at run-time, the small value pool still limits

the achievable coverage. Consider the example from class PatternOptionBuilder

in Fig. 4.2: Branches of method getValueClass are not covered by Randoop as it

does not contain predefined primitive values, or values derived from them, to satisfy

these branch conditions at run-time. However, using primitive values such as ’@’

as an input would easily cover a branch in this case.

52

4.1.2.2 No Distinction on Side Effects

Only methods with side effects can change the state of an object [83]. These methods

should be favored over methods without side effects in order to frequently mutate

object states and, thus, to satisfy more branch conditions. Since Randoop does

not distinguish between methods with and without side effects, it creates long and

redundant sequences for objects staying in the same state. All of these sequences

are put into the pool of reusable sequences, deferring state changes even further

and slowing down coverage growth.

4.1.2.3 Static Type Management

Randoop uses the static (declared) return type of a method to manage a successful

sequence in the object pool. Static type management does not distinguish whether

a method produces the declared return type or a subtype at run-time. It therefore

may not cover all possible behaviors of a method, causing some methods never to be

tested because no compatible input seems available, even if a sequence that returns

the required type at run-time does exist. This limitation may result from the need

to easily generate compilable code for off-line testing, which requires the correct

type casts to be added if the dynamic type of a variable does not correspond to its

static type.

In our example in Fig. 4.2, branch coverage in method createVal requires both

suitable primitive values and a class descriptor returned by getValueClass method.

However, static type management stores the object returned by getValueClass as

type Object according to its declaration. This results in createVal never being

directly tested.

4.1.2.4 Fixed Method Pool

Randoop uses a fixed method pool when considering methods to test. However,

many methods require an input type that cannot be generated from invoking a fixed

set of API methods; instead, they may require data from libraries not belonging to

the software under test itself. When a method requires an input type that cannot

be generated from existing input sequences, Randoop simply skips that method.

Because of this, many MUTs are never tested.

53

Successful s
equenceMethod

pool

Secondary obj. pool

Detective

Main object pool

Elephant brain

Run-time phase

Input

selection

Elephant brain

Orienteering

Detective

Result

evaluation

Detective

Orienteering

Bloodhound

Method

execution

Method

selection

Bloodhound

Sequence

generation

Detective

Static phase

Impurity fuzzing

Impurity

analysis

ReImInfer

Constant

 mining

ASM

Method

topo order

Detective

Figure 4.4: Flow of our enhanced Randoop.

Consider class IOUtils (see Fig. 4.3), where both methods copy and skip re-

quire an object of type InputStream. However, the required object is never gener-

ated by Randoop as it requires using the Java core library. Due to this, no method

of this class is ever covered, even though providing the required input easily covers

most of these methods.

4.1.2.5 Lengthy Input Sequences

Randoop manages all generated successful sequences in its object pool such that

sequences that return the same type are put into the same set. Whenever an input

with a specific type is required, Randoop randomly selects a sequence among all

available sequences. Since new sequences are constructed by concatenating existing

input sequences, the resulting sequences can grow considerably in length. This adds

to the execution cost of generated test cases. Randoop quickly reaches a bottleneck

after running for several minutes, repeatedly executing lengthy sequences while

leaving many other relevant sequence combinations untested.

4.1.2.6 No Coverage-Based Guidance

The difficulty of covering a branch varies between branches. Some branches are

easily covered in the early phase of random testing, while others require a complex

object state. An equally balanced selection of methods to be tested, wastes time on

those methods that are already well covered. On the other hand, too much emphasis

on uncovered branches may waste time in challenging the difficult branches without

much payoff. Our observation is that the current strategy of Randoop is not ideal,

but the solution is not as simple as looking for uncovered branches [44].

54

4.1.3 Our Enhancements

We have devised six enhancements to Randoop. They are based on information

gathered from a static analysis prior to running the main tool, and at run-time

when generating tests (see Fig. 4.4). The information is used to guide Randoop.

We briefly define a term to denote each enhancement and describe them in detail

below.

1. Constant mining (static): Constants are extracted from the classes under test

to seed the initial value pool.

2. Impurity (static + run-time): Inputs are fuzzed based on Gaussian distribu-

tion and a method purity analysis.

3. Elephant brain (run-time): Input sequences are managed with the exact return

type obtained at run-time.

4. Detective (static + run-time): We test methods in topological order and con-

struct missing input data on demand.

5. Orienteering (run-time): Method sequences that require less execution time

are favored.

6. Bloodhound (run-time): Method sequence generation is guided by coverage.

4.1.3.1 Automatic Constant Extraction

As observed earlier, Randoop misses many branches because its initial pool of input

values is limited. Various techniques exist to remedy this shortcoming. Symbolic

execution [56, 95] and concolic testing [31, 76] use symbolic constraints to derive

inputs that cover more branches. Unfortunately, symbolic execution is slow and

does not deal well with complex branch conditions and nested data structures.

Adaptive Random Testing (ART) [16, 19] searches for possible values from the

whole input domain based on distance and a given distribution. However, the input

domain space is usually very large, which limits ART in covering even simple branch

conditions such as a string comparison.

To obtain relevant input values without incurring much overhead, we perform a

lightweight static analysis on the classes under test, which we call constant mining.

55

Our analysis extracts constants, and it performs constant propagation and constant

folding to further extend the set of input values. The extracted values are fed into

the value pool with the assumption that many of these values are close to satisfying

some branch conditions.

For example, branch conditions such as the string comparison str.equals("coverMe")

can be easily covered. To obtain even more possibly relevant values, state fuzzing

techniques (see Section 4.1.3.2) are used.

Our tool for extracting constants is based on ASM [12]. We implement our

abstract interpreter on top of the ASM interpreter framework, which analyzes the

Java bytecode of each class under test and performs constant propagation and

folding. Our analysis is intra-procedural; we forgo a more accurate inter-procedural

and pointer analysis for performance reasons. Our approach goes beyond value

extraction from source code [72].

4.1.3.2 Purity-Based Object State Fuzzing

The coverage of a specific execution path requires the receiver as well as the input

argument objects to be in a certain state. In order to generate sequences with a

broad variety of object states, we alter (fuzz) the states of the input objects and

pass the fuzzed results to the MUT. We handle primitive values based on a Gaussian

distribution and non-primitive objects based on method purity analysis.

4.1.3.2.1 Primitive Object Fuzzing Primitive inputs are either extracted by

constant mining or from run-time execution results. To cover a wider range of in-

puts, we use a heuristic that assumes that given values are already close to satisfying

some of the branch conditions. We adopt a Gaussian distribution to probabilisti-

cally select the next value as input, where we use the originally selected input value

and a prefixed constant as the expectation (mean) value µ and deviation σ, respec-

tively. This approach gives higher probability to values close to µ (68.3% of all

values probabilistically lie in [µ− σ, µ+ σ]), while still generating also some values

far from µ.

To prevent newly generated primitive values from polluting our object pool, we

do not store values obtained from fuzzing; we only add new values that are observed

during execution. This allows us to obtain a wider range of primitive values based

on information extracted from the classes under test. We implement our primitive

56

value fuzzer based on the elementary distance [19] to generate values. In our current

setting we fixed σ = 30. The Levenshtein distance [54] is adopted for generating

string values.

4.1.3.2.2 Purity-Analysis-Based Object State Fuzzing In order to increase

the coverage of branches and execution paths, the obtained objects have to be in di-

verse states. To fuzz non-primitive objects, we identify those methods that mutate

the object state by having a side effect. Side effects may affect either the receiver

or input arguments (parameters).

Method purity analysis [83] classifies MUTs into pure and impure methods.

Methods without side effects are pure, methods with side effects are impure. We

focus on method impurity for fuzzing input object states.

Static [38, 83, 91] and dynamic [92, 98] purity analysis techniques and tools ex-

ist. We choose a static technique to avoid any overhead during the run-time phase.

We implement our method purity analysis based on the ReIm & ReImInfer frame-

work [38] due to its scalability and robustness. This framework does not require

an expensive, complete analysis of the program. It infers method purity based on

the type system and by its automatic inference algorithm. Since our impurity en-

hancement is probabilistic, a fast but sometimes inaccurate purity analysis fulfills

our need.

4.1.3.3 Dynamic Input Sequence Management

To improve the accuracy of input object selection, we manage the object pool by

using the exact return type of each method sequence, obtained at run-time. Our

approach easily covers previously uncovered methods that depend on the exact type

of its input (due to the subtype relation, in cases where the exact type is cast to its

super class and not remembered by default Randoop).

When outputting the generated sequences as JUnit test cases, we also compare

the static type of each method to its dynamic type, adding explicit type casts

where needed. Without type casts, the generated JUnit code would fail to compile

because the static type of a variable or return value does not match the dynamic

type requirement of its receiver.

This enhancement generates many different data types, and never forgets; we

therefore call it elephant brain.

57

4.1.3.4 Demand-Driven Input Construction

To test an MUT, its receiver object and input arguments must be prepared from

the object pool. Default Randoop skips a method if some input type is unavailable.

Randoop only considers publicly visible methods and constructors from the

classes under test for testing. However, this misses cases where a method of a

different class or another library returns the right type.

Although it may be tempting to put additional methods from other classes into

the method pool, this greatly increases the search space and pollutes the object

pool, wasting effort on methods that are not the target.

We make two improvements: First, we sort MUTs by their topological depen-

dency order. Second, we use a demand-driven approach to construct inputs that

are not directly available by leveraging a secondary object pool.

Our topological-order analysis statically computes dependencies of MUTs by

considering their input and return types. Given two methods A and B, A depends

on B if A requires an input type that can be returned by B. We compute this

dependency information as a graph, and sort the methods in topological order so

that methods with no input dependencies execute before methods that need input

returned by other methods. After executing all methods in topological order, we

can quickly identify those methods that lack input for testing, and only consider

those unavailable inputs as candidates for demand-driven input construction.

