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Peptides play key roles in many biological processes. For example, the antigenic 

peptides are presented on the surface of the cell by the major histocompatibility complex 

(MHC) molecule and induce the immunological response. Peptides also work as 

hormones and transport many kinds of signals to target cells. Moreover, peptides cause a 

kind of disease known as amyloidosis, where peptides become insoluble and are 

deposited in organs. All physiological phenomena mentioned above are involved in 

peptide-protein (or peptide-peptide) interactions. It means that regulating specific 

peptide-protein interactions using an artificial high-affinity peptide would result in the 

control of the specific biological process. Angiotensin II receptor blocker (ARB) is one 

of examples based on this idea. ARB prevents the binding of angiotensin II to its receptor 

proteins, resulting in the reduction of the blood pressure. Peptide itself is also a potent 

inhibitor of peptide-protein (or protein-protein) interactions. Phan et al. succeeded to 

design 12-mer peptides binding to MDM2 and MDMX with high affinities [1]. Peptide 

inhibitors against various Src Homology 2 (SH2) domains were also identified [2-4]. 

Recently, therapeutics targeting protein-protein interactions are expected to fulfill unmet 

medical needs. There are increasing interests in rational design techniques of high affinity 

peptides. 

Bioinformatic approaches have been widely used for the prediction of the amino-acid 

sequence of the binding peptide especially for the MHC class I and II molecules [5-7]. In 

these approaches, some scoring functions (such as a score matrix) were constructed based 

on known amino-acid sequences of binding peptides. These sequence-based approaches 

are useful in reducing candidate sequences in a short time, but the reliability highly 

depends on the quality and the quantity of the available experimental data. Thus, these 

applications are limited to well-known protein targets. 

A structure-based approach is also a rational technique to design binding molecules.  

This approach has received strong attentions as increasing the number of information 

concerning three-dimensional (3D) structures of biomolecules. Today, numerous 
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techniques, including molecular simulations, are available for utilizing the 3D structures 

of biomolecules. Structure-based molecular design techniques use the 3D structures of 

the complex of receptor proteins and the ligand molecule to predict binding affinities. 

Because structure-based approaches do not require experimental data concerning known 

binding molecules, they are expected to be applicable to a wide variety of therapeutic 

targets. 

In this study, we discuss the structure-based design of peptides based on molecular 

docking. Structure-based molecular design consists of several stages according to their 

computational costs. Molecular docking is used in the early stage of the molecular design 

because of its computational efficiency. Therefore, molecular docking is used with 

thousands of compounds in order to discriminate binders from non-binders. Detailed 

binding affinities will be further investigated in the next stages.  

Molecular docking has two main purposes: predictions of the binding conformations 

and of the binding affinities. The important purpose of molecular docking is to predict 

binding conformations of the ligand molecule to its receptor proteins. Programs for 

molecular docking generate numerous conformations of the ligand molecule and judge 

them using a scoring function, called docking score. Docking scores are also used as the 

binding affinities in order to rank ligand molecules. Sometimes, other scoring functions 

are used for re-evaluating the binding affinities using binding conformations predicted by 

molecular docking (known as rescoring). 

Molecular dockings have been widely used in traditional drug discoveries. They have 

been supposed to be used with drug-like small molecules. Because peptides have different 

characteristics from drug-like small molecules, conventional molecular docking cannot 

be applied to the peptide design. In chapter 1 of this study, we demonstrate the inability 

of conventional programs to predict correct binding conformations of peptides. To solve 

this problem, we developed a program for molecular docking of peptide. We incorporated 

the potential energy function of molecular mechanics and an implicit solvent model to 
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our scoring function. We used a GPGPU technology [8] to accelerate computations of our 

molecular docking program. We show performances of our program on predictions of 

binding conformations of peptides using various peptide-protein complexes. 

Conventional programs for molecular docking have inabilities to predict not only the 

binding conformations but also the binding affinities of peptides. We demonstrate those 

in chapter 3. We tried to solve this problem by applying Molecular Mechanics and Poisson 

Boltzmann Surface Area (MM-PBSA) method as rescoring of the binding affinities [9-

11]. However, Poisson Boltzmann (PB) implicit solvent, which is used in MM-PBSA, has 

low estimation accuracy of the polar contribution of the solvation free energy. In chapter 

2, we improve the accuracy of PB by modifying PB radii, which are important parameters 

for PB calculations. Our PB radii gave high performances on estimations of both the 

solvation free energies of single molecules and the binding affinities of peptide-ligands 

predicted by MM-PBSA. 

In chapter 1 and 2, we improved the estimation accuracies of the binding 

conformations and the binding affinities of peptides to their receptor proteins. In chapter 

3, we combined and applied our improved methods to in silico screening of peptides. We 

measured the performances of our method on discriminating the binding peptides of 

several SH2 domains from a small set of peptides. In this chapter, we also examined the 

effect of the reorganization of ligand molecules on the performances of molecular-

docking based approaches. Our results provide useful information for more large-scale 

screening of peptides. 
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1.1. Introduction 

As increasing the number of three-dimensional (3D) structures of biomolecules, 

many computational techniques have been developed to utilize these 3D structural data. 

Structure-based drug design (SBDD) is one of these techniques to design binding 

molecules using the 3D structures of the target proteins. 

The ligand-based drug design (LBDD) techniques, such as a structure-activity 

relationship (SAR), highly depends on the quality and the quantity of the available 

experimental data. Thus, their applications were limited to the known therapeutic targets. 

Moreover, LBDD is not suited to find molecules having different scaffolds from known 

binding molecules. 

SBDD predicts the binding affinities using the complex structures of the ligand 

molecules and the receptor proteins. The complex structures are usually predicted by 

molecular simulations, called molecular docking. Molecular docking predicts the binding 

conformations of ligand molecules to their target protein according to the score function, 

called docking score. Docking scores are also used as the binding affinities to rank ligand 

molecules. Because the computational time of molecular docking is very short, molecular 

docking-based approaches are used with thousands of compounds in chemical databases. 

Conventional docking programs have been supposed to be used with drug-like 

small molecules. It is reasonable because many studies of the traditional drug discovery 

have devoted to find the small molecules binding to their target proteins. Recently, 

biomolecular drugs, such as vaccines, hormones, and antibodies, are also known to be 

effective in many types of diseases. Some of these diseases are involved in protein-protein 

interactions. Due to the large contact interface of protein-protein interactions, small 

molecules, whose typical molecular weight is smaller than 500 Da, is not suitable for 

inhibition of the binding between proteins. Instead of small molecules, larger amino-acid 

based molecules, peptides or small proteins, have received considerable attentions in 

recent years. 
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We can classify these amino-acid based molecules into two types: molecules having 

stable secondary structures of proteins and those having no stable secondary structures of 

proteins. The former molecules maintain their secondary structures through their bindings 

to receptor proteins. The same behaviors are expected in molecular docking: most part of 

the conformations of peptides will be kept during the simulation. To apply molecular 

docking to these peptides, an alternative docking algorithm has been developed and 

known as protein docking [12-14]. On the other hand, the other type of molecules has no 

stable secondary structures of proteins. They are expected to change their conformations 

through binding to their target proteins as small molecules do. Therefore, similar 

algorithms to conventional molecular docking can be applied to these peptides. However, 

peptides have different characteristics from small molecules. It is necessary to take into 

account the characteristics of peptides to molecular docking. 

Peptides have many rotatable bonds and many polar functional groups. Many 

rotatable bonds enlarge the conformational search space in molecular docking. It results 

in the increase of the number of the evaluations of binding conformations until getting 

optimal binding conformations, as compared with drug-like small molecules. 

For practical use, it may be necessary to reduce the conformational search space 

artificially by adding some positional restraints on several atoms of the ligand molecule. 

For example, positional restraints based on backbone atoms are efficient if the reference 

structure of the protein-peptide complex is available. Thus, it is preferred to be able to set 

up flexible positional restraints easily into simulations. 

The second characteristic of peptides is many polar functional groups that affect the 

scoring function of molecular docking. As described in the proposal by Lipinski [15], 

drug-like small molecules are lipophilic and contain a few polar functional groups. For 

the drug-like small molecules, a few polar interactions, such as hydrogen bonds, between 

the ligand- and the receptor atoms are dominant in the formation of the ligand-receptor 

complex. On the other hand, peptides have many polar functional groups. Peptides can 
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form many polar interactions with not only receptor atoms but also solvent atoms. It is 

crucial to take into account the solvation effect in the scoring function for peptide docking. 

