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1 Introduction

For diffeomorphisms of closed smooth manifolds, homoclinic tangencies and heterodimensional cy-
cles are realized as two basic sorts of bifurcations beyond uniform hyperbolic systems. They are
defined as follows: (Let Λ and Γ be transitive hyperbolic sets of a diffeomorphism f and throughout
the paper, the index of a transitive hyperbolic set Γ, denoted by ind(Γ), is defined as the dimension
of its stable subspace.)

• f has a cycle associated to Λ and Γ if the stable manifold W s(Λ) of Λ intersects the unstable
manifold Wu(Γ) of Γ and the same holds for Wu(Λ) and W s(Γ). The cycle is called heterodi-
mensional if the indices of Λ and Γ are different. In particular, the cycle is said to be co-index
one if ind(Λ) = ind(Γ)± 1.

• f has a homoclinic tangency associated to Γ if there exist x, y ∈ Γ such that W s(x) intersects
Wu(y) non-transversally.

(Obviously, by definition, heterodimensional cycles only exist on manifolds of dimension at least
three.) Lots of interesting phenomena, for instance, super exponential growth of the number of periodic
points [BDF], existence of infinitely many sinks or sources [N1], non-hyperbolic robust transitivity
[BDPR] and entropy-expansiveness [LVY], are closely related to them. It is conjectured by Palis that
these two are typical mechanisms beyond uniform hyperbolicity, especially in the C1 topology (See
[B] for a brief introduction on this topic).

C1 Palis Conjecture Every non-hyperbolic C1 diffeomorphism can be approximated, in the C1

topology, by diffeomorphisms exhibiting heterodimensional cycles or homoclinic tangencies.
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In particular, we can consider heterodimensional cycles and homoclinic tangencies associated to
hyperbolic periodic saddles. Note that both of heterodimensional cycles and homoclinic tangencies
associated to periodic points contain non-transversal intersections, which will be easily destroyed by
small perturbations.

Towards the study of Palis Conjecture, if one wants to develop perturbations while keeping these
bifurcations, he needs to consider the robust version of them. More precisely, if there is a neighborhood
U of f such that for all g ∈ U , the hyperbolic continuation Γg of Γ for g exhibits homoclinic tangencies,
then, we say that f has a robust homoclinic tangency associated to Γ. Robust heterodimensional cycles
are defined in a similar way. Obviously, robust homoclinic tangencies and robust heterodimensional
cycles must be associated to non-trivial hyperbolic sets. Concrete examples of them can be found
in [A] and [AS], for instance. A natural question arises immediately: Starting from a homoclinic
tangency (resp. heterodimensional cycle) associated to a hyperbolic periodic saddle p (resp. hyperbolic
periodic saddles p and q) of f , is there an arbitrarily small perturbation g of f , admitting robust
homoclinic tangencies (resp. robust heterodimensional cycles)? This problem is called the stabilization
of homoclinic tangencies (resp. heterodimensional cycles).

In the C2 topology, Newhouse gave a positive answer to the stabilization of homoclinic tangencies
[N2]. In the C1 topology, for heterodimensional cycles, the first result was obtained by Bonatti and
Dı́az by introducing a model of blender horseshoe, a kind of thick hyperbolic set. They proved that
every co-index one heterodimensional cycle can be stabilized [BD1]. Later, this result was improved by
Bonatti, Dı́az and Kiriki in [BDK] (see Lemma 2.7). Comparing to [BD1], the stabilization in [BDK]
is stronger in the following sense: the hyperbolic sets Γ and Λ (to which the robust heterodimensional
cycle of g is associated) contain the continuation pg and qg respectively. Moreover, examples (called
fragile cycles) were constructed which cannot be stabilized in this sharp sense [BD2].

Through the above observations, we propose the following question: In the C1 topology, is it possible
to stabilize a homoclinic tangency? In fact, this question only make sense when the dimension of M
(denoted by dimM) is larger or equal to three. Since according to [Mo], for surface diffeomorphisms,
C1 robust homoclinic tangency does not exist. In higher dimensional case, thanks to Bonatti and
Dı́az who built the so-called folding manifolds in a blender horseshoe which exhibit robust tangent
intersections in a natural setting [BD3]. Based on their result, the main theorem of this paper is
as follows: (Let M be a compact smooth Riemannian manifold without boundary. In particular,
write Md if it is necessary to emphasize the dimension d of M . Denote by Diff1(M) the space of C1

diffeomorphisms of M endowed with the C1 topology. Let χ1(p) ≤ χ2(p) ≤ χ3(p) be the Lyapunov
exponents of p, counting with multiplicities and write ∥Df±(p)∥ = max{∥Dfβ(x)∥ : β = ±1, x ∈
orb(p)}, where ∥A∥ denote the operator norm of a linear map A.)

Theorem A. For any a > 1, there exists δ0(a) > 0 with δ0(a) → 0 as a → 1, such that if
0 < δ < δ0(a) and f ∈ Diff1(M3) exhibits a homoclinic tangency associated to a hyperbolic periodic
saddle p having non-real contracting eigenvalues satisfying χ2(p) + χ3(p) > log(1 − δ), then, there
exists g with distC1(f, g) < aδ∥Df±(p)∥, exhibiting a robust heterodimensional cycle and a robust
homoclinic tangency.

Remark 1.1.

• When ind(p) = 1, replacing f by its inverse, the symmetric version of this theorem is also valid.

• If χ2(p) +χ3(p) > 0, then distC1(f, g) can be required arbitrarily small, which also follows from
[BCDG, Theorem 1].
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It is worth mentioning another related result by Bonatti, Crovisier, Dı́az and Gourmelon, which
dealt with the stabilization of homoclinic tangencies in case of dimM ≥ 3 (An earlier version is due to
Shinohara in [S]). Within a fixed perturbation range, Theorem A says that stabilization of homoclinic
tangencies, at least in the weak sense, can be realized if χ2(p) + χ3(p) > log(1 − δ) comparing to
[BCDG] which requires χ2(p) + χ3(p) > −δ.

As a corollary, the following result is available if one wants to stabilize a homoclinic tangency in
the strong sense (see Definition 2.4 for the definition of dominated splittings and their dimensions).

Corollary B. For any a > 1, suppose f ∈ Diff1(M3) exhibits a homoclinic tangency associated to
a hyperbolic periodic point p such that

• H(pg) does not admit dominated splittings of dimension ind(pg) for all g in a neighborhood Uf

of f ; and

• p has non-real contracting eigenvalues satisfying χ2(p) + χ3(p) > log(1− δ),

where 0 < δ < δ0(a) is sufficiently small, depending on Uf . Then, there exists g with distC1(f, g) <
aδ∥Df±(p)∥, exhibiting a robust heterodimensional cycle and a robust homoclinic tangency associated
to a hyperbolic set Γ containing pg.

Actually, in the proof of Theorem A, the main part is devoted to the creation of weak contracting
eigenvalues. Let us be more precise. Suppose H(p) is a homoclinic class of some hyperbolic periodic
saddle p of f , then the set of hyperbolic periodic saddles of f which are homoclinically related to p is
a dense subset of H(p), which is denoted by ⋔(p). We say that H(p) has weak eigenvalues associated
to periodic points homoclinically related to p if for any ϵ > 0, there exists q ∈ ⋔(p) such that q has
some contracting eigenvalue λs(q) satisfying |λs(q)| > (1− ϵ)π(q) or q has some expanding eigenvalue
λu(q) satisfying |λu(q)| < (1+ϵ)π(q), where π(q) is the period of q. Such an eigenvalue is called ϵ-weak.
It is not hard to show that if H(p) does not admit dominated splittings of dimension ind(p), then
we can obtain arbitrarily weak eigenvalues associated to pg by an arbitrarily small perturbation g of
f . However, unless additional assumptions are given, in general, we cannot designate such a weak
eigenvalue to be contracting or expanding in advance. For example, when dimM = 3 and ind(p) = 2,
if we want to use folding manifolds and blender horseshoe to construct robust homoclinic tangencies
by small perturbations, as a preliminary step, we should find a periodic point q ∈ ⋔(p) with sufficiently
weak contracting eigenvalues and then decrease ind(q) by stretching Df over TM |orb(q). Otherwise,
if the weak eigenvalue of q ∈ ⋔(p) we obtain is always expanding, we might thus get nothing but a
sink after C1small perturbations, which of course escape the continuation of the original homoclinic
class.

By this observation, we see that designating the type of a weak eigenvalue is very important in
some situation. Along this direction, Bochi and Bonatti developed a method which said, in rough
terms, that one can mix two consecutive Lyapunov exponents of some periodic point such that both
of them move continuously towards their midpoint [BB, Theorem 4.1 and Proposition 3.1]. As a
result, under the same setting as above (i.e. dimM = 3 and ind(p) = 2), if we want to get δ-weak
contracting eigenvalues by using [BB], the assumption of χ2 + χ3 > −δ is necessary. For otherwise,
along the parameter curve, χ3 decreases to zero before χ2 increases to −δ. But according to the
so-called isotopic Franks Lemma (Lemma 2.8), in order to guarantee the above perturbation does
not make the periodic point outside the continuation of the original homoclinic class, none of the
Lyapunov exponents is permitted to pass through zero. [BCDG] directly borrowed [BB] to obtain
δ-weak contracting eigenvalues. In this paper, by using a new approach, we also give a sufficient
condition for getting δ-weak contracting eigenvalues, which is better than [BB] when p has non-real
eigenvalues.
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Theorem C. Given δ > 0. Suppose p is a hyperbolic periodic saddle of f ∈ Diff1(M3) satisfying:

• p has non-real contracting eigenvalues satisfying χ2(p) + χ3(p) > log(1− δ); and

• f exhibits a homoclinic tangency associated to p.

Then, there exists g arbitrarily close to f and a hyperbolic periodic saddle q of g, homoclinically
related to pg, having δ-weak contracting eigenvalues.

Remark 1.2.

• When ind(p) = 1, replacing f by its inverse, we can give the symmetric version of this theorem.

• According to its proof, this theorem is still valid when δ = 0 (which also follows from [BCDG]).
In this case, δ-weak should be read as arbitrarily weak. That is, for any ϵ > 0, there exists g
arbitrarily close to f and q ∈ ⋔(pg) admitting ϵ-weak contracting eigenvalues.

When δ is positive, to get δ-weak contracting eigenvalues, our assumption on Lyapunov exponents is
weaker than that of [BCDG] which comes from [BB]. Indeed, the mixing process of Lyapunov exponents
in [BB] is obtained by induction on dimensions, thus can be reduced to planar dynamics. In a periodic
orbit orb(q), once there exists some r ∈ orb(q) with small angle θ between its two eigendirections, a
rotation in the tangent space at r with size less than θ is enough to mix the Lyapunov exponents of
orb(q) (see [BDP, Lemma 3.2] for instance). But in our perturbations, under the weaker assumption,
only rotating at a single point is not sufficient, we also need additional perturbations on tangent spaces
over many points in orb(q) with relatively large angles. These points are so many that the number
of them take a positive proportion in orb(q) especially when q has a large period. The additional
perturbations at the many points should make some effect on the exponential growth of tangent
vectors which assists the eigenvalues condition of p, causing the weaker assumption of inequality
than [BCDG]’s. The selection of such periodic orbit heavily relies on the delicate constructions of a
horseshoe model in Section 4.

As mentioned before, the proof of Theorem C occupied the central position of this paper. Inde-
pendent of [BB], we adopt a different way which is somewhat geometric. Let Eu (resp. Es) denote
the unstable (resp. stable) subspace of a periodic point. Our proof involves looking at the interplay
between ∠(Es, Eu) and contracting rate of vectors in Es (shortly, Es-rate). Roughly speaking, for a
sequence of periodic saddles qn ∈ ⋔(p), if ∠(Es, Eu) decrease to zero more rapidly than Es-rate, then
weak contracting eigenvalues can be created by C1 small perturbations inside the homoclinic class.
In fact, in order to apply the isotopic Franks Lemma, we need to find a continuous path Ct (t ∈ [0, 1])
of matrices which connects the derivative of the original first return map and a matrix with weak
contracting eigenvalues. In general, finding such a path is not so difficult, while ensuring its hyperbol-
icity is much harder and more important. Our strategy is the following: Choose a path Dgn(q) ◦ Ct

without paying attention to its hyperbolicity for a while. Then, modify this path by adding another
matrix, say Dt, which aims to recover the expanding eigenvector. As a consequence, the expanding
eigenvalue survives all the time along the modified path, which indicates that the weak eigenvalue we
obtain must be contracting. Let us remark that although it is necessary only in theoretic sense, the
introduction of Dt is the main reason for assuming χ2(p) + χ3(p) > log(1 − δ). In the foreseeable
future, this assumption is difficult to be removed, see [B, Conjecture 8].