Our demand-driven approach searches all available packages for constructors

and static methods that return a required type. We recursively search further, to

a maximum of five nesting levels, if more input is needed for a candidate method

that returns the sought-after type.

If a set of methods to produce the required data is found, we execute the con-

structors and methods in topological order and store all obtained objects in a sec-

ondary object pool. The secondary object pool is only used for previously unavailable

input types. A sequence that directly returns a previously required input type is

added to the main object pool, while other generated sequences remain in to sec-

ondary object pool. If further input is needed later, we first check the secondary

object pool before performing an expensive recursive search again. To reduce the

overhead of the secondary object pool, we keep only one sequence for each type.

Our approach does not pollute the main object pool and provides more diverse

input types with little overhead.

58

Like a detective, this enhancement often uncovers new relationships between

methods.

4.1.3.5 Cost-Guided Input Sequence Selection

Randoop manages generated method sequences by their return types. All sequences

that return the same type are treated equally, regardless of their length and execu-

tion time.

For better run-time performance, it is desirable to use method sequences that

require less execution time. The idea is inspired from orienteering, where a path

that takes less time is preferable. Therefore, we select a sequence based on its

execution time: weight(seq) = 1/(seq .exec time ∗ k), where seq is a sequence for

selection, k counts how many times seq has been selected so far, and seq.exec time

is the execution time of seq. As measuring and updating the execution time of

each sequence incurs additional overhead, we measure the execution time of each

sequence only once, expecting it not to change much.

4.1.3.6 Coverage-Guided Method Selection

To direct Randoop towards uncovered code, we perform a coverage analysis dur-

ing test generation, and favor those MUTs that are not well covered. Although

it is desirable to update the coverage information after executing each MUT, this

is expensive; method selection in Randoop is executed very often. Therefore, the

coverage information is updated with time interval t. During each interval, we pri-

oritize method selection for a method m among all MUTs M by using the following

function as its weight w(m, k):

α ∗ UncovRatio(m) + β ∗

(

1−
Succ(m)

MaxSucc(M)

)

if k = 0

(

− 3

ln(1− p)
∗
pk

k

)

∗ γ ∗ w(m, 0) +
δ

Size(M)
if k ≥ 1

In this function, k represents the number of selections of method m since cov-

erage information was last updated; UncovRatio(m) is the uncovered branch ratio

of m; p is the parameter of a logarithmic series that determines how fast the factor

decreases as k increases; Succ(m) is the total number of successful invocations of m;

59

MaxSucc(M) is the maximal number of successful invocations of all MUTs; Size(M)

is the number of MUTs M ; and α, β, γ, δ are parameters to adjust the weight of

each formula.

The overall effect of the weight function is that initially (k = 0) we favor those

methods with low code coverage. Once a method has been tested successfully

(k ≥ 1), we downgrade its weight logarithmically. After several rounds of selection,

the weights return to a nearly-uniform distribution again. At each update of the

coverage information, the weights are recalculated, and k is reset to 0.

Our method selection strategy is inspired by the multi-armed bandit algorithm [93].

This algorithm balances “exploitation” (methods that are well tested) and “explo-

ration” (methods with low coverage) for a higher payoff. This algorithm is useful

because some branches of a MUT can be difficult to cover even if a method is tested

often. A weight function only based on an uncovered ratio of code would waste

resources on those methods with difficult branch conditions without gaining much

benefit. Our approach considers both code coverage and the execution history of

each MUT for the initial weight, but decreases this weight later to avoid wasting

too much effort in difficult branches.

We implement this enhancement using JaCoCo [39]. The original version of

JaCoCo provides only off-line coverage analysis based on Java bytecode. For our

work, we enhance JaCoCo to enable on-line profiling using dynamic instrumenta-

tion. During class loading, we insert probes before each branch or jump instruction,

so that if the corresponding part of the code is executed, the probe flag will be set.

Coverage is periodically updated based on this information. Currently, we set the

weight parameters to p = 0.99, α = 0.3, β = 0.7, γ = 0.9, δ = 0.1; we leave parame-

ter tuning as future work.

Like a Bloodhound, this enhancement hungers for coverage, while intelligently

balancing the deeper search of each MUT against the breadth given by the entire

problem set.

4.1.4 Experiments

We evaluate enhancements to Randoop by investigating the following questions:

1. How much does coverage improve compared to original Randoop?

2. How much does each enhancement improve coverage?

60

3. Does coverage reach a saturation point more quickly or slowly with the en-

hancements?

4. How many defects can be found in real software thanks to the enhanced ver-

sion?

5. How many false positives (incorrect API usage and the like) are caused by

our enhancements?

4.1.4.1 Setting and Methodology

We evaluate our enhancements in comparison to the original version of Randoop

1.3.4 (released in January 2014). We use Randoop with default settings, unless

indicated otherwise. Each of our enhancements can be activated separately, allowing

us to evaluate them individually.

As basis for our evaluation, we select a collection of 30 popular software packages.

The overview in Table 4.3 shows for each package its name and version, the number

of classes it contains, and the number of methods. From these classes and methods,

only a subset constitutes the public API. These are listed as “public” and contain

public classes and methods as declared in the source code. We also indicate the

number of branches in all methods, their total cyclomatic complexity (the number

of linearly independent paths) [60], as well as the overall size of the program in

terms of non-comment lines of code (NCLOC).2

All experiments are run on an Intel Core i7 Mac 2.4 GHz with 8 GB of RAM,

running Mac OS X 10.9.1 and Oracle’s Java VM (JVM), version 1.7.0 21. We use

a memory limit of 3 GB for the JVM, except for large benchmarks where 4 GB is

needed.3

4.1.4.2 Coverage Evaluation

We evaluate coverage improvements on 30 selected software packages and investigate

the behavior of our enhancements on the SCCH collection library [71] in detail.

2Using CLOC 1.60, http://cloc.sourceforge.net/.
34GB is used for Apache commons math and compress, ASM, and Guava. For Apache com-

mons math and compress, we further turn off “constant mining” when combining all enhancements,
because these packages contain so many constants that the memory is quickly exhausted. Finally,
WheelWebTool causes problems with the class loader, forcing us to turn off the Detective enhance-
ment.

61

Table 4.1: Benchmarks: Size and complexity metrics, and test results

Software # classes # methods # Cyclom.
NCLOC

Coverage (default) Coverage (enhanced)
(version) public all public all branches compl. # m. ins. [%] br. [%] # m. ins. [%] br. [%]

A4J (1.0b) 45 45 518 522 544 794 3,602 519 81.5 48.7 521 84.0 54.0
Apache BCEL (5.2) 333 383 2,679 3,182 5,227 5,613 23,631 1,206 32.3 19.3 1,615 44.7 30.8
Apache Commons Cli (1.2) 18 22 162 211 490 455 1,978 191 72.7 55.1 193 76.4 64.1
Apache C. Codec (1.9) 58 85 441 625 1,835 1,539 5,803 513 87.1 69.5 572 93.7 81.4
Apache C. Collection (4.0) 312 431 2,866 3,861 5,499 6,225 23,713 1,853 38.6 28.1 2,782 65.9 52.8
Apache C. Compress (1.8) 111 191 1,066 1,691 4,634 3,943 17,462 645 17.5 14.7 1,078 53.0 36.4
Apache C. Math (3.2) 736 1,001 6,485 8,089 18,576 16,255 81,792 3,504 38.5 23.9 4,773 55.2 35.3
Apache C. Primitive (1.0) 154 259 1,826 2,243 1,446 2,581 9,836 1,032 57.1 65.2 1,100 62.0 70.8
ASM (5.0.1) 98 166 1,402 1,877 7,050 5,622 24,193 1,072 35.5 23.5 1,256 43.6 29.9
Beanbin (1.0b) 88 90 361 482 666 779 3,786 229 26.4 23.1 243 31.6 27.3
ClassViewer (5.0.5b) 7 24 88 147 470 356 1,485 64 36.1 19.1 79 48.2 36.6
Dcparseargs (R4) 6 6 22 22 88 65 204 21 51.4 58.0 21 54.1 63.6
Fixsuite (R48) 25 42 196 275 322 428 2,665 122 19.5 15.5 124 22.1 19.3
Follow (1.7.4) 65 96 331 460 487 682 4,812 100 16.8 21.4 158 26.5 31.6
Guava (16.0.1) 365 1,678 7,989 12,928 11,247 16,214 66,566 3,964 34.0 26.0 4,920 44.1 37.1
Java Simp. Arg. Parser (2.1) 59 69 418 508 714 849 4,888 387 60.0 50.6 410 70.2 62.5
Java View Control (1.1) 24 25 153 268 2,064 1,466 4,617 57 6.2 4.6 146 31.8 13.2
Javax Mail (1.5.1) 229 311 1,831 2,692 9,523 7,316 28,271 1,379 35.4 25.8 1,418 37.3 27.1
Jdom (1.0) 53 75 737 925 3,196 2,467 8,362 648 45.7 31.0 715 56.6 39.7
Joda Time (2.3) 144 232 3,460 4,314 6,172 7,049 27,638 2,765 62.1 45.1 3,271 73.6 55.2
Jsecurity (0.9.0 RC3) 133 136 667 797 704 1,038 13,135 485 40.6 16.8 503 46.1 23.3
Lotus (R29) 55 57 126 138 131 193 1,028 100 59.0 30.5 106 63.1 36.6
Mango (2.1 03/2014) 78 97 354 421 382 598 2,141 299 70.2 55.2 345 81.6 70.2
Nekomud (R16) 10 11 33 37 44 53 363 7 7.9 9.1 9 10.8 13.6
Rhino (1.7R1) 122 259 1,534 3,583 19,422 13,938 43,178 1,282 18.9 12.8 1,531 24.6 18.2
SAT4J Core (2.3.5) 204 265 2,208 2,690 3,815 4,235 17,397 1,636 43.6 25.6 2,015 64.0 43.3
SCCH collection (1.0) 23 37 198 261 308 339 1,348 133 59.1 44.5 136 67.5 57.8
Tiny Sql (2.26) 29 31 657 719 2,237 1,825 7,672 449 25.3 17.1 486 32.1 23.4
TullibeeAPI (R64) 21 21 207 242 909 701 3,236 138 30.2 14.0 139 30.3 14.5
WheelWebTool (0.8.2a) 108 122 1,277 1,517 4,988 4,006 17,581 582 23.4 19.4 585 24.8 21.8

Total (average for coverage) 3,713 6,267 40,292 55,727 113,242 107,624 452,383 63.0% 41.1 30.4 77.6% 50.7 39.7

62

Figure 4.5: Instruction and branch coverage of default and enhanced Randoop (after 3000 s).

