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Abstract 

De novo models are computationally predicted three-dimensional models of 

the given proteins using only amino acids sequence information.  The key 

components of de novo modeling are the methods responsible for conformational 

space searching and the evaluation of each conformation accurately using energy 

function. The conformational space is astronomically large due to the degrees of 

freedom associated with each residue, which creates the challenge to develop the 

efficient method for searching the conformational space.  Another challenge in de 

novo modeling is to devise an accurate energy function to evaluate the conformers. 

Despite these challenges, the de novo modeling has succeeded to generate accurate 

models for small and single domain proteins. Fragment assembly is an effective and 

efficient method for de novo modeling. This method assembles the fragments from 

known structures under the guidance of energy function. This concept was practically 

implemented in Rosetta, which achieved a number of break-through successes. 

Rosetta has two major stages, which are termed as coarse-grained sampling and all-

atom refinement, to generate the final model from the input sequence. At the initial 

stage, three-residue and nine-residue fragments obtained from known structures are 

assembled to generate full-length coarse-grained models. These models contain only 

backbone atoms and the centroid of side-chain atoms. Subsequently, side-chain atoms 

were packed to construct all-atom models followed by energy minimization in all-

atom refinement. However, there exist many challenges in the prediction of accurate 

models needed for practical use such as solving the crystallographic phase problem.  

To address these issues, I have focused on method development – biased 

conformation sampling and fragment quality improvement to enhance the quality of 

predicted models.  Furthermore, I have developed the method to use de novo 

fragments for phasing and to assemble these fragments after phasing when full-length 

model is difficult to predict accurately for phasing. 

First, I have developed a method to improve the conformational space search 

for accuracy improvement. This method first generated coarse-grained models using 

Rosetta. Second, an ensemble of lowest energy coarse-grained models was selected 

and deviation for each model from other models of the ensemble was calculated. The 

deviation for each residue was also computed and this score was called as average 

pair-wise residue distant score. The score correlated with the accuracy of predicted 
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residues in the model. When the predicted residues had larger scores, the residues 

were considered as less accurate and vice versa. Lastly, conformational search was 

biased using the score as residues with larger scores were given higher frequency for 

sampling. This procedure rebuilt selected coarse-grained models and then packed the 

side-chain atoms followed by energy minimization. Molecular replacement was run 

on these all-atom models and the entire simulation was terminated after a few correct 

solutions were obtained. This method was tested on 10 difficult targets, which were 

failed to achieve the success in previous studies using other methods - Rosetta and 

RosettaX. The rebuilding procedure improved the accuracy of coarse-grained models 

from 4.93 Å to 4.06 Å on average. Seven out of ten protein targets showed successful 

molecular replacement solution using rebuilt models.  

The second method focused on improving the fragment quality to generate 

the better quality model. In this study, the method was developed to generate new 

fragment libraries using a resampling process. Therefore, the lowest energy all-atom 

models were selected after generation of models using Rosetta. These models were 

broken into overlapping fragments of three-residue and nine-residue. Average pair-

wise residue deviation score was computed for three-residue and nine-residue 

fragments to remove distant fragments. The resultant fragments were clustered and 

then twenty-five fragments were randomly selected from the top five clusters. These 

new fragments were used for the second round of prediction. The performance of the 

method was tested on a benchmark set of 30 different proteins. The accuracy of new 

fragments and predicted models was evaluated. The result showed that the new 

fragment library contained better fragments and enriched with many high-quality 

fragments. In order to evaluate the performance, the lowest energy models and one of 

best from top five models were taken as the best prediction and computed their root 

mean square deviation of C-alpha atom (CA-RMSD), template modeling score (TM-

score), and global distance test total score (GDT-TS) to the native structures. In all 

these assessment criteria, this method performed significantly better than Rosetta for 

lowest energy models and best in top five models. On average, this method improved 

CA-RMSD from 5.99 Å to 5.03 Å when lowest energy models were selected as the 

best predicted models. Similarly, it improved both the TM-score and GDT-TS by 7%.   

Lastly, a new method was developed to tackle the phase problem using 

fragmentation and fragment reassembly approach when the full-length model was 
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inaccurate to use as the template model in molecular replacement. In this method, de 

novo model were fragmented, independently phased, and reassembled. A lowest 

energy all-atom models produced using Rosetta were chosen for fragmentation. For 

each residue position, constant-length overlapping fragments were constructed. These 

fragments were clustered and two hundred candidate fragments were randomly 

selected for each residue position. The selected fragments were independently used as 

search model in molecular replacement. The fragments were assembled together after 

molecular replacement. To reassemble, one fragment was selected as a seed fragment 

and one low-energy de novo model was taken as a reference model. The reference 

model was superposed to the seed fragment. Using the seed fragment and the 

reference model, position and orientation of other fragments were determined in the 

crystallographic unit cell and partial model was obtained. The combinations of 

permissible origins and symmetry operators of space group with unit cell translation 

were computed to identify the location of other fragments. The combination that gave 

the smallest distant between the reference model and the candidate fragment was 

taken as the correct location. In this way, all the fragments were reassembled in the 

asymmetric unit. This method was tested in ten difficult proteins with three different 

fragments – thirteen-residue, seventeen-residue and twenty-one-residue. Ten targets 

were considered as difficult because the best predicted full-length models of these 

targets, which showed average CA-RMSD 3.97 Å, were unable to provide the phase 

angles after molecular replacement experiment. The crystal structures of eight protein 

targets were solved from a total of ten using seventeen-residue fragment and their 

average CA-RMSD is 1.25 Å.  
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Chapter 1. Introduction 

1.1. Protein and its structure 

Proteins are macromolecules performing numerous biochemical functions in 

the living cell. Protein regulates DNA transcription together with ribonucleic acids 

(Kornberg, 1974), maintains the integrity of genomic information (van Gent, et al., 

2001), performs enzymatic reactions in metabolic pathways (Desnick and 

Schuchman, 2002), synthesizes and degrades other proteins (Glotzer, et al., 1991), 

metabolize xenobiotic (Geffeney, et al., 2002). These varieties of functions are 

performed by specific sequence of proteins that contain different amino acids from 

the twenty natural amino acids. These amino acids in proteins are linearly connected 

through covalent bond formed between carboxyl and amide groups of amino acids. 

The bond is known as peptide bond and the linear chain of amino acids is termed as 

primary structure. Primary structure starts from N-terminus and ends at C-terminus. 

Each amino acid contains the functional group, which is known as side-chain that 

determines the property of amino acids. Primary structure determines the three-

 

    Figure 1.1 Different level of protein structure 
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dimensional structures (3D) or tertiary structure of proteins according to protein 

folding principle (Anfinsen, 1972). Secondary structure elements alpha-helices and 

beta-strands, are formed locally that are generally form first during protein folding 

process (Pauling, et al., 1951). Subsequently, the spatial arrangement of different 

secondary structure elements determines the tertiary structure of proteins following 

biophysical principle (Anfinsen, 1972). The arrangement of number of folded 

polypeptide chains, which also referred as subunits, defines the quaternary structure. 

These subunits in quaternary structures associate through non-covalent interaction 

(Jones and Thornton, 1996) and, in some cases, disulfide bonds (Sela and Lifson, 

1959).    

The geometry of tertiary structure of proteins is defined using bond length, 

bond angle, and torsion or dihedral angles. Bond length and bond angle require two 

and three atoms to compute. Torsion angle needs four consecutive atoms and it is the 

angle between two normal vectors of the planes. The sequence of three torsion angles 

defines the backbone conformation of protein. These three torsion angles, phi (�), psi 

(�), and omega (�), are the only degree of freedom for the polypeptide backbone 

conformation. Certain combinations of � and � are only allowed in backbone 

conformation because of the strong repulsive van der Waals interaction. The 

 

      Figure 1.2 Bond length, bond angle, and dihedral angle 
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favorable backbone torsion angle distribution of � and � has been shown in 

Ramachandran plot (Ramachandran, et al., 1963). The planar peptide bond is highly 

restrained to � angles and the � angles are around 180° for trans- and 0° for cis- 

peptides (Weiss and Hilgenfeld, 1999). 

The folded proteins contain energetically stable torsion angles for local 

structures forming the regular pattern that is the secondary structures (Eisenberg, 

2003). The secondary structures are helices (Pauling, et al., 1951), sheets (Pauling and 

Corey, 1951), and turns (Rose, et al., 1985). These local structures are frequently 

appeared and optimally satisfy the torsion angle restraints and hydrogen bonding 

patterns simultaneously. Carbonyl oxygen atoms as acceptors and nitrogen atoms of 

subsequent residue as donors form hydrogen bond in backbone conformation of alpha 

helices and turns. However, the formation of hydrogen bond in beta strands is 

different. The beta stands were also formed by hydrogen bonds, which also determine 

orientation of beta sheet. It can be parallel, anti-parallel, or mixed of parallel and anti-

parallel. In addition to hydrogen bonding in backbone conformation, side-chain 

interactions also play an important role in the protein folding and for other intra-

atomic interactions. Weak non-covalent interactions, electrostatic, van der Waals, and 

non-polar, play principle role in the protein folding. 

1.2. Computational methods for protein structure prediction 

Computational protein structure prediction method mainly includes 

comparative modeling (Blundell, et al., 1987; Marti-Renom, et al., 2000; Sanchez and 

Sali, 1997) and de novo or ab initio approaches (Bradley, et al., 2005). Comparative 

modeling requires the sequence similarity of target sequence with at least one known 

structure but de novo or ab initio structure prediction approach is free from this 

constraint. 

Comparative modeling builds the three-dimensional model for target 

sequence using the known structures as the template model on the basis of sequence 

similarity between the target sequence and the sequences of known structures 

(Blundell, et al., 1987; Marti-Renom, et al., 2000). Comparative modeling needs a 

two major steps to build the final model (Baker and Sali, 2001). A first step requires 

searching of suitable template. The correct templates can be found by sequence 

alignment methods, such as PSI-BLAST(Altschul, et al., 1997) , or by threading or 
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fold recognition methods (Bowie, et al., 1991; Jones, et al., 1992). Threading methods 

incorporates structural information in addition to the knowledge from sequences to 

assess the sequence-structure relationship therefore sometimes it can reveal more 

distantly related proteins which cannot be detected using sequence comparison 

methods alone. Comparative modeling builds final models of target sequence using 

one or more protein structures based on sequence alignment in the second step. The 

widely used methods for comparative modeling are based on rigid body assembly 

(Blundell, et al., 1987), segment matching (Levitt, 1992), and satisfaction of spatial 

restraints using either by distance geometry or real-space optimization (Sali and 

Blundell, 1993). In recent year, many robust and accurate computational methods 

have been developed for comparative modeling such as Modeller (Sali and Blundell, 

1993), I-TASSER (Roy, et al., 2010), RosettaCM (Song, et al., 2013), HHPred 

(Soding, et al., 2005) and other methods recombine multiple templates. 

The 3D structures of the protein sequences are often likely to be at global 

free-energy minima (Fleishman and Baker, 2012; Lazaridis, et al., 1995) with few 

major exceptions(Sohl, et al., 1998). The de novo protein structure prediction problem 

searches the vast number of conformations to find the lowest free-energy structure for 

a given amino acid sequence. Therefore, The key components are the methods 

responsible for conformational space searching (Levintha.C, 1968) and the evaluation 

of each conformation accurately using energy function (Bradley, et al., 2005). The 

conformational space is astronomically large due to the degrees of freedom associated 

with each residue, which creates the challenge to develop the efficient method for 

searching the conformational space. Another challenge in de novo structure prediction 

is to develop an accurate energy function to calculate the protein conformation in the 

solvent. Despite these challenges, the de novo structure prediction has succeeded to 

generate the accurate models for small and single domain proteins (Bradley, et al., 

2005). Many research works have focused to develop the efficient methods for 

conformational search (Liwo, et al., 2008) and the accurate free energy function 

(Bradley, et al., 2005; Fleishman and Baker, 2012).  

Fragment assembly is an effective, practical and efficient approach for de 

novo structure prediction. The method utilizes the fragments from experimentally 

determined structures in order to reduce the conformation space to be searched. In this 

approach, the target sequence is broken into small and overlapping fragments. The 
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similar fragment sequences are searched in the Protein Data Bank (PDB) to identify 

the known substructures, which are then assembled into full-length tertiary structures 

under the guidance of energy function. This energy function is underlying on the 

thermodynamic hypothesis (Lazaridis and Karplus, 2000). The effective energy 

functions has been derived from physics-based (Brooks, et al., 1983) and knowledge 

based (Simons, et al., 1999) potentials. Hydrogen bonding (Mirsky and Pauling, 

1936), van der Waals interactions, backbone angle preferences, electrostatic 

interactions, hydrophobic interactions, and chain entropy (Dill, 1990; Dill and 

MacCallum, 2012) are the principle components of the energy function (Chothia, 

1984) .  

Fragment assembly has been practically implemented in the Rosetta protein 

structure prediction program (Rohl, et al., 2004; Simons, et al., 1997) although this 

concept was initially proposed in the study by Bowie and Eisenberg (Bowie and 

Eisenberg, 1994). They initially assembled the nine-residue fragments to construct the 

tertiary structures (Bowie and Eisenberg, 1994). Subsequently, Baker and co-workers 

has matured the program and implemented in Rosetta program suite (Rohl, et al., 

2004).  

Rosetta has started the protein structure prediction simulation using the 

amino acids sequence and the constant-length fragments queried from the PDB. The 

fragments are overlapping and size of three and nine residues. These are called as 

three-residue and nine-residue fragments. It divides entire simulation into two stages, 

coarse-grained sampling and all-atom refinement, to generate the full model from 

amino acids sequence. These two fragments of the protein chain are assembled; native 

state of the protein occurs when these fragments are oriented such that low free 

energy interactions are made throughout the protein (Rohl, et al., 2004; Simons, et al., 

1997). The coarse-grained sampling involves the rapid and efficient searching of 

conformational space with backbone atoms and centroid of side-chain atoms. The 

conformation generated at this stage is called as coarse-grained model.  Therefore, 

energy functions must include terms that reflect the averaged-out effects of the 

omitted atoms and solvent molecules (Baker and Sali, 2001). Due to the large errors 

introduced by the missing atoms in the true free energy, coarse-grained sampling 

locates a large number of local minima while searching the global minima. Each 

coarse-grained model is packed with side-chain atoms followed by energy 
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minimization in all-atom refinement. The all-atom refinement uses the realistic all-

atom physics-based force fields with Metropolis Monte Carlo (Li and Scheraga, 1987) 

to optimize the models (Bradley, et al., 2005). The all-atom forces used in all-atom 

energy function consist with short-range interactions such as van der Waals packing, 

hydrogen bonding (Kendrew, et al., 1960; Perutz, et al., 1960), and desolvation (Tsai, 

et al., 2003).  

Rosetta has been shown to be one of the best performing methods for de 

novo structure prediction (Bradley, et al., 2005; Das, et al., 2007) in Critical 

Assessment of Techniques for Protein Structure Prediction (Karplus, et al., 2003) 

competitions (Moult, et al., 2014) although many approaches have been developed for 

structure prediction (Fujitsuka, et al., 2006; Hamelryck, et al., 2006; Jones and 

McGuffin, 2003; Karplus, et al., 2003; Lee, et al., 2004). De novo models predicted 

using Rosetta have been used for practical utility such as in solving the 

crystallographic phase problem (Das and Baker, 2009; Qian, et al., 2007) and protein 

design (Kuhlman, et al., 2003). Similarly, de novo protein structure prediction 

methodology is also used for nuclear magnetic resonance structure refinement to 

improve the phasing power by moving it closer to its X-ray crystal structure 

counterpart (Mao, et al., 2011; Ramelot, et al., 2009).  

Instead of constant-length fragments, another de novo structure prediction 

program, Quark (Xu, et al., 2011; Xu and Zhang, 2013), a top performer in recent 

CASPs, has been introduced. Global models are generated by assembling the 

variable-length continuous fragments of different sizes from 1 to 20 residues with 

replica-exchange Monte Carlo simulation. These fragments are assembled to generate 

the full models, which are guided by a composite knowledge-based force field. These 

are semi-reduced models that contain the backbone atoms and center of mass of side-

chain atoms. The representative semi-reduced models from the top-five largest 

clusters (Zhang and Skolnick, 2004) are selected and sent for packing of side chain 

atoms. These atoms are packed in the models using ModRefiner and the final models 

were minimized with physics-based energies (Xu, et al., 2011). 

Protein structure provides meaningful insights about how atomic interactions 

occur in the molecules. Therefore, protein structures are highly demanding among 

chemists and biologists. Computationally predicted protein structures are adequate to 

understand many biological functions when experiment information are combined. 
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The utility of proteins structure depends on its accuracy (Baker and Sali, 2001). High-

quality protein structures with atomic resolution are necessary in understanding 

catalytic mechanism (Barford, et al., 1998; Rajagopalan, et al., 2014; Trievel, et al., 

2002), designing and improving ligands (Blundell, et al., 1987; Procko, et al., 2014), 

selection of ligands in drug designing using virtual screening(Blundell, et al., 2002; 

Blundell and Patel, 2004; Carvalho, et al., 2009), docking of macromolecules 

(Strynadka, et al., 1996), understanding protein-protein interactions (Zhang, et al., 

2012) and designing novel proteins including enzymes and vaccines (Correia, et al., 

2014; Kuhlman, et al., 2003). Protein structures are also useful in structure 

determination such as solving crystallographic phase problems using MR (DiMaio, et 

al., 2011; Qian, et al., 2007), refining NMR structures (Mao, et al., 2011; Mao, et al., 

2014; Ramelot, et al., 2009), interpreting low-resolution electron density 

map(Schroder, et al., 2010), and structure from sparse experimental restraints 

(Thompson, et al., 2012). 

1.3. X-ray crystallography for protein structure determination 

X-ray crystallography is a principle method in the study of biological 

systems. It provides atomic resolution information to understand the fundamentals of 

life. The structure of the double helix of deoxyribose nucleic acid (Watson and Crick, 

1953) and the high-resolution structure of eukaryotic 80S ribosome (Yusupova and 

Yusupov, 2014) were solved using X-ray crystallography. This method has also 

become central to the development of new therapeutics for human disease (Blundell 

and Patel, 2004; Carvalho, et al., 2009; Rowland, 2002). The technique has become 

robust since Kendrew and Perutz solved the structures of myoglobin (Kendrew, et al., 

1960) and hemoglobin(Perutz, et al., 1960). As a result, more than 100,000 protein 

structures to date have been deposited into the PDB (Berman, et al., 2002). The 

consistent advancement in the technology for protein production, crystallization, data 

collection, and data analysis increases the remarkable success in macromolecule 

structure determination. In the last decade, the success in technology development has 

been achieved by worldwide structural genomics efforts (Collins, et al., 2003; Collins, 

et al., 1998; Joachimiak, 2009; Ueno, et al., 2006). In addition, the advancement in 

hardware and software for crystallographic data collection, structure determination, 

refinement, bioinformatics (tools and databases), robotics and automation improved 

and accelerated the many processes in structure determination. Currently available 
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computational methods for the analysis of diffraction data (Adams, et al., 2009) have 

improved the crystallographic process and also introduced automation. An algorithm 

for phasing with molecular replacement (MR) (Rossmann and Blow, 1962) becomes 

robust and improves the generation of structure factor phases using maximum 

likelihood (McCoy, et al., 2007). Automated model building methods have reduced 

manual efforts to generate the initial models for many crystallographic projects and 

also work at higher and lower resolution limits (Langer, et al., 2008; Terwilliger, et al., 

2008). Atomic models after automatic or manual methods must be further optimized 

to best fit the experimental diffraction data and prior chemical information. Because 

an initial model is often incomplete, refinement is iteratively carried out to improve 

the phases that can then be used to obtain a more accurate electron density map 

(Afonine, et al., 2012; Murshudov, et al., 1997). These refinement programs optimize 

models with diffraction data even when only low-resolution (lower than 3Å) data are 

available. The refined models are validated to detect errors in the models before the 

deposition. This process has improved to a point that many errors in models are 

readily detectible and can be corrected early (Chen, et al., 2010). 

