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Abstract

It is well known that mitochondria function as the essential power plants of most eukaryotic cells.

They also make important contributions to many other vital cell functions such as lipid metabolism

and calcium homeostasis. Moreover, mitochondrial dysfunction has been implicated in numerous

medical conditions such as Parkinson’s and Alzheimer’s disease.

Although many mitochondrial proteins have been experimentally identified, a complete list

is not available even for intensely studied model organisms. Thus bioinformatics tools to predict

mitochondrial proteins from their amino acid sequences are widely used to complement experimental

data; but their accuracy is far from perfect and they have not improved significantly for roughly a

decade.

Existing prediction tools already employ sophisticated machine learning techniques so the key to

progress seems to lie in the utilization of new proteomics data and the identification or refinement

of sequence features that reflect the underlying molecular biology. Moreover, the development of

such sequence features may be useful not only for more accurate prediction but also provide useful

biological hints. Here I report features of local sequences in mitochondrial proteins which regulate

their transport, membrane insertion, and peptidase processing.

In chapter 1, I summarize the necessary background to understand my thesis work. This chapter
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overviews the known biology of mitochondrial proteins in terms of their import, cleavage and

membrane spanning domains.

In chapter 2, I report on the sequence divergence of N-terminal sorting signals, and show that

divergence is a promising novel feature for signal prediction. For yeast, mammal and plant datasets,

evolutionary sequence divergence alone has significant power to identify sequences with N-terminal

sorting sequences. First I utilized YGOB, a curated database for orthologs between budding yeast

and its related species, for calculation of sequence divergence of yeast proteins. I then demonstrate

that sequence divergence is nearly as effective when computed on automatically defined ortholog

sets for yeast, mammal, and plant datasets as on the hand curated ones. Unfortunately, sequence

divergence did not necessarily increase classification performance when combined with some tra-

ditional sequence features such as amino acid composition. However a post-hoc analysis of the

proteins in which sequence divergence changes the prediction yielded some proteins with atypical

(i.e. not MPP-cleaved) matrix targeting signals as well as a few misannotations.

In chapter 3, I introduce MitoFates, a prediction system for mitochondrial presequences (N-

terminal regions cleaved upon translocation into the mitochondria) designed with the knowledge of

mitochondrial intermediate peptidases in mind and trained on recent proteomics data. MitoFates

achieves better performance in both signal and cleavage site prediction. To obtain this performance,

I revisited classical features for predicting this signal and searched for novel specific sequence motifs

in the mitochondrial N-terminal presequence. Among the classical features, I revisited a detector

of local sequences with the potential to form an amphiphilic α-helix, with a hydrophobic and

hydrophilic face, inspired by the structure of the presequence recognizer Tom20 and Tom22. In

previous applications, this feature has not be very effective, but I noted that the formulation used

did not distinguish between negative and positive charge. By introducing a new term rewarding
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helices with positive charges opposite the hydrophobic face, I greatly increased the discriminant

power of this feature. Employing recently developed techniques for sensitive multiple hypothesis

testing, I discovered several novel and significant motifs from presequence, most of which show a

positively charged amphiphilicity (possibily indicating recognition by TOM complex) or matching

the consensus sequence of presequence cleavage sites. I also refined cleavage site of presequence by

utilizing recent proteomics data and taking into consideration recent experimental results such as

the discovery of Icp55. This leads to greatly improved performance of presequence cleavage site

prediction (reducing misprediction of cleavage site position from ≈ 48% to ≈ 29%, addressing the

longstanding and often discussed lack of accurate tools for this task. In addition, in the light these

refined and novel presequence features, I cluster and discuss classes of presequences.

In chapter 4, I present sequence features of transmembrane domains (TMD) of proteins in the

mitochondrial inner membrane, improving the discrimination between those regions and spuriously

similar regions in soluble cytosolic proteins. The difficulty of predicting the TMDs of mitochondrial

membrane proteins has been noted anecdotally, but the distinct characteristics of mitochondrial

TMDs had not been analyzed from the viewpoint of computational biology. Therefore, I analyzed

the problem, starting with a previous model which calculates the free energy of TMD membrane

insertion using positional amino acid profiles, based on parameters measured for the TMDs of

E.R. membranes. As expected, TMDs of the mitochondrial inner membrane show characteristics

distinct from either E.R. TMDs or spurious hydrophobic regions of cytosolic globular proteins.

However, in terms of free energy distribution, the mitochondrial TMDs overlap with those two

distributions, leading to difficult prediction. My statistical analysis surprisingly shows that glycine

is significantly enriched in the center of mitochondrial TMDs and negatively charged residues show

an asymmetric distribution, consistent with pioneering experimental work on mitochondrial TMDs.
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I employ these different characteristics to discriminate mitochondrial TMDs from spurious regions

of cytosolic proteins using the sequences of those proteins and their homologs in other organisms,

leading to much improved prediction of mitochondrial TMDs in comparison to general predictors for

TMDs. I examined the position of predicted TMDs in proteins from a mitochondrial presequence

dataset, especially the presequences with atypical features discussed in the chapter 3, and found

some interesting cases of non-annotated cleavage sites that locate downstream of TMDs.

Finally, in chapter 5, I summarize, discuss, and conclude my thesis work.
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Chapter 1

Introduction

One character of a cell is that it comprises of multiple membranes to split itself to several com-

partments. Because of its multiple membranes, a cell can hold numerous different environments

where complex and diverse chemical reactions occur. Relevant but functionally distinct internal

compartments are called organelles, and it is said that some of them are acquired through engulf-

ment by another organism. Mitochondria is one of such organelles, which is said that it originated

from alphaproteobacteria [1], and their functions are vital for almost all of eukaryotes. In fact,

mitochondrial dysfunction causes a wide variety of diseases such as muscle and neurodegenerative

disease, cardiovascular disease, diabetes and cancer [2]. Obtaining a complete proteome list of

mitochondrial proteins is biologically important and an essential step for medical purposes due to

the above statement. Although mitochondria contain their own genome and key components are

coded in them, almost mitochondrial proteins are coded in the nuclear genome and have to be

transported to the mitochondria. In a cell, translocation is usually regulated by targeting signals.

23
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At present, mitochondrial proteins can be divided into two groups in terms of their targeting sig-

nals: the amino-terminal signal (presequence) and internal targeting signals, which are recognized

by receptors embedded in the mitochondrial membranes. Since proteome is not available at present

and each protein’s import pathway is not alway clear, it is difficult to know exact proportion of

presequence pathway. However, recent proteomic analysis estimated that ∼70% of mitochondrial

proteins depends on presequence pathway in the yeast [3]. Therefore, prediction improvement of

presequence will lead to discover currently unknown mitochondrial proteins.

Presequences consist of 10-90 residues and are positively charged, and high net charge of pre-

sequence comes from skewed amino acid composition. It has been reported that presequence has

high arginine and low negatively charged residues composition [4, 5]. Presequences are mostly

translocated by the TOM and the TIM complex in the outer and the inner membrane, respec-

tively [6, 7, 8]. The subunits of Tom20 and Tom22 in the TOM complex initiate import of the pro-

teins by recognizing an amphiphilic helical feature consist of hydrophobic and positively charged

faces of presequences [6, 9, 10]. Peptide library experiment revealed that 6 residue amphiphilic

motif for Tom20 [9], however, this motif matches only 18% of recent proteomic data of yeast prese-

quences [3]. An exhaustive motif search based on discriminative HMM has been performed against

mitochondrial proteins, but significant amphiphilic motif was not found [11]. It has been reported

in small dataset [12] or anecdotally known that N-terminal signal including presequence has higher

mutation rate. Taking these into consideration, presequence seem to hold weakly conserved motif,

which revealed experimentally but cannot be detected by distinct 20 amino acid letters, rather than

global consensus pattern.

Upon import into mitochondria presequence is in most case eliminated by Mitochondrial Pro-

cessing Peptidase (MPP) in the matrix, and other intermediate peptidases such as Oct1 in some
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cases [13]. Mitochondrial presequences are harmful for the function of mitochondrial membranes

due to their amphiphilic property, and as a result, they dissipate membrane potential and uncouple

respiration [14, 15]. To avoid such severe disturbances, MPP cleaves presequences and it has been

reported that other metallo-protease degrades cleaved presequence after cleavage in Arabidopsis

thaliana [16]. In terms of the position of arginine from the cleavage site, three motifs of MPP cleav-

age sites have been reported: R-10 motif, R-3 motif and R-2 motif in which arginine located at -10

position, at -3 position and at -2 position from cleavage site, respectively [5, 13]. R-10 motif can be

explained by twice cleavages by MPP and Oct1 [5, 17]. Vögtle et al. reported a novel intermediate

protease Icp55 can remove one amino acid from the N-terminal after cleavage by MPP, and the

relationship between this phenomenon and the half-life of a protein determined by its N-terminal

residue [3]. This discovery of Icp55 explains why R-3 and R-2 motifs are found in the cleavage

sites [5]. Although unsatisfactory accuracy of current cleavage site prediction is also argued [3, 18],

this seems to be reasoned by lack of explicit consideration of these peptidases. In addition, a yeast

mitochondrion contains other proteases such as Pcp1, m-AAA, and IMP in its inter-membrane [8].

A counterpart of Pcp1 in human is called PARL. Compared to proteases in the matrix, their speci-

ficities are still obscure. For the above reasons, cleavage site prediction of mitochondrial proteins

is still a hard problem even for MPP cleavage sites.

As it is shown in Figure 1.2, such other proteases are located and function in inner membrane. In

fact, many known substrates of those proteases are membrane proteins and contain α-helical trans-

membrane domain (TMD) (summarized in [8]). TMD analysis should be potentially beneficial to

discover unknown substrates of these proteases, however, it is anecdotally said that prediction of

mitochondrial TMD is more difficult than TMD in other membranes such as E.R. membrane or

plasma membrane. Since proton densities in and out of mitochondrial inner membrane differ to
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drive ATP synthase, its local environment has specific character and it can be expected that different

TMD feature exists. One pioneering work has been conducted by Botelho and colleagues [19], and

negatively charged residue rarely appeared inside of mitochondrial inner membrane. In general,

charged residues show symmetric distribution in center of inserted TMD (described in Hessa’s

energy model [20]), and so-called “positive inside rue”, which says that positively charged residues

are abundant in loops of cytoplasmic side of membrane [21]. Apparently, mitochondrial inner

membrane is located in different chemical condition, and asymmetric distribution may reflect this.

Existing methods do not take these differences to their models due to the lack of annotated data and

knowledge. Therefore, improvement on not only presequence prediction but also TMD prediction

seems to be important in the field of mitochondrial biology. I should also note here that several

substrates of inner membrane proteases have been reported in context of human diseases [22, 23, 24],

therefore, refined TMD prediction in inner membrane lead to analysis this kind of potentially

important proteins.

Figure 1.1: Description of mitochondrial cleavage.

The location of each protease and the relationships among them are summarized in Figure 1.2.
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Figure 1.2: Proteases in a yeast mitochondrion.



Chapter 2

Sequence divergence of targeting

signals

In this section I describe work published in BMC Genomics

2.1 Materials and methods

2.1.1 Sorting signal classes

I mainly focused on the two most common N-terminal sorting signals: Signal Peptides (SP), tar-

geting proteins to the endoplasmic reticulum and Matrix Targeting Signals (MTS) which target

proteins to the matrix (inner compartment) of the mitochondria. In the plant dataset, I also con-

sider Chloroplast Transit Peptides (CTP). All of these signals reside near the N-terminus but in

28
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general have different properties and are effectively discriminated by the cell. In some cases how-

ever, the N-terminal “signal” can be ambiguous. In particular many examples are known in which

the same amino acid sequence directs some copies of a protein to the mitochondria and others to the

chloroplast [25, 26]. Nevertheless these examples still constitute only a small percentage of proteins

and therefore I simplify the analysis by treating N-terminal sorting signal identification as a simple

three- or four-way classification problem: {MTS, SP, (CTP), no signal}. Other types of N-terminal

sorting signals exist, for example the PTS2 signal targeting proteins to the peroxisome [27], but

the number of proteins using such signals is much smaller than those using the SP, MTS or CTP

signals.

The sorting signal class labels I use in the datasets are partially based on direct experimental

evidence. In the dataset of S.cerevisiae, I used UniProtKB/Swiss-Prot [28] to assign localization

class labels, augmented by MTS containing proteins determined in the proteomics experiment of

Vögtle et al. [3]. Because only a small number of SP’s have been directly confirmed experimentally, I

also included proteins whose SP is inferred in the database and predicted positive by SignalP [29]. I

used proteins annotated to localize to the cytosol or nucleus as proteins without N-terminal signals.

To reduce bias in training and accuracy estimation, I used BLASTClust 2.2.22 [30] to remove

redundant sequences with a setting of 20% identity. For proteins in human and a few plant species

I adopted the dataset of Predotar [31] and for plants augmented that small number by experimental

proteomics data determined in the mass spectrometry experiment of Huang et al. [32].
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2.1.2 Dataset

Organisms used

I gathered protein sequences from 11 relatively diverse and well annotated representative species of

the three phylogenetic divisions: yeast, mammal and plant respectively (Table 2.1). The 11 mammal

species and most of the plant species are annotated reference proteomes in UniProt, but a few of

the plant species are only included in UniProt as complete, but not fully annotated, proteomes.

Note that “plant” dataset contains the unicellular green algae Chlamydomonas reinhardtii, which

is not a typical plant but is classified in the “viridiplantae” kingdom.

In each of the three divisions I designated one species as the “reference” species. I used in-

formation in proteins from the non-reference species only for computation of sequence divergence

(via ortholog multiple sequence alignments). I chose S.cere., H. sapiens, and A. thaliana as the

reference species for yeast, animals and plants respectively, because they have the most complete

annotation. However for plants even A. thaliana has rather limited annotation of SPs, so in order

to increase the plant dataset size I used other species as the reference species in some cases.

Ortholog Determination

I performed some experiments on hand curated ortholog sets downloaded from the Yeast Gene

Order Browser (YGOB) [33], but also computed ortholog sets for each of the three phylogenetic

divisions.

Automatic identification of orthologs is a complex subject for which many sophisticated methods

have been developed, the most suitable one being application dependent [34]. For this study, I

adopted a simple procedure based on reciprocal best hits (RBHs) [35]. Formally, proteins P and P ′

from species S and S′ respectively, are RBHs if P is more similar to P ′ than any other protein in
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S′ and P ′ is more similar to P than any other protein in S. I define the ortholog set of a reference

species protein as all of its RBHs. When computing RBHs it is important that proteins from as

many organisms as possible are included; but in the end I only have use for those ortholog sets in

which the reference species is annotated, so in general I discarded the rest. However, in the case

of plant, I attempted to rescue those discarded sequences by also trying O. sativa, G. max and C.

reinhardtii in turn as the reference species.

In computing the similarity scores for RBH I chose to use global alignment rather than local

alignment. Motivation for this was: 1) sorting signals often appear on the N- or C-terminal region

of proteins, so differences in those regions may indicate a different localization of the “ortholog”,

and 2) for multiple domain proteins, strong similarity in one domain may not imply the same

localization site (or signal). I used the heuristic but fast USEARCH [36] program with its default

parameters to compute the global similarity scores. Table 2.2 summarizes the datasets.

Multiple Alignment

I computed multiple alignments for each of the 4 orthologs sets (1 curated and 3 automatic) by

aligning with the MAFFT program [37], using “LINSI”, its most accurate mode. Hereafter, I denote

these alignments as “orthoMSA” in general, and as “autoOrthoMSA” when specifically referring

to multiple alignments of automatically generated ortholog sets. The number of sequences in the

automatically generated ortholog sets generally differs from the YGOB based sets, however, it seems

that the distribution of the divergence score stabilizes when the number of sequences exceeds three

(Figure 2.1), therefore I decided to include ortholog sets with at least four sequences.



CHAPTER 2. SEQUENCE DIVERGENCE OF TARGETING SIGNALS 32

S. cerevisiae H. sapiens A. thaliana
Saccharomyces castellii Gorilla gorilla Glycine max
Saccharomyces kluyveri Otolemur garnettii Ricinus communis
Kluyveromyces waltii Mus musculus Populus trichocarpa
Ashbya gossypii Oryctolagus cuniculus Vitis vinifera
Candida glabrata Sus scrofa Sorghum bicolor
Kluyveromyces lactis Ailuropoda melanoleuca Brachypodium distachyon
Zygosaccharomyces rouxii Myotis lucifugus Oryza sativa
Kluyveromyces thermotolerans Loxodonta africana Selaginella moellendorffii
Saccharomyces bayanus Sarcophilus harrisii Physcomitrella patens
Kluyveromyces polysporus Ornithorhynchus anatinus Chlamydomonas reinhardtii

Table 2.1: List of species used to define orthologs in each phylogenetic category. The species listed
at top are the reference species used to determine the subcellular localization site class labels. In
the case of plants, one of G. max, O. sativa and C. reinhardtii were used as the reference species
for proteins for which no annotation was available in A. thaliana.

Localization class S.cere. curated orthologs S.cere. RBH H.sapiens RBH Plants RBH
MTS 179 219 81 61
SP 53 73 169 15

CTP N/A N/A N/A 97
N-signal-free 450 560 415 99

Table 2.2: For each ortholog dataset, the number of ortholog sets in each localization class is listed.
RBH orthologs are defined by the reciprocal best hit method.
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Figure 2.1: Relationship between mean divergence score and the number of sequence in MSA’s. A
box plot illustrating the mean, quartiles and range of the column entropy score for MSA’s in the
yeast autoOrthoMSA dataset partitioned by the number of sequences in the MSA is shown.
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2.1.3 Features for classification

Column entropy score

Several measures have been suggested for scoring evolutionary sequence conservation (or conversely

divergence) [38, 39]. Here I adopt a simple Shannon entropy based score. The Shannon entropy

H(i) of the ith column of an orthoMSA is defined as:

H(i) = −
∑
j∈A

F (i, j) log2 F (i, j). (2.1)

where A denotes the set of 20 amino acid characters plus gap characters, and F (i, j) denotes the

frequency of character j in column i of an orthoMSA. Note that when multiple gap characters are

present in a column, I consider each to be a unique character. For example, the entropy of an

orthoMSA column ’{L, L, I, -, -}’ is computed as one character (the ’L’) with frequency 0.4 and

three characters with frequency 0.2, because I treat the two ’-’ characters as distinct. I adopted

this treatment of gap characters so that the divergence of orthoMSA columns with many gaps is

considered high (I also tried using straight entropy, but the results, not shown, were slightly worse).

The range of this divergence score runs from 0 to log2 n, where n is the number of sequences.

Divergence based features

For many orthoMSA’s, the entropy often varies widely from column to column. Therefore, I defined

a number of evolutionary divergence features based on a smoothed entropy score, H̄i,j , defined as

the average entropy score for columns in the interval [i, j]. For example I define the local divergence

(LD) of an orthoMSA at position k as H̄k−10,k+10. Another feature I defined is NCdiff, the average

difference in divergence between in the first 20 residues and residues 80 to 99. Motivation for this
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Feature name Quantity
LD(i) H̄i−10,i+10

Nraw20 H̄1,20

Nraw40 H̄1,40

Nraw80-99 H̄80,99

µw Average of H̄window

for all length w windows

σw Standard deviation of H̄window

for all length w windows

NCdiff Nraw20−Nraw80-99

N20 (Nraw20−µ20)
σ20

(z-score normalized)

N40 (Nraw40−µ40)
σ40

(z-score normalized)

N80-99 (Nraw80-99−µ20)
σ20

(z-score normalized)

Table 2.3: Smoothed entropy derived features are listed. Quantities shaded in grey were not used
directly as features.

definition was the hope that subtracting the divergence from residues 80 to 99 would approximately

normalize the feature when comparing proteins with different overall rates of evolution. These

features are summarized in table 2.3.

Physico-chemical propensities

To explore the possibility of combining sequence divergence with standard features used in protein

localization prediction, I defined three features computed from the first 20 or 40 N-terminal residues

of each S.cere. protein: 1) the number of positively charged residues (#pos), 2) the number of

negatively charged residues (#neg), and 3) the average hydrophobicity as measured by the Kyte-

Doolittle [40] index (Hphob).

Amino acid composition

Amino acid composition is another standard feature for protein localization. I tested this feature

computed on the first 20 residues, the first 40 residues, and the entire protein sequence.
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2.1.4 Classifiers

Majority Class Classifier

The majority class classifier unconditionally predicts all examples to belong to the most common

class. Its accuracy is equal to the fraction of examples belonging to the most common class.

J48

J48 is a version of the C4.5 decision tree induction algorithm of Quinlan [41, 42], implemented in

the Weka software package [43]. I used the default value of 0.25 for the confidence factor, which

controls the complexity of the induced tree.

Support Vector Machine

The Support Vector Machine (SVM) [44] is perhaps the most popular classifier in current bioinfor-

matics work. In its basic form it is a linear, binary classifier, but it has been extended to non-linear,

multiclass classification (details is described in next paragraph). In this project, I used the LIBSVM

implementation [45]. I used the Gaussian radial basis kernel function with default γ value (1.0 /

# number of features). I used 50.0 for the SVM cost parameter C, because with the default cost

parameter (1.0) prediction by RBF kernel failed for some features. In this study I conducted bi-

nary and 3-class classification. For multiclass discrimination LIBSVM adopts the ”one-versus-one”

method, in which a separate SVM is learned for each pair of classes, and majority voting among

those SVM’s is used when classifying examples [46].

Hard margin case: SVM classifies given vectorized samples x into either binary class C+1(y ≥ 0)

and C−1(y < 0) by below formulation.
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y = sign(wTx− b) (2.2)

Here, w is parameter for each feature, and b is an intercept. If given training data si ∈ S

(si = {xi, yi}, xi is a vector of sample and yi is a label either +1 or -1) is assumed to be a linearly

separable set, below formulation is considered.

yi(w
Txi − b) ≥ 1 (2.3)

wTxi − b = 1 is a hyperplane which includes support vectors, samples closest to discriminative

hyperplane, of class C+1, and wTxi−h = −1 is one which includes support vectors of class C−1. In

this conditions, margin can be written as a distance 1/∥w∥ between a discriminative hyperplane and

planes on which support vectors exist. To maximize the margin, below objective function should

be minimized about w.

arg min
(w,b)

L(w) =
1

2
∥w∥2 (2.4)

subjected to (eq. 2.3) for i = 1, ..., n.

This objective function can be written as a dual form with Lagrange multipliers α, and maximize

it about α.

arg max
(αi)

L(α) =

n∑
i=1

αi +
1

2

∑
i,j

αiαjyiyjx
T
i xj (2.5)

subject to αi ≥ 0 for i = 1, ..., n.

Soft margin case: In practical situations such as this work, it is hard to assume complete linear
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separation of S, therefore, soft-margin was suggested [44]. Non-negative slack variables, ξi, is

introduced to measure the degree of misclassification for data si.

yi(w
Txi − b) ≥ 1− ξi (2.6)

Then, the objective function (eq. 2.4) is written as below.

arg min
(w,ξi,b)

L(w) =
1

2
∥w∥2 + C

n∑
i=1

ξi (2.7)

subjected to (eq. 2.6) and ξi ≥ 0 for i = 1, ..., n. C is a hyper-parameter so-called cost parameter,

which determines tradeoff between a large margin and label error.

Similarly to the hard margin case, the objective function (eq. 2.7) can be written as a dual form

with introducing Lagrange multipliers α, β for the subjectives.

arg max
(αi)

L(α) =

n∑
i=1

αi +
1

2

∑
i,j

αiαjyiyjx
T
i xj (2.8)

subject to C ≥ αi ≥ 0 for i = 1, ..., n and
∑n

αiyi = 0.

Another technique in SVM to accept non-linear separable case is applying the kernel trick. Since

feature vector x appears as only a dot product form in (eq. 2.5), this term is replaced by a non-linear

kernel functions, k(xi, xj). This enables the algorithm to fit the maximum-margin hyperplane in a

transformed feature space, usually high dimensional and non-linear. Gaussian radial basis kernel

function is below.

k(xi, xj) = exp(−γ∥xi − xj∥2) (2.9)
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γ is a non-negative kernel parameter.

Measuring the influence of divergence features: As reported in the results section, I

performed a post-hoc analysis of proteins for which the divergence features greatly influenced the

prediction outcome. To do this I needed to compare 6 numbers (three SVM scores {MTS vs SP,

MTS vs none, SP vs none} each computed with and without the divergence features) into a measure

of how much the divergence features influenced the prediction. Because the SVM scores are not

given directly as probabilities and each individual SVM addresses a different subset of classes, it is

not trivial to derive a well-principled way to do this. As described in more detail in the appendix,

I chose to define this in terms of exponential loss-based decoding [47]. I do not claim that this is

necessarily the best measure, but it appears to give reasonable results. Fortunately, for my purposes

it is enough that truly large differences are assigned in a roughly suitable order.