4.1.4.2.1 Open Source Benchmarks Coverage data in terms of method, in-

struction, and branch coverage is summarized in Table 4.3 for all packages, where

each configuration runs with 3000 seconds as time limit.

Fig. 4.5 shows the overall coverage improvement graphically, as a box plot. The

plot depicts the data as quartiles, i. e., the box contains the spread of 50 % of all

cases. The horizontal line inside the box indicates the median. The whiskers at

the top and bottom show the extreme cases. Our enhancements show a signifi-

cant improvement of coverage for all cases. For instruction coverage, we obtain

µ = 41.09, σ = 21.16 for default Randoop, over which our enhancements show a

significant improvement: µ = 50.67, σ = 20.96 at p < 0.05 (Wilcoxon Matched-

Pairs Signed-Ranks Test). For branch coverage, the values are µ = 30.44, σ = 17.69

(default Randoop), µ = 39.71, σ = 19.16 (enhanced Randoop); p < 0.05 (Wilcoxon

Matched-Pairs Signed-Ranks Test).

2 In general, each individual enhancement shows some improvement; the impact

of each enhancement varies across different cases. The combination of all enhance-

ments is much stronger than each enhancement by itself, which can be seen for

instruction coverage but is even more apparent for branch coverage (see Fig. 4.6).

However, in some cases, certain enhancements worsen performance (see Fig. 4.9).

Fine-tuning the parameters to counteract this is future work.

3 Our enhancements provide much faster coverage saturation but still allow

for some incremental improvements when default Randoop already tapers off (see

Fig. 4.7–4.9). Usually the Orienteering enhancement is effective by itself, but there

63

are also cases where the second phase of the detective enhancement makes a huge

difference (see Fig. 4.8).

To save space, we put other plots online at https://staff.aist.go.jp/c.

artho/ase-2014/.

4.1.4.2.2 SCCH Collection The SCCH collection package is based on a reim-

plementation of common Java collection classes (such as list, array, set, stack, and

map) for teaching purposes. It has been used in our previous experiments on unit

testing and test case generation [71], where we manually seeded defects. We there-

fore chose this package to investigate more closely how coverage is affected by the

different enhancements.

The behavior of collection classes is heavily influenced by their internal state in

terms of the number of elements they contain. Since the elements are only stored

and not processed, their value is usually not of importance unless it is null or the

collections are ordered. Thus, for this type of software, operations that mutate the

object state help to increase the coverage and to trigger failure cases.

Consequently, as one can see in Fig. 4.9, the Impurity enhancement improves

coverage results. However, Orienteering does even better because some operations

that mutate the state are also fast and thus frequently used by this heuristic. Con-

stant mining provided elements of different types, which increases the coverage in

cases where elements are compared. In contrast, the Bloodhound tends to favor

diverse sequences, which limits the chance for state changes. Selecting methods

based on the coverage works poorly in case of collection classes. While the two-

phase approach of Bloodhound mitigates this problem to a large extent, it does not

produce a coverage improvement in this case.

In line with our previous case studies [71], we also run all the enhancements in

varying configurations and including the option of using null as input value at a

probability of 10 %. The results are summarized in Fig. 4.10. They show that the

enhancements can have a mixed, positive and negative effect. Furthermore, using

null values also has a major impact on how our enhancements interact. Although

we get a similar overall improvement, the Impurity enhancement is much less useful

in combination with null inputs than under default settings (see Fig. 4.9).

We are aware that container classes represent a special case. However, our

detailed observations on the SCCH collection package show that achieving a good

64

Figure 4.6: Instruction and branch coverage for each enhancement (after 600 s).

Figure 4.7: Coverage improvement over time (Apache commons collections).

Figure 4.8: Coverage improvement over time (Apache commons compress).

65

Figure 4.9: Coverage improvement over time (SCCH collections).

Figure 4.10: Behavior of our enhancements on the SCCH collection classes, with null values
enabled.

66

coverage throughout diverse software packages is very difficult, and that combining

multiple enhancements can help to counteract weaknesses of a specific heuristic in

many cases.

4.1.4.3 Defect Detection

4 We study defect detection on the SCCH classes, which are well understood [71],

and on ongoing open-source projects, where the problem is much more open. In

the former experiment, both Randoop and our enhancement find 9 out of the 37

known, seeded bugs in the SCCH collection. The reason why our enhancements do

not find more defects is that (1) coverage increases in areas without seeded defects,

and (2) most defects cannot be detected with the generic built-in test oracles of

Randoop.4

For a more in-depth evaluation of defect detection capabilities, we apply default

and enhanced Randoop to the most recent version of popular software projects,

with the goal of uncovering new, previously unknown defects.

From the failed tests in the earlier evaluation, we choose projects where the

number of failed test cases reported is not prohibitively high (i. e, fewer than 100

failed tests for both versions combined). From this list we choose a subset that is

still under active development, with the last update on the web page or source code

being less than a year ago. This selection results in ten projects (see Table 4.2).

The number of test cases to be considered is still very high at this point, with

a total number of over 300 tests. We first filter out a number of tests that confirm

a problem that is either known or not going to be fixed in the code. These issues

include:

• Deprecated methods. Methods may be marked as deprecated if they con-

tain or expose a design flaw. A deprecated method may allow incomplete

objects to be used before all invariants are established. Such methods are

usually removed from the library in the future.

In our context, tests involving such code confirm previously known issues.

These are usually true positives but as the code may be removed soon, the

4These built-in oracles cover behaviors stipulated for base class Object, which apply to all
subclasses as well. More specialized checks would require in-depth knowledge of the behavior of a
class, which cannot be provided automatically with current technologies.

67

defects may not be fixed anymore. Ignoring these issues allowed us to focus

on unknown flaws.

• Stack overflows. Container classes, such as found in the Apache collection

library or Guava, allow recursive nesting of data. For example, a list l1 can be

inserted into another list l2, followed by an insertion of l2 into l1. Operations

such as list iteration or toString will then never terminate on the resulting

objects.

It is possible to make iteration robust against infinite recursion, but a fix

entails keeping track of previously visited object instances during iteration.

This requires an amount of memory that is linear in the size of the collection;

the cure would be worse than the disease in most cases.

• Internal packages. Such packages are common in Oracle’s projects and

usually start with com.sun. They occur in project javax.mail. Internal

packages are specific to the given reference implementation and not meant to

be used by others. Possibly unsafe API uses found by test cases are therefore

irrelevant.

This filtering reduces the number of failed test cases found by default/enhanced

Randoop to 97 and 151, respectively (see Table 4.2). We then manually simplify the

remaining tests further. Often it becomes apparent that a given test is a variation

of an earlier one. This can be confirmed by comparing their stack traces and the

sequence of method calls. Test minimization also may confirm if two failing tests

are exposing the same issue.

As this phase is still very time consuming and difficult, we limit our analysis of

failed tests in Apache math to the first 20 tests found by each tool.5 This reduces

the test to a final number of 63 and 95 tests, respectively.

We classify these failed tests into distinct issues. When doing so, we count the

same defect in two classes as two issues, as well as two different types of problems in

the same class. This results in 31 and 49 issues found by both versions of Randoop.

Each issue is then investigated more closely, and based on the API documentation

and our own experience, we discount some as false positives.

5Skipping the remaining tests actually slightly favors default Randoop as it discovers fewer
failed test cases.

68

Table 4.2: Defect detection capability of default and enhanced Randoop

Software
Default Randoop Enhanced Randoop Issue

tests depr./ign. issues false unkn. true only tests depr./ign. issues false unkn. true only numbers

A. CLI 0 0 0 0 0 0 0 1 1 0 0 0 0 0 −
A. Codec 1 0 1 0 0 1 0 2 1 1 0 0 1 0 183, 184
A. Collection 27 0 8 7 0 1 0 56 25 15 13 0 2 1 512–516
A. Compress 7 0 1 0 0 1 0 25 0 4 0 0 4 3 273–276
A. Math 54 9 9 4 2 3 0 76 12 7 2 2 3 0 1115–1118
A. Primitive 0 0 0 0 0 0 0 4 0 2 1 1 0 0 17
Guava 2 0 2 1 0 1 0 13 5 8 6 0 2 1 1722–1724
JavaMail 17 9 5 0 0 5 0 20 12 6 0 0 6 1 6365–6368
Mango 0 0 0 0 0 0 0 3 1 1 0 0 1 1 1
TinySQL 7 0 5 1 4 0 0 8 0 6 1 5 0 0 14–18

Total 115 18 31 13 6 12 0 208 57 50 23 8 19 7

69

Remaining open issues were reported to the issue tracker of each project. To

limit the number of reports, we created only one issue ticket for similar defects

across a given class or multiple classes. Based on feedback from developers, we

classify the originally counted issues as false or true reports. Unconfirmed cases are

counted as unknown. Finally, we show how many defects are only found by either

version of the tool (see Table 4.2).6

5 The results show that our enhancements have no strong impact on the false

positive rate. In each case, the number of false positives is slightly larger than

the number of actual defects found. We are happy that our work resulted in 19

issues being confirmed, most of which are already fixed in the development version

of the given projects. Seven confirmed defects can be attributed to our enhance-

ments of Randoop and were not found by the original tool. This confirms that the

improvements in code coverage translate to improvements in defect detection as

well.

