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Abstract

Pervasive smartphones that embed a variety of sensors enable us to

sense and learn about not only the physical environment around us

but also the society we live in. On the other hand, crowd sensing is

a new sensing approach that individuals with sensing and computing

devices collectively share data sensed or generated from their mobile

devices, and aggregates the data in the cloud for discovering knowl-

edge and solving problems. We designed a sensing platform based

on crowd sensing paradigm to inexpensively acquire sensor data from

smartphones, such as ambient noise, light, location, acceleration, tem-

perature, etc., at a large scale. Based on the sensor data collected in

our sensing experiments, we mainly studied trajectory computation,

sensor data management, sensor application, and data analysis for

specific purpose.

Trajectory simplification can greatly improve the efficiency of data

analysis (e.g. querying, clustering). We applied information content

theory in our method to simplify trajectory online. Moreover, we

define a new error metric - enclosed area metric - to evaluate the

accuracy of simplified trajectories, which is proven more robust against

the uncertainty of GPS. Through comparing with other methods in a

series of experiments over huge dataset, our method is proven effective

and efficient.

The sheer volume of data collected through crowd sensing can

deeply hamper the performance of various applications. We proposed

a method to reduce the volume of sensor data while preserving the

information content of the original data. That is, after data reduc-

tion, output data (target) can represent the original data (source).

This method can compress multi-dimensional data without any as-

sumption on distribution. We evaluated our method using real-world

datasets. The results show that our method outperforms one state-
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of-the-art and two other conventional baseline methods based on data

divergence.

Accurate estimation of elevation is important for many location

based services. It is possible to use barometers on smart phones to

estimate elevation in both indoor and outdoor scenarios. However, to

reach an acceptable level of accuracy, a reference point which peri-

odically broadcasts its air pressure and temperature is required. We

proposed a method to increase the spatio-temporal density of refer-

ence points by exploiting neighboring smart phones as ad-hoc refer-

ence points. In addition, we also employed Kalman filter to stabilize

the elevation profile due to the instability from smart phone sensors.

Experiments conducted in both indoor and outdoor with different ge-

ographical characteristics reveal that our system can provide elevation

with an error less than 5 meters in 90 % cases and less than 3 meters

in 75 % cases, which is sufficient for most practical applications.

In addition, three data analysis cases on the collected data are

studied independently: estimating nighttime activity, building noise

maps and sensing micro-weather, which fully leverage the power of

crowd sensing to find collective intelligence.

Overall, in this thesis, we studied how to leverage crowd sensing

to analyze human activities and urban environment, including sensing

platform design, sensor data management, special sensor application,

several data analysis cases. Since crowd sensing is still at its infancy,

there is still a lot of work left for us, such as robust frame work, privacy

preservation, incentive mechanism, and large scale useful applications.
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Chapter 1

Introduction

1.1 Background

Human beings walked from feudal society to capital society, strode from ab-

solutism to democratism. The most revolutionary change is that the common

people or the majority of people are considered as the primary source of po-

litical power. I don’t plan to discuss or demonstrate the advantage of specific

political ideology here, however, i would like to refer to James Surowiecki’s

book, ”The wisdom of crowds”, in which it states under the right circum-

stances, groups are remarkably intelligent, and are often smarter than the

smartest people in them [Sur05]. Groups do not necessarily need to be dom-

inated by super-intelligent people in order to be smart. Even though most

of the people within a group are not really well-informed, it can still reach

a collectively wise decision. In fact the solutions to coordination, cognition

and cooperation problems by collective wisdom are at work in real situations

in society every day.

There are four necessary conditions for a crowd to be wise according to the

book: diversity of opinion, independence, decentralization and aggregation.

If a group meets these conditions, its output is likely to be accurate. In my

opinion, the reason is easy to be proven by mathematics. If you ask a large
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1.1. BACKGROUND

enough group of diverse, independent people to make a prediction or estimate

a probability, and then average those estimates. It is similar to estimate the

expected value by obtaining from a large number of trials. Therefore, it is

consistent with the law of large numbers.

In the domain of information technology, the similar idea coined the term

”crowdsourcing” is fully leveraged in many services too, including Wikipedia,

Linux, Yahoo! Answers, Amazon Mechanical Turk. According to the defi-

nition by Merriam-Webster dictionary, crowdsourcing is the practice of ob-

taining needed services, ideas, or content by soliciting contributions from a

large group of people and especially from the online community rather than

from traditional employees or suppliers. These well known projects (e.g.

Wikipedia, Linux) exactly practiced the idea of crowd sourcing, to which a

large group of people contributed with their own wisdom.

Nowadays mobile phones or smartphones are becoming ubiquitous and

they don’t only serve as computing and communication devices but also

comes with a rich set of sensors built-in, such as GPS, accelerometer, micro-

phone, gyroscope, camera, blue tooth, and so on. It draws attention from

many researchers, and forms a new research domain called mobile sensing

[LMLe10, KXAA13]. Thus, with the consideration of the participation of

large number of mobile phone users, researchers come up with a new field

termed mobile crowdsensing [GYL11]. Raghu Ganti [GYL11] defines mo-

bile crowdsensing as individuals with sensing and computing devices collec-

tively share data and extract information to measure and map phenomena of

common interest. Other researchers also formally define it as a new sensing

paradigm that empowers ordinary citizens to contribute data sensed or gener-

ated from their mobile devices, aggregates and fuses the data in the cloud for

crowd intelligence extraction and people-centric service delivery [GYZZ14].

In [GYL11], mobile crowdsensing is ascribed to a subcategory of Internet

of Things (IoT). Typical devices of IoT are RFID (Radio-Frequency IDentifi-

cation) tags, sensors, mobile phones, which have unique id, sensing capability
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1.1. BACKGROUND

and can communicate with internet [AIM10]. Mobile crowdsensing meets all

the requirements of IoT, consequently it can be seen as a subcategory or even

an evolution of IoT. Unquestionably, IoT will revolutionize our society and

economy because it has high impact on several aspects of our everyday life

and behavior of potential users. Therefore, recently mobile crowdsensing is

becoming a hot research area.

Before the advent of mobile crowdsensing, there is also a nearly same

concept called participatory sensing. Today billions of people carry mobile

phones and these ubiquitous devices are increasingly capable of sensing ambi-

ent environment and human activities. Under such a condition, Burke et al.

[BEHea06] proposed the idea of participatory sensing which task deployed

mobile devices to form interactive, participatory sensor networks that enable

public and professional users to gather, analyze and share local knowledge.

Although the definition and the background of participatory sensing and

mobile crowdsensing are extremely close, there are some differences. Mo-

bile crowdsensing consists of personal sensing and community sensing while

participatory sensing only refers to community sensing. In addition, par-

ticipatory sensing emphasizes explicit user participation while crowdsensing

involves both implicit and explicit participation. Moreover, crowdsensing

collects data from two data sources: sensor data and user-participant social

data. According to the definition by [GYZZ14], mobile crowd sensing unified

the human intelligence (from participatory sensing) with machine intelligence

(from crowdsourcing).

Since most applications of this field deployed in urban environment (e.g.

participants are citizen usually, sensing activities are basically conducted in

urban, and most applications aims to solve urban problems including traf-

fic, pollution and mobility), researchers also call it urban sensing [CELea06,

CEL+08, LEM+08]. In my point of view, urban sensing is not comprehensive

to define this new sensing approach, thus I use the concept of crowd sensing

for my work.
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1.1. BACKGROUND

Although crowdsensing is born recently, there are many fruitful research

work in the literature. These work can be roughly classified to five categories:

sensor data analysis applications, sensing architecture design, privacy preser-

vation, participant incentives, energy-efficient sensing.

• Sensor data analysis applications

By leveraging sensors built in mobile phones and participants themselves,

many interesting applications are developed to solve urban problems or

discover knowledge. The work in [CG13] aims to easing a typical traffic

issue - helping drivers easily find vacant parking spaces. It focuses on iden-

tifying legal parking spaces from crowdsourced data. A research conducted

by Microsoft Research also targets at the problem of monitoring road and

traffic conditions in a city by using smartphone[MPR08]. They present a

system that performs rich sensing by piggybacking on smartphones, which

uses the accelerometer, microphone, GSM radio, and/or GPS sensors in

these phones to detect potholes, bumps, braking, and honking. Another

work by Eiman Kanjo [Kan10] presents a real-time mobile phone platform

for urban noise monitoring and mapping. Cycling couriers carry Nokia

mobile phones to collect noise data around Cambridge city. In [MSNS09],

a similar work to monitor noise level by normal citizen has been done. In

the work [CLLea12, CKC13] it exploits opportunistically captured images

and audio clips from smartphones to link place visits with place categories

(e.g., store, restaurant). The system combines signals based on location

and user trajectories along with various visual and audio place ”hints”

mined from opportunistic sensor data. Their result shows it can classify

places into a variety of categories with an overall accuracy of 69%.

Aside from sensor data exploring, there are other interesting work which

exploit participant users’ intelligence. A significant work called Crowd-

Search combines automated image search with real-time human validation

of search results. Automated image search is performed using a combi-

nation of local processing on mobile phones and back-end processing on

4



1.1. BACKGROUND

remote servers. Human validation is performed using Amazon Mechani-

cal Turk, where tens of thousands of people are actively working on sim-

ple tasks for monetary rewards [YKG10]. Another work called CrowdDB

[FKK+11] also applied the similar idea - using crowd’s wisdom. It uses

human input via crowdsourcing to process queries (SQL) that neither

database systems nor search engines can adequately answer. Besides, the

work in [DL14] presents general algorithms for efficient human meta-data

collection, which can be used to label and/or validate the primary sensor

data.

• Sensing architecture design

Researchers also designed several general frameworks for crowd sensing sys-

tem from different viewpoints. Medusa is a general programing framework

for crowd sensing applications which support for humans to trigger sensing

actions or review results, the need for incentives, as well as privacy and se-

curity. Medusa provides high-level abstractions for specifying the steps re-

quired to complete a crowdsensing task, and employs a distributed runtime

system that coordinates the execution of these tasks between smartphones

and a cluster on the cloud [RLLPG12]. The work in [JSS+12] shows a

basic architecture which consists of data collection & analysis module and

context aware data processing module. In the work [SJK+12] a platform

is developed to support data collection for mobile crowdsensing, which

results in reducing the amount of data sent, as well as the energy usage

on the mobile phone, while providing comparable levels of accuracy to

traditional models of intermittent/continuous sensing and sending. This

paper [ZJK13] also focuses on data collection and mining approach. It

presents an effective approach to address the scalability issues of data col-

lection and run-time processing. These work [HLZ+13, TCS+12, CFB+13]

try to perform crowd sensing task in an efficient manner. They focus on

how to maximize conditions for user participation. Vita [HCCL13] pro-

vides a flexible and universal architecture across mobile devices and cloud
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computing platforms by integrating the service-oriented architecture with

resource optimization mechanism for crowdsensing. This work [KHKZ08]

also considers to offer optimal sensing policies under the constraints of re-

source and privacy limit. Yohan Chon et al. [CLK+13] study on how to

deploy successful crowd sensing systems in terms of coverage and scala-

bility. They deployed a large scale place-centric crowdsensing system to

examine place-temporal coverage, relationship between user and coverage

and privacy concerns.

• Privacy preservation

A main obstacle to crowdsensing’s widespread deployment is the privacy

concerns of participating individuals. Consequently, some research works

focus on the issue about how to preserve privacy in sensing activities. The

work in [PXGUS14] assess the threats to participant privacy when per-

sonal information is disclosed. It outlines how privacy mechanisms are

utilized in existing sensing applications to address these threats. Anony-

Sense [SCP+11] allows applications to submit sensing tasks to be dis-

tributed across participating mobile devices, later receiving verified, yet

anonymized, sensor data reports back from the field, thus providing the

first secure implementation of this participatory sensing model. PriSense

[SZL10] is a novel solution to privacy preserving data aggregation in crowd

sensing systems. PriSense can support strong user privacy against a tun-

able threshold number of malicious users and aggregation servers.

• Participant incentives

For most crowd sensing system, a major issue is how to recruit participants

as many as possible. To address this issue, the work in[YXFT12] designs

incentive mechanisms for crowd sensing. They consider two models: the

platform-centric model where the platform provides a reward shared by

participating users, and the user-centric model where users have more con-

trol over the payment they will receive. For the platform-centric model, an
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incentive mechanism using a Stackelberg game is introduced to maximize

the utility of the platform. For the user-centric model, an auction-based

incentive mechanism is introduced to keep being fair and profitable. In

this work [TBH13] it proposes a framework with two main components:

participant recruitment and data collection, which adopts a new approach

to match mobility profiles of users to the coverage of the sensing mission.

However, its result is only evaluated by extensive trace-based simulations.

On the other hand, this work [RES10] develops a recruitment framework

to enable organizers to identify well-suited participants for data collec-

tions based on geographic and temporal availability as well as participation

habits. And it is proven effective in coverage-based recruitment through a

real sensing campaign.

• Energy-efficient sensing

Since participants are volunteers or paid with limited reward, imposing

heavy energy burden on their mobile phones will discourage the participa-

tion motivation. Therefore, there are many work to mitigate this energy

issue. Nicholas Lane et al. [LCZ+13] propose a system for collecting mobile

sensor data from smartphones that lowers the energy overhead of user par-

ticipation. Their approach is to collect data when smartphone users place

phone calls or use applications. In these situations, the energy needed

to sense is lowered because the phone need no longer be woken from an

idle sleep state just to collect data. It builds a prediction model of ap-

plication usage to drive a decision engine that lets the smartphone locally

decide which application opportunities to exploit based on expected en-

ergy/quality trade-offs. This work [HZY] proposes a distributed algorithm

for maximizing the utility of sensing data collection when the smartphone

cost is constrained. It applies stochastic network optimization technique

and distributed correlated scheduling to determine the optimum sensing

utility. The work in [WZX13] reduces the data cost of non-data-plan users

by maximally offloading the data to Bluetooth/WiFi gateways while it re-
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duces energy consumption of data-plan users by uploading data in parallel

with a call or using less-energy demand networks (e.g. Bluetooth).

1.2 Motivation

Thanks to the development of sensor technology and the pervasive usage

of smart phone, it enables us to sense and learn our physical environment

even the social activities. If billions of smart phones, which are deployed

in all over the world, sense whatever happened on the earth and store it in

the cyberspace, what will the world be? We can create a digital earth in

cyberspace which fully maps or records what occurred in the past and what

occurs now on the real world. In contrast to Google Earth, this will be a

dynamic digital earth which is enriched with real-time physical phenomenon

and human social activities. Undoubtedly crowd sensing is one of the most

effective approaches to build such a global level cyber-physical system.

Although crowd sensing is developing rapidly in the recent years, there

are countless issues left to be solved for us. Compared to traditional sens-

ing approach - wireless sensor networks (WSN) [ASSC02], crowdsensing has

unique characteristics.

• First, modern mobile phones posses much more computing power, com-

munication and storage resource than sensors in WSN, and they are

equipped with multi-modality sensing capabilities (e.g. there are about

16 types of sensor on modern smartphone). In future it is expected to

have more powerful mobile devices, such as smart glass, smart watch,

smart clothes, and so forth. This strength enables more powerful and

more extensive applications.

• Second, billions of mobile phones are already deployed in the field:

users carry their phones anytime and anywhere. It is possible to build

large-scale sensing platforms with less cost and less time by making

8
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advantage of this characteristic. But in real systems, to recruit users

for participation becomes a central issue.

• Third, because it always involve with people, thus we can sense both

our environment and social activities. For example, GPS, blue-tooth

and/or opened applications history can be used to infer user’s social

activities. On the other hand, it brings about new problems - privacy

protection and incentive measures.

• Fourth, sensors are mobile, thus sensing context is dynamic. Conse-

quently data quality is not easy to control and we need to design new

architectures to organize the entire system. In addition, it is particu-

larly challenging to fuse information in a heterogeneous network which

integrates static sensor infrastructure with mobile sensors.

These unique characteristics open a new door to solve complicated prob-

lems, at the same time it brings about new challenges. Nevertheless many

researchers are motivated to work on it. In the literature, numerous work has

been done on novel applications, architecture design and effective method-

ology for energy saving, privacy preservation and participant recruitment.

However crowd sensing is still in its infancy, thus it motivates me to study

further.

More specifically, I mainly concerned on the following problems:

• How to utilize smartphone sensors and manage sensing activities?

Smartphone is not specifically manufactured for sensing. To utilize

sensors and to facilitate sensing, it is necessary to develop a particular

software to provide sensing service and manage sensing activities for

participants.

• How to handle huge volume of sensor data?

Crowd sensing can easily acquire big data. However, smartphones are

not dedicated to sensing, thus heavy load on transmission and power
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consumption will hinder people to participate. In addition, huge vol-

ume of sensor data also will hamper the efficiency of data analysis on

the collected data.

• How to acquire highly accurate sensor data?

Sensors built-in smartphones is not as good as the dedicated sensors.

Although they are cheap and widely exist, if the accuracy is not guar-

anteed, the sensor application and sensor data analysis result are no

meaningful or less reliable.

1.3 Contributions

The main contributions of this thesis can be summarized as follows:

• We designed a general sensing platform by applying crowd sensing

paradigm and developed a flexible sensing tool on smart phone Then

a series of large scale sensing experiments based on this platform were

conducted to collect data.

• We defined a new metric to measure trajectory similarity which can be

used in trajectory computation (e.g. trajectory simplification, search)

for mobility analysis.

• To handle huge sensor data computation, we presented a novel method

to manage sensor data, which can efficiently reduce the volume of data

set while preserving the value of data.

• By leveraging sensor data collected in our experiments, we discovered

interesting knowledge in three scenarios: estimating nighttime activity,

building noise maps, sensing micro-scale weather.

• In addition, we developed a novel application which can accurately

measure elevation by using smartphone’s barometer.

The rest of the thesis is consisted of 6 chapters: In chapter 2, the overview

of sensing platform is outlined and our developed sensing tool is introduced.
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Then, sensing experiments conducted in Setagaya-Ku are stated and a par-

ticular sensing experiments in Tianjin, China is also briefly explained. In

chapter 3, it introduces a new similarity metric based on enclosed area to

measure the displacement between two trajectories. Through simulation and

theoretical analysis, this new metric is proven more robust against GPS un-

certainty comparing to traditional metrics. Based on this new metric, a

trajectory simplification method is proposed, which is evaluated in terms of

accuracy on large real dataset. In chapter 4, it defines a new data model

called REPSense to represent data from the viewpoint of data diversity.