1.4. Phase problem 

The crystallographic experiment aims to obtain a three-dimensional map of 

the electron density in the macromolecular crystal. Fourier synthesis using complex 

numbers derived from the diffraction experiment computes the distribution of electron 

density in the crystal. Each complex number contains the amplitude and an associated 

phase angles. However, diffraction experiment measures the amplitude but cannot 

obtain the phase angles. Many methods have been developed to obtain phases that 

include experimental and computational methods (Adams, et al., 2013). 

Mathematically, the electron density in a crystal can be obtained by calculating the 

Fourier summation: 

� ����� � � �� � ����� ��� ���� �� � �� � �� � �� ����� ������������ �����
�����

 

where, |F(h k l)| is the structure factor amplitude of reflection (h k l) including the 

temperature factor, and � �����  is the phase angle. x, y, and z are coordinates in the 

unit cell. The amplitude |F(h k l)| can be obtained. However, the phase angles 

� �����  are not available.  
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The isomorphous replacement and anomalous scattering methods are the 

experimental ways to solve the phase problem. These methods obtain phases using 

information derived from small differences between diffraction datasets. Both 

methods located the place of the heavy atoms or anomalous scatters in the 

crystallographic asymmetric unit (Adams, et al., 2009). Perutz, for the first time, 

successfully applied the multiple isomorphous replacement method to solve the 

protein structure of hemoglobin (Perutz, et al., 1960). In this method, diffraction 

pattern of the target protein crystal is compared with that of a crystal that contains at 

least one heavy atom. Apart from attached heavy atoms, other parameters are same 

for both crystals. The intensity differences between native and other patterns are 

mainly due to attached heavy atoms. The attached heavy atoms played the roles for 

determining the position of other heavy atoms (delaFortelle and Bricogne, 1997; 

Terwilliger and Berendzen, 1999). This can be done either manually or by an 

automatic Patterson search procedure. This experiment discarded anomalous 

scattering effect. However, current experimental methods depend on anomalous 

scattering alone - in the form of multi-wavelength anomalous diffraction(delaFortelle 

and Bricogne, 1997) and single-wavelength anomalous diffraction (McCoy, et al., 

2004; Wayne A. Hendrickson, 1981) because anomalous scattering is sensitive to the 

X-ray wavelength.  

The difference in intensity between Bijvoet pairs due to the anomalous 

scatters can be exploited for the phase angle determination in the proteins. The 

reflections (h, k, l) and (-h, -k, -l) are called Bijvoet pairs and intensities of these two 

reflections are equal that rise a center of symmetry in the diffraction pattern. Here, h, 

k, and l are reflection indexes in the reciprocal space. The wavelength dependence of 

the anomalous scattering is used in the multiple-wavelength method. Therefore, 

protein should contain an element that gives a strong anomalous signal. The presence 

of selenium atoms in protein is sufficient for successful structure determination using 

multiple-wavelength anomalous diffraction (Hendrickson, et al., 1990; Leahy, et al., 

1992). The method that stably and reproducibly incorporates intrinsic anomalous 

scatters by replacing methionine residues with selenomethionine (Hendrickson, et al., 

1990) has been widely used in recent years. The multi-wavelength anomalous 

dispersion faces the disadvantages such as the collection of data at multiple 

wavelengths, the long exposure time, and danger of radiation damage to the crystal. 
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These pitfalls are less sensitive when the crystal structure can be solved by the data 

collection on a single crystal with one wavelength only. Using single wavelength 

anomalous dispersion for structure determination, the crystal must contain anomalous 

scatters that provide strong anomalous signal. The application of maximum likelihood 

methods to multi-wavelength anomalous diffraction (delaFortelle and Bricogne, 1997)  

and single-wavelength anomalous diffraction phasing (McCoy, et al., 2004) exploits 

small phasing signals robustly. Finally, density modification methods significantly 

improve the weak phase information obtained from anomalous scattering methods. 

MR is a widely used computational method to solve the phase problem. This 

method needs a homologous structure, which is already known, to solve the unknown 

structures. Almost two-thirds of protein structures deposited in the PDB are solved 

using MR (Long, et al., 2008). Although the database of known structures in the PDB 

grows, the number of new folds reduces and the proportion of structures solved by 

MR increases. In this method, the phases are calculated from a similar structure 

placed in the position of the unknown molecule in the crystallographic unit cell. 

Placement of the molecule in the target unit cell requires its proper orientation and 

precise position. This step involves rotation and translation searches in the unit cell. 

Therefore, MR requires the six degrees of freedom for searching in the unit cell. The 

spatial orientation of known and unknown structure with respect to each other is 

determined by rotation function whereas translation vector finds correct position of 

correctly oriented structure. Since known and unknown structures are in Cartesian and 

Fourier space, rotation and translation functions cannot be computed in a 

straightforward way.  

MR has used the Patterson map to identify the orientation of molecule i.e. 

rotation function. Patterson map is the vector map that is calculated from distance 

between atoms. The self-Patterson peak all lie in a volume around the origin with a 

radius equal to the dimension of the molecule. Two different Patterson maps must be 

superimposed to maximum overlap by a rotation of one of the two maps. When a 

number of identical molecules lie within one asymmetric unit, the self-Patterson 

vector distribution is exactly the same for all of these molecules, except for a rotation 

that is the same as their non-crystallographic rotational symmetry in real space. After 

correct rotation, the translation function determines the translation vector required to 

overlap one molecule onto the other in the real space. The known molecule is 
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translated through the asymmetric unit. Structure factors are calculated and compared 

with the observed structure by calculating and R-factor. R-factor is calculated:  

               … (1.2) 

In the equation, Fobs is structure factor observed from diffraction data and Fcal is 

calculated structure factors using model. The rise of MR is mainly due to 

improvement in methodology for rotation and translation functions (Kissinger, et al., 

1999; McCoy, et al., 2007; Navaza, 2001). MR was implemented with six-

dimensional search using evolutionary approach (Kissinger, et al., 1999) whereas the 

performance of the search is better in three-dimensional rotation search followed by 

translation (McCoy, et al., 2007; Navaza, 2001). Mathematically elegant fast rotation 

function was first introduced to replace the conventional procedure. Advanced 

procedure is the introduction of maximum likelihood targets for MR(McCoy, et al., 

2007) that has increased the signal in MR searches, thus allowing structures to be 

solved with more distant homologs. These target functions also exploit the 

information from partial solutions, which improves success in solving structures of 

complexes or crystals containing multiple copies. Automation is another key for 

increasing the utility of MR. Here is an example for automation implemented in 

Phaser. The ability to test multiple models for multiple choices of possible space 

group allows problems to be solved without the manual intervention. MR pipelines 

extend the power of automation even further, by testing alternative approaches for 

model preparation (Claude, et al., 2004; Keegan and Winn, 2007) or building up 

models using automated domain databases (Long, et al., 2008).  

MR becomes more difficult for targets with low-homology templates (or 

with no identifiable homologs). Therefore, MR provides a highly stringent and 

practical challenge in structure modeling. Phasing experiments have been carried out 

with the models generated in CASP experiments (Giorgetti, et al., 2005; MacCallum, 

et al., 2011) to assess whether models have achieved a high enough accuracy to be 

practically useful. However, successful MR solutions are for very few cases that are 

high symmetry molecules (Kratzner, et al., 2005; Szep, et al., 2003). Furthermore, 

homologous model refined with all-atom energy used for de novo protein structure 

prediction has achieved the solution in MR (Qian, et al., 2007). The all-atom 
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refinement has also worked successful to improve the NMR models for MR trials 

(Qian, et al., 2007). More recently, using the sampling methods and force field from 

de novo modeling has solved the difficult MR targets. The iterative process of 

conformation sampling with force field used in protein modeling have improved the 

phases in the density map obtained from the ambiguous MR solutions (DiMaio, et al., 

2011). 

Likelihood target functions in MR have increased sensitivity for MR 

searches and thus have found the correct position and orientation of smaller 

fragments, as small as single helices. ARCIMBOLDO (Rodriguez, et al., 2009), a 

computer program, has especially placed the alpha-helices fragments in the correct 

position and orientation and with the help of automated model building program, it 

has also built the complete structure started from a few helices. Furthermore, 

generalized algorithm has been recently developed to solve the structure starting from 

the fragments (Sammito, et al., 2013). This algorithm is not only limited to the alpha 

helical fragments and also works with other secondary structure elements. The 

program identifies the suitable fragments, places the fragments and subsequently 

constructs the complete model. 

1.5. Ab initio phasing with de novo models 

MR cannot be used if the suitable search model for target sequence is not 

available. However, the advancement in protein structure modeling with sequence 

information only has provided the novel view to employ the de novo model as the 

search model. Therefore, ab initio phasing with de novo model becomes recently 

emerging and challenging problem in protein crystallography. Recent progress in de 

novo protein structure prediction has generated highly accurate de novo models 

(Bradley, et al., 2005; Kuhlman, et al., 2003). These high-quality models predicted 

using only amino acid sequences has created new possibilities for ab initio phasing 

using MR (Qian, et al., 2007). This approach is called as ‘ab initio phasing with de 

novo models’.  

Initially, ab initio phasing techniques showed some success for targets with 

simple folds of high symmetry in the cases where structurally similar experimental 

models were not available (Strop, et al., 2007). Because of the generation of high 
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quality models using amino acids sequence, the ab initio phasing was expanded with 

de novo models.  

Ab initio phasing with de novo models begins with generation of pools of 

three-dimension structures of the given amino acids sequence without providing any 

experimental constraints. Many programs (Rohl, et al., 2004; Xu and Zhang, 2012) 

have been developed for generation of high-quality 3D structures of small-sized 

proteins using amino acids sequence. In de novo prediction, the models are minimized 

under the guidance of all-atom energy to identify the global minima. The models with 

low-energy are considered as the most accurate in the absence of native structure and 

selected as the represented models for different purposes. Sometimes, clustering 

method is also useful for model selection because of ruggedness in the energy 

landscape. Since a large number of low-energy conformations surrounding the correct 

fold than low-energy incorrect folds in randomly sampled energy landscape, 

clustering can select the most accurate models. Therefore, the representative models 

are generally selected from the pool of generated models either using all-atom 

energies (Bradley, et al., 2005) or after clustering of the models (Shortle, et al., 1998; 

Zhang and Skolnick, 2004). Similarly, the representative models selected either of 

using these methods are used as template for MR for solving phase problem.  

A de novo model generated by Rosetta for a set of proteins were successfully 

phased using MR (Das and Baker, 2009). In this study, a set of diffraction data was 

phased with the represented models that were selected using all-atom energy after 

generation of full models. The success rate in MR trial was increased when all-atom 

models were used instead of coarse-grained models and huge computational power 

was spent to search the larger conformational space. This study has identified the 

reasons for the difficulty in MR using de novo models as template models. Model 

accuracy and computational time has appeared as the primary bottleneck. The 

computational time was significantly reduced by incorporating the MR program, 

Phaser, into the structure prediction program, Rosetta (Shrestha, et al., 2011). This 

procedure increased the success rate of phasing as well as efficiently managed the 

computation time required for phasing. Conformations generated at each trajectory 

were phased at most five times in the course of all-atom minimization. The models, 

which were very bad and very good at first trial of phasing, were escaped from time-

intensive refinement procedure. This procedure saves huge computing time without 
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degrading the success rate. Similar procedure was also employed to the top-ranked 

models produced by Foldit game in all-atom refinement for phasing (Khatib, et al., 

2011). Recently, the ensemble of selected models was used differently as the MR 

template (Bibby, et al., 2014). The models were selected after clustering and then 

errors at local regions were estimated. These local regions that contain errors were 

truncated from the models before used in MR as the search model (Bibby, et al., 

2014).
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Chapter 2. Objective of the study 

The most critical factor to achieve the success in ab initio phasing using de 

novo models was the accuracy of search model (Das and Baker, 2009; Shrestha, et al., 

2011). The accuracy improvement is also a challenging task in de novo modeling due 

to insufficient conformational sampling, inaccurate energy function, and lack of better 

quality fragments generation. The improvement in these areas would have increased 

the accuracy of prediction. Therefore, I was interested to carry out the research work 

focusing on the development of efficient conformational sampling method and better 

quality fragment generation to improve the accuracy of predicted models in my PhD 

study. In addition, when model accuracy was difficult to improve to the quality 

required for crystallographic phasing, the substructures from the predicted models 

were used to solve the phase problem.  

The algorithm was developed to employ the information obtained from the 

ensembles of low-energy models to improve the sampling strategy. In this procedure, 

coarse-grained models were first generated using fragment assembly method 

implemented in Rosetta. Second, the ensemble of these models was selected to find 

the inaccurately predicted residues or regions and then conformation sampling was 

biased so that inaccurate regions were frequently sampled using short fragments 

(three-residue). Third, these residues or regions were rebuilt to improve the overall 

accuracy of these models. The rebuilt models were first converted into all-atom 

models and further optimized using the all-atom energy function. This algorithm was 

implemented in MORPHEUS (Shrestha, et al., 2012) and increased the success rate of 

difficult targets (Das and Baker, 2009) of small-sized globular proteins.  

Second, the algorithm was purposed to improve the fragment quality. The 

information exploited from the ensembles of low-energy all-atom models were 

employed to generate the new fragments that were most likely adopt in native 

structures. The major goal was to gather a diverse set of fragments that contributes to 

generate low-energy models. These fragments were used to generate high quality all-

atom models. The selected models were broken down into continuous nine-residue 

and three-residue fragments. Distant fragments were removed using the score 

computed using residues in ensemble of models, which is known as average pairwise 

residue distance score, and then clustering was performed in the resultant fragments. 
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Representative fragments were taken from top five clusters, which were used to 

generate new set of models.    

When full-length de novo models necessary for phasing cannot be predicted 

accurately, ab initio phasing using de novo models is impossible. Instead of using 

global models as the search models, local substructures (fragments) can be considered 

as search models for a MR program, Phaser. The maximum likelihood target 

functions used in Phaser increases the sensitivity of searching; smaller fragments can 

be used to locate at correct place in asymmetric unit. In this algorithm, the de novo 

models were broken into numerous constant-length overlapping fragments. The 

representative fragments for each residue position were chosen after the fragments 

were clustered. The selected fragments were independently given as the search model 

for Phaser. Since all the fragments are independently phased and scattered at different 

locations of crystallographic space, the goal is to assemble them in the same 

asymmetric unit making same reference point. Indeed, they are interrelated by 

permissible origins, crystallographic symmetry, and unit cell translation. These 

fragments were assembled together using a real-space strategy although it can be 

assembled using a reciprocal-space method and it is computationally challenging due 

to many combinations. The assembly procedure begins with selection of one of the 

phased fragments that is termed as seed fragment and low-energy model as reference 

model. For other fragments, the positions were searched using permissible origins, 

crystallographic symmetry, and unit cell translation and picked the position that gives 

the minimum distant to the reference model and seed fragment. The assembled 

fragments built the partial models and reduces error existed in the full-length model.  
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Chapter 3. MORPHEUS – error-estimation-guided 

rebuilding of de novo models increases the success rate of ab 

initio phasing 

3.1. Objective 

X-ray crystallography is the principal method for the structure determination 

of macromolecules, including proteins, to atomic detail. Protein structures have been 

alternatively solved by computational methods such as MR (Rossmann and Blow, 

1962). It requires template models derived from the structures of homologous proteins 

so that it is impossible to obtain the phases without at least one homologous protein of 

target sequence. However, recent improvements in computational methods for the 

prediction of protein structures using only amino acid sequences, known as de novo 

modeling, have opened a new frontier in structure determination. One of the practical 

applications of these computationally predicted de novo models has been shown to be 

the search model for the solution of the crystallographic phase problem for new folds 

(Qian, et al., 2007), which can be considered as ab initio phasing. These models have 

extended the utility of MR in the absence of known starting homologous structures.  

A successful de novo modeling method was inspired by the fragment-

assembly approach, in which fragments of known structures are combined under the 

guidance of scoring functions. The scoring functions combine the major energy terms 

for protein stability (Bowie and Eisenberg, 1994; Rohl, et al., 2004). Rosetta (Rohl et 

al., 2004) is the one of the most successful fragment-assembly methods for protein 

structure prediction. Rosetta has demonstrated the ability to predict the high-quality 

models necessary for solving the phase problem by MR(Qian, et al., 2007). Rosetta 

uses first a coarse-grained model that contains only the main-chain and the centroids 

of side-chain atoms for wider conformational space searching. Second, it refines the 

all-atom models derived from coarse-grained models with limited main-chain 

conformational searches and full side-chain packing and optimization. The success of 

all-atom refinement depends highly on the quality of the coarse-grained models 

generated in coarse-grained sampling.  

The predicted model must have the correct fold as present in the target 

structure in order to be the successful search model for MR. Furthermore significant 



 18

portion of the atomic scatters should spatially match those of the underlying target 

structure. Many studies have accelerated the development in ab initio phasing with de 

novo models recent years. The MR method has generally been executed on selected 

de novo models after generating a large number of models (Das and Baker, 2008). 

Coarse-grained models or polyalanine models were also used for MR (Das and Baker, 

2009). However, the absence of many atoms in the model appears as bottleneck to 

achieving successful solutions. The number of success in MR trials was significantly 

increased with all-atom models optimized using Rosetta all-atom energy (Das and 

Baker, 2009). The success rates were further increased when huge computing power 

spent on conformational sampling (Das and Baker, 2009) and the highly flexible loop 

regions in the predicted models were trimmed off (Bibby, et al., 2014). In addition, 

phasing with intermediate all-atom models during optimization managed the 

computational time as well as increased the success rate of MR experiments (Shrestha, 

et al., 2011).  