4.1.4.4 Threats to Validity

The benchmark selection itself is always a threat to validity. We try to counter this

by choosing 30 diverse packages ranging from very small to fairly large ones.

In our experimental evaluation, the static analysis phase of our enhanced Ran-

doop adds a small constant overhead to the entire workflow. This slightly favors

our tool because default Randoop has no static analysis phase. However, the entire

static analysis is kept simple to run within a few seconds to sixty seconds, on the

benchmarks that we use. Compared to the 10–50 minutes of the dynamic phase,

we consider a few seconds start-up overhead to be insignificant.

Furthermore, Randoop is based on random exploration, and our enhancements

build on that while also depending on time intervals. These two factors produce

slight deviations across multiple executions, and across different platforms. How-

ever, the overall coverage results vary only by about 2 % when all enhancements

are used together, as their internal variations tend to cancel each other out, so our

conclusions are not affected by this.

6In the case of Apache math, when checking if a test is found by the other version of the tool
as well, we consider the entire test set, not just the initial 20 failed tests.

70

4.1.4.5 Summary

Our enhancements significantly improve code coverage when used together. Not all

enhancements are equally effective in all cases, and we expect that more fine-tuning

will improve results. Run-time guidance of testing usually also improves the rate

at which code is covered, and contributes to finding more defects than what can

be found with default Randoop. The false-positive rate is not adversely affected by

our enhancements.

4.2 Testing Multiple Versions

4.2.1 Background and Introduction

Software product line engineering (SPLE) manages a set of reusable program assets.

It allows to systematically generate families of products to address a particular mar-

ket segment or to fulfill a specific mission [69]. As with most software development

paradigms, SPLE has to ensure the quality of software products effectively and ef-

ficiently. To this end, a variety of software testing techniques have been proposed

to test software product lines [13,17,48,64,81,99].

Random testing is easy to use, scalable and can be fully automated [66]. To test

object-oriented programs, random testing randomly constructs object instances as

the receiver and input arguments of the method under test (MUT) to exercise dif-

ferent paths in the MUT [34]. Random testing has been found effective at detecting

unknown bugs [66]. However, in the context of SPLs, separately performing random

testing on each software product of the same SPL causes redundancies: Features

shared by different products are tested repeatedly, without increasing test coverage.

Furthermore, it is difficult to reuse test results among different product variants.

We propose to use project centralization to test software product lines, because it

can eliminate code redundancies by integrating multiple variants. However, existing

project centralization techniques [57, 58], work on a class level. On that level of

granularity, multiple version variants are only shared if their classes are identical.

To test multiple product variants, more fine-grained project centralization that can

share common methods is required.

Therefore, we propose method-level project centralization, which unifies and

shares methods. As methods are defined in their respective classes, the new tech-

71

nique merges the classes and handles issues related to fields, methods, and inher-

itance. In general, the technique shares common code whenever possible, while

trying to preserve the behavior of each product variant during testing. We imple-

ment the random test case generation using Randoop, a state-of-the-art random

testing tool [66]. In our framework, Randoop takes the centralized SPL as input

and tests multiple product variants in one run. To evaluate our technique, we have

conducted cases studies on 33 product variants generated from three non-trivial

SPLs. The results are quite promising: Compared to testing each product sepa-

rately, random testing on the centralized product achieves a higher test coverage.

In most cases a high coverage is achieved more quickly as well.

We focuses on testing multiple product variants of SPLs, the concept and tech-

niques presented in this paper do not depend on domain knowledge of SPLs (such as

a feature model). They can generalize to other testing scenarios for multiple similar

product variants such as historical program versions from software evolution and

co-evolution, and similar code branches produced by the clone-and-own approach.

4.2.2 Recent Related Works

While much work on SPL testing and automatic test case generation has been

done, work on fully automatic test case generation for multiple product variants

from SPLs is limited. In this section, we discuss previous works that are most

closely related to our work.

4.2.2.1 Software Product Line Testing

When testing SPLs, test cases can be developed separately for each feature. How-

ever, it is necessary to run the prepared test cases on each generated product [70].

Unfortunately, running test cases on each product of an SPL is usually not feasible

in practice due to the resource limitation. Several approaches try to reduce the

combinatorial product test space by product sampling and in other ways, e. g., by

reducing the test executions per product [23].

Product sampling selects a representative subset of products from the valid

product space of an SPL and only considers these sampled products for testing.

Appropriate sampling strategies aim to fulfill given coverage criteria [13,17,64,81],

with N-way combinatorial sampling [64] being the most widely used approach.

72

Other work uses program analysis to reduce the test executions, by running a

test case only on a configuration that influences it [49,81]. Kästner et al. [48] explore

the execution strategies of a unit test for all products of an SPL without generating

each product in a brute force way. They encode the variability of an SPL either in

the testing tool (a white-box interpreter) or in a meta-product that represents all

products (combined with black-box testing using a model checker) to simulate test

execution on all products.

Compared to these techniques, we use code transformation to combine multiple

products from an SPL, improving testing coverage while reducing redundancy in

test executions. We need only a set of products as input for testing without requiring

provided test cases or domain knowledge on an SPL, such as a feature model.

Attempts at sharing the results of test executions have been made before. Xu

et al. [99] use a test suite augmentation technique to test multiple products and

investigates the influence of the order in which products are tested. The difference

of our approach is that no specific product testing order and provided test cases are

required, and code transformation on the products (rather than the test cases) is

used to share tests among all products.

4.2.2.2 Randomized Test Case Generation

The critical step in random test case generation for object-oriented programs is

to prepare the input objects with desirable object states. Most recent random

techniques create the required input objects by method sequence construction [21,

43,66,100].

JCrasher [21] creates input objects by using a parameter graph to find method

input and return type dependencies. Randoop [66] use feedback from previous tests

to generate future tests. To reuse existing test case to improve code coverage of

random testing techniques, several studies are conducted to study the usefulness

of reusing existing test cases as domain knowledge for further test case generation

of a new product. OCAT [43] adopts object-capture and replay techniques, where

object states are captured from sample test executions, and then used as input for

further testing. Palus [100] leverages a trained sequence model from the combined

static analysis (for method relevance) and dynamic analysis (for method invocation

order) to guide test case generation.

However, these testing techniques are designed to test only a single software

73

product. They do not share the test results to reduce redundancies when testing

multiple products.

4.2.3 Our Approach

Project centralization transforms multiple products into a single project, preserv-

ing the behavior of each product. Using project centralization, we can generate

test cases for all product variants simultaneously. However, our previous central-

ization [57, 58] only shares a class among multiple products if it has the same im-

plementation throughout. For SPL testing, a more fine-grained centralization is

required to increase code sharing.

4.2.3.1 Method-level Project Centralization

A project represents the code of a product variant, which has a unique identifier

and a set of classes. Each class has a unique name, a set of fields and methods,

along with a set of attributes (super classes, interfaces, etc.), as defined in the class

file structure [55].

Method-level project centralization transforms a set of projects, P = {p1, . . . , pn},

into a single project pcentr such that each method and its implementation from every

pi ∈ P is preserved in pcentr . Methods from different projects are generally separate

from each other, since they are defined in their respective declaring classes. To share

as many methods as possible, we adapt our class-level project centralization [57,58]

to individual methods.

When merging classes from different projects, techniques of class-level project

centralization are first applied, representing all classes with the same name as a

separate set. For each such a set of classes C = {cl1, . . . , clk}, where each cl i ∈ C

occurs in P and all of them have the same name, the method-level project central-

ization merges its classes that satisfy the following conditions:

1. The classes are consistent w. r. t. their class attributes (class versions, super

classes, interfaces, etc.).

2. All fields with the same name are consistent. A field cl .f of class cl is consis-

tent with another field cl ′.f ′ of class cl ′, if cl .f and cl ′.f ′ have the same type,

annotations, and attributes.

74

3. All methods with the same name and descriptors are consistent. Method

consistency is similar to that of fields, except that the method bodies may

be different. In particular, the static initializer, <clinit>, of each class in C

needs special treatment, as it is only executed at class load time and cannot

be executed more than once, even if the initialization of multiple variants of a

class is to be simulated. Static initializers can be considered consistent if they

are either identical, or if their method body instructions are totally ordered

w. r. t. the subset relation.

Before actually merging any classes, we rename the the classes that do not satisfy

the above conditions, marking them as distinct classes from different products and

also updating references to these classes accordingly.

After ensuring all the classes are consistent for merging by renaming the incon-

sistent classes, the method-level centralization starts its core steps to merge common

code for all those classes C = {cl1, . . . , clk} that share the same name. The first

two steps are: (1) create a centralized class with the same name and attributes as

a class cl i ∈ C, and (2) use the union of all fields of the classes in C to synthe-

size the set of fields of the centralized class. For all methods M = {m1, . . . ,ml}

that occur in C and have the same name and descriptors, we first partition M into

MP = {mp1, . . . ,mph} such that all methods in the same partition have the same

method body. From each partition, we only keep one representative method from

the set of identical methods.

If MP has exactly one partition, we simply use its representative method in place

of all the methods in that partition. If MP has more than one partition, we create

a new centralized method, which has the same attributes as all the methods in M

except for the method body. We then rename the representative methods from each

partition to a new unique name to distinguish the different variants. We also keep

the project identities for each representative method to remember which projects

it comes from and represents. In the method body of the centralized method, we

use a switch statement that checks the project identities and forwards a method

invocation of the centralized method to the corresponding renamed method.

Project centralization keeps the transformation map of each method and class

before and after centralization so that we can easily identify each method in the

centralized class belongs to which projects. This allows us to preserve the behav-

ior of each original project by forwarding each method call to the corresponding

75

Project

centralization

{p1, ... , pn}

Timeout Cov.

analysis

Method

pool

Method

execution

Result

evaluation

Method + Input

selection

Object

pool

Randoop run-time phase

Ver. sel.