In the last part of this introduction, we present an application of Theorem A to R-robustly entropy-
expansive diffeomorphisms. Let us recall some relative definitions.

Definition 1.3. ([Bo]) Let Λ be a compact f -invariant subset of M . For any x ∈ Λ, denote

Γε(x, f) = {y ∈ M : dist(fn(x), fn(y)) ≤ ε (∀n ∈ Z)},
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which will be written simply as Γε(x) when no confusion arises. We say that f |Λ is entropy-expansive
if there exists ε > 0 such that

sup
x∈Λ

h(f |Γε(x)) = 0,

where h denotes the topological entropy.

Definition 1.4. For f ∈ Diff1(M) and a homoclinic class H(p) of f , if there exists a neighborhood
Uf of f in Diff1(M) and a residual subset Rf of Uf such that g|H(pg) is entropy-expansive for all
g ∈ Rf , then we say that f |H(p) is R-robustly entropy-expansive in Uf .

Here, the letter R stands for the word residual. As an extension of robustly entropy-expansiveness
[PV], this notion was introduced in [L] where it was shown that in an open and dense subset of Uf , the
continuation of H(p) admits a dominated splitting of dimension ind(p) (see [L, Theorem A]). Thus,
it is interesting to know whether H(p) itself also admits such a splitting.

Theorem D. Suppose f |H(p) is R-robustly entropy-expansive in an open ball centered at f ∈
Diff1(M3) with radius ρ. Let σ =

ρ

ρ+ ∥Df±(p)∥
. If p has non-real contracting eigenvalues and

χ2(p) + χ3(p) > log(1− σ), then, H(p) admits a dominated splitting of dimension ind(p).

This paper is organized as follows. In Section 2, through a brief review of some basic facts and
background of this topic, we summarize without proofs some basic properties as the set-up of notation
and terminology. In Section 3, we provide a sufficient condition for getting weak contracting eigenval-
ues inside homoclinic classes by arbitrarily small perturbations. Theorem C will be proved in Section
4 by building a horseshoe model near a homoclinic tangency. Theorem A and Corollary B are proved
in Section 5 where index change is shown through weak eigenvalues. Finally, we prove Theorem D in
Section 6.

2 Preliminaries

For f ∈ Diff1(M) and a hyperbolic periodic point p of f , let π(p) denote the period of p and
orb(p) be the orbit of p. Suppose the eigenvalues of Dfπ(p)(p), counting with multiplicities, satisfy
|λ1(p)| ≤ · · · ≤ |λs(p)| < 1 < |λs+1(p)| ≤ · · · ≤ |λd(p)| where d = dimM and s = ind(p), then,
λs(p) is called the central contracting eigenvalue. In particular, if |λs−1(p)| < |λs(p)|, we say that
λs(p) has multiplicity one. For any 1 ≤ i ≤ s, we say that Dfπ(p)(p) has i-strong stable direction if
|λi(p)| < |λi+1(p)|. In this case, one can define the i-strong stable manifold of p, denoted by W ss

i (p),
as the unique submanifold in the stable manifold W s(p) of p, which is tangent to the i-strong stable
direction of Dfπ(p)(p). Symmetric definitions can also be given for unstable eigenvalues.

A set is residual in Diff1(M) if it can be written as a countable intersection of open and dense subsets
of Diff1(M). In particular, residual sets of Diff1(M) are dense. One can easily verify the following
fact: if A is residual in B and B is residual in Diff1(M), then A is residual in Diff1(M). Throughout
the paper, we say that a property holds generically in Diff1(M) if it is satisfied by diffeomorphisms
contained in a residual subset of Diff1(M).

Generically in Diff1(M), homoclinic classes exhibit many good properties which are similar to the
basic sets in the Spectral Decomposition Theorem of Axiom A diffeomorphisms. For this reason, we
will mainly focus on the dynamics of C1 diffeomorphisms restricted to homoclinic classes. Recall that
the homoclinic class of a hyperbolic periodic saddle p of f , denoted by H(p), is defined as the closure
of transversal intersections of the stable and unstable manifolds of p. We can equivalently define H(p)
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as the closure of all hyperbolic periodic saddles q homoclinically related to p (i.e. the stable manifold
manifold of p transversally meets the unstable manifold of q and vice versa). When talking about the
homoclinic class of a generic C1 diffeomorphism, the following useful results of [CMP] and [ABCDW]
assert that, two homoclinic classes are either coincide or disjoint, and the collection of indices of all
periodic points in H(p), denoted by ind(H(p)), form an interval in N. For this reason, we will use the
terminology of index-interval of H(p).

Lemma 2.1. ([ABCDW, Lemma 2.1]) There exists a residual subset G1 of Diff1(M), such that
for every f in G1 and every pair of saddles p, q of f , there is a neighborhood Uf of f in Diff1(M), such
that either

• H(pg) = H(qg) for all g ∈ Uf ∩ G1; or

• H(pg) ∩H(qg) = ∅ for all g ∈ Uf ∩ G1.

Lemma 2.2. ([ABCDW, Theorem 1.1]) There is a residual subset G2 of Diff1(M), such that
for every f ∈ G2, every homoclinic class H(p) of f containing hyperbolic saddles of indices a and b
also contains a dense subset of saddles of index i for all i ∈ [a, b] ∩ N.

Another sort of elementary dynamical pieces which are closely related to homoclinic classes are
chain recurrent classes. In general, a homoclinic class is a proper subset of a chain recurrent class
[BCGP]. However, It was shown by Bonatti and Crovisier that as long as periodic points are involved,
C1 generically, these two notions coincide.

Lemma 2.3. ([BC]) Generically in Diff1(M), every homoclinic class is a chain recurrent class;
Equivalently, every chain recurrent class containing a periodic point p coincide with the homoclinic
class of p.

Recall that an ε-pseudo-orbit of f is a sequence xi ∈ M such that all the jumps dist(f(xi), xi+1)
are less than ε. A point x ∈ M is called chain recurrent if for every ϵ > 0, there exists ϵ-pseudo
orbit starting and ending at x. The chain recurrent class of x, denoted by C(x), is the collection of
all points y ∈ M such that there are pseudo orbits of arbitrarily small jumps from x to y and from
y to x. The following fact is straightforward: Suppose f has a heterodimensional cycle associated to
transitive hyperbolic sets Λ and Γ, then Λ and Γ are contained in the same chain recurrent class of f .

Definition 2.4. Let f ∈ Diff1(M) and let Λ ⊂ M be a compact f -invariant subset. A continuous
splitting TΛM = E ⊕ F of the tangent bundle over Λ is called dominated if it is Df -invariant and
there exists N ∈ N such that for all x ∈ Λ, one has

∥DfN (x)u∥
∥DfN (x)v∥

<
1

2
,

where u and v are any unit vectors in E and F respectively. The dimension of this dominated splitting
is defined as dimE. More generally, aDf -invariant splitting TΛM = E1⊕· · ·⊕Ek (k ≥ 2) is dominated
if for each l = 1, · · · , k − 1, the splitting TΛM = (E1 ⊕ · · · ⊕ El)⊕ (El+1 ⊕ · · · ⊕ Ek) is dominated.

Dominated splittings persist in the following sense:

Lemma 2.5. ([BDV, Appendix B.1.2]) Let Λ be a compact f -invariant set with a dominated
splitting, then there is a neighborhood U ⊂ M of Λ such that for any g sufficiently C1 close to f , the
maximal g-invariant set contained in the closure of U admits a dominated splitting having the same
dimensions of subbundles as the initial dominated splitting of f over Λ.
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Nowadays, homoclinic tangencies are known to be closely related to the absence of some particular
type of dominated splitting (see Lemma 4.2). For the existence of robust tangencies, the following
criterion is quite useful.

Lemma 2.6. ([BD3, Theorem 1.2]) Let M be a compact manifold with dimM ≥ 3. There is a
residual subset R of Diff1(M) such that, for every f ∈ R and every periodic saddle p of f such that

• H(p) has a periodic saddle q with ind(p) ̸= ind(q); and

• H(p) does not admit dominated splittings of dimension ind(p).

The saddle p belongs to a transitive hyperbolic set having a C1 robust homoclinic tangency.

As another kind of homoclinic bifurcation, heterodimensional cycles can be stabilized in most cases:
(See also [BD1] for an earlier result on that.)

Lemma 2.7. ([BDK, Theorem 1]) Let f be a C1 diffeomorphism with a co-index one heterodi-
mensional cycle associated to periodic saddles p and q. Suppose that at least one of the homoclinic
classes of these saddles is non-trivial. Then there exist an arbitrarily small perturbation g of f and
hyperbolic sets Λ ∋ pg, Γ ∋ qg such that g admits a robust heterodimensional cycle associated to Λ
and Γ.

Now, let us introduce the basic tool which will be used in our perturbation. Usually, Franks Lemma
([F, Lemma 1.1]) is well known as a simple but helpful result which allow us to realize a linear
perturbation of Df along a finite set of M by perturbing f itself in an arbitrarily small neighborhood
of that finite set. However, this result has an inherent disadvantage, especially when someone wants
to perturb Df along some periodic orbit while keeping its homoclinic (resp. heteroclinic) relation
with another periodic point. In other words, unless additional assumptions, for instance isolation, are
given, a periodic point might escape the continuation of the original homoclinic class (resp. chain
recurrent classes). However, Gourmelon’s result in [G1] gave a sufficient condition for controlling the
behavior of stable/unstable manifolds. By applying this isotopic version of Franks Lemma, we are
allowed to give perturbations inside a homoclinic class.

Lemma 2.8. (Isotopic Franks Lemma [G1, G2]) Given f ∈ Diff1(M), let Q be a periodic point
of f with period n. Consider ϵ > 0 and i, j ∈ N. Suppose (Al,t) l=0,...,n−1

t∈[0,1]
is a parameter linear cocycle

in GL(R, d) satisfying

• Al,0 = Df(f l(Q)) for l = 0, ..., n− 1;

• The radius of the curve, defined by

max
l=0,...,n−1

t∈[0,1]

{
∥Al,t −Al,0∥, ∥A−1

l,t −A−1
l,0 ∥
}
,

is less than ϵ;

• For any t ∈ [0, 1], the product
∏n−1

l=0 Al,t = An−1,t ◦ · · · ◦ A0,t admits i-strong stable direction
and j-strong unstable direction.

Then, for any neighborhood V of orbf (Q) in M , there exists g ∈ Diff1(M) such that

• distC1(g, f) < ϵ;

• g = f on orbf (Q) and on M \ V , in particular, Qg = Q;

• Dg(gl(Q)) = Al,1 for l = 0, . . . , n− 1;
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• g preserves the local i-strong stable manifold of Q outside V and the local j-strong unstable
manifold outside V .

where the local i-strong stable manifold of Q outside V is the set of points contained in W ss
i (f l(Q))∩

(M \ V ) whose positive iteration enter V without leaving it.

Since we will make a systematic application of this result which, especially preserving some partic-
ular homoclinic or heteroclinic relations, the following version of Lemma 2.8 is convenient.

Lemma 2.9. Under the hypothesis of Lemma 2.8, if we assume further that the i-strong stable
manifold W ss

i (Q) of Q intersect the unstable manifold of another periodic point R of f , then the
perturbed diffeomorphism g also satisfies W ss

i (Qg) ∩Wu(Rg) ̸= ∅.

Note that the existence of Rg is guaranteed since orbf (R) is outside the support of the perturbation.
The proof of this lemma is similar in spirit to [S, Lemma 4.6], just noting that the statement there
includes the transversality of the intersection, but in the proof, transversality is not used at all.

In the application of Lemma 2.9, we often give the perturbation of Df separately on invariant
subspaces, say, E and F with E ⊕ F = TM . At this moment, we should be very careful because the
angle between E and F might cause some trouble. When this angle is small, even if perturbations of
Df |E and Df |F are both small, the total size of the perturbation probably becomes pretty large. For
subspaces E and F of Rd with E ∩ F = {0}, let Angle(E,F ) ∈ [0, π/2] denote the Euclidean angle
between E and F , and define ∠(E,F ) ∈ [0,+∞] as tanAngle(E,F ). Obviously, when Angle(E,F )

goes to zero, these two quantities become almost the same since limθ→0
θ

tan θ
= 1. The following

lemma will be frequently used when estimating the sizes of perturbations.

Lemma 2.10. ([M, lemma II.10]) Let Rd = E ⊕ F , and T : Rd → Rd is a linear map having E
and F as its invariant subspaces, then, the operator norm of T has an upper bound:

∥T∥ ≤ 1 + ∠(E,F )

∠(E,F )

(∥∥T |E∥∥+ ∥∥T |F∥∥).

3 Weak contracting eigenvalues

In this section, we give a sufficient condition for getting weak contracting eigenvalues in a homoclinic
class, which will be used in the proof of Theorem C.