2.1.5 Quantifying feature importance

I used the so called “information gain” to quantify the importance of each feature. Information

gain is a simple measure of the predictive power of a feature in isolation (i.e. without consideration

of its relationship to other features), defined as:

I(C,F ) = H(C)−H(C|F ). (2.10)

where C and F denote class and feature respectively. H(C) the denotes information theoretic

entropy of the overall distribution of the class labels, while H(C|F ) denotes the conditional entropy

of the class label when feature F is given. A larger information gain indicates greater predictive

power. Because the divergence based features have a large number of possible values, I first binned

those values into a smaller number by the method of Fayyad & Irani [48].
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2.1.6 Classification performance evaluation

Accuracy is not always the most meaningful measure of performance for skewed datasets (i.e.

datasets with a very uneven number of examples from different classes) [49]. Therefore I report

several measures in addition to accuracy.

Matthews correlation coefficient

The Matthews correlation coefficient, MCC [50, 51], is a measure of performance for binary classi-

fication defined as follows:

TP × TN − FP × FN√
(TP + FN)(TP + FP )(TN + FP )(TN + FN)

(2.11)

where “T” and “F” stand for “true” and “false”, while “N” and “P” stand for “negative” and

“positive”. Equivalently, MCC can be defined as the Pearson’s correlation coefficient of the binary

vector of class labels compared to the binary vector of predicted class labels. MCC ranges from

1.0 for perfect prediction to -1.0 for perfect inverse prediction. Note that the MCC of the majority

class classifier is identically zero, as is the expected value of MCC under random prediction.

Area under the ROC curve

The Area under the curve (AUC) for a receiver operating characteristics (ROC) graph is a widely

used metric to evaluate binary classification accuracy [52]. The usual way to generate an ROC plot

is to rank instances by their predicted scores with increasing threshold values, plotting true positive

rate (y-axis) versus false positive rate (x-axis). AUC ranges from 0 to 1.0, with perfect prediction

yielding 1.0 and perfectly wrong prediction 0.0. AUC can be interpreted as the probability that a

classifier is able to distinguish a randomly chosen positive example from a randomly chosen negative
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example [53]. For this task, the majority class classifier gives no information over coin flipping and

therefore can be considered to yield an AUC of 0.5.

2.2 Results

2.2.1 Feature Analysis

N-terminal sorting signals are evolutionary divergent

It is well known that N-terminal sorting signals exhibit relatively low sequence conservation [12].

As shown in Figure 2.2, this phenomenon is particularly clear for the mitochondrial heat shock

protein, mtHSP70, in which the main part of the protein is highly conserved but the N-terminal

region is highly divergent. Figure 2.3 quantifies this trend for the proteins in the YGOB ortholog

set.

Estimate of importance of each feature

As a rough estimate of feature importance, I computed the information gain for each feature (Fig-

ure 2.4). The two highest scoring features are the physico-chemical features #neg and Hphob, but

the LD features near the N-terminus also show information gain significantly greater than zero.

Sequence divergence is not redundant to physico-chemical trends or amino acid com-

position

To be promising as a feature for prediction, it is desirable that evolutionary sequence diversity not

be perfectly correlated with other features. To investigate this I plotted LD(13), the divergence

feature with the highest information gain, against Hphob, #neg and the arginine composition (the
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Figure 2.2: An example of a divergent MTS. A multiple sequence alignment of the protein mtHSP70
(UniProt accession P0CS90) and its orthologs from five species of yeast is shown. The red box
indicates the cleaved MTS in S.cere.. Conserved positions are colored by Jalview.

mean % accuracy mean AUC mean MCC

J48 72.49± 3.30 0.68± 0.09 0.40± 0.09
- (randomized) 65.85± 0.66 0.50± 0.01 0.00± 0.03
SVM 74.64± 2.38 0.68± 0.03 0.40± 0.06
- (randomized) 66.19± 0.09 0.50± 0.00 0.00± 0.00
Majority class fraction 65.98% N/A N/A

Table 2.4: Three classification performance measures when using only divergence features are shown
for the discrimination of N-signal containing and N-signal-free proteins (yeast curated ortholog sets).
AUC denotes the area under the ROC curves. (randomized) indicates the values obtained with the
localization class labels randomly shuffled 100 times. For each measure the average and standard
deviation is shown over the 5 folds of the cross-validation, or 500 (5 × 100 trials) folds in the case
of the randomized data.

three highest scoring standard features in the 40 residue N-terminal region) (Figure 2.5). Although

there may be some relationship, the feature pairs do not appear highly correlated.

2.2.2 Divergence predicts the presence of N-terminal signals

I tested whether sequence divergence can be used to distinguish between proteins with an N-terminal

localization signal (MTS or SP) and those with none. As shown in Table 2.4, for this binary

classification task, sequence divergence alone allows for significantly higher prediction accuracy

than randomized control experiments or the majority class fraction (66.0%) in the yeast dataset.
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Figure 2.3: Local divergence score over N-terminal region. Average local divergence scores are
shown for the 100 residue N-terminal region of: MTS containing, SP containing, and N-signal-free
proteins. Top left panel is calculated from orthologs of yeast curated dataset, and the others from
automatically collected orthologs. For the plant dataset, CTP containing proteins are also shown.
The error bars denote standard error. For clarity, error bars are only shown for every fifth position.
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length of the protein.
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Figure 2.5: Scatter plots between divergence score and standard features. Scatter plots of LD(13)
(on the vertical axis) vs. #neg, Hphob and arginine composition on the horizontal axis are shown
for the YGOB ortholog set. MTS proteins are shown in red, SP in blue and N-signal-free proteins
in green.

2.2.3 Divergence distinguishes SP vs. MTS vs. N-signal-free

Although the sequence divergence profile of SP’s and MTS’s appear similar when averaged (Fig-

ure 2.3), I found that sequence divergence is still somewhat effective for the three-way classification

of SP vs. MTS vs. N-signal-free. As shown in Table 2.5 the performance with divergence features is

slightly better than the majority class fraction (66.0%) and also slightly improves the performance

when added to the physico-chemical features in N-terminal 40 residues or amino acid composition

in either N-terminal 40 or full length (appendix).

The ratio of examples in the dataset is 8.5 : 3.4 : 1, for N-signal-free, MTS and SP containing

proteins respectively. Skewed datasets are known to complicate both learning and performance

evaluation [49]. Therefore I also measured performance on a dataset with uniform class occupancy,

created by randomly discarding all but 53 proteins from each class. As shown in Table 2.6, in this

experiment the divergence feature only performance (63%) is much higher than the majority class

fraction (33%), and the divergence features also contribute more to the performance when combined
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Divergence Classical features Combination
AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.03 0.36± 0.06 0.87± 0.03 0.76± 0.05 0.87± 0.03 0.77± 0.03
SP 0.50± 0.00 0.00± 0.00 0.81± 0.08 0.70± 0.11 0.90± 0.06 0.83± 0.07
N-signal-free 0.66± 0.02 0.36± 0.03 0.85± 0.03 0.72± 0.05 0.87± 0.02 0.77± 0.03
% accuracy 70.82± 1.61 87.24± 1.86 89.30± 0.66

Table 2.5: The 5-fold cross-validation performance of an SVM classifier using: divergence features
only, classical features only, and the two combined; is shown for three-way classification on the yeast
curated ortholog dataset. Classical features are computed based on the N-terminal 40 residues.

with the standard features (Table 2.6).

I further tested the prediction power of divergence features when combined with classical features

computed on a 20 residue N-terminal instead of 40 (which might be too long for the SP class). In this

experiment, divergence features improved the performance only slightly when combined with other

standard features (Table 2.7). I also computed the confusion matrix for this dataset (Table 2.8)

and the other datasets investigated in the study (appendix, tables A.14–A.25).

Divergence Classical features Combination
AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.10 0.35± 0.20 0.84± 0.07 0.68± 0.13 0.88± 0.05 0.78± 0.09
SP 0.71± 0.09 0.41± 0.16 0.92± 0.05 0.85± 0.10 0.94± 0.01 0.88± 0.03
N-signal-free 0.79± 0.07 0.60± 0.13 0.78± 0.09 0.57± 0.18 0.86± 0.07 0.74± 0.13
% accuracy 62.86± 5.84 79.92± 5.54 86.19± 4.67

Table 2.6: The 5-fold cross-validation performance of an SVM classifier using: divergence features
only, classical features only, and the two combined; is shown for three-way classification on a
balanced dataset (53 proteins from each class, yeast curated orthologs).
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Divergence Classical features Combination
AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.03 0.36± 0.06 0.89± 0.02 0.80± 0.02 0.89± 0.01 0.81± 0.02
SP 0.50± 0.00 0.00± 0.00 0.97± 0.03 0.92± 0.07 0.98± 0.03 0.97± 0.04
N-signal-free 0.66± 0.02 0.36± 0.03 0.90± 0.01 0.81± 0.02 0.90± 0.01 0.83± 0.02
% accuracy 70.82± 1.61 91.49± 1.26 92.23± 1.25

Table 2.7: The 5-fold cross-validation performance of an SVM classifier using: divergence features
only, classical features only, and the two combined; is shown for three-way classification on the
entire yeast curated ortholog dataset. Classical features are calculated from N-terminal 20 amino
acids.

Divergence Classical features Combination
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 83 0 96 148 1 30 144 0 35
SP 16 0 37 0 50 3 1 51 1
N-signal-free 50 0 400 20 4 426 15 1 434

Table 2.8: Confusion matrix of the 5-fold cross-validation performance of an SVM classifier using:
divergence features only, classical features only, and the two combined; is shown for three-way
classification on the entire yeast curated ortholog dataset. Classical features are calculated from
N-terminal 20 amino acids.

2.2.4 Divergence computed from automatically generated ortholog sets

is consistent with the hand curated dataset.

Although the YGOB based dataset convincingly demonstrates that the divergence score has dis-

criminative power for N-terminal signal prediction, it covers only 11 yeast species and requires

hand curation. Thus as described in the Methods section, in this work I adopted a simple proce-

dure based on reciprocal best hit relationships to obtain automatically generated ortholog sets as

well (Table 2.2).

In yeast, the average divergence score at each positions is similar to the score from the YGOB or-

tholog set, and the overall tendency looks similar for animals and plants (Figure 2.3). Interestingly,

CTP shows a high and longer region of elevated divergence, consistent with previous observations
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that CTPs tend to be longer than MTSs [32]. Additionally, I note that the score range of the human

autoOrthoMSA’s is significantly different from those of yeast or plants. This is expected because

divergence amongst yeast sequences is at least as large as that of the chordates [54], so divergence

in mammals should be smaller.

2.2.5 Divergence computed from autoOrthoMSA also predicts N-terminal

signals

First, I confirmed whether or not divergence features can be applied to a simple binary classifi-

cation: discrimination between N-terminal signal containing proteins and N-signal-free proteins.

Although the ratio of positive to negative examples in each dataset differs, the result of prediction

by divergence features alone is higher than majority class classifier for all datasets (Table 2.9).

Next, I tested the predictive power of divergence in three-way classification on a dataset balanced

to have equal class frequency (Table 2.10). It is evident that on balanced datasets, divergence also

shows significant predictive power in distinguishing between the two different kinds of N-terminal

signals, even for the relatively closely related mammal species.

In plants, the divergence score can also discriminate between the three possible kinds of N-

terminal signals better than random. However, there are only 15 experimentally validated SPs

in this phylogenetic category (Table 2.2). Since this small sample size leads to a high statistical

variance, I also computed the performance on balanced 3-way classification of MTS vs CTP vs

N-signal-free (Table 2.11).

In the appendix I list cross-validated performance estimates on various combinations of datasets

and features. From these I draw two conclusions: in most cases divergence features slightly improve

prediction when combined with standard features and in general computing standard features on
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Yeast dataset mean accuracy mean AUC mean MCC

J48 71.47± 5.00 0.67± 0.07 0.36± 0.12
SVM 75.35± 3.49 0.71± 0.04 0.44± 0.08
Majority class fraction 65.23% N/A N/A
Human dataset

J48 69.32± 4.10 0.72± 0.07 0.43± 0.09
SVM 72.28± 5.95 0.72± 0.06 0.43± 0.12
Majority class fraction 62.41% N/A N/A
Plant dataset

J48 79.41± 6.03 0.75± 0.06 0.55± 0.13
SVM 83.47± 4.01 0.79± 0.04 0.64± 0.09
Majority class fraction 63.60% N/A N/A

Table 2.9: Three classification performance measures when using only divergence features are shown
for the discrimination of N-signal containing and N-signal-free proteins on automatically collected
orthologs. AUC denotes the area under the ROC curves. For each measure the average and standard
deviation is shown over the 5 folds of the cross-validation.

the N-terminal 20 residues leads to higher accuracy than computing on 40 residues.

FDiv Yeast (73) FDiv Human (81)
AUC MCC AUC MCC

MTS 0.65± 0.09 0.31± 0.18 0.66± 0.05 0.31± 0.11
SP 0.60± 0.07 0.19± 0.14 0.70± 0.08 0.40± 0.15
N-signal-free 0.66± 0.08 0.35± 0.15 0.69± 0.06 0.39± 0.11
% accuracy 51.63± 7.21 57.61± 4.71

Table 2.10: The 5-fold cross-validation performance of an SVM classifier using divergence features
is shown for three-way classification on the automatically generated ortholog dataset for yeasts and
mammals. The number of examples is given in parenthesis at top.

2.2.6 Post-hoc analysis of proteins for which divergence strongly influ-

ences the prediction result

In this section I discuss proteins for which the use of divergence features strongly affects the results.

The ortholog MSA’s of all proteins mentioned in this section are available in Table S MSAs.
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FDiv Plant 4 classes (15) FDiv Plant 3 classes (61)
AUC MCC AUC MCC

MTS 0.62± 0.11 0.24± 0.21 0.66± 0.08 0.35± 0.14
SP 0.78± 0.11 0.58± 0.23 N/A N/A
CTP 0.73± 0.16 0.43± 0.31 0.77± 0.12 0.51± 0.23
N-signal-free 0.80± 0.14 0.72± 0.20 0.81± 0.09 0.67± 0.13
% accuracy 60.00± 9.13 66.22± 10.11

Table 2.11: The 5-fold cross-validation performance of an SVM classifier using divergence features
is shown for three-way classification on balanced sets of (automatically generated) plant orthologs
with or without the SP class. The number of examples is given in parenthesis at top.

Divergence features may help flag misannotation

Prior to this work, evolutionary divergence has not been applied systematically to N-terminal

signal prediction. However I expected that it might be able to capture interesting examples not

revealed by other features. To investigate this, I ranked instances whose SVM prediction changes

drastically depending on whether or not divergence features are used. Because of its rich annotation,

I focused on S.cere., using the automatically defined ortholog set. The prediction result of 43

proteins changed depending on whether divergence features were added to conventional features.

For these 43 proteins, I used the SVM numerical scores to rank the size of the effect as explained in

the appendix (ranked list in Table A.1). In general, prediction differences are observed between the

MTS and N-signal-free classes. The most highly affected protein is mitochondrial alanine tRNA

ligase, ALA1 (P40825), which is predicted to have an MTS when sequence divergence features are

used. Upon closer inspection I discovered that the sequence I used for this protein should in fact

have been labeled as an MTS containing protein, but the dataset based on an earlier version of

UniProtKB/Swiss-Prot contained mistaken annotation which holds for an alternative translation

start site. Thus in this case sequence divergence yields the correct answer.

PTP1 (P25044) is another protein whose prediction changes from N-signal-free to MTS when
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divergence is considered. Following UniProtKB/Swiss-Prot, I treated it as a cytoplasmic protein,

but there is no reference given for this annotation. Moreover PTP1 is identified as a mitochon-

drial protein by two large-scale experiments. This is suggestive that it may have a mitochondrial

localization, although even in that case it would not necessarily have an MTS. Hopefully future

work will clarify if this is another case in which divergence features flagged misannotations in the

dataset.

Divergence features may help detect mitochondrial proteins with non-classical MTS

signals

FMP52 (P40008) is a protein included in the dataset for which the SVM with standard features

predicts an MTS but the SVM with divergence features predicts N-signal-free. As shown in Fig-

ure 2.6, FMP52’s N-terminal region is not divergent like typical MTS’s, especially very near the

N-terminus. FMP52 is indeed a mitochondrial protein, but upon closer scrutiny I discovered a pre-

vious report that it strongly associates with the outer membrane [55] — and therefore is unlikely to

have a matrix targeting MTS. Moreover, FMP52 is one of the non-MTS containing proteins in the

yeast proteomic analysis [3]. Swiss-Prot does annotate FMP52 with an MTS (1–44), but I could

not find a reference or supporting information for this MTS annotation; therefore, I conclude that

it is unlikely to have MTS. CYM1 (P32898) is another interesting example which has been reported

to localize in the intermembrane space and not to be processed by mitochondrial proteases [56].

Since MTS is a cleavable targeting signal for the matrix, the intermembrane space localization and

lack of proteolytic cleavage of CYM1 suggests its N-terminal signal is not a typical classical MTS.

MrpL19 (P53875) is another case in which sequence divergence features highlight a ribosomal

mitochondrial protein which does not appear to have a classical MTS signal. According to both
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UniProtKB/Swiss-Prot annotation and a large-scale proteomics experiment [3] MrpL19 has an

MTS, but the annotated “MTS” is unusually long and lacks an arginine in position -2, which is

normally observed in MPP cleavage sites [13]. Moreover the N-terminal sequence of MrpL19 is very

well conserved not only in yeasts but even in bacteria. Indeed the three dimensional structure of

rplK, a homolog of MrpL19 in E.coli, has been solved and it is evident that the two proteins have a

similar structured N-terminal. Taken together the evidence suggests that MrpL19 may not have an

N-terminal mitochondrial localization signal, but rather be imported via an alternative pathway.

On the other hand, I also observed ribosomal mitochondrial proteins whose N-terminal is poorly

conserved. One example is MrpL32 (P25348), which cannot be predicted as having an MTS by

standard tools such as TargetP [57] or Predotar [31], nor by SVM’s trained without divergence

features. MrpL32 shows a high divergence in its N-terminal region (Figure 2.7 and is predicted to

have an MTS by SVM when using divergence features. A literature search revealed that MrpL32

does indeed have an MTS, but it is unusual in the sense that it is cleaved by the protease m-AAA [23,

58] instead of MPP. Mrp7 (P12687) is a similar case. Like MrpL32, Mrp7 is also a component of a

large ribosomal subunit and is not predicted to have an MTS by TargetP, Predator, nor by SVM

without divergence features, but is predicted to have an MTS when divergence features are used. In

UniProtKB/Swiss-Prot, Mrp7 is annotated as having an MTS, and indeed the processing of Mrp7

by MPP has been reported multiple times [59, 3]. So in this case high sequence divergence allows

an MTS to be correctly predicted.

Another case worth discussing is IMO32 (P53219), which has recently been reported to be

processed by the intermediate protease Oct1 (after MPP) in the matrix [60]. It is unusual in

that its inferred MPP cleavage site represents a rare exception to the almost invariant presence of

arginine at the -2 position. IMO32 is predicted as an MTS by Predator [31] and SVM when I use
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Figure 2.6: Multiple sequence alignment of FMP52 in S.cere.and its orthologs in 10 other yeast
species. The red boxed region shows the annotated MTS of FMP52. Conserved positions are
colored by Jalview.

Figure 2.7: Multiple sequence alignment of MrpL32 in S.cere.and its orthologs in other 10 other
yeast species. The red boxed region shows the MTS of MrpL32. Conserved positions are colored
by Jalview.

divergence, but not by SVM without divergence features, nor by TargetP [57].

2.3 Discussion

Although strong sequence similarity is a widely used indicator of co-localization, characteristically

low sequence conservation in signal sequence regions has not been utilized for prediction. Other

authors have noted the low sequence conservation of N-terminal sorting signals such as MTS se-

quences [61], but this work reported here is the first investigation of the utility of sequence divergence

as a predictive feature for N-terminal sorting signals.

The method reported here requires defining an ortholog set for each gene. The YGOB curated

dataset for 11 yeast species is a reliable way to obtain orthologs, but this kind of database is not
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available for most species. I show that a simple reciprocal best hit method identified orthologs

with sufficient reliability for the purposes of computing sequence diversity. One avenue for future

research is to relax the requirement of global alignment reciprocal best hit designed to find orthologs,

and simply use for (possibly paralogous) homologous sequences. In this study I chose to focus on

orthologs because paralogs often have distinct localization sites. For example, Rosso et al. [62]

describe the interesting case of the human glutamate dehydrogenases GLUD1 and GLUD2. These

paralogs result from a gene duplication event, but GLUD1 localizes to both the cytosol and the

mitochondria while GLUD2 localizes exclusively to the mitochondria. Interestingly, the N-terminal

region of GLUD2, which functions as an MTS, has evolved faster than GLUD1 [62].

Since I made a few somewhat arbitrary choices when defining divergence features, I performed

an post hoc analysis to see if simply tuning those parameters would significantly affect the prediction

accuracy. Namely, I investigated the effect of the changing the window length and position of the

downstream normalizing window used to define NCdiff, but found that prediction accuracy is not

strongly dependent on the exact value of these parameters (Figures A.1, A.2). Another potential

weakness of this method is the simple entropy based definition I used for sequence divergence, which

ignores the phylogenetic relationship of the species involved. Many sophisticated measures have

been proposed to quantify the degree of sequence conservation [39]. I did experiment with some of

them, such as the Jensen-Shannon divergence [63] to try to improve prediction, but without success

(results not shown). However I did not extensively explore the possibilities and believe that the

simple entropy score employed here probably can be improved upon.

On the other hand, I did provide quantitative evidence that the entropy divergence score has

considerable predictive power by itself. The examples ALA1 and FMP52 show that divergence can

flag proteins (typically mitochondrial ones) with misannotated MTS information and give a hint
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regarding which compartment of the mitochondria they localize to. Examples like MrpL32, show

that when the predictions of standard predictors are inconsistent with the degree of sequence diver-

gence, non-typical MTS’s, processing proteases or alternative mitochondrial localization pathways

may be indicated.

One weakness in the datasets is that many of SP proteins are not experimentally validated,

but rather annotated as SP proteins due to UniProtKB/Swiss-Prot annotation and prediction from

amino acid sequence with SignalP [29] in the yeast dataset. This unfortunate circularity (predicting

predictions) is unavoidable because: 1) only a handful of SP’s have been experimentally verified, and

2) the presence of SP’s cannot be reliably inferred exclusively from localization site for most S.cere.

proteins. It may be reasonable to assume that secreted proteins all have SP’s, but S.cere. secretes

very few proteins (the Swiss-Prot derived WoLF PSORT [64] dataset lists only six). Proteins which

localize to the E.R. or Golgi body generally posses SPs, but many proteins annotated as E.R. or

Golgi are non-SP containing peripheral membrane proteins, which localize to the periphery of these

organelles. However, the risk of incorrect conclusion resulted from employing non-verified SP data

is small. First, this problem only applies to the SP class, as recent proteomics data has provided

direct measurement of many MTS’s [3, 32]. Second, given the intense study of S.cere. and the

continued scrutiny of UniProtKB/Swiss-Prot by the research community, I find it unlikely that a

large fraction of the SP proteins in the dataset are incorrectly labeled. Third, this argument is not

completely circular. SignalP prediction is based on physico-chemical features but not divergence (or

conservation) for prediction, and the results shown in Figure 2.5 suggest physico-chemical features

do not correlate very closely with sequence divergence.



Chapter 3

Prediction of presequence and its

cleavage site

3.1 Materials and methods

3.1.1 Training and test dataset

Presequence prediction

The positive training dataset contains 759 mitochondrial protein sequences with a presequence

which are extracted from UniProtKB/Swiss-Prot [28] ver. 2012 10. The mitochondrial protein

data includes recent presequence proteome data [3, 32] , the dataset of TargetP , and that of

Predotar. For negative examples I used 6310 non-mitochondrial with clear Swiss-Prot annotation

of subcellular localization and 108 non-cleaved yeast mitochondrial proteins [3]. No pair shared more

than 80% mutual sequence identity in each positive and negative dataset. To compare the prediction

56
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performance, I prepared an independent test dataset consists of 78 mitochondrial proteins possessing

a presequence and 8934 non-mitochondrial proteins; the sequence identity between training and test

datasets are less than 25%. Also, there is no pair sharing more than 25% sequence identity in each

positive and negative test dataset.