Implicit solvents can estimate the solvation free energy of the solute without explicit 

conformational sampling of water molecules. However, the computational cost of implicit 

solvents is still high for molecular docking. 

In this study, we developed our program for molecular docking. We incorporated 

the implicit solvent into the scoring function. We attempted to solve the problem of the 

high computational cost of the implicit solvent by accelerating the computations using 

general-purpose computing on graphics processing units (GPGPU) technology. GPGPU 

utilizes an extreme computational power of GPU for general-purpose computations, not 

only for image processing. GPU consists of many computing units, and we can consider 

it as a parallel machine for single instruction, multiple data (SIMD) operations. To bring 

out the full performance of GPU, computational algorithms must be highly optimized for 

SIMD parallel processing. 

Molecular docking is highly suited to SIMD computing. Procedures of molecular 

docking consist of two parts: the generation and the evaluation of the binding 

conformations. In the generation of binding conformations, the program enumerates 

candidate-conformations of the ligand molecule in a binding site of the receptor protein. 

In the evaluation of binding conformations, docking scores of each conformation are 

calculated from the scoring function. These two procedures are iterated until docking 

scores are well converged. In the two parts, the procedure for the evaluation of the binding 

conformations constitutes a large portion of the total computational cost. Therefore, it is 

reasonable to accelerate this part of calculations. This procedure can be easily 

parallelizable because the evaluation of each conformation is data-independent on each 

other. It enables to process each evaluation in parallel. Furthermore, computations of the 

scoring function are also easily parallelizable. A large part of the computational cost in 

the scoring function is attributed to the calculation of pairwise interactions between atoms 
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in the ligand-receptor complex molecules. Each pairwise interaction is also data-

independent on each other and can be calculated in parallel. 

For these reasons, molecular docking is highly suited to parallel computations using 

GPU. It is expected to reduce the computational time significantly and to enable us to 

apply molecular docking to peptides in a practical time scale. 

In this chapter, we first describe the specification of our program and how we 

accelerate the computations of molecular docking using GPU. In following sections, we 

measured the performance of our program in the respect of the computational time and 

the estimation-accuracy of binding conformations using several proteins. 
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1.2. Theory and Specification 

We developed our program for molecular docking using the GPU acceleration. The 

performance of molecular docking is highly dependent on the scoring function and the 

algorithm for the generation of binding conformations. First, we describe these two 

features implemented in our program. Next, we give the brief explanation of each 

procedure of our program. 

 

1.2.1. Scoring Functions 

We described that it is important to take into account the solvation effect of the solute 

in molecular docking of peptides. We incorporated the generalized born implicit solvent 

(GB) into our scoring function [16, 17], which is commonly used in molecular simulations. 

GB estimates the polar contribution of the solvation free energy (GGB), and it is familiar 

with the potential energy function (Force Field) of Molecular Mechanics (MM). Our 

scoring function DS is represented as follows: 

𝐷𝑆 =  𝑉𝑀𝑀 + 𝐺𝐺𝐵 + 𝑉𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡 

where VMM is the potential energy function of AMBER force field (ff99SB) [18], and 

Vrestraint is a user-defined harmonic penalty described below. The standard form of the VMM 

is represented as follows: 
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𝑉𝑀𝑀 = ∑ 𝑘𝑅(𝑅 − 𝑅𝑒𝑞)
2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃𝑒𝑞)
2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑
𝑘𝜙

2
{1 + cos(𝑛𝜙 − 𝛾)}

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ 𝜖𝑖𝑗 [(
𝑟𝑒𝑞

𝑟𝑖𝑗
)

12

− 2 (
𝑟𝑒𝑞

𝑟𝑖𝑗
)

6

]
𝑎𝑙𝑙 𝑎𝑡𝑜𝑚
𝑝𝑎𝑖𝑟𝑠(𝑖,𝑗)

+ ∑
𝑞𝑖𝑞𝑗

𝜖𝑟𝑖𝑗𝑎𝑙𝑙 𝑎𝑡𝑜𝑚
𝑝𝑎𝑖𝑟𝑠(𝑖,𝑗)

 

where kR is a bond force constant; R, a bond-distance; Req, an equilibrated bond-distance, 

kθ, an angle force constant; θ, the angle; θeq, an equilibrated angle; kϕ, a dihedral force 

constant; n, a multiplicity of the dihedral function; ϕ, a dihedral angle; γ, a phase shift; ϵij, 

a force constant for the Lennard-Jones (LJ) potential; req, an equilibrated LJ distance; r, a 

distance between atom i and j; q, a partial charge; ϵ, a relative dielectric coefficient. MM 

potential energy function includes bond, angle, dihedral, van-der Waals (Lennard-Jones 

potential), and electrostatic (coulomb potential) terms. In our docking program, the 

effects from bond-stretching and angle-bending are neglected (fixed during the 

simulation) in order to simplify the problem. 

In the Lennard-Jones potential function, the 12th order of the repulsive term is 

ordinary used due to a good approximation for the Pauli repulsion and a computational 

efficiency. In the docking simulation, it is better to use more soft repulsion term because 

it is difficult to generate conformations of the ligand molecule without any steric crashes. 

We used 8th order instead of 12th one. Fourth term of the equation above is replaced by 

VLJ8-6: 
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𝑉𝐿𝐽8−6 = ∑ 𝜖𝑖𝑗 [3 (
𝑟𝑒𝑞

𝑟𝑖𝑗
)

8

− 4 (
𝑟𝑒𝑞

𝑟𝑖𝑗
)

6

]
𝑎𝑙𝑙 𝑎𝑡𝑜𝑚
𝑝𝑎𝑖𝑟𝑠(𝑖,𝑗)

 

where the coefficients were determined to have the same depth of the potential well at the 

same distance as those of 12th order (Figure 1.1). 

Additionally, we used scaled distance for non-bonded interactions to ease serious 

steric crashes. Scaled distance 𝑟𝑖𝑗
′  was determined based on the equilibrated distance req 

of Lennard-Jones potential of each atom pair. 𝑟𝑖𝑗
′  was represented as follows: 

𝑟𝑖𝑗
′ = {

𝛽 − 𝛼

𝛽2𝑟𝑒𝑞
𝑟𝑖𝑗

2 + 𝛼𝑟𝑒𝑞

𝑟𝑖𝑗

          
(𝑟𝑖𝑗 < 𝛽𝑟𝑒𝑞)

(𝑟𝑖𝑗 ≥ 𝛽𝑟𝑒𝑞)
 

where α and β are scaled factors. We used 0.45 and 0.55 for α and β, respectively.  

 

Positional Restraints 

   Positional restraint is a reasonable solution to reduce the conformational search space 

in the molecular docking of peptides. In our program, two types of positional restraints 

are available and easy-to-use. One option is to fix a fragment of the ligand molecule at 

their input positions. It is effective if a portion of the ligand molecule works like an anchor. 

Another option adds the harmonic penalty (Vrestraint) according to the position of the 

specified atoms of the ligand molecule. The harmonic penalty Vrestraint is represented as 

follows: 

𝑉𝑟𝑒𝑠𝑡𝑟𝑎𝑖𝑛𝑡 = {
0

  𝑘(𝑟 − 𝑟𝑐𝑢𝑡𝑜𝑓𝑓)2            
(𝑟 ≤ 𝑟𝑐𝑢𝑡𝑜𝑓𝑓)

(𝑟 > 𝑟𝑐𝑢𝑡𝑜𝑓𝑓)
 

where k is the force constant, and r is the distance from the reference position. The 

harmonic penalty is added only if r is longer than rcutoff. User can set all of parameters for 

the positional restraint arbitrary. 
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1.2.2. Genetic Algorithm 

We used the genetic algorithm (GA) to optimize binding conformations of the ligand 

molecule in the binding site of the receptor protein.  