Lemma 3.1. Let f ∈ Diff1(M3) and a hyperbolic periodic point p of f with index 2 be given.
Suppose there exist sequences λk, gk → f and qk ∈ ⋔(pgk) of period nk with λnk

k → 0 (k → ∞) such
that, letting ξk be the unit vector in the image of orthogonal projection of Eu(qk) into Es(qk), the
following properties hold:

(i) lim supk→∞ ∠(Dgnk

k (qk)ξk, ξk) > 0;

(ii) limk→∞
∥Dgnk

k |Es(qk)∥
λnk

k

= 0;

(iii) limk→∞
λnk

k ∠(Es(qk), E
u(qk))

∥Dgnk

k (qk)ξk∥
= 0.

Then, there exists an arbitrarily small perturbation h of f , admitting (1 − λk)-weak contracting
eigenvalues associated to some qk ∈ ⋔(ph) for arbitrarily large k.
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Remark 3.2.

(1) Conditions (ii) and (iii) imply ∠(Es(qk), E
u(qk)) → 0 as k → ∞.

(2) Replace f by f−1, we obtain the symmetric version of Lemma 3.1 which provides arbitrarily
weak expanding eigenvalues.

(3) Moreover, we can require this weak eigenvalue is real, central, and has multiplicity one. This is
because we have the following:

Lemma 3.3. ([YG, Lemma 2.3]) For generic f in Diff1(M) and any hyperbolic periodic point p
of f , if f has a periodic point q homoclinically related to p, having an ϵ-weak eigenvalue, then f has
a periodic point p1 homoclinically related to p with an ϵ-weak eigenvalue, whose eigenvalues are all
real.

Although it is stated as a property for C1 generic diffeomorphisms, this lemma is actually a pertur-
bation result. Moreover, by checking its proof, we see that if the weak eigenvalue in the hypothesis is
contracting (resp. expanding), then after the perturbation, one gets also contracting (resp. expand-
ing) weak eigenvalues. Once a real weak eigenvalue is obtained by Lemma 3.3, which is associated to
some q ∈ ⋔(pg), then an additional arbitrarily small perturbation using the isotopic Franks Lemma
will help us to split each eigenvalue such that all of them have multiplicity one. This last perturbation
still preserves the homoclinic relation because Dgπ(q)(q) keeps its hyperbolicity in the process.

Now, let us turn to the proof of Lemma 3.1. The main idea is as follows: Firstly, find a perturbation
which induces weak contracting eigenvalues by modifying [M, Lemma II.9] to solve a linear equation.
Secondly, create a parameter curve Ct ∈ GL(R, 3) which connects the identity and the perturbation
obtained in the previous step. But this isotopic perturbation cannot be used directly, since hyper-
bolicity might be destroyed until it arrives its endpoint. To avoid this happens, thirdly, we recover
the unstable eigenvector by adding another isotopic perturbation Dt before Ct. In this step, we will
make use of the own dynamics in the 2-dimensional subspace Es(q) to guarantee, that the additional
perturbation Dt can be given separately in two invariant subspaces which have a relatively large angle.
This will help us to control the size of the perturbation. Finally, we apply the isotopic Franks Lemma
to the new perturbation Dgn(q) ◦ Ct ◦Dt of Dgn(q), obtaining weak contracting eigenvalues.

Proof of Lemma 3.1. For any ϵ > 0 fixed, we are going to construct an ϵ-perturbation h of f ,
having a periodic point homoclinically related to ph with (1 − λk)-weak contracting eigenvalues for
an arbitrarily large k ∈ N. First, by assumption, we are allowed to select k ∈ N large, satisfying the
following conditions:

(K1)

distC1(gk, f) <
ϵ

2
;

(K2)
Angle(Dgnk

k (qk)ξk, ξk) ≥ σ,

where 0 < tanσ < lim supk→∞ ∠(Dgnk

k (qk)ξk, ξk), independent of k.

(K3)

max

{
∥Dgnk

k |Es(qk)∥,
∥Dgnk

k |Es(qk)∥
λnk

k

}
=

∥Dgnk

k |Es(qk)∥
λnk

k

<
1

2
;

(K4)

max

{
6θqk ,

600λnk

k θqk
∥Dgnk

k (qk)ξk∥

}
<

ϵ

8D
,

where D = sup
{
∥Dg∥+ ∥Dg−1∥ : distC1(f, g) ≤ 1

}
and θqk = ∠(Es(qk), E

u(qk));
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(K5) For any A : R → R with ∥A−1∥ < 1, one has

1

2
∥v∥ ≤

∥∥(I − λnk

k A−1
)
v
∥∥ ≤ 2∥v∥

for any v ∈ R;

(K6) For B = Dgnk

k |Es(qk), one has

1

2
∥u∥ ≤

∥∥∥(I − λ−nk

k B
)−1

u
∥∥∥ ≤ 2∥u∥ and Angle

((
I − λ−nk

k B
)−1

u, u
)
<

σ

2

for any u ∈ R2.

From now on, fix the integer k satisfying (K1)-(K6) above, for notation simplicity, let us denote
λk, gk, qk and nk by λ, g, q and n respectively. Take orthogonal coordinate chart {(Es(q))⊥, Es(q)}

of TqM . Since Es(q) is Dgn(q)-invariant, we write Dgn(q) =

(
A 0
P B

)
in this coordinate, where

A = Dgn|(Es)⊥(q) ∈ R,
B = Dgn|Es(q) ∈ GL(R, 2).

Clearly, ∥A−1∥ = |A|−1 < 1 since dim(Es(q))⊥ = 1. Define a linear map L : (Es(q))⊥ → Es(q) such
that

Eu(q) = graph(L) = {v + Lv : v ∈ (Es(q))⊥}.

Thus θq = ∠(Es(q), Eu(q)) = ∥L∥−1. Since Eu(q) is Dgn(q)-invariant, we obtain LA = P + BL.
According to (K3),

∥L∥ ≤ ∥PA−1∥+ ∥BLA−1∥ ≤ ∥PA−1∥+ ∥B∥ · ∥L∥ ≤ ∥PA−1∥+ 1

2
∥L∥,

which implies ∥PA−1∥−1 ≤ 2∥L∥−1 = 2θq. Now, consider the following linear equation:(
A 0
P B

)(
I C
0 I

)(
x
y

)
= λn

(
x
y

)
(1)

which is equivalent to {
x = −(I − λnA−1)−1Cy (2)

y = (λn −B)−1P (I − (I − λnA−1)−1)Cy. (3)

Notice that

I = (I − λnA−1)(I − λnA−1)−1 = (I − λnA−1)−1 − λnA−1(I − λnA−1)−1,

then (3) can be rewritten as

y = −λn(λn −B)−1PA−1(I − λnA−1)−1Cy.

To solve (1), take v ∈ (Es(q))⊥, such that ∥v∥ = ∥PA−1∥−1 and ∥PA−1v∥ = 1. Let

y = λn(λn −B)−1PA−1v ∈ Es(q).

This definition does make sense, because λn−B = λn(I −λ−nB) and by (K3), ∥λ−nB∥ ≤ λ−n∥B∥ <
1

2
, which implies that (λn − B) is invertible ([PdM, Lemma 2.4.2]). Take norms of the equality

λnPA−1v = (λn −B)y, we have

λn = ∥λnPA−1v∥ = ∥(λn −B)y∥ ≤ 3

2
λn∥y∥,
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which gives ∥y∥ ≥ 2

3
. Let w = −(I−λnA−1)v, we conclude from (K5) that ∥w∥ ≤ 2∥v∥. Define C as a

linear map from Es(q) to (Es(q))⊥ satisfying Cy = w and ∥C∥ =
∥w∥
∥y∥

. By the previous estimations,

∥C∥ ≤ 2∥v∥
2/3

= 3∥v∥ = 3∥PA−1∥−1 ≤ 6

∥L∥
= 6θq ≤ ϵ

8D
,

where in the last inequality we used (K4). It is easy to verify that for C defined above,(
x
y

)
=

(
v

λn(λn −B)−1PA−1v

)
is exactly the solution of (1). Now, consider isotopic perturbation (Al,t) l=0,...,n−1

t∈[0,1]
of Dg on orbg(q) as

follows:

• A0,t = Dg(q) ◦ Ct, where Ct =

(
I tC
0 I

)
;

• Al,t = Dg(gl(q)) for l = 1, . . . , n− 1.

By the previous construction,
∏n−1

l=0 Al,1 admits an eigenvector with eigenvalue λn as we desired,
hence we are intend to apply Lemma 2.9 to this parameter curve. However, in general, when t moves
from 0 to 1,

∏n−1
l=0 Al,t, although begins as a hyperbolic matrix

∏n−1
l=0 Al,0 = Dgn(q), might lose its

hyperbolicity before t arrives 1, which will destroy the established plan. To overcome this obstacle,
our strategy is to introduce another perturbation Dt which is used to ensure the hyperbolicity of the
perturbed derivatives by recovering its expanding eigenvector for every t ∈ [0, 1]. More precisely, such
Dt should satisfy the following conditions:

(D1) For every t ∈ [0, 1],

Dt

(
v
Lv

)
=

(
v − tCLv

Lv

)
;

(D2)

D1

(
x
y

)
=

(
x
y

)
,

where

(
x
y

)
is the eigenvector with weak eigenvalue λn obtained before;

(D3) Dt is sufficiently near the identity, that is, for every t ∈ [0, 1],

∥Dt − id∥ <
ϵ

8D
.

First, let us show the existence of such Dt. Denote by G the 2-dimensional plane spanned by (v, 0)
and (0, Lv). Recall that L is the linear map from (Es(q))⊥ to Es(q) whose graph is Eu(q).

Claim. (x, y) /∈ G.

In fact, otherwise, there are b1, b2 ∈ R, satisfying(
v

λn(λn −B)−1PA−1v

)
=

(
x
y

)
= b1

(
v
0

)
+ b2

(
0
Lv

)
which implies

λn(λn −B)−1PA−1v = b2Lv.

combining Lv = PA−1v +BLA−1v, and noticing that A is actually a real number, we obtain
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λnLv − λnA−1BLv = b2(λ
n −B)Lv,

(1− b2)λ
nLv = (λnA−1 − b2)BLv.

But according to (K2), Lv and BLv are linearly independent, we conclude 1 = b2 = λnA−1 < 1,
which is absurd. The claim is proved.

Continue the construction of Dt. We will take F := span{(x, y)} and G as two invariant subspaces
of Dt and give the definition of Dt (1 ≤ t ≤ 1) on them separately.

• Define Dt|F as the identity map;

• Define Dt|G as a rotation of the form (under some 2-dimensional standard orthogonal coordinate
chart of G)

Dt|G = ρt

(
cosωt − sinωt

sinωt cosωt

)
such that

Dt

(
v
Lv

)
=

(
v − tCLv

Lv

)
,

where

ρt =

∥∥∥∥( v − tCLv
Lv

)∥∥∥∥/∥∥∥∥( v
Lv

)∥∥∥∥ and ωt = Angle

((
v
Lv

)
,

(
v − tCLv

Lv

))
.

Obviously, (D1) and (D2) follow directly from this definition, it remains to check (D3). In fact,

ωt ≤ ω1 ≤ 2∥CLv∥
∥Lv∥

≤ 2∥C∥ ≤ 12θq

ρt − 1 ≤ ρ1 − 1 ≤ θq

whenever θq is sufficiently small. Just notice ρ1 − 1 is a higher order infinitesimal of θq. Thus,

∥(Dt − id)|G∥ ≤ ∥(D1 − id)|G∥ =

∥∥∥∥ρ1( cosω1 − sinω1

sinω1 cosω1

)
− ρ1 · ρ−1

1

∥∥∥∥
≤ ρ1

(∥∥∥∥( cosω1 − sinω1

sinω1 cosω1

)
− id

∥∥∥∥+ ∥∥id− ρ−1
1

∥∥)
≤ 2ρ1ω1 + (ρ1 − 1) ≤ 24θq(1 + θq) + θq < 50θq.

Let β = ∠(F,G), we will estimate this angle in the triangle spanned by (v, Lv) and (x, y). Let

n⃗ :=

(
x
y

)
−
(

v
Lv

)
=

(
v

λn(λn −B)−1PA−1v

)
−
(

v
Lv

)
=

(
0

λn(λn −B)−1PA−1v − Lv

)
which is parallel to Es(q). Moreover, since

λn(λn −B)−1PA−1v − Lv = λn(λn −B)−1(Lv −BLA−1v)− (λn −B)−1(λn −B)Lv

= (λn −B)−1(λnLv − λnA−1BLv − λnLv +BLv)

= λ−n(I − λ−nB)−1(I − λnA−1)BLv.