Then describes how to implement this model with a divide/merge scheme.

Based on large real dataset, a series of experiments are conducted to evaluate

the performance of our method in terms of data divergence and data cluster-

ing performance. In chapter 5, an integrated framework to provide accurate

elevation measurement is proposed. It employs multiple techniques to handle

systematic error and random error, integrates heterogeneous reference points,

applies Kalman filter to smoothen elevation profile, and leverages short-term

forecast model to enhance the accuracy. The system is well evaluated in dif-

ferent indoor and outdoor settings, i.e. outdoor walking, mountain climbing,

inside buildings. In chapter 6, three data analysis cases are studied indepen-

dently. In section 6.1, it describes how to estimate nighttime activity from

ambient noise and ambient light. In section 6.2, it reports how a noise map

for residential area is built by using crowd sensing. In section 6.3, it intro-

duces weather sensing that acquire fine-granularity weather factors and fuse

information from both mobile and static sensors. In chapter 7, conclusions

of the thesis are drawn, some future directions are presented.
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Chapter 2

Sensing Platform

Mobile phone has evolved into smart phone. Nowadays smart phone can be

used not only for communication but also entertainment, computation and

sensing. With significant improvements in mobile sensor technology, smart

phone is becoming smarter and smarter. Smartphone comes with a growing

number of powerful embedded sensors, such as an accelerometer, magne-

tometer, gyroscope, GPS, microphone, and camera. The figure 2.1 shows

16 kinds of sensors built in a modern smartphone (Samsung S4). There-

fore, smartphone knows where you are, what you say, what you see, how fast

you are moving, and physical environment including ambient noise, illumina-

Figure 2.1: Sensors built-in smartphone
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(a) (b) (c)

Figure 2.2: Sensing tool on smartphone

tion, temperature, humidity and air pressure. Yet this is only the beginning

chapter in the era of context-aware devices.

To explore all kinds of sensors, we developed a sensing tool on Android

smartphone (see figure 2.2), called trajectory sensing tool. This tool logs all

kinds of sensor data, including light, sound, air pressure, temperature and

humidity (only available in some smartphones), GPS (latitude, longitude,

altitude), acceleration, orientation, proximity and so on. It is implemented

as back-end services, thus it can run in background without disturbing user’s

other operation. Basically it is assumed to record the data along with trajec-

tory but you can set it to measure only at specific locations. It also provides

uploading data file to server for sharing. In addition, its core services is

encapsulated to a library, consequently it can be built into the third party

software.

Figure 2.3 shows the architecture of this tool, which consists of 7 com-

ponents. The sensing service calls sensor manager of Android OS to start
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Figure 2.3: The architecture of the sensing tool

sensors, the sensor data will be logged into files by Sensor Data Logger and be

transmitted to the backend server by Sensor Data Upload. Auxiliary Modules

provides calibration for sensors, setting for sensing parameters (such as sam-

pling rate, sensor selection), and particular service for microphone (Sound

recorder). Photo Sensing Activity can take photos with location and orien-

tation, and synchronize other sensor data. Measure Points Navigation helps

in traversing all measurement points for fixed point sensing. Sensing UI pro-

vides an interface for participant to operate sensing activities and visualize

sensor values.

According to crowd sensing paradigm, we designed our sensing platform

as shown in figure 2.4. Participant users carry their smartphone with our

developed sensing tool to collect data during their daily-life activities, e.g.,

on the commuting route. The tool will make some preliminary process, e.g.,

calibrating sensor values and removing redundant data, before uploading to

back-end server. In addition, at the side of mobile phone, particular sensors

are involved to make special applications, e.g. measure elevation from air

pressure sensor, and calculate sound level from microphone. At the side
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Figure 2.4: Sensing platform overview

Figure 2.5: Walking with sensing tool
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Figure 2.6: All sensing traces in Setagaya-Ku, Tokyo

of server, sensor data is aggregated from a number of participants, then we

make comprehensive data analysis to find collective intelligence. For instance,

in our studies, we build noise map, analyze nighttime activity, and predict

micro-level weather.

Based on this sensing platform, we conducted a large scale experiment in

Setagaya-Ku, Tokyo. We employ different models of smartphones (includ-

ing Samsung S3, S4 and LG Nexus 4) for experiments. Sampling rate is

set to 2 Hz or 50 Hz in different cases. About 40 people participated this

experiment, and it took 5 days to walk through this area (about 60 square

kilo-meters). Participant bind the smartphone with armband on their arm

(see figure 2.5) or hold it at hand or put it in pocket but keep light sen-

sor visible from outside. Since illuminance measured by light sensor will be

meaningless if the smartphone is hidden inside the pocket, we required the

participants to use armband or hold it at hand. However, due to the human

error, participants still blocked the light sensor. Fortunately, there is a prox-
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Figure 2.7: Photo sensing in old foreign settlement, Tianjin

imity sensor which can determine whether the smartphone (light sensor) is

blocked or not. Figure 2.6 shows all the traces that participants walked.

In addition, by leveraging this tool, we conducted an experiment in Tian-

jin, China. In this experiment, the purpose is to investigate the old buildings

in foreign settlement of Tianjin for heritage conservation. Participants take

photos when walking around the buildings. When taking photos, the position

(including horizontal and vertical position) and orientation are also recorded,

thus photos can be mapped to the map with actual view angle. Figure 2.7

shows an example of photos took in this experiment. In addition, photos

are stored along with other sensor data which depicts ambient environment,

for example, ambient noise, light, temperature, humidity. The photos and
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sensor data can be used to analyze the condition of buildings and periph-

eral situation. However, to report the detail of this project is outside of my

range.
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Chapter 3

Sensing Trajectory

Simplification

3.1 Introduction

Nowadays, GPS-enabled devices, ranging from smart phones to vehicles, are

drastically increasing. Moreover, Location-based services and applications

built from GPS-equipped mobile devices is a rapidly expanding consumer

market, e.g., fleet management, traffic analysis and scientific investigations[Kup05].

In addition, recently there has been a promising application called mobile

crowd sensing or participatory sensing by smartphones[GYL11, LMLe10].

We can collect many rich and useful data, e.g. noise, illumination and tem-

perature, just by normal users who travel with smartphone in daily life.

These sensor data is usually generated along with trajectory. Although data

generated from GPS devices are commonly used in a variety of businesses,

these efforts will be hindered by the massive volumes of data, which cre-

ates the problem of storing, transmitting, and processing[LRH11]. Storing

the data is difficult because the sheer volume of data can rapidly overwhelm

available data storage. For instance, if data is collected at 30 seconds inter-

vals for 400 users with GPS-equipped smartphone, the volume will be up to
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1.1 GB in a month. In addition, these trajectories will cause a heavy load for

network transferring which costs highly in view of money and time. The cost

of sending large volume of data over remote networks can be prohibitively

expensive, normally ranging from 5 to 7 per megabyte[Jon08]. The foremost

issue is that the enormous volume of data can easily overwhelm human anal-

ysis and further computing. For example, towards querying and clustering

trajectories, the performance will exponentially decrease due to the number

of position data[YAS03][WSKe11].

The above restrictions motivate the need to reduce data volume. More-

over, trajectory data is usually collected in a random manner; consequently

a part of information is redundant and reducible. Hence, numerous com-

pression methods have been proposed to reduce the size of trajectory data

sets[PPS06][MPP11]. However, these methods often either lose some contex-

tual information or are computation-expensive. Besides, conventional com-

pression methods, such as LZ (used in zip) or DCT (Discrete Cosine Trans-

formation) can compress the data volume, whereas it does not improve the

data processing efficiency (e.g. querying, clustering) as data should be un-

compressed to original volume before processing. In this chapter, we present

a novel compression method to quickly simplify the trajectory before the

position data is transmitted to the server from GPS terminals. Our contri-

butions can be summarized as follows:

• We propose a simplification method based on MBR of information con-

tent, which can largely keep as same information content as counterpart

of original trajectory.

• We also introduce a new error metric based on enclosed area to measure

the displacement between original trajectory and simplified one.

• Through simulation, enclosed area metric is proven more robust against

GPS uncertainty comparing to distance metric.

• Evaluate the accuracy with other typical simplification methods in
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terms of perpendicular distance, synchronized Euclidean distance and

enclosed area. In addition, we estimate the effect of parameters over

the performance of our method.

The next section describes related work about compressing trajectories.

In section 3.3 our method is described in detail. The evaluation of our method

and other algorithms with 3 error metrics including newly introduced metric

is described in section 3.4. Finally, discuss experimental results and future

work.

3.2 Related Work

In the literature various simplification methods exist [GKMea07][Tay05][CWT06]

and Lawson et.al conducted a very comprehensive survey for them[LRH11].

Most widely used methods are uniform sampling, dead reckoning method and

Douglas Peucker method, which also are the comparison targets in our work.

We will introduce these existing methods and analyze their advantages and

disadvantages here.

3.2.1 Uniform Sampling

Uniform sampling is a naive method which sparsely selects the point to store

by every given time interval or distance interval but discards remained points.

In some applications, this method is modified by storing the average value

of all points within given interval, which is called piece-wise aggregate ap-

proximation. Even though uniform sampling may provide a simple and cost-

effective solution, it is distinctively insensitive to the spatio-temporal charac-

teristics of the trajectory as well as to its sequential nature. Hence, we can’t

expect the consistent quality just since it is too sensitive to the case, though

the result is satisfactory in some case.
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Figure 3.1: Dead reckoning simplification

3.2.2 Dead Reckoning Method

It is a localized processing routine which make use of the characteristics of

the immediate neighbouring coordinate points in deciding whether to retain

the current point. As shown in figure 3.1, P3 and P4 are in the same trend

with the line segment consisted of P1 and P2. However, since P5 exceeds

the threshold of Euclidean distance predefined, the prior point of P5 will be

retained in the simplified trajectory so that the maximum distance displace-

ment does not go beyond the predefined ε. This method has two advantages:

(1) it can process the data at local client (mobile terminals) (2) its time

complexity is O(n), namely linear. Therefore, it is popular in car navigation

though it accumulates the error in bad case. There are also some variants of

this method [PPS06][LDR08].

3.2.3 Douglas Peucker Method

DP method was proposed by Douglas and Peucker [DP73], which is widely

used in cartography related software like AUTOCAD. ”Many cartographers

consider it to be the most accurate simplification algorithm available, while

others think that it is too slow and costly in terms of computer processing
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Figure 3.2: Douglas Peucker simplification

time” [Jen89]. In any case, it is the most famous line simplification algo-

rithm till now. The method recursively selects two points to represent the

line segment within a specified tolerance value (see figure 3.2). Firstly, it

attempts to simplify the trajectory with
−−→
PaPb, but it discards this attempt

when calculate perpendicular distance from every point to line
−−→
PaPb and find

Pc is out of the predefined threshold ε. Then, it chooses Pc as new anchor

point and repeats the attempts with
−−→
PaPc and

−−→
PcPb respectively.

As described above, the algorithm of Douglas Peucker is simple and easy

to program. It is extremely efficient because it globally exhibits the least

distance error under a given tolerance. Thus, it is recognized as the one that

delivers the best perceptual representations of the original lines [WM03].

Moreover, Douglas Peucker Method is applicable to both 2D line and 3D line

in terms of any shape of line. Besides, as its basic idea is universal, it has

been independently proposed in other contexts, i.e. image processing, com-

putational geometry, and there is also many works that try to improve this

method[HS92]. Nevertheless, this method loses its power when the trajectory

includes self-intersection points. In addition, this method is very computing-

expensive in some cases. A straightforward implementation requires O(n)

time to find the furthest point from line. Since the iteration depth is linear,

the worst-case running time is O(n2).
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Figure 3.3: SQUISH simplification

3.2.4 Other Methods

Aside from these conventional methods, recently researchers also presented

other interesting methods. Yukun Chen et.al [CJZe09] proposed such a

method to simplify trajectory for LBS networking services. The method fo-

cuses on keeping speed and direction change information as much as possible.

Hence, they defined the attributes of line segments, including heading direc-

tion, neighbor heading change, accumulated heading change, heading change

which is the sum of the neighbor heading change and accumulate heading

change, and neighbor distance. Then, the method assigns the weight on point

in terms of the product of the average heading change and the neighbor dis-

tance. Lastly, the method selects the points with high weight to represent all

the sampling points. Their approach is said to outperform Douglas-Peucker

method in walking mode trajectories with some constraints. In any case,

it is a global process routine so we will not compare it with ours since the

purpose of our method is to process data online at the mobile terminal.

Besides, the STTrace algorithm[PPS06] is designed to preserve spatiotem-

poral heading and speed information in a trace. A hybrid between an online

and offline approach, STTrace defines a safe area by using the previous two

points in the trajectory. A vector which defines the speed and heading be-

tween the two locations is used to predict the position of the next point. It

uses two input parameters to make this prediction. One of these parameters

24



3.2. RELATED WORK

Figure 3.4: Error metrics

is the speed threshold which defines how much the speed can vary while still

remaining in the predicted range. The other input parameter is the heading

threshold that defines how much the heading can vary while still remaining

in the predicted range. STTrace is similar to dead reckoning method while

it uses the predicted area to filter not the fixed point as in DR method. Al-

though it can overcome complications caused by error propagation, which

improved the demerit of DR method, its processing time is far worse than

the threshold-based methods.

In addition, Jonathan Muckell et.al [MPP11] proposed a method called

SQUISH to simplify trajectory using a priority queue. As shown in figure

3.3, the method sets a buffer for processing points in which all points will be

assigned a weight. The weight value is determined based on estimating the

amount of synchronized Euclidean distance introduced into the compression

if that point was removed from the trajectory. It is straightforward to delete

the points with the lowest weight in order to keep the shape of trajectory as

same as possible, whereas it is a little confusing to add the deleted point’s

weight on the neighbor point. For example, P2 with the lowest weight is

moved out from the buffer, but the weight of P3 cannot be simply obtained

by adding the weight of P2. The experiment of this method demonstrates a

good result comparing with other methods when the compression rate is not

large, otherwise it lost the lead.
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All these methods are data-loss methods, though there are data-lossless

compression methods in other fields [BR07]. Usually data-lossless compres-

sion is computing-expensive, and for trajectory to some extent, data-loss is

acceptable in most cases. Hence, the point is to diminish the data-loss under

arbitrary compression ratio. That is, the data-loss measures or error metrics

are also extremely important.

However, all existing methods try to approximate trajectory based on dis-

tance measure, including perpendicular distance and synchronized Euclidean

distance (see figure 3.4, formal definitions are stated later). As it can be

seen in figure 3.4, in some cases, e.g. between Ps(k) and Ps(k+1) there are

two long parallel lines, even when the distance displacement is slight, the

enclosed area displacement will be quite remarkable. Moreover, occasionally

GPS position is quite inaccurate so that certain points have large displace-

ment, and discrete metric is extremely sensitive to these contingent errors

but continuous metric is more resistant to them. It motivates us to develop

our method based on enclosed area. In the later section, we will fully prove

that enclosed area is a more accurate error metric while considering GPS

uncertainty.

3.3 Proposed Method

There is a wide variety of sensors built in smartphone, and Android SDK

support tens of sensors including accelerometer, ambient temperature, grav-

ity, gyroscope, light, magnetic field, orientation, pressure, proximity, relative

humidity, etc. Aside from them, GPS, Bluetooth and Wi-Fi are also avail-

able. By making use of these sensors, we launched a project called trajectory

sensing to sense the physical environment (including ambient noise, light

via microphone and light sensor) and human activities (via accelerometer,

orientation sensor).
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3.3.1 Problem Statement

In our crowd sensing platform as stated in chapter 2, participants take smart-

phone installing our sensing tool during their commuting routes by walking,

bike or car. Finally the data is transmitted to back-end server via cellular

network. The ultimate goal of our project is to learn human activities under

particular physical environment by sensing and then to discover knowledge.

However, the problem we plan to solve in this work is trajectory simplification

(i.e. data reduction) in real-time before data analysis.

Trajectory is obtained by recording the successive positions of which a

moving object takes across time. Recently, researchers try to enrich tra-

jectory (called semantic trajectory) by adding background geographic infor-

mation to discover meaningful patterns[YLWea11]. To extend this concept

further, we redefine semantic trajectory T as:

T = {pt = [X(t), Y (t), Z(t), Sm(t)] | t ∈ R} (3.1)

Here, pt is a tuple from one data point recorded as time t, including spatial

position (X(t), Y (t), Z(t)) and semantic attributes (Sm(t)). Spatial position

usually refers to latitude, longitude and altitude, and semantic attributes

refers to light, noise, temperature and so on. On the other hand, after data

reduction a simplified trajectory T ′ can be defined as:

T ′ = {pt = [X(t), Y (t), Z(t), Sm(t))] | t ∈ R ∩∆(t) > ε)} (3.2)

In fact, we can describe the nature of data reduction problem as construct-

ing a threshold function ∆(t) to achieve the least data loss within favourable

or given compression ratio. Our method, just like the existing method is also

expected to reach this goal.

After data reduction, the amount of data points decrease but data value

and the order are never changed, that is, reduced data meets equation (3.3)
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Figure 3.5: A sample data of trajectory with MBR

and (3.4). We call these two properties value-invariance and order-invariance

respectively.

∀p′ ∈ T ′ ⇒ ∃!p ∈ T : p′ = p (3.3)

∀p′, q′ ∈ T ′ ∧ t(p′) < t(q′) ⇔ ∃!p, q ∈ T :

(p′ = p, q′ = q) ∧ t(p) < t(q)

where t(x) is the temporal order of x

(3.4)

3.3.2 Observation

Our Method is derived from the following observation. In figure 3.5, there

is a sample of GPS trajectory from our trajectory sensing project, and data

points are divided into 20 groups with same points - N. We can draw minimum

bounding rectangle (blue rectangle) called MBR on each group. In addition,

we divide each MBR into cells of equal size (grey grid) to calculate the
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Table 3.1: Information content and MBR area
MBR No. MBR Area Sum of Infor-

mation Con-
tent

1 208.4 49.2
2 177.8 45.3
3 107.5 27.9
4 140.3 31.4
5 140.3 41.7
6 252.0 53.0
7 36.5 41.7
8 271.9 53.0
9 98.2 28.1

information content of MBR. Sum of information content of one MBR is

calculated as:
xn∑
i=1

yn∑
j=1

− log(pij) (3.5)

Where pij is the frequency of data points within the cell[i,j] (see bottom-right

part of figure 3.5).