Cleavage site prediction

Cleavage site were extracted from the proteomic analysis experiments for S.cerevisiae [3] and

A.thaliana andO.sativa [32]. To reduce redundancy, sequences were extracted from their N-terminal

up to three residues after cleavage site as same as TargetP [65], and redundant sequences were re-

duced with 40% identity in each taxonomic groups. Although the original proteomic data for the

yeast shows multiple cleavage sites on a protein in some cases, most frequently observed sites were

extracted. To extract cleavage sites which are processed by MPP, I exclude proteins whose first

cleavage site does not contain arginine at -2 position (in plant dataset, -3 position is also taken

into consideration due to unreported hypothetical Icp55 equivalent sites). Although a few proteins

which do not contain arginine at -2 position are annotated that they are cleaved by MPP and other

intermediate proteases, they were not used for training but tested. Test was conducted by 10-fold

cross validation. Negative dataset is prepared by extracting sequences which matches X{2}RX{6}

at non-cleaved position of N-terminal in the positive dataset.

3.1.2 Training MitoFates

The flow of MitoFates consists of two parts: presequence prediction and its cleavage site prediction.

Both prediction bases on Support Vector Machine (SVM) implemented in LIBSVM 3.0 with RBF-

kernel [45]. Details of SVM is described in materials and methods section of chapter 2. SVM with
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polynomial kernel or random forest were also applied, SVM with RBF kernel shows best performance

(detail is described in the appendix). The features used in the presequence predictor are: the

presequence frequent 6-mer motif hits, the improved hydrophobic moment score, weighted position

weight matrix (PWM) of MPP cleavage site, physicochemical features of the N- and C- terminal

region and amino acid compositions (the details are described below). Prediction performance

was evaluated by Precision-Recall curve. Precision and Recall are defined by below equations.

Similarly, features for cleavage site prediction are: PWM, physico-chemical properties and amino

acid composition from N-terminal to each candidate sites.

Precision = TP
TP+FP

Recall = TP
TP+FN

, where TP, FP, FN are True Positive, False Positive and False Negative, respectively.

3.1.3 Mitochondrial presequence frequent motif finding

For motif finding, I used N-terminal 90 residues of 317 mitochondrial proteins with a presequence

and 3897 non-mitochondrial proteins. These sequences are a subset of training dataset and share

less than 25% sequence identity. I reduced 20 amino acids to 5 letters based on physicochemical

properties; hydrophobic ϕ (L, F, I, V, W, Y, M, C, A), basic β (R, K, H), acidic α (E, D), polar

σ (S, T, N, D) and secondary structure breaker γ (P, G). Then, I partitioned the N-terminal 90

residues into three blocks of 30 residues and I counted protein match to the 6-mer motif comprised

of the 5 letters in each blocks of the mitochondrial and non-mitochondrial proteins. With these

counts, I used a highly sensitive multiple-testing method LAMP [66] to conduct Fisher’s exact test
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for the 6-mer. All statistically significant 6-mer (p-value < 10−5) are found in the first block (see

results section), thus I used the fourteen 6-mer with p-value less than 10−5 found in N-terminal 30

residues for the prediction. The score of each 6-mer hit is defined by − log10(p− value) .

3.1.4 Revised hydrophobic moment for presequence (µN)

µN ≡ 1
n{

√
(
∑

i Hicos(δi))2 + (
∑

i Hisin(δi))2

− rcosθ
√
(
∑

i Cicos(δi))2 + (
∑

i Cisin(δi))2}

, where r is a ratio parameter to balance between hydrophobic moment and charge moment, and

θ is a degree consists of vectors of hydrophobic and charge moments. Here, Hi indicates Aboderin

hydrophobicity scale [67] and Ci is charge index ([R, K, H] and [D, E] are valued at +1 and -

1, respectively and other residues are 0). µN is normalized by length of window n. Parameters,

degree of helix and balancing parameters, were optimized by using the training dataset to maximize

discriminative power measured by F-score. Best degree and balancing parameters are 96◦ and 8.5,

respectively.

3.1.5 Distance from N-terminal considered Position Weight Matrix

Local sequence around cleavage site is important for MPP recognition as known as ”R-2 rule” [13].

PWM was generated from residues between the -4 position and the +5 position around cleavage site.

Here, negative value indicates upstream of the cleavage site and positive value does downstream.

Thus, cleavage position is indicated by -1 and +1. Observed frequencies at each positions are

smoothed by 20 component Dirichlet mixtures [68], and these 20 values are divided by amino acid

composition of mature region in mitochondrial cleaved proteins as background frequencies. PWM
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score is calculated as log-odds ratio between trained cleavage site and background. In addition,

presequence length seems to be informative for the prediction; therefore, scores at each position

were weighted by distribution of presequence length, f(t), according to distance from N-terminal

to the window, i.

log2
P (x|model)

P (x|null)
+ log2

∫ i

i−1

f(t)dt (3.1)

The length distribution was fitted to Gamma mixture and parameters were estimated by EM

algorithm [69].

3.1.6 Amino acid composition

It is well known that protein secondary structure correlates with amino acid composition and invokes

correlation between nearby residues. Therefore I adopted amino acid composition and dipeptide

composition in N-terminal 30 residues. Moreover I skip two dipeptide composition, defined as AxxB,

where A, B are fixed amino acid residues, and x is any residue. When this 4-mer forms a helix, A

is close to B in the helix. Similarly, amino acid composition up to candidate site k were applied

to cleavage site prediction. In the latter case, length k can be very small; therefore, composition

is smoothed and transformed to posterior probability by 20 component Dirichlet mixture prior [68]

and transformed 20 dimension vector as features in SVM.

3.1.7 Physico-chemical propensities

Presequence prediction:

Proteins bound for the endoplasmic reticulum usually and peroxisome often possess predictable

sorting signals in their N- and C-terminals, respectively. To distinguish between mitochondrial

presequence and such signal sequences, I partition the N- and C- terminal 90 residues into 6 blocks
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of 15 residues, and then compute the average hydrophobicity [67], α-helical and β-strand periodicity

scores [70, 71], and the density of basic (K, R, H), acidic (D, E), small polar (S, T), aromatic (W,

Y, F) and secondary structure breaker (P, G) residues for each block. Clearly these features are

also relevant to structural motifs and in fact I also include them computed over the entire sequence

in the feature set. In addition, four signal peptide related features are used. The four signal peptide

related features are the same in a previous study [71].

Cleavage site prediction:

As it is known that positive charge importance for protein import to mitochondria, a similar hy-

pothesis was proposed that MPP also uses positive charge in N-terminal to import their substrates

into the cavity [72, 73]. To quantify those features in cleavage site model, averaged net charge and

averaged hydrophobicity were used. In addition, the number of characteristic charged residues were

used as inputs. Within presequence region, negatively charged residues rarely appeared. Thus,

increasing of the number of such residues can be a sign for the end of presequence.

3.1.8 Discrimination of intermediate proteases

In yeast and metazoa models, some mitochondrial proteins are cleaved by intermediate proteases

in the matrix after MPP cleavage; namely, Oct1 and Icp55 (in metazoa, Icp55 is still hypothetical).

To predict correct position of cleavage site, MitoFates classifies Oct1 substrates, Icp55 substrates

and proteins which are not cleaved twice by simply applying PWM profiles of Oct1 and Icp55.

Oct1 profile was trained on four residue-long sequences after MPP cleavage site in Oct1 substrates.

Similarly, Icp55 profile was generated from two residue-long sequences in Icp55 substrates. If

residues after predicted MPP cleavage site shows higher score than threshold, it is predicted as
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double digestion proteins. Threshold for two profiles were determined by highest MCC value in

training data set. To classify a query into MPP+Oct1, MPP+Icp55 and MPP only, MitoFates

predicts MPP+Oct1 class first and MPP+Icp55 class if its score is lower than threshold of Oct1

profile. When two profiles do not match a sequence, it is predicted as MPP only class. In plant

model, I take only hypothetical Icp55-like protease into my account.

3.1.9 Examination of effective features

I used the so called “F-score” to quantify the importance of each feature. The F-score [74] is a

simple measure of the predictive power of a feature in isolation (i.e. without consideration of its

relationship to other features), defined as:

(x̄(+)−x̄)2+(x̄(−)−x̄)2

1
n+−1

∑n+
k=1(x

(+)
k −x̄(+))2+ 1

n−−1

∑n−
k=1(x

(−)
k −x̄(−))2

, where x̄(+), x̄(−), and x̄ are the mean values of the feature for the positive, negative and com-

bined examples respectively; while x
(+)
k and x

(−)
k denote the value of the kth positive and negative

examples respectively. A larger F-score indicates greater predictive power.

3.1.10 Clustering of yeast presequence

Clustering analysis of presequence in the yeast dataset was conducted with selected features to make

interpretation and clustering easier. Selected features are length, averaged net-charge, improved

H-moment score (µN ), MPP cleavage score (PWM score) around cleavage site, compositions of

charged residues (Arg, Lys, Asp and Glu), and amino acid conservation. Since conservation scores

fluctuate by column to column, first 36, average length of entire presequences in the yeast pro-

teomic analysis [3], and its half 18 positions are averaged, respectively. Clustering is conducted by
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application of Gaussian mixture model, and model parameters are estimated by EM algorithm [69]

implemented in Weka [43].

Given data x ∈ Rd, Gaussian mixture model can be defined with parameters, namely mean µk

and covariance Σk for each Gaussian density of K-component Gaussian mixture. Define the number

of samples is N and that of components is K. Each component is a multivariate Gaussian density:

pk(x|θk) =
1√

(2π)d|Σk|
exp(−1

2
(x− µk)

tΣ−1
k (x− µk)) (3.2)

, where θk = {µk,Σk} . pk is a k-th component of a mixture model, and p is defined below:

p(x|θ) =
K∑

k=1

αkpk(x|zk, θk) (3.3)

, where αk(0 < αk < 1) are the mixture weights, and
∑K

k=1 αk = 1. zk are latent variable vectors

that determines the components from which each sample originates. With Bayes rule and current

parameters Θ, posterior probability is written as below.

p(zik|xi,Θ) =
p(zik|xi, θk) · αk∑K

m=1 p(zim|xi, θm) · αm

(3.4)

EM algorithm for Gaussian mixture model comprises of E-step and M-step. E-step: Calculate

p(zik|xi,Θ) with current parameters Θ for all samples xi(i = 1, ..., N) and all components k =

1, ...,K. M-step: Compute new parameters as below.

αnew
k =

∑N
i=1 p(zik|xi,Θ)

N
, 1 ≤ k ≤ K (3.5)

With these new mixture weights, update θk.
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µnew
k =

(
1∑N

i=1 p(zik|xi,Θ)

) N∑
i=1

p(zik|xi,Θ)xi, 1 ≤ k ≤ K (3.6)

Σnew
k =

(
1∑N

i=1 p(zik|xi,Θ)

) N∑
i=1

p(zik|xi,Θ)(xi − µnew
k )(xi − µnew

k )t, 1 ≤ k ≤ K (3.7)

Then, go back to M-step with θnewk . Until convergence, these E-step and M-step are iterated. To

decide convergence or not, log-likelihood function is defined:

log l(Θ) =
N∑
i=1

(log
K∑

k=1

αkpk(x|zk, θk)) (3.8)

Decision on the number of clusters is one of key points, and in this work it was determined by

following default greedy and ad-hoc algorithm of the implementation simply. Thus, given data is

randomly split into 10 to conduct 10-fold C.V and computes log-likelihood 10 times. If averaged

log-likelihood is increased with increasing cluster number by 1, iterate this step. Otherwise, stop

and returns the number of clusters as a most likely model to the given data.

3.2 Results

3.2.1 Prediction performance of MitoFates

Presequence prediction

Three computational tools are widely applied to presequence prediction at present: MitoProt,

TargetP, and Predotar as I described [65, 75, 31]. To compare performances fairly against all
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Figure 3.1: Precision-Recall curves for MitoFates, Predotar, TargetP, and MitoProtII. Since ratio
between presequence containing proteins and negative test dataset is very skewed, negative dataset
is randomly split into a set which includes 500 sequences. Shown points are averages of 10 iterations.

including predictor described here (MitoFates), independent test dataset is prepared (detail is

described in the materials and methods). Figure 3.1 shows the 11 point precision-recall curve

(PR-curve) of each predictor by testing 10 times with keeping the positive test data to avoid

imbalance affect between the positive and negative datasets. The curve of Mitofates locates at

most upper-right on the PR space, outperforming TargetP, Predotar and MitoProtII. MitoFates

attains superior precision than other predictors at recall 50-90%. The improvement should leads to

higher chance to identify of undiscovered mitochondrial proteins.
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There are two problems in the evaluation: small number of positive test dataset and unrealis-

tically skewed ratio between the positive and the negative test datasets. In fact, recall is almost

saturated at about 4% false positive rate for MitoFates and Predotar maybe due to the limited

number of positive test dataset, 78. To avoid these problems in statistical test, McNemar’s test,

one of paired tests, is applied to the positive dataset with controlling false positive rate. In this

manner, two predictors’ performance is compared in the positive dataset whether prediction of

a query is correct or not, namely score is higher than the threshold determined in the negative

dataset. Therefore, false positive rate is tried to change from 1% to 15%, then test at each false

positive rate. As shown in Figure 3.2, recall of MitoFates is entirely higher, especially in low false

positive rate ( < 2%), and within this very low false positive rate, MitoFates is significantly accu-

rate in the positive dataset. Predotar and TargetP have other predictor in the system for SP and

N-Signal-free, and final prediction is determined by comparing prediction scores from all models.

Under this condition it is difficult to estimate recall at high false positive rate region, so comparing

with scores of only mitochondrial model is also conducted (in this condition, scores of other models

and predicted labels for queries are ignored). Dotted lines show result of this model only consider-

ing condition. Although the differences between MitoFates and the others are small in high false

positive rate region, recall of MitoFates is still highest amongst them. In high false positive rate,

prediction of the positive dataset is almost saturated, and this can be observed as p-value of the

statistical test (Figure 3.2 top).

Cleavage site prediction

The other target of MitoFates is to predict MPP and intermediate proteases’ cleavage site of mi-

tochondrial presequence. Since cleavage site of presequence does not contain much information,



CHAPTER 3. PREDICTION OF PRESEQUENCE AND ITS CLEAVAGE SITE 67

=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)=(α, 0.05)

********************************************************************************************************************************************* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Predotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar defaultPredotar default TargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP defaultTargetP default MitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII defaultMitoProtII default

0

2

4

6

0.04 0.08 0.12
FP Rate

−
lo

g(
p−

va
lu

e)
Methods MitoProtII Predotar TargetP

0.00

0.25

0.50

0.75

1.00

0.04 0.08 0.12
FP Rate

R
ec

al
l

Methods MitoFates MitoProtII Predotar TargetP

Figure 3.2: Statistical test on performance of MitoFates with other predictors. Dotted lines show
prediction result in which only mitochondrial model is considered. (Top) P-values of McNemar’s
test on the positive test dataset is plotted. Threshold on the positive is controlled by false positive
rate in the negative dataset. x-axis is false positive rate in the negative dataset, and y-axis is
-log(p-value) McNemar’s test at given false positive rate. * shows MitoFates default threshold
automatically determined by the model learning, and + shows user adjustable threshold (set to the
threshold at which recall is 80% in the training dataset). (Bottom) Recall, or sensitivity, of four
predictors is plotted. x-axis is the same as the top figure, and y-axis is recall.
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prediction of cleavage site is not at satisfactory level at present. Arg nearby cleavage site is a key

feature and it has been experimentally confirmed that Arg at -2 position interacts with negatively

charged residues in MPP [76]. SVM model for cleavage site which includes local information as

PWM and other surrounding features searches MPP cleavage site at first, since intermediate pro-

teases function after cleavage of MPP. Improvement of MPP cleavage prediction leads to better

performance in total. Presequences cleaved by MPP and intermediate proteases were validated

by ten-fold cross validation on yeast proteomic dataset [3]. Since two other methods, MitoProtII

and TargetP, are widely used, accuracies are compared with those methods (Figure 3.3). In some

cases, cleavage site prediction is not available in both two methods, proteins which has cleavage

site prediction for the two methods are compared. MitoFates relatively stably predicts cleavage

site of presequence, however, MitoProtII or TargetP result show some leaps between 0 and 1 or

around 7 in terms of difference with actual cleavage site. This can be observed in plant dataset as

well (Figure 3.4). Since presequences of plants show different length distribution and lack of R-10

motif, MitoFates takes such differences into account; thus, only length distribution was trained from

plant dataset and Oct1 profiles is ignored to follow this hypothesis. Although other parameters were

trained from yeast dataset, such simple adjustment improved accuracy in case of plant presequence.

In addition, leaps between actual cleavage site and prediction reflects specificity for intermediate

proteases. For instance, Phe at position +1 is a representative amino acid for Oct1, however, it is

a dominant residue for R-3 motif in plant at position -1 (hypothetical recognized residue for plant

Icp55). Another difference for plant presequence is weakly observed Met at position -1, and Icp55

profile trained on yeast cannot discriminate this residue. I should note here that the leap between

0 and 1 in plant dataset is result of such difference (Figure 3.4).
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Figure 3.3: Evaluation of cleavage site prediction conducted by 10-fold C.V. in the yeast dataset.
Error bar shows S.E. X-axis shows tolerance level, which defines how much extent difference between
prediction and experimental annotation is accepted. Y-axis shows accuracy at each tolerance.
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Figure 3.4: Evaluation of cleavage site prediction conducted by 10-fold C.V. in the plant dataset.
In each fold, only length distribution is learn from the dataset. Error bar shows S.E. X-axis shows
tolerance level, which defines how much extent difference between prediction and experimental
annotation is accepted. Y-axis shows accuracy at each tolerance.



CHAPTER 3. PREDICTION OF PRESEQUENCE AND ITS CLEAVAGE SITE 71

Name of feature F-score
Cleavage score 0.245
R composition 0.217
Motif score 0.159
LR composition 0.126
Moment score 0.126

Table 3.1: Features used in MitoFates, and listed five highest ranked features among them. Features
in italics are suggested in this thesis. To rank them, discriminative power is measured by F-score.

Name of feature ρ
Cleavage score 0.429
R composition 0.398
Motif score 0.360
Moment score 0.334
LR composition 0.310

Table 3.2: Features used in MitoFates, and listed five highest ranked features among them. Features
in italics are suggested in this thesis. To rank them, discriminative power is measured by Spearman’s
correlation coefficient (ρ).

3.2.2 Feature analysis

I calculate F-scores (eq. 3.2) for each prediction feature to examine the effective features (Table

3.1). The best features is the score of cleavage site (F-score = 0.25). The second-fifth best are

the composition of Arg in N-terminal 30 residues (0.22), the total score of 6-mer motifs match in

N-terminal 30 residues (0.16), dipeptide composition of Leu-Arg (0.13) and improved hydrophobic

helical moment score (0.13), respectively. These F-scores suggested newly integrated three prese-

quence features well contribute to the improvement of predictions. With another measurement (by

Spearman’s rank correlation coefficient), top five features are kept (Table 3.2).

3.2.3 Characteristic features for cleavage site

Length of mitochondrial presequence is relatively diverse. Gamma distribution were applied to fit

presequence length in both yeast and plant dataset (Figure3.5). The shape and scale parameters
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Distribution P-value

Yeast Gamma 1-component 0.88
Gamma 2-component 0.85
Gamma 3-component 0.78

Plant Gamma 1-component 0.02
Gamma 2-component 0.84
Gamma 3-component 0.98

Table 3.3: Results of goodness of fit tests.

of Gamma distribution were estimated by using the EM algorithm implemented as a package for

R [69, 77]. With these estimated parameters, fitness between the data and theoretical distribution

was measured by a Kolmogorov-Smirnov test (Table 3.3). The best-fit theoretical distribution

were Gamma unimodal for yeast data and Gamma trimodal distribution for plant data set. These

distributions were used as attributes in the cleavage site scoring. Characteristic difference between

two distributions is very short (<10 amino acid) yeast presequence. Minimum length for yeast

presequence is 6, however that for plant presequence is 18. Due to this difference, different weighting

distributions applied to sequences.

It has argued that cleavage site of the presequence contain three distinct motifs with regards to

arginine position: R-2, R-3 and R-10 motifs as described in the introduction. Because of similarity

between R-2 and R-3 motifs, Schneider and colleagues predicted a putative protease which cleaves

hydrophobic residue at -1 position in cleavage site which holds Arg at -3 position [5]. In fact,

the putative protease was discovered and named Icp55 [3]. With the discovery of Icp55 and their

annotations, I could develop a more appropriate profile for MPP with taking Icp55 and Oct1 into

account (Figure 3.6). Profiles for Icp55 and Oct1 were also developed from yeast proteomic analysis

(Figure 3.6), and their length are 2-mer and 4-mer, respectively. Although Oct1 cleaves typically

eight amino acids after MPP [13], only first four residue are characteristic.
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Figure 3.5: Length distribution learned from the yeast and plant dataset. Gamma mixture is fitted
to the actual presequence length data. For the yeast, unimodal distribution was selected, and
trimodal distribution for the plant dataset.
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MPP Profile Icp55 Profile

-4   -3   -2  -1  +1  +2  +3  +4  +5 +1  +2 +1  +2  +3  +4

Oct1 Profile

Figure 3.6: Sequence logo diagrams for MPP, Icp55, and Oct1 profiles, respectively from the left.

Although Oct1 is a conserved protease from budding yeast to human, R-10 motif has not been

observed in plant presequence [32]. In fact, A.thaliana has one homolog for Oct1, At5G51540,

however, a large scale analysis reported the protein localized in chloroplast [78]. Therefore, only

profile for hypothetical Icp55 was applied to predict hypothetical Icp55 like processing. I should

note here that dominant residue is Phe at hypothetical Icp55 cleavage site; however, equivalent

position favors Tyr in Icp55 substrates. These difference might reflect absence of Oct1 homolog in

plant mitochondria. Icp55 can cleave Phe in yeast, therefore, Icp55 might complement Oct1 like

processing in plant.

3.2.4 Refinement of scoring amphipathic α-helix in presequence

Mitochondrial presequence have 10-90 residues of length and the potential to form positively charged

amphiphilic helices. Import receptor Tom20 and Tom22 is assumed to recognize an amphiphilic

helical feature consist of hydrophobic and positively charged faces of presequences [6, 9, 10]. Al-

though amphiphilic α-helix has been reported as one of the characteristics for presequence, applying

this feature is not successful in practical situation. MitoProtII calculates maximum 18 residue long

hydrophobic moment in N-terminal as a feature of presequence, however, Predotar discusses that

parameters related to amphiphilic helix formation failed to improve predictions [75, 31]. TargetP
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does not depend on this feature explicitly [65]. Thus, I investigated the distributions of maxi-

mum hydrophobic moment score in N-terminal 30, 60, 90 residues regions against both presequence

containing proteins and negative dataset. The best discrimination was shown by the maximum

hydrophobic moment score in N-terminal 30 residues, but the distributions of the score looked

overlapped to each other (Figure 3.7). Because the the original formula of hydrophobic moment

is based on hydrophobicity index, the formula are unable to distinguish positively charged, nega-

tively charged, or polar residues. Thus the original formula does not discriminate positively charged

amphiphilic helix and general amphipathic helix.

To overcome this drawback of the original formula, I determined the improved hydrophobic

moment formulation by integrating charge moment (µN ). Detail of the formula is described in the

method section. As a result of the adjustment, the improved hydrophobic moment µN shows better

discrimination of the presequence containing proteins and negative examples (Figure 3.8). Note

that this improved hydrophobic moment can predict only two, but all known Tom20 binding sites

in the presequence (Su9 of N.crassa [79] and ALDH2 of R.norvegicus [80]).

3.2.5 Novel motif finding in presequence

The sequences of presequences are often differ between orthologs, thus there is thought to be no

consensus in the primary sequence. Meanwhile, a peptide library experiment actually revealed

that 6-mer amphiphilic motif θϕχβϕϕ (where θ, β, ϕ and χ represent a hydrophilic, hydrophobic,

basic and any residue) for Tom20 [9]. However the motif covered only 18% and 19% of yeast

proteomic presequences data [3] and the presequence data in this study, respectively. A motif finding

based on discriminative hidden Markov model (HMM) has been performed against mitochondrial

proteins. In that motif finding, only a few 4-mer motif candidates were found [11]. However,
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Figure 3.7: Distributions of classical hydrophobic moment scores for presequence containing proteins
and proteins without the presequence.

Figure 3.8: Distributions of refined hydrophobic moment scores µN for presequence containing
proteins and proteins without the presequence.
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that was done without considering whether proteins have a presequence or not. Taken together,

there is still possibility for finding undiscovered presequence-specific motifs. Thus, I attempted

to find statistically significant 6-mers for presequences by using five reduced amino acid letters;

hydrophobic ϕ (L, F, I, V, W, Y, M, C, A), basic β (R, K, H), acidic α (E, D), polar σ (S, T, N,

D) and secondary structure breaker γ (P, G). By using highly sensitive multiple-testing method

LAMP [66], motif finding were performed in N-terminal 90 residues, which is portioned into three

blocks of 30 residues.