By assumption (K2) and (K6),

Angle(n⃗, G) ≥ σ − σ

2
=

σ

2
.
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Intuitively, we see that n⃗ has stood in G (see Figure 1). Since σ is independent of k ≥ 1 which have

been omitted after (K6), we are allowed to estimate β using
∥n⃗∥
∥Lv∥

, up to a constant multiple, which

can be assumed equal to 1 for simplicity. By (K5) and (K6), we have

∥n⃗∥ = ∥λ−n(I − λ−nB)−1(I − λnA−1)BLv∥ ∈
[
∥BLv∥
4λn

,
4∥BLv∥

λn

]
.

As a result, combining (K3),

∥BLv∥
4λn∥Lv∥

≤ β ≤ 4∥BLv∥
λn∥Lv∥

≤ 4∥B∥
λn

≤ 2.

Then, by Lemma 2.10,

∥Dt − id∥ ≤ ∥D1 − id∥ ≤ 1 + β

β

(
∥(D1 − id)|F ∥+ ∥(D1 − id)|G∥

)
<

1 + β

β

(
0 + 50θq

)
≤ 150θq

β
≤ 600λnθq

∥Lv∥
∥BLv∥

≤ ϵ

8D
,

where the last inequality comes from (K4). Recall that ξ is the unit vector in Lv direction.

Now, we complete showing the existence of Dt which satisfies (D1)-(D3). Using this Dt, let us finish
the proof of Lemma 3.1.

Consider the following isotopic perturbation (Al,t) l=0,...,n−1
t∈[0,1]

:

• A0,t = Dg(q) ◦ Ct ◦Dt;

• Al,t = Dg(gl(q)) (l = 1, . . . , n− 1).

Clearly, Al,0 = Dg(gl(q)) for all l = 0, . . . , n− 1. To estimate the radius of the path, since

∥C±1
1 − id∥ ≤ ∥C∥ ≤ ϵ

8D
≤ 1
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gives ∥C1∥ ≤ 2, as a consequence,

max
l=0,...,n−1

t∈[0,1]

{
∥Al,t −Al,0∥

}
≤ max

t∈[0,1]
∥A0,t −A0,0∥ = ∥A0,1 −A0,0∥

≤ ∥Dg(q) ◦ C1 ◦D1 −Dg(q)∥ ≤ ∥Dg(q)∥ · ∥C1 ◦D1 − id∥

≤ D∥C1∥
(
∥D1 − id∥+ ∥id− C−1

1 ∥
)
< 2D

( ϵ

8D
+

ϵ

8D

)
=

ϵ

2
.

Similar calculation shows that
max

l=0,...,n−1
t∈[0,1]

{
∥A−1

l,t −A−1
l,0 ∥
}
<

ϵ

2
.

Hence, we conclude that the radius of the path is less than
ϵ

2
.

Immediately, we have two cases: either

(I)
∏n−1

l=0 Al,t keeps its hyperbolicity during all the time when t varies from 0 to 1; or

(II)
∏n−1

l=0 Al,t lose its hyperbolicity for the first time at some t0 ∈ (0, 1].

If case (I) occurs, applying Lemma 2.9 to orbg(q) and (Al,t) l=0,...,n−1
t∈[0,1]

, we obtain an
ϵ

2
-perturbation

h of g (as a consequence, distC1(h, f) ≤ distC1(h, g) + distC1(g, f) < ϵ by (K1)), satisfying

• hl(q) = gl(q) for l = 0, . . . , n− 1;

• q is homoclinically related to ph;

• Dh(hl(q)) = Al,1 for l = 0, . . . , n− 1.

Since we also have, by (D2),

Dhn(q)

(
x
y

)
= Dgn(q) ◦ C1 ◦D1

(
x
y

)
= Dgn(q) ◦ C1

(
x
y

)
=

(
A 0
P B

)(
I C
0 I

)(
x
y

)
= λn

(
x
y

)
,

Dhn(q) admits a contracting eigenvalue λn. In other words, we have found ϵ-perturbation h of f ,
having (1− λ)-weak contracting eigenvalues associated to q ∈ ⋔(ph).

On the other hand, if case (II) occurs,
∏n−1

l=0 Al,t is hyperbolic for all t ∈ [0, t0). Then we cut
the path (Al,t) just before t arrives t0 such that its end point admits an eigenvalue as weak as we
desired (in particular, weaker than 1− λ). Applying Lemma 2.9 to the tail-cut curve, we also obtain
ϵ-perturbation h of f , having (1− λ)-weak eigenvalues associated to q ∈ ⋔(ph). By our construction,
this weak eigenvalue must be contracting. In fact, recalling (D1), for every t ∈ [0, 1], we have(

n−1∏
l=0

Al,t

)(
v
Lv

)
= Dgn(q) ◦ Ct ◦Dt

(
v
Lv

)
= Dgn(q) ◦ Ct

(
v − tCLv

Lv

)
= Dgn(q)

(
I tC
0 I

)(
v − tCLv

Lv

)
= Dgn(q)

(
v
Lv

)
= λu

(
v
Lv

)
where λu is the expanding eigenvalue of Dgn(q) associated to Eu(q). In other words, (v, Lv) is an

expanding eigenvector of
∏n−1

l=0 Al,t for all t ∈ [0, 1], which indicates, when t increases from 0 to 1,

that
∏n−1

l=0 Al,t lose its hyperbolicity for the first time by the absolute value of one of its contracting
eigenvalues passes through 1 from the left to the right. Therefore, the weak eigenvalue obtained in
case (II) should be contracting. Now, the proof of Lemma 3.1 is complete.
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4 A horseshoe model: Proof of Theorem C

Theorem C is a straightforward consequence of Lemma 3.1 and the following

Lemma 4.1. Given δ > 0. Suppose p is a hyperbolic periodic saddle of f ∈ Diff1(M3) satisfying:

• p has non-real contracting eigenvalues and χ2(p) + χ3(p) > log(1− δ); and

• f exhibits a homoclinic tangency associated to p.

Then, there exist sequences λk, gk → f and qk ∈ ⋔(pgk) of period nk → ∞ with λnk

k → 0 such that:
λk, gk and qk satisfy the hypothesis of Lemma 3.1. Moreover,

• If χ2(p) + χ3(p) ≥ 0, we have λk → 1−;

• If 0 > χ2(p) + χ3(p) > log(1− δ), we have λk = λ = 1− δ.

By using the diagonal argument, we see immediately from the following lemma that the above
assumption of homoclinic tangency can be replaced by assuming that H(p) does not admit dominated
splittings of dimension ind(p).

Lemma 4.2. Let f ∈ Diff1(M) and p be a hyperbolic saddle of f . If H(p) does not admit dominated
splittings of dimension ind(p), then, there exists arbitrarily small perturbation g of f such that pg has
a homoclinic tangency.

This result actually follows from [SV, Section 2], although the above statement is not explicitly
given in it. We outline the proof for readers’ convenience. First, under the hypothesis that H(p) does
not have dominated splittings of dimension ind(p), [SV, Proposition 2] provides sequences gk → f
and homoclinic point xk of pgk satisfying ∠(Txk

Wu(pgk), Txk
W s(pgk)) <

1
k . Once such sequences are

obtained, [SV, Proposition 1] gives 1
k -perturbation g̃k of gk such that g̃k has a homoclinic tangency

associated to pg̃k . We remind the readers that in [SV, Proposition 1], the homoclinic tangency is
created as a contradiction to the assumption of persistent expansiveness, which we do not need to
care. This completes the outline of the proof.

Let us turn to the proof of Lemma 4.1. Without loss of generality, we can always assume that p is
a fixed point of f . Otherwise, it is enough to consider fπ(p) instead of f .

Under the assumption of Lemma 4.1, by an arbitrarily small perturbation (the readers can refer
the proof of [F, Lemma 1.1]), there exists a local coordinate chart ϕ : Up → R3 ∼= C× R defined in a
small neighborhood Up ⊂ M of p satisfying the following:

(A1) ϕ(Up) = {z ∈ C : |z| < 1} × (−1, 1) =: Bs ×Bu =: B;

(A2) ϕ(p) = (0, 0) ∈ Bs ×Bu;

(A3) Bs ⊂ W s
loc(p), B

u ⊂ Wu
loc(p);

(A4) There exists x = (z, 0) at which W s(p) intersects Wu(p) non-transversally;

(A5) ϕ ◦ f ◦ ϕ−1 defined on B act as the linear transformation ϕ ◦ Df(p) ◦ ϕ−1, that is, for any
(z, y) ∈ B, we have ϕ ◦ f ◦ϕ−1(z, y) = (µsz, µuy). In the following, if no confusion arises, in this
coordinate chart, we identify f with its conjugation ϕ ◦ f ◦ ϕ−1;

(A6) There exists T ∈ N such that ϕ−1(x) /∈ fT−1(Up) but ϕ
−1(x) ∈ fT (Up), we call f

T the transition
map. Moreover, replace x if necessary, we can also assume ϕ−1(x) /∈ f j(Up) for j = 1, . . . , T − 1.

(From now on, points and vectors in Bs will be identified as complex numbers.) It is worth pointing
out that (A5) can be obtained by an arbitrarily small perturbation as long as Up is taken small enough.
For any ϵ > 0 fixed, we are going to construct a 2ϵ-perturbation g of f and a periodic point q ∈ ⋔(pg).
Finally the sequence gk and qk will be obtained by letting ϵ tend to zero.
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We divide the following proof into three parts. In the first part, a hyperbolic horseshoe is built
along the orbit of a homoclinic point with small angle. Cone fields are constructed to prove the
hyperbolicity. This part is relatively standard, readers can refer [PT, Section 2.3] for a two dimensional
model although we are dealing with a three dimensional one. In the second part, we select a periodic
point in the horseshoe, consider its iterations and give appropriate perturbations in its orbit at which
Es and Eu have large angle. In the last part, we verify conditions (i)-(iii) of Lemma 3.1 for the
sequences.

Before constructing the horseshoe, as preparations, let us fix some important constants. For con-
venience, two cases are considered in separated ways: (note that the case of χ2(p) +χ3(p) = 0 can be
dealt using a limit process)

Case (I): χ2(p) + χ3(p) > 0. For ϵ > 0 fixed before, choose λ = λ(ϵ) ∈ (0, 1) sufficiently close to 1,
such that

log |µs| − log |µu|+ 2 log(1− ϵ
D )

log |µs|+ log(1− ϵ
D )− log λ

< 1− log |µu|
log |µs|

,

where D = sup{∥Dg∥ + ∥Dg−1∥ : distC1(g, f) ≤ 1}. This is possible because the above inequality is
equivalent to

log |µs|
(
log |µs| − log |µu|+ 2 log

(
1− ϵ

D

))
< (log |µs| − log |µu|)

(
log |µs|+ log

(
1− ϵ

D

)
− log λ

)
2 log |µs| log

(
1− ϵ

D

)
< (log |µs| − log |µu|)

(
log
(
1− ϵ

D

)
− log λ

)
log |µsµu| log

(
1− ϵ

D

)
< log λ log

∣∣∣∣µu

µs

∣∣∣∣ . (4)

By assumption |µsµu| > 1, it suffice to choose λ ∈ (0, 1) sufficiently close to 1. Notice that λ(ϵ) → 1−
when ϵ → 0. Next, select κ ∈ R such that

1− log |µu|
log |µs|

< κ <
log |µs| − log |µu|
log |µs| − log λ

.

This definition does make sense because it is easy to see

1− log |µu|
log |µs|

<
log |µs| − log |µu|
log |µs| − log λ

⇐⇒ 0 < λ < 1.

The choice of κ provides us two inequalities:

|µu(µs)κ−1| < 1 and (5)

0 < λκ < |µu(µs)κ−1|. (6)

Moreover, since |µsµu| > 1 gives − log |µu|
log |µs|

> 1, we know κ > 2. Thus

|µs(µu)κ−1| > |µsµu| > 1. (7)

Beside, since

κ > 1− log |µu|
log |µs|

>
log |µs| − log |µu|+ 2 log(1− ϵ

D )

log |µs|+ log(1− ϵ
D )− log λ

,

we have

λκ >
(
1− ϵ

D

)κ−2

|µu(µs)κ−1|. (8)
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Case (II): 0 > χ2(p) + χ3(p) > log(1 − δ). For ϵ > 0 fixed before, let λ = 1 − δ. Notice that in
contrast with the previous case, here, λ does not depend on ϵ. Thus, 0 > χ2(p) + χ3(p) > log(1− δ)
can be rewritten as 1 > |µsµu| > λ. Moreover, we can always assume |µs| < λ, for otherwise, p itself
has δ-weak contacting eigenvalues and there is nothing to prove. By the choice of λ, we have

1− log |µs|
log |µu|

<
log |µs| − log |µu|+ 2 log(1− ϵ

D )

log |µs|+ log(1− ϵ
D )− log λ

.