Many crystallographic factors such as resolution, solvent content, non-

crystallographic symmetry in the unit cell and others could have significant impact on 

obtaining successful MR solutions. However, these factors showed poor correlations 

with the MR success rate using de novo models (Shrestha, et al., 2011). In contrast, 

accurate models have enabled success in all tested cases (Das and Baker, 2009; 

Shrestha, et al., 2011). Therefore, highly accurate de novo models are necessary to 

predict for suitable search model for MR. The accuracy of de novo model can be 

improved in different ways such as the improved identification of high-quality 

fragments, more accurate energy functions, and more efficient sampling of 

conformational space.  

The errors in a template de novo model are not uniformly distributed. 

Removing regions with large errors can produce a template that is closer to the target 

and increase the chances of success in MR provided that the remaining structure still 

constitutes a significantly large portion of the scattering matter with respect to the 

target. Many approaches have been traditionally employed to increase the success rate 

of MR from a given template, which is typically from a structural homologue. These 

include trimming off loops or terminal regions to create a compact core structure, 

removing side-chain atoms to generate a polyalanine model, deleting highly flexible 

regions identified by high temperature factors in the coordinates and pruning off the 
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side-chain atoms of residues that are non-conserved between the template sequence 

and the target sequence (Stein, 2008). Searching multiple domains or multiple 

templates simultaneously can also be very powerful in solving difficult cases of MR 

(McCoy et al., 2007). To take advantage of the ever-increasing number of structures 

that are being deposited in PDB (Berman et al., 2000), automated pipelines have been 

created in order to relieve users of the burden of the manual curation of templates for 

MR, resulting in an increased success rate (Keegan & Winn, 2008; Long et al., 2008). 

In this work, the focus is on improving the entire template model for MR.  

One way to improve the de novo models accuracy is to identify the loop 

regions and then focus the conformational sampling on these regions (Canutescu and 

Dunbrack, 2003; Mandell, et al., 2009). The loops are identified from the secondary 

structure assignment of the predicted models (Kabsch and Sander, 1983). Many 

algorithms have been developed to carry out the extensive resampling of these loop 

regions. Although loop regions are often less accurately predicted, some loops are 

intrinsically disordered or can adopt multiple conformations. In this scenario, 

extensive conformational resampling in order to find one energetically most stable 

conformation may not be fruitful. Moreover, errors in predicted models exist not only 

in loop regions but also in regions of regular secondary structure.  

One important step in improving the de novo model quality for phasing could 

be to initially identify the less accurately predicted regions in the model and then to 

perform rigorous sampling on these regions. There have been extensive efforts to 

develop methods that can assess the quality of computationally predicted models 

(Kryshtafovych & Fidelis, 2009). These model-quality assessment (MQA) methods 

have been shown to be very useful in identifying good-quality models and ranking 

them (Levitt & Gerstein, 1998; Zemla, 2003; Zhang & Skolnick, 2004b). Qian et al. 

(2007) used such a strategy to improve the success rate of MR by rebuilding the most 

variable regions within an ensemble of structural models. After identifying regions of 

high conformational variability using a principle similar to PCons (Wallner & 

Elofsson, 2006), an aggressive sampling was conducted on these regions and the 

cyclic coordinate-descent method (Canutescu & Dunbrack, 2003) was used to 

maintain the chain connectivity. The conformational variation has also been exploited 

as colony energy for loop prediction (Xiang et al., 2002). When the electron density 

map guided the rebuilding, the success rate of MR was further improved and many 
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challenging cases could be solved (DiMaio et al., 2011), although an approximate MR 

solution was required in this case.  

Each step for improving the quality of de novo models is described. Firstly, 

this method identified the local regions or residues in the coarse-grained models with 

large errors. These errors were estimated by the average pairwise geometric distance 

per residue computed among selected lowest energy coarse-grained models. 

Secondly, this method rebuilt these more error-prone residues in the coarse-grained 

models. Lastly, these rebuilt coarse-grained models were converted into all-atom 

models and refined with Rosetta all-atom energy. These all-atom de novo models 

were used as the search model for the MR. Score used for error estimation and to 

guide the conformation sampling is similar to many MQA methods. However, per 

residue score is calculated in order to identify residues or regions where large errors 

exist instead of a global score of the entire protein model. More than 50% of the 

targets were tested that were not able to succeed in MR trials primarily owing to a 

lack of sufficiently accurate models in the previous study (Shrestha, et al., 2011). The 

results showed that the coarse-grained models were first rebuilt and then refined to 

closer to the native structures. Second, these models after all-atom refinement 

significantly increased the success rate of phasing.  

3.2. Methods 

This method aimed to reduce the distance between the coarse-grained models 

and the native structures. A geometric distance score for each residue of the selected 

coarse-grained models was calculated; Rosetta3.2 generated the coarse-grained 

models. Each residue was superposed to corresponding residue of remaining models 

from the selected pool and then a pairwise average root-mean-square deviation was 

calculated for C-alpha (CA) atoms. The score was termed as the average pairwise 

residue distance scores (APRDS) and defined as  
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In the above equation, i represents the residue number, j represents the model number, 

k represents all of the other models except model j, n represents the total number of 

models and X, Y, Z represent the Cartesian coordinates of each CA atom in a residue. 

The least-squared method known as Kabsch algorithm (Kabsch, 1976) was used to 

compute the root mean square deviation for all decoys to native structure. This study 



 21

used the root mean square deviation as the measurement metric because of its 

simplicity and generality although many different geometric distances were already 

existed for measurement, such as GDT (Zemla, 2003; Zemla, et al., 1999), MaxSub 

(Siew, et al., 2000), TM-score (Zhang and Skolnick, 2004), Q-score (Ben-David, et 

al., 2009) and percentile-based spread (Pozharski, 2010). APRDS was computed in 

the similar way to that implemented in PCons-local (Wallner and Elofsson, 2006). 

However, this score was used not only to identify residue errors but also to estimate 

the sampling frequency for each residue during rebuilding. The APRDS guided 

conformation space searching during rebuilding so that residues with higher scores 

are sampled more often than those with lower scores. The rebuilt coarse-grained 

models are converted to all-atom models using the Rosetta fast relax algorithm (Tyka, 

et al., 2011). All rebuilt models after all-atom refinement were tested with the 

diffraction data for their suitability as templates for solution of the phase problem 

using the Phaser program (McCoy, et al., 2007). 

This approach was implemented using the C++ programming language. The 

program was developed using Rosetta and Phaser as libraries in the program and was 

 

Figure 3.1 Schematic diagram of MORPHEUS program 
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referred as MORPHEUS (MOdel Rebuilding for PHasing with Enhanced sUcceSs) 

and schematic diagram is shown in Figure 3.1. This program has determined the 

continuation or termination of the simulation using the number of successful MR 

solutions. The lower and upper bounds for the Phaser score were used from the 

previous study (Shrestha, et al., 2011) in order to control the simulation. The program 

stopped the entire simulation once a few good models have been obtained with high 

confidence Phaser score. However, MORPHEUS used all de novo models requested 

for generation in the worst case for phasing. 

3.2.1. Benchmark dataset and initial model generation 

Ten difficult targets that were unproductive in RosettaX experiment 

(Shrestha, et al., 2011) were selected. Indeed, these targets were difficult cases for 

RosettaX approach. In addition, two more targets were also included, which were also 

solved using RosettaX program. Rosetta3.2 (Rohl, et al., 2004; Tyka, et al., 2011) 

generated 3.0E+05 initial coarse-grained models for each target sequence in the 

RIKEN Integrated Cluster of Clusters (RICC). Robetta server (Chivian, et al., 2003) 

generated two different types of fragments (nine-residue and three-residue). 

Fragments from the target structure and structures with homologous sequences were 

excluded from the fragment libraries in order to mimic a blind prediction. 

3.2.2. Determine incorrectly predicted residues or regions 

One thousand lowest energy coarse-grained models were selected from the 

pool of 3.0E+05 models generated by Rosetta. Kabash algorithm (Kabsch, 1976) was 

employed to superimpose each model with all other selected models using rigid-body 

transformation with an optimal translation vector and a rotation matrix that minimizes 

the sum of the squared distances between two coordinate sets of corresponding atoms 

(Kabsch, 1976). After optimal transformation, the APRDS was calculated by taking 

an average of the CA atom root mean square deviations (CA-RMSDs) computed 

between one model and all other models. This value was also assigned for each 

residue of the model. The correlation between the APRDS and the CA-RMSD from 

the native structure was calculated and used to assess the capability of the APRDS to 

estimate error in each residue. Furthermore, each coarse-grained model was assigned 

a score that was the average of the CA-RMSDs between this model and other models 



 23

covering the entire sequence, which was defined as the average pairwise model 

distance score (APMDS),  
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where j represents the model number other than model k, i represents the residue 

number, m represents the total number of residues in the model and n represents the 

number of models. X, Y, Z represent the Cartesian coordinates of each c-alpha atom 

in a residue. The APMDS can be used to assess the overall quality of coarse-grained 

models.  

3.2.3. Rebuilt inaccurately predicted residues  

A subset of coarse-grained models, which were selected from the group of 

1000, were allowed for further model rebuilding. APMDS score selected the coarse-

grained models, which was 65% of the models, for the subsequent model rebuilding. 

Although APRDS and APMDS scores were calculated with a relatively large set of 

decoys, there is no need to subject all of these models to further rebuilding. This is 

because rebuilding only a subset of these models with the lowest APMDS scores will 

enable the inclusion of the majority of high-quality models, with a substantial saving 

of computational time.  

The model selection criteria was difficult to optimize therefore it was hard to 

optimize the choices of selecting the 1000 lowest energy models for APRDS and 

APMDS calculation and the subsequent selection of 65% models for rebuilding. 

Instead, these parameters were empirically obtained by testing on the first target and 

they seemed to work well. Subsequently, they were used for all of the other targets. 

Owing to the extensive computing time needed to complete the calculation for the 

entire test set of targets, alternative choices cannot be exhaustively tested and 

compared in order to come up with an optimum combination of parameters.  

The error-prone residues obtained the more frequency for conformational 

space searching according to the APRDS during the rebuilding process. Each 

rebuilding simulation has contained a total of 5000 rebuilding steps and these 

rebuilding steps were distributed to each residue based on its APRDS. Roulette-wheel 

procedure provided non-uniform sampling based on APRDS. Three-residue fragment 
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library was only provided as the source for rebuilding in order to reduce large changes 

in global conformations. Subsequent rebuilding run generated 300 trajectories for 

each selected coarse-grained model with different random seeds. The allowed 

trajectories were sufficient to explore the conformational space within a reasonable 

computational time. The models generated during each rebuilding trajectory were 

evaluated using the Rosetta coarse-grained scoring function. However, temperature 

factor was adjusted in the Monte Carlo simulated-annealing procedure to make the 

acceptance rate of high-energy models proportional to the residue error using the 

equation  

���� � ���� �
���� � ����
���� � ����

���� � ���� ����������������������� ����� 

3.2.4. Molecular replacement with rebuilt models 

The program converted each model from 300 independent rebuilding 

trajectories into an all-atom model using Rosetta all-atom refinement program. 

MORPHEUS employed the Rosetta fast relax algorithm (Tyka, et al., 2011) to pack 

 

               Figure 3.2 Scatter plot between coarse-grained energy and accuracy of the models 
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the side-chain rotamers and then performed the all-atom refinement through energy 

minimization. All full-length all-atom models after all-atom refinement were sent for 

MR using Phaser (McCoy, et al., 2007) to assess its quality for phasing. MORPHEUS 

used Phaser scores as a criterion to terminate the entire rebuilding process after a few 

successful de novo models for phasing had been obtained (Shrestha, et al., 2011).  

3.3. Results 

3.3.1. Model accuracy correlated with their divergence 

When all models were considered, the coarse-grained energy of the models 

poorly correlates with their accuracy because those models cover a wide range of 

distances from the native structure and there is a high degree of degeneracy in energy 

for less accurate models. This can be seen from the energy landscape in the form of a 

scatter plot of the coarse-grained energies for all models generated versus their CA-

RMSDs from the native structure (Figure 3.2).  

 

               Figure 3.3 Correlation between APMDS and model accuracy  
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The coarse-grained energy landscape also showed multiple local minima for 

all targets. This experiment revealed that the models that were nearest to the native 

structure always were not the lowest energy models. However, the distribution of 

these low-energy coarse-grained models may encode information about their 

accuracy. Therefore, one thousand low-energy de novo models were selected with the 

coarse-grained energy in order to exploit the information about their accuracy. The 

APMDS of these selected models showed the good correlation with the prediction 

accuracy (Figure 3.3). This APMDS seems to be a useful measure for the assessment 

and can be used as selection of de novo models for model rebuilding.  

MORPHEUS aimed to identify residues that are predicted to have large 

errors. Therefore, the APRDS was calculated for each residue from the selected 

lowest energy coarse-grained models to indicate how these residues were inaccurate. 

Importantly, the CA-RMSD of each residue from the native structure also correlated 

to the APRDS in this experiment (Figure 3.4). The APRDS showed the better 

correlation (>0.5) with the model accuracy of residues of the molecules (1BQ9, 

1CTF, 2BC5, and 3CHY). However, APRDS failed to maintain a same correlation for 

another molecule 1OPD. This is because many low-energy models in the selected 

pool were generated as noise. Indeed, APRDS is highly relied on the energy and their 

distribution with model accuracy. When many low-energy models used in APRDS 

computation are inaccurate and low-quality, the information in APRDS is either weak 

or inaccurate. An absolute threshold was not defined to discriminate the correctly 

predicted residues from that of incorrectly predicted. Instead, all residues were 

subjected to rebuilding with the sampling frequency proportional to the estimated 

residue error based on the APRDS. The lower APRDS indicates the more accurately 

predicted residues and that of higher represents less accurately predicted residues 

(Figure 3.4). Therefore, the APRDS of each residue can provide the knowledge of the 

accuracy of that residue in the predicted model.  

 

Figure 3.4 Correlation between APRDS and CA-RMSD of the residue in the sequence 
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3.3.2. Accuracy improvement after rebuilding  

The coarse-grained models were optimized in the rebuilding procedure to 

improve the accuracy of all-atom models for successful phasing by MR. This 

rebuilding procedure improved the coarse-grained models for most targets. These 

models were only intermediates because these rebuilt models were allowed to all-

atom energy optimization before MR. The best models were analyzed after rebuilding 

and compared to their corresponding input coarse-grained models in order to assess 

the potential improvement. In this experiment, rebuilt models appeared more accurate 

than the initial input models (Figure 3.5).  

The improvement was also observed for most of the residues in the model 

(Figure 3.6). MORPHEUS improved the CA-RMSD of coarse-grained models on 

average from 4.93 to 4.06 Å (Figure 3.7). Importantly, the goal was to improve the de 

novo models to make the suitable search model for MR. The rebuilt models can only 

be productive when their CA-RMSD is better than 3.0 Å to the target structure 

because these models might have higher probability to become suitable templates for 

MR after Rosetta all-atom optimization. Therefore, the model improvement was 

carefully inspected when their accuracy has CA-RMSD better than 3.0 Å after 

rebuilding. On average, this method improved a CA-RMSD from 3.38 to 2.60 Å 

(Figure 3.7). This improved accuracy indicated that these coarse-grained models 

could be potential candidates for MR. The improvements were observed not only in 

 

Figure 3.5 Comparison of accuracy of models before and after rebuilding 

 
Figure 3.6 Comparison of accuracy of residues before and after rebuilding 
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the loops and termini but also in buried core regions significantly. This method 

improved �-helical region (residues 65G–74A) in the core of 3CHY by 2.5 Å (Figure 

3.8). Similarly, The improvement was observed in �-helical region (residues 38L–

44T) in the core of 2BC5 by 0.5 Å. The improvement was further observed in �-

helical region (residues 29D–33I) in 1BE7 by 0.8 Å (Figure 3.8).  

 This rebuilding procedure improved the accuracy for each residue for four 

targets and one of the best models was selected for each target. MORPHEUS 

accurately rebuilt a large portion of the residues in the coarse-grained models (Figure 

3.8). Furthermore, the improvement was not only seen in particular regions or 

secondary structures but observed throughout the entire structure (Figure 3.8). This 

method significantly improved the accuracy of the N- and C-terminal residues 

because these regions were sampled more frequently owing to their high APRDS 

(Figure 3.8). Despite all the improvement, it was also observed that some residues 

with higher APRDS were harder to optimize for the few targets.  

 

Figure 3.7 Comparison of average improvement in models before and after rebuilding              
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3.3.3. Ab initio phasing with rebuilt de novo models 

Ten data sets that were unsuccessful using RosettaX (Shrestha et al., 2011) 

were selected. In addition, two molecules that were already successful were also 

included. However, MORPHEUS generated accurate search model for seven cases 

 

Figure 3.8 Distribution of APRDS of model before and after rebuilding with their accuracy              
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necessary for successful phasing. These targets were difficult to phase in the previous 

experiment because model accuracy of search model necessary for MR was not 

adequate for phasing (Shrestha et al., 2011). All the tested molecules were listed that 

includes the accuracy of rebuilt models, the phasing statistics, and other relevant 

information (Table 3.1).  

MORPHEUS generated the models better than 2.0 Å in terms of CA-RMSD 

from the native structure for seven targets. These models produced high TFZ scores 

after MR indicating the successful MR. Phaser solutions were further evaluated using 

an MR validation tool on the models with TFZ values of greater than 5.8 however this 

procedure cannot be used in the absence of the crystal structure (Shrestha et al., 

2011). The CA-RMSD was calculated in two different ways in MR validation tool.  

First, the CA-RMSD was calculated using rigid-body transformation with an optimal 

translation vector and a rotation matrix that minimized the sum of the squared 

distances between two sets of coordinates (Kabsch, 1976). Second, the CA-RMSD 

was computed by applying crystallographic symmetry operators with all permissible 

origins of the space group. This was called as SYM-RMSD. The model that was 

placed correctly in asymmetric unit must show the similar CA-RMSDs using two 

different methods. Therefore, de novo models that show the small CA-RMSD 

difference were considered as successful cases in MR experiment. Therefore, the CA-

RMSD difference of 1.0 Å was used in the experiment for molecular replacement 

solution verification. The CA-RMSD was showed in column 7 of Table 3.1. The 

models with small differences (around 1.0 Å) between the CA-RMSD (the first 

number in column 7) and the SYM-RMSD (the third number in column 7) were 

validated as successful in MR. The ability of successful models were further validated 

in construction of electron density maps using the initial phases. Low R factor and R 

Table 3.1 Summary of MORPHEUS experiment 

Targets Space 
group 

No. of copies 
in ASU 

Sequence 
Length 

Resolution 
(Å) RFZ, TFZ RMSD (CA, All, 

SYM) 
(R-, R-free) 

factors 
1BE7 H3 1 53 1.67 4.4, 6.5 1.33, 1.63, 2.48 0.18, 0.20 
1BQ9 P212121 1 53 1.20 3.8, 6.9 1.61, 2.28, 1.77 0.22, 0.22 
1CTF P43212 1 68 1.70 3.0, 6.1 2.67, 3.20, 27.82 - 
1OPD P1 1 85 1.50 4.9, 100.0 9.52, 10.03, 15.93 - 
1CM3 P21 1 85 1.60 4.6, 3.9 9.46, 10.05, 16.94 - 
2BC5 P212121 4 106 2.25 2.5, 9.3 1.26, 2.07, 1.47 0.26, 0.31 
3CHY P31 2 128 2.20 4.4, 7.9 1.72, 2.25, 1.81 0.20, 0.26 
3CHY F432 1 128 2.00 3.6, 7.0 1.88, 2.60, 1.92 0.24, 0.25 
3CHY P212121 1 128 1.66 4.0, 8.3 1.80, 2.44, 1.93 0.18, 0.22 
3CHY P21212 2 128 2.33 4.0, 9.7 1.96, 2.45, 1.99 0.22, 0.28 
1IG5 P43212 1 75 1.50 3.7, 6.8 1.59, 2.49, 1.62 0.21, 0.26 
256B P1 2 106 1.40 9.0, 8.6 1.16, 1.82, 1.18 0.24, 0.36 
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free generated by PHENIX AutoBuild using these MR models further confirmed the 

successful phasing.  