Successful

sequences

Figure 4.11: Flow of Centralization-based Test Case Generation

renamed method.

4.2.3.2 Integration with Randoop

Randoop [66] is a state-of-the-art random test case generation tool. Given the

program to test, Randoop first extracts all publicly visible methods and puts them

into a method pool, which contains all methods under test (see Fig. 4.11). To test

multiple product variants P = {p1, . . . , pn} simultaneously, we first perform project

centralization on P , and feed both the centralized project and the transformation

map into our modified version of Randoop.

Randoop starts by randomly selecting a method m(T1 . . . Tk) to test from its

method pool. All input objects with type T1 . . . Tk must also be prepared to test

m. Randoop randomly selects the corresponding inputs from its object pool and

concatenates previously known input sequences to derive these objects, to test m.

If there is no object with of required type in the object pool, Randoop skips m and

selects the next method. Upon successful input construction, m is executed. Exe-

cution results of each method call are analyzed against a few predefined contracts.

If the generated sequence is new and its execution does not cause any failures,

Randoop adds this successful sequence to the object pool (see Fig. 4.11). Randoop

continues to test more methods until a time limit is hit.

We modify Randoop such that when a method is selected from the method

pool, we also randomly set its version, which is represented by the corresponding

project identity, before executing the generated test sequences. After the sequence

execution, we memorize the selected version for each successful method sequence,

so that we can save these generated test sequences as JUnit tests with a specified

76

version for later use. Instead of re-executing the same method sequence repeatedly,

we can change the version of each successful sequence in the object pool to create

new sequences, which probably leads to more diverse object states.

After Randoop hits the time limit, we recover the code coverage for each product

by analyzing the coverage of each method in the centralized project according to

the transformation map of centralization. We also save the generated sequences as

JUnit tests.

4.2.4 Case Study

To evaluate our work, we have implemented a tool and applied it to 33 products from

three SPLs. Our implementation of method-level project centralization is based on

Java bytecode transformation using the ASM library [12], and it is integrated with

Randoop and JaCoCo v0.6.47 which is used for code coverage analysis. In our case

study, we investigate two major research questions:

RQ1: Is project centralization effective in sharing the common code among multiple

products?

RQ2: Does testing using project centralization increase code coverage, compared

to testing each sampled product independently?

4.2.4.1 Evaluation Subject and Settings

We evaluate our tool on three SPL subjects that were developed and used in previous

studies based on FeatureHouse product generation (see Table. 4.3). All the selected

SPLs are currently included in the release of FeatureIDE v.2.7.08.

Each of these selected subjects is accompanied by both a feature model and

source code. For example, GPL has 38 features and 42 constraints in its feature

model, which can generate 156 valid products in total by selecting different feature

configurations. As pairwise feature coverage is widely used in SPLs as the product

sampling approach, we therefore sample valid products with 100% pairwise feature

coverage by using SPLATool v0.3 based on the ICPL algorithm [46].9

To compare our approach to independent test case generation for each prod-

uct, we perform project centralization on the sampled products to generate the

7http://www.eclemma.org/jacoco/
8http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
9http://heim.ifi.uio.no/martifag/splcatool/

77

SPL desc. Classes LOC Features Constraints # Products # Products
(*.java) (total) (pairwise)

Elevator 19 1223 7 3 20 6
GameOfLife 39 1702 23 17 65 8
GPL 57 2957 38 42 156 19

Table 4.3: Case Study Subjects: Size and Complexity Metrics.

centralized project for each SPL. We run our modified Randoop tool chain on the

centralized project, while running the original Randoop on each of the sampled

product separately.10 We run each configuration for 1, 000 seconds, after which no

noticeable coverage improvement can be observed anymore.

4.2.5 Results

Table 4.4 summarizes the results of our experiments. Column two gives the number

of sampled products for each SPL. Columns three and four give the total number

of classes (*.class) and methods in all sampled products, respectively. Columns

five and six show the corresponding number of public classes and public methods.

Column seven lists the total number of branches. Column eight is the number of

classes after performing centralization on all sampled products, while columns nine

and ten describe the project size before and after centralization. Finally the average

method coverage and branch coverage for all sampled products by both approaches

are listed in the next four columns, followed by the total run time of each experiment

(the non-centralized cases were run for the full duration in each configuration).

In all three cases, centralization shares common code and needs less storage.

The centralized project takes 21.6%, 21.3 %, and 20.3% of the space required by

original sampled products for Elevator, GameOfLife, and GPL, correspondingly.

Centralization improves both method and branch coverage, compared to indepen-

dently testing each project, even though we allot k times the test case generation

time to individual testing of k sampled products to have a similar number of test

cases in each setting.

10Class GolView from GameOfLife is excluded for testing, because it constantly creates GUI
frames that crash the local OS.

78

Sampled #Sampled #All # Public # #classes Size (KB) Avg. cov. non-centr. Avg. cov. centr. Exec. time (1,000 s)
pairwise prod. products Classes Methods Classes Methods branches centr. non-centr. centr. m. [%] br. [%] m. [%] br. [%] non-centr. centr.

Elevator 6 90 694 72 552 1658 15 187.0 40.3 88.7 83.9 89.2 88.9 6 1
GameOfLife 8 326 1073 122 833 1636 57 369.3 78.5 59.6 45.4 64.9 53.9 8 1
GPL 19 285 1543 195 1264 1062 21 283.8 57.5 84.7 59.1 86.2 66.8 19 1

Table 4.4: Results of our Experiments. All experiments were run on an Intel Core i7 Mac 2.4 GHz with 8 GB of RAM, running Mac OS X
10.9.3 and Oracle’s Java VM (JVM), version 1.7.0 21 with a memory limit of 3 GB for the JVM.

79

4.2.6 Discussion

To understand the improvement of method coverage, we need to review the test

case generation procedure for each method. To test a method, Randoop randomly

selects input objects from the object pool. If there is no object with a compatible

type, Randoop skips that method. Randoop adopts a fixed method pool. If a

method m requires an input object that is not returned by any method in the

method pool, m may never be tested. This often happens when testing each sampled

product independently. After centralization, however, public methods from multiple

sampled products are put into the method pool. This increases the chance to

cover more methods, by providing more diverse object types generated by multiple

products. Therefore, even if independently testing a product p cannot generate

an object typed T to cover a method m(T t) in p, m(T t) may still be covered by

using an object instance typed t from another product p′ in the centralization-based

testing.

For branch coverage, our approach can use all instances obtained among tests for

different products. Therefore, testing a method m(T t) can reuse all instances typed

T from other sampled products as input. Because of this sharing of test data, more

diverse object states from different products are obtained, which improves branch

coverage.

However, there exist a few cases where centralization decreases an individual

coverage. Centralization increases the method testing space, by introducing more

methods and additional product version dimensions. Our current strategy of both

method and version selection adopts a uniform distribution, which does not favor

common methods by giving them a higher probability. However, the difficulty of

covering branches of different sampled products varies. A uniform distribution fa-

vors “exploration” (selecting different products) over “exploiting” the same product

more thoroughly. A better selection strategy to balance “exploration” with “explo-

ration” is likely to improve the effectiveness of our approach. We leave this as future

work.

4.2.7 Threats to Validity

The representativeness of selected subjects is the primary external threat to va-

lidity. We carefully select three nontrivial SPLs from different categories that are

80

widely used in previous studies. We also use their recent implementations based

on FeatureHouse. A second external threat to validity is caused by using the de-

fault Randoop uniform method and version sampling strategies. Subsequent studies

on more advanced strategies and more diverse benchmarks are necessary to decide

how our techniques generalize. Another external threat to validity is caused by the

randomness of Randoop. We fix and use the same random seed and run each con-

figuration long enough to diminish this threat. The main threat to internal validity

is caused by potential bugs of our tool implementation. We decrease this threat by

performing unit testing and using the internal verification tool of ASM to check the

correctness of code transformation.

4.2.8 Summary

In this paper, we propose method-level project centralization and its integration

with random testing to test multiple product variants from SPLs. Our technique

shares common code whenever possible, while preserving the behavior of each

method for unit testing. The evaluation on three nontrivial SPLs demonstrates

the effectiveness of our approach in sharing common code and obtaining higher

code coverage, compared to testing each product independently.

Future work includes designing a more advanced strategy to balance shared and

unshared code when testing multiple versions. We will also conduct studies on the

bug-finding ability of our approach. Furthermore, we are also investigating whether

the centralization algorithm can be optimized to share even more code and increase

coverage in the given setting.

81

Chapter 5

Conclusion and Future

Direction

5.1 Conclusion

In this thesis, we introduces the version conflict issue in the era of many techniques

that facility the development of version variants like revision control tools, SPLs.

These version conflicts hinder analysis and verification of multiple product simul-

taneously by introducing version conflicts. It also brings difficulty to test multiple

version variants to improve the overall performance while reducing testing redun-

dancies to ensure the software quality. The overall goal of this thesis is to build an

analysis framework and perform verification and testing on multiple version variants

to improve software quality efficiently and effectively.

We summarize and formalize the multiple versions and version conflict prob-

lems. We proposed the project centralization approach to manage multiple versions

while resolving such conflicts. Our technique shares common code whenever pos-

sible while preserving the behavior of each version variants. We formalize project

centralization and first propose a worklist based algorithm. Then we propose a

D-graph representation of projects and transformed project centralization into a

graph coloring problem. Based on this representation, we transform project cen-

tralization into a graph coloring problem. The corresponding optimal algorithm

and heuristic solution are also presented. The experiments on real-world projects

demonstrate the effectiveness of our method in sharing common code and resolving

82

version conflicts, showing the usefulness of our coloring based approach in practice.

The further experiment in managing large version variants from software evolution

and SPLs further show the effectiveness of our approach.