This is because the above inequality is equivalent to

log |µsµu| log
∣∣∣∣µu

µs

∣∣∣∣ > log λ log

∣∣∣∣µu

µs

∣∣∣∣+ log |µsµu| log
(
1− ϵ

D

)
,

but |µsµu| > λ, thus it suffice to shrink ϵ if necessary. Next, select κ ∈ R satisfying

log |µs| − log |µu|+ 2 log(1− ϵ
D )

log |µs|+ log(1− ϵ
D )− log λ

< κ <
log |µu| − log |µs|
log λ− log |µs|

.

κ is well-defined since

log |µs| − log |µu|+ 2 log(1− ϵ
D )

log |µs|+ log(1− ϵ
D )− log λ

<
log |µu| − log |µs|
log λ− log |µs|

⇐⇒ |µsµu| > λ2.

The choice of κ provides two inequalities:

0 < λκ < |µu(µs)κ−1|;

λκ >
(
1− ϵ

D

)κ−2

|µu(µs)κ−1|.

Moreover,

κ >
log |µs| − log |µu|+ 2 log(1− ϵ

D )

log |µs|+ log(1− ϵ
D )− log λ

> 1− log |µs|
log |µu|

gives
|µs(µu)κ−1| > 1.

Since |µsµu| < 1 as we assumed in this case, κ > 1− log |µs|
log |µu|

> 2, which implies

|µu(µs)κ−1| < |µuµs| < 1.

Therefore, we still have a constant κ > 2 satisfying completely the same inequalities (5)-(8) as
in Case (I). It should be pointed out that as long as these inequalities are obtained, the following
constructions are fit for both Case (I) and Case (II). The only difference is, λ(ϵ) → 1− (ϵ → 0) when
|µsµu| > 1 while λ = 1− δ independent of ϵ when 1 > |µsµu| > 1− δ.

Now, let us construct the horseshoe. For any θ ∈ (0, ϵ), by a θ-small perturbation of f near f−1(x),
we get g such that the above facts (A1)-(A6) still hold for g except (A4), which becomes

(A4’) x = (z, 0) ∈ B is a transversal homoclinic point of pg = p with Angle(TxW
s(p), TxW

u(p)) = θ.

Define N = N(θ) ∈ R by ∣∣∣∣µu

µs

∣∣∣∣N θ = 1.

Clearly, N → ∞ when θ → 0. For some iteration of g, we are going to build a horseshoe inside B, but
notice that the above perturbation from f to g only affect the angle between TxW

s(p) and TxW
u(p)
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p x

g−T (x)

Figure 2

which is in general not sufficient to guarantee gT (B) passing through B from its top to the bottom.
Therefore, we need to cut B to get some subset with smaller height. To be more precise, define

Bθ
H = Bs ×

(
1

|µu|[κN ]
Bu

)
= {z ∈ C : |z| < 1} ×

(
− 1

|µu|[κN ]
,

1

|µu|[κN ]

)
.

Here and subsequently, for s ∈ R, let [s] denote the smallest integer that is larger than s. (Note that
this notation is different from the usual one.) When θ → 0, the height of Bθ

H , denoted by h(Bθ
H),

decreases to zero, but by inequality (7), we have

lim
θ→0

θ

h(Bθ
H)

= lim
N→∞

(∣∣∣∣µs

µu

∣∣∣∣N |µu|[κN ]

)
≥ lim

N→∞

∣∣µs(µu)κ−1
∣∣N = ∞,

which shows that h(Bθ
H) decrease more rapidly than θ. Therefore, by local linearization property of

the derivatives, we can always assume that the connected component of gT ({0}×Bu)∩Bθ
H containing

x is a 1-dimensional straight segment whose boundary is contained in Bs × ∂

(
1

|µu|[κN ]
Bu

)
. Briefly,

we say that gT ({0} ×Bu) passes through Bθ
H along Bu-direction. By continuity, we have

Fact 4.3. IfDs ⊂ Bs is a disk centered at 0 ∈ Bs whose radius is sufficiently small, then gT (Ds×Bu)
also passes through Bθ

H along Bu-direction.

Symmetrically, let

Bθ
V =

(
|µs|[κN ]Bs

)
×Bu =

{
z ∈ C : |z| < |µs|[κN ]

}
× (−1, 1).

When θ → 0, the width of Bθ
V , denoted by v(Bθ

V ), decrease to zero. Moreover, since T is independent
of θ, there exists a constant cT ≥ 1 which only depends on T and a fixed neighborhood of f , such that

Angle(Tg−T (x)W
s(p), Tg−T (x)W

u(p)) =: Θ ∈ [c−1
T θ, cT θ]. (9)

As above, by the inequality (5), we have

lim
θ→0

Θ

v(Bθ
V )

≥ lim
θ→0

c−1
T θ

v(Bθ
V )

= lim
N→∞

(
c−1
T

|µs|[κN ]

∣∣∣∣µs

µu

∣∣∣∣N
)

≥ lim
N→∞

c−1
T

(
1

|µu(µs)κ−1|

)N

= ∞,

which shows that v(Bθ
V ) decrease to zero faster than Angle(Tg−T (x)W

s(p), Tg−T (x)W
u(p)). Hence by

an arbitrarily small perturbation, we can assume the connected component of g−T (Bs × {0}) ∩ Bθ
V

containing g−T (x) is a 2-dimensional disk whose boundary is contained in ∂(|µs|[κN ]Bs)×Bu. Briefly,
we say that g−T (Bs × {0}) passes through Bθ

V along Bs-direction.
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The above construction shows the existence of a topological horseshoe of g[κN ]+T inside Bθ
H . In

fact,

Λθ
H :=

+∞∩
n=−∞

g([κN ]+T )n(Bθ
H)

is a g[κN ]+T -invariant subset, on which g[κN ]+T conjugate to a full shift of two symbols. By us-
ing the cone field criterion, we will prove that Λθ

H is actually a hyperbolic horseshoe. To see this,
notice that g[κN ]+T (Bθ

H) = gT (Bθ
V ). Thus, when θ is small, according to Fact 4.3, there are two

connected components of g[κN ]+T (Bθ
H) ∩Bθ

H , both of them pass through Bθ
H along Bu-direction. As

a result, g−([κN ]+T )(Bθ
H) ∩ Bθ

H consists of another two components which pass through Bθ
H along

Bs-direction. Therefore, Bθ
H ∩ g[κN ]+T (Bθ

H) ∩ g−([κN ]+T )(Bθ
H) has totally four components, three

of which contain p, x, g−([κN ]+T )(x), respectively. We denote these three components by comp(p),
comp(x), comp(g−([κN ]+T )(x)) and the rest one by comp(⋆). Let us define a unstable cone field on
Λθ
H as follows:

(UC1) For every w ∈ comp(p) ∪ comp(g−([κN ]+T )(x)), let Cu
w(1) = {(z, y) ∈ TwM : |z| ≤ |y|};

(UC2) For every w ∈ comp(x) ∪ comp(⋆), let Cu
w

(
4
3θ

)
=
{
(z, y) ∈ TwM : |z| ≤ 4

3θ |y|
}
.

In order to define a stable cone field, for convenience, we consider Bθ
V instead of Bθ

H . Similarly as
before, since g−([κN ]+T )(Bθ

V ) = g−T (Bθ
H), when θ is small, there are two connected components of

g−([κN ]+T )(Bθ
V )∩Bθ

V , both of them pass throughBθ
V alongBs-direction. As a result, g[κN ]+T (Bθ

V )∩Bθ
V

consists of another two components which pass through Bθ
V along Bu-direction. We denote the

four connected components of Bθ
V ∩ g[κN ]+T (Bθ

V ) ∩ g−([κN ]+T )(Bθ
V ) by Comp(p), Comp(g−T (x)),

Comp(g[κN ](x)) and Comp(⋆), where the first three contains p, g−T (x) and g[κN ](x), respectively.
Define a stable cone field on Λθ

V as the following:

(SC1) For every w ∈ Comp(p) ∪ Comp(g[κN ](x)), let Cs
w(1) = {(z, y) ∈ TwM : |y| ≤ |z|};

(SC2) For every w ∈ Comp(g−T (x)) ∪ Comp(⋆), let Cs
w

(
4
3Θ

)
=
{
(z, y) ∈ TwM : |y| ≤ 4

3Θ |z|
}
.

Here, we gave the definition of unstable cone field on Bθ
H while stable cone field on Bθ

V . Indeed, it
does not matter because g[κN ](Bθ

H) = Bθ
V , which implies

Λθ
V =

+∞∩
n=−∞

g([κN ]+T )n(Bθ
V ) =

+∞∩
n=−∞

g([κN ]+T )n+[κN ](Bθ
H)

=

+∞∩
n=−∞

g([κN ]+T )n−T (Bθ
H) = g−T

(
+∞∩

n=−∞
g([κN ]+T )n(Bθ

H)

)
= g−T (Λθ

H).

Thus Λθ
V and Λθ

H only differ at some fixed number of iterations. If we can show Cs
w is a stable cone field

on Λθ
V , define Es(w) = ∩∞

n=0Dg−([κN ]+T )n(Cs
g([κN]+T )n(w)

) for every w ∈ Λθ
V . Then gT (Es(g−T (w)))

is the stable bundle for every w ∈ Λθ
H . In other words, to prove the hyperbolicity of Λθ

H (or Λθ
V ), it

suffice to prove that Cu
w is a unstable cone field on Λθ

H and Cs
w is a stable cone field on Λθ

V .

Lemma 4.4. (Uniform invariance) For sufficiently small θ > 0,

(1) Dg[κN ]+T (w)(Cu
w(·)) ⊂ intCu

g[κN]+T (w)
( 67 ·) ∪ {0} for every w ∈ Λθ

H ;

(2) Dg−([κN ]+T )(w)(Cs
w(·)) ⊂ intCs

g−([κN]+T )(w)
( 67 ·) ∪ {0} for every w ∈ Λθ

V .

Proof. We define the H-slope (V-slope) of a vector v = (z, y) ∈ Bs × Bu as |z|/|y| (resp. |y|/|z|).
Thus the definition of unstable (stable) cone field can be easily rewritten using the notion of H-slope
(resp. V-slope).
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(1a) For any w ∈ Λθ
H ∩ (comp(p) ∪ comp(x)), we have

g[κN ]+T (w) ∈ comp(p) ∪ comp(g−([κN ]+T )(x)).

Take any vector (z, y) ∈ Cu
w(∗), where ∗ = 1 or 4

3θ , depending on the component that w belongs to.

Then Dg[κN ]+T (w)(z, y) =
(
(µs)[κN ]+T z, (µu)[κN ]+T y

)
whose H-slope is

|z|
|y|

∣∣∣∣µs

µu

∣∣∣∣[κN ]+T

≤ max

{
1,

4

3θ

} ∣∣∣∣µs

µu

∣∣∣∣κN+T

=
4

3

∣∣∣∣µs

µu

∣∣∣∣T θκ−1 <
6

7

whenever θ is sufficiently small. Recall that κ > 2.

(1b) For any w ∈ Λθ
H ∩ (comp(g−([κN ]+T )(x)) ∪ comp(⋆)), we have

g[κN ]+T (w) ∈ comp(x) ∪ comp(⋆).

Take any vector (z, y) ∈ Cu
w(∗), where ∗ = 1 or 4

3θ , depending on the component that w belongs to.

then Dg[κN ](w)(z, y) =
(
(µs)[κN ]z, (µu)[κN ]y

)
whose H-slope is

|z|
|y|

∣∣∣∣µs

µu

∣∣∣∣[κN ]

≤ max

{
1,

4

3θ

} ∣∣∣∣µs

µu

∣∣∣∣κN =
4

3
θκ−1.

Thus,

Angle
(
Dg[κN ](w)(z, y), {0} ×Bu

)
≤ arctan

(
4

3
θκ−1

)
(10)

which is a higher order infinitesimal of θ. Since gT ({0} × Bu) intersects Bs × {0} at x with angle θ
(recall (A4’) before), we obtain

Angle
(
Dg[κN ]+T (w)(z, y), Bs × {0}

)
∈
[
θ − cT arctan

(
4

3
θκ−1

)
, θ + cT arctan

(
4

3
θκ−1

)]
.

The H-slope of Dg[κN ]+T (w)(z, y) is smaller than

cot

(
θ − cT arctan

(
4

3
θκ−1

))
<

8

7θ
=

6

7
· 4

3θ

whenever θ > 0 is sufficiently small. The last inequality holds because

lim
θ→0

7θ

8
cot

(
θ − cT arctan

(
4

3
θκ−1

))
=

7

8
< 1.

Now, (1a) and (1b) together imply (1).