Finally we calculated the area of each MBR and the sum of information

content of each MBR as described in table 3.1. From table 3.1, we can find a

strong positive correlation between MBR area and sum of information con-

tent. In fact, we calculate the correlation coefficient for them over huge real

data and the value is up to about 0.8. Return to our goal of data reduc-

tion, it is to achieve the minimal data loss, which means keep information

content as same as possible comparing to original data. Therefore, we claim

this assumption: The bigger the area size of MBR of IC (Minimum

Bounding Rectangle of Information Content) is, the more the sam-

pling points should be stored (see MBR 8 in figure 3.5). Otherwise,

we can omit more sampling points (see MBR 7).

Based on the analysis above, we developed a trajectory simplification

method called IC MBR which consists of divide and merge principle
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and selection strategy described in detail in section 3.3.3 and section 3.3.4

respectively.

3.3.3 Divide and Merge Principle

Based on the assumption stated in the previous section, the following princi-

ple is employed: we divide the bigger MBRs while merge the smaller MBRs

so as to keep the nearly uniform size of MBR. There is an example shown in

figure 3.6. Initially, 4 MBRs are drawn on it by every 4 points (the number

is an input parameter given by user), and then merge MBR 2 and MBR 3

because their area is far less than the standard MBR, while split MBR 4

because it is far bigger than the standard MBR (standard MBR is an in-

put parameter which is referred to comparing individual MBR). The size

of the standard MBR can be obtained by users experience or specific re-

quirements, which as well as its points number directly affect accuracy and

compression ratio of trajectory that will be discussed in later section. An-

other technique to determine an appropriate standard MBR (called adaptive

MBR) is to dynamically adjust the value by calculating area size within a

tuning period (e.g. take the moving average value of all MBRs). To keep

the consistent accuracy, an adaptive MBR is more effective in the case of

multi-transportation mode, since the area is subject to variations depending

on walk mode or driving mode. Assuming that the original sampling interval

is a fixed time interval, standard MBR area is supposed to be assigned as

a greater value in driving mode yet a less value in walking mode. Hence,

if the area or points number of standard MBR is dynamically programmed

with the consideration of both transportation mode and sampling interval,

the result may be more satisfactory.
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Figure 3.6: The illustration of IC MBR method

3.3.4 Selection Strategy

Through dividing or merging MBRs, every resulted MBR will contain the

comparatively uniform information content. Hence, we take such a strategy

to extract points based on such an assumption that points on the boundary

of MBR contain more information content and it is advantageous to choose

boundary points for the sake of lowering area error. As shown in table 3.2

(call 4-2-1-0.5 rule), the points to be stored are determined by comparison

with the standard MBR area. For instance, select 4 points on boundary of

MBR when the MBR meets condition 2 (see table 3.2), select the first point

and the last point when meets condition 3, and select the median point when

meets condition 4. In the case of the condition 5, if the MBR is a divided

MBR then select the median point; or merge the MBR (which is explained

in section 3.3.3 and rule 1 of table 3.2).

After integrating the divide/merge principle with the selection strat-

egy, algorithm of IC MBR method can be described as algorithm 1. This
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Algorithm 1 IC MBR method

1: function Dvide Merge(St MBR Pts Num, St MBR Area, Traj)

2: Num← St MBR Pts Num

3: for all point in Traj do

4: if Num = Buf.Count then

5: rlt← SelectPoints(Buf)

6: if rlt is false then . Merge MBR

7: Num← Num ∗ 2

8: end if

9: else

10: Buf.Add(point)

11: end if

12: end for

13: end function

14: function SelectPoints(Buf)

15: Area← CalcArea(Buf) . MBR or Polygon area

16: Learn(Area, St MBR Area) . Adjust standard MBR area

17: if Area > St MBR Area ∗ 2 then . divide MBR

18: SelectPoints(Buf/2) . first half of Buf

19: SelectPoints(Buf/2) . second half of Buf

20: else if Area < St MBR Area/4 then return false

21: else . by selection strategy

22: SavePoints()

23: end if

24: end function
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Table 3.2: Points selection strategy
No. Condition Selection Criteria

1 MBR(N) ⊂ [St MBR ∗
2,∞)

Divide MBR

2 MBR(N) ⊂
[St MBR, St MBR ∗ 2)

4 points: x(min), y(min),
x(max), y(max)

3 MBR(N) ⊂ [St MBR ∗
0.5, St MBR)

2 points: x(0), x(N − 1)

4 MBR(N) ⊂ [St MBR ∗
0.25, St MBR ∗ 0.5)

1 point: x(median)

5 MBR(N) ⊂ [0, St MBR ∗
0.25)

0.5 point: Merge MBR or
x(median)

Table 3.3: Time complexity comparison
Method Name Normal Case Worst Case

Uniform sampling n/β n/β
Dead reckoning n 2n

Douglas-Peucker n log(β) nβ
IC MBR (Ours) n log(β) 2n log(n)

method adapts bottom-up and top-down strategy simultaneously, which re-

cursively approximate line segments within a rectangle. Incidentally, in the

15th line, area is calculated by minimum bounding rectangle or polygon, and

in the later section we will discuss the performance of both of them. Besides,

our method’s time complexity is O(n/β · β log(β)) = O(n log(β)) where β

is the point number of buffer. In table 3.3, we compare our method with

conventional methods (adjusted to online process) in terms of time complex-

ity, and in normal case our method is the same as Douglas-Peucker method

which is the favorable method in many fields.

3.4 Evaluation Methods

To evaluate the accuracy of each method in terms of perpendicular dis-

tance (PD), synchronized Euclidean distance (SED) and enclosed area (EA),
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we implement IC MBR method, uniform sampling method, dead reckoning

method and Douglas-Peucker method which is slightly modified to adapt to

online processing. It is important to note that even though DP method is an

offline method, we add a buffer for local processing so that we can compare

these methods under fair conditions. Obviously, this additional parameter

may affect the initial performance to some extent while improve the time

cost.

3.4.1 Two Conventional Error Metrics

Two conventional error metrics: average perpendicular distance and average

synchronized distance are uniformly defined as:

m1,2(T o, T s) =
1

N

N∑
i=1

d2
i (3.6)

Here, N is the total points of original trajectory. PD refers to perpendicular

distance between the point of original trajectory and the line segment of

simplified trajectory (see solid arrows in figure 3.4), which is obtained by the

following equation:

di =
|(xs(k+1) − xs(k))(ys(k) − yi)− (ys(k+1) − ys(k))(xs(k) − xi)|√

(xs(k+1) − xs(k))2 + (ys(k+1) − ys(k))2
(3.7)

where Ps(k+1) = (xs(k+1), ys(k+1)) ∈ T s, Ps(k) = (xs(k), ys(k)) ∈ T s and Pi =

(xi, yi) ∈ T o

SED calculates the distance from original point to virtual simplified point

which is at identical timestamp (see dot circles in figure 3.4). It considers

the temporal attribute of the point sequence, thus it is thought as a better

error metric. The virtual simplified point is missing in simplified trajectory,
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Figure 3.7: A real GPS trajectory with large area displacement

whereas it can be obtained as follows:

Pi = Ps(k) +
Ps(k+1) − Ps(k)

ts(k+1) − ts(k)

ti (3.8)

3.4.2 New Error Metric

Although PD and SED are widely used in the literature, there are two draw-

backs as follows:

1. As stated in section 3.2, in some cases, the distance-based error is small

while the area error is huge. Hence, it will mismatch the real trajectory

and simplified trajectory.

2. In addition, the point of trajectory is not an accurate position since

GPS accuracy is uncertain. If one point has an unexceptional change

due to GPS uncertainty, distance-based error is subject to this sort of

burst error while area metric is robust from the viewpoint of uncertainty

tolerance.

Therefore, we introduce a continuous 2-dimensional error metric - enclosed

area.

GPS Errors Analysis

We will discuss the GPS error sources to justify the necessity of our new

error metric. The accuracy of GPS depends on a complicated interaction of

various factors.
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To analyze the effect of errors on accuracy, a fundamental assumption is

usually made that the error sources can be allocated to individual satellite

pseudo-ranges. The effective accuracy of the pseudo-range value is termed

the user-equivalent range error (UERE). There are the major error sources in

GPS which develop error budgets for UERE: satellite clock error, ephemeris

error (position of satellites), atmospheric effects (ionospheric and tropo-

spheric delay), receiver noise and resolution, and multipath/shadowing ef-

fects [KH06].

The position error that results from UERE depends on the user/satellites

relative geometry, which is called geometric dilution of precision (GDOP). If

the satellites viewed from user location is close together (or in a line), the

GDOP factor will be higher. Loosely speaking, error in the GPS solution is

estimated by the formula[KH06]:

σp = GDOP · σUERE (3.9)

where σp is the standard deviation of the positioning accuracy, σUERE is

the standard deviation of the satellite pseudo-range measurement error and

GDOP is the geometry factor of the satellites for a specific location and time

of day.

Usually, the error components are considered independent, and the com-

posite UERE for a satellite is approximated as a zero mean Gaussian random

variable where its variance is determined as the sum of the variance of each

of its components. UERE is usually assumed to be independent and identi-

cally distributed from satellite to satellite. However, the position error in a

consecutive trajectory is not fully independent. As we see from the error fac-

tors described above, GDOP and multipath depend on the specific location,

which are the major errors in a short time period while other factors don’t

fluctuate wildly in a small space-time and be compensated by calibration to

some extent. If a user moves in a street, then the GDOP factor and multipath
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Figure 3.8: A self-intersecting polygon

effect caused by blocking by surrounding buildings will be almost constant

unless the surrounding is changed abruptly. That is why we assume the GPS

error follows Gaussian distribution in later simulation, whereas we claim the

case of figure 3.4 is necessary to be solved yet not be properly answered by

existing error metrics. In fact, we found there are considerable cases (i.e. tra-

jectory with large area displacement yet small distance displacement) from

our collected trajectories. Figure 3.7 shows a GPS trajectory in which the

blue trajectory is obtained by GPS while the light-yellow one is the real mov-

ing trajectory. As the buildings along the road is homogeneous, the GDOP

and multipath effect are identical, which resulted in the same distance error.

Of course, this sort of case is common in urban area while the situation is

different in other area.

Enclosed Area

Enclosed area which is a polygon confined by original trajectory and simpli-

fied trajectory (the dashed area of figure 3.4). Although EA is obviously ad-

vantageous, its calculation is quite troublesome [NP82][PS06] provided that

the polygon contains self-intersection (see figure 3.8). Nevertheless, we de-

vised such an algorithm to solve this problem (see algorithm 2):

(1) The intersection point is obtained by geometry formula.

(2) If exist cross point, it will be sequentially inserted into a list which con-

37



3.4. EVALUATION METHODS

sists of original points, but do not insert two or more intersection points on

the same line segment. Take the figure 3.8 as an example, finally the list in

algorithm 2 will be (P1, P ′1, P2, P ′2, P3, P ′3, P4, P ′4, P5, P1).

(3) The sub sequence of the list split by intersection point is a line segment

or a simple polygon whose area can be easily obtained as follows - by outer

product of vector :

Qj =
1

2
|

K∑
i=1

−→pi ×−−→pi−1 | (3.10)

According to this algorithm, the nested area (see figure 3.8) will be ac-

cumulated two or more times, whereas it is reasonable. Then, we formally

define the third error metric - average enclosed area as:

m3(T o, T s) =
1

N

J∑
i=1

area(Qj) (3.11)

Uncertainty Tolerance

GPS system has intrinsic error of approximately from several meters to tens

of meters. For a specific location, the inaccuracy is not constant and it can

be seen as normal distribution, which means some particular points reach

large displacement while most points are within slight error range (but in

commercial GPS system these slight errors may be eliminated by smoothing

techniques). Note that the errors in a series of consecutive locations within

a short time are dependent to a large extent as analysed in section 3.4.2.

We want to explore the different effect between distance-based metric and

area-based metric while taking the GPS uncertainty into account.

As shown in figure 3.9, P1 · · ·Pi · · ·PN is the GPS points of original tra-

jectory, and the dot line between P1 and PN is the simplified trajectory. In

addition, we assume Pk has a large error whose corresponding real position

is P ′k, while other points have only slight error. We define uncertainty toler-

ance which indicates how significant the uncertain (wrong) position affects
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Algorithm 2 Area Calculation of Arbitrary Polygon

1: function CalcAreaOfPolygon(Polygon, PointsNum)

2: for all point pi in Polygon do

3: List.Add(pi, 0) . 0: original point

4: for j = 0; j < i− 1&&i > 1; j + + do

5: P ← CrossPoint(pi, pi+1, pj, pj+1)

6: if !List.F ind(p′i) then . after pi

7: List.Insert(p′i ← P, 1) . 1: cross point

8: end if

9: if !List.F ind(p′j) then . after pj

10: List.Insert(p′j ← P, 1) . 1: cross point

11: end if

12: end for

13: end for

14: anchor ← 0

15: for i := 0→ List.Count do

16: if List[i].flag == 1 then

17: CalcAreaOfSimplePolygon(List.Range(anchor, i))

18: anchor ← i

19: end if

20: end for

21: CalcAreaOfSimplePolygon(List.Rage(anchor, i))

22: end function
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Figure 3.9: Error metric under GPS uncertainty

the simplification process. For distance-based simplification, the uncertainty

tolerance is Td = |du−dr|
dr

, where du is the distance from GPS point to simplified

trajectory, and dr is the distance from real position to simplified trajectory.

On the other hand, the uncertainty tolerance of area-based simplification

is TQ = |Qu−Qr|
Qr

, where Qu is the area enclosed by GPS points, and Qr is

the area enclosed by points of real position. In figure 3.9, Qu is the area

of polygon (P1, · · · , Pi, · · · , Pk−1, Pk, Pk+1, PN), and Qr is the area of poly-

gon (P1, · · · , Pi, · · · , Pk−1, P
′
k, Pk+1, PN). For simplifying calculation, here we

assume GPS points with slight errors as real position while distinguish the

point (i.e. Pk) with the largest error from real position (i.e. P ′k). Note that,

the higher the value of uncertainty tolerance, the weaker it is against un-

certainty. In figure 3.9, suppose there are only 3 points (P1, Pk, PN), then

Qu =
1

2
du|P1PN | and Qr =

1

2
dr|P1PN |. The uncertainty tolerance TQ is

|Qu−Qr|
Qr

= |du−dr|
dr

= Td, which indicates distance-based metric performance

as same as area-based metric in the case of 3 points.

We conduct the experiment by simulating 10,000 times for each pattern

(combination of GPS points and GPS error). Figure 3.10 shows the result.

The vertical axis (Z) is the value of (Td − TQ). We can find in the case of

3 points the difference is zero which is consistent with our theory. In gener-

ally, distance-based metric performs worse in terms of uncertainty tolerance,
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Figure 3.10: Difference of uncertainty tolerance

and as the GPS error increases, the performances of distance-based metric

deteriorates. The same trend can be seen in terms of GPS points of polygon.

3.5 Experimental Results and Discussion

In this work a series of experiments are conducted by using the data collected

through our trajectory sensing project. Aside from it, we also make use of

Microsoft GeoLife [ZLCea08][ZZXea09] dataset that consists of 178 users

in a period of over four years (from April 2007 to October 2011). Various

transportation modes are included in the data set, including walking, driving,

train travel and etc. Experimental data files are selected by different file size,

different transportation modes and different trajectory shapes so that we can

compare the performance to draw a general conclusion.
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3.5.1 Performance Comparison

Trajectories are compressed with 3%, 10%, 20% and 50% and are measured

by 3 error metrics (namely EA, PD and SED). Here, compression ratio (CR)

is defined as the number of original points divided by the number of com-

pressed points. From figure 3.11 (the results of compression ratio 10% and

20% are shown while other compression ratio results are skipped, but a com-

plete comparison is described later), we can find that (1) accuracy gets worse

as compression ratio decreases; (2) accuracy also greatly varies due to dif-

ferent trajectory files which mean different shape of trajectories; (3) uniform

sampling produces an uncertain output, in other words, its performance dras-

tically fluctuates. In addition, our method can meet different compression

ratios and error tolerances by adjust the parameters (points of standard MBR

and its area). Generally speaking, these two parameters are similar to dis-

tance threshold in DP or DR method, that is, lessening the value of them

will earn better accuracy but high compression ratio.

Figure 3.12 shows the normalized error (the value is scaled to [0,1]) of EA,

PD and SED in different compression ratio. As a result, our method holds

an absolute advantage in terms of EA metric and competitive performance

in SED metric but poor performance in PD. The reason is that we measure

displacement directly by enclosed area, and there is an inherent relation

between area and distance. Our method filters point based on information

contents that is measured by area in 2-dimensional plane, which resulted in

a good performance in EA.

3.5.2 Parameters Analysis

In our method there are two important user-specified parameters which are

the points number of standard MBR and the area of standard MBR. Besides

the area of standard MBR is also subject to the adaptive MBR or fixed

MBR. Since the performance is significantly affected by these factors, we
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Figure 3.11: Average EA with 10% and 20% compression ratio

Figure 3.12: Normalized error of EA, PD, SED
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Figure 3.13: Parameters effect over accuracy

will explore the relationship between them and EA accuracy.

In the left part of figure 3.13, it employs the moving average to adjust

standard MBR area. We can find: as the points of standard MBR increases,

the EA error increases and the compression ratio decreases simultaneously.

In fact, there is a positive linear relationship between the points of standard

MBR and EA error but a negative linear relationship between the points of

standard MBR and compression ratio. (Note that although the figure shows

a power relationship, actually it is linear relationship since the horizontal

axis is also power-scaled. ) Hence, we need a trade-off between compression

ratio and EA error, and in most cases the number of points of standard MBR

ranging from 8 to 20 is advisable.

In the middle part of figure 3.13, we fix the points of standard MBR as

16 but adjust standard MBR area manually. It shows that the compression

ratio slightly decreases as the area of standard MBR increases. Besides, the

EA fluctuates along with area of standard MBR. However, in a real-time

mode it is hard to determine the optimal area of standard MBR to get the

smallest error.

In the right part of figure 3.13, we observe the change of EA with param-

eters in adaptive adjustment mode when the user specifies the compression

ratio. From the figure (here CR is fixed at 10%), we find that along with

the increase of points of standard MBR, the EA error increases. At the same

time, the area of standard MBR increases too.