As a result, fourteen statistically significant 6-mers (p-value < 10−5 as compared to negative

examples) are detected in Figure 3.9. Interestingly, the significant 6-mers were found only in the first

N-terminal block, first 30 residue-long region. All of 6-mers has at least three hydrophobic residues

and one basic residue. In addition, no acidic residues occurred in the 6-mers. To clear whether

the 6-mer are caused from amino acid composition of presequences or not, I also performed same

motif finding against the scrambled sequences of presequences. However the fourteen 6-mers and

also other significant 6-mers were not found in them. Thus the fourteen 6-mer is not influenced by

amino acid composition of presequences. Interestingly, the most of helical wheels of the significant

6-mers seems to have an amphiphilic helical feature consist of hydrophobic and positively charged

faces. As shown in Figure 3.9, the maximum refined H-moment scores (µN ) of 6-mers in N-termini

30 residues of proteins possessing a presequence tend to be higher than those of non-presequence

proteins (the sensitivity and specificity versus cutoff value is 2.56). In the 11 of 14 significant 6-

mers, the average of µN is greater than 2.56, meaning the 6-mers have higher amphiphilicity. The

found positively charged amphiphilic 6-mers might include novel motif candidates for Tom20 and

Tom22 recognition. The best 6-mer was ϕϕσβϕϕ (p-value: 5.7×10−13) and the 6-mer was found in

13% of mitochondrial proteins. This 6-mer is similar to the motif given by peptide library study [9].
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Figure 3.9: Fourteen motifs are listed. Header describes each content of a column in the table.
Sequence logos were generated by WebLogo.

However the first resides is different between the two; the first residue is hydrophilic in the motif

while that is hydrophobic in the best 6-mer. In ignoring last position of the motif, 8th and 9th best

6-mers (ϕϕβϕϕβ and ϕσβϕϕσ ) also match to the motif. The ϕχβϕϕ might be a core sequence for

recognition by Tom20.

Any of the fourteen 6-mers found in 55% of N-terminal 30 residues of mitochondrial proteins

with a presequence while found in only 10% of that of negative examples. So the fourteen 6-mers

should be useful for discrimination of presequences. Thus I used the matching of the fourteen

6-mers in N-terminal 30 residues for the prediction as features.
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3.2.6 Clustering of mitochondrial presequences

MitoFates attains better performances than the existing other predictors however I still failed to

predict a number of presequences. The fails mostly are caused by presequences with less positively

charged or less score of MPP cleavage, indicating that there is a number of non-classical presequence.

Characterizing non-classical presequences is necessary for further improvement of the prediction.

Yeast mitochondrial presequences were most experimentally identified in studied organisms [3].

Thus I tried to classify 243 yeast presequences by using EM algorithm with Gaussian mixture

model employing the 9 features; length, averaged net-charge, improved H-moment score (µN ), MPP

cleavage score (PWM score) around cleavage site, compositions of charged residues (Arg, Lys, Asp

and Glu) and amino acid conservation (see the materials and methods). Similar to signal peptides

for E.R, the amino acid conservation of presequences tend to be poor [12]. The poor conservation

is one of features of presequence, I therefore used the conservation in the cluster analysis. Degree of

conservation is measured by symmetric Jensen-Shannon divergence [63] and orthologs are extracted

from Yeast Gene Order Browser [33].

The cluster analysis results in at least three clusters of presequences (see Table B.3 in the

appendix). In Figure 3.10A, I mapped the three presequence groups in 3D subspace of primary

component analysis (PCA). As shown Figure 3.10A, largest cluster (cluster I) consists of 144 pre-

sequences which are positively charged (almost no negatively charged residues), weak conservation,

have moderate length (the average is 25 residues), higher µN and significantly high MPP cleav-

age scores. Classical presequences are categorized into the cluster I since the properties of the

presequences are consistent with those of typical presequences. The characters of the remaining

99 presequences in the other two clusters differ from the cluster I; these are ”non-classical prese-

quences”.
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The second largest cluster (cluster II) comprised of 64 presequences. Similarly to the cluster I,

the presequences in the cluster II are weak amino acid conservation and their µN are comparable

to the cluster I. However, the length of the presequences is longer (the average is 60 residues) and

also the net-charge is lower. The reasons for lower net-charge are lower composition of Arg and

higher composition of negatively charged residues (Fig 3.10B). Besides, the most of MPP cleavage

scores are significantly lower than cluster I, meaning that their cleavage sites do not match with the

cleavage pattern by MPP. The observation intimates that the cluster II includes the presequences

which are cleaved by other proteases. In fact, the substrates of inner membrane proteases such

as m-AAA and Imp are classified into the cluster II; Ccp1, MrpL32, Cyt1 and Gut2 (summarized

in [8]). The averages of length and Arg composition of presequences of the four substrates are

62.8 residues and 0.06, respectively. The longer presequences having less Arg composition may

tend to be cleaved by proteases other than MPP. In addition, Imo32, which cleaved by MPP and

Oct1 [60], but the MPP cleavage site does not match with MPP cleavage site motif, is included in

the cluster II. The presequence length of Imo32 is 38 residues, and has only two Args. Such less

Arg composition may influence abnormal cleavages of MPP. Like Imo32, presequences, which are

cleaved by unusual manner of MPP, would be included in the cluster II. So, the cluster II might be

classified into subgroups.

The 35 presequences in the third cluster (cluster III) are elusive. Similarly to cluster II, the av-

eraged net-charge and MPP cleavage scores of the presequences are lower than cluster I (net-charge

of 40% of the presequences in the cluster is below zero, and also Arg composition is low). Unlike

the other clusters, the conservation is higher. Moreover the matching of the fourteen presequence

frequent 6-mers with N-terminal 30 residues of presequences is quite lower than the others; the

coverage of the total hit of fourteen 6-mers for the cluster I, II and III are 56.3%, 42.2% and 14.3%,
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respectively. 13 of the 35 presequences in cluster III are derived from the mitochondrial protein

annotated as dual localization or non-mitochondrial localization in Swiss-Prot. The features of the

13 presequences represent the above-described cluster III features; high conservation, low averaged

net-charge, low MPP cleavage score and low Arg composition. In addition, H-moment score µN

of the 13 presequences is lower. Low averaged net-charge and µN are consistent with previous

reported the features of dual-localized mitochondrial proteins [81]. The cluster III includes some

presequences with higher averaged net-charge (but, less Arg composition) which is comparable to

the net-charge of cluster I presequences. Almost of all the presequences with such higher net-charge

is 6 ribosomal protein presequences. The presequences of ribosomal proteins are also confirmed in

Cluster I and II (23 and 6 ribosomal presequences in Cluster I and II, respectively). The prese-

quences of ribosomal proteins which having higher averaged net-charge, but low MPP cleavage score

and high conservation, are classified into the cluster III. Thus, Remaining anomalous presequences

may be gathered in the cluster III, and the presequences could be subdivided.

Finding features which are effective to discriminate the non-classical presequences (cluster II

and III) is essential to further improvement of the prediction.

3.3 Discussion

In this study, the prediction for a mitochondrial presequence and its MPP related cleavages site was

improved by updating dataset and modeling presequence containing proteins with features. So far,

it is said that 50-70% of all the known mitochondrial protein possesses a presequence [3]. MitoFates

predicts 52% of annotated mitochondrial proteins; 557 of 1183 human mitochondrial proteins are

predicted in Mitocarta [82], in which I updated the sequences and removed duplicated sequences.

The coverage is consistent with the previous estimation.
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A B

Figure 3.10: Blue, red, and yellow indicate cluster I, II, and III, respectively. (A) To visualize,
clustering result is mapped to three dimensional space with principal component scores of PCA.
(B) Distributions of each feature for three clusters are summarized in whisker plots. Light gray
dots show outliers in each cluster.



CHAPTER 3. PREDICTION OF PRESEQUENCE AND ITS CLEAVAGE SITE 83

The recent presumption estimates that few hundreds of undiscovered mitochondrial proteins

exist in human [83]. Other than mitochondrial protein possessing a presequence, mitochondrial

protein having non-cleavable internal targeting signal are also probably included in the undiscovered

proteins. Besides, a couple of examples of mitochondrial protein having a C-terminal cleavable

targeting signal are identified [84, 85]. Taken together, number of undiscovered mitochondrial

proteins would be larger than the presumption.

Mitochondrial dysfunction causes diverse diseases such as muscle and neurodegenerative disease,

cardiovascular disease, diabetes and cancer [2]. To understand the role of mitochondria in health

and disease, comprehending of the protein composition of the organelle is essential.

One of the feature of presequence is amphiphilic helical feature consisting of hydrophobic and

positively charged hydrophilic faces which is assumed to recognize by Tom20 and Tom22. In most of

the fourteen presequence frequent 6-mers, the helical wheal shows a positively charged amphiphilic

helix. These helical wheels indicate the possibility that the 6-mers is novel motif candidates for

Tom20 and Tom22 recognition. I should note here that positive data and negative data which

were compared in the task of motif finding contain different amino acid composition, especially

N-terminal end. Conservative way to avoid such composition variance is using scrambled data of

the positive dataset, which assumes such short significant motif is conserved. Although some of

fourteen motifs does not appear in the list of significant hit of scrambled tests, the rest was detected

by such test (see Table B.2 in the appendix). Since taking high evolutionary rate of N-terminal

signal into account, I cannot deny potential function of such vanished motifs (there is a possibility

that randomly appeared short motif might function). However, at least the rest repeatedly detected

motifs even in the shuffled tests seem not to be an artifact of this work.

Recently, a long presequence pSu9 was reported to contain two distinct Tom20-binding elements;
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the Tom20 binding element in N-terminal half and the efficient element for protein import in C-

terminal half [79]. The report suggests other long presequences also have two Tom20-binding

elements. To explore motif candidate of the C-terminal element in long presequence, presequences

are classified into two groups by length; short group (40 amino acids or less, 215 mitochondrial

proteins) and long group (more than 40 amino acids, 102 mitochondrial proteins), and then searched

for statistically significant 6-mer in N-terminal 90 residues divided by three blocks of 30 residues.

5 highly significant 6-mer (p-value < 10−5) are detected but all the 6-mers were found in only

first block regardless of presequence length four and one significant 6-mers are found in N-terminal

30 residues in short and long presequences, respectively). Even if a higher p-value is set (p-value

< 0.05), I could not find any statistically significant 6-mer in second and third blocks. The C-

terminal binding with Tom20 of long presequences is efficient for import, but the binding element

might not be distributed widely in long presequences. Since the statistically significant 6-mers are

found in only N-terminal 30 residues regardless of presequence length, the important features for

protein import into mitochondria might be organized within N-terminal 30 residues. Although it

is difficult to analysis due to the number, mixing presequences from a variety of taxonomic groups

might be negatively affect the result. Since plant presequences are usually longer (about 10 aa shift

in Figure 3.5), long presequence from green plant might be different. In other words, 40 might be

not long for this taxonomic groups. However, the number of presequences from green plant is small,

this effect seems to be not so strong in the analysis.

The other purpose of MitoFates is to predict cleavage site of MPP and intermediate proteases.

At present, the most popular cleavage site predictors are TargetP and MitoProtII [65, 75]. TargetP

predicts cleavage site by sliding window with scoring matrices for R-2, R-3 and R-10 motifs [65],

and MitoProtII uses sequence patterns for the three motifs [75]. These motifs can be explained
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by intermediate proteases functioning after MPP, Icp55 and Oct1, and numerous substrates are

annotated by the yeast proteomic analysis [3].



Chapter 4

Discrimination of mitochondrial

membrane spanning regions

4.1 Materials and methods

4.1.1 Dataset

To analyze mitochondrial innner membrane proteins with a single transmembrane domain (TMD), I

collected such proteins whose topology and structure are known from the OPM database [86]. Since

the number of those proteins is limited, I also collected proteins whose localization and insertion

mechanism were experimentally verified in a recent study [19].

In addition, I also added mitochondrial proteins annotated as single spanning inner membrane

proteins in Swiss-Prot to the dataset. As a negative dataset, I used a collection of cytosolic proteins

whose localization has been verified in S.cerevisiae and H.sapiens. Since it is easy to discriminate

86
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non-TMD sequences without plausible TMD regions, I only included sequences which have regions

with ∆Gpred
app < 3 in the negative dataset. I prepared the datasets with sequence redundancy reduced

to 40% identity in both full length and local TMD region (including 10 flanking residues in both

N-terminal and C-terminal direction). To compare with TMDs inserted into the E.R. membrane,

I also used sequence datasets from prior research [87]. Considering the possibility that insertion

mechanism or features differ among taxonomic groups, I initially prepared separate datasets for

fungi and vertebrates. However I could not find significant differences and therefore I prepared a

redundancy-reduced merged dataset by the procedure described above. The results I report here

are based on the merged dataset.

4.1.2 Sec61 translocon insertion model

T.Hessa and colleagues have reported an energy model for TMD inserted by Sec61 translocon [20].

The advantage of their model is its capability of explicit length correction, modeled by c1, c2, and c3

below, and better discriminative parameters against plausible region in globular proteins, modeled

by ∆G
aa(i)
app . Negative values of ∆Gpred

app indicate spontaneously inserted TMDs.

∆Gpred
app ≡

l∑
i=1

∆Gaa(i)
app + c0

√
(G

aa(i)
app sin(100◦i))2 + (G

aa(i)
app cos(100◦i))2 + c1 + c2l + c3l

2. (4.1)

The values of c0, c1, c2, c3 (0.27, 9.3, 0.65, and 0.0082, respectively) are experimentally opti-

mized [20]. ∆G
aa(i)
app assumes a symmetric Gaussian function (Figure 4.3). For the 18 amino acids

other than Trp and Tyr, a single Gaussian is defined with two parameters.

∆Gaa(i)
app = aaa0 exp(−aaa1 i2) (4.2)
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where i indicates position within a window (i = 0 is the window center).

Trp and Tyr have two Gaussian model with four parameters.

∆Gaa(i)
app = aaa0 exp(−aaa1 i2) + aaa2 (exp(−aaa3 (i− aaa4 )2) + exp(−aaa3 (i− aaa4 )2)) (4.3)

4.1.3 Statistical free energy calculation

Eq. 4.1 includes positional energy parameters for the 20 standard amino acids at 19 positions relative

to the TMD center, ∆G
aa(i)
app (shown in Figure 4.3). Although these 20 × 19 parameters have been

measured experimentally, it is also possible to estimate these parameters empirically from multiple

sequences via the following statistical mechanics relationship: [20].

G
aa(ij)
stat = −RT log

Pij

Qj
(4.4)

where R is the gas constant, T is set to room temperature (300K), i indicates the relative position

within a 19 residue window, and j the amino acid. For the background probability distribution

Qj , I used the amino acid composition of all registered proteins in UniProtKB/Swiss-Prot release

2013 04.

4.1.4 Evolutionary information

Since evolutionary relevant homologs give clearer information regarding TMDs, I extracted evo-

lutionary information in the form of PSSMs generated by DELTA-Blast [88]. According to [88],

DELTA-Blast without iterative calculation achieves at comparable sensitivity to that of PSI-Blast [89]

with three iterations, leading to practical computational time. I utilized the information from

PSSMs in two ways: weighting parameters for positional parameters in the above model, ∆G
aa(i)
app
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and simple PSSM amino acid compositions in candidate regions to be predicted. I adopted the

former model [90] with minor modification as described below.

∆GMSA ≡
l∑

i=1

∑
j∈AA

f(aa(j))∆Gaa(ij)
app

+ c0

√√√√(
l∑

i=1

∑
j∈AA

f(aa(ij))∆G
aa(ij)
app sin(100◦i))2 + (

l∑
i=1

∑
j∈AA

f(aa(ij))∆G
aa(ij)
app cos(100◦i))2

+ c1 + c2l + c3l
2

(4.5)

where f(aa(ij)) is amino acid composition for 20 amino acids at position i. The calculation of

f(aa(ij)) is described below.

4.1.5 Amino acid composition

I extracted two kinds of amino acid composition: simple composition from a query sequence and

PSSM composition from a PSSM of the query generated by DELTA-Blast. As described in the

result section, positional difference of several amino acids is observed between different regions of

TMDs. To extracting these difference, for queries complete with PSSM I sectioned the TMDs into

three regions: N-terminal 5 residue, C-terminal 5 residue, and the rest in the middle. I did not

section single query sequence due to the sparseness of data which would result in esimating three

sets of 20 amino acid frequencies. PSSM composition, CPSSM
j , is simply defined from the PSSM

matrix values (log-odds scores) over each section of length L. The log-odds score of amino acid j

at position i, sij , is calculated from the background probability of amino acid j. sij is scaled by
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the sigmoid function.

Sj =

L∑
i=1

1

1 + exp(−sij)

CPSSM
j =

Sj∑
k∈AA Sk

(4.6)

The definition of f(aa(ij)) is almost the same, but to avoid the sampling error effect of rare

{amino acid, position} combinations, combinations with negative values of sij are ignored when

calculating ∆Gpred
app .

4.1.6 Predictor Architecture and Training

I employed a two-layered predictor architecture to discriminate TMDs from non-TMD regions; both

layers use SVM classifiers but the first layer focuses on individual positions, computing a TMD/non-

TMD score based on the PSSM centered at each position, while the second layer uses the first layer

as input in addition to other input such as ∆G to delineate the TMD boundaries. The Support

Vector Machine (SVM) implemented in LIBSVM 3.1 with the RBF-kernel [45] are applied to both

layer models.

Calculation of TMD candidate

(In addition to other features) each SVM in the second layer receives one feature summarizing a

span from the first layer. Roughly speaking this span is a local minimum of ∆G. More precisely,

candidate regions are searched by combination of ∆GMSA and ∆Gpred
app . First, a query is scanned

by ∆GMSA with changing its window size from 15 to 30. The region with the minimum score is

selected, and the rest region is recursively searched by the same way until no region has lower than

3. In some cases, ∆GMSA misses TMDs, so ∆Gpred
app without PSSM is run in the region where
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∆GMSA is higher than 3.

4.1.7 Classification performance evaluation

Matthews correlation coefficient

The detail of the Matthews correlation coefficient (MCC) is described in the materials and methods

section of chapter 2.

Sensitivity and Specificity

Sensitivity equals to a measurement so-called recall. Both measurements are defined below.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

(4.7)

, where TP, FP, TN, and FN are True Positive, False Positive, True Negative, and False Negative,

respectively.

4.2 Results

4.2.1 Mitochondrial TMDs tends to be short and less hydrophobic

At first, free energy distributions of single spanning TMD of mitochondrial inner membrane and

E.R. are analyzed with Sec61 translocon model (Figure 4.1). To compare with membrane proteins,

globular cytosolic proteins are used as negative samples. Pseudo-TMD region is calculated by

scanning entire sequences for them, and region with lowest energy is selected. As expected, almost

all of single spanning TMDs of E.R. membranes have energy less than 0 kcal/mol, which should
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Figure 4.1: Free energy distribution of single spanning TMD measured by Sec61 translocon model.
(Left) TMDs are extracted from fungi. (Right) TMDs are extracted from vertebrates.

be inserted spontaneously, and cytosolic proteins rarely have region whose energy is less than 0

kcal/mol. Discrimination between these two groups seems to be done well by the model, however,

mitochondrial TMDs show ambiguous distribution. These tendencies are common between fungi

and vertebrate (Figure 4.1), and prediction difficulty of mitochondrial TMDs is partly explained by

this result. Half of them have strong enough TMD characters, however, the rest is overlapped with

negative samples. Relation between length and energy is also analyzed (Figure 4.2). Although it is

known that ∆Gpred
app is correlated length of the TMD segment, approximation of the model can reflect

actual length effect [20]. Basically, mitochondrial TMDs have shorter hydrophobic segments than

that of E.R. membranes. Since the model is optimized by experiment of Sec61 translocon insertion,

higher free energy might simply reflect different insertion mechanism in the mitochondria.
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Figure 4.2: Scatter plot of free energy versus length of single spanning TMD measured by Sec61
translocon model. (Left) TMDs extracted from fungi. (Right) TMDs extracted from vertebrates.

4.2.2 Differences in amino acid composition

Since ∆Gpred
app depends on positional parameters for 20 amino acid, different energy distribution

intimates either unfavorable order of amino acids such as charged residue in the middle of TMD or

different amino acid composition, or both. To check composition variance, amino acid composition

of mitochondrial TMDs and E.R. TMDs are compared. Since distribution of amino acid composition

is not normally distributed, the Mann-Whitney U test was applied. Leu, Ile or other characteristic

amino acids for TMD such as Trp, Tyr, or Arg are not significantly different in both fungi or

vertebrate. Surprisingly, Gly is significantly different in both fungi and vertebrate. In fact, Gly is

unfavored amino acid residue at any position in the Sec61 translocon model, high density of Gly

in TMD can lead to higher free energy. Composition lacks information of relative position within

TMD, therefore, positional preference was analyzed. Although one problem to make positional

amino acid profile of TMD empirically is length variation, simple linear interpolation was applied

to fit 19 amino acid long profile. Considering general similarities between fungi and vertebrate,
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AA Fungi Vertebrate
A 0.01454 0.14678
C 0.00012 0.09667
D 0.00000 0.01735
E 0.00501 0.03654
F 0.00621 0.08144
G 0.002591 0.00032
H 0.24780 0.24305
I 0.02454 0.42331
K 0.70420 0.72505
L 0.00384 0.00268
M 0.09394 0.50796
N 0.63880 0.16080
P 0.36790 0.67532
Q 0.05545 0.00396
R 0.08034 0.42878
S 0.44990 0.00945
T 0.14830 0.71128
V 0.15740 0.04809
W 0.13940 0.18680
Y 0.02199 0.18219

Table 4.1: P-values of the Mann-Whitney test are listed. Amino acid compositions in TMD region
in fungi or vertebrate are compared. Entries significant at the 0.05 confidence level after Holm-
Bonferroni correction for multiple hypothesis testing are shown in bold.

both dataset merged into one after redundancy reduction. Figure 4.3 shows statistically calculated

free energy profile of 20 amino acid and fitted energy profile for Sec61 translocon model by Gaussian

function (detail is described in materials and method section). Prior work conducted by Botelho and

colleagues revealed asymmetric distribution of negatively charged residue [19], and this asymmetry

is observed, especially in Asp. Although empirical estimation with limited dataset can be doubtful,

this empirical distribution seems to be consistent with actual profile of TMD. Significant Gly is

generally observed in the middle of mitochondrial inner membrane TMDs, and small residue such

as Ala or Ser look slightly abundant. Taken together, higher free energy seems to be explained by

these positional difference of amino acid observation.
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Figure 4.3: Statistical free energy for mitochondrial membrane insertion. The red line shows
statistically calculated free energy, and the blue line the Gaussian function is used in the Sec61
translocon model. Negative positions indicate the mitochondrial matrix side.
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Taxonomy AUC(- PSSM composition) AUC(+PSSM composition)
Fungi 0.8752 0.9354
Vertebrate 0.8883 0.9390

Table 4.2: ROC AUC is listed for jack-knife test in fungi and vertebrate dataset.

4.2.3 Evolutionary improves TMD region prediction

Next, application of evolutionary information is considered in addition to amino acid composition

of each query or variation of free energy distribution. If homologous sequences retain conserved

TMD features, evolutionary conservation seems to be informative for discrimination with plausible

TMDs in globular proteins. To discuss whether taxonomy affects actual prediction result, fungi

and vertebrate dataset was independently tested. First, SVM model which discriminates candidate

region of query is trained with simple features, length, ∆Gpred
app , averaged hydrophobicity in GES-

scale [92], and amino acid composition. Candidate TMD region is defined by Sec61 translocon

model, and features such as amino acid composition is normalized within each candidate region.

The result is measured by ROC AUC, which is described in chapter 2. Table 4.2 shows this model

can discriminates mitochondrial TMD from plausible region relatively well.

Evolutionary information summarized in 60 dimension vector is added and tested to discuss

whether or not it is informative. As a result, performance is improved as measured in AUC (Ta-

ble 4.2). In addition, there seems to be no or ignorable difference among taxonomy as reported

above in actual prediction.

Since homologous sequences retain discriminative information, application in different ways is

also considered. One application is explicit weighting in ∆Gpred
app as weights for ∆G

aa(ij)
app [90]. This

improves membrane region prediction from 0.78 to 0.91 (measured by MCC) in OPM small dataset

as well.
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4.2.4 Two layer predictor and benchmark

The other way is extracting features from PSSM more precisely. Evolutionary pattern might

be characteristic for mitochondrial TMD, therefore, evolutionary patterns surrounding individ-

ual residues of mitochondrial TMD and those of plausible region are discriminated by SVM model.

In this case, individual residues in positive dataset and negative dataset are treated positive and

negative instances, respectively. In this model, features are extracted PSSM log-odds score sij , and

surrounding w positions are also considered, namely 20× 2w features. With window size 33, thus

surrounding w equals 16, the model was most accurate at 93.4% accuracy. Because this individual

residue model returns predicted score for each residue, these scores are averaged in candidate region

selected by ∆GMSA or ∆Gpred
app to integrate with coarse grained model, which is described above.