(2a) For any w ∈ Λθ
V ∩ (Comp(p) ∪ Comp(g−T (x))), we have

g−([κN ]+T )(w) ∈ Comp(p) ∪ Comp(g[κN ](x)).

Take any vector (z, y) ∈ Cs
w(∗), where ∗ = 1 or 4

3Θ , depending on the component that w belongs

to. Then Dg−([κN ]+T )(w)(z, y) =
(
(µs)−([κN ]+T )z, (µu)−([κN ]+T )y

)
whose V-slope is, recalling that

c−1
T θ ≤ Θ ≤ cT θ,

|y|
|z|

∣∣∣∣µu

µs

∣∣∣∣−([κN ]+T )

≤ max

{
1,

4

3Θ

} ∣∣∣∣µs

µu

∣∣∣∣κN+T

≤ 4

3

∣∣∣∣µs

µu

∣∣∣∣T cκTΘ
κ−1 <

6

7

whenever θ (hence Θ) is sufficiently small.
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(2b) For any w ∈ Λθ
V ∩ (Comp(g[κN ](x)) ∪ Comp(⋆)), we have

g−([κN ]+T )(w) ∈ Comp(g−T (x)) ∪ Comp(⋆).

Take any vector (z, y) ∈ Cs
w(∗) where ∗ = 1 or 4

3Θ , depending on the component that w belongs to.

Then Dg−[κN ](w)(z, y) =
(
(µs)−[κN ]z, (µu)−[κN ]y

)
whose V-slope is

|y|
|z|

∣∣∣∣µu

µs

∣∣∣∣−[κN ]

≤ max

{
1,

4

3Θ

} ∣∣∣∣µs

µu

∣∣∣∣κN ≤ 4

3
cκTΘ

κ−1.

Thus,

Angle
(
Dg−[κN ](w)(z, y), Bs × {0}

)
≤ arctan

(
4

3
cκTΘ

κ−1

)
(11)

which is a higher order infinitesimal of Θ. Since g−T (Bs × {0}) intersects {0} × Bu at f−T (x) with
angle Θ (recall (9)), we get

Angle(Dg−([κN ]+T )(w)(z, y), {0} ×Bu) ∈
[
Θ− cT arctan

(
4

3
cκTΘ

κ−1

)
,Θ+ cT arctan

(
4

3
cκTΘ

κ−1

)]
The V-slope of Dg−([κN ]+T )(w)(z, y) is smaller than

cot

(
Θ− cT arctan

(
4

3
cκTΘ

κ−1

))
<

8

7Θ
=

6

7
· 4

3Θ

whenever θ (hence Θ) is sufficiently small. The last inequality holds because

lim
Θ→0

7Θ

8
cot

(
Θ− cT arctan

(
4

3
cκTΘ

κ−1

))
=

7

8
< 1.

Now, (2a) and (2b) together imply (2). Lemma 4.4 is proved.

Remark 4.5. In the above proof, we used the definition of unstable cone field given by (UC).
However, in the proof of (1b) above, since cT arctan( 43θ

κ−1) is a higher order infinitesimal of θ, as a

result, for every w ∈ Λθ
H ∩

(
comp(g−([κN ]+T )(x)) ∪ comp(⋆)

)
, we see that Dg[κN ]+T (Cu

w) is contained

in C̃u
w′ := {v ∈ Tw′M : Angle(v, TxW

u(p)) ≤ θ
4} where w′ = g[κN ]+T (w) ∈ Λθ

H ∩ (comp(x)∪ comp(⋆)).
Thus we can modify the definition of the unstable cone field as follows:

• For every w ∈ comp(p) ∪ comp(g−([κN ]+T )(x)), let C̃u
w = {v ∈ TwM : Angle(v, {0} ×Bu) ≤ π

4 };

• For every w ∈ comp(x) ∪ comp(⋆), let C̃u
w = {v ∈ TwM : Angle(v, TxW

u(p)) ≤ θ
4}.

Similarly, the definition of the stable cone field can be replaced by:

• C̃s
w = {v ∈ TwM : Angle(v,Bs × {0}) ≤ π

4 } for every w ∈ Comp(p) ∪ Comp(g[κN ](x));

• C̃s
w = {v ∈ TwM : Angle(v, Tg−T (x)W

s(p)) ≤ θ
4} for every w ∈ Comp(g−T (x)) ∪ Comp(⋆).

From now on, to simplify the notation, we write C̃u
w and C̃s

w again by Cu
w and Cs

w. One can easily
verify that Lemma 4.4 still holds for these newly defined Cu

w and Cs
w.

Lemma 4.6. (Uniform expansion) For sufficiently small θ > 0,

(1) ∥Dg[κN ]+T (w)v∥ ≥ 2∥v∥ for all w ∈ Λθ
H and all v ∈ Cu

w;

(2) ∥Dg−([κN ]+T )(w)v∥ ≥ 2∥v∥ for all w ∈ Λθ
V and all v ∈ Cs

w.
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Proof. By the definition of unstable cone field in the previous remark, vectors in Cu
w (w ∈ comp(p)∪

comp(g−([κN ]+T )(x))) expands much more than vectors in Cu
w (w ∈ comp(x) ∪ comp(⋆)). Hence we

only need to verify the expanding rate of the latter one. Take any w ∈ comp(x) ∪ comp(⋆) and any

unit vector v = (z, y) ∈ Cu
w. Obviously, whenever θ is small, |z| > 1

2
and

|y|
|z|

≥ 3

4
tan θ ≥ θ

2
. we have

Dg[κN ]+T (w)v = DgT (g[κN ](w))((µs)[κN ]z, (µu)[κN ]y) whose norm is larger than

1

DT

∥∥∥((µs)[κN ]z, (µu)[κN ]y)
∥∥∥ ≥ 1

DT
|(µu)[κN ]y| = |z|

DT

∣∣∣y
z

∣∣∣ |µu|[κN ]

≥ θ|z|
2DT

|µu|κN ≥ 1

4DT
|µs(µu)κ−1|N > 2.

Recall that g is a θ-perturbation of f hence ∥Dg∥ ≤ D. The last inequality holds because 4DT is a
constant which is independent of θ while (7) tell us |µs(µu)κ−1|N goes to infinity as θ → 0.

Symmetrically, by the definition of stable cone field in Remark 4.5, under negative iterations, vectors
in Cs

w (w ∈ Comp(p)∪Comp(g[κN ](x))) expand much more than vectors in Cs
w (w ∈ Comp(g−T (x))∪

Comp(⋆)). Thus it suffice to verify the latter one. Take any w ∈ Comp(g−T (x)) ∪ Comp(⋆) and any

unit vector v = (z, y) ∈ Cs
w, we have |z| ≥ 3

4
tanΘ ≥ Θ

2
. Thus

Dg−([κN ]+T )(w)v = Dg−T (g−[κN ](w))((µs)−[κN ]z, (µu)−[κN ]y)

whose norm is larger than

1

DT
|(µs)−[κN ]z| ≥ Θ

2DT |µs|κN
>

1

2cTDT |µu(µs)κ−1|N
> 2 (12)

whenever θ is small. The last inequality follows from (5). The proof of Lemma 4.6 is complete.

To summarize, for any θ ∈ (0, ϵ) sufficiently small, Lemmas 4.4 and 4.6 together imply that Λθ
H

(also Λθ
V ) is a hyperbolic horseshoe of g[κN ]+T . In fact, for every w ∈ Λθ

H ,

Eu(w) =
∞∩

n=0

g([κN ]+T )n(Cu
g−([κN]+T )n(w))

Es(w) = gT

( ∞∩
n=0

g−([κN ]+T )n(Cs
g([κN]+T )n−T (w))

)

are the expanding and contracting bundles of Λθ
H . As a consequence, there are exactly two fixed

points of g[κN ]+T in Λθ
H : one is p, which is also a fixed point of g, and the other one is denoted by

q = q(θ). Recall that g also depends on θ, where we have been omitting the symbol θ for simplicity.
By construction, q is homoclinically related to pg.

Remark 4.7. Lemmas 4.4 and 4.6 are proved under the hypothesis that (recall (9))

Angle(Tg−T (x)W
s(p), Tg−T (x)W

u(p)) = Θ ∈ [c−1
T θ, cT θ].

But from the above calculations, we see that actually, cT does not bring any essential affection, just
appearing as a constant which is independent of ϵ and θ. Thus, in what follows, let us set cT = 1 for
simplicity. In other words, take Θ = θ directly. The readers can verify step by step as in the proof of
Lemmas 4.4 and 4.6 that such a simplification involves no loss of generality.
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Figure 3

Bθ
H

Bθ
V

Remark 4.8. Combining Lemma 4.4, Remarks 4.5 and 4.7, we summarize the following facts which
will be convenient for later use.

(1) Angle(Eu(q), TxW
u(p)) ∈ ( 45θ

κ−1, 4
3θ

κ−1);

(2) Angle(Es(q), Bs × {0}) ∈ ( 45θ
κ−1, 4

3θ
κ−1);

(3) Angle(Es(q), Eu(q)) < 2θ;

In fact, (1) and (2) comes from (10) and (11), respectively, and (3) is straightforward from (1) and
(2) since θκ−1 is a higher order infinitesimal of θ.

Let us divide the iteration from q to g[κN ](q) into three parts: [κN ] = [N ] + ([κN ] − 2[N ]) + [N ]
(see Figure 3 for a conceptional picture), recalling that κ > 2. The following lemma tells us that, in
the middle part, Es and Eu exhibit large angles.

Lemma 4.9. For θ > 0 small enough, ∠(Es(gi(q)), Eu(gi(q))) >
1

2
for every i = [N ], . . . , [κN ]− [N ].

Proof. By Remark 4.8, using similar estimations as in the proof of Lemma 4.4, for any a ∈ [0, κ],

inf{V-slope(u) : u ∈ Cu
g[aN](q)} ≥ 3

4
θ

∣∣∣∣µu

µs

∣∣∣∣aN =
3

4
θ1−a,

sup{V-slope(u) : u ∈ Cs
g[aN](q)} ≤ 4

3θ

∣∣∣∣µs

µu

∣∣∣∣(κ−a)N

=
4

3
θκ−1−a.

Thus, letting σa = Angle(Es(g[aN ](q)), Eu(g[aN ](q))),

∠(Es(g[aN ](q)), Eu(g[aN ](q))) = tanσa ≥ tan

(
arctan

(
3

4
θ1−a

)
− arctan

(
4

3
θκ−1−a

))
=

3
4θ

1−a − 4
3θ

κ−1−a

1 + θκ−2a
=: Γa. (13)

As a lower bound of tanσa, let us analysis how Γa varies with a.

Claim. Γa ≥ Γ1 = Γκ−1 for a ∈ [1, κ− 1].
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In fact, take a = 1 and a = κ− 1 in (13), we see that

Γ1 = Γκ−1 =
3
4 − 4

3θ
κ−2

1 + θκ−2
.

On the other hand, Γa ≥ Γ1 if and only if

3
4 − 4

3θ
κ−2

θa−1 + θκ−1−a
=

3
4θ

1−a − 4
3θ

κ−1−a

1 + θκ−2a
≥

3
4 − 4

3θ
κ−2

1 + θκ−2
,

implying that
1 + θκ−2 ≥ θa−1 + θκ−1−a.

By analyzing the derivatives, when a increasing from 1 to κ− 1, the right hand term first decreases,
and then increases after reaching its minimum at a = κ/2, which implies that

max
a∈[1,κ−1]

{
θa−1 + θκ−1−a

}
= 1 + θκ−2.

The claim is proved. As a result, when θ is sufficiently small, tanσa ≥ tanσ1 ≥ 1
2 which completes

the proof of Lemma 4.9.

Remark 4.10. Since the angle is larger than a universal constant, when giving perturbations of the
derivatives at these points keeping Es and Eu invariant, we are allowed to estimate the size of the
perturbation by considering the sum of its norms on Es and Eu. In other words, up to a constant
multiple, we can assume that the perturbation size comes from only perturbations over individual
subbundle (recall Lemma 2.10).

In the coordinate chart Bs × Bu, we set Bs × {0} as the horizontal plane and {0} × Bu as the
vertical axis. Given any 2-dimensional plan G which is not parallel to Bs×{0}, there are two uniquely
defined unit vectors in G, denoted by uh and ul, where uh is called the horizontal direction, which is
parallel to Bs × {0} and ul is called the slope direction, which is perpendicular to uh (see Figure 4).
Obviously, ul have the largest angle with Bs × {0} among all vectors in G. It is very easy to check
that under the iterations of g, the horizontal (slope) direction is still sent to the horizontal (slope)
direction.

Fact 4.11. Suppose Angle(E,Bs ×{0}) = γ, let u be any vector in E with Angle(u, uh) = α. Then
Angle(u,Bs × {0}) = arcsin(sin γ sinα).