The rebuilding procedure not only improved the quality of models for targets 

that were unsuccessful for MR in the previous work but also improved the quality of 

the models that were successful for MR. MORPHEUS achieved the success on two 

previously successful targets, which were selected for test. Indeed, MORPHEUS 

improved the CA-RMSD and all-atom root mean square deviation for 1IG5 from 2.36 

to 1.59 Å and from 3.13 to 2.49 Å respectively. Similarly, MORPHEUS also 

improved the CA-RMSD and all-atom root mean square deviation for 256B from 2.60 

to 1.16 Å and from 2.90 to 1.82 Å respectively (Table 3.1).  

The phases obtained from successful MR models were used in model 

building and refinement using automated model building programs. The model 

building and refinement was carried out using the AutoBuild protocol implemented in 

PHENIX v.1.3 (Adams et al., 2002) with default parameters. The electron density 

maps constructed using phases from the de novo models successfully led to complete 

three-dimensional protein structures for the seven targets with good R-factor and R 

free values. These models that were successful in MR were significantly improved 

 

Figure 3.9 Superposition of models after rebuilding to the native structures 
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after automated refinement (Figure 3.9).  

MORPHEUS failed to find MR solution for three diffraction data sets in this 

experiment. This could be because the energy landscape is far from ideal. This could 

also arise due to the insufficient sampling. The energy landscape of 1OPD showed the 

lowest energy models around 12 Å away from the native structure resulting in an anti-

correlation between APMDS and CA-RMSD among the selected low-energy models. 

The APRDS is distributed over a wide range even for the best rebuilt model and there 

was small improvement. The best rebuilt models for histidine-containing proteins 

from Escherichia coli (PDB IDs 1OPD and 1CM3) were far away from the native 

structure, with the largest improvement being from 12 to 8 Å; they were almost 

impossible to use for phasing in this study. MORPHEUS rebuilt and improved the 

average CA-RMSD of potential models of the ribosomal protein L7/L12 (PDB ID 

1CTF) by 0.45 Å. However, the program was unsuccessful in MR trial for this protein 

using the rebuilt de novo models in this study. In this case, Rosetta all-atom energy 

minimization did not yield models with sufficient accuracy to solve the phase 

problem.  

3.3.4. Performance measurement  

This method was compared with Rosetta 100 CPU day, Rosetta large-scale 

CPU time (Das & Baker, 2009) and RosettaX (Shrestha et al., 2011) in terms of 

success rate (Table 3.2) and the computation time required (Figure 3.10). 

MORPHEUS succeeded on seven out of ten tested cases but RosettaX failed on all 

these cases. Rosetta 100 CPU-day generated the accurate models required for phasing 

for two targets out of ten. The success rate was increased from twenty to thirty 

percentages using the increased computing power in Rosetta large-scale CPU time.  

Table 3.2 Comparison of success and failure cases by different methods 

Targets Rosetta, 100 
CPU days 

Rosetta 
large-scale  RosettaX Rosetta3.2 MORPHEUS 

1BE7 0 0 0 1 1 
1BQ9 0 0 0 1 1 
1CTF 0 0 0 0 0 
1OPD 0 0 0 0 0 
1CM3 0 0 0 0 0 
2BC5 1 0 0 0 1 
1AB6 0 1 0 0 1 
2FKA 1 1 0 0 1 
3CHY 0 0 0 0 1 
6CHY 0 1 0 0 1 
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MORPHEUS showed better results than the previously published methods 

(Das & Baker, 2009; Shrestha et al., 2011) however this comparison might be unfair 

because of the periodic improvements in Rosetta methods and differences in fragment 

libraries arising from the increased pool of new structures deposited in the PDB.  

MORPHEUS result was compared with phasing result obtained from Rosetta3.2 using 

the same fragment library to measure the impact of this method on model rebuilding 

more objectively. Three hundred thousands all-atom de novo models were generated 

using Rosetta3.2 for all targets and then ten thousands lowest energy all-atom models 

was selected for MR experiments. All best models generated by Rosetta3.2 for MR 

was included (Table 3.3). Rosetta3.2 and MORPHEUS produced the sufficiently 

accurate model for MR experiment for rubredoxin (PDB IDs 1BQ9 and 1BE7). 

 

Figure 3.10 Total elapsed time spent by Rosetta3.2 and MORPHEUS          

Table 3.3 Comparison of best model produced and their result in MR experiment 

Sequence 

Rosetta3.2 MORPHEUS 

RFZ, 
TFZ 

RMSD 
(CA, ALL) Rank Best RMSD 

(CA, ALL)  RFZ, TFZ RMSD 
(CA, ALL) 

Best 
RMSD  

(CA, ALL) 
1BE7 4.8, 7.1 1.18, 1.70 1 1.18, 1.70 4.4, 6.5 1.33, 1.63 1.29, 2.01 
1BQ9 4.4, 6.8 1.11, 1.41 1 1.11, 1.41 3.8, 6.9 1.61, 2.28 1.39, 2.09 
1CTF 3.3, 3.7 2.46, 2.96 1 2.46, 2.96 3.0, 6.1 2.67, 3.20 2.31, 3.03 
1OPD 3.7, 100 3.09, 3.99 3 2.89, 3.85 4.9, 100.0 9.52, 10.03 8.33, 9.18 
1CM3 3.8, 2.5 3.09, 3.97 3 2.96, 3.85 4.6, 3.9 9.46, 10.05 8.38, 9.13 
2BC5 - 1.11, 1.78 2 1.09, 1.86 2.5, 9.3 1.26, 2.07 1.04, 1.68 
1AB6 - 2.30, 2.84 1 2.30, 2.84 4.4, 7.9 1.72, 2.25 1.72, 2.25 
2FKA 3.9,4.1 2.44, 3.12 1 2.44, 3.12 3.6, 7.0 1.88, 2.60 1.85, 2.61 
3CHY 4.2, 4.7 2.37, 3.05 1 2.37, 3.05 4.0, 8.3 1.80, 2.44 1.68, 2.28 
6CHY - 2.37, 2.93 1 2.37, 2.93 4.0, 9.7 1.96, 2.45 1.78, 2.27 
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However, Rosetta3.2 generated better quality models for these PDBs than 

MORPHEUS (Table 3.3). These models easily succeeded in MR in both cases. 

Indeed, MORPHEUS did not include all of the best models for 1BQ9 in the selection 

of 1000 lowest energy coarse-grained models.  

This led to MORPHEUS generating less accurate models than Rosetta3.2. 

Aside from these two data sets, Rosetta3.2 was unable to predict accurate models for 

the other eight data sets for phasing. Both RosettaX and Rosetta3.2 predicted the high 

accurate de novo models but the best predicted de novo models could not pass the MR 

test for cytochrome c- (PDB ID 2BC5). MORPHEUS predicted slightly better models 

than these two methods but these models failed to provide the accurate phase 

information. However, MORPHUES yielded an MR solution for this target with 

slightly less accurate models. Many highly accurate models were examined with the 

diffraction data set during the simulation and this could be the one reason for 

achieving success. In addition, identical CA-RMSDs could arise from very different 

structures. The success in MR of a structure with a relatively large CA-RMSD from 

the native structure could conceivably arise from the errors in the residues being 

unevenly distributed. Some residues with large errors might have made the overall 

CA-RMSD relatively high although most of the residues were probably more 

accurately predicted. For 1OPD and 1CM3, most accurate model was about 9.0 Å 

CA-RMSD and MORPHEUS was not able to significantly improve the prediction 

accuracy to make useful as search model.  

Total elapsed time spent by the both methods was considered as another 

factor for comparison. The total elapsed time spent by both methods was monitored 

although MORPHEUS and Rosetta3.2 are feasible using currently available moderate 

computing resources. The elapsed time spent in coarse-grained model generation, 

energy minimization using all-atom models and MR for Rosetta3.2 was accumulated. 

The elapsed time for MORPHEUS includes the model-rebuilding time in addition to 

time spent for coarse-grained model generation and all-atom optimization. The 

elapsed time was measured on the same computing resource. Both methods spent on 

average equal total elapsed time except for two targets (PDB IDs 2BC5 and 1BE7). 

The large differences in elapsed time for these two proteins are primarily owing to 

MR. These are very likely to be the worst-case scenario for MORPHEUS, which 

needs the generation of all the requested models. At the other extreme, MORPHEUS 
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can obtain an MR solution with fewer models generated compared with Rosetta3.2. 

The experiment showed the total number of models generated for phasing varied from 

1.0E+04 to 1.8E+05. The total number of models to be generated changed the 

required elapsed time. MORPHEUS needed less elapsed time when rebuilt models 

provided MR solution very early in the simulation, such as for the targets 3CHY and 

6CHY. Rosetta3.2 missed the best models for ab initio phasing when models were 

selected based on energy although suitable models had already been predicted. 

However, MORPHEUS executed MR program on all generated de novo models MR 

until successful solutions are found. Therefore, MORPHEUS does not suffer from 

drawback of missing suitable models, if the accurate models are generated and the 

energy based selection misses. 

3.4. Discussion 

3.4.1. Coarse-grained energy landscape 

The coarse-grained energy function is designed to enable the sampling of a 

larger conformational space for simplified protein models, which contain only the 

main chain and the centroids of side-chain atoms. The coarse-grained energy function 

aims to search and find the global fold of a target protein by maximizing the burial of 

hydrophobic side chains and the exposure of hydrophilic side chains. The coarse-

grained models generated can be from conformations trapped in multiple minima in a 

complex energy landscape. This energy function is less accurate due to the missing 

side-chain atoms. Therefore, it has often less discriminative power to identify the 

near-native models than its all-atom counterpart. Despite being less accurate and 

having less discriminative power, the coarse-grained energy can be used to generate 

near-native models (Das & Baker, 2008).  

It is generally assumed that in a randomly sampled energy landscape there 

should be more models generated that correspond to lower energy than models whose 

conformations correspond to higher energy. This principle has provided the 

foundation for the use of clustering methods to identify native-like protein models 

(Shortle et al., 1998; Zhang & Skolnick, 2004a; Berenger et al., 2011). The geometric 

similarity among the low-energy models was chosen; this is in principle similar to the 

clustering methods to identify native-like models. The coarse-grained model is 

expected to have the small APMDS when this model has more neighbours because 
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they sample a lower energy level in the energy landscape. Similarly, this principle can 

also be used to reason for APRDS. The APRDS will be small for a residue that has 

more neighbours in the generated models because this residue contributes the lower 

energy to sample a lower energy conformation. The data also showed similar trend 

(Figure 3.2 and Figure 3.3). In homology modeling, similar concept was employed to 

generate hybrid models with the best residues from selected templates (Wallner & 

Elofsson, 2006). AP-MDS or APRDS often correlates to the model quality and it 

depends on the coarse-grained energy landscape pertains to the protein target. This 

correlation holds true for most of the targets tested but sometimes it breaks down such 

as for protein target 1OPD. In this case, the coarse-grained model holds the lowest 

energy of the models that appeared around 12–14 Å CA-RMSD from the native 

structure. Therefore, the model rebuilding procedure failed to improve the model for 

successful phasing. As the CA-RMSD is calculated by comparing the corresponding 

atoms between the model and the native structure, it may appear to be very large for 

the purpose of assessing the suitability of a model for MR since it is the spatial 

matching of the scatters rather than the order with which the atoms are connected that 

is important for MR. The CA-RMSD was used in the study to measure the quality of a 

predicted model owing to the critical dependence of the method that was used to 

generate the model on the connection order of all of the atoms in a protein. 

3.4.2. Biased conformational space searching  

The APRDS guided the conformation sampling in the rebuilding procedure. 

This biased sampling was effective for potentially incorrect local residues in a coarse-

grained model. As the result, this sampling strategy increased the sampling rate of 

residues with larger error. Specific threshold was not defined to discriminate correctly 

and incorrectly predicted residues. Instead, MORPHEUS performed the conformation 

sampling in the rebuilding procedure at a relative rate proportional to the APRDS.  

Wrongly predicted segments are non-uniformly distributed in the model. 

Terminal and loop segments often contain the largest structural diversity therefore 

many algorithms have been developed to improve these segments of the protein 

models. The most effective algorithm for sampling the loop segments is by fixing two 

anchor points in a protein without changing the entire conformation (Canutescu & 

Dunbrack, 2003). However, MORPHEUS has sampled the conformational space of 

the entire protein structure non-uniformly using the APRDS regardless of the 
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secondary structure and terminals. The non-uniform sampling using APRDS 

employed in this study may be an alternative strategy to random sampling or sampling 

of loop regions only.  

MORPHEUS improved the model quality over the entire region of a protein 

in the tested proteins. It significantly improved the input models at the C- and N-

terminals, as residues in these segments showed a higher APRDS. It also improved 

the local segments on the exterior and in the interior of the input models regardless of 

secondary structure. These residues or segments contain larger APRDS. Some local 

segments were difficult to improve in the protein structure despite having a higher 

APRDS. The potential responsible reasons were explored. First, dihedral angles in the 

conformations represented by the short three-residue fragments could not provide the 

adequate information to sample near-native regions for these residues. Second, the 

coarse-grained energy may be inaccurate for these targets to guide the sampling. 

3.4.3. Molecular replacement with rebuilt models 

Successful MR needs the accurate de novo models, which is a critical factor 

in achieving accurate phases. Therefore, accuracy of de novo models is necessary to 

be improved. In practice, loop regions are mostly hard to predict due to the flexibility 

and the presence of alternative states. N- and C-terminal segments were also 

considered to be flexible and harder to predict accurately. Therefore, these segments 

are often trimmed off in template models prior to the MR experiment when 

homologous structures were used as search models for MR. This method improved 

these regions in the model instead of trimming off and can be an alternative strategy 

to make accurate search model for successful MR.  

The errors in the residues having larger deviation with the native structure 

were reduced and then the overall accuracy of de novo models was improved. It is 

advantageous to rebuild these residues at the coarse-grained stage because the coarse-

grained sampling method more effectively explores a large conformational space 

using cheap computing time. Short fragments (three-residue) were more accurate and 

its usage in rebuilding of coarse-grained modeling can be fruitful to generate more 

accurate models. In principle, all-atom models can be also rebuilt. However this is 

difficult because the current search protocol is designed to avoid drastic changes to 

the global conformation at the all-atom optimization stage. It is time consuming too. 
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The higher order non-crystallographic symmetry existed in the crystal tends 

to require more accurate input models for successful MR. In this case, the successful 

location of each monomer in the asymmetric unit depends on the solution for the 

previous monomer and the errors tend to accumulate. This was seen for protein 

cytochrome c-b562 (PDB ID 2BC5), which is an alpha-helical bundle. De novo 

modeling generated highly accurate models for this target but phasing with these 

models was not successful mainly owing to the presence of four molecules in the 

asymmetric unit. The larger loop segments existed in rubredoxin (PDB ID 1BE7) 

increase the difficulty in phasing. The success of de novo models for phasing depends 

not only on the accuracy of backbone atoms but also that of side-chain atoms. The 

main chain conformation is improved for ribosomal protein L7/L12 (PDB ID 1CTF), 

which is insufficient when all-atom optimization cannot lead to improve the accuracy 

required for phasing. The subsequent all-atom models did not appear to be sufficiently 

accurate for phasing although the CA-RMSD of the coarse-grained models was 

significantly improved. Therefore, improvement in all-atom modeling is also 

important in addition to rebuilding coarse-grained models. 

The success of MR relies on the model quality, which has been shown to be 

as important determinant. However, it has paradoxically been observed that two 

models with very similar root mean square deviation to the native structure could 

have opposite outcomes in MR, as in the case of 2BC5. This might be owing to the 

use of the root mean square deviation as a single measure of the structural differences 

between two models. The root mean square deviation cannot distinguish various 

scenarios of structural differences between two models because it is degenerated. The 

root mean square deviation is quadratic in nature that gives a higher weight to the 

region that differs the most, whereas for MR the matched regions between the 

template and target give rise to signal while the mismatched regions generate noise. It 

is conceivable that alternative measures such as GDT (Zemla et al., 1999; Zemla, 

2003), MaxSub (Siew et al., 2000), TM-score (Zhang & Skolnick, 2004b), Q-score 

(Ben-David et al., 2009) or percentile-based spread (Pozharski, 2010) might be used 

as a better predictor of success in MR for a given model. 

Earlier studies have exploited the conformational variation in an ensemble of 

predicted models not only for model-quality assessment but also for model rebuilding. 

Although conformational variation has been employed as a post-filtering measure for 
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loop prediction (Xiang et al., 2002), which was termed as a ‘colony energy’, it is used 

here as both a global (APMDS) and a local (APRDS) measure not only for the 

estimation of errors but also to guide the sampling and rebuilding of the entire region 

in a model. Another study has used the local structural variation of models to identify 

regions that are most likely to be in error and subsequently these regions were 

aggressively sampled and refined to improve model quality (Qian et al., 2007). 

Several differences between this method and that of Qian and coworkers will be 

described. Firstly, MORPHEUS uses coarse-grained models to estimate errors and 

rebuilds coarse-grained models before subjecting them to all-atom refinement, 

whereas Qian and coworkers use all-atom models to identify error-prone regions and 

their rebuilding procedure also uses all-atom models. Secondly, MORPHEUS uses 

local variation to estimate errors and subsequently uses this variation to guide the 

sampling proportional to the estimated errors. MORPHEUS did not use the threshold 

to identify a particular region for rebuilding and used non-uniform sampling in the 

entire model. In contrast, Qian and coworkers used local variation to identify regions 

that were most likely to contain errors and then aggressively sampled these regions 

uniformly regardless of the actual amount of variation within and among the regions. 

Thirdly, MORPHEUS rebuilt the entire model with sampling proportional to the 

structural variation. The rebuilding process in MORPHEUS did not create the chain 

break. MORPHEUS accepted the large conformational changes that cause an increase 

in energy during the Monte Carlo sampling because a modified acceptance criterion 

proportional to the structural variation in the form of a temperature factor is 

introduced. However, Qian and coworkers fixed the C- and N-terminal ends adjacent 

to the region to be rebuilt and the chain break was closed using the cyclic coordinate 

procedure. 