In our program, the conformation of the ligand molecule is represented in the two 

manners: the Z-matrix and the Cartesian coordinate. The Z-matrix represents the position 

of the atom as a relative position to other atoms. The position of the atom is determined 

by the list of the bond-length, the bond-angle, and the dihedral angles. Furthermore, 

additional six parameters are used to determine the relative orientations between 

molecules. In our program, binding conformations are represented in the form of the Z-

matrix because it can handle the conformational change of the molecule easier than the 

Cartesian coordinate. On the other hand, the Cartesian coordinate is the appropriate 

description for handling the non-bonded interactions between separated atoms. Therefore, 

it is used in the evaluation of the binding conformations: the scoring function are 

calculated using the Cartesian coordinate which are converted from Z-matrix. 

In our GA, new conformations are constructed by applying genetic operators to 

existing conformations: the single-point crossover and the single-point mutation. The 

default ratio for the crossover and mutation operator is 0.7 and 0.3, respectively. Partners 

of the crossover operator are limited to similar conformations of each conformation, 

which are determined by a pairwise Root Mean Square Deviation (RMSD) matrix 

between every conformation. It results in the reduction of the probability of trapping in a 

local minima in the conformational search space. In default, genetic operators generate 

five new conformations (called child-conformations) from each conformation (called 

parent-conformation). The Best conformations in each parent and its child-conformations 

become new parent-conformation in the next iteration (the survival stage of GA). 
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1.2.3. Procedures of Our Docking Program 

Figure 1.2 is a flowchart of the docking procedures implemented in our program. In 

this subsection, we will give brief explanations of each procedure. 

 

 Preparation 

First, input structures of the ligand and the receptor molecules are read in the PDB 

format [19]. Because the conformation of the molecules are represented by the Cartesian 

coordinate in the PDB format, the Z-matrix of the ligand molecule are built from the 

Cartesian coordinate. The parameters for the scoring function (the force field and 

positional restraints) are set in this procedure. 

 

 Initial Pose Generation 

    All conformations in the first iteration are generated by random numbers. The default 

population is 3,000. 

 

 Conversion of 3D Coordinate Systems 

The representation of the 3D coordinate system of each conformation are translated 

to the Cartesian coordinate from the Z-matrix. We used self-normalizing natural extension 

reference frame method for this conversion[20]. 

 

 Pose Evaluation 

Figure 1.3 illustrates detailed procedures for the evaluation of the binding 

conformation. Before the calculation of the scoring function, we prepared a distance 

matrix between all pairs of atoms. This helps to reduce the computational cost because 

most of calculations of distances are duplicated, however the GPU code skips this 

procedure. 
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The conformation of the receptor molecules is fixed during the simulation of 

molecular docking. This approximation enables to reduce a large portion of the 

computation of docking score. Our code calculates the intramolecular- and the 

intermolecular contributions of non-bonded interactions separately. This treatment made 

our codes simple and easy-to-read. 

 

 Selection for Survival 

For the first iteration, conformations having top docking scores in all conformations 

are selected as parent-conformations of the next iteration. For the second or later iteration, 

the best conformations in each family, which is formed from each parent- and its child-

conformations, are selected as new parent-conformations of the next iteration. 

 

 Convergence Test 

    This procedure measures the replacement rate of the parent-conformations by new 

ones in next iteration. If the rate is under than the criterion, the optimization are 

considered to be well converged. 

 

 Next Pose Generation 

If the optimization is not converged, GA generates new conformations using genetic 

operators. First, the distance matrix between all pairs of conformations are calculated to 

determine the partners of the crossover operation in GA. Each parent-conformation 

produces several (five in default) new child-conformations using genetic operators. 

 

 Clustering and Output 

If the optimization is well converged, clustering analysis is performed using all 

parent-conformations of the final iteration. Representative conformations of each cluster 

are written in the PDB format. 
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1.2.4. GPU Acceleration 

We developed our program using CUDA programming environment [8]. In this 

subsection, we describe our GPU computing that accelerates many calculation parts of 

the molecular docking. At first, we summarize CUDA programming model. Next, we 

describe our GPU computing. 

 

 CUDA Programming Model 

Thread Hierarchy 

A thread is a basic execution unit in the CUDA programing model. Threads are 

grouped into thread-blocks, and thread-blocks are grouped into a grid. A function 

executed on GPU is called a kernel function. A kernel function is executed on all threads 

in parallel. Only threads in the same thread-block can synchronize. All thread-blocks are 

distributed to multiprocessors of GPU. Multiprocessors can execute the kernel function 

on several thread-blocks concurrently, but there are severe memory restrictions to 

increase the number of concurrently running threads. Because the resource per one 

multiprocessor is limited, we have to reduce the usage of the resource per thread or per 

thread-block for the rapid computing. The maximum number of the concurrently running 

threads is 1536 and 2048 for Fermi and Kepler architecture, respectively. 

 

Memory Hierarchy 

CUDA provides several types of the memory and they have different properties to 

use efficiently. We will summarize those as follows: 

 

Register is the fastest on-chip memory. All variables declared in the kernel function 

generally resides in the registers. Only threads can read or write registers. The number of 
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registers per multiprocessor is 32K and 64K for Fermi and Kepler architecture, 

respectively. Therefore, to maximize the number of the concurrently running threads, the 

number of registers per thread must be under 20 and 31 for Fermi and Kepler, respectively. 

As increasing the number of required resisters per thread, the number of the concurrently 

running threads per multiprocessor decreased. 

 

Shared memory is as fast as the register if an optimal memory access is achieved. 

Shared memory is divided into 32 banks (each bank is 32-bit word). If all threads access 

different banks concurrently, threads can read or write the memory as fast as the resisters. 

By contrast, if several threads access the same bank, these accesses are serialized (the one 

exception is that the access to the same address can be broadcasted to threads 

simultaneously). User can determine the amount of the shared memory per multiprocessor 

from 16 to 48 KB. This is shared by thread-blocks executed on the same multiprocessor 

concurrently. Therefore, the amount of the shared memory per thread-block determines 

the number of thread-blocks executed on single multiprocessor concurrently. Only 

threads can read or write shared memory. 

 

Global memory is only memory which both CPU and GPU can read and write. 

Access to the global memory is slower several hundred times than that of registers even 

if the optimal memory accesses are achieved. Optimal accesses, known as the coalesced 

access, are required for practical use: the k-th thread accesses the k-th word of the array 

in the global memory. Some of the memory latencies can be hidden by any arithmetic 

operation on different threads. Cache for read from the global memory is available. 

 

    Constant memory is the read-only cache and suitable for broadcasting. The 

constant memory is as fast as the register if all threads read the same address. The size of 

the constant memory is limited to 64 KB. 
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Our GPU programming 

 Preparation for Docking Simulation 

Before the beginning of the optimization process of GA, some preparations for GPU 

computing are required: memory spaces are allocated on the global memory, and some 

parameters are transferred to the global memory and the constant memory in advance. 

This process requires an extra computational time, but it is a little. 

 

 Conversion of 3D-Coordinate System 

We tried to accelerate the function for the conversion of the 3D-coordinate system. 

Due to the data-independence of the conversions of each conformation, we can execute 

these calculations in parallel. However, in the Z-matrix representation, the positions of 

atoms are described as the relative positions to other atoms. Therefore, it is required to 

determine the Cartesian coordinates of atoms sequentially in the order listed in Z-matrix. 

For these reasons, one thread calculates the Cartesian coordinates of all atoms in the one 

conformation sequentially. The threads in the same thread-block calculates the Cartesian 

coordinate of the same atom in the different conformation at the same time. The number 

of threads is the same as that of conformations. 

Before a kernel call, the list of parameters regarding dihedral angles and the relative 

orientation to the receptor molecules are transferred to the global memory. They are read 

by each thread in the coalesced manner. The parameters for Z-matrix (1st, 2nd, and 3rd 

indexes of the reference atoms, the bond-length, and the bond-angles) are loaded from 

the constant memory. The Cartesian coordinates of each conformations are saved to the 

global memory and they are used in following functions. 

 

 Calculation of dihedral potential energy 

In this kernel function, one thread calculates all dihedral-angle potential energies of 
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one conformation. The threads in the same thread-block calculates the potential energy 

of the same dihedral angles in different conformations at the same time. All parameters 

for dihedral-angle terms (four atom indexes, a force constant, etc.) are read from the 

constant memory. Results are saved to the global memory and transferred to CPU 

immediately. 