Indeed, set G = span{AB,AC}, Bs × {0} = span{AD,AE}, uh = BC, ul = AB, u = AC and

|AB| = 1 as in Figure 4 and 5. Then, by assumption, |CD| = |BE| = sin γ and |AC| = 1

sinα
. Hence

in △ACD,

sinAngle(u,Bs × {0}) = sinAngle(AC,AD) =
|CD|
|AC|

= sin γ sinα,

which gives the conclusion immediately.

Observe that when θ decreasing to zero in R continuously, π(q) = π(q(θ)) = [κN(θ)]+T increases to
infinity in N continuously. According to Remark 4.8, when θ is small enough, both Angle(Es(q), Bs×
{0}) and Angle(Eu(q), TxW

u(p)) are higher order infinitesimal of θ. Hence, if we use the same notation
ξ(q) as in Lemma 3.1 to denote the orthogonal projection of Eu(q) into Es(q), then Angle(uh(q), ξ(q))
varies on the unit circle as a rotation with angle ϕ where ϕ is the argument of the complex contracting
eigenvalue of p. With arbitrarily small perturbation if necessary, we can take ϕ to be irrational. As a
result, for the ϵ > 0 which has been fixed at the very beginning, by decreasing θ if necessary, we are

allowed to take θ such that Angle(uh(q), ξ(q)) <
ϵ

32cD
, where c =

∣∣∣∣µu

µs

∣∣∣∣ > 1, only depending on p.
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Lemma 4.12. Angle(Dg[N ](q)ξ(q), uh(g
[N ](q))) ≤ ϵ

2D
.

Proof. Write ξ(q) = (z, y) ∈ Es(q). By item (2) of Remark 4.8, Angle(Es(q), Bs × {0}) ≤ 2θκ−1.

Apply Fact 4.11 to get Angle(ξ(q), Bs × {0}) ≤ arcsin
(
sin(2θκ−1) sin

( ϵ

32cD

))
. Thus,

∣∣∣y
z

∣∣∣ = tanAngle(ξ(q), Bs × {0}) ≤ ϵθκ−1

8cD
.

Then Dg[N ](q)ξ(q) = ((µs)[N ]z, (µu)[N ]y) whose V-slope is∣∣∣∣ (µu)[N ]y

(µs)[N ]z

∣∣∣∣ ≤ c

∣∣∣∣ (µu)Ny

(µs)Nz

∣∣∣∣ = c

θ

∣∣∣y
z

∣∣∣ ≤ ϵθκ−2

8D
.

On the other hand, it follows easily by Remark 4.8 (2) that

Angle(Es(g[N ](q)), Bs × {0}) ≥
∣∣∣∣µu

µs

∣∣∣∣N θκ−1

2
=

θκ−2

2
.

Applying Fact 4.11 again, we obtain

ϵθκ−2

8D
≥ tanAngle(Dg[N ](q)ξ(q), Bs × {0})

≥ tan ◦ arcsin
(
sin

(
θκ−2

2

)
sinAngle

(
Dg[N ](q)ξ(q), uh(g

[N ](q))
))

≥ θκ−2

4
Angle(Dg[N ](q)ξ(q), uh(g

[N ](q))).

That is, Angle(Dg[N ](q)ξ(q), uh(g
[N ](q))) ≤ ϵ

2D
as desired.

In the following, we will give perturbations at the central part of orbg(q). All of them take place in
Es while Eu will not be changed all the time. We point out that in this process, the angle between
Es and Eu need not to be considered, see Remark 4.10.

Step 1. Write ω = Angle(Dg[N ](q)ξ(q), uh(g
[N ](q))). Under some standard orthogonal coordinate

chart of Es(g[N ](q)), the isotopic perturbation

(
cos tω − sin tω
sin tω cos tω

)
◦Dg|Es(g[N ](q)) ofDg|Es(g[N ](q))

sends Dg[N ](q)ξ(q) into uh(g
[N ](q)), where t ∈ [0, 1]. It can be easily verified as we did in the proof

of Lemma 4.6 that the corresponding path of the first return map keeps being hyperbolic for all
t ∈ [0, 1]. Thus, by the estimation in the previous lemma, there exists ϵ-perturbation G1 of g,

satisfying DG
[N ]
1 (q)ξ(q) = uh(G

[N ]
1 (q)) and q ∈ ⋔(pG1). That is, DG

[N ]
1 ξ(q) is exactly the horizontal

direction of Es(G
[N ]
1 (q)).
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Step 2. In the following ([κN ] − 2[N ]) times iterations, we will contract the slope direction of Es

by a factor (1 − ϵ
D ). More precisely, for i = [N ] + 1, . . . , [κN ] − [N ], under the coordinate chart

{uh(G
i
1(q)), ul(G

i
1(q))} of Es(Gi

1(q)), using(
1 0
0 1− ϵ

D

)
◦DG1|Es(Gi

1(q))

to replace DG1|Es(Gi
1(q)), and leave DG1|Eu(Gi

1(q)) unchanged. By the isotopic Franks Lemma, we

get an ϵ-perturbationG2 ofG1 such that fromG
[N ]
2 (q) toG

[κN ]−[N ]
2 (q), the slope direction is contracted

by (1− ϵ
D )[κN ]−[N ]. Recall that the slope direction is mapped to the slope direction. Thus the above

(1 − ϵ
D )-contraction in each iteration can be accumulated. Clearly, q is still homoclinically related

to pG2 . Finally, since DG
[N ]
1 (q)ξ(q) is exactly the horizontal direction of Es(G

[N ]
1 (q)) and the above

contraction in the slope direction does not affect the horizontal direction, we see that DG
[κN ]−[N ]
2 ξ(q)

is still the horizontal direction of Es(G
[κN ]−[N ]
2 (q)).

In what follows, we replace the notation G2 by g again. To summarize, starting from f with
a homoclinic tangency, first, by θ-small perturbation, a hyperbolic horseshoe Λθ

H was constructed.
Then, we selected q ∈ Λθ

H . Finally, after the above two steps, we complete all the perturbations,
obtaining g with distC1(f, g) < 2ϵ.

Proof of Lemma 4.1. For sufficiently small ϵ > 0 fixed in advance, the above constructions provide
us a 2ϵ-perturbation g of f . Letting ϵ = ϵk → 0, we obtain sequences gk and qk ∈ ⋔(pgk). Obviously,
π(qk) → ∞. To finish the proof, it remains to verify conditions (i)-(iii) of Lemma 3.1 for these
sequences.

(i) lim supk→∞ ∠(Dgnk

k (qk)ξk, ξk) > 0.

In fact, we can prove a stronger result that lim infk→∞ ∠(Dgnk

k (qk)ξk, ξk) > 0. It suffice to show that
Angle(Dgnk

k (qk)ξk, ξk) is bounded away from zero by a constant which is independent of k. Indeed,
for every k ∈ N large enough, using the previous notations (k has been fixed, thus we can omit it for
a while). By Step 2 above, Dg[κN ]−[N ](q)ξ(q) is exactly the horizontal direction of Es(g[κN ]−[N ](q)),
hence Dg[κN ](q)ξ(q) remains in the horizontal direction of Es(g[κN ](q)). Next, since the transition
map DgT : Tg[κN](q)M → TqM does not depend on ϵ and DgT sends the slope direction of Es(g[κN ](q))

close to ξ(q) ∈ Es(q) (this is because before the perturbation, the tangent direction of f−T (x) is sent
to the tangent direction of x but θ > 0 will be selected very small), we obtain

Angle(Dgπ(q)(q)ξ(q), ξ(q)) ≥ π

4
CT > 0,

where CT > 0 is a constant only depending on T and a fixed neighborhood of f . This estimation
holds for every ϵ = ϵk, as a consequence, lim infk∈N ∠(Dgnk

k (qk)ξk, ξk) > 0.

(ii) limk→∞
∥Dgnk

k |Es(qk)∥
λnk

k

= 0;

Let us first verify that λnk

k → 0. Indeed, for every k ∈ N fixed, in the previous calculations, we see

that θk is selected just before Lemma 4.12 to get Angle(ξ(qk), uh(qk)) <
ϵk

32cD
. But in fact, for fixed

λk, this θk can be taken arbitrarily small in (0, ϵk), in particular, satisfying λnk

k < 1/k. Recall that
nk = π(qk) = [κNk] + T where Nk = N(θk) can be arbitrarily large as long as θk is arbitrarily small.
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Now, we prove (ii). It is easy to see that among all directions of Es(qk), the slope direction have
the weakest contracting rate. Therefore, letting ul denote the unit vector in the slope direction of
Es(qk), we observe (refer (12))

∥Dgnk

k (qk)ul∥ ≤ 2DT |µs|[κNk]−[Nk]
(
1− ϵ

D

)[κNk]−2[Nk]

|µu|[Nk],

where (1− ϵ
D )[κNk]−2[Nk] comes from the additional contraction given by perturbations on the center

[κNk]− 2[Nk] times iterations in Step 2. Thus

∥Dgnk

k |Es(qk)∥
λnk

k

≤ (2D)T
4

|µs|

∣∣∣∣µu(µs)κ−1(1− ϵ
D )κ−2

λκ
k

∣∣∣∣Nk

→ 0 (k → ∞)

The last limit holds because on the one hand, we have (8), on the other hand, choose θk sufficiently

small in (0, ϵk) such that

∣∣∣∣µu(µs)κ−1(1− ϵ
D )κ−2

λκ
k

∣∣∣∣Nk

<
1

k
for every k.

(iii) limk→∞
λnk

k ∠(Es(qk), E
u(qk))

∥Dgnk

k (qk)ξk∥
= 0.

By item (3) of Remark 4.8,

∠(Eu(qk), E
s(qk)) = tanAngle(Eu(qk), E

s(qk)) ≤ 4θk.

On the other hand, since Dg
[κNk]
k |Es(qk) contracts the most in the horizontal direction, we have

∥Dgnk(qk)ξk∥ ≥ D−T |µs|[κNk].

Therefore,

λnk

k ∠(Es(qk), E
u(qk))

∥Dgnk

k ξk∥
≤ 4DT λ

[κNk]
k θk

|µs|[κNk]
≤ 4DT

|µs|

∣∣∣∣ λκ
k

µu(µs)κ−1

∣∣∣∣Nk

→ 0 (k → ∞)

The last convergence is similar as above. Using (6) and choosing θk small enough in (0, ϵk) (hence Nk

sufficiently large) such that

∣∣∣∣ λκ
k

µu(µs)κ−1

∣∣∣∣Nk

<
1

k
for every k.

Remark 4.13. By investigating the above proof carefully, it is easy to see that we can require
orb(q) spends a large proportion of its iterations in a small neighborhood of p, where the norms of its
derivatives and the inverse are close to that of f at p. More precisely, using the previous notations,

for any neighborhood Up ⊂ M of p, by decreasing θ if necessary,
[κN ]

[κN ] + T
can be taken close to one

as much as we want. This fact will be useful in the proof of Theorem A.

5 Index change: Proof of Theorem A and Corollary B

To prove Theorem A, firstly, under the assumption of non-existence of dominated splittings of di-
mension (i − 1), we construct a strong homoclinic intersection using Lemma 5.1 and transport this
strong homoclinic intersection to periodic points with weak contracting eigenvalues using Lemma 5.2.
Secondly, applying the Connecting Lemma (Lemma 5.3) to create a strong heteroclinic intersection.
Thirdly, perturb the heteroclinic cycle to a heterodimensional cycle. Finally, by stabilizing this het-
erodimensional cycle, we obtain H(pg) containing periodic points of different indices, by which robust
homoclinic tangency follows immediately.
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Lemma 5.1. ([BCDG, Proposition 7.1]) For every D > 1, ϵ > 0, and d ≥ 2, there exists a
constant k = k(D, ϵ, d) with the following property. Consider f ∈ Diff1(M), dimM = d, such that
the norms of Df and Df−1 are bounded by D, if p is a periodic point of f with index 2 ≤ i ≤ d
such that H(p) is non-trivial and has no k-dominated splitting of dimension (i− 1), then there exists
an ϵ-perturbation g of f and q(g) ∈ ⋔(pg) such that q(g) has a center contracting eigenvalue with
multiplicity one and W ss

i−1(q(g)) ∩Wu(q(g)) \ {q(g)} ≠ ∅.

Lemma 5.2. ([PPV, Proposition 4.3] or [BCDG, Claim 8.3]) Let δ > 0, f ∈ Diff1(M) and
p be a periodic point of f with ind(p) ≥ 2. Suppose

• there exists q1 ∈ ⋔(p) satisfying |λcs(q1)| > (1− δ)π(q1);

• there exists q2 ∈ ⋔(p) satisfying W ss
i−1(q2) ∩Wu(q2) \ {q2} ≠ ∅.