3.5. Conclusion 

In this study, the error-prone residues in a coarse-grained model are rebuilt in 

order to generate more accurate models with side-chain atoms. These models could be 

suitable search models for phasing by MR. The number of targets that were 

unsuccessful in the previous study were tested to evaluate this method. The accuracy 

of potential coarse-grained models for MR (less than 3.0 Å CA-RMSD from the 

native structure) was improved from 3.4 Å to 2.6 Å (CA-RMSD) on average. This 

method significantly reduced the large errors present in the N- and C-terminal 
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segments. Since de novo modeling faced difficulty in the prediction of terminal 

segments accurately, the rebuilding methodology may be a method for improving the 

accuracy of terminal segments. Moreover, this method reduced the local errors in the 

protein models regardless of secondary structure. MORPHESU improves not only in 

the termini but also in the core regions. 

This method increased the success rate of MR when the rebuilt coarse-

grained models after all-atom optimization were used. MR succeeded in 70% of the 

tested cases primarily owing to the improved model quality. Moreover, the phase 

angles obtained after successful MR were sufficient to generate high-quality electron-

density maps for automated model building and refinement. 
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Chapter 4. NEFILIM – improving fragment quality for de 

novo structure prediction 

4.1. Objective 

A major challenge in computational structural biology is to predict the 

atomic-level 3D structures of proteins using their amino acid sequences. One problem 

is the vast number of conformations to be searched to find the correct structure. 

Another problem is the lack of an accurate energy function to identify the near-native 

models. Many methods have been proposed to tackle conformation sampling 

problems (Liwo, et al., 2008) along with energy function development (Bradley, et 

al., 2005; Fleishman and Baker, 2012) assuming the principal that native-like models 

are in the global energy minimum. The most effective strategy to date for searching 

conformation space efficiently was the usage of fragments from experimentally 

determined structures (Rohl, et al., 2004).  

The fragment assembly approach for de novo prediction has been practically 

implemented in Rosetta program suite (Rohl, et al., 2004; Simons, et al., 1997). It 

uses two types of fragment (three-residue and nine-residue) queried from 

experimentally solved structures to generate final models (Bradley, et al., 2005). 

These models have reached at atomic level accuracy for small-sized globular proteins 

(Bradley, et al., 2005; Das, et al., 2007). With all these successes, these exist many 

challenge in de novo modeling using the fragment assemble method. The performance 

of this method principally depends on the conformation sampling strategy and energy 

function with noticeable exceptions (Sohl, et al., 1998). However, conformation 

sampling is a major problem in this approach (Kim, et al., 2009). Stochastic Monte 

Carlo methods are mostly used in conformational sampling to explore the vast 

conformational space (Liwo, et al., 2008; Simons, et al., 1997; Xu and Zhang, 2012). 

Conformational search in it is more restricted since it uses substructures provided for 

each sequence region. Hence the overall prediction quality is certainly dependent on 

the quality of provided fragments (Hegler, et al., 2009). Therefore, improvement in 

fragment quality can be potentially used to increase the overall accuracy of structure 

prediction. 

Mostly, fragments for structure prediction are generated given the target 

sequence. However, optimal fragment generation using the sequence is difficult and 
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challenging because restraints (set of torsion angles) provided by fragments has to be 

maintained for uniform sampling (not sampling too broadly and too narrowly). 

Fragment generation method needs to include the fragments representing the entire 

distribution of conformations that each sequence segment most probably adopts in the 

protein structures (Gront, et al., 2011). These fragments are obtained using sequence 

profiles of aligned sequences with position-specific information on amino acid pattern 

(Han and Baker, 1996). The position-specific fragment generation using gapless 

threading was implemented to create continuous and dynamic fragment libraries (Xu 

and Zhang, 2013). Similarly, an HHM-based method was also introduced for 

fragment generation (Kalev and Habeck, 2011). Sequence-based fragment generation 

is not adequate to get precise fragments to predict good quality models because local 

sequence-structure relationship does not have a one-to-one mapping for all the protein 

fragments.  

The resampling approach was proposed to improve conformational search by 

providing constraints in fragment selection. Predicted structures of target sequence 

were used to find out most selective fragments under the given energy function; these 

fragments are selected again for next-generation of structure prediction (Blum, et al., 

2010). This requires at least two rounds of simulations. In this method, an initial 

round of prediction was executed for learning critical features that resemble the 

native-like features from models located at the local minima. The next-round of 

simulation utilizes this information to guide the search towards regions of the 

landscape corresponding to the native-like structure. This method importantly 

attempts to search the conformational space that has been sampled more in the initial 

round. This concept was also used differently in a model-based search for protein 

structure prediction (Brunette and Brock, 2005). There are methods developed to 

integrate the information from an initial to next round of sampling to date in fragment 

assembly approach. Most of these methods differ from each other in information 

retrieval – the principle features that can be used to predict the properties of native 

structure. Rosetta resampling method (Blum, et al., 2010) used secondary structures, 

torsion angles and beta contacts to estimate the native-like properties in the predicted 

models. Subsequently, these properties were used to improve the conformation 

searching. The algorithm implemented in Edafold (Simoncini, et al., 2012) estimated 

the probability of occurrence for native-like fragments in the lowest energy models 
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and used it for improved sampling iteratively. Indeed, both methods computed the 

probability of occurrence of particular properties or nine-residue fragments from the 

lowest energy models to estimate the native-like features.  

In this work, a method was designed to generate new fragments from de 

novo models to increase the sampling efficiency near the native region. This method 

is termed NEFILIM (NEw Fragments In Library Improve Models). The hypothesis is 

based on that fragments adopted in the lowest energy models are most probably the 

native-like fragments because these fragments are responsible for minimizing the 

energy. However, these native-like fragments are scattered in many models located at 

the local minima. The fragments from the lowest energy models for each residue 

position were clustered in order to identify native-like fragments. After new 

fragments were selected, they were used for a new round of prediction. The 

experiment shows that these new fragments, which are better in quality, increase the 

sampling near the native region of conformation space. Consequently, NEFILIM 

predicted more accurate models with the energies closer to the native structure. 

Moreover, better models were produced with higher concentration with lower 

energies that makes easier to use energy-based criteria to identify the best models. 

4.2. Methods 

This approach consists of three major steps as shown in Figure 4.1. First, 

Rosetta was used to generate a batch of all-atom models giving the target sequence 

and fragment libraries obtained from Robetta server (Chivian, et al., 2003). This step 

was termed as an initial run. In second step, the representative models were selected 

from the pool of predicted models using Rosetta all-atom energy and then the average 

pairwise residue distance score (APRDS) were computed for each model (Shrestha, et 

al., 2012). These APRDS were normalized and then locally averaged for three- and 

nine-residue fragments respectively. The goal of calculating APRDS was to remove 

distant fragments and then the resultant fragments were clustered according to their 

respective window sizes. Twenty-five fragments were randomly picked from the top 

five clusters for each residue position. This is the step for the new fragment library 

generation. Lastly, this new fragment library was inputted to Rosetta for generation of   

another batch of all-atom models. This run was termed as a new run. 
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4.2.1. Benchmark data set and initial model generation 

The benchmark test set consists of 30 globular proteins and their sizes range 

from 49 to 128 residues. These proteins were collected from different studies (Blum, 

et al., 2010) and (Tyka, et al., 2011) and few targets were taken from CASP8 and 

CASP9. Rosetta3.2 generated 120,000 full atom models using the amino acids 

sequence and fragment libraries (three-residue and nine-residue) only. Initial fragment 

libraries were generated from Robetta Server using the protein sequence only. 

 

               Figure 4.1 An overview of NEFILIM  
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Furthermore, homologous proteins of the target protein sequence were excluded in the 

fragment library generation. This model generation is termed as initial run. 

4.2.2. Improved fragment library generation 

As the representative models, one thousands lowest energy models from the 

pool of 1.2E+5 models were taken for each target. Each model was superimposed to 

other (999) models in order to calculate the APRDS in the residue level. This score 

was further normalized and processed to compute the average for each residue locally 

with two sliding windows (three and nine). The APRDS of three successive residues 

were averaged to get a score for the three-residue fragment. Same procedure was 

employed to obtain the average APRDS for nine-residue fragment. The APRDS was 

used to remove the fragments that are distant from the majority of fragments before 

clustering. The APRDS 0.30 was used as cutoff. This cutoff was determined by 

testing on a few proteins (2BC5, 1IG5, 1CTF, and 1BM8).  

Three-residue and nine-residue fragments were generated from the selected 

models for each residue position. These two types of fragment were independently 

clustered using the algorithm implemented in Durandal (Berenger, et al., 2011). The 

cluster radius was determined for three-residue and nine-residue fragments in order to 

carry out the clustering of each target of benchmark data. The proteins (2BC5, 1IG5, 

1CTF, and 1BM8), which were used to determine the optimal clustering threshold, 

showed the clustering radii of 1.00 Å and 0.20 Å suitable for nine-residue and three-

residue fragments for the experiment. Twenty-five fragments were randomly picked 

from the top five clusters. The number of fragments in a particular cluster and their 

proportion in the 25 fragments decided the representation of each cluster in the 

fragment library. The rationale for choosing the top five clusters is to include a 

diverse set of fragments. The concept of choosing the fragments from top five clusters 

is also similar to selecting representative models at the center of clusters from the 

largest clusters in the structure prediction (Moult, 2005). The selection process was 

limited to the maximum number of available clusters when the number of clusters was 

less than five. In the reverse, more than five clusters were allowed for fragment 

selection when a number of fragments were sparsely distributed in the clusters. 

Clusters that contained less than two members were excluded in the selection process 

in this experiment. 
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4.2.3. Resampling with new fragments 

Resampling is final step of this method. In this resampling step, a new run 

was carried out using Rosetta3.2 with the target sequence and the new fragment 

library as the input. The conformation sampling algorithm and energy function used 

were the same as in the initial run. In the resampling process, the simulation was 

again started with generation of coarse-grained models to the all-atom models. 

Conformational search mostly occurred near the conformational space that is 

responsible to yield the lowest energy models in the new run because the new 

fragments were generated from the lowest energy models from the preceding 

simulation. Therefore, 30,000 full atom models were generated for the new run. This 

experiment was stopped after two iterations. This experiment generated 1.5E+05 

models in total for each protein sequence. 

4.3. Results 

4.3.1. New fragments from the de novo models 

The accuracy of models can also be improved by providing better quality 

fragments in de novo structure prediction. This work studies the better fragments 

generation from the representative de novo models to improve the prediction 

 

    Figure 4.2 Quality of best fragment in structure-derived and sequence-derived fragment library  
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accuracy. The accuracy of selected fragments from the lowest energy models was 

examined. In order to evaluate the accuracy of fragments, each fragment was 

superimposed to the corresponding fragment in the native structure and their 

difference was measured in terms of CA-RMSD. The new structure-derived fragment 

library contained more accurate fragments than sequence-derived fragment library. 

The accurate fragments were observed for most residues of the benchmark proteins. 

The improved accuracy in the fragment sets was measured in two ways – 

improvement in the best fragment and enrichment of better fragments in the new 

fragment library. 

   The most accurate fragments used in the initial run were further improved 

in the new fragment library. Nine-residue fragments achieved the improvement in 

CA-RMSD for 23 proteins from 30 tested proteins (Figure 4.2). A small improvement 

from 0.73 Å to 0.70 Å was observed for all 30 proteins on average. This improvement 

was observed when the most accurate fragments of the two libraries were compared. 

The most significant improvement (0.35 Å CA-RMSD) was seen in protein 1DI2 

followed by other proteins (1ACF, 1AIU, 1IIB, 1HZ6) where the improvement was 

more than 0.10 Å. The accurate fragments were also enriched in the structure-derived 

library (average CA-RMSD 1.24 Å) compared to the sequence-derived library 

 

Figure 4.3 Enrichment of good quality in sequence-derived and structure-derived fragments 
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(average CA-RMSD 1.71 Å) for nine-residue fragments (Figure 4.3). Because the 

proportion of accurate fragments has increased in the nine-residue fragments, the 

average CA-RMSD of fragments was dropped for all the targets (Figure 4.3). The 

most significant improvement was observed in 1HZ6 where the improvement was 

1.15 Å.   

The improvement in the fragment quality on each residue was examined and 

the result for two proteins targets was provided – 1HZ6 and 1BM8. The most accurate 

nine-residue fragments were significantly improved for the N-terminal residues of 

1HZ6 (Figure 4.4) in structure-derived library. Similarly, most residues for 1BM8 

also achieved the more accurate fragments than its sequence-derived library (Figure 

 

Figure 4.4 Best fragment for each residue position (nine-residue) 

 

Figure 4.5 Average accuracy of fragments at each residue position (nine-residue) 
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4.4). Structure-derived fragments libraries consist with better fragments for 1HZ6 and 

1BM8 (Figure 4.5). Many better fragments were accumulated and for some residues 

(1HZ6 15G-20A and 1HZ6 20A-27E), the fragment quality was significantly 

improved although sequence-derived library did not initially have such a good 

fragments (Figure 4.6). This might be due to conformational sampling.   

 

Figure 4.6 CA-RMSD of twenty-five fragments at each residue position (nine-residue) 

 

Figure 4.7 Fragment quality and unusual secondary structure 
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The fragments for some residues are difficult to improve because these 

residues belong to irregular secondary regions, such as residues 36P-41K in 1IG5, and 

residues 80D to 84Y in 1IIB (Figure 4.7). Furthermore, fragments for residues for 

some other proteins (2H28, 1KPE and 2VSV) were also hard for improvement 

because better fragments were not also present in the sequence-derived fragment 

library. 

4.3.2. Model accuracy improvement 

The accuracy of energy or scoring function is the key step in the model 

selection to assess the prediction quality in the absence of the native structure. In this 

study, the best prediction was evaluated in two ways mimicking a blind prediction. 

First, the lowest energy model was chosen as the best prediction. Secondly, the best 

model from the top five lowest energy models was selected as the best prediction. It 

was termed as the “best in five” model. For the comparative analysis, the results of 

initial run with new run were combined and the number of total models became 

Table 4.1 Prediction performance by Rosetta and NEFILIM based on lowest energy models  

PDB 
Sequen

ce 
length  

Rosetta (Lowest energy model) NEFILIM (Lowest energy model) 
Rosetta all-atom 

energy  CA_RMSD TM 
Score 

GDT-
TS 

Rosetta all-
atom energy CA_RMSD TM Score GDT-

TS 
1A19 89 -192.5  7.49  0.41 44.9 -192.7  6.77  0.46 47.5 
1A68 87 -197.7  6.70  0.44 45.1 -202.7  9.03  0.45 45.4 
1AAR 76 -165.6  4.77  0.52 57.2 -170.2  2.35  0.84 85.2 
1ACF 125 -261.5  5.68  0.58 52.6 -272.5  3.17  0.69 62.8 
1AIU 105 -224.1  2.01  0.82 78.6 -225.4  1.46  0.91 90.0 
1BM8 99 -233.4  3.93  0.67 65.4 -234.3  3.02  0.78 78.8 
1BQ9 53 -103.1  1.99  0.74 82.1 -107.0  1.78  0.74 83.5 
1CC8 72 -147.5  4.37  0.49 58.7 -147.5  4.37  0.49 58.7 
1CTF 68 -154.9  3.58  0.55 62.9 -155.3  3.28  0.56 66.5 
1DI2 69 -152.0  1.95  0.80 84.8 -154.9  0.89  0.92 95.3 
1DTJ 74 -160.4  3.27  0.81 83.1 -162.1  2.24  0.83 86.2 
1HZ6 61 -136.2  3.57  0.51 63.9 -137.3  3.15  0.60 72.5 
1IG5 75 -173.6  3.35  0.63 68.3 -176.3  2.19  0.73 77.0 
1IIB 103 -216.6  11.84  0.54 51.2 -221.3  7.87  0.63 61.9 
1KPE 113 -220.9  10.66  0.39 36.5 -223.8  8.25  0.35 32.1 
1OPD 85 -182.0  5.06  0.42 47.4 -183.3  4.63  0.49 52.4 
1PGX 70 -152.4  5.42  0.69 72.9 -155.4  5.33  0.79 81.1 
1TIG 88 -189.4  5.39  0.47 53.4 -194.2  3.05  0.67 67.9 
1UBQ 76 -174.2  2.07  0.90 92.8 -174.2  2.07  0.90 92.8 
1WD6 86 -198.0  12.70  0.27 33.1 -198.0  12.70  0.27 33.1 
2BC5 106 -252.5  1.93  0.85 81.4 -257.2  1.55  0.89 86.1 
2CI2 65 -135.7  7.70  0.39 43.9 -142.5  7.57  0.42 44.6 
2H28 109 -212.3  14.83  0.31 28.2 -221.6  9.66  0.43 40.4 
2O6K 72 -161.4  5.14  0.52 58.7 -168.4  10.00  0.45 46.9 
2VSV 81 -163.5  6.72  0.48 51.5 -164.6  9.44  0.40 41.7 
3GWL 106 -232.0  9.16  0.49 47.4 -238.2  9.70  0.39 39.2 
3NRW 104 -230.6  7.16  0.37 34.4 -241.1  1.93  0.83 82.5 
3NZL 73 -151.4  11.81  0.29 33.2 -154.7  5.10  0.44 52.1 
4ESN 78 -155.9  6.15  0.28 32.4 -164.2  5.03  0.33 38.1 
5CRO 60 -131.0  3.26  0.81 87.1 -133.5  3.39  0.83 88.3 
Mean   -182.1  5.99  0.55  57.8 -185.8  5.03  0.62  64.3 
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1.5E+05. This is termed as a NEFILIM run.  

 NEFILIM run improved the accuracy for 22 proteins compared to Rosetta 

when the lowest energy model was considered as the best prediction. The prediction 

accuracy was assessed using three different measurement tools – CA-RMSD, 

template modeling score (TM-score), and global distance test – total score (GDT-TS). 

The CA-RMSD was improved to 5.03 Å (NEFILIM) from 5.99 Å (Rosetta) on 

average for all protein targets of benchmark data. Both, TM-score and GDT-TS, were 

also improved by 7% in NEFILIM than Rosetta (Table 4.1). The improvement was 

further tested using the Student’s t-test package in R version 3.0.2 software (Team, 

2008) for the statistical significance. The improved results were also statistically 

significant in all the three cases with 95% confidence interval. The p-value was less 

than 0.05 in the paired t-test for all three methods.  