 

 Realignment of Memory containing Cartesian Coordinates 

At this point, the alignment of the Cartesian coordinates is suited for the case that 

each thread reads the coordinate of the same atom but in different conformations at the 

same time. In the following functions, one thread-block handles one conformation i.e. 

each thread in the same thread-block reads the coordinate of different atoms in the same 

conformation at the same time. To achieve the optimal memory access from the global 

memory in the following function, the memory-realignment are needed for the array 

containing the Cartesian coordinates. This realignment corresponds the transposition of 

the matrix, and the optimal implementation on GPU is well known (included in the sample 

code of a CUDA toolkit). 

After this realignment, the Cartesian coordinates of all conformations are transferred 

to CPU. Computational cost of this function is not discussed because it is too low. 

 

 Calculation of non-bonded interactions 

Calculations of the non-bonded term of MM on GPU are also divided into several 

functions in the similar manner to CPU codes. At first, the effective born radii of 

molecules are calculated, and next the potential energy of MM and GB are calculated. 

Both calculations can be represented as the sum of each pairwise contribution of all pairs 

of atoms. Because these pairwise interactions are data-independent on each other, they 

are easily parallelizable on GPU. Here, each thread in the thread-block associates with 

one particular atom in one particular conformation, and calculates non-bonded 



- 26 - 

 

interactions with other atoms in the conformation. All threads in the same thread-block 

calculates the interactions with the same atom at the same time. This permits to access to 

the same addresses in the shared memory and the constant memory from all threads. 

There is a slight difference between the CPU and the GPU code. In the CPU code, 

the distances between all atom pairs are calculated in advance, and used these values 

several times. On the other hand, GPU cannot retain such a large amount of data and 

requires to calculate the distances each every time. It results in additional computational 

cost for GPU, but the high computational power of GPU overcomes such a weak point. 

 

 Make Neighbor List 

In this function, each thread in the thread-block associates with one particular atom 

in the one particular conformation. Each thread reads the coordinate of the associated 

atom in different conformations, and calculates the distance between two atoms. Results 

of each thread are summarized on the thread-block as the RMSD value between two 

conformations. 

 

1.2.5. Conformational Search of Single Molecule 

This program can be used for the conformational search of single molecule. Actually, 

our program was used to predict stable conformations of peptides in the unbound state in 

chapter 3. 
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1.3. Methods 

1.3.1. Comparison of Computational Time 

We compared the computational time of our program executed on GPU with those 

on CPU-only. We measured the computational time of each calculation part separately. 

We used the computational time for the first iteration of GA optimization. The number of 

parent-conformations was 3,000 and the number of child-conformations per parent 

conformations was 10, i.e., the computational time for the calculations of the docking 

score of 30,000 conformations and the calculation of RMSDs for 4,498,500 pairs of 

conformations were measured. All computational times were measured 10 times and 

averaged. 

Benchmark tests were employed on a PC with Intel® Core™ i7 4770K (3.4GHz, 

Haswell architecture) and two GPUs with different architectures: nVidia GeForce® GTX 

580 (Fermi) and GTX 780 (Kepler). The CPU-only code was executed using single core 

of CPU. Considering the situation where the molecular docking is carried out, it is more 

efficient to execute multiple programs with different ligand molecules on different CPU 

cores than to accelerate one program by several cores of CPUs. Namely, we can consider 

that the parallelization efficiency of the program for the molecular docking is 100 %. The 

CPU codes were compiled using Intel® C++ Compiler version 13.1.1 with the 

optimization option (-O3 –xHOST –no-prec-div). The GPU codes were compiled by nvcc 

installed in CUDA 5.5 with the optimization option (-O3 –use_fast_math). The 

gettimeday() function in C language was used to measure elapsed times on CPU codes. 

The functions managing the CUDA event were used for GPU codes.  

We used two peptide-protein complexes to compare the computational times: a 

complex of Grb2 SH2 domain with its 8-mer binding peptide (PDB: 1TZE) [21] and GIP 

PDZ domain with its 8-mer binding peptide [22]. The number of the receptor atoms of 

GIP PDZ domain is 1.2 times larger than those of Grb2 SH2 domain, while the number 
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of atoms of ligand molecules are almost same. Structural preparation were carried out as 

follows: three-dimensional structures were downloaded from the Protein Data Bank [19]. 

All protonation states of the solutes were determined by the Protonate3D module of MOE 

[23]. Energy minimizations were carried out in the box of TIP3P waters using the sander 

module of AMBER11 [24]. Then, all waters and ions were removed. 

 

1.3.2. Comparison of Prediction Accuracy of Binding Conformations 

    We compared the prediction accuracies of the binding conformations of the ligand 

molecules to their receptor proteins between our program and a widely-used program, 

GOLD [25]. Here, self-docking was performed using four protein-ligand complexes: Crk 

SH2 domain (PDB: 1JU5) [26], Grb2 SH2 domain [27], Src SH2 domain [28], and GIP 

PDZ domain (same as above). All lengths of the binding peptides of SH2 domains were 

adjusted to 8-mer (XXpYXXXXX: where pY denotes the phosphorylated-tyrosine and X 

denotes any amino acids) in order to maintain consistency with the next chapter. The 3D-

structures of each protein were downloaded from the PDB web site. All protonation states 

of solutes were determined by the Protonate3D module of MOE. The solutes were soaked 

in the box of TIP3P waters and energy-minimizations were employed using the sander 

module of AMBER11. Then, energy-minimized structures were used for self-docking 

(named “min”). In addition, we prepared another structure of each complex structure 

using molecular dynamics (MD) simulations. We performed 2 ns MD simulations at 310K 

for the equilibration. The equilibrated structures were also used for self-docking (named 

“MD”). 

The condition for our molecular docking follows: the number of parent-

conformations was 3,000 and the number of the child-conformations per parent-

conformation was 10. Optimizations by GA were iterated until the replacement rate of the 

conformations was under 15 %. No cut-off schemes was employed for the non-bonded 
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interactions. 

For GOLD, the search efficiency was set to 200%. The option for the early 

termination was off, and the search radius was 20 Å. ChemPLP [29] was used as the 

scoring function. Other parameters were set as default. 

We also examined the efficacy of the positional restraint on molecular docking of 

peptides. In our program, positional restraints were added on every Cα atom of all 

residues of each ligand molecule. Moreover, we added positional restraints on the 

phosphorus atom of the phosphorylated tyrosine of SH2-binding peptides and the 

nitrogen atom of the side chain of the lysine for GIP-binding peptide, because these atoms 

form the strong ionic interactions with the receptor atoms. The phosphorus atom in SH2-

peptide was fixed, while the nitrogen atom was harmonically restrained at the reference 

position. Positional restraints were added if the distance from the reference position was 

longer than 2.0 Å. The force constant was 10.0 kcal/mol/Å2. In GOLD, similar restraints 

were archived by Region Constraints. In this algorithm, extra user-defined score (named 

weight) was added to the docking score if the specified atom located within the specified 

distance (named radius) from the reference position. In this study, we examined several 

weights of 10, 20, and 30, and set the radius of 2.0 Å. The molecular dockings with no 

positional restraints were also performed by both programs.  
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1.4. Results 

1.4.1. Comparison of Computational Time 

Computational times of each calculation part are listed in Table 1-1 and Table 1-2 

for Grb2 and GIP, respectively. Our GPU codes could calculate more than 100 times faster 

than CPU code. Moreover, GTX780 was about 1.7 times faster than GTX580 as the 

overall performance. In every calculation part, GTX780 was the fastest and single core 

of CPU consumed the longest computational times. The total computational time 

executed on GPU for Grb2 was about 2,920 ms and 1,484 ms for GTX580 and GTX780, 

respectively. Computational time executed on CPU in the GPU code was similar between 

GTX580 and GTX780, and it was about 550 ms. The computational time for the memory 

allocations and transfers was under 20 ms per one iteration of GA. 

The computational times of each calculation part increased in almost direct 

proportion to the number of interactions in the peptide-protein complex. Because the 

number of atoms of the ligand molecules in two complexes was almost the same, 

computational times involved with only ligand molecule were similar in the two 

simulations. By contrast, the number of atoms of the receptor molecule in GIP was 1.2 

times as many as those of Grb2. This influence was shown in the computational times 

involved with receptor atoms. The functions handling the intermolecular interactions of 

GIP consumed 1.2 times longer than those for Grb2. The function handling the 

intramolecular non-bonded energy within the receptor atoms consumed about 1.4 (1.2 * 

1.2) times longer computational time for GIP than those of Grb2. 