Our method is based on area metric, whereas we calculate not the area
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of polygon (the actual enclosed area) but the area of MBR instead during

divide/merge MBR. The reason is that there is a strong correlation between

polygon area and its corresponding MBR area. In addition, to calculate

polygon area is much more computation-intensive than to calculate MBR

area. In fact, the time complexity of our method with polygon calculation is:

O(n/β∗
β∑
j=1

j(j + 1)

2
) = O(n/β∗1

2
(
β(β + 1)

2
+
β(β + 1)(2β + 1)

6
)) = O(n∗β2)

where β is the point number of buffer. Comparing to the method with MBR

calculation (O(nlogβ)), the scale of time complexity is different. We actually

compared these two ways, and find that by calculating polygon area the

accuracy can be improved by 2.7 times while the computation time may

increase by 34.3 times. Due to the requirement of real-time simplification,

we choose the simple way - MBR calculation - but sacrifice the accuracy.

In addition, we calculated the correlation of MBR area and information

content of MBR, to explore its relation with the EA accuracy. As a result,

there is no strong correlation between them, namely the strong correlation

of MBR area and information content of MBR does not necessarily indi-

cate good accuracy. Note that this result does not go against our method’s

efficiency since our method is finally evaluated by error metrics as above.

3.6 Chapter Conclusion

In this chapter, we proposed a novel scheme: divide/merge principle

and selection strategy to reduce data for spatial trajectory. To mea-

sure displacement correctly, we newly introduced enclosed area metric which

is proven more robust against GPS uncertainty. Although DP method still

outperforms other methods from the perspective of whole performance (by

comparing the average value of all 3 metrics), our method is the most efficient

method in terms of EA metric - the most convincing measure. Furthermore,

our method is a pure online procedure which can be readily installed at the

mobile terminal to preprocess trajectory before sending it to back-end server.
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On the other hand, the transformed online DP method needs a big enough

buffer to guarantee the accuracy and compression ratio.

However, our method as well as existing methods merely takes geometric

feature (linear or areal displacement) into account, which may lead to the

loss of other information (e.g. speed). Besides, in the second component of

our method (i.e. selection strategy), we just intuitively save boundary points

for achieving the least areal displacement. Consequently, this selection can’t

exhibit the optimal simplification and it is sensitive to the shape of trajectory.

In the future, we consider extending the MBR of IC idea to Minimum

Bounding n-dimensional Cube so as to compress multidimensional trajectory.

Furthermore, it would be extremely challenging and meaningful to explore

the relationship between the accuracy and the features of trajectory, eventu-

ally to seek optimal input parameters (points of standard MBR and area of

standard MBR) and better selection strategy.
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Chapter 4

Sensor Data Reduction:

REPSense

4.1 Introduction

Today’s smartphones are programmable and come with a wide variety of

inexpensive but powerful embedded sensors, such as accelerometer, GPS,

gyroscope, microphone, light sensor, camera and Wi-Fi detector. The ubiq-

uitousness of mobile terminals and the development of sensors have opened

up a new avenue to comprehensively sense, learn and share information about

our lives and the world around us. In the domain of mobile phone sensing,

there are countless fruitful studies on human behaviour detection, environ-

ment monitoring, traffic monitoring, social interaction and so on [KXAA13].

In our project, called trajectory sensing, participants collect data (includ-

ing ambient noise, light, location, etc.) on their commuting routes by using

their smartphones. In this approach of sensing, commonly known as partic-

ipatory sensing [BEHea06] or crowd sensing [GYL11], data is collected in a

distributed and loosely controlled way. It often results in data redundancy,

which leaves room for identification and removal of the redundant sensor

data.

47



4.1. INTRODUCTION

Another motivation for data reduction is to improve performance. The

huge volume of data may seriously hamper the performance of a variety

of applications. Massive data creates multiple problems related to storage,

transmitting cost and power consumption etc. The foremost issue is that

the enormous volume of data can easily overwhelm further computing and

human analysis. For example, clustering performance (e.g., accuracy, speed

etc.) would exponentially decrease in proportion to the number of sampling

data [CLLea11]. We faced this problem in our trajectory sensing project.

In that project, we collected ambient noise and light from different areas at

night via mobile sensing to establish a relation between noise, light and night-

life activity of a region. We found that data processing time is an obstacle

when computing data similarity among different regions’ ambient noise-light.

Furthermore, some powerful classification methods lose their abilities in face

of huge data sets[CLYea08].

The above restrictions call for the need to reduce data volume. A straight

forward way would be to use conventional compression methods based on bit-

rate reduction, such as LZ (used in zip) or DCT (Discrete Cosine Transfor-

mation). However, these compression methods cannot process data-stream

in real time, and are computationally intensive when implemented on WSNs

or smart-phones. Hence, for mobile sensing or sensor networks, an array of

dedicated methods[SM11], [JKGS12], [NYZea12] have been proposed to han-

dle this issue. These methods mainly focus on solving storage, transmission

and power consumption related issues. However, they fail to address two

other issues: 1) maintaining the data diversity and 2) compressing the data

in such a way that would allow applications to perform computation on the

reduced data without uncompressing it. We address both these issues in the

proposed method.

Our objective in this work is to reduce data volume, and at the same

time, make sure that compressed data can be directly used by subsequent

applications without uncompressing. In addition, we expect the reduced data
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to represent the whole sample as much as possible. From the view point of

information theory, we hope that after data reduction, output data retains

information content as close as possible to the original data. In other words,

by using the reduced data application should be able to reach the same

conclusions they would have reached had they used the original data. The

essence of this problem has analogy to electoral systems in which congressmen

are elected to delegate public opinion. There are two popular voting systems:

proportional representation (PR) and single-member district (SMD). The

former is considered as the fundamental of representative democracy and is

used in many countries, while the latter is widely used in USA, UK, etc.

Considering the pros and cons of each of them, some countries (e.g. Japan)

have combined these two systems; with the consideration of opinion diversity,

minorities should be assigned more weight to be elected. It is intuitive that

a combination of PR and SMD is more beneficial because it can balance the

majority and the minority by compromising majority decision with minority

interest. Motivated by this, we have developed our method based on this

principle.

Our contributions can be summarized as follows:

• We defined a new data model called REPresentative Sense (REPSense)

to represent data from the viewpoint of data diversity. We then de-

veloped a divide/merge scheme to implement this model which can

compress multiple-dimensional data with arbitrary distribution in real-

time.

• Based on large real data set collected in our project, a series of ex-

periments were conducted to evaluate the performance of our method

in terms of data divergence and data classification performance. We

also applied it on a data mining application, and we found that the

proposed method is more effective compared to a set of state-of-art

baseline methods.
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4.2 Related Work

4.2.1 Mobile Sensing

Mobile crowd sensing [GYL11] or participatory sensing [LEM+08] which ap-

plies crowd-sourcing approach has many merits, for instance, (1) with the

participation of public users, we can collect data within a wider area and

with better quality; (2) it also brings down cost since all participants are ba-

sically volunteers. There are multiple fruitful applications, such as data col-

lection framework [RES10] and environment monitoring (NoiseTube[10N]).

It is undoubtedly important to seamlessly combine trajectory tracking with

crowd sensing so that we launched a project called trajectory sensing. In

most cases, the sensor data needs to be associated with the spatio-temporal

attribute for further exploration. For example, it would be meaningless if

the temperature or ambient light is gathered without the label of time and

location. Moreover, people’s daily-life trajectories can be used to understand

human activities [ZLCea08].

4.2.2 Data Reduction in Sensing

Although sensor data is useful, vast data inflicts heavy burden on applica-

tions. Hence it has enjoyed much research attention. This issue becomes

severer and unendurable in mobile devices and sensor networks. Nikzad et

al.[NYZea12] presented a technique to reduce the amount of data in smart-

phone for producing pollution map. Chu et al. [CDHH06] proposed a tech-

nique to aggregate data by probabilistic approximation, which is claimed to

be well suited to anomaly- and event-detection applications. As Lane studied

in [LXLea11], there exists similarities among sensor data, which indicates the

redundancy in sensor data can be eliminated without jeopardizing applica-

tions.

Aside from these dedicated methods for particular applications, there are
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a number of general methods. We can categorize them into 3 groups in terms

of compression granularity.

(1) bit-rate compression

Compressive sensing [BR07] is a universal method to compress data. How-

ever, compressive sensing is computationally expensive while calculating a

transformation matrix, and it is available only when the target data can be

transformed into a sparse matrix. In fact, toward our trajectory sensing data,

it is inefficient to compress at large ratio. Moreover, compressed data need to

be uncompressed for using, which deviates from our goal that we expect to

directly apply data after reducing the amount of data. For the same reason,

plus the need of on-line processing, conventional bit-rate data compression

methods, e.g. Zip method, DCT, and DWT (Discrete Wavelet Transform)

cannot be considered either.

(2) field-rate compression

Stratified sampling [Ney34] which is a field-rate method, divides total pop-

ulation into subgroups (called strata) and then select sampling points by

proportionate allocation; nevertheless, it can be explained as a special case

of our method.

(3) dimension-rate compression

Another solution to data reduction is to reduce data dimensionality; the

typical method is principle component analysis [Jol86] which uses an orthog-

onal transformation to convert a set of observations of possibly correlated

variables into a set of values of linearly uncorrelated variables.

In our work we focus on field-rate compression since its result can be

directly used for further analysis which meets our goal. Most widely used

methods are uniform sampling and dead reckoning, which are our baseline

methods. Uniform sampling is a simple method which sparsely selects the

points to store in every given time interval but discards other points. Al-

though uniform sampling may provide a simple and cost-effective solution,

it is insensitive to sensor readings due to its ad hoc nature. Dead reckoning
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(DR) is a localized processing routine which make use of the characteristics

of the immediate neighbouring points in determining whether to retain the

current point. Namely, it will only store points which are varied from the

anchor point by over a predefined threshold. Hence, it will heavily destroy

the original data distribution. Aside from these methods, we also need to

consider the state-of-art methods. Raza et al.[RCMea12] proposed a method

called Derivative-Based Prediction (DBP) to reduce the quantity of data re-

ports in wireless sensor networks. DBP takes two steps, in first step it learns

data sampling to generate a linear model which is obtained by derivative-

form and store its last point during learning. In second step it uses derived

linear model to predict data, and go to first step to rebuild prediction model

if newly generated data is out of prediction model in terms of both value

tolerance and time tolerance.

4.3 Proposed Scheme

4.3.1 Problem Statement

The ultimate goal of our project is to learn human activities under particular

physical environment by sensing and then to discover knowledge. However,

the problem we plan to solve in this work is data reduction in real-time be-

fore transmitting or data reduction off-line before data analysis (see figure

2.4). There is a wide variety of sensors built in smartphone. In our trajec-

tory sensing project, we select GPS, ambient light sensor, microphone, air

pressure sensor and accelerometer.

During our sensing experiments (described in chapter 2) and later data

analysis, we find the data volume causes an array of problems. Because

participants are sensing environment while they are fast moving (e.g., by bike

or train), sampling period is supposed to be very short, so sensor is capable

of capturing signal changes, meaning the data volume will accumulate more
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quickly than in other applications. Therefore, the aforementioned obstacles

of vast data, including storing, transmitting, power consumption and data

analysis efficiency, become more notable and unendurable in our project.

After data reduction, the amount of data points decrease but data values

and the order are never changed, that is, reduced data meets equation (4.1)

and (4.2) (It is introduced in chapter 3 while state here again for conve-

niences). We call these two properties value-invariance and order-invariance

respectively.

∀p′ ∈ T ′ ⇒ ∃!p ∈ T : p′ = p (4.1)

∀p′, q′ ∈ T ′ ∧ t(p′) < t(q′) ⇔ ∃!p, q ∈ T :

(p′ = p, q′ = q) ∧ t(p) < t(q)

where t(x) is the temporal order of x,

T is the original data, T ′ is the reduced data

(4.2)

4.3.2 Observation

To reduce sensor data, we rethink the problem of data reduction from the

following viewpoint. Although it is generally assumed that data loss is in-

eluctable after reducing data, reduced data is still expected to represent the

original data as parliament members are elected to represent all citizens.

Under majority rule of democratic nations, representatives are assigned in

proportion to the number of supporters, which is the basis of proportional

representation (PR). On the other hand, for the sake of protecting minority

right, a priority or weight should be given to select minority representative

for meeting opinion diversity, which reaches the same effect as single-member

district (SMD). In our method, we balanced these two principles.

In election, nation is divided into many constituencies (usually by state

or prefecture) which consist of different interest groups, e.g., middle class,

rich and poor. In analogy to it, as shown in figure 4.2 which is boxplots

of the same data shown in figure 4.1, the total population is divided into
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Figure 4.1: Sample data of ambient light

Figure 4.2: Box-plots with division of sample data

5 groups (horizontal axis) as constituencies, and it is also divided into 5

divisions (right vertical axis) as interest groups. Note that, dividing into

many groups is mainly because our method aims to process data on-line so

that we handle data group by group (a group means a local buffer). Next step

is to select points to represent a group, which is similar to vote representative

in election. Based on proportional representation, in figure 4.2 many points

from 5th division will be selected, on the other hand, minority division (such

as 1st, 2nd division) can also be picked out if adopting single-member district.

With consideration for opinion diversity, a combination of these two systems

seems favorable.

In our case, we are concerned with data diversity. In figure 4.1, data

points are divided into 5 groups each having N points. We can draw a

MBR (Minimum Bounding Rectangle) on each group (dot dash rectangle in

figure 4.1), and calculate the area of each MBR and the sum of information
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Table 4.1: Information content and group area
Group No. 1 2 3 4 5

Group Area 635 3945 7322 1902 998

Sum of Infor-
mation Con-
tent

3.58 8.20 7.00 4.27 1.60

content of each MBR as described in table 4.1. Data diversity, i.e., the sum

of information content of each MBR (group) is calculated as:

∑m
i=1− log(pi), pi is the frequency of data points

within ith division where the entire group is

evenly divided by m =
√
N

(4.3)

Data diversity is similar to species diversity, such as Shannon index or

Simpson index ; however, we remove the proportion factor from Shannon

index to define our data diversity, because outliers are extremely valuable in

most applications but they have a small proportion.

4.3.3 REPresentative Sense

Based upon above observation, we establish this principle: data points are

selected out according to both proportion and preference. Here,

preference refers to high priority on minority points which is analogous to

minority nationalities. Minority points in our case are those points which

deviate from centre of clusters. Since our basic idea comes from represen-

tative principle of democratic election, we call this method REPresentative

Sense(REPSense). A factor for minority in ith division is identified as this

equation:

I(i) = − log(pi)∑m
i=1−log(pi)

where m is the number of divisions in group
(4.4)
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Accordingly, proportion of selected points from ith division (namely proba-

bility density function) is:

Qi = w ∗ I(i) + (1− w) ∗ pi (4.5)

Where w is the weight assigned to preference of minority points, in a group

Gj, pi is obtained by:

pi = |{q|q∈[i−1,i)∗div}|
N

,

where N = |Gj|, Gj = {q1, q2.., qn}
(4.6)

Here, division range (div) can be roughly determined by (max(Gj)−min(Gj))/N .

However, in real application, we implement an adaptive fashion to adjust

range with respect to variance of individual group and uniformity of total

population. During a tuning period, a range is obtained by a k− order mov-

ing average based on Freedman-Diaconis rule which is used to select bin size

in a histogram:

div = 1
k

∑k
j=1

Q3(Gj)−Q1(Gj)
3√N

∗ 2,

where Q1, Q3 are the 25th and 75th percentile
(4.7)

Then, the number of division - m in group is:

m = 1 + dmax(Gj)−min(Gj)

div
e (4.8)

After data reduction by any method, the distribution of original data (which

is subject to P = {pi}) is changed into another distribution, here which is

subject to Q = {Qi}. According to Gibbs’ inequality :

H(P ) = −
∑m

i=1 pi log(pi) ≤ −
∑m

i=1 pi log(Qi)

= L(Q), where
∑m

i=1 pi = 1,
∑m

i=1Qi = 1
(4.9)
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L(Q)−H(P ) is defined as Kullback-Leibler divergence which is always more

than 0. From here, we learn that any data reduction definitely cause informa-

tion loss, therefore, we strive for lowering this sort of loss, which is evaluated

in later.

4.3.4 Algorithm Description

Our algorithm for sensor data reduction employs such a scheme: first step

is dividing/merging groups, and second step is selecting points in re-

sulted group (see the detail in algorithm 3). Originally group size is iden-

tical while different groups possess different information content sum. As

shown in table 4.1, group 2 and group 3 possess very high information con-

tent while information content of group 5 is too low. Consequently, a group

will be resized to keep almost uniform information content, which is similar

to creating voting district by the number of voters. There are two advan-

tages for it: (1) it can raise efficiency through reducing groups which means

reducing times of second step, i.e., selecting points; (2) it can guarantee the

time tolerance since group size is referred to sensing duration.

For each point in a group derived from the first step, in the second

step we can obtain the Qi. Since Qi is the probability (weight) to save,

a Bernoulli trial with probability Qi/pi (i.e., B(1, Qi/pi)) is executed to de-

termine whether to save it or not. Note that, in the 15th line of algorithm

3, the magnitude of group can be calculated by area of MBR or sum of

information content. In the later section of this chapter we will discuss

the performance of both of them. In addition, in the 16th line, we used a

simple method to learn the data change in order to adjust the division (div)

until it converges.

In equation (4.5), if w is assigned to 0, the method may regress to stratified

sampling (similar to PR in electoral system), on the other hand, if w is

assigned to 1, the method may be close to dead reckoning (similar to SMD).
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Algorithm 3 REPSense method

1: function Divide Merge(St Group Pts Num, St Group Area, Traj)

2: Num← St Group Pts Num

3: for all point in Traj do

4: if Num = Buf.Count then

5: rlt← SelectPoints(Buf)

6: if rlt is false then . Merge Group

7: Num← Num ∗ 2

8: end if

9: else

10: Buf.Add(point)

11: end if

12: end for

13: end function

14: function SelectPoints(Buf)

15: Area← CalcArea(Buf) . Group Area or IC Sum

16: Learn(Area, St Group Area) . Adjust division range

17: if Area > St Group Area ∗ 2 then . divide Group

18: n← Buf.Count

19: SelectPoints(Buf [0, n/2)) . 1st half of Buf

20: SelectPoints(Buf [n/2, n)) . 2nd half of Buf

21: else if Area < St Group Area/4 then

22: return false

23: else

24: for all point in Buf do

25: Calculate Qi, Pi . by equation (??),(??),(??)