To compare this model with current existing predictors, 10-fold cross validation was conducted.

Although jack knife test reflects actual performance in general, the number of fold is reduced to 10

due to the computational time. Since the coarse grained predictor at upper layer depends on the

predictor for individual residues at lower layer, nested cross validation is run. Benchmarked result

is summarized in Table 4.3. As widely used predictors, SOSUI [93], TMHMM [94], Phobius [95],

and Octopus [91] are compared. SCAMPI [90] uses ∆G
aa(i)
app internally, therefore, this predictor

is also included. In general, predictors below return only predicted region not quantitative score,

so measurements for binary prediction are used to evaluate each of them. TMHMM shows high

specificity, and Octopus returns best sensitivity. Predictor in this work shows second best in both

sensitivity and specificity, leading to best MCC.
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Sensitivity Specificity MCC

SOSUI 39.74% 90.55% 0.3377
TMHMM ver. 2.0 63.16% 97.46% 0.6868
Phobius 76.32% 91.27% 0.6579
SCAMPI 67.11% 82.91% 0.4592
Octopus(topcons) 96.05% 60.36% 0.4651
Predictor in this work 84.21% 95.27% 0.7911

Table 4.3: Evaluations as a binary problem was summarized in the above table. Positive examples
without any TMD region or negative examples with predicted TMD were treated mistakes.

4.2.5 Feature analysis

Integration layer and individual residue layer have related but different feature, so discriminative

features are listed separately (Table 4.4, 4.5). Averaged score of individual residue model within

candidate region is by far the best feature in integration model. Following it, free energy values

calculated from PSSM or single query are second or third best. PSSM composition of C-terminal

segment (five residue long), such as CW or CY , are also good features. In fact, these amino acids

are also discriminative features in individual residue model. As expected, averaged hydrophobicity

in GES scale or Gly composition within an entire candidate region have discriminative power and

are 5th or 6th best, respectively.

Table 4.5 summarizes top thirty features of individual residue model. F-score of each feature

is low and close to each other, so it seems to me that feature space is highly complex and model

discriminates in high dimensional feature space. Even if taking this into consideration, high ranked

features are reasonable. Trp in downstream regain tend to be high ranked, and this is consistent

with general TMD characteristics. Although data is not shown, Trp in upstream region such as

Trp at -7 or -8 are ranked 38th or 39th. The other point is that Gly in middle region tend to

be highly ranked. If multiple sequence alignment which generates PSSM is assumed to be enough

accurate, Gly, which is enriched in TMD region, is evolutionary conserved. Pro is also fairly high
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Name of feature F-score

Averaged score of individual residue model 2.066903

∆GMSA 0.24367

∆Gpred
app 0.149455

CPSSM
W in C-terminal 5 0.135296

Averaged hydrophobicity 0.134169

G composition 0.114176

CPSSM
Y in C-terminal 5 0.1055

CPSSM
G in the middle region 0.098735

CPSSM
H in the middle region 0.080938

CPSSM
R in the middle region 0.075786

Table 4.4: Features used in the integration layer, and listed ten highest ranked features among
them. To rank them, discriminative power is measured by F-score.

ranked, thus, mitochondrial TMD might favors slightly unfolded helix. However, scoring matrix for

sequence alignment has high score between Pro and Gly in general, so I cannot deny a possibility

that this observation is biased by Gly enrichment.

4.2.6 Prediction on yeast presequence dataset

One relevant application of this work is to find a substrate candidate of inner membrane proteases.

Presequence dataset used in chapter 2 and 3 provided by Vögtle et al. are scanned by this predictor.

If presequence C-terminal end locates after TMD region, it might be cleaved by inner membrane

space by a protease there. All known substrates in the dataset passed this criterion, and four other

unannotated proteins were found (Table 4.6). Although it is still hard to predict which protease is

relevant to unannotated proteins processing, this list provides putative substrates.
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AA relative position F-score
W 9 0.045024
W 6 0.044292
G 0 0.042942
W 5 0.042535
W 8 0.042404
W 7 0.042307
W 4 0.040908
W 10 0.040874
G -1 0.040341
W 3 0.038599
G -2 0.038273
G 1 0.03652
W 11 0.036416
G 2 0.035511
W 2 0.035272
G 3 0.033509
W 1 0.032825
G -3 0.031178
P -1 0.030676
P -3 0.030556
P -2 0.030346
P 0 0.03020 9
G -4 0.030018
G 4 0.029424
Y 9 0.029354
Y 10 0.02878
W 12 0.028127
Y 11 0.026866
Y 6 0.026678
G 5 0.026623

Table 4.5: Features used in the individual residue layer, and listed thirty highest ranked features
among them. To rank them, discriminative power is measured by F-score.

OLN UniProt AC Cluster Annotation
YBL095W P38172 II
YGR174C P37267 III
YIL155C P32191 II Gut2, IMP1
YKL150W P36060 I Mcr1, IMP1
YKR066C P00431 II Ccp1, Pcp1
YML081C-A P81450 III
YOR065W P07143 II Cyt1, IMP2
YPL103C Q02883 II

Table 4.6: Candidate substrate list. Already known substrates are emphasized in annotation column
with gene name and protease name. Cluster number discussed in chapter 3 is also added.
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4.3 Discussion

Recently, proteases in the mitochondrial inner membrane has been focused due to the discovery of

PINK1 processing by PARL [24]. PARL is classified as a rhomboid like protease, which processes

within or nearby TMD, and PINK1 is also cleaved within TMD at 103 by this protease. TMD

prediction has been important in the context of structural biology, however, it seems to be also

important as an application at least in mitochondrial processing. Problem relevant to the prediction

is weak hydrophobicity of mitochondrial membrane proteins as illustrated in Figure 4.1. In fact,

TMDs of PINK1 or another substrate of PARL, PGAM5 [96] have relatively higher free energy

measured in ∆Gpred
app , 0.90 and 1.03, respectively. Detailed analysis of these proteins revealed that

Gly located in the middle of TMD contributed higher energy, and this is consistent with statistical

analysis. The reason why Gly is favored in mitochondrial TMD is elusive. Although its average

frequency at the single sequence level is not statistically significantly different, when PSSMs are

used the log odds ratio of Pro is discriminant (attains a high F-score). Moreover, mitochondrial

TMDs are generally less hydrophobic. Taken together, the mitochondrial inner membrane might

favor weak TMDs due to its membrane composition.

One weakness of predictor in this work is that this has not been optimized to the multi spanning

membrane proteins because of lack of the dataset. Distribution of free energy for mitochondrial

single spanning membrane proteins is similar to that of multi spanning membrane proteins [20]. It

is still unknown whether TMD of multi spanning mitochondrial membrane proteins is weaker than

general multi spanning TMD.

At present, topology prediction depends on positive-inside rule. As observed in Figure 4.3,

negatively charged residue does not appear at matrix side of TMD. Although it is difficult to test

applicability of asymmetric distribution due to the lack of dataset, this asymmetric distribution
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might be informative to the topology prediction, especially for multi spanning membrane proteins

in mitochondria.



Chapter 5

Conclusion

Translocation into and within mitochondria is finely regulated by several mechanisms. The most in-

tensely researched mechanism is the presequence dependent pathway. Although perfect delineation

of the features of presequences is not yet possible, several features such as evolutionary sequence di-

vergence, positively charged amphiphilicity, and characteristic motifs including cleavage site motifs

are analyzed in detail and refined as discriminative features in this work.

Feature related to the sequence divergence sheds light on usefulness of weakly conserved regions

of proteins, which are usually discarded as non-informative region. As discussed in the chapter 2,

N-terminal signal is tend to be diverged among orthologous proteins, and this divergence is a novel

feature for signal prediction. Defining ortholog is a key and not easy task for this kind of analysis

due to gene or genome duplication, however, simple reciprocal best hit approach shows enough

accurate in our signal prediction. Although combination of sequence divergence and the classical

features did not gain significantly better accuracy, sequence divergence alone has discriminative

power for N-terminal signals. In fact, this novel feature finds a few mitochondrial signal, which are

103



CHAPTER 5. CONCLUSION 104

difficult to be predicted, and misannotated proteins in the curated database.

Among N-terminal signals, mitochondrial presequence is an important in terms of scientific and

industrial applications, however, prediction accuracy seems to be not enough with the classical

features such as used in the chapter refchap:Divergence. To develop a competitive tool in this

field of study, I refined and introduced several features of the presequence. Quantification of pos-

itively charged amphiphilicity is improved by taking positive charge in the opposite side against

hydrophobic surface into the consideration, and several novel motifs are also discovered. In particu-

lar, refinement of cleavage site motifs archives the highest discriminative power in signal prediction

features, and this is also confirmed by cleavage site prediction accuracy. Low accuracy of cleav-

age site prediction of mitochondrial presequence has been argued in mitochondrial biology, it seems

that MitoFates is a first tool which shows practical performance. In summary, I achieved significant

improvement over previous predictors in discrimination of classical presequences and in particular

their cleavage sites by MPP and its relevant intermediate proteases.

However, as shown in the clustering results reported in chapter 3, some presequence are still

difficult to predict, namely cluster II and III, although some of them cluster II proteins, such as

MrpL32 or Imo32, can be predicted based on evolutionary sequence divergence. Cluster II includes

several proteins which are cleaved by proteases located in the mitochondrial inner membrane and

thus further elucidation of this class of proteases and their substrates is a promising line of future

work. The work on mitochondrial Transmembrane domain (TMD) prediction I present in chapter 4

will provide a basis for this; providing significantly improved TMD prediction by explicit modeling

of the differences between mitochondrial inner membrane other membranes.

The difficulty of predicting the TMDs of mitochondrial membrane proteins has been discussed

anecdotally, it has been unknown which character affects prediction difficulty. With the model for
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E.R. membrane insertion, I argued that about half of mitochondrial TMDs has shorter and different

amino acid content leading to higher free energy. There are two key points in terms of sequence

characteristics: high proportion of glycine residue in center of TMDs and asymmetric observation

for negatively charged residues. Since these tendencies are conserved among evolutionary relevant

sequences, mitochondrial membrane proteins seem to be exposed to different evolutionary pressure.

Explicit modeling of mitochondrial TMDs led to better discriminative performance, therefore, I

can conclude that difficulty of TMD prediction for mitochondrial proteins can be explained by such

differences.



Appendix A

Appendix for sequence divergence

of targeting signals

Measure of influence of divergence features:

As reported in the results section, I performed a post-hoc analysis of proteins for which the di-

vergence features greatly influenced the prediction outcome. This requires a concrete, quantitative

measure of that influence, which I chose to define in terms of a numerical score known as exponential

loss-based decoding [1].

For each protein, and each of two feature sets (with and without divergence features), I compute

a probability vector P estimating the probability that the protein is a member of each of the three

sorting classes {SP, MTS, N-signal-free}. I then use the Jensen-Shannon divergence as a quantitative

measure of how much the two probability vectors (predictions with and without divergence features)

differ.
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The Jensen-Shannon divergence is a standard measure of distance between two probability

distributions. The definition is:

JSD(Pdiv||Pnodiv) =
1

2
D(Pdiv||M) +

1

2
D(Pnodiv||M) (A.1)

where M = 1
2 (Pdiv + Pnodiv) and D(P ||Q) indicates the Kullback-Leibler divergence:

DKL(P ||Q) =
∑
i

P (i) log2
P (i)

Q(i)
(A.2)

The precise method I used to compute P , the probability vector over classes for a given protein,

is somewhat involved. I first used all of the yeast YGOB data to train three binary SVM classifiers

{0:1, 0:2, 1:2}, where the integers {0,1,2} to denote the three classes {SP, MTS, N-signal-free}. For

each protein instance, each SVM classifier outputs a score related to the classification margin, which

roughly reflects the confidence of its prediction. Let sij denote the score for the SVM discriminating

between classes i and j, so for example s12 denotes the score of the SVM discriminating between

MTS and N-signal-free, with a large positive value indicating a strong prediction of MTS, and a

large negative value a strong prediction of N-signal-free. Following the exponential loss function

described in [1], I define P as:

P ∝ es01 + e−s01 + es02 + e−s02 + es12 + e−s12 (A.3)

I compute P with this equation and then linearly normalize so that its elements sum to one.
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Rank UniProt AC JSD Annotation Predictionall Predictionnodiv
1 P40825—SYA (Ala1) 0.088 Non-Signal MTS Non-Signal
2 P13099—RL10 0.063 Non-Signal Non-Signal MTS
3 P32504—CBF3A 0.053 Non-Signal MTS Non-Signal
4 P53875—RM19(MrpL19) 0.048 MTS Non-Signal MTS
5 P32523—PRP19 0.048 Non-Signal Non-Signal MTS
6 P47123—MOG1 0.038 Non-Signal MTS Non-Signal
7 P53219—IMO32 0.037 MTS MTS Non-Signal
8 P40957—MAD1 0.034 Non-Signal MTS Non-Signal
9 Q02792—XRN2(RAT1) 0.032 Non-Signal Non-Signal MTS
10 P38228—TCM62 0.032 MTS Non-Signal MTS
11 P12687—RM02(MRP7) 0.032 MTS MTS Non-Signal
12 P32324—EF2(EFT1) 0.03 Non-Signal Non-Signal MTS
13 Q12019—MDN1 0.029 Non-Signal MTS Non-Signal
14 Q01163—RT23(RSM23) 0.026 MTS SP MTS
15 P53727—BUD17 0.026 Non-Signal Non-Signal MTS
16 P46672—G4P1(ARC1) 0.025 Non-Signal MTS Non-Signal
17 P16862—K6PF2(PFK2) 0.019 Non-Signal Non-Signal MTS
18 P09620—KEX1 0.017 SP Non-Signal SP
19 P25044—PTP1 0.016 Non-Signal MTS Non-Signal
20 P32333—MOT1 0.015 Non-Signal Non-Signal MTS
21 P25039—EFGM(MEF1) 0.015 MTS MTS Non-Signal
22 Q12428—PRPD(PDH1) 0.013 MTS MTS Non-Signal
23 P10663—RT02(MRP2) 0.012 MTS Non-Signal MTS
24 P41338—THIL(ERG10) 0.012 Non-Signal Non-Signal MTS
25 P25348—RM32(MRPL32) 0.012 MTS MTS Non-Signal
26 Q03691—ROT1 0.011 SP SP Non-Signal
27 P39927—PTI1 0.01 Non-Signal Non-Signal MTS
28 Q12031—ACEB(ICL2) 0.009 MTS MTS Non-Signal
29 P40008—FMP52 0.008 MTS Non-Signal MTS
30 P28007—GAR1 0.007 Non-Signal MTS Non-Signal
31 P32898—CYM1 0.006 MTS Non-Signal MTS
32 P00958—SYMC(MES1) 0.006 Non-Signal Non-Signal MTS
33 P39735—SAW1 0.006 Non-Signal Non-Signal MTS
34 P36046—MIA40 0.005 MTS MTS Non-Signal
35 P35189—TAF14 0.005 Non-Signal MTS Non-Signal
36 P40018—RSMB(SMB1) 0.004 Non-Signal Non-Signal MTS
37 P43605—ECO1 0.003 Non-Signal MTS Non-Signal
38 P61830—H3(HHT[12]) 0.003 Non-Signal Non-Signal MTS
39 P41805—RL10 0.003 Non-Signal Non-Signal MTS
40 P00447—SODM(SOD2) 0.002 MTS SP MTS
41 P36517—RM04(MRPL4) 0.002 MTS MTS Non-Signal
42 P38719—DBP8 0.001 Non-Signal Non-Signal MTS
43 P08524—FPPS(ERG20) 0.001 Non-Signal MTS Non-Signal

Table A.1: Ranking of proteins whose prediction score is affected by divergence feature addition.
Selected examples are discussed in discussion section of the main text.
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A.1 Divergence score combined with standard features in

N-terminal 40 residues

A.1.1 S. cerevisiae, curated orthologs (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.03 0.36± 0.06 0.86± 0.02 0.72± 0.04 0.86± 0.05 0.73± 0.07
SP 0.50± 0.00 0.00± 0.00 0.77± 0.02 0.62± 0.07 0.78± 0.11 0.62± 0.21
N-signal-free 0.66± 0.02 0.36± 0.03 0.84± 0.02 0.69± 0.03 0.85± 0.05 0.71± 0.07
% accuracy 70.82± 1.61 85.19± 1.36 85.77± 3.15

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.02 0.42± 0.06 0.84± 0.03 0.71± 0.05 0.86± 0.04 0.77± 0.07
SP 0.67± 0.11 0.50± 0.22 0.90± 0.05 0.82± 0.07 0.88± 0.04 0.79± 0.08
N-signal-free 0.67± 0.02 0.42± 0.04 0.86± 0.02 0.73± 0.03 0.87± 0.03 0.77± 0.05
% accuracy 74.78± 1.78 87.39± 0.95 89.15± 1.93

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.80± 0.03 0.65± 0.06 0.87± 0.05 0.75± 0.08 0.84± 0.03 0.69± 0.06
SP 0.78± 0.07 0.66± 0.11 0.79± 0.12 0.64± 0.22 0.82± 0.05 0.72± 0.10
N-signal-free 0.79± 0.02 0.63± 0.04 0.85± 0.04 0.72± 0.07 0.83± 0.03 0.68± 0.06
% accuracy 82.99± 1.66 86.50± 3.20 85.04± 2.73

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.87± 0.03 0.78± 0.04 0.86± 0.04 0.76± 0.07 0.86± 0.01 0.74± 0.02
SP 0.80± 0.08 0.70± 0.09 0.90± 0.07 0.79± 0.08 0.89± 0.06 0.82± 0.06
N-signal-free 0.85± 0.03 0.74± 0.04 0.87± 0.02 0.77± 0.04 0.87± 0.02 0.75± 0.03
% accuracy 87.97± 1.25 89.15± 1.91 88.27± 1.29

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.87± 0.03 0.76± 0.05 0.87± 0.03 0.77± 0.03 0.87± 0.03 0.77± 0.03
SP 0.81± 0.08 0.70± 0.11 0.91± 0.06 0.85± 0.06 0.90± 0.06 0.83± 0.08
N-signal-free 0.85± 0.03 0.72± 0.05 0.87± 0.02 0.77± 0.03 0.87± 0.02 0.77± 0.02
% accuracy 87.24± 1.86 89.44± 1.12 89.30± 0.66

Table A.2: The 5-fold cross-validation performance of an SVM classifier, using various feature set
combinations as listed above each column, is shown for three-way classification on the yeast curated
ortholog dataset.
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A.1.2 S. cerevisiae, RBH orthologs (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.65± 0.04 0.34± 0.08 0.85± 0.03 0.72± 0.08 0.87± 0.03 0.75± 0.05
SP 0.50± 0.00 0.00± 0.00 0.81± 0.04 0.66± 0.06 0.85± 0.04 0.75± 0.04
N-signal-free 0.64± 0.04 0.33± 0.10 0.85± 0.02 0.71± 0.05 0.87± 0.02 0.75± 0.04
% accuracy 70.06± 3.05 85.44± 2.83 87.79± 1.83

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.66± 0.03 0.41± 0.07 0.85± 0.04 0.74± 0.08 0.87± 0.03 0.77± 0.06
SP 0.74± 0.08 0.65± 0.13 0.85± 0.05 0.76± 0.09 0.88± 0.03 0.80± 0.06
N-signal-free 0.68± 0.01 0.45± 0.03 0.87± 0.02 0.77± 0.05 0.88± 0.03 0.79± 0.06
% accuracy 75.94± 1.12 88.14± 2.03 89.43± 2.47

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.78± 0.04 0.61± 0.06 0.87± 0.03 0.76± 0.07 0.86± 0.02 0.72± 0.05
SP 0.82± 0.08 0.75± 0.14 0.86± 0.03 0.75± 0.02 0.87± 0.05 0.79± 0.06
N-signal-free 0.80± 0.04 0.65± 0.07 0.87± 0.03 0.76± 0.06 0.85± 0.03 0.71± 0.07
% accuracy 83.45± 3.23 88.15± 2.64 86.62± 2.85

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.87± 0.05 0.77± 0.09 0.87± 0.03 0.76± 0.06 0.86± 0.05 0.75± 0.08
SP 0.90± 0.04 0.85± 0.06 0.88± 0.04 0.78± 0.07 0.91± 0.03 0.87± 0.05
N-signal-free 0.87± 0.05 0.77± 0.09 0.89± 0.03 0.79± 0.06 0.88± 0.04 0.79± 0.06
% accuracy 89.44± 3.81 89.20± 2.52 89.67± 2.72

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.87± 0.04 0.76± 0.07 0.88± 0.02 0.80± 0.04 0.89± 0.03 0.80± 0.05
SP 0.89± 0.03 0.84± 0.07 0.93± 0.02 0.90± 0.02 0.93± 0.02 0.89± 0.06
N-signal-free 0.87± 0.04 0.76± 0.09 0.90± 0.02 0.82± 0.04 0.90± 0.02 0.83± 0.04
% accuracy 89.08± 3.48 91.31± 1.63 91.67± 1.63

Table A.3: The 5-fold cross-validation performance of an SVM classifier, using various feature
set combinations as listed above each column, is shown for three-way classification on the yeast
automatically collected dataset.
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A.1.3 Human, RBH orthologs (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.52± 0.03 0.10± 0.18 0.79± 0.06 0.61± 0.16 0.84± 0.02 0.69± 0.06
SP 0.65± 0.05 0.29± 0.10 0.82± 0.04 0.65± 0.07 0.86± 0.03 0.74± 0.06
N-signal-free 0.66± 0.05 0.35± 0.09 0.87± 0.03 0.74± 0.06 0.89± 0.03 0.80± 0.07
% accuracy 65.11± 3.55 83.01± 4.17 87.07± 3.25

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.07 0.43± 0.15 0.81± 0.03 0.65± 0.07 0.82± 0.05 0.69± 0.08
SP 0.75± 0.06 0.52± 0.12 0.87± 0.03 0.75± 0.07 0.89± 0.03 0.79± 0.07
N-signal-free 0.75± 0.06 0.52± 0.12 0.88± 0.02 0.78± 0.06 0.91± 0.03 0.82± 0.07
% accuracy 74.89± 5.49 86.32± 3.25 88.42± 3.39

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.73± 0.07 0.53± 0.11 0.84± 0.02 0.69± 0.06 0.84± 0.05 0.69± 0.09
SP 0.81± 0.05 0.62± 0.06 0.87± 0.04 0.75± 0.07 0.86± 0.05 0.73± 0.08
N-signal-free 0.81± 0.04 0.64± 0.05 0.90± 0.04 0.80± 0.08 0.89± 0.04 0.79± 0.09
% accuracy 79.85± 1.35 87.22± 3.80 86.77± 4.47

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.85± 0.02 0.72± 0.07 0.83± 0.05 0.70± 0.08 0.84± 0.04 0.69± 0.09
SP 0.86± 0.04 0.73± 0.08 0.89± 0.03 0.79± 0.07 0.88± 0.05 0.77± 0.07
N-signal-free 0.88± 0.04 0.78± 0.08 0.91± 0.03 0.83± 0.08 0.90± 0.03 0.81± 0.07
% accuracy 86.92± 3.86 88.87± 3.62 87.67± 3.59

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.87± 0.02 0.76± 0.07 0.84± 0.05 0.72± 0.06 0.86± 0.04 0.74± 0.05
SP 0.87± 0.03 0.75± 0.06 0.90± 0.04 0.80± 0.06 0.89± 0.03 0.79± 0.06
N-signal-free 0.90± 0.04 0.80± 0.09 0.91± 0.04 0.83± 0.08 0.91± 0.04 0.83± 0.08
% accuracy 88.12± 3.58 89.17± 3.51 89.32± 3.25

Table A.4: The 5-fold cross-validation performance of an SVM classifier, using various feature set
combinations as listed above each column, is shown for three-way classification on the mammal
automatically collected dataset.
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A.1.4 Plant model organisms, RBH orthologs (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.61± 0.05 0.30± 0.15 0.70± 0.11 0.40± 0.20 0.81± 0.06 0.61± 0.09
SP 0.50± 0.00 0.00± 0.00 0.56± 0.08 0.12± 0.18 0.69± 0.19 0.44± 0.44
CTP 0.78± 0.08 0.54± 0.15 0.78± 0.05 0.55± 0.09 0.85± 0.05 0.68± 0.10
N-signal-free 0.80± 0.05 0.60± 0.09 0.85± 0.03 0.70± 0.05 0.86± 0.04 0.73± 0.05
% accuracy 65.05± 6.00 69.10± 4.46 76.81± 3.53

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.58± 0.06 0.19± 0.15 0.65± 0.10 0.32± 0.23 0.79± 0.08 0.58± 0.14
SP 0.69± 0.14 0.48± 0.29 0.66± 0.17 0.36± 0.36 0.76± 0.25 0.50± 0.47
CTP 0.68± 0.08 0.35± 0.15 0.80± 0.05 0.58± 0.10 0.84± 0.04 0.67± 0.09
N-signal-free 0.66± 0.05 0.31± 0.08 0.90± 0.02 0.82± 0.04 0.88± 0.02 0.79± 0.03
% accuracy 53.33± 7.70 72.40± 4.28 77.93± 2.41