 

1.4.2. Comparison of Prediction Accuracy of Binding Conformations 

Table 1-3 lists ligand RMSDs of the best solutions from each molecular docking 

using two programs. In every case, both programs could not predict the correct binding 

conformations without any positional restraints. On the other hand, both programs could 
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achieve lower RMSD values by applying positional restraints. In GOLD, the constraint 

weight of 30 was required to accomplish the good predictions in all protein-peptide 

complexes. In this case, the contribution from the constraint term in the total docking 

score raised to three times larger than the native docking score in average. 

In three of four cases, the uses of equilibrated structures from MD simulations 

improved the prediction accuracies of the binding conformations. Although RMSD 

values for Grb2 became worse by using the equilibrated structures, the conformations of 

the central four residues of the binding peptide, which are known as the core binding 

motif of SH2-binding peptides (pYxNx), were predicted correctly. Both the N- and C-

terminal portions of the binding peptide were exposed to the solvents, and their 

conformations were highly fluctuated in the MD simulation. 

 

1.4.3. Total Computational Time 

Total computational times of each program with each protein were measured. The 

averaged total computational times of our program for Crk, Grb2, Src, and GIP were 

3m15s, 3m56s, 3m55s, and 6m50s, respectively. Those of GOLD were 1m55s, 1m58s, 

2m7s, and 2m9s, respectively. Our averaged computational times were varied depending 

on proteins, however GOLD were similar to each other. Our computational times were 

about 1.5 - 3.5 times longer than those of GOLD.  

The computational times of our program were fluctuated in several runs. It was 

caused by the varied number of the iterations of GA optimizations in each run. Because 

our program generates initial conformations using random numbers, the degree of the 

convergence of the docking scores are varied in each run. By contrast, GOLD fixed the 

number of the iterations for optimizations. This resulted in similar computational times 

in every run. 
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1.4.4. Single Precision of Floating Points 

    GPU can process the operations using single precision floating points several times 

faster than those using double precision floating points. We investigated the influence 

from single precision floating points on the docking score by comparing calculated values 

by GPU (single precision) and by CPU (double precision). As a result, there were only 

slight differences on total docking score. The error was under 0.001 kcal/mol in most 

cases. In the molecular docking, docking scores were used only to compare with those of 

other conformations, and these small errors do not influence the comparisons of docking 

scores. For this reason, we concluded that operations using single precision floating points 

are not problematic in the molecular docking. 
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1.5. Discussions 

1.5.1. GPU Architectures 

Although the ratio of theoretical arithmetic capacity of GTX780 to those of GTX580 

is about 2.7, the performance on GTX780 was about 3 times better than those on GTX 

580 in two calculation parts. It resulted from not only the arithmetic capacities but also 

the difference of the architectures between the two GPUs: Fermi and Kepler. Kepler is 

the newer architecture of nVidia GPUs. Kepler not only has the improved arithmetic 

capacity, but also eases the restriction on the memory usage to utilize the full performance 

of GPU. One of significant differences between two architectures is in the restriction for 

the number of registers per thread. A remarkable example is the calculation part of the 

intermolecular non-bonded energy term of MM. This function requires many parameters 

for MM and GB calculations like partial charges, equilibrated distances for Lennard-

Jones potential, etc. This increases the number of registers required for each thread: 45 

registers were needed for one thread to execute this kernel function. Under this restriction, 

only 37.5% of threads per multiprocessor can be executed concurrently on Fermi GPU. 

On the other hand, 56.2% of threads per multiprocessor can be executed concurrently on 

Kepler GPU. The number of the registers usually becomes the bottleneck for utilizing the 

full performance of GPU. Improvements on the number of available threads were 

observed in most kernel functions, and contributed to the accelerations beyond the ratio 

of the arithmetic capacities of the two GPUs. 

 

1.5.2. Prediction Accuracy of Binding Conformations 

Positional restraints significantly impacted on prediction accuracies of the binding 

conformations for the two programs, but implementations of the positional restraints are 

different in them. For our program, native docking scores (the docking score excluding a 

restraint term) were improved compared to those with no positional restraints. The 
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positional restraint acted like a guide, leading binding conformations to more stable ones. 

This result indicated that the search space occupied by the stable conformations was very 

small under our scoring function. Our program cannot find this space alone, but positional 

restraints can help it. 

By contrast, only subtle difference in native docking scores with or without 

positional restraints was observed in GOLD. For GOLD, the insufficient searching ability 

was not only the reason to predict the conformations having higher RMSD values. GOLD 

cannot distinguish the correct binding conformations in terms of the docking score. 

ChemPLP evaluates the binding conformations by the shape complementary and the 

formation of hydrogen bonds between the ligand and the receptor atoms. The shape 

complementary can be a good indicator for small molecules, because they have low 

internal degrees of the conformational freedom. It is difficult for small molecules to fit 

their conformations into the shape of the binding pocket of proteins. On the other hand, 

the high conformational flexibility of peptides permits to change their conformations to 

fit in anywhere in the binding site of proteins. In addition, the high conformational 

flexibility of peptides also allows to form many hydrogen bonds with receptor atoms. The 

scoring functions designed for small molecules may not make significant differences 

between binding conformations of peptides. 

We examined the binding conformations predicted using two programs by means of 

the rescoring of the binding affinities using MM energy functions. Table 1-4 shows the 

binding affinities of the top solutions of each docking run calculated by MM-GB (not 

including SA term) method. Obviously, our program predicted more stable conformations 

than GOLD. This result indicated that our program could detect the key interactions in 

the ligand-protein complex properly, but GOLD cannot. MM-based rescoring schemes 

were often used as a post process of the molecular docking [9, 30]. In this situation, the 

problems for selecting binding poses predicted by the molecular docking would arise. 

Typical programs for the molecular docking output several binding conformations of the 
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ligand molecule in each execution. Because there was no consistency between the 

docking scores and MM-based binding affinities, all binding conformations predicted by 

the molecular docking have to be evaluated by MM-based method to find the most stable 

conformations in terms of the MM. On the other hand, our program uses the potential 

energy of MM and GB as the scoring function in the molecular docking. This is the great 

advantage for our program to be able to find the stable conformations in terms of MM in 

the molecular docking, and to get the consistent results with the rescoring scheme. 

 

1.5.3. Computational Cost 

We showed the high performance of our program to predict stable conformations in 

previous subsections. However, our computational time was too long, though extreme 

acceleration by GPU has already been accomplished. The computational cost for 

intramolecular non-bonded energy term within receptor atoms is especially high, though 

these interactions are not calculated in ordinary docking program. However, we have to 

calculate them because GB was incorporated to our scoring function: the effective born 

radii of receptor atoms are changed according to the conformation of ligand molecule, 

and it results in the change of the GB energy of intramolecular interactions within receptor 

atoms. 

We could confirm the superiority of our scoring function in previous subsections. 

We have to make more efforts to reduce computational time while keeping the prediction 

accuracy of our scoring function. 

One approach is to neglect interactions between the ligand atoms and the receptor 

atoms far from the any ligand atoms. This is the similar approach to the conventional 

programs. We examined this approach using the GIP-peptide complex. At that time, only 

receptor atoms within 15 Å from any ligand atoms were used as an input structure. It 

resulted in computational time of 4m6s and retained the RMSD of 2.31 Å. This approach 

seems to be useful, but the influence from the receptor atoms unnaturally exposed to 
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solvents remains unknown. Another approach is more reasonable to exclude the 

interactions between the ligand atoms and distant receptor atoms from the calculations of 

the effective born radii, instead of removing the distant receptor atoms. This classifies the 

receptor atoms into two layers according to the distance from the binding interface. This 

treatment can neglect the calculations of effective born radii between ligand atoms and 

distant receptor atoms, and the calculations of intramolecular non-bonded energy term 

within distant receptor atoms. It would work effectively if the target protein is large and 

highly charged. 

An appropriate library design may compensate the deficiency of high computational 

cost of our program at another level. Because the number of combinations of amino acid 

sequences is numerous, the efficient enumeration of candidate peptides helps to reduce 

the computational time in total. Evolutional algorithm can be used to optimize amino acid 

sequences [31]. However, such optimization protocols are highly dependent on the 

prediction accuracy of the binding affinity. It is essential to use the accurate method for 

prediction of the binding affinity like the rescoring. 