26: r = B(1, Qi/pi) . by Binomial sampling

27: if r = 1 then

28: SavePoint(point)

29: end if

30: end for

31: return true

32: end if

33: end function
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Figure 4.3: Multi-dimensional data space divided by cubes

4.3.5 Accommodating Multi-dimensional data

By now, REPSense method focuses on single dimensional data. However,

we can easily generalize REPSense to accommodate multi-dimensional data.

let ξ denotes a vector, then a υ-dimensional space is:

ξυ = {(ξ(1), ξ(2), · · · , ξ(υ)) | ξ(i) ∈ R} (4.10)

In the previous section 4.3.3, we divide single dimensional data ξ by div. In

view of a general form, we also can divide multi-dimensional data ξυ by υ-

cube. Therefore, single dimension is a special case in which υ-cube is a line,

and in the case of 2 dimensions υ-cube is a rectangle. In addition, υ-cube is

determined by each single div(i) which can be obtained from equation (4.7).

υ − cube = div = (div(1), div(2), · · · , div(υ)) (4.11)

Figure 4.3 shows an example of 3 dimensional data space which consists of

59



4.4. EXPERIMENTAL EVALUATION AND DISCUSSION

sound, light and air pressure (atmospheric pressure) collected in our trajec-

tory sensing system. Where υ-cube is (5, 5000, 0.5), which means div(1) is 5

dB for ξ(1) (sound), div(2) is 5000 lux for ξ(2) (light), div(3) is 0.5 hPa for ξ(3)

(air pressure). The number of υ-cubes - m in a group is:

m =
υ∏
i=1

(1 + dmax(G(i))−min(G(i))

div(i)
e),

where G(i) ⊂ ξ(i)

(4.12)

Finally, we can apply equation (4.4),(4.5),(4.6) without any modification to

implement REPSense for multi-dimensional data.

4.4 Experimental Evaluation and Discussion

All experiments are performed by using real data set, which was collected in

our trajectory sensing project in 4 months by 12 users. In every instance of

data collection, sensing lasted from 30 minutes to 2 hours. Sampling period

is set to 0.5 second, 1 second or 5 seconds in different instances but constant

in a single data collection. The file size of sensor data from a data collection

instance ranges from 600 KB to 5 MB.

4.4.1 Evaluation Criteria

We take advantage of sensor data collected in our project which include

ambient noise and ambient light to evaluate our method. By drawing the

histogram of our collected data, we roughly find the distribution of ambient

noise is close to Gaussian distribution while the distribution of ambient light

is close to exponential distribution. Using two different types of distribution

can validate that our method is adaptable in multiple distributions. Our ob-

jective is to evaluate the accuracy over compression ratio. Here, compression

ratio (CR) is defined as the number of points after reduction divided by the
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number of original points. Since the reduced data meet the rule of equation

(4.1) and (4.2), we can evaluate accuracy only by comparing data divergence

of distribution, i.e., the similarity between original data’s histogram and that

of the reduced data. In probability theory, f divergence is used to measure

the deference between two probability distributions. Let P and Q be two

probability distributions over a space Ω such that P is absolutely continuous

with respect to Q. For a convex function f such that f(1) = 0, f-divergence

of Q from P is:

Df (P ‖ Q) =
∫

Ω
f(dP

dQ
)dQ (4.13)

There are many types of f-divergence; we select Kullback-Leibler divergence,

Hellinger distance and Itakura-Saito distance, whose discrete forms are de-

fined as equation (4.14), (4.15) and (4.16) respectively. They all are of non-

negativity and non-symmetrical, but among them, Itakura-Saito distance is

favorable because its convex function is consistent with our initial definition

of data diversity.

DKL(P ‖ Q) =
∑
Pi log( Pi

Qi
),

convex function f = t ∗ log(t)
(4.14)

DH(P ‖ Q) = 1√
2
(
∑

(
√
Pi −

√
Qi)

2)
1
2 ,

convex function f = (
√
t− 1)2

(4.15)

DIS(P ‖ Q) =
∑

( Pi
Qi
− log Pi

Qi
− 1),

convex function f = − log(t)
(4.16)

Aside from data divergence, we also evaluate our method in terms of

data clustering performance. Moreover, we apply our method on a practical

application to assess the real benefits.
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Figure 4.4: Divergence for ambient light over compression ratio: (a)K-L
divergence, (b)I-S distance, (c)Hellinger distance.

4.4.2 Data Divergence Performance

In this case, experiments are conducted over single dimension data (ambi-

ent light and ambient noise respectively) in on-line mode (on smartphone

before transmitting data). K-L divergence, I-S distance and Hellinger dis-

tance are employed to evaluate the accuracy over different compression ratio

(2%,5%,10%,20% and 33%). Figure 4.4 and 4.5 show the result for ambient

light and ambient noise respectively. We find our method performs best in

terms of I-S distance (the smaller the value is, the better the performance is),

and the advantage is more remarkable while under high compression ratio.

DR seems incompetent because it drastically destroys data diversity. DBP

performs almost same as DR. The reason is that DBP is a variant of DR plus

a linear prediction model. Although uniform sampling is roughly the same as

our method in terms of K-L divergence and Hellinger distance, it heavily de-

pends on the consistency between sampling rate and autocorrelation (ACF).

Furthermore, because we focus on data diversity whose definition is similar

to I-S distance that considers sum of information loss rather than average

loss like K-L divergence, I-S distance is preferred in this work.

We also study the effect of input parameters on accuracy. From figure
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Figure 4.5: Divergence for ambient noise over compression ratio: (a)K-L
divergence, (b)I-S distance, (c)Hellinger distance.

4.6, we can find: (1) given same value of w (w is the weight assigned to

minority points in equation (4.5)), accuracy increases with compression ratio

in general, (2) under given compression ratio, accuracy fluctuates with w.

Given that our objective is to minimize the information divergence defined

by equation (4.13), the process of optimizing w can be described as:

arg min
w∈[0,1]

Df (P ‖ Q) (4.17)

In off-line mode we can calculate the entropy of original data (H(P )) since

we have the posterior distribution of original data. We can generate Q (re-

duced data) which reaches the minimal of L(Q) by sampling w, then based

on equation (4.9), it will meet equation (4.17) in terms of K-L divergence.

However, in on-line mode it is hard to determine the optimal value of w as

we do not have the prior knowledge about distribution of original data. In

addition, for a certain reasons, it is unnecessary to use an optimal w. For ex-

ample, if more outliers are expected to be kept, w should be raised although

divergence will be widened. In our experiments, we choose w from 0.05 to

0.2 according to empirical observation.

Another important parameter is buffer size which is the number of points
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Figure 4.6: Weight (w) effects on I-S distance over CR

Figure 4.7: I-S distance over buffer size

in a group. Figure 4.7 shows inaccuracy over buffer size under the condition

of compression ratio = 10% and w = 0.3. We find inaccuracy increases

when buffer size increase, but the result can be improved by adjusting the

value of w. In addition, as stated in section 4.3.4, there are two alternatives

- sum of information content or MBR area - to calculate the magnitude of

group in the first step of REPSense. Based on Student t-test, we find there is

no significant difference in terms of accuracy between them, but MBR area

is inexpensive in light of computation.
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Figure 4.8: Goodness test and outliers detection

Off-line Data Reduction

In this case, we execute experiments in off-line mode (at the back-end server).

Hence, our method adopts a global buffer whose size is the length of the entire

file. Goodness of fit tests are adopted to evaluate performance over fixed

CR(10%). Two well-known tests are used here, i.e. Kolmogorov-Smirnov test

(KS) (see equation (4.18)) and Cramér-von Mises test (CVM) (see equation

(4.19)).

DKS(P ‖ Q) = sup |Q(x)− P (x)| (4.18)

DCVM(P ‖ Q) =
∫ +∞
−∞ (Q(x)− P (x))2dx (4.19)

Where Q(x) and P (x) stand for the EDF (Empirical Distribution Function)

of original data and reduced data respectively. KS test measures the widest

distance between two distributions while CVM test measures the cumulative

distance. In addition, a simple outlier identifying method is used to evaluate.
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Figure 4.9: Clustering: a) original data, b) reduced data by REPSense, c)
reduced data by uniform sampling

We define an outlier to be any observation outside the range:

[
Q1 − λ(Q3 −Q1), Q3 + λ(Q3 −Q1)

]
where Q1 and Q3 are the 25th and 75th percentile

respectively, and λ = 1.5

(4.20)

The result is shown in figure 4.8, in which KS distance and the number

of outliers are scaled to [0, 1] for normalization. We claim that our method is

better since it has short distance and high p-value in terms of both KS test

and CVM test. In addition, as weight w increases, the number of outliers

identified in our method increases and goodness of fit deteriorates as well.

Probably it is because w raises the probability of outliers to be selected out

while destroy the diversity balance simultaneously.

4.4.3 Data Clustering Performance

In this case, experiments are conducted over 2-dimensional data (ambient

light and ambient noise) by comparing with uniform sampling. In addition,

we measure the clustering performance in this case. K-means is used to

classify original data and reduced data. To determine the number of clusters
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(k∗) in a data set, which is a common problem, we simply adopt such a rule:

k∗ = min{k | totssk−
∑k
i=1 withinssk
totssk

≥ 0.9}

where totssk = 1

NC2

N∑
i=1

N∑
j=i+1

(‖ qi − qj ‖2)2

withinssk = 1

Nk
C2

Nk∑
i=1

Nk∑
j=i+1

(‖ qi − qj ‖2)2

Nk is the number of points in kth cluster, N =
∑
Nk

qi and qj are single data points.

(4.21)

In our experiments, k∗ ranges from 2 to 5 in the original data. Then, we use

the same k∗ when classifying reduced data by both REPSense and uniform

sampling. As seen in figure 4.9, in our method the blue cluster holds more

points than uniform sampling for our method places a higher priority on

minority points. Subsequently, the center of blue cluster in our method keeps

almost the same place as does in the original data while in uniform sampling

it deviates much from the original data. In a word, we intuitively find that

our method REPSense can generate more similar clusters comparing with

original data than uniform sampling. Furthermore, we define the following 2

metrics to measure clustering performance.

• Cosine Similarity of Cluster Size: After clustering, we obtain an array

of vectors CS{m} = (Nc1 , Nc2 , · · · , Nck), where m = {Rep, Unif,Orig}
stand for REPSense, uniform smapling and original data respectively.

Here, Nci is the number of points in ith cluster. Accordingly, cosine

similarity of CS{Rep,Orig} and CS{Unif,Orig} are calculated.

• Average Distance of Cluster Center: We also obtain the center of each

cluster by each method as follows: Cc{m} = {C1(x1, y1), C2(x2, y2), · · · ,
Ck(xk, yk)}. Similarly, we calculate the Euclidean distance of each

paired cluster for Cc{Rep,Orig} and Cc{Unif,Orig} after scaling the value

of center to [0, 1].
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Figure 4.10: Clustering performance

Figure 4.10 shows the result of clustering performance, proving that our

method fully outperforms uniform sampling in terms of above 2 metrics be-

cause it gets higher cosine similarity of cluster size and shorter average dis-

tance of cluster center. This is substantiated by t-test too. Note that the

performance of our method highly depends on the value of w, however we

can adjust w freely. Incidentally, expected running time of K-means algo-

rithm is bounded by O(ndk+1 log n) [IKI94] where n is the number of data

points and d is the dimensionality of data set. We can see the time cost will

dramatically decrease if the number of points is reduced.

4.4.4 Target Application

Ambient light and noise at night are the energy emitted from the area through

human activities. Thus, we claim the ambient light and noise can indicate

how busy an area’s night-life is. We also find that the ambient light and noise

are spatially independent by hypothesis test using K functions, which imply

that we can employ both of them to estimate how busy an area is. In our

project, we collected ambient light and noise data around (within 500 meters)

tens of train stations at night. In this application (it is also elaborated in

section 6.1), we aim to calculate the similarity matrix among these train

68



4.4. EXPERIMENTAL EVALUATION AND DISCUSSION

Figure 4.11: Correlation coefficient of similarity matrix and I-S distance

stations in terms of Jensen-Shannon Divergence (JSD). The result is helpful

to assess the value of business zone (around station).

We can obtain the light-noise joint distribution of every station and then

calculate the JSD between each pair of stations. Assuming the number

of stations M , to build the similarity matrix, the computation of JSD is

M ∗ (M − 1)/2 times. Thus, it is significant to reduce data volume in light

of computation cost. Now we apply our method to reduce data. After data

reduction, we obtain the similarity matrix of stations again and compare

it with the original similarity matrix by correlation coefficient. Figure 4.11

and figure 4.12 show the experimental results. In figure 4.11, the dot lines

show the I-S distance and the solid lines show the correlation coefficient for

our method and baseline methods. From it we can find: (1) our method has

obvious advantage in both I-S distance (the lowest) and correlation coeffi-

cient (the highest), (2) the correlation coefficient is negatively correlated with

I-S distance, which substantiates that using data divergence to measure ac-

curacy is reasonable, (3) the correlation coefficient decreases with increasing

compression ratio, which indicates that compressing too much will invali-
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Figure 4.12: Processing time comparison

date the result. In figure 4.12, the processing time of generating similarity

matrix is shown. As expected, the processing time after data reduction is

linearly decreasing in proportion to compression ratio (the solid line shows

the percentage of reduced time).

4.5 Chapter Conclusion

It is fairly challenging and significant to extract more useful data but reduce

redundant data. Motivated by this, we propose a data model (REPSense)

to represent data from the viewpoint of data diversity. We rethink data

reduction problem by analogy to electoral system. In our method, data is se-

lected by a fashion which is similar to electing congressional representatives.

We also design a novel scheme: divide/merge principle and selection strategy

which implement REPSense model to reduce data. Although we don’t theo-

retically prove our model is effective, we draw our conclusion based on a large

amount of experiments with real data set. Through comparing with conven-

tional methods and state-of-the-art methods, our method performs well in
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terms of data divergence especially Itakura-Saito distance. Our method also

outperforms other methods in terms of data clustering and practical data

analysis application. It is foreseeable that data reduction will linearly mit-

igate storing and transmitting problems, though we did not evaluate it by

experiments.

In future we plan to explore optimal parameters of our method, and

evaluate it from other viewpoints, e.g., transmitting cost, outlier detection

performance.
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Chapter 5

Sensor Application:

iBaro-altimeter

5.1 Introduction

Localizing the position of a moving target is the basis of all location based

services (LBS). Until now researchers have mainly focused on localization on

a 2D plane (latitude and longitude). However,altitude or elevation is also

important for LBS including 3D navigation, indoor localization (e.g. floor),

mountaineering, emergency rescue operations and so on. Although GPS can

provide altitude,its accuracy is notoriously poor and unstable (sometimes

the error can reach up to 2.5 times more than the horizontal one) [KH06].

Moreover, it does not work in indoor environments. There are other means to

measure height such as hypsometer, ultrasound and radar based techniques.

However, they can only provide relative height (not elevation). Moreover

they are not readily available due to cost and limitation on their scope of

applications. Therefore, the objective of this research work is to develop a

ubiquitous, less costly and highly accurate elevation measurement system.

Our method is based on a well established theory that air pressure (at-

mospheric pressure) change corresponds to elevation changes. Air pressure
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can be measured using a barometer. Based on this law, altimeters used in

aircrafts use barometer to get the air pressure and use this information to

calculate the altitude. Moreover, they need local air pressure information

from control towers as reference points. These reference points can be used

to calculate the elevation with acceptable accuracy only when one is within

certain distance from that reference point.

Thanks to the development of sensor technologies, air pressure sensors

are built-in in most smartphones nowadays, which creates new opportunity

to take advantage of the baro-altimeter technology. However, we have to

tackle certain challenges before using these low cost embedded barometers

to get accurate measurements for elevation. In a standalone mode (elevation

measured using smartphone’s barometer only,based on ISA model [NAS]),

the error reaches tens of meters or even hundreds of meters (depending on

weather conditions and altitude). Even other research works [LHG13] using

meteorological stations as reference points (as used by aircrafts), reported

errors in the range of several meters to tens of meters. In this work we

propose a system called iBaro-altimeter that adresses this shortfall by solving

three sub-problems.

The first problem we address is related to the density of reference points.

As mentioned earlier, accuracy of the measurement of elevation at a target

depends on the distance between this point and the reference point. There-

fore, we need more reference points to make sure that smartphones are always

within acceptable range from at least one reference point. However, the only

reference points available are meteorological stations which are often sparsely

located. Hence, we propose methods to introduce ad-hoc reference points.

The second problem arises from the fact that these meteorological sta-

tions broadcast periodically, usually at one hour interval. However, within

this period, the air pressure might change substantially. We integrate infor-

mation from multiple reference points including the ad-hoc ones and also use

a forecast model to estimate the air pressure on demand.
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The third problem we tackle is related to the accuracy of the barometer

sensors embedded in smarphones. Earlier research work [KWS12] showed

that these sensors are less accurate and less stable than the barometers certi-

fied for professional use. We use multiple filtering techniques such as Kalman

filter to handle this issue.

We believe that the ability to obtain elevation on smartphones would be

beneficial in various potential applications, for example:

• Tsunami evacuation:

In case of a Tsunami, it is advisable to run to higher ground in order to

survive. However, the problem is that it is not easy for most people to

know which way/direction is higher. Even availability of evacuation maps

doesn’t help much because they are difficult to use and they also provide

height of the ground and not the actual elevation(e.g of a person in a

building). Easy application of our method would enable a smartphone to

provide accurate elevation and with ease of use this would save a lot of

lives in an event of a Tsunami.

• Car navigation:

On flyover/overpass roads, GPS of car navigation cannot localize which

road (underpass or overpass) the car is on, especially if it is at the beginning

of navigation process. This can lead to wrong or sub-optimal routing

because obviously the route through the underpass or overpass may be

different. Availability of accurate elevation of a user would easily solve

this problem and eanable the navigation system to distinguish between an

overpass and underpass road segment.