Then, there is an arbitrarily small perturbation g of f which has a periodic point q(g) ∈ ⋔(pg) such
that q(g) inherits both the above properties of q1 and q2. That is,

• |λcs(q(g))| > (1− δ)π(q(g));

• W ss
i−1(q(g)) ∩Wu(q(g)) \ {q(g)} ̸= ∅.

Lemma 5.3. (Connecting Lemma ([H, Theorem A])) Let af and bf be a pair of saddles of
f ∈ Diff1(M) such that there are sequences of points yn and of natural numbers kn satisfying:

• yn → y ∈ Wu
loc(af ) (n → ∞), y ̸= af ; and

• fkn(yn) → z ∈ W s
loc(bf ) (n → ∞), z ̸= bf .

Then there is a diffeomorphism g arbitrarily C1-close to f such that Wu(ag) and W s(bg) have a
non-empty intersection arbitrarily close to y. In particular, W s

loc(bf ) and W s
loc(bg) can be replaced by

W ss
loc(bf ) and W ss

loc(bg), respectively.

Proof of Theorem A. Given any a > 1, fix constants b and δ0 such that

1 < b < a and 0 < δ0 < 1− b
a .

Obviously, δ0 → 0 as a → 1. For any δ ∈ (1, δ0), take ϵ > 0 satisfying 3ϵ < δ(a− b
1−δ )∥Df±(p)∥. Fix

neighborhoods U ⊂ Diff1(M) of f and U ⊂ M of orb(p) such that ∥Dgβ(x)∥ ≤ b∥Df±(p)∥ for all g ∈ U
and x ∈ U where β = ±1. By Theorem C, there exists an ϵ-perturbation g1 ∈ U of f and r ∈ ⋔(pg1)
admitting contracting eigenvalue λ2(r) satisfying |λ2(r)| > (1 − δ)π(r). With additional arbitrarily
small perturbation and replace r if necessary, we can assume this λ2(r) is central contracting, having
multiplicity one (see Remark 3.2). By continuity, there is a neighborhood W1 ⊂ U of g1 such that

(F1) For every g ∈ W1, we have rg ∈ ⋔(pg) and |λ2(rg)| > (1− δ)π(rg).

Shrinking W1 if necessary, we can always assume distC1(f, g) < 2ϵ whenever g ∈ W1. On the other
hand, since pg1 has non-real contracting eigenvalue, H(pg1) does not have dominated splitting of
dimension one. Applying Lemma 5.1 to H(pg1), we get a perturbation g2 ∈ W1 of g1 which admits a
strong homoclinic intersection associated to some s(g2) ∈ ⋔(pg2), that is

(F2) W ss
1 (s(g2)) ∩Wu(s(g2)) \ {s(g2)} ̸= ∅.

Since g2 ∈ W1, combining facts (F1) and (F2) above, we conclude by Lemma 5.2 that there exist
g3 ∈ W1 arbitrarily close to g2 and q(g3) ∈ ⋔(pg3) satisfying

• |λ2(q(g3))| > (1− δ)π(q(g3));

• ∃x ∈ W ss
1 (q(g3)) ∩Wu(q(g3)) \ {q(g3)}.
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Moreover, note that q(g3) can be taken such that its orbit spend a large proportion (close to one as
much as we want) in U . Since q(g3) ̸= x ∈ H(pg3) and H(pg3) is transitive, using the Connecting
Lemma, we obtain an arbitrarily small perturbation g4 ∈ W1 of g3 satisfying W ss

1 (qg4)∩Wu(pg4) ̸= ∅.
Moreover, since q(g3) is homoclinically related to pg3 , by robustness of transversal intersections, we
can also assume W s(pg4) ∩Wu(qg4) remains non-empty. Now, we apply Lemma 2.9 to orb(qg4). For
l = 0, . . . , π(qg4)− 1 and t ∈ [0, 1], let

• Al,t = ((1− t) + tλ−1) ◦Dg4(g
l
4(qg4)) if g

l
4(qg4) ∈ U ;

• Al,t = Dg4(g
l
4(qg4)) if g

l
4(qg4) /∈ U ,

where λ ∈ (0, 1) is selected satisfying

max
{
|λ1(qg4)|

1
π(qg4 ) , (1− δ)

}
< λ < |λ2(qg4)|

1
π(qg4 ) .

Here, λ1 denote the other contracting eigenvalue beside λ2. Slightly different from before, this
time we will pay attention to the behavior of one dimensional strong stable manifold under the

perturbation. By the choice of λ and Remark 4.13, one can easily verify that
∏π(qg4 )−1

l=1 Al,t keeps

having an 1-dimensional strong stable direction for all t ∈ [0, 1] and its endpoint
∏π(qg4 )−1

l=1 Al,1 is a
hyperbolic matrix with index one. Moreover, we have:

max
l=0,...,π(qg4 )−1

t∈[0,1]

{∥Al,t −Al,0∥} < b∥Df±(p)∥
(
1

λ
− 1

)
<

bδ

1− δ
∥Df±(p)∥.

Similar estimation also works for the inverse. Thus, by Lemma 2.9 we get a perturbation g5 of g4
such that:

• distC1(g5, g4) <
bδ

1− δ
∥Df±(p)∥;

• qg5 = qg4 is periodic with ind(qg5) = ind(qg4)− 1 = 2− 1 = 1;

• Wu(pg5) ∩W s(qg5) ̸= ∅ and Wu(qg5) ∩W s(pg5) ̸= ∅.

In particular, g5 has a co-index one heterodimensional cycle associated to pg5 and qg5 . Noticing
that H(pg5) is non-trivial, by Lemma 2.7 there exists g arbitrarily close to g5, admitting robust
heterodimensional cycle associated to transitive hyperbolic sets Γg ∋ pg and Λg ∋ qg. By robustness,
we are allowed to select g in the residual set R of Lemma 2.6 and satisfying dist(g5, g) < ϵ. Therefore,
by Lemma 2.3, H(pg) = C(pg) which contains periodic points of index one and two. Moreover, note
that pg has complex contracting eigenvalues, H(pg) does not have dominated splittings of dimension
one. Now, apply Lemma 2.6 to H(qg), it follows that g exhibits a robust homoclinic tangency. Finally,

distC1(g, f) ≤ distC1(g, g5) + distC1(g5, g4) + distC1(g4, f)

≤ ϵ+
bδ

1− δ
∥Df±(p)∥+ 2ϵ < aδ∥Df±(p)∥

as desired. This complete the proof of Theorem A.

Proof of Corollary B. It suffice to notice that, in the proof of Theorem A, at the last moment, we
obtain an aδ∥Df±(p)∥-perturbation g of f such that H(pg) contains periodic points of index one and
two. Thus, under the additional assumption, we are allowed to apply Lemma 2.6 to H(pg), obtaining
a robust homoclinic tangency associated to a hyperbolic set containing pg.
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6 Proof of Theorem D

We begin with a general result on R-robustly entropy-expansive diffeomorphisms. Detailed defini-
tions and background can be found in [L]. Note that different from before, the following two proposi-
tions are also valid in higher dimensional case. Let min-ind(Λ) and max-ind(Λ) denote the minimal
index and maximal indices of periodic points in Λ.

Proposition 6.1. Let f ∈ Diff1(M) and let H(p) be a non-trivial homoclinic class associated to a
hyperbolic periodic saddle p of f . If H(p) is R-robustly entropy-expansive in a neighborhood Uf of f ,
then, there is an open and dense subset Of of Uf such that for any g ∈ Of , the chain recurrent class
C(pg) admits a dominated splitting of the form

E ⊕ F1 ⊕ · · · ⊕ Fk ⊕G (k ∈ N)

where all of Fl (l = 1, . . . , k) are one dimensional and non-hyperbolic. Moreover, the splitting is
index-adapted. That is,

dimE = min-ind(C(pg)),

dimM − dimG = max-ind(C(pg)).

This is an alternative statement of [L, Theorem A] but slightly stronger. To prove it, we need to
know how the index-interval of a chain recurrent classes vary with f .

Lemma 6.2. For generic f in Diff1(M), given any periodic point p of f and its chain recurrent class
C(p), there exists a neighborhood Vf of f in Diff1(M), such that for any g in Vf , the index-set of
C(pg) coincide with that of C(p), which is an interval of N.

Proof. Let us fix f ∈ G := G1 ∩ G2 where G1 and G2 are the residual subsets obtained in Lemmas
2.1 and 2.2, respectively. For any chain recurrent class C(p) of f , we have C(p) = H(p) by Lemma
2.3, hence ind(C(p)) = ind(H(p)) which is an interval of N, denoted by [i, j]. For every k ∈ [i, j],
take qk ∈ C(p) with ind(qk) = k. Then, apply Lemma 2.1 to qk and p to get a neighborhood
Uk of f in Diff1(M) such that H(pg) = H(qkg ) for all g ∈ Uk ∩ G. We claim that qkg ∈ C(pg)

for all g ∈ Uk. In fact, otherwise, we can find some g ∈ Uk satisfying qkg /∈ C(pg). By Conley’s
Fundamental Theorem (see [BDV, Theorem 10.3] for instance), there exists a neighborhood Wg of
g in Diff1(M) such that qkh /∈ C(ph) for all h ∈ Wg. This is a contradiction because if we take
h ∈ Wg ∩ Uk ∩ G, it follows that qkh ∈ H(qkh) = H(ph) = C(ph), where the last equality comes from

Lemma 2.3 again. This claim shows that for every g ∈ Vf := ∩j
k=iUk, we have ind(C(pg)) ⊃ [i, j].

In particular, max-ind(C(pg)) ≥ max-ind(C(p)) and min-ind(C(pg)) ≤ min-ind(C(p)). That is, when
restricted to G, max-ind(C(p)) (resp. min-ind(C(p))) depends lower semi-continuously (resp. upper
semi-continuously) on f . As a result, both of them vary continuously on a residual subset R of G. It
follows immediately that R is also residual in Diff1(M). On the other hand, since both of these two
functions are integer-valued, they must be constant in a sufficiently small neighborhood of f . Thus,
shrink Vf if necessary, we have ind(C(pg)) = [i, j] for all g ∈ Vf which completes the proof.

Proof of Proposition 6.1. Under the hypothesis of R-robust entropy-expansiveness, the proof of
[L, Theorem A] gives a residual subset Rf of Uf such that for all g ∈ Rf , H(pg) (which coincide with
C(pg) by Lemma 2.3) admit a dominated splitting

E ⊕ F1 ⊕ · · · ⊕ Fk ⊕G (k ∈ N) (⋆)

where all of Fl (l = 1, . . . , k) are one dimensional and non-hyperbolic. The remark of [L, Proposition
3.1] said, the dominated splitting (⋆) is index-adapted for g ∈ Rf .
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On the other hand, since Rf is residual in Uf , for any g ∈ Rf fixed, there is a neighborhood Vg of
g such that for any h ∈ Vg,

(1) ind(C(ph)) = ind(C(pg));

(2) C(ph) admits a dominated splitting of the same form as that of C(pg).

Indeed, (1) comes from Lemma 6.2 and (2) is obtained by Lemma 2.5. To see this, it suffice to notice
that as a set-valued function, f 7→ C(pf ) depend upper semi-continuously on f , thus, restricted to a
residual subset, C(pf ) moves continuously.

Now, define Of =
∪

g∈Rf
Vg, which is an open and dense subset of Uf . Combining the above

observations, we conclude that for every h ∈ Of , C(ph) admits an index-adapted dominated splitting
and finish the proof of Proposition 6.1.

Proof of Theorem D. Let a = 1 +
ρ

∥Df±(p)∥
. In the beginning of the proof of Theorem A, take

b ∈ (1, a) sufficiently close to 1 such that δ ∈ (0, 1− b
a ) is sufficiently close to 1− 1

a
=

ρ

ρ+ ∥Df±(p)∥
=

σ, in particular, satisfying χ2(p)+χ3(p) > log(1− δ). To prove Theorem D, suppose by contradiction
that H(pf ) does not have dominated splittings of dimension ind(p) = 2, combining with Lemma 4.2,
Theorem A provides a perturbation g of f , having a co-index one heterodimensional cycle associated
to pg and some q(g) with index 1. In addition,

distC1(f, g) < aδ∥Df±(p)∥ < aσ∥Df±(p)∥ = ρ.

This heterodimensional cycle can be stabilized by Lemma 2.7. As a result, ind(C(ph)) = {1, 2} for
every h near g. In particular, we can always select h ∈ Of where Of is the open and dense subset
in Proposition 6.1. Since the dominated splitting provided by Proposition 6.1 is index-adapted, it
follows that C(ph) admit dominated splittings of dimension 1. But C(ph) contains ph which has
non-real contracting eigenvalues, this contradiction completes the proof of Theorem D.
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