The further analysis was performed using only CA-RMSD as its simplicity 

and generality. Models having CA-RMSD less than 3.5 Å to native structure were 

closely inspected because these models are practically useful such as in solving 

crystallographic phase problem by MR (Blow and Rossmann, 1961; Qian, et al., 

Table 4.2 Accuracy of best in top five models generated by Rosetta and NEFILIM 

PDB Sequence 
length  

Control run (Best in top five) NEFILIM (Best in top five) 
CA_RMSD TM Score GDT-TS CA_RMSD TM Score GDT-TS 

1A19 89 2.30  0.74 72.8 2.51  0.71 72.8 
1A68 87 6.70  0.44 45.1 6.42  0.45 47.7 
1AAR 76 4.70  0.54 60.2 1.30  0.90 91.5 
1ACF 125 4.87  0.58 52.6 3.00  0.73 66.2 
1AIU 105 1.98  0.83 80.0 1.46  0.91 90.0 
1BM8 99 3.19  0.74 70.2 3.00  0.78 78.8 
1BQ9 53 1.82  0.83 90.6 1.78  0.74 83.5 
1CC8 72 2.18  0.78 80.2 3.65  0.59 64.2 
1CTF 68 3.14  0.61 68.4 3.28  0.55 66.5 
1DI2 69 0.99  0.91 94.6 0.86  0.93 95.7 
1DTJ 74 2.30  0.85 87.2 2.21  0.84 86.8 
1HZ6 61 3.49  0.60 69.7 3.06  0.60 72.5 
1IG5 75 2.39  0.76 78.7 2.14  0.73 77.0 
1IIB 103 2.71  0.72 69.9 2.08  0.80 77.2 
1KPE 113 7.30  0.48 42.0 8.25  0.35 32.1 
1OPD 85 3.14  0.57 62.4 4.09  0.49 53.2 
1PGX 70 5.42  0.70 72.9 5.24  0.79 81.1 
1TIG 88 3.16  0.65 67.1 2.84  0.71 72.4 
1UBQ 76 1.41  0.92 94.4 1.52  0.91 93.4 
1WD6 86 3.79  0.50 50.9 3.79  0.50 50.9 
2BC5 106 1.83  0.87 85.1 1.52  0.89 86.8 
2CI2 65 6.50  0.44 48.1 6.39  0.48 51.9 
2H28 109 9.61  0.47 44.5 9.66  0.43 40.4 
2O6K 72 4.83  0.52 58.7 2.33  0.72 75.7 
2VSV 81 6.72  0.48 51.5 6.72  0.48 51.5 
3GWL 106 8.15  0.49 47.4 5.52  0.55 55.4 
3NRW 104 3.33  0.73 67.3 1.73  0.83 82.5 
3NZL 73 5.49  0.39 46.2 3.44  0.58 62.7 
4ESN 78 5.15  0.33 38.8 4.32  0.36 40.7 
5CRO 60 3.24  0.82 87.1 3.39  0.83 88.3 
Mean   4.06  0.64  66.1  3.58  0.67  69.6 
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2007). Fifteen tested proteins showed CA-RMSD better than 3.5 Å when the lowest 

energy models were compared, while nine proteins achieved the accuracy better than 

CA-RMSD 3.0 Å. The average accuracy for the proteins, which have CA-RMSD less 

than 3.5 Å either in Rosetta or NEFILIM, was improved from 3.59 Å (Rosetta3.2) to 

2.36 Å (NEFILIM).  

 The performance was also evaluated using the “best in five” models. 

NEFILIM predicted better models (CA-RMSD of 3.58 Å) on average than Rosetta 

(CA-RMSD of 4.06 Å) for 20 out of 30 proteins (Table 4.2). The improvement was 

also evaluated using TM-score and GDT-TS. TM-Score was, on average, improved 

from 0.64 (Rosetta) to 0.67 (NEFILIM). Furthermore, NEFILIM improved the GDT-

TS by 4% than Rosetta.  The improvement has a p-value of 0.01 (CA-RMSD), 0.06 

(TM-score), and 0.04 (GDT-TS) using the paired t-test with 95% confidence interval 

(Table 4.2). Nineteen proteins showed the accuracy less than CA-RMSD 3.5Å in 

NEFILIM. Among these proteins, fourteen targets were predicted with accuracy 

better than 3.0 Å CA-RMSD. In the contrary, Rosetta showed 17 cases with less than 

3.5 Å and 10 cases with less than 3.0 Å. Altogether, twenty two proteins showed CA-

RMSD better than 3.5 Å with a mean of 2.98 Å (Rosetta) and 2.44 Å (NEFILIM) 

respectively.  

NEFILIM was further compared with a similar method, EdafoldAA 

(Simoncini and Zhang, 2013). Due to the huge computational power requirement, the 

result reported in the article (Simoncini and Zhang, 2013) was used in order to 

compare the accuracy of NEFILIM with EdafoldAA. Fifteen targets were observed 

common in both experiments. This experiment showed an average CA-RMSD of 3.73 

Å for the lowest energy models compared to 3.96 Å from EdafoldAA. Similarly, 

NEFILIM also performed better than EdafoldAA when the best in five models were 

compared. The average CA-RMSD was 2.78 Å (NEFILIM) and 3.21 Å (EdafoldAA) 

respectively.   
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 Among the successful targets, four proteins (1ACF, 3NRW, 1BM8, and 

1HZ6) were selected for the analysis of energy landscape verses prediction accuracy 

(Figure 4.8). Energy landscape contained less ruggedness in NEFILIM new run for 

three proteins (1ACF, 1BM8, and 1HZ6). In addition, the energy gap was reduced 

between the relaxed native models and the lowest energy models for 1ACF and 

3NRW (Figure 4.8). NEFILIM new run predicted the accurate models with lower 

energies than Rosetta run for these two targets. Rosetta generated energy landscape 

 

Figure 4.8 Scatter plot between energy and accuracy 
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for 1HZ6 that had three regions where the lowest energy models were located 

however NEFILIM new run sampled only on the region near to the native structure. It 

was explored how the multiple peaks vanished in the energy landscape of NEFILIM 

new run. In order to understand, NEFILIM was run with the fragments obtained 

without filtering using APRDS and the energy landscape again contained the same 

three peaks. This indicates that APRDS can be useful to vanish the distant fragments. 

The lowest energy model achieved the improvement of CA-RMSD 0.50 Å in 

NEFILIM for 1HZ6 but a large energy barrier still existed between the relaxed native 

structures and predicted models. 

An analysis showed that lacking of better fragments for C-terminal residues 

could be the cause for this energy barrier (Figure 4.8). NEFILIM improved accuracy 

of the lowest energy model by 0.91 Å and energy landscape was more funnel-shaped 

for protein 1BM8. However, the lowest energy predicted models were not predicted 

closer to the relaxed native structures (Figure 4.8). Therefore, an energy gap was 

clearly seen between the relaxed native models and the lowest energy models. 

Table 4.3 Comparison of average energy and their accuracy 

Targets Sequence 
length 

Rosetta (average 200 models) NEFILIM (average 200 low energy models) 
Average Rosetta 

energy  
Average CA-

RMSD 
Average Rosetta 

energy 
Average CA-

RMSD 
1A19 89 -184.3 10.3 -186.54 9.49 
1A68 87 -186.6 10.8 -190.83 10.77 
1AAR 76 -160.0 5.7 -163.81 4.19 
1ACF 125 -252.9 9.5 -260.66 6.31 
1AIU 105 -207.1 9.2 -209.35 9.37 
1BM8 99 -214.3 8.9 -225.04 3.67 
1BQ9 53 -95.2 4.3 -101.51 2.54 
1CC8 72 -141.7 5.8 -143.2 6.84 
1CTF 68 -147.7 5.2 -153.08 3.42 
1DI2 69 -146.1 2.5 -150.43 1.58 
1DTJ 74 -150.6 4.3 -154.22 3.74 
1HZ6 61 -132.1 4.7 -134.53 3.4 
1IG5 75 -166.9 4.3 -173.51 4.63 
1IIB 103 -208.4 10.3 -215.34 10.44 
1KPE 113 -210.2 11.8 -215.35 10.91 
1OPD 85 -171.0 8.4 -171.57 8.23 
1PGX 70 -145.8 6.7 -150.85 6.19 
1TIG 88 -182.5 6.1 -183.73 4.88 
1UBQ 76 -168.1 2.5 -171.1 2.66 
1WD6 86 -183.5 9.0 -183.22 9.49 
2BC5 106 -248.6 2.3 -252.58 2.02 
2CI2 65 -127.5 8.0 -136.97 8.46 
2H28 109 -204.3 12.5 -214.19 11.24 
2O6K 72 -153.5 8.6 -160.12 8.36 
2VSV 81 -154.0 11.0 -155.88 10.55 
3GWL 106 -225.2 11.8 -232.27 9.82 
3NRW 104 -223.9 9.0 -231.49 5.54 
3NZL 73 -146.1 9.6 -149.13 6.29 
4ESN 78 -150.8 7.6 -156.07 5.53 
5CRO 60 -126.4 4.3 -129.93 4.1 
Mean   -173.8 7.5 -178.6 6.5 



 55

The energy function has gained more discriminative power in quality 

assessment. NEFILIM predicted more accurate models with lower Rosetta all-atom 

energies. The lowest energy was improved to -185.82 (NEFILIM) from -182.07 

(Rosetta run) on average for 30 targets. NEFILIM significantly improved Rosetta all-

atom energies for 1ACF and 3NRW by about -10.00 with accuracy. The scatter plot 

of Rosetta energy versus CA-RMSD to native structure for 1ACF and 3NRW clearly 

showed the discrimination between native and non-native structures (Figure 4.8). 

More accurate models are enriched in the lowest energy regions in NEFILIM 

experiment than Rosetta experiment. In order to demonstrate the enrichment of good 

models with lower energies, two hundred lowest energy models were selected from 

the pool and averaged their energy and accuracy. Rosetta showed the average Rosetta 

energy and accuracy -173.8 and 7.5 Å respectively for 30 targets (Table 4.3). These 

scores were improved in the NEFILIM run to -178.3 (Rosetta energy) and 6.5 Å (CA-

RMSD) respectively. This result suggests more accurate fragments increased the 

sampling ability near to the native region with lower energies.  

Table 4.4 Comparison of best models predicted in NEFILIM initial and new runs 

PDB 
NEFILIM initial run (Lowest energy models) NEFILIM new run (Lowest energy models) 

Rosetta 
energy CA-RMSD TM Score GDT-TS 

Rosetta 
energy CA-RMSD TM Score GDT-TS 

1A19 -191.1 2.5 0.71 0.73 -192.7 6.8 0.46 0.47 
1A68 -197.7 6.7 0.44 0.45 -202.7 9.0 0.45 0.45 
1AAR -164.9 5.2 0.45 0.52 -170.2 2.3 0.84 0.85 
1ACF -261.5 5.7 0.58 0.53 -272.5 3.2 0.69 0.63 
1AIU -217.5 2.9 0.80 0.80 -225.4 1.5 0.91 0.90 
1BM8 -222.6 4.1 0.61 0.60 -234.3 3.0 0.78 0.79 
1BQ9 -103.1 2.0 0.74 0.82 -107.0 1.8 0.74 0.83 
1CC8 -147.5 4.4 0.49 0.59 -147.2 3.6 0.50 0.61 
1CTF -154.9 3.6 0.55 0.63 -155.3 3.3 0.56 0.67 
1DI2 -152.0 1.9 0.80 0.85 -155.6 0.9 0.92 0.95 
1DTJ -159.2 2.7 0.78 0.81 -162.1 2.2 0.83 0.86 
1HZ6 -136.1 3.5 0.54 0.66 -137.3 3.1 0.60 0.73 
1IG5 -173.6 3.3 0.63 0.68 -176.3 2.2 0.73 0.77 
1IIB -216.6 11.8 0.54 0.51 -221.3 7.9 0.63 0.62 
1KPE -218.2 7.3 0.48 0.42 -223.8 8.2 0.35 0.32 
1OPD -176.8 5.4 0.50 0.53 -183.3 4.6 0.49 0.52 
1PGX -152.4 5.4 0.69 0.73 -155.4 5.3 0.79 0.81 
1TIG -189.4 5.4 0.47 0.53 -194.2 3.0 0.67 0.68 
1UBQ -174.2 2.1 0.90 0.93 -173.7 1.5 0.88 0.90 
1WD6 -198.0 12.7 0.27 0.33 -188.8 9.5 0.27 0.31 
2BC5 -252.5 1.9 0.85 0.81 -257.2 1.6 0.89 0.86 
2CI2 -135.7 7.7 0.39 0.44 -142.5 7.6 0.42 0.45 
2H28 -212.3 14.8 0.31 0.28 -221.6 9.7 0.43 0.40 
2O6K -161.4 5.1 0.52 0.59 -168.4 10.0 0.45 0.47 
2VSV -163.5 6.7 0.48 0.52 -164.6 9.4 0.40 0.42 
3GWL -232.0 9.2 0.49 0.47 -238.2 9.7 0.39 0.39 
3NRW -227.6 5.2 0.73 0.67 -241.1 1.9 0.83 0.82 
3NZL -150.5 7.1 0.39 0.46 -154.7 5.1 0.44 0.52 
4ESN -155.9 6.1 0.28 0.32 -164.2 5.0 0.33 0.38 
5CRO -130.0 3.2 0.82 0.87 -133.5 3.4 0.83 0.88 
Mean -180.9 5.5 0.58 0.60 -185.51 4.9 0.62 0.64 
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4.3.3. Improved performance in resampling 

In the NEFILIM initial run, the sequence-derived fragments were used to 

generate 1.2X105 models. In this run, the accuracy was produced on average 5.57 Å 

in CA-RMSD on the benchmark of 30 proteins from the native structures when lowest 

energy model was taken as best prediction. This CA-RMSD was improved to 4.88 Å 

in the NEFILIM new run (Table 4.4). NEFILIM new run performed better by 4% 

when TM-score and GDT-TS assessed the model quality (Table 4.4).  

Another criteria were also employed for comparisons in which the best in 

five lowest energy models were selected. Their average CA-RMSD was improved 

from 4.13 Å (NEFILIM initial run) to 3.95 Å (NEFILIM new run) (Table 4.5). 

However, the performance was dropped to 2% increment from 4% when TM-Score 

and GDT-TS assessed the best in top five lowest models (Table 4.5). Still, the 

performance measured using GDT-TS and TM-score was better than Rosetta run.  

Sixteen proteins showed accuracy better than 3.5 Å in CA-RMSD when the 

lowest energy models were selected. Their average CA-RMSD was improved from 

Table 4.5 Comparison of best in top five models generated in NEFILIM initial and new 

runs 

PDB NEFILIM initial run (Best in top five) NEFILIM new run (Best in top five) 
CA_RMSD TM Score GDT-TS CA_RMSD TM Score GDT-TS 

1A19 2.3 0.74 72.8 6.2 0.46 50.0 
1A68 6.7 0.49 51.4 6.4 0.45 47.7 
1AAR 4.7 0.54 60.2 1.3 0.90 91.5 
1ACF 5.1 0.66 62.2 3.0 0.73 66.2 
1AIU 2.0 0.83 80.0 1.5 0.91 90.0 
1BM8 3.5 0.68 66.7 3.0 0.78 78.8 
1BQ9 1.8 0.78 85.4 1.8 0.75 82.1 
1CC8 3.1 0.68 72.6 3.6 0.59 64.2 
1CTF 2.7 0.64 71.3 3.3 0.56 64.3 
1DI2 1.3 0.86 90.2 0.9 0.93 95.7 
1DTJ 2.7 0.85 87.2 2.2 0.84 86.8 
1HZ6 3.5 0.54 66.0 3.1 0.60 72.5 
1IG5 2.4 0.76 78.7 2.2 0.73 77.0 
1IIB 2.8 0.75 73.5 2.1 0.80 77.2 
1KPE 7.3 0.48 42.0 8.2 0.35 32.1 
1OPD 4.3 0.50 53.2 4.1 0.50 55.3 
1PGX 3.3 0.79 82.1 5.2 0.79 81.1 
1TIG 3.2 0.65 67.1 2.8 0.71 72.4 
1UBQ 1.4 0.93 95.1 1.5 0.90 93.1 
1WD6 3.8 0.50 50.9 8.6 0.28 31.4 
2BC5 1.3 0.91 88.9 1.5 0.89 86.8 
2CI2 6.5 0.44 48.1 6.4 0.48 51.9 
2H28 10.1 0.40 40.4 9.7 0.43 40.4 
2O6K 5.1 0.52 58.7 2.3 0.72 75.7 
2VSV 6.7 0.48 51.5 9.1 0.44 46.3 
3GWL 8.1 0.49 47.4 5.5 0.55 55.4 
3NRW 3.9 0.73 67.3 1.7 0.84 82.5 
3NZL 7.1 0.41 49.7 3.4 0.58 62.7 
4ESN 5.1 0.31 38.8 4.3 0.36 40.7 
5CRO 3.2 0.82 87.1 3.4 0.83 88.3 
Mean 4.2 0.64 66.2 0.7 0.66 68.0 
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3.5 Å (NEFILIM initial run) to 2.6 Å (NEFILIM new run). Furthermore, the 

improvement in CA-RMSD to the native structure for 7 proteins was more than 3.5 Å 

(Table 4.1). Similarly, when the best in five models are used to evaluate the prediction 

performance, twenty-one proteins have CA-RMSD lower than 3.5 Å (15 proteins 

have CA-RMSD better than 3.0 Å). These twenty-one proteins showed the accuracy 

3.2 Å CA-RMSD (initial run) and 2.7 Å (new run) on average (Table 4.4). The 

accuracy performance significantly dropped for two proteins 1A19 and 1PGX in the 

new run (Table 4.4). For protein 1A19, the CA-RMSD degraded from 2.5 Å to 6.8 Å 

when lowest energy model was taken and from 2.3 Å to 6.2 Å when the best in five 

models was considered for performance evaluation.  

 The total elapsed time spent for both simulations was also computed. This is 

considered as another criterion of performance evaluation. NEFILIM spent the time to 

generate fragments and the models in the initial and new runs, which is the total 

elapsed time required in this strategy for each protein. NEFILIM generated 1.2E+05 

models in the initial run and 3E+04 models in the new run. The fragment generation 

time includes elapsed time spent in clustering and APRDS computation. I considered 

the time required to generate 2E+05 models as total elapsed time in a Rosetta run. The 

 

Figure 4.9 Total time spent by Rosetta and NEFILIM for each target 
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total elapsed time spent by both methods was computed and compared. NEFILIM 

spent less elapsed time 8.93E+04 CPU core hours compared to Rosetta (1.12E+05 

CPU core hours). The time taken by each target for NEFILIM and Rosetta is shown 

(Figure 4.9).  

4.4. Discussion 

De novo protein structure prediction using fragment assembly reduces the 

search space by using fragments from experimentally determined structures. The 

information provided in the fragments, therefore, influences the conformational 

search. This work focuses the study about conformation sampling near the native 

region using better quality fragments. The new fragments are generated from the 

lowest energy models predicted in the initial run in order to search the conformational 

space near the native region. Many models of the most tested proteins appeared closer 

to the native structure with lower energies using the new fragment library.   