• Mountain climbing :

For mountain climbers, altimeter is one of indispensable gears. To record or

measure ones’ elevation is crucial for safety as well as enjoyment. Though

altimeter watches are available, smartphone based altimeters would pro-

vide an attractive alternative for some users depending on cost, ease of use

and accuracy.
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• Floor based services :

Our system can easily identify on which floor a person is by estimating

relative height. This information would save lives, in an emergency rescue

operation inside buildings as survivors’ floor can be easily identified. Nu-

merous other applications for instance, floor based games, social network

(friend finder), indoor positioning would also benefit from this data.

Our main contributions are as follows:

• We proposed an integrated framework to provide accurate elevation

measurement which uses only smartphones without special infrastruc-

ture by

– employing multiple techniques to handle systematic error and ran-

dom error;

– integrating heterogeneous reference points;

– applying adaptive extended Kalman filter to smoothen elevation pro-

file;

– leveraging short-term forecast model to enhance the accuracy and

– estimating the error interval of obtained elevation on-line.

• We evaluated the system in different indoor and outdoor settings.

– Case 1 (Outdoor Walking): Participants carrying smartphones with

our developed tool installed on it,walked randomly in an urban area.

– Case 2 (Mountain climbing): Experiment participants climbed 3

mountains (elevation ranges from 600 meters to 1900 meters).

– Case 3 (Inside buildings): Participants walked, took stairs, took el-

evator in 3 buildings.
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Figure 5.1: The theory of elevation measurement from air pressure

5.2 iBaro-altimeter Overview

5.2.1 Theory of elevation measurement from air pres-

sure

The relation between air pressure and elevation has been well studied, and

it is defined as:

Ph = Pb ·
[ Tb
Tb + L · (Zh − Zb)

][ g·M
R∗·L

]
(5.1)

where

Zh, Zb: height above sea level (meter)

Ph: air pressure (pascal) at height Zh

Pb: air pressure (pascal) at height Zb

Tb: standard air temperature (K)

L: temperature lapse rate (K/m)

g: gravitational acceleration (m/s2)

M : molar mass of earth’s air (kg/kmol)

R∗: universal gas constant for air (N ∗m/(kmol ∗K))

It can be derived easily using the ideal gas law with the assumption that all

pressure is hydrostatic(for details see [NAS]).

To calculate elevation, we can inverse equation 5.1 as:

Zh = Zb + Tb
L

[
(Ph
Pb

)−
L·R
g − 1

]
(5.2)

76



5.2. iBARO-ALTIMETER OVERVIEW

0 100 200 300 400 500

0
5

10
15

µ*

σ

Tb Pb

Zb

Ph

R

L
g

Figure 5.2: Sensitivity of input parameters of baro-altimeter equation

where R = R∗

M
.

As shown in figure 5.1, if status (Pb, Tb, Zb) at a reference point is known

and air pressure (Ph) is known too, it is easy to obtain the elevation (Zh)

from equation 5.2 and relative height (by h = Zh − Zb).

5.2.2 Sensitivity analysis

The challenge in elevation measurement is that there are always errors due

to inaccurate measuremtns associated with each of the input parameters in

equation 5.2. Therefore we applied elementary effects method (of sensitivity

analysis) to simulate the influence of parameters on the result. Elementary ef-

fects (EE) method [Mor91] can identify non-influential inputs and rank them

in order of importance. EE of Compolongo [CCS07] provides two sensitivity

measures for each input parameter:

• µ∗, assesses the overall importance of an input on the model output.
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Table 5.1: Elevation variation caused by inputs’ error
∆Zh(m) caused by

Zh∗ (m) Tb(◦) ∆Ph[1hP ] ∆Pb[1hP ] ∆Zb[1m] ∆Tb[1
◦]

100 0 -7.96 7.87 1 0.32
100 15 -8.40 8.31 1 0.32
100 30 -8.84 8.74 1 0.32
500 15 -8.84 8.74 1 0.34
1000 15 -9.33 9.21 1 0.36
2000 15 -10.49 10.34 1 0.40

Z∗h: around this height; 1hP = 100Pascals

• σ, describes non-linear effects and interactions.

Low values of both µ∗ and σ correspond to a non-influent input. Figure

5.2 shows the result, which suggest that Pb and Ph are the most influential

inputs, Zb is also important, while g, L and R are the least influential inputs,

Tb is less influential but affects the variability substantially. Consequently, in

order to enhance accuracy of elevation 5.2, we focus on reducing uncertainty

of Ph, Pb, Zb, Tb. Although g will vary with latitude, L is subject to elevation,

and R depends on the humidity of air, we set them as constants by following

the international standard atmosphere model [NAS].

In addition, we made a numerical results table for effects of influential

inputs (table 5.1) based on the concept of the total differential [Ste95]. First,

we linearise the total differential of equation 5.2 by taking partial derivative

on every input. Then, moving one input at a time while keeping other inputs

at their baseline values to get output changes. From the table, we can verify

the conclusion of EE.

5.2.3 iBaro-altimeter architecture

As explained in the previous section, accurate reference point information

is crucial for obtaining highly accurate elevation when using the Barometric

based method. Since there are meteorological stations for weather forecast

service in most countries, it is a common practice to them as reference points.
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However, these stations are sparsely located and they broadcast the infor-

mation once in every hour or even once in every 3 hours. For example,

in Japan there are only 156 stations which measure air pressure, and they

broadcast information every hour. This coarse spatial density (about tens

of kilo-meters) and low update frequency (about one hour) results in lower

accuracy when elevation is obtained from barometer.

Here we propose a new system called iBaro-altimeter to resolve this prob-

lem. In our system we incorporate three types of reference points.

• Base station:

These are meteorological stations usually provided by national meteoro-

logical agency.

• DEM reference:

It is based on Digital Elevation Model (DEM). When a person (with smart

phone) is on the ground in outdoor, it is possible to get the elevation from

DEM map based on his current location (from GPS). When combined with

air pressure measurement from the same smartphone, this status can be

used as a temporal reference point. Every smartphone only maintains one

DEM reference point or none at all. This reference point stores the latest

elevation when GPS signal is good enough.

• Smartphone reference:

It is based on a smartphone within our system. If elevation of the smart-

phone is obtained from our system, then this smartphone itself can be used

as an ad-hoc reference point. To avoid error accumulation, the smartphone

reference cannot be refereed to itself (only can be used by other smart-

phones).

Figure 5.3 shows the architecture of iBaro-altimeter. To calculate el-

evation of smartphone X, first it needs to get GPS information (latitude,

longitude, altitude, accuracy). Then, using this information it requests the

reference points server. On the other end, the server will integrate all refer-
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Figure 5.3: iBaro-altimeter architecture (X:longitude, Y:latitude,
Z:altitude(elevation), P: air pressure, T: temperature)

ence points within a specified spatio-temporal radius around the smartphone

and send the resulting reference point back to the smartphone. Finally, based

on this virtual reference point, the smartphone can obtain accurate elevation

which can be used in other LBS applications. Furthermore,it can also be

used to improve GPS accuracy. Figure 5.4 shows how iBaro-altimeter works

in a client/server fashion while details of major components are provided in

the next section.

5.3 Components of iBaro-altimeter

5.3.1 Sensor calibration

Barometers built in smartphones are not as accurate as the measurement

devices of meteorological stations. There is a systematic error between air
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Figure 5.4: Workflow of iBaro-altimeter
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Figure 5.5: Reading differences among pressure sensors
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pressure value read from barometer of smartphone and the actual air pres-

sure. According to the specification of smartphone’s barometers, there is a

maximum absolute error of 4 hPa. We do calibration test to eliminate this

systematic error before using the smartphone’s barometer. Figure 5.5 shows

the pressure sensor readings in 6 smart phones at identical location and time.

Among these 6 smartphones, there are three different models of barometer

(type 1: m01 and m03, type 2: m02 and m04, type 3: m05 and m06). We

found that the systematic error is different, even independent on models, but

it is stable over longer period of time. Calibration test can be done when the

elevation Zh and Zb, Tb, Pb are known exactly. According to equation 5.1, Ph

can be obtained with known Zh and Zb, Tb, Pb. Then the systematic error is

the difference between the obtained Ph and the actual reading on barometer.

By repeating the test, standard deviation can be obtained for evaluating the

stability of barometer. The calibrated bias will be added before using the

raw value of barometers.

5.3.2 Filtering burst error and random error

As can be seen in figure 5.6 there are random errors and burst errors (spikes)

in raw values of barometer (sampling rate: 2 Hz). According to the spec-

ifications of the barometer, there is a random error of less than ±0.1 hPa

(depends on models). It is easy to reduce this random error by a low pass

filter or simply taking average.

On the other hand, burst error which is caused by electronic defect or

drastic change in air pressure, can be identified by a threshold-based method.

Suppose the air pressure at time t is Pt , then we detect burst error by this

condition:

|Pt+1 − Pt| > ∆ = er + (eh + 1.96 ∗ ew) ∗∆T (5.3)

where er is random error (about 0.1 hPa), eh is air pressure change caused
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Figure 5.6: Random error and burst error of barometer

by elevation change, in normal situation we assume fast elevation change (by

taking elevator) is 9m/s (about 0.1hPa/s), ew is air pressure variation (σ)

in 1 second from weather change, which can be estimated from historical

data of air pressure, ∆T is the sampling interval (second). This threshold

based method might not completely remove all burst error (depends on how

we define burst error), nevertheless burst error will be further addressed at

a later stage with adaptive Kalman filter.

5.3.3 Integrating reference points

In our system, we introduce two types of dynamic reference points(i.e. DEM

reference and smartphone reference), and fixed base stations. As shown in

figure 5.7, base stations are stationary and broadcast information at fixed

time interval, while smartphone references are mobile and update informa-

tion dynamically, and DEM reference is available when GPS signal is very

accurate. To estimate the elevation of smartphoneX, it is obviously not best

to use the nearest or the latest reference point. Because (1) the nearest one
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Figure 5.7: Reference points with dynamic spatio-temporal feature

may be not the latest one and vice versa, (2) all reference points are not

fully accurate, meaning using a single point results in error accumulation.

As such, we take into account all the reference points which are within a

specified distance and time period (e.g. within 50 km and 1 hour until now).

When a reference point is closer to the smartphone, the accuracy of eleva-

tion measurement is better, and the newer the reference information, the

more accurate the measurement. In addition, the vertical distance between

reference point and smartphone affects the accuracy too.

Each factor (horizontal distance, vertical distance and time gap) indepen-

dently leads to error accumulation in a certain form (let’s say f(hs), g(vs), h(t)

respectively). We assume their form follows an exponential function (Gaus-

sian distribution) which can be verified by approximating the error distribu-

tion with regression method. Therefore, we propose a model to integrate all

reference points to generate combined reference information. Each reference
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point is given a weight w based on spatio-temporal distance as follows:

w = f(hs) ∗ g(vs) ∗ h(t) (5.4)

where we assume f(hs), g(vs) and h(t) follow N(0, σ2
hs), N(0, σ2

vs), N(0, σ2
t )

respectively, then

w = (2π)−
3
2 (σtσhsσvs)

− 1
2 e
− 1

2
[ t

2

σ2t
+ hs2

σ2
hs

+ vs2

σ2vs
] (5.5)

where t is the time gap between the reference information time-stamp and

current time, hs is the horizontal distance (calculated from latitude and

longitude), vs is the vertical distance (altitude) between the reference point

to the average elevation of base stations (see Zb in algorithm 4). We also

assume that the effect of a factor should be marginal,when a factor reaches a

specific value. Therefore, all these 3 factors will be scaled to [0,1] by dividing

by a specific value. For example, time gap t is divided by one hour (MaxT ) ,

horizontal distance hs is divided by 30 Km (MaxHS), and vertical distance

(vs) is divided by 500 meters (MaxV S). Therefore the weight becomes very

small (i.e. 5 %) when time gap is greater than one hour, and same for other

2 factors. Note that, all these 3 factors can be scaled to [0,1] just because we

search for reference points only within a specific time period (MaxT ) and a

specific distance (MaxHS and MaxV S).

In addition, although these 3 factors are considered independent, they

are supposed to contribute to the weight at different rate of change. For

example, one unit (say 1 minute) of time gap may not lead to same error as

one unit (say 1 Km) of horizontal distance. This rate of change is related

the standard deviation (σ2), therefore we can control it by adjusting σ2
t , σ

2
hs

and σ2
vs. From history of air pressure in different meteorological stations,

we can estimate how much the air pressure changes with respect to specific

time interval and distance. Let’s say, in MaxT (1 hour) the change of air

pressure is ∆Pt hPa, in MaxHS (30 Km) it is ∆Phs hPa, in MaxV S (500
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m) it is ∆Pvs hPa. Note that ∆Pvs is not the change of air pressure due

to elevation but the error caused by conversion in barometric calculation

(i.e. equation 5.1). Variance (σ2
t , σ

2
hs, σ

2
vs) should be inversely proportional

to ∆Pt,∆Phs,∆Pvs. If we fix one of the three, we can determine the other

two according to the proportion. In our experiment, we set the weight for

time gap: P (t ≥ 1hour) = 5%, which means 1.96σt = t = 1. And σhs is

calculated by: σhs = σt ∗∆Pt/∆Phs, σvs can be calculated in similar way.

In our system, heterogeneous reference points(static and dynamic) coex-

ist. Different types of reference points have different accuracy due to their

intrinsic characteristics. We need to assign different weight according to the

type of reference points. Base stations usually perform good and are stable.

We can give a high constant credit (credit.bs).

DEM reference has error due to the DEM map generation process, thus

we give a constant credit credit.dem less than credit.bs. Moreover, DEM

reference’s credit also depends on the geographic feature where the target

is located when retrieving it. If you are on the roof of building, then DEM

reference has large error since DEM elevation does not consider any artificial

constructions. Since GPS altitude is available and relatively reliable when

DEM reference is created, we estimate the variable credit of DEM reference

according to the difference between DEM elevation and GPS altitude, which

is defined as:

cde = e(− |Zdem−Zgps|
λ

) (5.6)

where λ is a parameter based on empirical evaluation. Note that GPS altitude

is based on reference ellipsoid while DEM elevation is based on geoid, but it

is easy to convert ellipsoid coordinate to geoid coordinate.

Smartphone reference is not very reliable due to the cheap barometer’s

performance, thus we give a constant credit credit.sm less than credit.dem.

Moreover, Smartphone reference’s credit also depends on the situation when

86



5.3. COMPONENTS OF iBARO-ALTIMETER

its elevation is calculated. If the smartphone obtained the elevation from a

lot of high reliable reference points, then the credit will be high. It means the

credit is proportion to the sum of weight (w) when its elevation is calculated.

Algorithm 4 shows the detail of how to integrate all reference points. It

returns a tuple of (Pb, Tb, Zb) which is called reference information. In line 6,

temperature of the obtained reference point is obtained by inverse distance

weighting from base stations only. In fact we should consider the elevation

adjusted temperature that is adjusted by temperature lapse rate with subject

to elevation. Note that the weight w is normalized by its sum, thus its value

is relative not absolute.

5.3.4 Short-term forecast of air pressure

Since reference points are not updated frequently and requesting the refer-

ence points server is expensive (in terms of both communication and com-

putation), the smartphone only requests the server at specific time intervals.

In addition, it is unnecessary to get reference information too often because

weather conditions don’t change rapidly. Moreover, it is reasonable to predict

the air pressure in a short time period (less than 30 minutes). (For longer

time prediction, we found the error is extremely large (3 hPa) after we verifi-

cation with actual air pressure measurements and forecast data provided by

Meso-scale weather forecast model.) Consequently, we compensate the air

pressure which is caused by weather change within the interval of reference

request.

As shown in figure 5.8, suppose the air pressure on smartphone is Psm.

We convert it to Plocal on a fixed location (by equation 5.1 ) to remove the

influence of elevation change. Hence, the air pressure Plocal represents changes

with respect to time due to weather change only. Suppose the latest reference

point request is at time Ti, we will predict the air pressure change (∆Pwk)

between Ti and next request time Ti+1. The predicated air pressure changes

will be used to compensate the air pressure reading on the smartphone, which
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Algorithm 4 Integrating reference points

1: function IntegrateRefs(cur.time, cur.lat, cur.lon, dem.time, dem.lat,

dem.lon, dem.alt, dem.Ps)

. search base stations and smartphone references within given spatio-

temporal range

2: ref bs = SearchBS(cur.lat, cur.lon.cur.time);

3: ref sm = SearchSM(cur.lat, cur.lon.cur.time);

. request elevation from DEM map

4: ref dem = RequestDEM(dem.lat, dem.lon);

5: Zb = Average(ref bs.Zs);

. get temperature by inverse distance weighting the temperature of

base stations

6: Tb = IDW (ref bs.Ts);

7: Pb = 0, wsum = 0;

8: for all ref pt in (ref bs, ref sm, ref dem) do

. CalcPressure refers to equation 5.1

9: Px = CalcPressure(Tb, ref pt.Ps, ref pt.Zs, Zb);

10: hs = Distance(ref pt.lat, ref pt.lon, cur.lat , cur.lon);

11: vs = ref pt.Zs − Zb;
12: t = ref pt.time− cur.time;
13: w = TV N(hs, t, vs); . TVN refers to equation 5.5

14: if ref pt ∈ ref bs then

15: w = w ∗ credit bs;
16: else if ref pt ∈ ref sm then

. ref sm.score is the normalized wsum based on ref sm’s previous

measurement.

17: w = w ∗ credit sm ∗ ref sm.score;
18: else if ref pt ∈ ref dem then

19: w = w ∗CDE(dem.alt, ref pt.Zs) ∗ credit dem; . CDE refers

to equation 5.6

20: end if

21: Pb = Pb + Px ∗ w;

22: wsum = wsum + w;

23: end for

24: Pb = Pb/wsum;

25: return (Pb, Tb, Zb);

26: end function
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Figure 5.8: Illustration of air pressure forecast

could reduce the error due to the old reference information until next request.

Since we only predict the air pressure over a short time around a cer-

tain location, it is reasonable to deal with air pressure as time series data

and ignore spatial variations. Although atmospheric pressure has daily and

seasonal tides due to the Moon’s gravitational pull and the Sun’s heating,

we don’t consider these seasonal patterns because their effect is negligible

over short time periods. There are many forecasting models for time series

data, including ARIMA, Holt-Winters method, exponential trend method,

damped trend method and so on [HA13]. We applied additive dampened

trend method because it is more flexible (for details see [HA13]).

Incidentally, the error and variance of predicted air pressure can be es-

timated using the method proposed by R.J. HYNDMAN [HKOS05], which

will be utilized in error estimation later.