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.63± 0.04 0.32± 0.11 0.80± 0.08 0.59± 0.12 0.68± 0.11 0.39± 0.23
SP 0.70± 0.22 0.48± 0.46 0.69± 0.19 0.41± 0.41 0.83± 0.20 0.63± 0.36
CTP 0.78± 0.05 0.53± 0.11 0.83± 0.04 0.65± 0.08 0.75± 0.07 0.48± 0.14
N-signal-free 0.82± 0.06 0.63± 0.10 0.87± 0.04 0.76± 0.06 0.85± 0.01 0.72± 0.02
% accuracy 67.30± 4.19 76.08± 3.11 69.51± 6.82

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.77± 0.09 0.53± 0.15 0.79± 0.08 0.57± 0.10 0.69± 0.04 0.42± 0.07
SP 0.86± 0.21 0.68± 0.38 0.76± 0.26 0.52± 0.51 0.76± 0.25 0.53± 0.49
CTP 0.83± 0.05 0.66± 0.09 0.85± 0.05 0.68± 0.09 0.77± 0.06 0.53± 0.11
N-signal-free 0.86± 0.02 0.73± 0.05 0.89± 0.02 0.79± 0.04 0.89± 0.05 0.79± 0.10
% accuracy 76.09± 5.59 78.29± 3.16 72.76± 4.43

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.76± 0.08 0.52± 0.13 0.79± 0.07 0.62± 0.12 0.80± 0.06 0.63± 0.09
SP 0.86± 0.21 0.68± 0.38 0.80± 0.22 0.61± 0.41 0.83± 0.24 0.65± 0.44
CTP 0.83± 0.05 0.65± 0.09 0.86± 0.03 0.70± 0.07 0.86± 0.03 0.70± 0.06
N-signal-free 0.86± 0.03 0.72± 0.05 0.90± 0.06 0.81± 0.11 0.89± 0.03 0.81± 0.05
% accuracy 75.73± 4.63 80.11± 5.87 80.50± 3.93

Table A.5: The 5-fold cross-validation performance of an SVM classifier, using various feature
set combinations as listed above each column, is shown for three-way classification on the plant
automatically collected dataset.
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A.1.5 S. cerevisiae, curated orthologs – classes balanced (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.10 0.35± 0.20 0.85± 0.07 0.67± 0.15 0.81± 0.07 0.61± 0.12
SP 0.71± 0.09 0.41± 0.16 0.88± 0.08 0.75± 0.15 0.88± 0.05 0.76± 0.10
N-signal-free 0.79± 0.07 0.60± 0.13 0.78± 0.10 0.60± 0.20 0.76± 0.11 0.54± 0.22
% accuracy 62.86± 5.84 78.02± 8.75 75.54± 7.94

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.75± 0.10 0.49± 0.18 0.90± 0.07 0.80± 0.13 0.83± 0.08 0.69± 0.15
SP 0.80± 0.05 0.61± 0.10 0.92± 0.03 0.84± 0.07 0.93± 0.03 0.84± 0.07
N-signal-free 0.70± 0.06 0.40± 0.13 0.86± 0.07 0.72± 0.14 0.85± 0.12 0.70± 0.23
% accuracy 66.69± 7.71 85.56± 6.42 82.44± 8.37

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.80± 0.06 0.61± 0.14 0.80± 0.07 0.60± 0.14 0.86± 0.09 0.72± 0.16
SP 0.85± 0.04 0.70± 0.08 0.89± 0.03 0.77± 0.07 0.89± 0.03 0.78± 0.06
N-signal-free 0.81± 0.08 0.63± 0.12 0.76± 0.12 0.52± 0.23 0.76± 0.08 0.56± 0.16
% accuracy 76.13± 6.37 75.52± 7.95 78.65± 5.90

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.84± 0.07 0.68± 0.13 0.84± 0.07 0.72± 0.12 0.86± 0.08 0.73± 0.15
SP 0.91± 0.06 0.82± 0.08 0.93± 0.03 0.86± 0.07 0.94± 0.04 0.89± 0.06
N-signal-free 0.78± 0.09 0.57± 0.16 0.87± 0.10 0.73± 0.20 0.85± 0.10 0.69± 0.17
% accuracy 79.27± 4.61 84.31± 7.59 84.31± 6.18

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.84± 0.07 0.68± 0.13 0.86± 0.04 0.74± 0.08 0.88± 0.05 0.78± 0.09
SP 0.92± 0.05 0.85± 0.10 0.93± 0.03 0.85± 0.06 0.94± 0.01 0.88± 0.03
N-signal-free 0.78± 0.09 0.57± 0.18 0.85± 0.08 0.72± 0.15 0.86± 0.07 0.74± 0.13
% accuracy 79.92± 5.54 84.29± 4.35 86.19± 4.67

Table A.6: The 5-fold cross-validation performance of an SVM classifier, using various feature
set combinations as listed above each column, is shown for three-way classification on the yeast
balanced dataset of curated orthologs.
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A.1.6 S. cerevisiae, RBH orthologs – classes balanced (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.65± 0.09 0.31± 0.18 0.85± 0.05 0.70± 0.09 0.82± 0.06 0.65± 0.11
SP 0.60± 0.07 0.19± 0.14 0.97± 0.03 0.94± 0.06 0.95± 0.04 0.89± 0.07
N-signal-free 0.66± 0.08 0.35± 0.15 0.86± 0.05 0.74± 0.10 0.84± 0.04 0.69± 0.08
% accuracy 51.63± 7.21 85.87± 3.29 82.67± 5.16

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.70± 0.06 0.39± 0.11 0.88± 0.03 0.76± 0.03 0.86± 0.04 0.74± 0.08
SP 0.81± 0.09 0.63± 0.18 0.98± 0.04 0.96± 0.06 0.97± 0.03 0.93± 0.06
N-signal-free 0.69± 0.04 0.40± 0.10 0.90± 0.03 0.80± 0.07 0.88± 0.03 0.75± 0.07
% accuracy 64.40± 7.56 89.04± 1.05 86.78± 3.68

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.78± 0.03 0.55± 0.07 0.83± 0.06 0.68± 0.10 0.86± 0.05 0.71± 0.09
SP 0.87± 0.05 0.76± 0.10 0.96± 0.04 0.92± 0.08 0.98± 0.02 0.96± 0.04
N-signal-free 0.81± 0.04 0.62± 0.08 0.87± 0.03 0.74± 0.07 0.84± 0.05 0.71± 0.07
% accuracy 75.81± 4.63 84.96± 5.17 85.87± 3.29

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.84± 0.04 0.69± 0.05 0.87± 0.03 0.77± 0.06 0.87± 0.07 0.74± 0.13
SP 0.99± 0.01 0.98± 0.03 0.98± 0.03 0.97± 0.04 0.98± 0.02 0.97± 0.03
N-signal-free 0.84± 0.04 0.69± 0.07 0.90± 0.04 0.78± 0.09 0.89± 0.05 0.78± 0.10
% accuracy 85.39± 2.57 89.06± 3.32 88.58± 5.80

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.83± 0.04 0.67± 0.06 0.87± 0.06 0.74± 0.10 0.88± 0.05 0.76± 0.08
SP 0.98± 0.02 0.96± 0.04 0.98± 0.03 0.96± 0.04 0.98± 0.03 0.96± 0.04
N-signal-free 0.84± 0.03 0.69± 0.04 0.87± 0.07 0.75± 0.12 0.88± 0.06 0.76± 0.11
% accuracy 84.47± 2.51 87.67± 4.70 88.14± 4.34

Table A.7: The 5-fold cross-validation performance of an SVM classifier, using various feature
set combinations as listed above each column, is shown for three-way classification on the yeast
balanced dataset of automatically collected orthologs.
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A.1.7 Human, RBH orthologs – classes balanced (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.66± 0.05 0.31± 0.11 0.85± 0.05 0.70± 0.08 0.86± 0.07 0.71± 0.14
SP 0.70± 0.08 0.40± 0.15 0.82± 0.05 0.64± 0.10 0.82± 0.06 0.66± 0.11
N-signal-free 0.69± 0.06 0.39± 0.11 0.86± 0.04 0.74± 0.09 0.88± 0.05 0.78± 0.07
% accuracy 57.61± 4.71 79.42± 2.96 80.68± 4.13

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.81± 0.07 0.61± 0.13 0.87± 0.05 0.72± 0.11 0.87± 0.06 0.72± 0.11
SP 0.72± 0.08 0.43± 0.15 0.86± 0.06 0.73± 0.11 0.86± 0.05 0.73± 0.08
N-signal-free 0.77± 0.07 0.54± 0.11 0.87± 0.07 0.76± 0.13 0.88± 0.06 0.80± 0.10
% accuracy 68.36± 6.49 82.30± 6.31 82.70± 4.04

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.77± 0.05 0.54± 0.09 0.87± 0.08 0.73± 0.14 0.86± 0.03 0.73± 0.06
SP 0.74± 0.06 0.48± 0.12 0.83± 0.07 0.67± 0.14 0.87± 0.04 0.73± 0.08
N-signal-free 0.77± 0.06 0.55± 0.10 0.89± 0.05 0.79± 0.08 0.88± 0.05 0.78± 0.07
% accuracy 67.92± 4.08 81.90± 4.64 82.73± 3.04

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.86± 0.04 0.72± 0.07 0.87± 0.06 0.72± 0.11 0.89± 0.05 0.77± 0.09
SP 0.83± 0.07 0.67± 0.12 0.87± 0.04 0.75± 0.07 0.90± 0.03 0.81± 0.05
N-signal-free 0.88± 0.03 0.78± 0.05 0.88± 0.07 0.78± 0.11 0.90± 0.04 0.82± 0.07
% accuracy 81.07± 2.66 83.12± 4.48 86.44± 3.37

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.87± 0.05 0.73± 0.10 0.88± 0.03 0.76± 0.05 0.88± 0.03 0.76± 0.05
SP 0.85± 0.04 0.71± 0.08 0.87± 0.04 0.75± 0.09 0.88± 0.05 0.76± 0.09
N-signal-free 0.88± 0.03 0.78± 0.04 0.90± 0.05 0.82± 0.05 0.90± 0.05 0.83± 0.07
% accuracy 82.32± 2.99 84.78± 3.40 85.20± 3.90

Table A.8: The 5-fold cross-validation performance of an SVM classifier, using various feature set
combinations as listed above each column, is shown for three-way classification on the mammal
balanced dataset of automatically collected orthologs.
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A.1.8 Plant model organisms, RBH orthologs – classes balanced (N40)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.66± 0.08 0.35± 0.14 0.78± 0.07 0.55± 0.13 0.76± 0.05 0.51± 0.09
CTP 0.77± 0.12 0.51± 0.23 0.79± 0.04 0.59± 0.10 0.80± 0.07 0.61± 0.16
N-signal-free 0.81± 0.09 0.67± 0.13 0.83± 0.10 0.69± 0.17 0.85± 0.05 0.72± 0.09
% accuracy 66.22± 10.11 73.27± 5.63 73.80± 4.73

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.62± 0.04 0.23± 0.08 0.76± 0.09 0.53± 0.17 0.87± 0.03 0.73± 0.07
CTP 0.64± 0.03 0.28± 0.06 0.77± 0.11 0.53± 0.22 0.84± 0.10 0.68± 0.18
N-signal-free 0.66± 0.05 0.34± 0.09 0.90± 0.04 0.81± 0.08 0.91± 0.05 0.84± 0.10
% accuracy 51.94± 3.16 74.37± 8.44 83.14± 6.59

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.69± 0.07 0.38± 0.14 0.76± 0.05 0.52± 0.09 0.75± 0.08 0.50± 0.14
CTP 0.77± 0.09 0.54± 0.16 0.79± 0.08 0.58± 0.18 0.74± 0.02 0.48± 0.04
N-signal-free 0.79± 0.07 0.61± 0.12 0.86± 0.05 0.74± 0.11 0.83± 0.07 0.69± 0.13
% accuracy 66.74± 7.68 73.81± 6.02 69.95± 5.44

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.76± 0.06 0.51± 0.10 0.87± 0.03 0.74± 0.06 0.73± 0.07 0.46± 0.10
CTP 0.79± 0.07 0.57± 0.14 0.84± 0.10 0.68± 0.18 0.76± 0.09 0.52± 0.18
N-signal-free 0.78± 0.09 0.59± 0.17 0.92± 0.05 0.85± 0.10 0.88± 0.05 0.76± 0.12
% accuracy 69.97± 7.29 83.68± 6.20 71.64± 4.58

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.76± 0.03 0.52± 0.05 0.82± 0.04 0.64± 0.08 0.81± 0.03 0.61± 0.06
CTP 0.78± 0.06 0.56± 0.13 0.78± 0.05 0.57± 0.10 0.78± 0.05 0.56± 0.11
N-signal-free 0.79± 0.08 0.62± 0.15 0.88± 0.06 0.78± 0.09 0.89± 0.05 0.79± 0.07
% accuracy 70.51± 5.43 77.09± 4.31 76.53± 3.91

Table A.9: The 5-fold cross-validation performance of an SVM classifier, using various feature
set combinations as listed above each column, is shown for three-way classification on the plant
balanced dataset of automatically collected orthologs.
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A.2 Divergence score combined with standard features in

the N-terminal 20 residues

A.2.1 S. cerevisiae, curated orthologs (N20)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.03 0.36± 0.06 0.87± 0.03 0.73± 0.06 0.87± 0.04 0.75± 0.07
SP 0.50± 0.00 0.00± 0.00 0.89± 0.04 0.85± 0.02 0.94± 0.04 0.88± 0.05
N-signal-free 0.66± 0.02 0.36± 0.03 0.89± 0.02 0.78± 0.03 0.89± 0.03 0.80± 0.06
% accuracy 70.82± 1.61 88.71± 1.75 89.88± 2.34

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.02 0.42± 0.06 0.84± 0.03 0.70± 0.06 0.87± 0.03 0.77± 0.04
SP 0.67± 0.11 0.50± 0.22 0.89± 0.04 0.85± 0.04 0.91± 0.02 0.88± 0.04
N-signal-free 0.67± 0.02 0.42± 0.04 0.87± 0.03 0.77± 0.04 0.90± 0.02 0.83± 0.04
% accuracy 74.78± 1.78 87.98± 2.17 90.91± 1.34

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.80± 0.03 0.65± 0.06 0.87± 0.04 0.76± 0.06 0.88± 0.03 0.75± 0.05
SP 0.78± 0.07 0.66± 0.11 0.95± 0.03 0.89± 0.05 0.94± 0.04 0.91± 0.03
N-signal-free 0.79± 0.02 0.63± 0.04 0.90± 0.03 0.80± 0.05 0.88± 0.03 0.77± 0.04
% accuracy 82.99± 1.66 90.18± 1.76 89.44± 1.71

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.89± 0.02 0.80± 0.03 0.87± 0.02 0.77± 0.03 0.88± 0.03 0.77± 0.04
SP 0.96± 0.02 0.92± 0.07 0.90± 0.04 0.87± 0.05 0.95± 0.05 0.94± 0.07
N-signal-free 0.90± 0.02 0.81± 0.03 0.90± 0.02 0.83± 0.02 0.89± 0.02 0.79± 0.04
% accuracy 91.20± 1.58 90.91± 0.40 90.47± 1.38

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.89± 0.02 0.80± 0.02 0.89± 0.02 0.80± 0.02 0.89± 0.01 0.81± 0.02
SP 0.97± 0.03 0.92± 0.07 0.98± 0.03 0.97± 0.04 0.98± 0.03 0.97± 0.04
N-signal-free 0.90± 0.01 0.81± 0.02 0.90± 0.01 0.82± 0.03 0.90± 0.01 0.83± 0.02
% accuracy 91.49± 1.26 91.93± 1.58 92.23± 1.25

Table A.10: The 5-fold cross-validation performance of an SVM classifier, using various feature set
combinations as listed above each column, is shown for three-way classification on the yeast curated
ortholog dataset.
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A.2.2 S. cerevisiae, RBH orthologs (N20)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.65± 0.04 0.34± 0.08 0.86± 0.04 0.73± 0.08 0.87± 0.04 0.77± 0.08
SP 0.50± 0.00 0.00± 0.00 0.93± 0.04 0.88± 0.06 0.97± 0.03 0.92± 0.05
N-signal-free 0.64± 0.04 0.33± 0.10 0.90± 0.03 0.80± 0.06 0.90± 0.03 0.81± 0.05
% accuracy 70.06± 3.05 89.32± 2.79 90.84± 2.87

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.66± 0.03 0.41± 0.07 0.85± 0.03 0.72± 0.06 0.87± 0.03 0.78± 0.06
SP 0.74± 0.08 0.65± 0.13 0.93± 0.04 0.86± 0.09 0.94± 0.03 0.91± 0.03
N-signal-free 0.68± 0.01 0.45± 0.03 0.89± 0.04 0.79± 0.08 0.91± 0.03 0.84± 0.05
% accuracy 75.94± 1.12 89.20± 2.23 91.43± 2.34

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.78± 0.04 0.61± 0.06 0.87± 0.05 0.76± 0.08 0.88± 0.03 0.74± 0.03
SP 0.82± 0.08 0.75± 0.14 0.96± 0.02 0.91± 0.04 0.95± 0.04 0.92± 0.06
N-signal-free 0.80± 0.04 0.65± 0.07 0.90± 0.03 0.81± 0.06 0.89± 0.02 0.77± 0.03
% accuracy 83.45± 3.23 90.61± 3.10 89.32± 1.28

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.89± 0.04 0.79± 0.07 0.87± 0.03 0.77± 0.06 0.87± 0.04 0.76± 0.07
SP 0.96± 0.02 0.95± 0.02 0.94± 0.03 0.91± 0.03 0.96± 0.03 0.94± 0.02
N-signal-free 0.91± 0.04 0.82± 0.07 0.91± 0.03 0.83± 0.05 0.90± 0.03 0.81± 0.06
% accuracy 91.79± 2.90 91.31± 2.22 90.73± 2.54

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.89± 0.05 0.80± 0.07 0.90± 0.03 0.81± 0.06 0.89± 0.04 0.81± 0.06
SP 0.97± 0.03 0.96± 0.03 0.96± 0.02 0.93± 0.03 0.97± 0.03 0.95± 0.02
N-signal-free 0.91± 0.04 0.83± 0.07 0.92± 0.03 0.84± 0.05 0.92± 0.03 0.85± 0.05
% accuracy 92.02± 2.85 92.49± 2.25 92.61± 2.14

Table A.11: The 5-fold cross-validation performance of an SVM classifier, using various feature
set combinations as listed above each column, is shown for three-way classification on the yeast
automatically collected dataset.
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A.2.3 Human, RBH orthologs (N20)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.52± 0.03 0.10± 0.18 0.81± 0.06 0.64± 0.08 0.82± 0.08 0.65± 0.11
SP 0.65± 0.05 0.29± 0.10 0.87± 0.03 0.76± 0.05 0.89± 0.02 0.78± 0.04
N-signal-free 0.66± 0.05 0.35± 0.09 0.90± 0.01 0.81± 0.02 0.93± 0.02 0.88± 0.05
% accuracy 65.11± 3.55 87.37± 1.71 89.32± 2.09

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.67± 0.07 0.43± 0.15 0.81± 0.06 0.67± 0.08 0.82± 0.04 0.68± 0.07
SP 0.75± 0.06 0.52± 0.12 0.89± 0.03 0.79± 0.05 0.90± 0.03 0.80± 0.06
N-signal-free 0.75± 0.06 0.52± 0.12 0.92± 0.02 0.85± 0.05 0.94± 0.04 0.88± 0.08
% accuracy 74.89± 5.49 89.02± 2.74 90.08± 2.09

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.73± 0.07 0.53± 0.11 0.83± 0.04 0.67± 0.07 0.82± 0.05 0.64± 0.03
SP 0.81± 0.05 0.62± 0.06 0.89± 0.03 0.79± 0.05 0.88± 0.02 0.78± 0.02
N-signal-free 0.81± 0.04 0.64± 0.05 0.93± 0.02 0.88± 0.04 0.91± 0.03 0.82± 0.06
% accuracy 79.85± 1.35 89.47± 1.84 87.82± 1.71

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.81± 0.07 0.66± 0.09 0.84± 0.02 0.72± 0.02 0.84± 0.03 0.70± 0.06
SP 0.89± 0.03 0.77± 0.06 0.90± 0.04 0.80± 0.07 0.91± 0.04 0.81± 0.05
N-signal-free 0.93± 0.04 0.87± 0.09 0.94± 0.04 0.89± 0.09 0.93± 0.03 0.85± 0.06
% accuracy 89.32± 3.12 90.83± 3.42 89.62± 1.95

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.83± 0.07 0.69± 0.07 0.83± 0.06 0.71± 0.08 0.84± 0.06 0.70± 0.07
SP 0.89± 0.02 0.78± 0.03 0.91± 0.02 0.80± 0.04 0.89± 0.02 0.79± 0.03
N-signal-free 0.94± 0.04 0.88± 0.07 0.94± 0.04 0.89± 0.08 0.95± 0.04 0.89± 0.09
% accuracy 89.77± 1.73 90.68± 1.73 90.38± 1.87

Table A.12: The 5-fold cross-validation performance of an SVM classifier, using various feature set
combinations as listed above each column, is shown for three-way classification on the mammal
automatically collected dataset.
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A.2.4 Plant model organisms, RBH orthologs (N20)

FDiv FPhy FComp

AUC MCC AUC MCC AUC MCC

MTS 0.61± 0.05 0.30± 0.15 0.88± 0.07 0.72± 0.10 0.88± 0.02 0.76± 0.05
SP 0.50± 0.00 0.00± 0.00 0.76± 0.09 0.59± 0.16 0.83± 0.17 0.72± 0.25
CTP 0.78± 0.08 0.54± 0.15 0.82± 0.05 0.65± 0.10 0.88± 0.05 0.75± 0.10
N-signal-free 0.80± 0.05 0.60± 0.09 0.86± 0.08 0.73± 0.13 0.88± 0.04 0.75± 0.08
% accuracy 65.05± 6.00 78.29± 6.40 83.06± 4.52

FCompFull FDiv & FPhy FDiv & FComp

AUC MCC AUC MCC AUC MCC

MTS 0.58± 0.06 0.19± 0.15 0.85± 0.09 0.69± 0.16 0.87± 0.04 0.75± 0.08
SP 0.69± 0.14 0.48± 0.29 0.66± 0.17 0.40± 0.39 0.80± 0.22 0.65± 0.39
CTP 0.68± 0.08 0.35± 0.15 0.88± 0.03 0.76± 0.07 0.90± 0.05 0.78± 0.10
N-signal-free 0.66± 0.05 0.31± 0.08 0.94± 0.05 0.88± 0.10 0.92± 0.05 0.86± 0.09
% accuracy 53.33± 7.70 83.81± 6.23 85.64± 4.66

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.63± 0.04 0.32± 0.11 0.88± 0.02 0.78± 0.07 0.88± 0.06 0.76± 0.08
SP 0.70± 0.22 0.48± 0.46 0.83± 0.12 0.70± 0.17 0.93± 0.09 0.83± 0.13
CTP 0.78± 0.05 0.53± 0.11 0.89± 0.07 0.76± 0.13 0.84± 0.05 0.68± 0.10
N-signal-free 0.82± 0.06 0.63± 0.10 0.87± 0.04 0.75± 0.06 0.87± 0.06 0.75± 0.10
% accuracy 67.30± 4.19 83.41± 5.93 81.60± 4.40

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

AUC MCC AUC MCC AUC MCC

MTS 0.85± 0.04 0.73± 0.05 0.88± 0.06 0.78± 0.09 0.84± 0.07 0.71± 0.10
SP 0.86± 0.14 0.72± 0.20 0.83± 0.20 0.66± 0.39 0.86± 0.21 0.67± 0.40
CTP 0.88± 0.04 0.75± 0.08 0.90± 0.05 0.78± 0.11 0.87± 0.07 0.72± 0.14
N-signal-free 0.87± 0.04 0.75± 0.06 0.92± 0.04 0.85± 0.09 0.93± 0.03 0.86± 0.06
% accuracy 82.33± 3.71 86.36± 5.87 83.79± 6.66

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
AUC MCC AUC MCC AUC MCC

MTS 0.87± 0.05 0.77± 0.07 0.85± 0.06 0.72± 0.07 0.87± 0.05 0.77± 0.06
SP 0.86± 0.14 0.72± 0.20 0.86± 0.14 0.81± 0.16 0.86± 0.14 0.81± 0.16
CTP 0.88± 0.05 0.75± 0.09 0.88± 0.04 0.75± 0.07 0.89± 0.05 0.78± 0.10
N-signal-free 0.87± 0.04 0.76± 0.07 0.90± 0.06 0.81± 0.10 0.91± 0.04 0.83± 0.06
% accuracy 83.06± 4.50 83.80± 4.11 85.64± 3.64