 

1.5.4. Recommended Usage 

We describe the recommended usage of our program. First, our program requires the 

3D-structure of the receptor proteins. If available, it is preferred to use the equilibrated 

structures generated by MD simulations. Because our scoring function is based on the 

potential energy function on MM, the equilibrated structure optimized to MM is 

compatible with our scoring function. On the other hand, the structures determined 

experimentally are not optimized for MM. MD simulation is also helpful to find optimal 

conditions for positional restraints on the ligand molecule. The use of positional restraints 

is highly recommended for the accurate prediction. 
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1.6. Conclusion 

We demonstrated the high ability of our docking program to predict binding 

conformations of the ligand molecule. Although conventional docking program can also 

predict accurate binding conformations in terms of RMSD, only our program can predict 

stable conformations with the lower ΔMM-GB energy. MM-based predictions of the 

binding affinity are often used as a post process of the molecular docking. The consistency 

of the evaluation functions between the molecular docking and the post processes will be 

great advantages. On the other hand, our results revealed the limitation of conventional 

scoring functions for the molecular docking of peptides.  

We accomplished the acceleration of the molecular docking using GPU. We showed 

the good example of GPU-acceleration for not only MM-based functions but also for the 

functions utilizing the 3D coordinate system. These techniques are applicable to other 

molecular simulations like the homology modeling. This can enhance the usability of 

applications and encourage the research on computational molecular design. 

. 
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1.7. Figures 

 

 

Figure 1.1 Soft Lennard-Jones Potential 

Red line represents soft Lennard-Jones potential implemented in our scoring function. 

The standard 12-6 Lennard-Jones potential are represented by a blue dash line. 
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Figure 1.2 Flowchart of Procedures of Our Program 
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Figure 1.3 Flowchart of Calculation of Docking Score 
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1.8. Tables 

Table 1-1 Computational Time of each Calculation Part for Grb2 

Rates of computational time compared to CPU are listed in brackets. 

 
1 core of core 

i7 4770K 

GTX580 

(Fermi) 

GTX780 

(Kepler) 

Conversion of 3D 

Coordinates System 
288 ms 

2.2 ms 

(x130.9) 

1.5 ms 

(x189.5) 

Calculation of Distance 

Matrix (CPU only) 
42,829 ms - - 

Calculation of 

Dihedral potentials 
963 ms 

2.3 ms 

(x427.2) 

1.9 ms 

(x514.3) 

Effective Born Radii 

(within ligand atoms) 
3,626 ms 

47 ms 

(x76.0) 

16 ms 

(x224.2) 

Effective Born Radii 

(between ligand-receptor) 
54,964 ms 

910 ms 

(x60.4) 

471 ms 

(x116.7) 

Non-bonded Energy 

(within ligand atoms) 
2,030 ms 

41 ms 

(x49.3) 

17 ms 

(x117.8) 

Non-bonded Energy 

(within receptor atoms) 
207,645. ms 

1350 ms 

(x153.8) 

731 ms 

(x283.8) 

Non-bonded Energy 

(between ligand-receptor) 
44,865 ms 

416 ms 

(x107.8) 

135 ms 

(x332.4) 

Make Neighbor List 1607 ms 
152 ms 

(x10.5) 

111 ms 

(x14.5) 

Total Computational Time 359,576 ms 
3497 ms 

(x102.8) 

2053 msec 

(x175.2) 
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Table 1-2 Computational time of each Calculation Part for GIP 

Rates of computational time compared to CPU are listed in brackets. 

 
1 core of core 

i7 4770K 

GTX580 

(Fermi) 

GTX780 

(Kepler) 

Conversion of 3D 

Coordinates System 
293 ms 

2.4 ms 

(x122.1) 

1.6 ms 

(x179.5) 

Calculation of Distance 

Matrix (CPU only) 
52,244 ms - - 

Calculation of 

Dihedral potentials 
945 ms 

2.2 ms 

(x433.4) 

1.9 ms 

(x506.4) 

Effective Born Radii 

(within ligand atoms) 
3,730 ms 

49 ms 

(x76.4) 

17 ms 

(x224.5) 

Effective Born Radii 

(between ligand-receptor) 
67,520 ms 

1108 ms 

(x60.9) 

572 ms 

(x118.0) 

Non-bonded Energy 

(within ligand atoms) 
2,010 ms 

41 ms 

(x48.7) 

17 ms 

(x116.6) 

Non-bonded Energy 

(within receptor atoms) 
326,471 ms 

1941 ms 

(x168.2) 

1091 ms 

(x299.3) 

Non-bonded Energy 

(between ligand-receptor) 
57,153 ms 

502 ms 

(x114.0) 

161 ms 

(x355.1) 

Make Neighbor List 1626 ms 
155 ms 

(x10.5) 

114 ms 

(x14.3) 

Total Computational Time 512,753 ms 
4372 ms 

(x117.3) 

2554 ms 

(x200.2) 
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Table 1-3 Comparison of RMSD values for Pose Predictions 

P.R. off is RMSD values of the molecular docking without positional restraints. 

P.R. on is those with positional restraints. Constraint weight are listed in brackets for 

GOLD. 

min is those using minimized structure. 

MD is those using equilibrated structure by MD. 

 Crk Grb2 Src GIP 

 min MD Min MD min MD min MD 

Our Program        

P. R. off 5.45 15.50 10.69 19.2 16.09 9.66 10.48 10.68 

P. R. on 1.81 1.55 2.04 2.21 3.46 1.60 3.38 2.58 

GOLD 
        

P. R. off 10.11 11.15 4.55 7.43 5.93 11.45 19.28 16.16 

P. R. on(10) 2.39 1.89 2.14 2.31 9.29 10.88 2.84 13.95 

P. R. on(20) 1.95 1.69 2.40 2.59 6.78 3.29 2.45 2.40 

P. R. on(30) 1.93 1.86 2.32 2.37 3.18 2.16 2.94 2.19 

[Å] 
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Table 1-4 ΔMM-GB Energy of Top Solution 

ΔMM-GB energy were calculated after the energy minimizations of the top solution of 

the molecular dockings, where the receptor conformation is fixed. Positional restraints 

were applied on every molecular docking (constraint weight is 30 for GOLD). 

 Crk Grb2 Src GIP 

 min MD min MD min MD min MD 

Our Program -48.8 -80.0 -81.3 -101.7 -68.5 -96.0 -23.8 -35.9 

GOLD -37.9 -55.7 -89.2 -61.5 -58.5 -86.0 -11.4 -29.1 

[kcal/mol] 

 

 

  



- 45 - 

 

 

 

 

 

 

 

 

 

Chapter 2 

New Radii for 

Poisson-Boltzmann 

Implicit Solvent 
  



- 46 - 

 

2.1. Introduction 

The Poisson Boltzmann (PB) implicit solvent is commonly used to estimate the polar 

contribution of the solvation free energy of biological molecules. PB is used in the 

Molecular Mechanics and Poisson Boltzmann surface area (MM-PBSA) method [11], 

which estimates the free energy of the molecule in a solution. MM-PBSA is used to 

estimate the binding free energy (ΔGbind) of a ligand to a receptor molecule. ΔGbind is 

calculated as follows:  

Δ𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚 − (𝐺𝑟𝑒𝑐 + 𝐺𝑙𝑖𝑔) 

where Gcom, Grec, and Glig denotes the free energy calculated by MM-PBSA method using 

the complex, receptor-only, and ligand-only structure, respectively. MM-PBSA is applied 

over the trajectory generated by molecular dynamics (MD) simulations or to a single 

snapshot, e.g., a docked structure (rescoring) [9, 30]. Many researchers have successfully 

designed inhibitors of various proteins using MM-PBSA [10, 32]; however, the low 

accuracy of PB has been pointed out. In MM-PBSA, ΔGbind is expressed as follows: 

∆𝐺𝑏𝑖𝑛𝑑 = ∆𝐸𝑀𝑀 + ∆𝐺𝑃𝐵 + ∆𝐺𝑆𝐴 − 𝑇∆𝑆 

where EMM is the potential energy of MM in a gas phase; GPB, a polar contribution of the 

solvation free energy calculated by PB; GSA, a nonpolar contribution of the solvation free 

energy calculated by a surface-area based approach; T, an absolute temperature; and S, 

the entropy. GPB is calculated by solving the Poisson equation: 

∇ ∙ 𝜀(𝑟)𝜙(𝑟) = −4𝜋𝜌(𝑟) 

where r is a given position; ε(r), a dielectric constant at r; ϕ(r), an electrostatic potential 

at r; and ρ(r), a solute charge distribution at r.  