5.3.5 Estimating elevation

Although it is workable to directly calculate the elevation (Zh) from reference

point’s information (Tb, Pb, Zb) and smartphone’s barometer (Ph), the eleva-

tions of trajectory (called elevation profile) are not stable because smart-
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phone’s barometer is too sensitive to the environment. As such, the ob-

tained elevation looks jerky, which does not follow the natural movement of

users (human). To tackle with this problem, we apply an adaptive extended

Kalman filter. Considering elevation measurement is a non-linear system,

we don’t know the true elevation, but can estimate it from the observation

(air pressure). The states (x) we are concerned with are elevation Zh and

elevation velocity Żh, the measurement (z) is only air pressure (Ph). For

process model, we assume it follows Newton’s equation of motion:

xk+1 =

[
Zhk+1

˙Zhk+1

]
= f(xk) + wk =[

Zhk + T ˙Zhk + w1k

˙Zhk + w2k

] (5.7)

where T is the time interval of every step and wk represents the process

noise. The following is the measurement model:

zk =
[
Phk

]
= h(xk) + vk =[

Pb ·
[ Tb
Tb + L · (Zhk − Zb)

][ g·M
R∗·L

]
+ v1k

]
(5.8)

where vk represents the measurement noise.

As shown in equation 5.2, the measurement (air pressure) relationship to

the process (elevation) is non-linear, thus we have to apply Extended Kalman

Filter (EKF) in our system. EKF will recursively perform two steps: model

forecast step and data assimilation step, to estimate the elevation Zhk at time

k (for details see [WB95]). The Jacobian of f(·) and h(·) are required in the

model forecast step and data assimilation step respectively. In our model,

Jf =

[
1 T

0 1

]
,Jh =

[
∂Ph
∂Zh

0
]

where ∂Ph
∂Zh

= Pb ∗ −gRTb
(1 + L

Tb
(Zh − Zb))−

g
LR
−1

(5.9)
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5.3. COMPONENTS OF iBARO-ALTIMETER

Kalman filter can estimate the elevation which reaches the minimum error

(E(eke
T
k ) = (xfk − xak)(x

f
k − xak)T ).

In addition, we simplify the movement of human by Newton’s equation of

motion, although this model cannot fully match the movement (in elevation).

Thus we apply an adaptive Kalman filter proposed as introduced in [MS99]

to adjust the process noise.

5.3.6 Error estimation

Although we strived to reduce errors from various sources in our estimation

of elevation, the result still contains some errors. Therefore, it is impor-

tant to notify the users on-line of the error interval associated with every

measurement. All possible error sources are classified as follows:

• Error from inaccurate reference points (eref ):

Reference points are assigned weights based on their spatio-temporal dis-

tance and intrinsic characteristic. Thus this error can be estimated from

the sum of weights from all integrated reference points. We approxi-

mate the error relation from history data by regression method as: eref =

(log( Ns
ref.score

) + 1) ∗ Eu, where Eu is the average error (meters) when the

sum of weights is greater than Ns (predefined score) from history data,

and ref.score is the sum of weights from all integrated reference points in

current measurement.

• Error due to weather change (eweather):

Reference point information is requested periodically, and reference in-

formation will gradually become less accurate since weather (atmospheric

pressure) changes with time and location change. If weather changes dras-

tically, then the error of reference information will increase accordingly.

Thus, the variance of weather change indicates magnitude of this error. On

the other hand, our air pressure forecast model (section 5.3.4) generates

the variance of predicted air pressure (σw). Therefore the error (eweather) is
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5.4. EVALUATION AND DISCUSSION

roughly determined by eweather = 1.96σw ∗ Ep, where Ep (about 9 meters)

is the elevation change caused by 1 hPa pressure change .

• Error due to random error of barometer (erandom):

erandom depends on the quality of barometer, which is set as a constant

according to the product specification (usually 1 meter). Since we have

reduced the error by taking average, this error should be less than what

the specification claims.

• Error due to systematic error of barometer (esys):

Just like random error, the systematic error depends on the quality of

barometer. As we did calibration test before using it, the variance of

calibrated bias can indicate the error esys. In addition, there is burst error

in barometer, however we consider it to be zero because it is eliminated

by filter.

Finally, we assume all the error sources are independent, thus the total error

is estimated by:

etotal ≈ eref + eweather + erandom + esys (5.10)

5.4 Evaluation and Discussion

We conducted a series of experiments to evaluate our method. Experiments

consisted of the following three scenarios: outdoor, mountain and indoor.

Since we cannot acquire authentic ground truth data, we compare our ob-

tained elevation with DEM. Note that we only do this when the GPS accuracy

is better than 6 meters. In our experimental area, Geospatial Information

Authority (GSI) of Japan provides a highly accurate DEM (5m meshes).

Nevertheless, this ground truth data still slightly different from actual eleva-

tion values. Also, we only evaluate the relative height for indoor case.

For base station reference points, we take advantage of meteorological

stations of Japan Meteorological Agency which broadcasts weather data ev-
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5.4. EVALUATION AND DISCUSSION

Figure 5.9: Elevation MAE on different smartphones by DR and KF

ery hour and provides history data off-line. Note that, DEM elevation refers

to ground level while a smart-phone usually is held by a person. Therefore,

in our system we add a constant (supposed 1.25 meter) to DEM elevation,

to compensate for this.

We use different brands of smartphones (Samsung S3, S4 and LG Nexus 4)

for experiments. In most experiments, air pressure from barometer is sampled

in 20 Hz, and elevation is estimated every second. The error (difference

between DEM elevation and estimated elevation by our method) is measured

by MAE (mean absolute error), RMSE (root mean squared error) and MRE

(mean relative error, which is divided by the elevation).

5.4.1 Case 1: Outdoor walking

In this case, 5 experiment participants with 10 smartphones walked in Se-

tagaya district, Tokyo. Eeach participant walked about 2 hours on different

routes (covered about 60 square km). The average elevation in this area is

about 40 meters.

Figure 5.9 shows the MAE on different smartphones (different walking
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Figure 5.10: the CDF of elevation AE in Outdoor walking

routes). KF is the elevation obtained by applying Kalman filter while DR is

the elevation obtained without Kalman filter (other processes are same). The

label ’All’ in the figure means the average of all smartphones, and the label

’Except #4’ is the average of all smartphones except for smartphone #4. The

MAE of most smartphone is very small (about 3 meters) but smartphone ]4

is very large (about 9 meters). In fact, we found in the calibration test

the variance of the barometer of smartphone #4 is very large, which is the

reason why its result is abnormal. To avoid the error propagation of such

malfunctioning barometer, the reference points server doesn’t accept it as

reference point. In addition, the result shows that the elevation obtained

by Kalman filter is generally better than without Kalman filter.

RMSE and MRE are not shown here, but they are less than 3.6 meters and

5% respectively.

Figure 5.10 shows the cumulative density of absolute error (AE) in all

smart phones. This reveals that AE is less than 3.213 meters in 75% of

the cases and less than 4.524 meters in 90%. Besides, we want to explore
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Figure 5.11: Density distribution of actual error and estimated error

accuracy of our method if we don’t use any smartphone reference point. Eval-

uation results show that AE without smartphone reference is less than 3.616

meters in 75% and less than 4.993 meters in 90%, meaning integration of

smartphone reference improved accuracy by about 13%. However,

its worth noting that the contribution to accuracy by smartphone reference

heavily depends on the setting of parameter credit.sm.

In this experiment, we also evaluated the quality of error estimation. We

estimated the error on-line prior to the experiments by equation 5.10, and

then calculated the actual error off-line. We compare what’s the difference

between estimated error and actual error. Figure 5.11 shows the density

distribution of the actual and estimated errors. We find the estimated error

shows similar trend as the actual error though there are some differences.

In fact the mean difference between the two errors is about 0.651 meter and

correlation is about 0.5.
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Table 5.2: Elevation measurement errors in different mountains

Mountain

Peak
Ele-
vation
(m)

MAE
of DR
(m)

MAE
of KF
(m)

RMSE
of KF
(m)

MRE
of KF
(%)

Mt#1 1859 4.63 4.36 5.44 0.3
Mt#1∗ 1859 4.74 4.46 5.54 0.3
Mt#2 599 3.72 3.74 5.14 1.1
Mt#2∗ 599 4.69 4.75 6.29 1.3
Mt#3 854 6.07 5.98 10.83 0.9
∗: Does not integrate DEM reference

5.4.2 Case 2: Mountain climbing

In this scenario, experiment participants climbed 3 mountains (says Mt#1,

Mt#2, Mt#3 for convenience) on different days, the peak elevations are

about 1900 m, 600 m and 850 m respectively. For Mt#1 and Mt#2, we did

not have any smartphone reference. Results in Table 5.2 show that MAE

on each of the mountains is very small (less than 6 meters), although this is

worse than case 1 which was conducted in a low elevation area. The MRE is

less than 1%, which is better than case 1. We still found that elevation by

KF is more accurate than by DR. In addition, we compared the difference

if DEM reference is integrated or not. In the case of Mt#1 and Mt#2 (ta-

ble 5.2), we found integration of DEM reference has advantage to

a certain degree. Similar to smartphone reference, the degree of accuracy

improvement depends on setting of the parameter credit.dem and cde func-

tion. Note that, although the error of Mt#3 (in which smartphone reference

is used) is worse than other two mountains, it doesn’t indicate that integrat-

ing smartphone reference works negatively, because the accuracy depends on

the interaction of multiple factors and these 3 experiments are conducted in

different environments.

Figure 5.12 shows DEM elevation, estimated elevation by our system and

air pressure during mountain climbing (Mt#1). Since DEM elevation (red

line) and the estimated elevation (black line) completely overlapp, figure
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Figure 5.12: Elevation of DEM and our method in mountain climbing
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Figure 5.13: A part of elevation in mountain climbing
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Figure 5.14: Error varies with interval of reference point request

5.13 which zooms into a section of the full trajectory (dotted box in figure

5.12) provides minute detail for easy understanding. Even though we don’t

know the real elevation profile, we still can claim our obtained elevation

profile is more reliable than GPS and DEM because it clearly looks

more natural in mountain climbing.

We also studied the effect of reference point request interval. As shown

in figure 5.14, MAE (in Mt#1) increases as request interval be-

comes wide. Incidentally, in our experiments request interval is set as 5

minutes.

5.4.3 Case 3: Inside buildings

In this case, we conducted experiments in 3 different buildings (says Bld#1,

Bld#2, Bld#3 for convenience), which have 8 floors, 15 floors, 45 floors re-

spectively. Participants took stairs to go up and down in buildings Bld#1,

Bld#2 while in building Bld#3 they only used elevator. Inside buildings,

there is no good GPS signals, consequently no DEM reference is involved.

We only evaluate the relative height of every floor by comparing with build-

ings’ floor map. Figure 5.15 shows the height (relative to the basement floor)

measured by our method in building Bld#1. From which, we find that

98



5.4. EVALUATION AND DISCUSSION

0 200 400 600 800

0
10

20
30

40

time (epoch number)

H
ei

gh
t (

m
)

B

1FL

2FL

3FL

4FL

5FL

6FL

7FL

RF

Figure 5.15: Indoor height measurement

the estimated height is equal to the floor map when going down-

stairs (right part of the figure), while it doesn’t match the floor map

perfectly when going upstairs(left part). Although we did not identify

the cause of this difference, it is considered that going upstairs involves more

irregular movement than going downstairs.

Figure 5.16 shows the MAE on different smartphones in different build-

ings (Bld#1, Bld#2). Here MAE is the error between our obtained height

(relative elevation) and the height from floor map on every floor. We found

the error is slightly different among smart-phones (different barometer). The

average error is about 0.86 meter. For building Bld#1, we did exper-

iments on different days (Bld#2 is on another day). We found the average

accuracy on day #1 is marginally worse than on day #2. The probable rea-

son is that the weather on day #1 (windy) is worse than on day #2 (sunny).

Further, we found in this case, method KF doesn’t perform better than DR,

indicating that it is necessary to tune the process model of Kalman filter for
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Figure 5.16: MAE of floor height on different smartphones in different build-
ings

complicated movements.

For building Bld#3 (45 floors), participants took elevator from 1st floor

to the observatory (45th floor) and return for several times. Figure 5.17

shows an example of elevation measurement in this building. According to

its public description, the height from 1st floor to 45th floor is 202 meters

(taking 55 seconds by high speed elevator). We found that the relative height

(from our estimated elevation) is roughly equal to the total height. Figure

5.18 shows the results on different smartphones (participants) in different

rounds. The average error (labels ’All’ in the figure) is about 2.5 meters, and

the relative error is about 1.3%.

5.5 Related Work

Fusing barometer and GPS to improve the navigation system of aircrafts and

UAV (Unmanned Aerial Vehicle) has been studied in various earlier works
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Figure 5.18: MAE of building height on different smartphones
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[KS03, WLW12, GM95, ZS09]. Usually airports broadcast reference infor-

mation, as such barometer based elevation measurement is accurate nearby

airport. However, these technologies cannot be directly applied on smart-

phones in urban areas because reference point may be not within acceptable

range and barometer of smartphones performs poor.

Numerous recent research works [PCL+11, HHD+12] have focused on in-

door localization where GPS signals are not available, and 3D navigation.

Li, Fan et al. [LZD+12] proposed a reliable indoor localization method using

phone inertial sensors,while they only focused on the movement on the same

floor, while it is easy to localize floors now by our method. Even before

the advent of smartphone, some research works [AKWT12, CCE+12] had

attempted to integrate barometer with mobile platform (e.g. laptop, sensor

board) for floor localization. However, they conducted very simple experi-

ments and only worked on relative height, which is less challenging because

the error of relative height mainly depends on the quality of barometers.

Recent research works [BPF+12, LHG13, KWS12] have attempted to utilize

the embedded barometer sensors in smartphones for measuring height. Li et

al.[LHG13] used airport control towers as reference points, and reported the

accuracy is reliable only nearby airport, while our method provided reliable

result in broader area. Keller et al.[KWS12] did good experiments which

revealed that the barometers of smartphones are unstable and less accurate

compared to high-performing barometers. It is also reported in [KWS12]

that it is necessary to calibrate barometer sensor with respect to tempera-

ture, which we have not considered in our method yet. Jan et al.[JGEWE08]

studied the empirical confidence bound for barometric altimeter errors and

showed that incorporating this bound improves the performance of GPS-

based approach and landing systems.

There are works[ZPZO13, ASD+09] on positioning based on GEO satel-

lites. Due to poor geometry of GEOs, the availability and accuracy of po-

sitioning degrade rapidly, applying barometer can solve this problem. Ai et
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al.[ASD+09] also proposed to create virtual reference points by interpolation

from existing meteorological stations.

In addition, Srinivasan et al.[SDM10] proposed a method to interpolate

atmospheric data by spatio-temporal kriging, which is similar to our spatio-

temporal weighting method. However, the difference is that our method

considers how air pressure changes affected the error in elevation while that

method models air pressure by linear kriging. There are other works [PBGS00,

LR04, JHP05] on spatio-temporal interpolation, however they are either too

general or specific to some fields (e.g. soil water storage). Therefore, we

cannot borrow their models directly.

5.6 Chapter Conclusion

We presented iBaro-altimeter, a system for accurate elevation measurement

using barometers on smartphones. To the best of our knowledge, this is the

first time to measure elevation (absolute height) with high accuracy using

smart-phone. A series of experiments conducted in both indoor and outdoor

environments with varying geographic characteristics using different models

of smartphones, reveal that the errors are less than 3 meters in outdoor

walking, 6 meters in mountain climbing, 0.9 meter in indoor floor localization.

These errors are acceptable for most practical applications. For instance, in

case of indoor floor localization, even with our recorded error of 0.9 m it is

still possible to reliably detect floors.

However, to improve the accuracy of our method, we need to study the

effect of key factors related to reference points such as topology, distance

between reference points and target, and the number of smartphone reference

points. In addition, we can optimize the parameters (i.e. dependent variables

of weight w, such as Ns, credit.sm and so on) to improve accuracy even

further.
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Chapter 6

Sensor Data Analysis

To explore collective intelligence is the main goal in crowd sensing. By aggre-

gating sensor data from a group of participants, we can learn about human

activities and urban environment. Next, three crowd sensing applications

are independently explained.

6.1 Estimating Nighttime Activity

6.1.1 Problem Statement

Nocturnal lighting is a fundamental method for enabling human activity

[EBD+99]. Outdoor lighting is used extensively worldwide in commercial,

residential, industrial, public facilities, and roadways. There are numerous

studies to discover knowledge from nighttime imagery, e.g. to estimate pop-

ulation density, global economic difference or electric power consumption

[SREB01, LD12, LTZG08]. The main data source used in these works is

from Defense Meteorological Satellite Program’s Operational Linescan Sys-

tem (DMSP OLS), namely satellite image, and the main technique is remote

sensing and image processing. Although they can analyze world wide data,

the quality relies on the resolution of imagery, and satellite images are not

easily acquired and it is impossible to process in real time mode.
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6.1. ESTIMATING NIGHTTIME ACTIVITY

Figure 6.1: An example of collected data

Besides, ambient noise around a commercial area is mainly emitted from

people conversation, passenger cars and commercial activities (e.g. hawking).

Although it contains other sound sources, it still highly correlates with human

activities, especially around densely populated area, e.g. in train station,

shopping area, and public place of entertainment.

In sum, ambient light and noise at night are the energy emitted from the

area through human activities. Consequently, we claim the ambient light

and noise can indicate how active an area’s night-life is.

6.1.2 Proposed Solution

By making use of the microphone and the light sensor built-in smartphone,

we developed a tool based on Android OS. Participants take smartphone

installing this tool to collect ambient noise and ambient light along their

routes during daily-life. Through crowd sensing, we can collect fine-grained

data at a large scale. Figure 6.1 shows an example of collected data, in which
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Figure 6.2: An example of spatial correlation between high-light points and
high-noise points

the upper-left is the illumination intensity (lux), the upper-right is the noise

level (decibel) and the bottom part is the sensing trajectory on the map.

Due to the difference of sensors among different models of smartphone,

the raw data has to be calibrated to remove the error. In addition, the value

of light sensor is subject to the orientation of the smartphone with respect

to the light source. Since we also record the orientation of smartphone in

real-time, it is possible to adjust the value according the relative orientation

while we do not adjust in this work just because the inaccuracy caused by

orientation is allowable when we roughly estimate how busy the area is.