Based on project centralization, we implement an process centralization tool. We

discuss the issues of process centralization and its usefulness in analysis and verifying

distributed system with multiple versions. The experiment of our tool on real world

distributed application first compares how accuracy of project centralization affects

the runtime performance of the centralized program. It also shows the promising

direction of our approach in solving the challenging issue of verifying distributed

applications, which is a solution that is both sound and complete. And some bugs

we find so far is not able to be detected by other approaches like io-cache, which

analyze only a single peer.

By realizing the current limitations of automatic software testing tool and lim-

ited studies in testing multiple version variants to both share testing results and

avoid testing redundancies, we proposed novel program analysis enhanced fully au-

tomatic testing techniques and enhanced project centralization based multi-version

testing techniques for testing multiple versions to improve software quality in the

era of many software versions. Our enhanced testing techniques is fully automatic.

It performs both static phase and dynamic phase to make program analysis so that

it extracts all necessary domain knowledge from the software under test to further

guide testing. The effectiveness and usefulness is proved by fully evaluated on more

than 30 real-world benchmarks and SCCH, demonstrating that it can both solves

limitations of current techniques in statistical significantly improve the code cover-

age and improves the defect detection ability. To test multiple software versions,

we further refine the accuracy of project centralization by merging class files. We

serialize the project centralization results of each version. We further enhance the

automatic testing tools and coverage separation mechanism. It uses the project

centralization results and code to perform testing, so that the testing results are

sheared while avoiding the common code. The case studies of our tool on widely

used version variants from software evolution and Software Product Lines demon-

strate its usefulness.

83

5.2 Future Directions

In this thesis, we have performed a consecutive of research studies on software

quality insurance techniques in the era of many software versions. We have proposed

a project centralization to manage multiple versions. Based on this technique, we

have also proposed and implement novel concepts and techniques to verify and test

multiple versions to improve software quality.

Multiple versions and version conflict issues recently begin draw researchers

attention especially on the study of software evolution and Software Product Lines,

where there are many version variants whose quality needed to be ensured before

shipping out. However, little studies have been conducted on the fully automatic

techniques to manage the multiple version variants to improve overall performance

of verification and testing so that both sharing analysis results and avoiding the

analysis duplications. We think our approach only gives some initial solutions and

tool box for software quality insurance area, although more advanced methods and

techniques can be proposed and improved in the future .

We summarize some important future directions based on the studies of this

thesis:

• Automatic specification (oracle) mining. Software verification and testing

performs program analysis (either static analysis or runtime execution) to

check whether the program behaviors is correct and consistent to the speci-

fication. However, specification is usually missing for practical applications,

which makes the verification and testing very difficult. Therefore, in our ver-

ification and testing tool chains, we mostly consider the program failures as

the "oracle" to judge whether such an abnormal behavior reveals potential

software defects. However, many more program defects that does not fails

the software are difficulties to be detected. There exist some recent work

on automatic specification minings such as modeling the program behaviors,

API protocol minings to show their potential usages to improve verification

and testing task. However, it is just at the beginning phase. We think auto-

matic specification mining (includes its some special ones like API protocol)

would continue be a hot research topic. The study of mutual enhancement of

automatic specification mining and automatic verification and testing tech-

niques would also be very promising, where the specification is learnt during

84

automatic program execution (through verification or testing) and the learnt

specification is further used to guide verification and testing.

• Advanced testing strategy (multi-objective goals). Compared to test a single

version, testing multiple versions needs to balanced limited resources on the

exploration and exploiting among multiple versions. This can be naturally

represented as an multi-objective optimization problem. For example, we

would like to achieve the goals like high average coverage, low deviations and

so on. Based on our multi-version testing techniques, we can further propose

multi-objective whole test suite augmentation towards these predefined multi-

ple goals so that the better decision can be made by selecting the appropriate

subset of all generated solutions.

• Automatic verification and testing comprehension. Based on the program

failure as specification, we can get many results, including the false positive

ones. Current techniques need to manually analyze each of the generated

results to identify whether it is the true positive or false positive, which is

laborious and error prone. Therefore, the automatic verification and testing

result comprehension to automatically classify true positive, false positive

and analyze the reason of failure would boosts the application of automatic

techniques to more widely and practical applications.

• Novel language and platforms. Many current languages and platforms do

not support multiple version, which is one of the reasons make the testing

and verification task difficult. If new languages and platforms are designed

by taking multiple versions as consideration, it would make some of existing

techniques easier to be extended to handle multiple versions. Researchers can

only focus on the solution for multiple version itself without spending much

effort on resolving the language and platform limitations for multiple versions.

• Analysis strategy for multiple versions. In Software Product Lines research

community, researchers classify current techniques into 3 categories: 1. ex-

haustive approach. 2. sampling approach, 3. family approach. Exhaustive

approach generate all versions and analyze each of them. Due to many ver-

sion in practice, such a solution is usually impractical. Sampling approach

tries to sample those version variants that mostly has defects. This approach

85

is feasible but incomplete. Family based approach represents all product line

version variants and analyze them all at once. However, this approach is

usually for static analysis and not suitable for accurate run-time behavior

analysis for each products. When going beyond Software Product Lines to

a more general multiple version cases, we think it is still necessary to design

more general techniques for management and analysis of multiple versions.

Our work in this thesis gives the basis of behavior preserved multiple versions

management. We think more advanced management and analysis techniques

are needed to be designed to solve more challenging issues for multiple versions

in the near future.

86

Publication

Refereed Conferences and Transactions:

• Lei Ma, Cyrille Artho,Cheng Zhang, Hiroyuki Sato: Efficient Testing of Soft-

ware Product Lines via Centralization, Proceedings of 13th ACM Interna-

tional Conference on Generative Programming: Concepts & Experiences

(GPCE’14), September, Vsters, Sweden, 2014. (submitted)

• Lei Ma, Cyrille Artho, Hiroyuki Sato, Johannes Gmeiner, Rudolf Ramler,

Naoto Yokoyama: Enhancing Random Testing through Run-time Guidance,

Proceedings of the 29th IEEE/ACM International Conference on Automated

Software Engineering (ASE’14), September, Vsters, Sweden, 2014. (submit-

ted)

• Lei Ma, Cyrille Artho, Hiroyuki Sato: Project Centralization Based on Graph

Coloring, Proceedings of 29th ACM Annual Symposium on Applied Comput-

ing (SAC’14), pp.1086-1093, Gyeongju, Korea, March 2014.

• Lei Ma, Cyrille Artho, Hiroyuki Sato: Improving Automatic Centralization

by Version Separation, Information Processing Society of Japan (IPSJ) Trans-

actions on Programming, Vol.6, No.4, pp.65-77, December, 2013.

• Lei Ma, Cyrille Artho, Hiroyuki Sato: Managing Product Variants by Project

Centralization, the 6th International Conference on Computer Science and In-

formation Technology (ICCSIT’13), Lecture Notes on Software Engineering,

Vol.2 No.2. pp.195 - 200, 21-22, December, Paris, 2013.

• Lei Ma, Cyrille Artho, Hiroyuki Sato: Analyzing Distributed Java Applica-

tions by Automatic Centralization, IEEE 37th Annual Computer Software

and Applications Conference Workshops (COMPSACW’13), pp.691-696,

pp.22-26 July, Kyoto, July 2013.

Others:

• Lei Ma, Cyrille Artho, Hiroyuki Sato, Verifying the Distributed System through

Automatic Centralization (Oral Presentation), Dependable Component Work-

shop, Tokyo, September 2012

87

• Lei Ma, Hiroyuki Sato, An Annotated Type System for Inlining (Oral Presen-

tation), Information Processing Society of Japan(IPSJ PRO 84), Hakotate,

June 2011

88

Bibliography

[1] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B.

Cohen, Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil

Mcminn. An orchestrated survey of methodologies for automated software

test case generation. J. Syst. Softw., 86(8):1978–2001, August 2013.

[2] Sven Apel, Olaf Lessenich, and Christian Lengauer. Structured merge with

auto-tuning: Balancing precision and performance. In Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering,

ASE 2012, pages 120–129, Essen, Germany, 2012.

[3] Sven Apel, J"org Liebig, Benjamin Brandl, Christian Lengauer, and Chris-

tian K"astner. Semistructured merge: Rethinking merge in revision control

systems. In Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

European Conference on Foundations of Software Engineering, ESEC/FSE

’11, pages 190–200, Szeged, Hungary, 2011.

[4] ArgoUML-SPL. http://argouml-spl.tigris.org/.

[5] Cyrille Artho and Pierre-Loic Garoche. Accurate centralization for applying

model checking on networked applications. In Proc. 21st IEEE/ACM Int.

Conf. Autom. Softw. Eng., pages 177–188, Tokyo, Japan, 2006.

[6] Cyrille Artho, Watcharin Leungwattanakit, Masami Hagiya, Yoshinori Tan-

abe, and Mitsuharu Yamamoto. Cache-based model checking of networked

applications: from linear to branching time. In Proc. 2009 IEEE/ACM Int.

Conf. Autom. Softw. Eng., pages 447–458, Auckland, New Zealand, 2009.

[7] Luciano Baresi and Matteo Miraz. Testful: Automatic unit-test generation for

java classes. In Proceedings of the 32Nd ACM/IEEE International Conference

89

on Software Engineering - Volume 2, ICSE ’10, pages 281–284, New York, NY,

USA, 2010. ACM.

[8] Garrett Birkhoff. Lattice theory, the 3rd Edition. Amer. Math. Soc. (AMS),

1995.

[9] Hans L. Bodlaender and Dieter Kratsch. An exact algorithm for graph coloring

with polynomial memory. Technical Report UU-CS-2006-015, Department of

Information and Computing Sciences, Utrecht University, 2006.

[10] Uwe M. Borghoff and J. H. Schlichter. Computer-Supported Cooperative Work:

Introduction to Distributed Applications. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2000.