Table A.13: The 5-fold cross-validation performance of an SVM classifier, using various feature
set combinations as listed above each column, is shown for three-way classification on the plant
automatically collected dataset.
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A.3 Post hoc analysis for NCDiff parameters

Since I made an arbitrary choice when defining divergence features, parameters for NCDiff have

been searched with in the yeast curated dataset: window length and normalization start position

in C-terminal from 40 to 80 with or without classical N-terminal features of the first 20 amino

acids. In the case with the classical features, average accuracy for parameter space is 91.82%, and

best accuracy is 92.52% with either a combination of window size 15 and start position at 50 or

combination 16 and 49. Similarly, in the case without the classical features, average accuracy is

70.45% and best accuracy is 71.99% when window size is 40 and start position is 48. Because of

multiple test, this difference does not seem to be significant; however, analysis result is summarized

in Figure A.1 and A.2.
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Figure A.1: Heat map for two parameters of NCDiff in terms of accuracy based on yeast curated
dataset using divergence and classical features in N-terminal 20 residues.
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Figure A.2: Heat map for two parameters of NCDiff in terms of accuracy based on yeast curated
dataset using only divergence features.
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A.4 Divergence score combined with standard features in

N-terminal 40 residues

A.4.1 S. cerevisiae, curated orthologs (N40)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 83 0 96 141 2 36 140 2 37
SP 16 0 37 6 30 17 6 31 16
N-signal-free 50 0 400 30 10 410 26 10 414

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 73 1 105 132 2 45 133 2 44
SP 4 19 30 4 43 6 3 41 9
N-signal-free 29 3 418 23 6 421 10 6 434

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 120 1 58 144 2 33 136 2 41
SP 3 31 19 4 32 17 3 35 15
N-signal-free 28 7 415 26 10 414 35 6 409

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 141 1 37 133 3 43 137 2 40
SP 2 32 19 3 43 7 3 42 8
N-signal-free 18 5 427 11 7 432 22 5 423

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 140 1 38 137 1 41 137 1 41
SP 2 34 17 2 44 7 2 43 8
N-signal-free 22 7 421 16 5 429 15 6 429

Table A.14: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
yeast curated ortholog dataset.
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A.4.2 S. cerevisiae, RBH orthologs (N40)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 91 0 128 168 4 47 172 3 44
SP 18 0 55 8 47 18 7 52 14
N-signal-free 54 0 506 33 14 513 27 9 524

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 82 1 136 164 3 52 171 3 45
SP 4 35 34 9 52 12 7 56 10
N-signal-free 29 1 530 19 6 535 19 6 535

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 138 4 77 174 2 43 172 3 44
SP 6 48 19 6 53 14 2 54 17
N-signal-free 34 1 525 25 11 524 43 5 512

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 172 0 47 171 4 44 168 3 48
SP 3 58 12 9 56 8 5 61 7
N-signal-free 24 4 532 19 8 533 23 2 535

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 173 0 46 175 1 43 176 2 41
SP 3 57 13 3 63 7 4 63 6
N-signal-free 26 5 529 18 2 540 16 2 542

Table A.15: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
yeast automatically collected dataset.
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A.4.3 Human, RBH orthologs (N40)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 3 35 43 50 16 15 58 10 13
SP 1 84 84 15 124 30 13 132 24
N-signal-free 2 67 346 10 27 378 8 18 389

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 31 14 36 53 10 18 54 13 14
SP 6 102 61 11 134 24 7 143 19
N-signal-free 13 37 365 10 18 387 8 16 391

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 40 14 27 58 10 13 58 13 10
SP 8 121 40 13 135 21 9 129 31
N-signal-free 11 34 370 9 19 387 12 13 390

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 58 11 12 55 13 13 59 9 13
SP 8 130 31 7 142 20 12 136 21
N-signal-free 7 18 390 7 14 394 12 15 388

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 63 9 9 58 11 12 60 11 10
SP 9 133 27 7 142 20 8 140 21
N-signal-free 8 17 390 9 13 393 8 13 394

Table A.16: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
mammal automatically collected dataset.
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A.4.4 Plant model organisms, RBH orthologs (N40)

FDiv FPhy FComp

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 17 0 35 9 30 0 25 6 44 0 12 5
SP 3 0 4 8 2 2 5 6 1 6 5 3
CTP 3 0 90 6 13 1 78 7 10 2 83 4
N-signal-free 6 0 21 70 7 4 8 78 11 2 8 76

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 16 0 27 18 23 1 31 6 40 0 17 4
SP 0 6 1 8 3 5 5 2 1 8 5 1
CTP 11 1 67 20 11 1 85 2 9 2 85 3
N-signal-free 12 2 27 56 2 2 9 84 8 2 8 79

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 21 0 30 10 43 0 15 3 28 0 26 7
SP 2 6 2 5 1 6 6 2 0 10 3 2
CTP 8 0 81 10 10 3 82 4 17 2 74 6
N-signal-free 8 0 14 75 11 2 8 76 4 1 15 77

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 41 0 13 7 40 0 16 5 29 0 28 4
SP 1 11 3 0 2 8 4 1 0 8 5 2
CTP 13 2 78 6 9 2 84 4 15 0 78 6
N-signal-free 13 1 6 77 8 1 7 81 4 1 9 83

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 39 0 15 7 40 0 17 4 41 0 17 3
SP 1 11 3 0 1 9 5 0 1 10 4 0
CTP 11 2 79 7 6 1 87 5 6 1 87 5
N-signal-free 12 1 7 77 8 1 6 82 8 1 7 81

Table A.17: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various feature set com-
binations as listed above each column, is shown for three-way classification on the plant automatically collected
dataset.
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A.4.5 S. cerevisiae, curated orthologs – classes balanced (N40)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 31 15 7 46 2 5 40 3 10
SP 16 34 3 6 45 2 4 46 3
N-signal-free 9 9 35 12 8 33 11 8 34

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 37 3 13 45 1 7 39 4 10
SP 8 38 7 2 48 3 2 49 2
N-signal-free 13 9 31 4 6 43 6 4 43

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 38 7 8 39 4 10 45 0 8
SP 5 43 5 3 47 3 3 46 4
N-signal-free 8 5 40 12 7 34 10 9 34

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 43 1 9 40 3 10 43 0 10
SP 2 46 5 2 49 2 3 48 2
N-signal-free 11 5 37 5 3 45 7 3 43

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 43 0 10 43 3 7 44 2 7
SP 2 48 3 2 49 2 1 50 2
N-signal-free 11 6 36 7 4 42 6 4 43

Table A.18: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
yeast balanced dataset of curated orthologs.
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A.4.6 S. cerevisiae, RBH orthologs – classes balanced (N40)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 36 28 9 59 2 12 55 4 14
SP 18 42 13 3 70 0 4 69 0
N-signal-free 11 27 35 13 1 59 13 3 57

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 47 7 19 61 1 11 57 2 14
SP 13 53 7 3 70 0 2 71 0
N-signal-free 23 9 41 9 0 64 8 3 62

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 55 4 14 56 3 14 61 1 11
SP 12 57 4 4 69 0 1 72 0
N-signal-free 16 3 54 11 1 61 16 2 55

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 58 0 15 59 0 14 59 1 13
SP 1 72 0 2 71 0 2 71 0
N-signal-free 15 1 57 7 1 65 9 0 64

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 57 1 15 61 0 12 61 0 12
SP 2 71 0 2 70 1 2 70 1
N-signal-free 15 1 57 11 1 61 10 1 62

Table A.19: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
yeast balanced dataset of automatically collected orthologs.
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A.4.7 Human, RBH orthologs – classes balanced (N40)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 45 19 17 66 11 4 69 9 3
SP 21 53 7 11 63 7 14 60 7
N-signal-free 18 21 42 7 10 64 7 7 67

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 61 12 8 69 6 6 71 7 3
SP 16 51 14 11 66 4 13 65 3
N-signal-free 7 20 54 8 8 65 9 7 65

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 57 13 11 70 9 2 67 9 5
SP 16 52 13 12 62 7 9 68 4
N-signal-free 11 14 56 7 7 67 7 8 66

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 66 10 5 70 8 3 71 5 5
SP 11 63 7 10 68 3 8 69 4
N-signal-free 5 8 68 10 7 64 7 4 70

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 68 8 5 71 6 4 71 6 4
SP 11 65 5 11 66 4 11 67 3
N-signal-free 6 8 67 6 6 69 6 6 69

Table A.20: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
mammal balanced dataset of automatically collected orthologs.
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A.4.8 Plant model organisms, RBH orthologs – classes balanced (N40)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 30 26 5 47 11 3 42 12 7
SP 9 50 2 13 43 5 13 45 3
N-signal-free 11 9 41 13 4 44 8 5 48

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 34 14 13 41 16 4 51 10 0
SP 22 31 8 15 43 3 8 49 4
N-signal-free 17 14 30 4 5 52 5 4 52

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 36 16 9 43 13 5 42 14 5
SP 13 44 4 14 44 3 16 41 4
N-signal-free 13 6 42 8 5 48 7 9 45

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 42 13 6 51 10 0 39 15 7
SP 9 46 6 8 49 4 17 40 4
N-signal-free 12 9 40 4 4 53 6 3 52

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 42 14 5 48 11 2 46 12 3
SP 9 46 6 13 44 4 13 43 5
N-signal-free 11 9 41 4 8 49 4 6 51

Table A.21: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
plant balanced dataset of automatically collected orthologs.
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A.5 Divergence score combined with standard features in

the N-terminal 20 residues

A.5.1 S. cerevisiae, curated orthologs (N20)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 83 0 96 149 1 29 140 2 37
SP 16 0 37 8 42 3 6 47 0
N-signal-free 50 0 400 34 2 414 20 4 426

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 73 1 105 133 2 44 140 1 38
SP 4 19 30 9 42 2 8 44 1
N-signal-free 29 3 418 24 1 425 13 1 436

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 120 1 58 142 2 35 146 0 33
SP 3 31 19 5 48 0 2 47 4
N-signal-free 28 7 415 21 4 425 30 3 417

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 146 1 32 141 1 37 145 0 34
SP 0 49 4 8 43 2 2 48 3
N-signal-free 20 3 427 13 1 436 25 1 424

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 148 1 30 144 0 35 144 0 35
SP 0 50 3 0 51 2 1 51 1
N-signal-free 20 4 426 17 1 432 15 1 434

Table A.22: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
yeast curated ortholog dataset.
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A.5.2 S. cerevisiae, RBH orthologs (N20)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 91 0 128 174 6 39 173 3 43
SP 18 0 55 7 64 2 3 69 1
N-signal-free 54 0 506 36 1 523 23 5 532

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 82 1 136 165 5 49 171 2 46
SP 4 35 34 9 63 1 8 65 0
N-signal-free 29 1 530 25 3 532 15 2 543

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 138 4 77 173 4 42 180 0 39
SP 6 48 19 5 68 0 4 66 3
N-signal-free 34 1 525 25 4 531 41 4 515

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 179 0 40 171 2 46 173 1 45
SP 3 68 2 8 65 0 4 67 2
N-signal-free 23 2 535 16 2 542 26 1 533

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 179 0 40 180 2 37 180 2 37
SP 2 69 2 3 68 2 2 69 2
N-signal-free 23 1 536 17 3 540 19 1 540

Table A.23: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
yeast automatically collected dataset.



APPENDIX A. SEQUENCE DIVERGENCE OF TARGETING SIGNALS 134

A.5.3 Human, RBH orthologs (N20)

FDiv FPhy FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 3 35 43 54 14 13 54 18 9
SP 1 84 84 12 133 24 14 140 15
N-signal-free 2 67 346 12 9 394 7 8 400

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 31 14 36 53 18 10 54 17 10
SP 6 102 61 8 143 18 12 144 13
N-signal-free 13 37 365 8 11 396 5 9 401

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 40 14 27 57 16 8 55 13 13
SP 8 121 40 15 139 15 12 138 19
N-signal-free 11 34 370 8 8 399 13 11 391

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 52 21 8 57 17 7 58 15 8
SP 11 142 16 11 144 14 8 146 15
N-signal-free 5 10 400 4 8 403 12 11 392

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP N-signal-free MTS SP N-signal-free MTS SP N-signal-free

MTS 56 19 6 56 19 6 57 19 5
SP 13 140 16 9 147 13 12 143 14
N-signal-free 5 9 401 5 10 400 5 9 401

Table A.24: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various
feature set combinations as listed above each column, is shown for three-way classification on the
mammal automatically collected dataset.
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A.5.4 Plant model organisms, RBH orthologs (N20)

FDiv FPhy FComp

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 17 0 35 9 52 0 8 1 49 0 6 6
SP 3 0 4 8 5 8 1 1 1 10 2 2
CTP 3 0 90 6 10 2 77 10 5 1 85 8
N-signal-free 6 0 21 70 5 2 14 76 5 1 9 82

FCompFull FDiv & FPhy FDiv & FComp

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 16 0 27 18 47 0 12 2 48 0 11 2
SP 0 6 1 8 6 5 4 0 3 9 3 0
CTP 11 1 67 20 6 1 88 4 3 1 91 4
N-signal-free 12 2 27 56 3 1 5 88 5 0 7 85

FDiv & FCompFull FPhy & FComp FPhy & FCompFull

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 21 0 30 10 49 0 6 6 50 0 9 2
SP 2 6 2 5 1 10 2 2 0 13 1 1
CTP 8 0 81 10 3 2 87 7 7 2 80 10
N-signal-free 8 0 14 75 5 1 10 81 5 1 12 79

FComp & FCompFull FDiv & FPhy & FComp FDiv & FPhy & FCompFull

Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 46 1 7 7 49 0 9 3 45 0 13 3
SP 1 11 2 1 2 10 3 0 2 11 2 0
CTP 4 2 86 7 2 2 90 5 7 2 85 5
N-signal-free 5 1 10 81 4 0 7 86 2 1 7 87

FPhy & FComp & FCompFull FDiv & FComp & FCompFull ALL
Predicted → MTS SP CTP N-signal-free MTS SP CTP N-signal-free MTS SP CTP N-signal-free

MTS 48 0 7 6 46 0 11 4 48 0 9 4
SP 2 11 1 1 3 11 1 0 3 11 1 0
CTP 3 3 87 6 4 1 88 6 3 1 89 6
N-signal-free 4 1 12 80 5 0 9 83 3 0 9 85

Table A.25: Confusion matrix of the 5-fold cross-validation of an SVM classifier, using various feature set com-
binations as listed above each column, is shown for three-way classification on the plant automatically collected
dataset.



Appendix B

Appendix for prediction of

presequence and its cleavage site

B.1 Classifiers for presequence prediction

Other than SVM with RBF kernel I tried SVM with polynomial kernel and random forest to predict

presequence. Implementation of SVM with polynomial kernel is the same package as that of RBF

kernel, and I used randomForest package in R [97]. Random forest is an ensemble classifier and

usually shows good performance. Learning procedure depends on mainly two steps: bootstrap

sampling B times from training data and learning multiple decision trees from the sampled dataset

with randomly choosing m features from M total features. For classification task random forest

predicts a query by voting of B trees. To calculate AUC, the number of trees which predict positive

is used as a score by dividing it with B.

136
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Polynomial kernel in this work is defined below:

k(xi, xj) = (1 + γxi · xj)
D (B.1)

, where γ and D are kernel parameters.

Benchmarking is conducted by five-fold cross validation in the training dataset, and result is

summarized in Table B.1. Although difference between SVM with two different kernel functions is

small, in this work SVM with RBF kernel was applied.

Classifier ROC AUC
SVM (RBF) 0.955
SVM (Polynomial) 0.953
Random forest 0.946

Table B.1: Evaluations for different classifiers.

B.2 Motif analysis

Although the reported fourteen motifs are significantly discriminative motif between presequence

containing and non-containing proteins, this result might be biased due to the amino acid difference

between these two sets. Scramble test was conducted 100 times by shuffling amino acids in the

positive dataset after segmentation: first 30, middle 30, and last 30 in N-terminal 90 residues. Only

first methionine was kept its position. Assumption of this test is that short motif is conserved

its order within 6-mer window if the motif is not randomly mutated. The number of detected

times in this shuffle test is summarized in the Table B.2. Roughly speaking, half of motifs are

detected repeatedly, and the most significant motif, HHPBHH, is perfectly detected in all shuffle

tests. Since Arg composition is remarkably high in the positive dataset, I tried shuffled test with
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Arg as a distinct letter. This condition leads to much more tests due to the higher number of

candidate motifs, and detected times are generally reduced. Surprisingly, the most HHPBHH is

stably observed in both conditions; therefore, Arg might be conserved at least within this motif.

Rank Motif P-value #Observations in 100 times scramble test
1 HHPBHH 5.715E-013 100 (100)
2 HHBPHH 1.183E-011 88 (23)
3 HHHBPH 1.063E-009 0 (0)
4 HHBPHB 1.838E-009 34 (18)
5 HBHHBb 6.131E-009 43 (0)
6 BHHPPP 0.000000093 73 (11)
7 HHHBBH 1.208E-007 0 (0)
8 HHBHHB 8.935E-007 0 (0)
9 HPBHHP 9.676E-007 29 (0)
10 PHHBPH 0.000001229 3 (0)
11 HBHHbB 0.000001742 2 (1)
12 HHHHBB 0.000004929 0 (0)
13 HHBPHP 0.000006382 0 (0)
14 BPHBHH 0.000009312 0 (0)

Table B.2: Fourteen detected motifs are listed. Right most column indicates how many times each
motif is detected in 100 scrambled tests, and a number in parenthesis is an observed number of
each motif in different scramble test where Arg is distinct amino acid from basic residues group.

B.3 Clustering result

Detail of clustering result is summarized in Table B.3.
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OLN UniProtAC MPP NetCharge Length Hmoment Conshalf Cons D E K R Cluster

YAL008W P18411 -10.15 0.16 69.00 3.82 0.48 0.43 0.00 0.00 0.07 0.09 II

YAL019W P31380 -15.10 -0.04 74.00 -0.17 0.54 0.53 0.07 0.05 0.05 0.03 II

YAL039C P06182 -10.24 -0.06 62.00 0.40 0.78 0.80 0.06 0.05 0.03 0.02 III

YAL044C P39726 6.68 0.23 22.00 1.52 0.47 0.58 0.00 0.00 0.05 0.18 I

YAL054C Q01574 -15.91 0.01 69.00 1.25 0.52 0.61 0.03 0.09 0.10 0.03 II

YBL022C P36775 14.83 0.24 37.00 3.05 0.50 0.47 0.00 0.00 0.05 0.19 I

YBL038W P38064 8.00 0.11 37.00 0.99 0.43 0.42 0.00 0.03 0.05 0.08 II

YBL045C P07256 10.67 0.24 17.00 3.23 0.52 0.57 0.00 0.00 0.12 0.12 I

YBL064C P34227 -2.42 0.17 30.00 2.91 0.69 0.71 0.00 0.00 0.10 0.07 I

YBL090W P38175 7.72 0.31 16.00 2.75 0.38 0.45 0.00 0.00 0.06 0.25 I

YBL095W P38172 -12.43 0.03 59.00 3.13 0.61 0.58 0.05 0.02 0.05 0.05 II

YBL099W P07251 13.47 0.20 35.00 3.14 0.58 0.57 0.00 0.00 0.03 0.17 I

YBR026C P38071 12.85 0.22 9.00 2.92 0.39 0.52 0.00 0.00 0.11 0.11 I

YBR037C P23833 8.51 0.18 40.00 2.63 0.33 0.33 0.00 0.00 0.05 0.13 I

YBR039W P38077 10.23 0.13 32.00 2.15 0.46 0.49 0.00 0.00 0.03 0.09 I

YBR044C P38228 -12.16 0.24 17.00 3.53 0.54 0.58 0.00 0.00 0.12 0.12 I

YBR047W P38231 11.25 0.18 22.00 1.68 0.57 0.61 0.00 0.00 0.09 0.09 I

YBR084W P09440 -6.74 0.18 34.00 1.75 0.42 0.44 0.00 0.00 0.03 0.15 I

YBR104W P38087 -19.30 -0.38 16.00 0.12 0.67 0.68 0.13 0.25 0.00 0.00 III

YBR111C Q01976 8.79 0.25 16.00 3.48 0.41 0.50 0.00 0.00 0.00 0.25 I

YBR122C P36531 13.92 0.30 10.00 1.63 0.50 0.59 0.00 0.00 0.20 0.10 I

YBR146W P38120 5.70 0.21 24.00 2.17 0.44 0.38 0.00 0.00 0.00 0.21 I

YBR176W P38122 -11.88 0.25 24.00 2.41 0.34 0.41 0.00 0.00 0.17 0.08 I

YBR185C P38300 -19.54 0.19 47.00 2.58 0.40 0.46 0.02 0.04 0.15 0.11 II

YBR221C P32473 10.59 0.18 33.00 3.02 0.44 0.52 0.00 0.00 0.00 0.18 I

YBR251W P33759 10.09 0.23 13.00 2.31 0.58 0.63 0.00 0.00 0.08 0.15 I

YBR263W P37292 6.27 0.21 19.00 1.53 0.51 0.60 0.00 0.00 0.05 0.16 I

YBR282W P36526 -11.54 0.19 54.00 3.82 0.65 0.71 0.02 0.02 0.17 0.06 III

YCL009C P25605 7.17 0.17 24.00 2.55 0.58 0.67 0.00 0.00 0.00 0.17 I

YCL017C P25374 -8.56 0.07 60.00 2.47 0.49 0.44 0.05 0.02 0.05 0.08 II

YCR003W P25348 -7.21 0.03 71.00 2.29 0.43 0.41 0.06 0.03 0.08 0.03 II

YCR028C-A P32445 9.90 0.22 9.00 3.77 0.67 0.72 0.00 0.00 0.00 0.22 I

YCR046C P25626 6.04 0.20 15.00 3.23 0.37 0.49 0.00 0.00 0.00 0.20 I

YCR071C P25642 -9.95 0.08 80.00 2.23 0.45 0.41 0.01 0.05 0.08 0.06 II

YCR083W P25372 -14.06 0.11 66.00 3.37 0.32 0.27 0.03 0.02 0.09 0.06 II

YDL004W Q12165 10.60 0.24 21.00 3.12 0.78 0.69 0.00 0.00 0.10 0.14 I

YDL044C P10849 5.48 0.17 23.00 3.93 0.49 0.44 0.00 0.00 0.04 0.13 I

Table B.3: Clustering result for the yeast presequence data. Used features are rounded at the second decimal place. Length

of presequence are extracted the proteomic analysis.
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OLN UniProtAC MPP NetCharge Length Hmoment Conshalf Cons D E K R Cluster