In this chapter, we discuss the dielectric boundary in PB solvents. The dielectric 

boundary defines a pseudo-volume of the solute. The dielectric constant at a given point 

is determined by whether this point is inside or outside the volume of the solute. Because 
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the result of PB is highly dependent on the distribution of dielectric constants, it is 

important to provide the appropriate definition of the dielectric boundary of the solute. 

Definitions based on the atomic radii have been well studied [33-36]. Sitkoff et al. 

developed PARSE radii to obtain an agreement between experimentally-determined 

solvation free energies and those calculated by PB using small organic molecules [33]. 

Tan et al. developed their PB radii to obtain agreement with the solvation free energy 

calculated using TIP3P explicit solvents. They used template molecules of amino-acid 

analogues and nucleic acids [36]. They designed atom-type specific radii using partial 

charges and atom types in AMBER force fields. Meanwhile, an abrupt and discontinuous 

transition of dielectric constants at the dielectric boundary causes large differences on the 

solvation free energy and the solvation forces between subtly different conformations. A 

smooth dielectric function alters the dielectric constants smoothly and continuously over 

the dielectric boundary [37, 38]. It can avoid large fluctuations of solvation free energies 

and forces; however, the smooth function also alters the optimal location of the dielectric 

boundary. An alternative set of atomic radii specific for the smooth dielectric function is 

then required. Im et al. introduced a spline-smoothed dielectric function [38]. Afterward, 

Swanson et al. developed PB radii [34, 35] specific for the smooth function developed by 

Im. Swanson et al. used template molecules of amino acids in the AMBER force field and 

parameterized PB radii to obtain agreement with the explicit solvent simulations using 

TIP3P waters. 

The PB methods developed by both Tan et al. and Swanson et al. were based on 

simulation results using TIP3P explicit solvents and defined using the AMBER force field. 

This means that the two methods should provide consistent results for the solvation free 

energy; however they do not (Figure 2.3). From the differences between their methods 

for development of the PB radii set, we propose the reasons why their methods provide 

the different results. One is the difference between the boundary conditions of the explicit 

solvent simulations. Tan et al. used the periodic boundary condition with the Particle 
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Mesh Ewald (PME) method [39], whereas Swanson et al. used the spherical boundary 

with the spherical solvent boundary potential (SSBP) [40]. SSBP was used to approximate 

the influence of the bulk waters surrounding the spherical cap. Under the periodic 

boundary condition with PME, the net charge of the system must be zero. In the usual 

case, the system is neutralized by adding several ions with an opposite charge to the solute. 

In this case, however, any ions cannot be added to the system in order to calculate the 

solvation free energy and forces in pure waters. This results in the modification of the 

partial charges of the solute, if the solute has non-zero net charge. This effect must be 

carefully considered in the simulation results. On the other hand, under the spherical 

boundary condition, we have to consider the influence of abnormal distributions of waters 

at the edge of the solvent cap, even though SSBP is applied. 

Here, we present results concerning the system-size dependence of the solvation free 

energies under the different boundary conditions (Table 2-1). We used one conformation 

of an N-terminal lysine (NLYS) as a template molecule because of its net charge (+2): the 

distribution of waters strongly influences the solvation free energy of NLYS. Table 2-1 

indicates the system-size dependence of solvation free energies for the spherical boundary 

condition, and the system-size independence for the periodic boundary condition. Figure 

2.1 indicates the system-size dependence for the spherical boundary through another 

observation. Figure 2.1 shows the radial solvent charge distribution around a Cα atom of 

NLYS calculated with solvent caps of various sizes. The peak shapes around 5 Å are 

similar to each other. We observe bulk-like distributions of waters beyond 10 Å in every 

graph and also unnatural peaks around each edge of water spheres. It suggested that these 

unnatural peaks caused the difference between the free energies for different system sizes. 

Therefore, the results of the explicit solvent simulations using the spherical boundary are 

less reliable. Likewise, the PB radii optimized by Swanson et al. are also less reliable. 

These influences are more remarkable for charged molecules (Figure 2.3). On the other 

hand, we observe the system-size independence of the solvation free energies of NLYS 
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for the periodic boundary condition. However, how neutralizing treatments influence the 

free energies of larger molecules remains uncertain. 

The selection of template conformations to parameterize PB radii is also important. 

Tan et al. and Swanson et al. parameterized their PB radii using amino-acid-based 

molecules. Swanson used dipeptides of each non-terminal amino acid and several poly-

alanines to consider the secondary structures of proteins, but the N- and the C-terminal 

amino acids were not included in the templates. We were forced to assign PB radii of non-

terminal residues to terminal residues, although a large difference in solute-solvent 

interactions is expected. On the other and, Tan et al. used three dipeptides of alanine, 

proline, and glycine for backbone atoms. They also used the side-chain analogues of each 

amino acid for side chain atoms. Their PB radii were parameterized without 

considerations of the existence of backbones and side chains between one another. In 

addition, they did not consider the secondary structures of proteins. 

In this chapter, we propose new PB radii for the accurate estimation of the polar 

contribution of the solvation free energy. Our work was based on the considerations of 

the previous studies described above. We parameterized our PB radii to obtain agreement 

with the explicit solvent simulations using TIP3P solvents. We used the spherical 

boundary condition for explicit solvent simulations. A special cut-off scheme was applied 

only to the calculation of the solvation free energy. It enabled us to exclude the influence 

of the abnormal distribution of waters on the edge of the spherical boundary. 

Furthermore, we reduced excessive atom-type grouping in assignments of PB radii. 

In previous studies, all atoms in amino acids were grouped into several atom types. 

Groups were determined according to their physiochemical characteristics such as the 

radial solvent charge distribution around each atom. Identical PB radii were assigned to 

atoms in the same groups. Atom-type grouping is useful for enhancing compatibility 

between multiple conformations. However, atoms with the same PB radius but different 

partial charges may cause significant errors in the PB results owing to the sensitivity of 
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the PB calculations. In our work, we grouped only backbone atoms of non-terminal 

residues. Instead, we increased the number of template conformations of each amino acid 

to maintain the compatibility between various conformations. 

In this chapter, we first present our parameterization of PB radii using a training set. 

Next, we measure the performance of our PB radii beyond the training set: we examined 

the prediction accuracy using larger molecules in a test set, and evaluated the prediction 

performance of the binding affinities by MM-PBSA method. 
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2.2. Methods 

2.2.1. Atom-Type Grouping 

We designed our PB radii specific for the AMBER protein force field (ff99SB or 

later) [18]. We assigned common PB radii only to each N, H, C, and O atom forming a 

peptide bond on each amino acid. They could be classified into several groups according 

to the charge states of the side chain atoms and terminal ends of the backbone atoms. 

Because terminal residues does not associate with the formation of secondary structures 

of proteins, we assigned common radii only to atoms in non-terminal residues. Thus, the 

PB radius of each N, H, C, and O atom consists of four patterns: three were determined 

by the charge states of the side chain of each amino acid, and the other is for an 

exceptional residue, a proline.  

Each particular PB radius was assigned to all of the other atoms. 

 

2.2.2. Training Set 

All of our PB radii were parameterized using molecules in a training set. We first 

optimized PB radii using 12 poly-alanines used in Swanson’s work. Poly-alanines include 

atoms forming the peptide-bond in non-terminal and non-charged amino acids and atoms 

in protein caps. In other words, we took account of secondary structures of proteins only 

for atoms forming the peptide-bond in non-charged amino acids. The structures of poly-

alanines were prepared as follows: specific regions of proteins were extracted from PDB 

entries, 1AKI [41] and 1EJG [42]. Both the N-terminal and C-terminal ends of backbones 

were capped with N-acetyl (ACE) and N-methyl amide (NME) groups. Then, all amino 

acids were mutated to alanines. Energy minimizations were carried out in the box of 

TIP3P waters. After minimizations, all solvents and ions were removed. 