Another major concern is whether or not ambient noise and ambient light

depends on each other. Since the data is inherent to spatial position, it is

not adequate to only calculate the correlation value. Therefore, we employ

Ripley’s K function [Rip05] to find the distribution relationship. K function

is based on the areal density of points. However, we collect the data along
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6.1. ESTIMATING NIGHTTIME ACTIVITY

trajectory, which means we can only measure the linear density. Thus, we

modify K function as follows:

Lij(h) =
Kij(h)

2
− h

λjKij(h) = E(|{Pj : dist(Pi, Pj) < h}|)
(6.1)

where Pi ∈ Noise Points, Pj ∈ Light Points, λ is linear density, h is the

distance (m). Note that, in traditional way K function is defined as an area

function (i.e. πh2), while here we define it as a length function (i.e. 2h).

By using the data collected in our project, we calculated the value of

Lij(h) is close to zero, which indicates that ambient noise and ambient light

are independently distributed random variables. In short, the noisy place

does not necessarily mean bright, vice versa. The figure 6.2 shows high-

noise place (top 10 percent of the entire points) and high-light place along

a trajectory, which can substantiate that high-noise points (see + in the

figure) don’t always collocate with hight-light points (see 4 in the figure).

Consequently, we can employ both of them to estimate how busy a city

is. Incidentally, ambient noise approximately follows normal distribution

while ambient light approximately follows exponential distribution if without

consideration of spatial feature.

6.1.3 Experimental Result and Discussion

After collecting data via our trajectory sensing project (see chapter 2), we

made the following data analysis. Here, we chose 3 sampling files for dis-

cussion. Figure 6.3 shows the light-noise joint distribution of these 3 areas,

where (a) is around Shinjuku Station, Tokyo, (b) is around Machida Sta-

tion, and (c) is from Komaba campus of UT to Shimokitazawa Station. Just

checking the shape of the distributions, we can find area (a) and area (b) are

more active than area (c). To precisely measure the similarity between two

areas, we tried two methods. The first method is to classify the light-noise
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(a) (b) (c)

Figure 6.3: Light noise joint distributions around (a) Machida station, (b)
Shimokitazawa station, (c) Shinjyuku station.

of each area into k clusters by K-means. Then calculate the cosine similarity

of clusters between each two areas by the definition introduced in previous

work (see section 4.4.3 of chapter 4). According to the result, we found

that area (a) is more similar to area (c) than to area(b), which is consistent

with our common sense about these 3 areas. The second method is to cal-

culate Jensen-Shannon Divergence of light-noise distributions between each

two areas. The result shows the same conclusion as did in the first method.

However, to validate the accuracy of the result, we need to compare with

people flow data or questionnaire in future.
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6.2 Noise Maps

6.2.1 Introduction

Environmental noise (ambient noise) is a crucial factor to our health and

working efficiency. Noise pollution draws attention from many researchers

[Kan10, TLC09, MSNS09]. They try to find noise pollution at different

area in different time period. In addition, other researchers make efforts

on exploring ambient noise to sense events. For example, Rijurekha et al.

[SSR11] did work on traffic condition monitoring by using ambient noise

measured by self-designed sound meter. Rossi et al. [RFA+13] presented a

sensing system to recognize user context by analyzing ambient sound sampled

from smartphone’s microphone.

In our work, we also leverage the ubiquitous smartphone to build a noise

map for a community. Similar to some existing work [Kan10, MSNS09], we

applied crowd sensing approach, which is less costly and can collect data at

a large scale with fine granularity. We conducted a large scale noise sensing

experiments in Setagaya-Ku, the detail is stated in chapter 2. In addition, in

this work we have an additional purpose which is to specially acquire data

around about 2500 measurement places. These measurement places consist

of 718 factories and 1714 residential houses in that area. The ambient noise

data (with other sensor data) around these specific places is also used for

another application which is out of the scope of my thesis.

6.2.2 Building Noise Map

As stated before, there are about 2500 measurement points through which

participants will walk. In participatory sensing or crowd sensing, it is im-

portant to motivate participants to join sensing activities. Thus, with the

consideration of fairness we need to equally assign all measurement points to

each participant. In addition, total walking distance should be minimized so
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that we can acquire all data with minimum workload. Therefore, we applied

K − means to divide all measurement points to clusters, then assign each

cluster to each participant per day. Figure 6.4 shows the clusters for assign-

ments, in which 60 clusters are created for 40 participants (some participants

attended multiple days). Although the number of points in each cluster is

not consistent, the walking distance of each cluster is nearly equal so that it

guarantees the fairness for participants.

A microphone converts pressure fluctuations into an electrical signal (called

sound pressure Pv) that can be used to compute the loudness of the noise

source. Sound pressure Pv is a logarithmic measure of the effective sound

pressure of a sound relative to a reference value. It is measured in decibels

(dB) above a standard reference level. The standard reference sound pressure

(Pref ) in air is 20 Pa. Accordingly, the sound level Lp is computed as:

Lp = 10 log(
P 2
v

P 2
ref

) = 10 log(P 2
v ) + 93.9794 (dB) (6.2)

Because the human ear doesn’t respond to all of these frequencies equally

well, weightings are applied to the sound levels measurements (in the fre-

quency domain) to take into account this selective behavior of the human

hearing system. We also applied A-weighting (regulated by an international

standard IEC 61672) to adjust sound levels by frequency in effort to account

for the relative loudness perceived by the human ear.

In addition, smartphone’s microphone has systematic error when it is

used to measure noise level. Therefore, before using it, we need to calibrate

it. Our calibration is done at an anechoic chamber where is echo-free (see

figure 6.5(a)). The calibration test follows the procedure: (1) set a predefined

relative sound intensity on the speaker, (2) play a short time Brownian noise

(also known as red noise) on the speaker, (3) record the sound level (dB) on

the professional sound meter (see figure 6.5(b)), (4) record the sound level on

all calibrating smartphone (see figure 6.5(c)), (5) repeat (1)-(4) at different
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(a) anechoic chamber (b) sound meter (c) smarthphones

Figure 6.5: Calibration test for smartphone’s microphone at anechoic cham-
ber.

relative sound intensity. Note that, the reason why we use Brownian noise

to calibrate is that Brownian noise is closer to actual ambient sound than

white noise and others.

6.2.3 Experimental Result and Discussion

Following the calibration procedure aforementioned, we have done the cal-

ibration test. As shown in figure 6.6, the result shows that all 4 different

smartphone models have their particular systematic bias comparing to the

standard sound meter (labeled as ’Input’ in the figure). The average of sys-

tematic bias is about 3.1 dB, and it increases as sound level goes up. This

result is used to compensate the raw value getting from smartphone when

building noise map.

As the experiment for this work is elaborated in chapter 2, here we will

skip the detail of experiments but report the result. Participants record

ambient noise with position (from GPS) along their traces, thus the original

data is linked to trajectories (see figure 6.7(a)). However our purpose is to

map ambient noise on specific measure points, as a result we create a noise

map by visualizing the noise level at every measure point (see figure 6.7(b)).

The noise level at every measure point is computed by taking average value

of N nearest sample points from original trajectory data. When we zoom in
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Figure 6.6: Calibration results for different models of smartphone

the full map (figure 6.7(b)), we can find the detail of noise level. Figure 6.7(c)

shows that noise level along expressways (two white dot lines in the figure

are national expressway Road − 246 and Tokyo circular route Road − 318

respectively) is very high.
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(a) trajecoty with noise level (b) full noise map

(c) zoom in express ways

Figure 6.7: Noise map for Setagaya-Ku.
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6.3 Weather Sensing

6.3.1 Problem Statement

Nowadays smartphones are explored to sense the physical world via mobile

crowd sensing [GYL11] or participatory sensing [LMLe10, CELea06]. On

the other hand, wireless sensor networks (WSN) for environment monitoring

has been well studied for a long time [ASSC02]. There are an array of

disadvantages and advantage in these two sensing means.

Mobile sensing, especially by crowd sensing approach, can recruit numer-

ous participants to sense in a large area with fine granularity. It is oppor-

tunistic sensing, meaning less costly. However, sensors embedded in smart-

phones don’t perform as good as these dedicated sensors used in wireless

sensor network or special sensor networks. For example, air pressure sensors

of smartphones have large systematic error and are unstable by comparisons

to ones of meteorological stations (for weather forecast services). In contrast,

sensors in those dedicated sensor networks possess good performance while

they are expensive, static and sparse.

Therefore, it is a promising way to integrate both these mobile sensors

and fixed sensors for sensing. However, it is challenging to cope with the

dynamic and heterogeneous features of this combined network. In this work,

we try to sense and predict the sensor values in such a hybrid sensing systems.

In most countries, meteorological stations are set up to observe weather

conditions (e.g. temperature, humidity, air pressure, rainfall, solar radiation).

However these stations are sparsely located, thus it is difficult to provide

services in micro level (called micro-climate services). In Japan, for example,

there are 846 stations run by Japan Meteorological Agency, whose spatial

intervals are about 20 kilometres. In addition, these stations periodically

broadcast weather information at a specific time interval (every hour). To

acquire finer granular weather information, we introduce smartphones which

are equipped with weather sensors to measure air pressure, temperature and
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Figure 6.8: An illustration of heterogeneous network where mobile sensors
and fixed sensors coexist

humidity. Through an approach of crowd sensing, we can collect the sensor

data with fine granularity in terms of both time and space.

As shown in figure 6.8, static sensors from meteorological stations (sensor.bs)

broadcast weather information every fixed time interval (usually 1 hour),

while mobile sensors from smartphones (sensor.sm) dynamically obtain data

(dynamic location and time). In addition, we also have to consider the accu-

racy of these two types of sensors. Note that, for the sake of saving energy,

smartphones send sensor data to back-end server at a specific time interval

(usually 5 minutes). Now, our goal is to predict the value at any location

(e.g. TargetX in figure 6.8) at any time.

6.3.2 Proposed Method: Integrating Mobile Sensors

with Static Sensors

Our basic idea is to predict the value by spatio-temporal interpolation from

all mobile sensors and fixed sensors. There are related work in the litera-

ture while they only deal with problems in a homogeneous sensor network
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[MLR12, VAA04]. When a sensor node is closer to the target location, it is

reasonable to weight it more for interpolation. In a similar way, the newer

sensor data will be weighted more too. Thus, we can take into account these

three factors: horizontal distance, vertical distance and time gap, to assign

a weight on each sensor. Each factor independently leads to error in a cer-

tain form (let’s say f(hs), g(vs), h(t) respectively). We assume their form

follows a exponential function (Gaussian distribution) which can be verified

by approximating the error distribution with regression method. Therefore,

to integrate all sensor nodes, each sensor node is given a weight w based on

spatio-temporal distance as follows:

w = f(hs) ∗ g(vs) ∗ h(t)

assume f(hs), g(vs) and h(t) follow N(0, σ2
hs),

N(0, σ2
vs), N(0, σ2

t ) respectively

w = (2π)−
3
2 (σtσhsσvs)

− 1
2 e
− 1

2
[ t

2

σ2t
+ hs2

σ2
hs

+ vs2

σ2vs
]

(6.3)

where t is the time gap from the sensor information time-stamp to current

time, hs is the horizontal distance (calculated from latitude and longitude),

vs is the vertical distance (elevation). In addition, since the accuracy of fixed

sensors is better than smartphone sensors, the weight w will be multiplied

by a constant according to the type of sensors. Note that, this interpolation

method is also introduced in my previous work (in chapter 5) for elevation

measurement from air pressure.

6.3.3 Experimental Result and Discussion

To validate our method, we conducted some preliminary experiments. Sev-

eral participants carry the smartphones which install our developed sensing

tool, and walk in Setagaya district, Tokyo. We also make use of meteorolog-

ical stations of JMA to receive weather information. As shown in figure 6.9,

we have two static stations (sensor.bs) and two smartphones (sensor.sm).

117



6.3. WEATHER SENSING

139.60 139.65 139.70 139.75

35
.4

5
35

.5
0

35
.5

5
35

.6
0

35
.6

5
35

.7
0

[#3] 2013−01−31 14:18:52

longitude

la
tit

ud
e

0.23
0.22

#1
#2

0.35

1

0.2

2 sensor.bs
sensor.sm
target

Figure 6.9: An example of dynamic network in our experiments

Another smartphone (target) is used as ground truth to evaluate the pre-

dicted value, meaning target location is mobile. In this experiment we only

sensed air pressure, though our method will work in terms of temperature

and humidity too.

Figure 6.10 shows the CDF of absolute error which is the difference be-

tween the measured air pressure from smartphone and predicted value from

our method. The absolute error is 21 pascal in 75% of cases and 44 pascal in

95% of cases (see blue line in figure). Note that the measured air pressure is

not authentic ground truth data since it is measured by smartphone. On the

other hand, there is a large error (grey line in figure) when the smartphone

used as ground truth is not calibrated. Note that it doesn’t indicate our

method is ineffective but substantiates the smartphone sensors need to be

calibrated. In addition, figure 6.11 shows an example of measured air pres-

sure and estimated air pressure, in which the mean absolute error is about

0.123 hPa. Incidentally, since our estimated air pressure (black line in the
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figure) is processed by Kalman filtering, it is smoothed. In contrast, the raw

measured air pressure is jerky probably due to the instability of smartphone

sensor.

We proposed a spatio-temporal weighting method to predict sensor values

in a heterogeneous network where mobile sensors and fixed sensors coexist.

Preliminary experiments prove that our method can reach a good result.

However, to improve the accuracy even further, we need to optimize param-

eters, study the effect of the topology of sensor nodes. In addition, it is

more meaningful to leverage this approach on predicting temperature and

humidity in future.
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Chapter 7

Conclusion and Future Work

Thanks to the development of sensor technology and the high penetration of

smartphone, it has put forth a new sensing approach - crowd sensing. Crowd

sensing with mobile devices brings about both opportunities and challenges.

In this thesis, we studied how to leverage crowd sensing to analyze human ac-

tivities and urban environment, including system architecture design, sensor

data management, special sensor application, several data analysis cases.

As for the concerned 3 problems stated in chapter 1,

• How to utilize smartphone sensors and manage sensing activities?

We developed a dedicated sensing tool on smartphone (see chapter

2), which fully leveraged the sensing power of smartphone and easily

manage many participants for a specific or general sensing activity.

• How to handle huge volume of sensor data?

We proposed a trajectory simplification method to speed up trajectory

analysis (see chapter 3), and a sensor data management scheme to

reduce data volume while keeping information content (see chapter 4).

• How to acquire highly accurate sensor data?

In our sensor application (iBaro-altimeter) we challenged to obtain ac-

curate elevation from poor sensors of the smartphone (see chapter 5).

We also tried to analyze data for finding reliable knowledge even though
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the raw sensor data is not stable and accurate (see chapter 6).

More specifically, we first designed our sensing platform for data collection

and data analysis, which enable us to sense the physical world and human

society at a large scale. A sensing tool on smartphone is developed to collect

all kinds of sensor data, such as ambient noise, light, location, acceleration

etc. Then we conducted a large scale sensing experiments by using this tool.

Trajectory obtained from GPS is the key factor to analyze human mobil-

ity and transport issues. Trajectory simplification can greatly improve the

efficiency of data analysis (e.g., trajectory search, trajectory clustering). we

proposed a novel scheme: divide/merge principle and selection strategy to

reduce data for spatial trajectory. To measure displacement correctly, we

newly introduced enclosed area metric which is proven more robust against

GPS uncertainty. In trajectory similarity computation, this metric is also su-

perior to conventional distance-based metric. Through comparing with other

methods in a series of experiments over huge dataset, our method is proven

effective and efficient. Furthermore, our method is a pure online procedure

which can be readily installed at the mobile terminal to preprocess trajectory

before sending it to back-end server.

We also solved another major issue: the sheer volume of data collected

through crowd sensing can deeply hamper the performance of various appli-

cations. It is fairly challenging and significant to extract more useful data

but reduce redundant data. We proposed a data model (REPSense) to rep-

resent data from the viewpoint of data diversity. We rethink data reduction

problem by analogy to electoral system. In our method, data is selected by a

fashion which is similar to electing congressional representatives. Although

we don’t theoretically prove our model is effective, we draw our conclusion

based on a large amount of experiments with real data set. Through com-

paring with conventional methods and state-of-the-art methods, our method

performs well in terms of data divergence especially Itakura-Saito distance.

Our method also outperforms other methods in terms of clustering perfor-
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mance. It is foreseeable that data reduction will linearly mitigate storing and

transmitting problems as mentioned in the first section, though we did not

evaluate it by experiments.

Furthermore, we developed a practical system (called iBaro-altimeter) to

measure elevation by using smartphone’s barometer. Accurate elevation is

extremely useful in many scenarios, such as 3D navigation, floor localization,

emergency rescue, etc. It is possible to use barometers on smartphones to

estimate elevation in both indoor and outdoor scenarios. However, to reach

an acceptable level of accuracy, a reference point which periodically broad-

casts its air pressure and temperature is required. We proposed a method to

increase the spatio-temporal density of reference points by exploiting neigh-

boring smartphones as ad-hoc reference points. In addition, we also em-

ployed Kalman filter to stabilize the elevation profile due to the instability

from smartphone sensors. A series of experiments conducted in both indoor

and outdoor environments with varying geographic characteristics using dif-

ferent models of smartphones, reveal that the errors are less than 3 meters

in outdoor walking, 6 meters in mountain climbing, 0.9 meter in indoor floor

localization. These errors are acceptable for most practical applications.

Last but not least, we analyzed sensor data for specific purposes: (1) esti-

mate how busy an area is by using ambient light and noise from smartphone

sensors; (2) build noise map for a residential area to find noisy area; (3)

sense and estimate micro-scale weather by integrating smarphone’s weather

sensors with meteorological stations.

There is a lot of work left for us since crowd sensing is still at its infancy.

For architecture design, we still lack scalable and energy-efficient platform.

In addition, privacy preservation and incentive mechanism are still an urgent

problem to be solved, before crowd sensing fully exerts its power. In most cur-

rent work, researchers still only utilized a small array of sensors, mainly GPS,

camera, microphone, acceleration. By integrating all other sensor data, there

are numerous potential applications. In future, we believe that new smart
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wearable devices will become ubiquitous, such as, smart glass, smart watch

and smart clothes. These mobile devices with strong sensing capability make

people more easily involve into sensing, which will boost the development of

crowd sensing. By that time, everyone can participate in sensing everything

at every-time and everywhere.
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