[11] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. Korat: Au-

tomated testing based on Java predicates. In Proceedings of the 2002 ACM

SIGSOFT International Symposium on Software Testing and Analysis, ISSTA

’02, pages 123–133, New York, NY, USA, 2002. ACM.

[12] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: A code manip-

ulation tool to implement adaptable systems. In In Adaptable and extensible

component systems, 2002.

[13] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. Improving the testing

and testability of software product lines. In Proc. 14th Int. Conf. on Software

Product Lines, SPLC’10, pages 241–255, South Korea, 2010.

[14] G. Calikli and A. Bener. Empirical analyses of the factors affecting confir-

mation bias and the effects of confirmation bias on software developer/tester

performance. In Proc. 6th Int. Conf. on Predictive Models in Software En-

gineering, PROMISE 2010, pages 10:1–10:11, New York, NY, USA, 2010.

ACM.

[15] Everton Cavalcante, André Almeida, Thais Batista, Nélio Cacho, Frederico

Lopes, Flavia C. Delicato, Thiago Sena, and Paulo F. Pires. Exploiting soft-

ware product lines to develop cloud computing applications. In Proceedings of

the 16th International Software Product Line Conference - Volume 2, SPLC

’12, pages 179–187, Salvador, Brazil.

90

[16] T. Y. Chen, H. Leung, and I. K. Mak. Adaptive random testing. In Proceed-

ings of the 9th Asian Computing Science Conference on Advances in Com-

puter Science: Dedicated to Jean-Louis Lassez on the Occasion of His 5th

Cycle Birthday, ASIAN’04, pages 320–329, Berlin, Heidelberg, 2004. Springer-

Verlag.

[17] Harald Cichos, Sebastian Oster, Malte Lochau, and Andy Schürr. Model-

based coverage-driven test suite generation for software product lines. In

Proc. 14th Int. Conf. on Model Driven Engineering Languages and Systems,

MODELS’11, pages 425–439, New Zealand, 2011.

[18] Ilinca Ciupa and Andreas Leitner. Automatic testing based on design by

contract. In Proceedings of Net. ObjectDays, volume 2005, pages 545–557.

Citeseer, 2005.

[19] Ilinca Ciupa, Andreas Leitner, Manuel Oriol, and Bertrand Meyer. Artoo:

Adaptive random testing for object-oriented software. In Proceedings of the

30th International Conference on Software Engineering, ICSE ’08, pages 71–

80, New York, NY, USA, 2008. ACM.

[20] Marcus Vinicius Couto, Marco Tulio Valente, and Eduardo Figueiredo. Ex-

tracting software product lines: A case study using conditional compilation.

In Proceedings of the 2011 15th European Conference on Software Mainte-

nance and Reengineering, CSMR ’11, pages 191–200, Washington, DC, USA,

2011.

[21] Christoph Csallner and Yannis Smaragdakis. JCrasher: an automatic robust-

ness tester for Java. Software: Practice and Experience, 34(11):1025–1050,

2004.

[22] Laurent Daynès and Grzegorz Czajkowski. Sharing the runtime representa-

tion of classes across class loaders. In Proc. 19th European Conf. on Object-

Oriented Programming (ECOOP 2005), volume 3586 of LNCS, pages 97–120.

Springer, 2005.

[23] Ivan do Carmo Machado, John D. McGregor, and Eduardo Santana de

Almeida. Strategies for testing products in software product lines. SIGSOFT

Softw. Eng. Notes, 37(6):1–8, November 2012.

91

[24] DrJava Project. http://www.drjava.org/.

[25] Tudor Dumitraş and Priya Narasimhan. Why do upgrades fail and what can

we do about it?: toward dependable, online upgrades in enterprise system. In

Proc. 10th ACM/IFIP/USENIX Int. Conf. on Middleware, pages 18:1–18:20,

Urbanna, Illinois, USA, 2009.

[26] Tudor Dumitras, Priya Narasimhan, and Eli Tilevich. To upgrade or not

to upgrade: impact of online upgrades across multiple administrative do-

mains. In Proc. ACM Int. Conf. on Object Oriented Programming Systems

Languages and Applications (OOPSLA 2010), pages 865–876, Reno Tahoe,

Nevada, USA, 2010.

[27] D. Faust and C. Verhoef. Software product line migration and deployment.

Software Practice and Experience, John Wiley Sons, Ltd, 33:933–955, 2003.

[28] Gordon Fraser and Andrea Arcuri. Evosuite: Automatic test suite genera-

tion for object-oriented software. In Proceedings of the 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of Software

Engineering, ESEC/FSE ’11, pages 416–419, Szeged, Hungary, 2011.

[29] Gordon Fraser and Andrea Arcuri. Sound empirical evidence in software

testing. In Proceedings of the 34th International Conference on Software En-

gineering, ICSE ’12, pages 178–188, Piscataway, NJ, USA, 2012. IEEE Press.

[30] Gordon Fraser and Andrea Arcuri. Whole test suite generation. IEEE Trans.

Softw. Eng., 39(2):276–291, February 2013.

[31] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random

testing. SIGPLAN Not., 40(6):213–223, June 2005.

[32] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) language

specification, the 3rd Edition. Addison-Wesley Professional, 2005.

[33] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C. Sno-

eren, George Varghese, Geoffrey M. Voelker, and Amin Vahdat. Difference

engine: harnessing memory redundancy in virtual machines. Commun. ACM,

53(10):85–93, 2010.

92

[34] Richard Hamlet. Random testing. In J. Marciniak, editor, Encyclopedia of

Software Engineering, pages 970–978. Wiley, 1994.

[35] Health Watcher. http://www.comp.lancs.ac.uk/ greenwop/tao/implementa-

tion.htm.

[36] Petr Hnetynka and Petr Tuma. Fighting class name clashes in Java component

systems. In Modular Programming Languages, volume 2789 of LNCS, pages

106–109. Springer, 2003.

[37] Petr Hosek and Cristian Cadar. Safe software updates via multi-version exe-

cution. In Proc. 2013 Int. Conf. on Softw. Eng. (ICSE 2013), pages 612–621,

San Francisco, CA, USA, 2013.

[38] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst. Reim &

ReImInfer: Checking and inference of reference immutability and method

purity. SIGPLAN Not., 47(10):879–896, October 2012.

[39] JaCoCo v0.6.4. http://www.eclemma.org/jacoco/.

[40] Java Runtime Analysis Toolkit. http://jrat.sourceforge.net/.

[41] JavaTM Platform, Standard Edition, V6 API Sepcification.

http://docs.oracle.com/javase/6/docs/api/.

[42] H. Jaygarl, C.K. Chang, and Sunghun Kim. Practical extensions of a random-

ized testing tool. In Computer Software and Applications Conference, 2009.

COMPSAC ’09. 33rd Annual IEEE International, volume 1, pages 148–153,

July 2009.

[43] Hojun Jaygarl, Sunghun Kim, Tao Xie, and Carl K. Chang. Ocat: Object

capture-based automated testing. In Proceedings of the 19th International

Symposium on Software Testing and Analysis, ISSTA ’10, pages 159–170,

Trento, Italy, 2010.

[44] Hojun Jaygarl, Kai-Shin Lu, and Carl K. Chang. Genred: A tool for generat-

ing and reducing object-oriented test cases. In Proceedings of the 2010 IEEE

34th Annual Computer Software and Applications Conference, COMPSAC

’10, pages 127–136, Washington, DC, USA, 2010. IEEE Computer Society.

93

[45] JCarder. http://www.jcarder.org/.

[46] Martin Fagereng Johansen, Oystein Haugen, and Franck Fleurey. An algo-

rithm for generating t-wise covering arrays from large feature models. In Proc.

16th Int. Software Product Line Conf., SPLC ’12, pages 46–55, Brazil, 2012.

[47] Jtracert. https://code.google.com/p/jtracert/.

[48] Christian Kästner, Alexander von Rhein, Sebastian Erdweg, Jonas Pusch,

Sven Apel, Tillmann Rendel, and Klaus Ostermann. Toward variability-aware

testing. In Proc. 4th Int. Workshop on Feature-Oriented Software Develop-

ment, FOSD ’12, pages 1–8, Dresden, Germany, 2012.

[49] Chang Hwan Peter Kim, Don S. Batory, and Sarfraz Khurshid. Reducing

combinatorics in testing product lines. In Proc. Tenth Int. Conf. on Aspect-

oriented Software Development, AOSD ’11, pages 57–68, Brazil, 2011.

[50] M. Kubale. Graph Colorings. Contemporary mathematics v. 352. Amer.

Math. Soc. (AMS), 2004.

[51] E. Kuleshov. Using asm framework to implement common bytecode transfor-

mation patterns. In 6th International Conference on Aspect-Oriented Software

Development, Vancouver, British Columbia, 2007.

[52] M.M. Lehman and J.F. Ramil. Software evolution in the age of component-

based software engineering. Softw., IEEE Proc., 147(6):249–255, 2000.

[53] Zdeněk Letko, Tomáš Vojnar, and Bohuslav Křena. AtomRace: Data Race

and Atomicity Violation Detector and Healer. In Proceedings of the 6th Work-

shop on Parallel and Distributed Systems: Testing, Snalysis, and Debugging,

pages 7:1–7:10, New York, NY, USA, 2008.

[54] VI Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions

and Reversals. Soviet Physics Doklady, 10:707, 1966.

[55] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java

virtual machine specification, Java SE 7 Edition. Addison-Wesley Prof., 2013.

[56] Kasper S. Luckow and Corina S. Păsăreanu. Symbolic pathfinder v7. SIG-

SOFT Softw. Eng. Notes, 39(1):1–5, February 2014.

94

[57] Lei Ma, C. Artho, and H. Sato. Analyzing distributed Java applications by

automatic centralization. In Computer Softw. and Applications Conf. Work-

shops, COMPSACW’13, pages 691–696, Japan, 2013.

[58] Lei Ma, C. Artho, and H. Sato. Project centralization based on graph coloring.