Unbiased trajectories in de novo structure prediction can be used to converge 

the models towards the global minima and to avoid them being trapped in the multiple 

local minima. Usage of sequence-derived fragments in structure prediction can search 

a larger conformational space. Despite the diversity of fragments in the sequence-

derived fragments, the fragments, which guide the search procedure to converge 

toward deep local minima in conformational space, are often selected in the sampling 

using simulated annealing. These fragments, which appeared in the lowest energy 

models, are presumably native-like fragments. The obtained information from the 

models was exploited to guide conformation sampling near the global minimum. The 

information underneath in these models was converted into the fragments for next-

round of model generation. Therefore, this method bears the similarity with other 

resampling methods that use the information achieved from the previous iteration in 

the subsequent iterations of structure prediction. However, this method has unique 

features that distinguished it from other methods. Most of the other resampling 

methods seek to generate the fragments efficiently from the sequence-derived 

fragment library using statistics on feature space (Blum, et al., 2010), function model 

(Brunette and Brock, 2005), fragment distribution (Simoncini, et al., 2012), or torsion 

angle distribution (Li, et al., 2008). However, NEFILIM generated fragments were 

not only enriched with better fragment from sequence-derived library but also 

contained more accurate fragments from de novo models.  



 59

Clustering was used in identifying the accurate fragments from 

representative de novo models generated in the initial run. The fragments in large 

clusters represent the several distinct instances of local conformations adopted in the 

lowest energy models. One of the clusters may capture the instance of the native 

conformation. However, in this procedure, top five clusters were chosen in the 

fragment selection in order to maintain the diversity in the new fragment library. The 

cluster radius might have significant impact on the composition of the new fragments 

in the library. As observed in the experiment, the number of clusters is mostly 

dependent on the secondary structure element. Helical fragments are often clustered 

densely and fragments with loops are sparsely distributed among the clusters. This 

suggests that the cluster radius can be chosen based on secondary structure element 

but this is complex because each target needs the multiple cluster radii. Moreover, 

secondary structure elements in the predicted models were varied. Instead, the cluster 

radius was determined by training the fragments of global proteins. This fragment 

generation procedure was carried out using a single clustering radius.  

Two cluster radii were set based on fragment sizes (0.20 Å for three-residue 

fragments and 1.0 Å for nine-residue fragments) for this experiment. In order to 

determine the precise clustering radii, the models that are the densely and sparsely 

distributed near the native region were chosen. Indeed, the densely clustered models 

show the better prediction accuracy when a smaller clustering threshold is used. For 

example, smaller clustering threshold performed better for targets such as 2BC5 

where many lowest energy models appeared near to the native structures. This is 

because smaller threshold finely put the representative fragments in top five clusters 

and one of these clusters contains the candidate fragments as in the native structures. 

However, this selection procedure does not work when the lowest energy models are 

distributed in the large conformation space even forming the multiple peaks in the 

energy landscape. A larger cluster radius might be appropriate for sparsely sampled 

lowest energy models. In the training set, the protein targets 1CTF and 1BM8 showed 

sparse distribution between selected lowest energy models and the accuracy. In these 

cases, a large clustering threshold could gather better fragments, which are distributed 

sparsely, in top five clusters. This type selection helps to select the rarely appeared 

better fragments in the new fragment library. 
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Those in majority dominated the candidate fragments in new fragment 

libraries because clustering was used for new fragment generation. Many fragments 

that adopted frequently in the lowest energy models are presumed native-like 

fragments. When the sequence-derived fragments libraries contain the low quality 

fragments, the new fragment library have also small probability to contain the better 

fragments unless conformation sampling significantly improved the accuracy of 

predicted models and their fragments. This was seen for few targets. The new 

fragment library, sometimes, contains the poor quality fragments such as in 1A19 

(1K-10I and 24L-29Y) and produced the inaccurate models than in the initial run.  

The energy versus CA-RMSD scatter plot became smoother in the new run 

than the initial run. Many near-native models were sampled with low energy near the 

native structures (Figure 4.8). Sampling with structure-derived fragments removed the 

multiple peaks observed in the energy landscape for a few proteins. Structure-derived 

fragments also produced more accurate lowest energy models than sequence-derived 

fragments but the accuracy has not reached the level of relaxed native models. 

Therefore, energy discrepancies exist between the predicted models and relaxed 

native models for those cases where energy function accurately guides the 

conformation sampling. Absence of native-like fragments for some residues created 

the energy barrier between the lowest energy models and the relaxed native models 

such as in 1BM8 and 1CTF.  

NEFILIM generated inaccurate models (more than 3.5 Å CA-RMSD) for 

1KPE, 2H28, 1EW4, and 2VSV because the selected lowest energy models in the 

initial run did not contain good models (< 3.5 Å) in the majority. Fragment generation 

misses the rarely sampled better fragments and includes the densely sampled worst 

fragments. These fragments did not focus sampling towards the native conformational 

space because torsion angles of selected fragments did not match with that of the 

target structures. This approach, by design, concentrates the sampling near the 

conformational space where the lowest energy models are sampled in the initial run. 

Therefore, torsion angle information provided by the selected lowest energy models 

plays pivotal role to forecast the results in the new run. This method also misguided 

the sampling when many lowest energy models were predicted inaccurately in the 

initial run, such as in 2CI2, 1AIU, 1IIB, 1A19 and 1CC8. In these cases, although 

many residues positions achieved the fragment quality improvement, subsequently 
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prediction quality was degraded due to loss of better fragments for a few residue 

positions. These better fragments rarely appeared in the lowest energy models and 

subsequently vanished.  

Structure-derived fragments improved the model quality assessment using 

Rosetta energy in most tested targets. However, the best prediction was not selected 

from the prediction pool for some targets using the Rosetta energy. The inaccuracy in 

the energy function might be the cause (Das, 2011). Structure-derived fragments 

generated accurate models (better than 2.0 Å) in the pool for 13 out 30 proteins but 

for 9 cases, these accurate models did not adopt the lowest Rosetta energy. Therefore, 

Rosetta energy was not able to identify these models as the best predicted models in 

these targets. Out of these 9 targets, Rosetta energies of the relaxed native structures 

of 7 targets (1IG5, 1DI2, 1DTJ, 1PGX, 2O6K, 2BC5, and 5CRO) overlapped with or 

became worse than that of predicted models. In these targets, accurate model 

prediction cannot be possible by providing better quality fragments and by increasing 

the number of iterations for conformational sampling. This was one of the major 

reasons of stopping the simulation after the second iteration. Here is another reason 

for stopping the simulation after the second iteration. The information (torsion angles) 

propagated from the initial prediction to structure-derived fragments was inaccurate 

for some residues for better prediction. Fragments for these residues that do not have 

correct torsion angles like in the native structures after the initial run are difficult to 

improve. In this case, improving the fragments only for certain residues does not 

substantially assist to predict near-native models. This was observed for protein 

targets 1CTF, 1IIB, 1HZ6, and 1OPD respectively. 

4.5. Conclusion 

This study improves the accuracy of fragments using initially predicted 

lowest energy models and then uses these new set of fragments for the next-round of 

prediction in order to generate the better models. The accuracy of nine-residue 

fragments is improved for 77% cases. The fragments, which were adopted in the 

lowest energy models, were gathered using clustering algorithm and the most 

frequently occurring fragments were selected as new fragments. Therefore, new 

fragment libraries (new three-residue and nine-residue) were enriched with better 

fragments. Fragment quality was improved by 0.47 Å for nine-residue fragments. The 

experimental result shows that these improved fragments predict the lowest energy 
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models closer to the native structure. The accuracy performance shows the success in 

better model prediction on average for a benchmark of 30 targets from 5.99 Å to 5.03 

Å for the lowest energy model and 4.06 Å to 3.58 Å for the best in five models as 

compared to Rosetta. The accuracy better than 3.5 Å CA-RMSD was further 

analyzed. This was observed in 50% tested targets and their average accuracy was 

improved from 3.59 Å to 2.37 Å when the lowest energy models were considered as 

the best prediction. Furthermore, the success of new run over initial run was also 

measured and their CA-RMSD of the lowest energy model and the best in five 

predictions was improved, on average, by 0.68Å and 0.19Å respectively. 
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Chapter 5. FRAP – ab initio phasing with de novo fragments 

for difficult targets 

5.1. Objective 

The most widely used computational tool for phasing of diffraction pattern of 

protein crystal is MR. It requires the search model that should have structural 

similarity with the target structure to locate the placement in the unit cell. 

Advancement in bioinformatics for sequence alignment (Altschul, et al., 1997) and 

development of comparative structure modeling provides the robust tools to identify 

the suitable search model for MR (Marti-Renom, et al., 2000). The utility of MR in 

solving phase problem is also due to the ever-increasing number of protein structures 

deposited in PDB (Berman, et al., 2002). Despite all these successes, there are 

numerous sequences that do not have homologous structures. MR cannot be used to 

determine the protein structure in these cases. However, these problems can be 

tackled using the computationally predicted models as searched models. Indeed, 

accuracy achieved by recently developed methods for protein structure prediction 

using only sequence information increases the utility of the MR.  

Rosetta, one of the principle methods, demonstrated to solve the 

crystallographic phase problem using the de novo models (Qian, et al., 2007). The 

predicted de novo model for natural protein using Rosetta achieved the success in MR 

experiment (Qian, et al., 2007). These models for large dataset were further 

extensively tested for phasing and the model accuracy appeared as major constraint in 

successful phasing (Das and Baker, 2009). In addition, computational power 

substantially increased the success rate in MR (Das and Baker, 2009). However 

computational power was efficiently managed by incorporating phasing program in 

the course of de novo structure prediction refinement for large cluster without 

compromising on model accuracy (Shrestha, et al., 2011). The accuracy of search 

model has been improved by trimming wrongly predicted regions (Bibby, et al., 2014; 

Rigden, et al., 2008), or resampling more on error-prone residues (Shrestha, et al., 

2012). The maximum likelihood target functions introduced in Phaser has increased 

the sensitivity of MR searches (McCoy, et al., 2007). The increased sensitivity in MR 

searches can correctly identify the location of fragments in the unit cell (Rodriguez, et 

al., 2009; Sammito, et al., 2013).     
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Phasing using MR generally requires closer search model to the target 

structure either for homologous protein or de novo model. Although the quality of 

search model required for MR significantly relied on the targets, it should be 

generally within 3.0 Å CA-RMSD from the target structure. The methods 

(conformational sampling and energy function) used in de novo modeling have 

successful made the suitable search model for MR from distant homologous proteins, 

NMR models (Qian, et al., 2007). Furthermore, electron density map guided energy- 

optimization has improved the quality of search model for difficult targets and 

obtained the final models (DiMaio, et al., 2011).  However, de novo modeling is still 

practically challenging to produce the accurate search model independently from 

amino-acids sequence due to conformational sampling and energy function. 

Therefore, the utility of MR with de novo models is still far away from routine. When 

de novo models were predicted with accuracy low-quality (3.0–4.0 Å CA-RMSD or 

beyond), the models have unlikely to be used in MR for phasing. In the absence of 

accurate search models, the concept of using idealized alpha helical fragments 

(Rodriguez, et al., 2009) was further explored and implemented for de novo models. 

Therefore, instead of improving the accuracy of full-length models, these models 

were broken into many smaller fragments for phasing. 

In this study, a new method was introduced for protein structure 

determination using MR with template from low-quality de novo models. This 

approach uses the fragments from low-quality de novo models. The best predicted de 

novo models for these targets were low-quality and insufficient of MR. These selected 

targets were previously unsuccessful and considered as difficult for de novo 

modeling. These difficult targets include the alpha, beta, and mixed alpha-beta 

proteins. This method breaks the de novo models into constant-length overlapping 

fragments, clusters fragments, selects the representative fragments, uses these 

fragments independently for phasing, phases the each fragments to identify the correct 

places and assembles the phased fragments using crystallographic operators to obtain 

the final models. In this study, the method was tested with ten difficult targets and 

best-predicted full-length de novo models were unable to provide the phases. The 

results from our method showed phasing using MR with challenging targets solve for 

80% of cases 
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5.2. Methods 

This method mostly includes the de novo model generation, substructure 

generation, independently phased the substructures, and assembled substructures to 

obtained the final models respectively (Figure 5.1).  The substructure was called as 

the fragment in this work. The overlapping constant-length fragments were 

constructed from selected low-energy de novo models generated using Rosetta. De 

novo models were generated that were broken into fragments for each residue 

position. The representative fragments were selected after clustering of fragments and 

then phased independently using Phaser. The fragments selected after MR were 

assembled together in order to place in the unit cell. The partial models after fragment 

placement in the unit cell were significantly closer to the native structure than best 

predicted de novo models. Therefore, the phase angles from partial model were 

sufficient to determine final structure using automated model building program. The 

algorithm was implemented using C++ programming language and called as FRAP 

that stand FRagment Assembly Phasing.    

 

Figure 5.1 Schematic diagram of FRAP 
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5.2.1. Benchmark data selection 

Ten proteins of different topologies (all alpha, all beta, and alpha + beta 

topologies) were selected as benchmark dataset to test the programs. Few of these 

proteins were collected from previous studies (Shrestha, et al., 2011; Shrestha, et al., 

2012). Importantly, these targets were considered as the hard targets for phasing 

because best-predicted de novo models were unable to provide the accurate phases 

using MR. Therefore, the criterion set for selection of each target was whether full all-

atom models provided the solution in phasing experiment using Phaser. In target 

selection process, Rosetta was used to generate 1.2E+05 all-atom models for each 

protein of benchmark data using amino-acids sequence and two types of fragment 

libraries. Three-residue and nine-residue fragment libraries were generated from 

Robetta server (Chivian, et al., 2003). As the representative models, 1000 low-energy 

models were selected using Rosetta energy function and then given to the phasing 

program. The solution of each of 1000 models was verified. If MR was unable to 

place the model in asymmetric unit of the unit cell, the target was selected to test the 

FRAP.  

5.2.2. De novo fragments generation for molecular replacement 

One thousands lowest energy models that cannot be used as search model for 

MR were selected based on Rosetta all-atom energy. These models were fragmented 

into many overlapping constant-length fragments. Three different types of constant-

length fragments (thirteen-residue, seventeen-residue and twenty-one-residue) were 

independently generated. There could be many candidate fragments as search model 

in MR but few representative fragments were only selected due to the computational 

complexity. In order to select the representative fragments, fragments for each residue 

position were clustered and two hundred fragments were randomly picked from the 

top ten clusters. One of the fragments taken from the largest clusters can be instance 

fragment of the native structure that can be suitable search model for MR. This 

fragment selection procedure for MR was same as in the previous study (Shrestha and 

Zhang, 2014). The fragments selected using Rosetta energy were subjected to phase 

with MR program Phaser (McCoy, et al., 2007). For each fragment, the entire protein 

sequence was used and as the model error in the Phaser, CA-RMSD 0.50 Å was set 

for each fragment. 
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5.2.3. Fragment assembly after molecular replacement 

The placement of fragments together in the asymmetric unit in the absence of 

native structure is challenging and important. The independently placed fragments 

after MR cannot be used in structure determination due to the ambiguities in the 

permissible origins. Therefore, it is necessary to make same permissible origins to 

obtain phase. This can be done using either real-space approach or reciprocal-space 

approach. A real-space approach was used to assemble the phased fragments and 

these are the steps. One fragment from the pool of phased fragments was selected that 

was termed as seed fragment. The fragment that has high TFZ or LLG score can be 

candidate for seed fragment. In addition, sometimes, secondary structure of the 

fragment was another key in the seed fragment selection. Afterward, full-length de 

novo model of the target sequence was also randomly selected from the prediction 

pool. This model is often low-energy de novo models and called as reference model. 

The reference model was superimposed to the seed fragment using rigid body 

transformation (Kabsch, 1976) imposing the residues that covered the seed fragments.  

If seed fragment and reference model were close to each other, the other 

fragments were placed based on the seed fragment and reference model. The 

fragments were rotated and translated using provided crystallographic operators. All 

the crystallographic operators provided by permissible origin, symmetry operators 

allowed for space group including unit cell translation were employed on each 

fragment. For each operation, the Euclidean distance of candidate fragment to the 

seed fragment and specific portion of the de novo model were computed. After 

computing all the combinations, the minimum distance were kept as the correct 

solution for given fragments. While identifying correct location for the given 

fragment, the numbers of clash to the already kept fragments were also used to filter 

out wrong solutions and overlapping fragments. The partial models were obtained 

after fragment assembly but the phases obtained was sufficient to construct the final 

models using automated model building method using Phenix (phenix.autobuild) 

without manual intervention. 

Fragment assembly after phasing of fragments using MR for polar space 

group was complex since permissible origins were not specified for these space 

groups. Their origins are related by translation along the polar axes. In order to solve 
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the origin conflict problem in polar space group, fast translation function 

implemented in Phaser was executed.    

5.3. Result and Discussion 

5.3.1. Seed fragment and reference model 

Successful fragments in MR could also be placed at different unit cells that 

were related by crystallographic operators. Without the reference, all the fragments 

are impossible to assemble together at the same unit cell because of symmetry, 

permissible origins, and unit cell. Therefore, the reference point was at first selected. 

Seed fragment and reference models were the starting point of fragment assembly in 

this experiment. Seed fragment and reference model determine the location of other 

fragments. The selection of the seed fragments is challenging because seed fragment 

determines the location of other fragments. Importantly, if the seed fragment is placed 

at incorrect location, other fragments cannot be placed at correct position though these 

fragments might be correctly placed. The fragments with high TFZ and LLG scores 

were taken as the seed fragments (Figure 5.2). Seed fragments often showed the TFZ 

scores more than 7.0 except for the molecules with the polar space group and their 

LLG scores were also high (Figure 5.2). Seed fragments were often observed either �-

 

Figure 5.2 Quality of seed fragments measured by LLG and TFZ scores 
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helices or anti-parallel �-strands. For seventeen-residue fragments, seed fragments 

were �-helical for five proteins (1CTF, 1CM3, 1OPD, 3NZL, and 4ESP) and anti-

parallel �-strands for three proteins (1EW4, 3EFF, and 3MX7).  

Because polar space group does not have predefined permissible origins and 

provides the ambiguities of translation vectors, the seed fragments cannot be directly 

used to assemble the fragments. Therefore, the fast translation function was used in 

order to solve the ambiguities in permissible origin translation. Afterward, seed 

fragments were selected for polar space groups after fast translation function (FTF). 

This experiment contains two polar space groups (P1 and P21). 