YDL130W-A P01098 12.68 0.23 22.00 2.40 0.45 0.49 0.00 0.00 0.00 0.23 I

YDL178W P46681 -3.52 0.20 35.00 2.14 0.42 0.39 0.00 0.00 0.06 0.14 I

YDL181W P01097 11.16 0.19 21.00 1.95 0.45 0.49 0.00 0.00 0.00 0.19 I

YDL202W P36521 11.01 0.13 30.00 1.82 0.38 0.40 0.00 0.03 0.07 0.10 I

YDL203C Q07622 -14.65 0.00 15.00 0.86 0.58 0.52 0.07 0.00 0.07 0.00 III

YDR036C P28817 7.58 0.16 31.00 2.60 0.43 0.40 0.00 0.00 0.10 0.06 I

YDR070C Q12497 -0.13 0.24 29.00 3.60 0.51 0.46 0.00 0.00 0.03 0.21 I

YDR116C Q04599 -5.41 0.18 28.00 2.56 0.48 0.46 0.00 0.00 0.11 0.07 I

YDR148C P19262 3.21 0.17 71.00 1.84 0.21 0.34 0.00 0.01 0.11 0.07 II

YDR175C Q03976 2.52 0.23 22.00 2.19 0.42 0.47 0.00 0.00 0.14 0.09 I

YDR178W P37298 8.11 0.23 31.00 2.53 0.54 0.63 0.00 0.00 0.10 0.13 I

YDR194C P15424 -14.47 0.13 53.00 2.18 0.36 0.36 0.04 0.00 0.02 0.15 II

YDR234W P49367 12.04 0.17 18.00 1.29 0.57 0.66 0.00 0.00 0.00 0.17 I

YDR298C P09457 9.74 0.18 17.00 2.85 0.59 0.68 0.00 0.00 0.00 0.18 I

YDR337W P21771 7.35 0.16 25.00 1.05 0.45 0.52 0.00 0.00 0.04 0.12 I

YDR347W P10662 8.62 0.33 12.00 3.72 0.23 0.38 0.00 0.00 0.08 0.25 I

YDR376W P48360 10.42 0.13 8.00 3.60 0.55 0.65 0.00 0.00 0.00 0.13 I

YDR405W P32387 8.53 0.12 33.00 2.46 0.39 0.42 0.00 0.03 0.09 0.06 I

YDR430C P32898 12.16 0.29 7.00 2.30 0.71 0.72 0.00 0.00 0.00 0.29 I

YDR462W P36527 -13.92 0.18 44.00 1.69 0.45 0.54 0.00 0.02 0.11 0.09 II

YDR494W Q03430 2.88 0.23 13.00 0.72 0.58 0.62 0.00 0.00 0.00 0.23 I

YDR508C P48813 -0.97 -0.08 79.00 1.06 0.46 0.46 0.04 0.18 0.06 0.08 II

YDR511W Q04401 8.16 0.25 12.00 1.56 0.40 0.52 0.00 0.00 0.08 0.17 I

YDR513W P17695 12.97 0.03 29.00 1.38 0.35 0.41 0.03 0.03 0.03 0.07 II

YEL024W P08067 8.03 0.23 22.00 2.61 0.51 0.59 0.00 0.00 0.14 0.09 I

YEL052W P32317 10.74 0.20 25.00 2.07 0.32 0.33 0.00 0.00 0.04 0.16 I

YER015W P39518 -14.56 -0.18 17.00 1.59 0.61 0.62 0.18 0.06 0.00 0.06 III

YER017C P39925 -10.50 0.17 29.00 3.21 0.33 0.34 0.00 0.00 0.03 0.14 I

YER020W P10823 -13.51 0.04 91.00 1.02 0.55 0.48 0.03 0.04 0.09 0.03 II

YER069W Q01217 9.99 0.19 57.00 3.42 0.56 0.49 0.00 0.00 0.12 0.07 I

YER073W P40047 11.81 0.23 22.00 3.20 0.54 0.64 0.00 0.00 0.00 0.23 I

YER078C P40051 6.33 0.15 26.00 3.36 0.41 0.46 0.00 0.00 0.04 0.12 I

YER080W P40053 11.36 0.23 35.00 2.95 0.53 0.45 0.00 0.00 0.09 0.14 I

YER087W P39965 1.93 0.11 56.00 2.51 0.45 0.48 0.00 0.04 0.05 0.09 II

YER140W P40085 -21.74 -0.06 72.00 2.15 0.17 0.27 0.10 0.13 0.10 0.07 II

YER141W P40086 -13.03 0.18 66.00 3.18 0.51 0.49 0.00 0.02 0.08 0.12 II

YER182W P40098 10.10 0.25 12.00 1.73 0.49 0.51 0.00 0.00 0.08 0.17 I

YFL018C P09624 8.88 0.31 13.00 3.03 0.45 0.57 0.00 0.00 0.08 0.23 I

Table B.3: Clustering result for the yeast presequence data. Used features are rounded at the second decimal place. Length

of presequence are extracted the proteomic analysis.
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YFL046W P43557 -17.65 0.11 37.00 3.14 0.51 0.60 0.03 0.03 0.05 0.11 II

YFR033C P00127 -20.14 -0.47 90.00 -0.13 0.71 0.69 0.20 0.32 0.04 0.01 III

YFR049W P19955 2.95 0.13 8.00 2.07 0.66 0.64 0.00 0.00 0.00 0.13 I

YGL059W P53170 -9.86 0.02 64.00 2.67 0.44 0.57 0.02 0.06 0.05 0.05 II

YGL107C P53140 9.79 0.10 51.00 2.75 0.53 0.48 0.02 0.02 0.04 0.10 II

YGL119W P27697 -7.72 0.22 41.00 3.00 0.51 0.50 0.00 0.00 0.07 0.15 I

YGL125W P53128 -10.84 0.00 73.00 -1.06 0.48 0.59 0.05 0.05 0.05 0.05 II

YGL129C Q01163 -7.32 0.15 41.00 1.80 0.49 0.56 0.00 0.02 0.05 0.12 I

YGL187C P04037 6.31 0.24 17.00 3.85 0.62 0.58 0.00 0.00 0.06 0.18 I

YGL221C P53081 0.48 0.22 9.00 3.84 0.62 0.69 0.00 0.00 0.00 0.22 I

YGL229C P53036 -18.63 -0.14 76.00 0.42 0.71 0.63 0.08 0.14 0.03 0.05 III

YGR031W P53219 -9.14 0.11 38.00 1.43 0.52 0.54 0.00 0.00 0.05 0.05 II

YGR033C P53220 10.04 0.17 41.00 1.49 0.46 0.43 0.00 0.00 0.02 0.15 I

YGR084C P12686 -17.07 0.12 67.00 3.13 0.46 0.53 0.03 0.04 0.10 0.09 II

YGR150C P48237 -16.15 0.08 66.00 1.21 0.41 0.43 0.03 0.06 0.12 0.05 II

YGR174C P37267 -12.80 0.06 66.00 2.81 0.70 0.73 0.02 0.08 0.08 0.08 III

YGR193C P16451 -7.94 0.17 30.00 3.78 0.48 0.53 0.00 0.00 0.13 0.03 I

YGR244C P53312 7.33 0.20 30.00 2.76 0.48 0.63 0.00 0.00 0.07 0.13 I

YHL021C P23180 8.40 0.23 22.00 2.57 0.51 0.52 0.00 0.00 0.00 0.23 I

YHL035C P38735 -9.25 0.00 48.00 1.69 0.54 0.55 0.06 0.02 0.00 0.08 II

YHR008C P00447 -5.06 0.17 18.00 2.61 0.54 0.67 0.00 0.00 0.17 0.00 I

YHR024C P11914 9.99 0.22 9.00 2.77 0.49 0.58 0.00 0.00 0.00 0.22 I

YHR037W P07275 11.03 0.27 15.00 3.60 0.60 0.64 0.00 0.00 0.13 0.13 I

YHR051W P00427 8.51 0.23 39.00 2.48 0.66 0.56 0.00 0.00 0.05 0.18 I

YHR147C P32904 11.74 0.19 16.00 1.75 0.64 0.64 0.00 0.00 0.00 0.19 I

YHR183W P38720 -10.15 -0.03 61.00 2.35 0.72 0.75 0.07 0.03 0.05 0.02 III

YHR199C P38885 -1.23 0.15 27.00 3.85 0.39 0.41 0.00 0.04 0.07 0.11 I

YHR208W P38891 12.07 0.25 16.00 3.42 0.27 0.39 0.00 0.00 0.13 0.13 I

YIL022W Q01852 2.49 0.17 42.00 1.56 0.42 0.50 0.00 0.00 0.00 0.17 I

YIL042C P40530 -11.83 0.06 77.00 2.34 0.34 0.31 0.03 0.06 0.08 0.08 II

YIL066C P21672 -13.74 0.15 13.00 2.78 0.82 0.80 0.08 0.08 0.15 0.15 III

YIL070C P40513 9.40 0.20 46.00 3.36 0.47 0.48 0.00 0.00 0.07 0.13 I

YIL094C P40495 11.55 0.21 14.00 2.45 0.56 0.65 0.00 0.00 0.00 0.21 I

YIL125W P20967 3.38 0.20 35.00 1.51 0.58 0.48 0.00 0.00 0.09 0.11 I

YIL155C P32191 -17.99 0.08 37.00 0.99 0.46 0.46 0.03 0.00 0.00 0.11 II

YIR024C P40576 7.50 0.19 26.00 2.30 0.48 0.50 0.00 0.00 0.04 0.15 I

YJL082W P47031 -8.07 -0.04 72.00 2.30 0.55 0.63 0.08 0.08 0.10 0.03 III

YJL104W P42949 6.05 0.07 27.00 2.31 0.77 0.76 0.00 0.04 0.04 0.07 I

Table B.3: Clustering result for the yeast presequence data. Used features are rounded at the second decimal place. Length

of presequence are extracted the proteomic analysis.
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YJL109C P42945 -12.35 -0.08 13.00 1.03 0.77 0.79 0.08 0.00 0.00 0.00 III

YJL131C P47015 2.41 0.14 50.00 0.37 0.41 0.43 0.06 0.02 0.12 0.10 II

YJL133C-A Q3E7A3 6.67 0.13 8.00 1.91 0.56 0.54 0.00 0.00 0.00 0.13 I

YJL180C P22135 9.35 0.22 23.00 1.86 0.32 0.33 0.00 0.00 0.09 0.13 I

YJR003C P47084 11.03 0.18 17.00 3.28 0.51 0.45 0.00 0.00 0.06 0.12 I

YJR080C P47127 7.35 0.14 22.00 2.71 0.44 0.45 0.00 0.00 0.00 0.14 I

YJR100C P47140 7.94 0.17 24.00 3.08 0.51 0.50 0.00 0.00 0.04 0.13 I

YJR101W P47141 8.95 0.29 7.00 2.02 0.52 0.58 0.00 0.00 0.14 0.14 I

YJR144W P32787 7.40 0.23 22.00 2.03 0.45 0.41 0.00 0.00 0.14 0.09 I

YKL003C P28778 -7.16 0.08 71.00 2.67 0.68 0.72 0.03 0.06 0.10 0.07 III

YKL029C P36013 12.95 0.21 38.00 1.70 0.40 0.40 0.00 0.00 0.00 0.21 I

YKL040C P32860 7.33 0.19 21.00 3.76 0.40 0.51 0.00 0.00 0.14 0.05 I

YKL085W P17505 11.29 0.33 9.00 2.09 0.64 0.71 0.00 0.00 0.11 0.22 I

YKL106W Q01802 4.84 0.21 14.00 2.82 0.33 0.43 0.00 0.00 0.00 0.21 I

YKL132C P36001 -15.23 -0.14 7.00 2.55 0.63 0.68 0.29 0.00 0.00 0.14 III

YKL134C P35999 10.88 0.18 28.00 2.57 0.29 0.36 0.00 0.00 0.07 0.11 I

YKL141W P33421 -6.52 0.16 50.00 1.58 0.38 0.39 0.00 0.00 0.08 0.08 II

YKL148C Q00711 9.18 0.25 20.00 1.48 0.46 0.46 0.00 0.00 0.15 0.10 I

YKL150W P36060 -10.79 0.13 23.00 2.35 0.64 0.58 0.00 0.00 0.04 0.09 I

YKL155C P36056 -11.64 0.17 24.00 2.46 0.33 0.28 0.00 0.00 0.08 0.08 I

YKL192C P32463 -4.40 0.16 37.00 3.28 0.50 0.48 0.00 0.00 0.00 0.16 I

YKL195W P36046 10.75 0.26 31.00 2.29 0.40 0.38 0.00 0.00 0.00 0.26 I

YKL196C P36015 -13.95 -0.02 45.00 1.04 0.73 0.76 0.02 0.11 0.04 0.07 III

YKR036C P36130 5.84 0.04 45.00 3.35 0.48 0.47 0.02 0.04 0.07 0.04 II

YKR063C P36146 5.63 0.02 87.00 1.36 0.61 0.59 0.06 0.07 0.07 0.08 II

YKR065C P36147 11.89 0.11 36.00 1.70 0.47 0.44 0.00 0.00 0.00 0.11 I

YKR066C P00431 -11.17 0.10 67.00 3.01 0.59 0.58 0.00 0.00 0.04 0.06 II

YLR059C P54964 7.53 0.24 25.00 2.40 0.55 0.46 0.00 0.00 0.04 0.20 I

YLR069C P25039 11.79 0.17 42.00 2.22 0.39 0.34 0.00 0.02 0.07 0.12 I

YLR089C P52893 11.86 0.14 77.00 3.32 0.28 0.35 0.00 0.01 0.08 0.08 II

YLR090W P39102 -17.38 0.00 50.00 -0.68 0.48 0.60 0.14 0.04 0.10 0.08 III

YLR091W Q12393 -12.81 0.04 51.00 2.97 0.31 0.41 0.02 0.04 0.10 0.00 II

YLR163C P10507 13.63 0.33 15.00 2.49 0.50 0.59 0.00 0.00 0.07 0.27 I

YLR203C P32335 8.36 0.14 35.00 3.73 0.41 0.58 0.00 0.00 0.03 0.11 I

YLR239C Q06005 -1.02 0.14 28.00 1.49 0.42 0.39 0.00 0.00 0.00 0.14 I

YLR259C P19882 10.92 0.30 20.00 3.06 0.52 0.64 0.00 0.00 0.00 0.30 I

YLR295C Q12349 3.70 0.16 32.00 2.00 0.45 0.52 0.00 0.00 0.00 0.16 I

YLR304C P19414 10.01 0.27 15.00 2.76 0.58 0.67 0.00 0.00 0.07 0.20 I

Table B.3: Clustering result for the yeast presequence data. Used features are rounded at the second decimal place. Length

of presequence are extracted the proteomic analysis.
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YLR312W-A P36523 2.06 0.11 28.00 3.28 0.45 0.57 0.00 0.04 0.00 0.14 I

YLR355C P06168 4.30 0.21 47.00 1.93 0.69 0.66 0.00 0.00 0.04 0.17 I

YLR395C P04039 2.28 0.22 27.00 2.83 0.59 0.59 0.00 0.00 0.07 0.15 I

YLR419W Q06698 -15.17 0.10 40.00 1.63 0.57 0.55 0.08 0.08 0.25 0.00 III

YML025C P51998 10.22 0.25 16.00 3.45 0.44 0.44 0.00 0.00 0.13 0.13 I

YML042W P32796 9.49 0.13 30.00 0.96 0.36 0.35 0.03 0.00 0.03 0.13 II

YML078W P25719 11.34 0.25 12.00 3.02 0.62 0.65 0.00 0.00 0.08 0.17 I

YML081C-A P81450 -12.12 0.14 29.00 3.78 0.69 0.68 0.00 0.00 0.10 0.03 III

YMR072W Q02486 -8.56 0.04 26.00 2.59 0.49 0.45 0.00 0.04 0.04 0.04 II

YMR108W P07342 -9.71 0.21 28.00 3.31 0.52 0.48 0.00 0.00 0.07 0.14 I

YMR115W Q04472 8.54 0.18 34.00 1.55 0.43 0.39 0.00 0.00 0.06 0.12 I

YMR157C Q03798 2.80 0.21 39.00 2.82 0.34 0.38 0.00 0.00 0.08 0.13 I

YMR177W Q03218 -14.98 0.16 44.00 0.99 0.40 0.35 0.00 0.05 0.11 0.09 II

YMR186W P15108 -14.13 -0.07 27.00 1.82 0.81 0.83 0.00 0.11 0.04 0.00 III

YMR188C Q03246 -2.11 0.22 41.00 1.29 0.76 0.78 0.00 0.05 0.17 0.10 III

YMR189W P49095 12.10 0.16 37.00 1.27 0.42 0.40 0.00 0.00 0.00 0.16 I

YMR192W Q04322 -17.66 -0.14 81.00 -3.13 0.37 0.38 0.09 0.15 0.05 0.05 II

YMR193W P36525 -18.24 0.23 35.00 2.98 0.50 0.59 0.00 0.03 0.11 0.14 I

YMR232W Q05670 1.15 0.03 32.00 0.20 0.60 0.63 0.13 0.00 0.13 0.03 III

YMR267W P28239 -14.83 0.07 76.00 1.93 0.51 0.55 0.03 0.05 0.08 0.07 II

YMR282C P22136 -2.03 0.15 67.00 3.29 0.33 0.38 0.01 0.01 0.07 0.10 II

YMR287C P39112 -9.57 0.18 51.00 2.51 0.45 0.49 0.04 0.04 0.10 0.16 II

YMR302C P32843 0.76 0.14 22.00 2.13 0.35 0.34 0.00 0.00 0.00 0.14 I

YNL005C P12687 6.24 0.04 27.00 2.31 0.42 0.57 0.04 0.00 0.04 0.04 II

YNL037C P28834 12.90 0.30 10.00 2.56 0.62 0.70 0.00 0.00 0.10 0.20 I

YNL052W P00424 7.35 0.20 20.00 2.16 0.73 0.74 0.00 0.00 0.00 0.20 I

YNL071W P12695 12.75 0.22 27.00 3.71 0.60 0.68 0.00 0.00 0.00 0.22 I

YNL073W P32048 5.70 0.29 28.00 2.13 0.43 0.44 0.00 0.00 0.07 0.21 I

YNL100W P50945 2.39 -0.06 54.00 0.13 0.28 0.27 0.06 0.09 0.06 0.04 II

YNL104C P06208 -9.71 0.00 9.00 1.48 0.54 0.64 0.00 0.11 0.11 0.00 III

YNL137C P27929 -14.42 0.23 53.00 3.23 0.78 0.78 0.02 0.02 0.17 0.09 III

YNL169C P39006 5.47 0.22 54.00 1.42 0.51 0.55 0.00 0.00 0.06 0.17 I

YNL177C P53881 10.40 0.12 34.00 3.43 0.42 0.49 0.00 0.00 0.00 0.12 I

YNL185C P53875 -11.40 0.07 58.00 2.22 0.76 0.79 0.02 0.02 0.09 0.02 III

YNL213C P40156 -16.90 0.18 82.00 3.12 0.47 0.51 0.02 0.05 0.17 0.09 II

YNL239W Q01532 -17.56 0.09 77.00 2.88 0.19 0.24 0.05 0.01 0.09 0.06 II

YNL284C P36520 7.24 0.11 57.00 2.67 0.38 0.44 0.02 0.02 0.05 0.09 II

YNL315C P32453 11.70 0.18 34.00 1.92 0.44 0.50 0.00 0.00 0.06 0.12 I

Table B.3: Clustering result for the yeast presequence data. Used features are rounded at the second decimal place. Length

of presequence are extracted the proteomic analysis.
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YNR001C P00890 11.03 0.14 36.00 2.06 0.39 0.39 0.00 0.00 0.06 0.08 I

YNR002C P32907 -18.63 -0.13 23.00 1.91 0.46 0.43 0.09 0.13 0.04 0.04 III

YNR036C P53732 12.35 0.11 28.00 2.53 0.44 0.52 0.00 0.00 0.00 0.11 I

YNR037C P53733 -18.06 0.17 24.00 2.94 0.76 0.77 0.00 0.00 0.04 0.13 I

YNR041C P32378 -13.55 0.13 54.00 2.10 0.30 0.26 0.00 0.02 0.06 0.09 II

YOL008W Q08058 4.44 0.23 30.00 3.99 0.46 0.52 0.00 0.00 0.10 0.13 I

YOL021C Q08162 -15.45 0.19 26.00 0.61 0.60 0.70 0.04 0.00 0.08 0.15 III

YOL071W Q08230 7.94 0.11 35.00 2.99 0.31 0.32 0.00 0.00 0.06 0.06 I

YOR022C Q12204 -14.86 0.10 61.00 3.36 0.48 0.51 0.05 0.00 0.07 0.08 II

YOR037W P38909 7.90 0.25 16.00 4.17 0.41 0.42 0.00 0.00 0.06 0.19 I

YOR040W Q12320 7.91 0.20 10.00 2.50 0.77 0.76 0.00 0.00 0.10 0.10 I

YOR065W P07143 -6.96 0.05 76.00 2.80 0.52 0.54 0.01 0.03 0.07 0.03 II

YOR108W Q12166 -11.07 0.11 9.00 1.20 0.54 0.64 0.00 0.00 0.11 0.00 III

YOR136W P28241 12.23 0.29 14.00 3.10 0.60 0.69 0.00 0.00 0.00 0.29 I

YOR142W P53598 8.76 0.25 16.00 3.72 0.57 0.65 0.00 0.00 0.13 0.13 I

YOR187W P02992 10.51 0.20 30.00 2.34 0.47 0.45 0.00 0.00 0.07 0.13 I

YOR196C P32875 -15.82 0.21 33.00 2.35 0.84 0.82 0.00 0.00 0.00 0.21 I

YOR215C Q12032 9.40 0.21 19.00 2.44 0.40 0.50 0.00 0.00 0.00 0.21 I

YOR227W Q12276 -12.53 0.11 83.00 0.88 0.46 0.51 0.04 0.02 0.11 0.06 II

YOR232W P38523 9.31 0.21 43.00 2.44 0.50 0.46 0.00 0.00 0.05 0.16 I

YOR285W Q12305 -12.38 -0.02 59.00 2.68 0.49 0.50 0.05 0.07 0.07 0.03 II

YOR286W Q08742 9.86 0.17 24.00 2.77 0.41 0.52 0.00 0.00 0.04 0.13 I

YOR298C-A O14467 3.07 0.07 29.00 0.87 0.74 0.75 0.07 0.00 0.00 0.14 III

YOR334W Q01926 8.28 0.22 32.00 3.11 0.44 0.42 0.00 0.00 0.03 0.19 I

YOR354C Q08818 11.59 0.10 29.00 2.86 0.45 0.36 0.03 0.00 0.03 0.10 II

YOR356W Q08822 6.36 0.15 41.00 2.00 0.33 0.36 0.02 0.02 0.07 0.12 II

YOR374W P46367 11.46 0.17 23.00 2.97 0.49 0.61 0.00 0.00 0.04 0.13 I

YPL040C P48526 -18.85 0.08 84.00 2.62 0.28 0.48 0.02 0.10 0.13 0.07 II

YPL059W Q02784 3.48 0.21 29.00 2.31 0.41 0.49 0.00 0.00 0.07 0.14 I

YPL097W P48527 8.66 0.11 36.00 2.52 0.63 0.60 0.00 0.03 0.03 0.11 I

YPL103C Q02883 -8.21 0.16 73.00 1.39 0.39 0.41 0.00 0.03 0.05 0.14 II

YPL132W P19516 11.19 0.16 44.00 2.00 0.36 0.38 0.02 0.00 0.05 0.14 I

YPL135W Q03020 7.61 0.18 34.00 2.81 0.41 0.56 0.00 0.00 0.03 0.15 I

YPL137C Q03016 -7.93 0.08 48.00 0.79 0.46 0.51 0.06 0.02 0.10 0.06 II

YPL155C P28743 5.90 0.15 86.00 2.84 0.58 0.58 0.01 0.00 0.02 0.14 II

YPL224C Q08970 11.62 0.11 56.00 1.60 0.40 0.35 0.02 0.00 0.04 0.09 II

YPL226W Q08972 -15.86 0.02 45.00 1.55 0.71 0.69 0.11 0.00 0.13 0.00 III

YPL231W P19097 -13.46 -0.10 51.00 2.49 0.73 0.76 0.04 0.14 0.04 0.04 III

Table B.3: Clustering result for the yeast presequence data. Used features are rounded at the second decimal place. Length

of presequence are extracted the proteomic analysis.
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OLN UniProtAC MPP NetCharge Length Hmoment Conshalf Cons D E K R Cluster

YPL262W P08417 5.41 0.25 24.00 2.66 0.45 0.56 0.00 0.00 0.13 0.13 I

YPL270W P33311 -10.90 0.15 79.00 2.11 0.43 0.40 0.00 0.01 0.04 0.13 II

YPL271W P21306 -9.79 0.07 55.00 1.92 0.74 0.73 0.02 0.02 0.05 0.05 III

YPR001W P43635 7.68 0.17 23.00 1.91 0.48 0.55 0.00 0.00 0.04 0.13 I

YPR002W Q12428 -14.49 0.15 54.00 1.73 0.43 0.45 0.04 0.04 0.20 0.02 II

YPR004C Q12480 -0.56 0.23 22.00 2.46 0.44 0.55 0.00 0.00 0.18 0.05 I

YPR006C Q12031 7.38 0.22 32.00 2.89 0.50 0.56 0.03 0.00 0.16 0.09 I

YPR011C Q12251 -5.12 -0.08 25.00 2.01 0.63 0.71 0.08 0.08 0.08 0.00 III

YPR024W P32795 0.98 0.09 11.00 2.37 0.42 0.43 0.00 0.00 0.09 0.00 I

YPR025C P37366 4.85 0.02 65.00 0.48 0.47 0.62 0.11 0.05 0.12 0.05 II

YPR047W P08425 11.06 0.25 16.00 2.34 0.41 0.48 0.00 0.00 0.06 0.19 I

YPR067W Q12425 -2.67 0.17 35.00 2.54 0.42 0.43 0.00 0.00 0.06 0.11 I

YPR113W P06197 -7.23 0.04 55.00 2.40 0.73 0.72 0.00 0.04 0.05 0.02 III

YPR134W P08593 -4.96 0.00 10.00 1.88 0.41 0.50 0.00 0.10 0.00 0.10 II

YPR155C Q12374 -17.18 -0.11 46.00 0.93 0.58 0.49 0.04 0.20 0.02 0.11 III

YPR166C P10663 -18.84 0.19 16.00 2.85 0.78 0.78 0.00 0.00 0.13 0.06 III

Table B.3: Clustering result for the yeast presequence data. Used features are rounded at the second decimal place. Length

of presequence are extracted the proteomic analysis.
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