In Proc. ACM 29th Annual Symposium on Applied Computing, SAC’14, pages

1086–1093, South Korea, 2014.

[59] Darko Marinov and Sarfraz Khurshid. Testera: A novel framework for auto-

mated testing of java programs. In Proceedings of the 16th IEEE International

Conference on Automated Software Engineering, ASE ’01, pages 22–, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[60] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engi-

neering, 2(4):308–320, 1976.

[61] Phil McMinn. Search-based software test data generation: A survey: Research

articles. Softw. Test. Verif. Reliab., 14(2):105–156, June 2004.

[62] Thilo Mende, Rainer Koschke, and Felix Beckwermert. An evaluation of code

similarity identification for the grow-and-prune model. Journal of Software

Maintenance, (2):143–169.

[63] T. Mens. A state-of-the-art survey on software merging. IEEE Trans. Softw.

Eng., 28(5):449–462, 2002.

[64] Sebastian Oster, Florian Markert, and Philipp Ritter. Automated incremental

pairwise testing of software product lines. In Proc. 14th Int. Conf. on Software

Product Lines, SPLC’10, pages 196–210, South Korea, 2010.

[65] Stefan Paal, Reiner Kammüller, and Bernd Freisleben. Customizable deploy-

ment, composition, and hosting of distributed Java applications. In On the

Move to Meaningful Internet Systems, volume 2519 of LNCS, pages 845–865.

Springer, 2002.

[66] C. Pacheco and M. Ernst. Randoop: Feedback-directed random testing for

Java. In Companion to the 22nd ACM SIGPLAN Conf. on Object-oriented

Programming Systems and Applications Companion, OOPSLA 2007, pages

815–816, Montreal, Canada, 2007. ACM.

95

[67] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and

classification of test inputs. In Proceedings of the 19th European Conference

on Object-Oriented Programming, ECOOP’05, pages 504–527, Berlin, Heidel-

berg, 2005. Springer-Verlag.

[68] Corina S. Pasareanu and Willem Visser. A survey of new trends in symbolic

execution for software testing and analysis. Int. J. Softw. Tools Technol.

Transf., 11(4):339–353, October 2009.

[69] Clements Paul and Northrop Linda. Software Product Lines: Practices and

Patterns. Addison-Wesley Longman Publishing Co., Inc., Boston, USA, 2001.

[70] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product

Line Engineering: Foundations, Principles and Techniques. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2005.

[71] R. Ramler, D. Winkler, and M. Schmidt. Random test case generation and

manual unit testing: Substitute or complement in retrofitting tests for legacy

code? In 36th Conf. on Software Engineering and Advanced Applications,

pages 286–293. IEEE Computer Society, 2012.

[72] Brian Robinson, Michael D. Ernst, Jeff H. Perkins, Vinay Augustine, and

Nuo Li. Scaling up automated test generation: Automatically generating

maintainable regression unit tests for programs. In Perry Alexander, Co-

rina S. Pasareanu, and John G. Hosking, editors, Proceedings of the 2011

26th IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE ’11, pages 23–32. IEEE, 2011.

[73] Chanchal K. Roy, James R. Cordy, and Rainer Koschke. Comparison and eval-

uation of code clone detection techniques and tools: a qualitative approach.

Sci. Comput. Program., 74(7):470–495, 2009.

[74] Julia Rubin, Krzysztof Czarnecki, and Marsha Chechik. Managing cloned

variants: A framework and experience. In Proceedings of the 17th Interna-

tional Software Product Line Conference, SPLC ’13, pages 101–110, Tokyo,

Japan, 2013.

96

[75] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, A. Orso, and M. J.

Harrold. Test-suite augmentation for evolving software. In Proceedings of

the 2008 23rd IEEE/ACM International Conference on Automated Software

Engineering, ASE ’08, pages 218–227, Washington, DC, USA, 2008. IEEE

Computer Society.

[76] K. Sen, D. Marinov, and G. Agha. CUTE: a concolic unit testing engine for

C. SIGSOFT Softw. Eng. Notes, 30(5):263–272, September 2005.

[77] Koushik Sen and Gul Agha. Cute and jcute: Concolic unit testing and explicit

path model-checking tools. In Proceedings of the 18th International Confer-

ence on Computer Aided Verification, CAV’06, pages 419–423, Seattle, WA,

2006.

[78] Serp. http://serp.sourceforge.net/.

[79] Nastaran Shafiei and Peter Mehlitz. Modeling class loaders in Java pathfinder

version 7. SIGSOFT Software Engineering Notes, 37(6):1–5, 2012.

[80] Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wąsowski, and

Krzysztof Czarnecki. Reverse engineering feature models. In Proceedings of

the 33rd International Conference on Software Engineering, ICSE ’11, pages

461–470, Waikiki, Honolulu, HI, USA, 2011.

[81] Jiangfan Shi, Myra B. Cohen, and Matthew B. Dwyer. Integration testing of

software product lines using compositional symbolic execution. In Proc. 15th

Int. Conf. on Fundamental Approaches to Software Engineering, FASE’12,

pages 270–284, Estonia, 2012.

[82] Scott D. Stoller and Yanhong A. Liu. Transformations for model checking dis-

tributed Java programs. In Proc. 8th Int. SPIN Workshop on Model checking

of Software, pages 192–199, Toronto, Ontario, Canada, 2001.

[83] Alexandru Sălcianu and Martin Rinard. Purity and side effect analysis for

Java programs. In Proceedings of the 6th International Conference on Verifica-

tion, Model Checking, and Abstract Interpretation, VMCAI’05, pages 199–215,

Berlin, Heidelberg, 2005. Springer-Verlag.

97

[84] Suriya Subramanian, Michael Hicks, and Kathryn S. McKinley. Dynamic

software updates: a VM-centric approach. In Proc. 2009 ACM SIGPLAN

Conf. on Programming Language Design and Implementation (PLDI 2009),

pages 1–12, Dublin, Ireland, 2009.

[85] Koji Taniguchi, Takashi Ishio, Toshihiro Kamiya, Shinji Kusumoto, and Kat-

suro Inoue. Extracting sequence diagram from execution trace of Java pro-

gram. In Proceedings of the Eighth International Workshop on Principles of

Software Evolution, pages 148–154, Washington, DC, USA, 2005.

[86] Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications.

Pacific Journal of Mathematics, 5(2):285–309, 1955.

[87] The Java Interactive Profiler. http://jiprof.sourceforge.net/.

[88] Suresh Thummalapenta, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and

Wolfram Schulte. Mseqgen: Object-oriented unit-test generation via mining

source code. In Proceedings of the the 7th Joint Meeting of the European

Software Engineering Conference and the ACM SIGSOFT Symposium on The

Foundations of Software Engineering, ESEC/FSE ’09, pages 193–202, New

York, NY, USA, 2009. ACM.

[89] Nikolai Tillmann and Jonathan De Halleux. Pex: White box test generation

for .net. In Proceedings of the 2Nd International Conference on Tests and

Proofs, TAP’08, pages 134–153, Prato, Italy, 2008.

[90] Paolo Tonella. Evolutionary testing of classes. In Proceedings of the 2004

ACM SIGSOFT International Symposium on Software Testing and Analysis,

ISSTA ’04, pages 119–128, New York, NY, USA, 2004. ACM.

[91] Matthew S. Tschantz and Michael D. Ernst. Javari: Adding reference im-

mutability to Java. In Proceedings of the 20th Annual ACM SIGPLAN Con-

ference on Object-oriented Programming, Systems, Languages, and Applica-

tions, OOPSLA ’05, pages 211–230, New York, NY, USA, 2005. ACM.

[92] Valentin Dallmeier, Christian Lindig, Andreas Zeller. Dynamic purity analysis

for Java programs, https://www.st.cs.uni-saarland.de/models/jpure/, 2007.

98

[93] Joannès Vermorel and Mehryar Mohri. Multi-armed bandit algorithms and

empirical evaluation. In Proceedings of the 16th European Conference on Ma-

chine Learning, ECML’05, pages 437–448, Berlin, Heidelberg, 2005. Springer-

Verlag.

[94] Willem Visser, Klaus Havelund, Guillaume Brat, Seungjoon Park, and Flavio

Lerda. Model checking programs. Autom. Softw. Eng., 10(2):203–232, 2003.

[95] Willem Visser, Corina S. Pǎsǎreanu, and Sarfraz Khurshid. Test input gen-

eration with Java PathFinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107,

July 2004.

[96] Carl A. Waldspurger. Memory resource management in VMware ESX server.

SIGOPS Oper. Syst. Rev., 36(SI):181–194, 2002.

[97] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. Symstra: A

framework for generating object-oriented unit tests using symbolic execution.

In Proceedings of the 11th International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, TACAS’05, pages 365–381,

Berlin, Heidelberg, 2005. Springer-Verlag.

[98] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge. Dynamic pu-

rity analysis for Java programs. In Proceedings of the 7th ACM SIGPLAN-

SIGSOFT Workshop on Program Analysis for Software Tools and Engineer-

ing, PASTE ’07, pages 75–82, New York, NY, USA, 2007. ACM.

[99] Zhihong Xu, Myra B. Cohen, Wayne Motycka, and Gregg Rothermel. Con-

tinuous test suite augmentation in software product lines. In Proceedings of

the 17th International Software Product Line Conference, SPLC ’13, pages

52–61, New York, NY, USA, 2013. ACM.

[100] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. Combined static and

dynamic automated test generation. In Proceedings of the 2011 International

Symposium on Software Testing and Analysis, ISSTA ’11, pages 353–363,

Toronto, Ontario, Canada, 2011.

[101] Wujie Zheng, Qirun Zhang, Michael Lyu, and Tao Xie. Random unit-test

generation with mut-aware sequence recommendation. In Proceedings of the

99

IEEE/ACM International Conference on Automated Software Engineering,

ASE ’10, pages 293–296, New York, NY, USA, 2010. ACM.

100