5.3.2. De novo fragments and molecular replacement 

Poor quality de novo models cannot be considered as suitable search 

template for MR (Table 5.1). Many methods have been developed to improve the 

accuracy of models in order to make suitable search template. The quality of model 

was harder to improve when majority of predicted models exceed the CA-RMSD 

beyond limit of correct fold. One of the de novo modeling programs, Rosetta, predicts 

local substructures accurately although global structures may not have the correct 

fold. Therefore, identifying and using the fragments as starting template for MR could 

Table 5.1 List of benchmark dataset and their MR result 

SN Targets Resolution Space 
group 

Sequence 
length 

SCOP 
Classification 

CA-RMSD/MR-
CA-RMSD 

1 1OPD 1.50 P1 85 � + � 2.78/19.42 
2 1CM3 1.60 P21 85 � + � 2.72/14.79 
3 1EW4 1.40 P3221 106 � + � 4.98/8.57 
4 2EFF 1.80 P3221 106 � + � 4.99/21.44 
5 3O55 1.90 C2221 119 � 6.18/19.17 
6 3NZL 1.20 P212121 73 � 3.48/20.91 
7 1CTF 1.70 P43212 68 � + � 3.16/10.44 
8 1MB1 2.10 P41212 98 � + � 2.43/18.31 
9 4ESP 1.10 P41212 130 � + � 5.58/16.59 

10 3MX7 1.76 P3121 90 � 3.40/18.48 

Table 5.2 Phasing result with different fragment size 

Targets 
Thirteen-residue residues) Seventeen-residue fragment Twenty-one-residue fragments  

CA-
RMSD 

R-/R-free 
factor 

CA-
RMSD 

CA-
RMSD 

R-/R-free 
factor 

CA-
RMSD 

CA-
RMSD 

R-/R-free 
factor 

CA-
RMSD 

1OPD 1.03 0.26/0.31 0.68 0.99 0.26/0.27 0.76 1.06 0.28/0.33 0.83 
1CM3 1.03 0.30/0.36 1.93 1.45 0.29/0.34 1.42 - - - 
1EW4 0.68 0.34/0.37 0.88 1.98 0.31/0.34 1.20  1.73 0.29/0.33 1.34 
2EFF 2.31 0.38/0.42 2.41 1.4 0.34/0.37 1.15  1.34 0.32/0.36 1.21 
3O55 - - - - - - - - - 
3NZL 1.45 0.31/0.35 1.15 1.76 0.35/0.39 1.35  2.51 0.36/0.39 1.85 
1CTF 1.44 0.31/0.34 0.09  1.66 0.29/0.34 1.46  1.86 0.27/0.31 1.41 
1MB1 - - - - - - - - - 
4ESP 1.38 0.35/0.33 0.28 1.77 0.34/0.34 1.22  1.92 0.33/0.34 0.49 
3MX7 - - - 1.55 0.35/0.39 1.43  - - - 
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be the promising approach to solve the phase problem of poor quality de novo model. 

These fragments generated from predicted low-quality models may provide the useful 

information for phasing. However, the critical issue is how the suitable fragment can 

be generated for search models. For simplicity, the constant-length overlapping 

fragments from lowest energy de novo models - thirteen-residue, seventeen-residue, 

and twenty-one-residue were constructed. Three types of fragment of ten difficult 

targets were tested independently (Table 5.2).  

 Seventeen-residue fragments succeeded in providing the final solution for 

eight from ten targets in MR experiment. Similarly, thirteen-residue and twenty-one-

residues fragments succeeded in seven and six targets respectively. As the success 

rate decreased with less and more residues from seventeen-residue fragment, 

seventeen-residue fragment was most suitable search template for MR in our 

experiment. Six successful proteins were common in three types of fragment. 

Fragments from twenty-one-residue of proteins (PDB ID 1CM3 and 3MX7) failed to 

provide the accurate phases to construct the final model using automate model 

building. The fragments generated for 3MX7 using thirteen-residue was also 

inaccurate to obtain final models. MR experiment for proteins with PDB ID 3O55 and 

1BM8, were unsuccessful using three types of fragments.  

 The fragments, which are �-helical and �-strands with short loops, obtain 

their location in unit cell in MR experiment with high LLG and TFZ. Although there 

are many examples, one example for PDB ID 1EW4 was provided. The crystal 

structure of 1EW4 contains five antiparallel beta strands and two �-helices. The most 

accurately predicted model showed the 4.98 Å CA-RMSD to the native structure. 

Full-length all-atom models failed in MR experiment so that the experiment was 

started with fragments. Anti-parallel beta strands (thirteen-residue fragment) with 

small loop from predicted de novo models showed high scores (TFZ=8.9 and 

LLG=48). Similarly, another N-terminal anti-parallel �-strand (thirteen-residue 

fragment) was also correctly located. Both fragments showed high scores after MR. 

Phaser enabled to put three strands (D29-N52) out of five �-strands. Similarly, Phaser 

identified the places of two fragments (N2-W14 and D11-D23); their LLG scores are 

55 and 38 and TFZ scores are 5.9 and 6.2. These fragments matched with long �-

helices (twenty-one residues) of native structures. Two fragments were placed at the 

location of another �-helix starts from 87 to 99 with loops at both ends. Using phases 
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obtained from short fragments, the final models with incomplete residues were 

constructed and this partial structure includes all secondary structure elements existed 

in the native structure. 

FRAP has taken the advantage of correctness of secondary structure 

elements in the de novo models and large structure different between models with 

target structure due to mis-alignment. Here are the examples (1CTF and 1EW4) to 

show how FRAP enables to solve the low-quality models in MR using fragments 

(Figure 5.3). The best de novo models contained error 3.16 Å (1CTF) and 4.98 Å 

(1EW4) to the native structure. The error was reduced 1.46 Å (1CTF) and 1.20 Å 

(1EW4) in the models using FRAP. The error was accumulated in de novo models 

because some secondary structure elements were arranged wrongly. Therefore, these 

secondary structure elements were individually compared with that of native 

structure. For 1CTF, �1- helix (A63-G77) differed by 17.8º rotation with best de novo 

models and this angular difference was reduced to 4.7º when partial model generated 

by FRAP was used (Figure 5.3). The improvement was also observed in �2- helix 

(G79-A90). The orientation of �2- helix was very close in assembled structure using 

FRAP (2.7º) than that in best de novo models (29.9º). The improvement was also 

Figure 5.3 Orientation of best-predicted de novo model and model after FRAP          
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observed in another target 1EW4 (Figure 5.3). In this target, the orientation difference 

was measured for three different secondary structures (�1- helix, �2- helix, and �1- 

hairpin). The orientation of �1- helix (M1-W24) was differed by 23.2º and this was 

reduced to 0.22º using partial model.  The improvement was continuously observed in 

�2-helix (T86-G100) from 42.4º to 0.24º, and in �1- �-hairpin (I30-F43) from 25.5º to 

0.19º respectively. FRAP extracted sufficient information for structure determination 

from wrongly oriented regular secondary structure of de novo models. This cannot be 

solved using alternative approaches such as trimming of loop regions employed for 

homologous proteins (Stein, 2008), identifying conserved core regions (Bibby, et al., 

2014) and others.   

5.3.3. Fragment assembly  

Although many fragments were independently located at correct places, 

these fragments were necessary to be at same unit cell to obtain the phases required 

for structure determination. Therefore, all correctly placed fragments were necessary 

to bring together in the unit cell. The fragment assembly phasing was started with 

seed fragment and reference model. The reference models were often low quality. 

FRAP placed more than 60% residues on average in correct orientation and position 

for the successful proteins in all three experiments of different residue size. Similarly, 

average CA-RMSD to the partial model to the native structures reached at atomic 

level accuracy (< 1.75 Å) (Table 5.2).   

FRAP correctly located 65.10% residues on average for 8 proteins using 

seventeen-residue fragments. The average accuracy of these partial structures is 1.57 

Å. Secondary structure elements (�-helical and anti-parallel beta strands connect by 

small loops) were placed correctly in asymmetric unit in most cases. Here, the 

example of protein 1EW4 is provided, which is �+� proteins containing two �- 

helices, six anti-parallel �-strands with long loops.  First, FRAP started with the seed 

fragments of anti-parallel �-strand. One of low energy models that deviated 9.33 Å 

CA-RMSD from native structure was superimposed to the seed fragment. FRAP 

searched for correct position and orientation of other fragments. The degrees of 

freedom allowed were origins translation vectors, crystallographic symmetry 

operators and unit cell translation. FRAP selected fragments that are nearest to the 

aligned region of reference de novo model using crystallographic symmetry operators 

and permissible origins shift. Unit cell translation vector was computed with reference 
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to the seed fragment. FRAP enables to put 73.58% residues that were belonged to two 

�-helices, three anti-parallel �-strands, and few residues of loop.  The phases provided 

using partial models was sufficient to construct the final model using 

Phenix.autobuild program. It was verified by the provided R- and R-free factors that 

are 0.31 and 0.34 respectively. However, the best predicted global models (CA-

RMSD 4.98 Å to the native structure) including 1000 lowest energy models for this 

protein was unsuccessful in MR experiment. Similarly, FRAP achieved the success in 

placing more than 80% residues for proteins of PDB IDs 1CTF and 1OPD (Table 

5.2). Both proteins contain �-helices and anti-parallel �-strands. FRAP assembles 

most part of secondary structure elements adopted in the proteins including the small 

loop residues. The partial models after assembly showed an accuracy of 0.99 Å in the 

case of 1OPD and 1.66 Å for 1CTF.  

FRAP assembled the fragments after MR for polar space groups (1OPD in 

P1 and 1CM3 in P21) differently because their permissible origins are independent. In 

order to solve origin translation problem, the fast translation function (FTF) was 

independently run from Phaser on selected fragments from initial Phaser run. After 

FTF, FRAP computed available crystallographic operators and unit cell translation 

vector to the seed fragments to place the other fragments in the asymmetric unit. The 

experiment was repeated to run the FTF for next two fragments in the absence of 

common residues between fragments. FRAP succeed to obtained the partial models 

from fragments using the three different size fragments for PDB ID 1OPD. They 

achieved an accuracy of CA-RMSD of 1.03 Å, 0.99 Å, and 1.06 Å for thirteen-

residue, seventeen-residue, and twenty-one-residue fragments respectively. These 

partial structures contained more than 75% residues. For 1CM3, thirteen-residue and 

seventeen-residue fragments were provided the adequate phases necessary to build the 

final models so that their CA-RMSDs to native structure were 1.03 Å and 1.45 Å 

respectively.  

5.3.4. Model quality assessment after model building 

The phase obtained from assembled partial models were used for final model 

building to assess the correctness of phases. The final models were constructed using 

automated software Phenix.autobuild using obtained phases. The result was assessed 

using three different criteria. R- and R- free factors (Table 5.2), number of dummy 
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atoms appeared in the final models, and CA-RMSD between final models and native 

structure were analyzed (Table 5.2).  

The partial models built from thirteen-residue fragments provided accurate 

phases for seven proteins to complete more than 60% residues in the final models. 

The number of success was increased to eight proteins when seventeen-residue 

fragments were selected for phasing but the success was decreased to six proteins for 

twenty-one-residue fragments. R and R-free factors were, at first, monitored to 

evaluate the final model. The R-factor ranged from 26% to 38% for successful 

proteins in all three different size fragments (Table 5.2). Similarly, R-free factor also 

started from 27% for protein 1OPD and ended at 42% for 4ESP (Table 5.2). Protein 

1OPD achieved the best R and R-free factors (26% and 27%) for seventeen-residue 

fragments. Same trend was followed for proteins 1CM3 and 1CTF in which R- / R- 

free factors were 29% and 34% respectively using same fragments size. Similarly, 

seventeen-residue fragments showed successful model building for proteins 3MX7 

with R / R – free factors of 35% and 39% respectively which was unsuccessful using 

other two fragments. Furthermore, partial models from thirteen-residue and twenty-

one-residue fragments showed best R- and R-free factors for protein 1OPD (26% and 

31%) and 1CTF(27% and 31%) respectively. 

 

Figure 5.4 Proportion of dummy residues and correctly placed residues in final models 
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Figure 5.5 Accuracy of models before and after removing outlier atoms 

 

 

Figure 5.6 Number of outlier atoms in final models 
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  The number of atoms appeared in auto-built models should be evaluated to 

evaluate the R- and R-free factors properly. The missing atoms in final models and 

the atoms of water molecules that were not appeared in the native structure and 

occupied the position of atoms in residues were compared. These atoms were 

considered as the dummy atoms and it is the water atoms in final models when it falls 

below the 2.5 Å to the any atoms of residue in native structure. The minimum (18 

atoms) and maximum (215 atoms) were observed in the proteins 1CTF and 4ESP. 

Furthermore, the equivalent number of residues computed from the dummy atoms and 

this was compared with correctly placed residues in the final model, which is the 

partial model. The number of atoms is equivalent to 9 residues and 1 residue 

respectively (Figure 5.4). The R-/R-free factors are 0.35/0.34 for 4ESP and 0.27/0.31 

for 1CTF respectively (Table 5.2). Furthermore, in most cases, the number of residues 

equivalent to dummy atoms appeared almost negligible compared to correctly placed 

residues (Figure 5.4).  It can verify that observed R- / R-free factors were not mainly 

due to the presence of dummy atoms but with information from interpreted residues in 

electron density map.  

As another assessment strategy, coordinate errors in final models was 

measured. The CA-RMSD of the final models to their native structure varies from 

0.09 Å (1CTF for thirteen-residue fragments) to 2.41 Å (2EFF using thirteen-residue 

fragments). The average CA-RMSD of final models for seven proteins deviated 1.06 

Å from native structures, which was the better than CA-RMSD observed using 

seventeen-residue (1.25 Å) and twenty-one-residues (1.19 Å). Although CA-RMSD 

to native structure reached the atomic level accuracy, few atoms have had higher CA-

RMSD that made overall CA-RMSD worst (Figure 5.5).  These atoms were called as 

the outlier and appeared at termini of the fragments in the final models. A noticeable 

example is 2EFF with thirteen-residue fragment that showed CA-RMSD accuracy 

2.41 Å to the native structure. After removing the outlier atoms, the CA-RMSD 

computed using only remaining atoms were improved for successful proteins and 

their average CA-RMSD were significantly reduced for all test cases in our 

experiment (Figure 5.5). The average CA-RMSD without outlier atoms was 0.45 Å, 

0.50 Å, and 0.60 Å for final models from thirteen, seventeen, and twenty-one residues 

fragments. Superpose program (Krissinel and Henrick, 2004) was used to remove the 

outlier atoms. The number of outlier atoms for each target was observed very few, 
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when number of CA-atoms in models with and without was compared (Figure 5.6). 

Finally, final models after model building were superposed to native structure for two 

cases 1OPD and 1EW4 (Figure 5.7). The histogram of CA-RMSD showed very high 

CA-RMSD for few residue position and their CA-RMSD made overall CA-RMSD 

worst. In the case of CA-RMSD distribution for 1OPD, only one atoms were deviated 

by 6 Å in N-terminal and that is main cause for having CA-RMSD high. Similary, this 

pattern was also observed in 1EW4 where outlier was oberved at two places, C-

terminal segments of the fragments.   

5.4. Conclusion 

In this study, phasing of difficult targets was solved using the fragments from 

low-quality de novo models with MR. The method was tested using three different 

size fragments and seventeen-residue fragment showed maximum number of 

successful cases compared with others. On the benchmark test cases of ten targets, 

this method succeeded in phasing for 80% targets using seventeen-residues fragments. 

The de novo models for these targets were very far away from target structure and 

subsequently unable to provide the required phases for structure determination. The 

successful final models from seventeen-residue fragments contained majority of 

         Figure 5.7 Final models superposed with native structure and CA-RMSD for each residue 
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residues (67.23%). These incomplete models achieved the accuracy of 1.25 Å on 

average. 
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Chapter 6. Summary 

My research in PhD study has focused in protein structure modeling. Since 

protein structures have played pivotal role in biology, it provides crucial information 

required to understand various biochemical mechanism in atomic level. Therefore, 

proteins with atomic level accuracy are highly demanding. However, protein structure 

determination is difficult as well as costly using biophysical methods. Therefore, it is 

necessary to design the efficient computational methods to generate the protein 

structure from its sequence. I have focused in the development of novel methods for 

protein structure modeling in PhD study. Three different programs, MORPHEUS, 

NEFILIM, and FRAP, were developed during the period of my PhD study. These 

methods focused for protein structure prediction as well as its utility in solving 

crystallographic phase problems in the absence of homologous protein. In 

MORPHEUS and NEFILIM programs, the algorithms were developed for 

improvement of the accuracy of de novo models. The accuracy of the predicted 

models using MORPHEUS was adequate for solving the crystallographic phase 

problem. Both methods have focused on improvement in conformation sampling to 

predict better quality models using biased conformation space searching and 

providing better quality fragments. In FRAP, I focused specially on solving phase 

problem when the de novo models were poor quality and unable to provide phases. 

FRAP used the fragments generated from de novo models for solving phase problem 

when full-length de novo model was not adequate for successful phasing.   

These methods solved the protein structures that were unable to solve using 

existing methods. Despite all these success, ab initio phasing using de novo model is 

still challenging to become practical method as well as is far away from routine. 

There exists the major challenge of predicting high-quality models in protein structure 

modeling using computer program for practical problems. Therefore, improvement in 

sampling algorithm, devising accurate energy function, and providing better quality 

fragments are fundamentally necessary. Although more than half century was spent in 

development of conformation sampling algorithms and energy functions, problem has 

still remained unsolved so that future efforts are necessary to make handy tool for 

biologist. The methods that were developed during my PhD study can be further 

improved to tackle the underlying challenges. Therefore, I am also interested to 

extend the concepts implemented in MORPHEUS, NEFILIM and FRAP in the future.  
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The major goal of future work is to focus on development of novel methods 

to tackle real-life problems faced by biologist. There are few keys that can be 

considered as the future work in MORPHEUS and NEFILIM. These programs 

focused on improving the conformational sampling strategy by exploiting the 

knowledge from the predicted structures. The concept can be further furnished by 

incorporating more knowledge to improve the conformational sampling. Before 

incorporating the knowledge, it is necessary to measure the information available in 

already predicted models. Afterward, the information can be further incorporated 

from structures deposited in PDB if possible. In addition, weak information obtained 

from biophysical experiments can be also provided to enhance the conformation 

sampling. Ab initio approaches can be utilized to enhance the conformation sampling 

however this approach is more challenging and time consuming. NEFILIM uses the 

fragments generated from its first run in the resampling approach. I am also interested 

to generate fragments from the known structure available in PDB given the query 

fragment and use these fragments for resampling. I am also interested to identify the 

wrong regions in predicted models and variable-length fragments will be generated to 

sample focusing on these regions instead of using constant-length fragments. FRAP 

has many utilities as future work. It identified the position and orientation of partial 

models in the asymmetric unit and atomic positions of many residues are still 

unknown in the unit cell. I will continue to develop a method that can identify the 

position of missing residue in asymmetric unit using the information obtained from 

known partial structures and diffraction data. In addition, I plan to extend the utility of 

this concept by solving the challenging cases such as the structure of large domains 

and structures that have multi copies in asymmetric unit, which are major problems 

among the crystallographers with the help of currently available conformational 

sampling algorithm. Furthermore, natural extension of FRAP can be to use fragments 

identified directly from PDB based on sequence similarity or secondary structure 

elements. An ensemble of NMR models also can be used in FRAP for 

crystallographic structure determination.  FRAP can be also applied with fragments 

from distant homologous. Protein structures and its dynamics provide inter-atomic 

and intra-atomic interactions in atomic level. These interactions can provide the 

crucial information about mechanism happened in molecule and then cell. Therefore, 

it is necessary to develop an efficient method for structure modeling to understand the 

biological mechanism in cellular level and further.     
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