Next, we parameterized the PB radii of atoms in each amino acid using multiple 

conformations as templates. Most conformations were selected from trajectories of MD 
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simulations. In addition, to increase sampling efficiency, conformations generated by 

systematic conformational search implemented in MOE [43] were used as necessary. 

Molecular simulations were carried out as follows: all non-terminal ends of the backbone 

of amino acids were capped with ACE and NME groups. After soaking solutes in the box 

of TIP3P waters, we generated 10 ns MD trajectories at 310 K using the pmemd module 

of AMBER [24]. Then, clustering analysis was performed to obtain the representative 

conformations of each molecule. Some of them were selected as template conformations. 

A systematic conformational search was carried out with the generalized born implicit 

solvent [16], and additional conformations were selected manually. Finally, all template 

conformations were energetically minimized in the box of TIP3P waters. Details of the 

number of conformations of each amino acid are illustrated in Figure 2.4 - Figure 2.6. 

 

2.2.3. Test Set 

To measure the performance of our PB radii beyond the training set, we used 23 

structures of 13 peptides of various lengths and compared with the solvation free energies 

calculated by the explicit solvent simulations. We selected experimentally determined 

structures of 13 peptides, and downloaded from the PDB web site [19]. Detailed 

information of these molecules are listed in Table 2-2. The other 10 conformations were 

a wide variety of conformations of Chignolin generated by Replica Exchange MD [44] 

with the generalized born solvent from PDB entry 1UAO [45]. All conformations were 

energetically minimized in the box of TIP3P waters.  

 

2.2.4. MM-PBSA Test 

Our objective is to improve the accuracy of in silico screening based on the MM-

PBSA method regardless of whether MD trajectories or single snapshots are used. We 

used experimental data of systematic alanine-mutational analysis of PMI peptides with 

MDM2 protein [46, 47]. We selected 12 peptides of the same length from experimental 
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data and estimated the binding affinities by MD trajectory-based MM-PBSA.  

We calculated the binding affinity ΔGbind by MM-PBSA in two manners: “one 

trajectory method” and “two trajectory method”. The one trajectory method is the simple 

and standard application of MM-PBSA in which MD simulation is performed only for 

the complex structure. The structures of the receptor and ligand molecule are extracted 

from the complex structure from each snapshot of the complex structure. In the one 

trajectory method, ΔGbind is calculated as follows: 

Δ𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚 − (𝐺𝑟𝑒𝑐,𝑏𝑜𝑢𝑛𝑑 + 𝐺𝑙𝑖𝑔,𝑏𝑜𝑢𝑛𝑑) 

where Gcom is the free energy calculated using the complex structure from the MD 

trajectory, and Grec,bound and Glig,bound are the free energies calculated using the receptor 

and the ligand structures extracted from the complex structure, respectively. On the other 

hand, the two trajectory method uses additional MD trajectories of the ligand molecules 

in the unbound state. In the two trajectory method, ΔGbind is calculated as follows: 

Δ𝐺𝑏𝑖𝑛𝑑 = 𝐺𝑐𝑜𝑚 − (𝐺𝑟𝑒𝑐,𝑏𝑜𝑢𝑛𝑑 + 𝐺𝑙𝑖𝑔,𝑢𝑛𝑏𝑜𝑢𝑛𝑑) 

where Glig,unbound is the free energy calculated using the ligand structure from the MD 

trajectory in the unbound state. We compared the performances of our PB radii for two 

MM-PBSA methods. 

All MD simulations were carried out as follows: the 3D structure of MDM2 and a 

N8A mutated PMI peptide complex was downloaded from the PDB web site (PDB ID: 

3LNZ) [46]. The 3D structure of an unmutated peptide and MDM2 complex was 

predicted by a homology model module implemented in MOE. The complex structures 

with all other mutated peptides were generated by removing atoms in the side chain of 

relevant residues. Structures of PMI analogues in the unbound state were extracted from 

each complex structure. All solutes were soaked in the cube box of TIP3P waters and 

energetically minimized. We carried out 10 ns MD simulations for equilibration and 15 

ns ones for production runs at 300K. Snapshots were sampled every 10 ps in the 
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production run. MM-PBSA was performed using these snapshots. Receptor atoms far 

from the binding interface were harmonically restrained at their initial positions with a 

force constant of 10 kcal/mol/Å2 during MD simulations. Entropic contributions were not 

included in these calculations. All MD simulations were executed by the pmemd module 

of AMBER 12.  

 

2.2.5. Explicit Solvent Simulations 

We used the thermodynamic integration (TI) method [23] to estimate the polar 

contribution of the solvation free energy of the solute with TIP3P explicit solvents. We 

used 15 lambda points to scale the electrostatic interactions between the solute and the 

solvents. All lambda values were derived from the Gaussian quadrature equation. Initial 

structures were set up by locating the solute at the center of a spherical cap of TIP3P 

waters. The radius of the solvent cap for the training set and the test set was 45 Å and 53 

Å, respectively. All atoms of the solute were harmonically restrained at their initial 

positions with a force constant of 50 kcal/mol/Å2. We ran 15 MD simulations with the 

same initial coordinates but different lambda values. We performed 500 ps MD simulation 

for equilibration and another 500 ps one for the production run at 300 K at each lambda 

point. No cut-off schemes were employed for MD runs. Snapshots were sampled every 

20 fs in the production run and a total of 25,000 snapshots of each lambda point was used 

for calculating the solvation free energy. To remove the influence of an abnormal 

distribution of waters at the edge of the solvent sphere, we employed a cut-off scheme in 

the calculation of the free energy. Because a simple scheme using a single cut-off distance 

results in the large fluctuation of the calculated free energy, we set multiple cut-off 

distances over a given range with a desired step size and averaged the calculated free 

energies at each cut-off distance. The cut-off distances ranged from 25 to 30 Å and from 

28 to 33 Å for the training set and the test set, respectively. We observed the behaviors of 

bulked waters in these ranges of radial solvent charge distribution functions. The step size 
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was 0.1 Å. 

We also calculated the polar solvation forces using the TIP3P waters. As described 

by Wagoner [48], a polar term of the solvation force Fp is represented by: 

𝐹𝑝 = 𝐹𝑝+𝑛𝑝̅̅ ̅̅ ̅̅ ̅̅ − 𝐹𝑛𝑝̅̅ ̅̅ ̅ 

where 𝐹𝑛𝑝 is an averaged force acting on each atom in the solute over an ensemble 

where only nonpolar interactions between the solute and the solvents are worked 

(electrostatic interactions are off), and 𝐹𝑝+𝑛𝑝̅̅ ̅̅ ̅̅ ̅̅  is an averaged force where full 

interactions between the solute and the solvents are worked. Thus, we carried out two 

MD simulations with full- and zero-charges of the solute. The simulation condition was 

the same as that for the solvation free energy except for the solute charges. 

All explicit solvent simulations were carried out using AMBER 10 modified for use 

on the special-purpose computer MD-GRAPE3 [49]. 

 

2.2.6. Implicit Solvent Simulations  

Our implicit solvent calculation was based on Swanson’s work. We solved the non-

linear Poisson-Boltzmann equation using the Adaptive Poisson-Boltzmann Solver (APBS 

version 1.3) [50]. The spacing of a PB grid was 0.20 Å. The number of grid points in each 

dimension was determined to become more than 10 Å larger than the size of solutes. 

Solute charges were distributed to PB grids using a cubic B-spline discretization. The 

dielectric functions were calculated by the smooth functions developed by Im et al. [38] 

with a half window of 0.3 Å. The dielectric constant inside and outside the solute was 1.0 

and 78.4, respectively. The probe size of water was 1.4 Å. To reduce the dependence on 

the orientation of the solute to the grid, we prepared another orientation of each solute 

and averaged each result. We calculated the per-atom solvation free energy and forces, 

and compared them with explicit ones. 

We compared the performance of our PB radii with three other implicit solvents that 
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are commonly used with the AMBER force field. The generalized born (GB) implicit 

solvent model is most common for molecular simulations. We employed the OBC model 

of GB [17] using AMBER 12. The dielectric constant inside and outside the solute was 

1.0 and 80.0, respectively. The probe radius of water was set to 1.4 Å. The other two 

methods were Tan’s and Swanson’s methods described above. Tan’s PB was carried out 

using an mm_pbsa.pl script of AMBER 12. The dielectric constant was the same as in the 

GB calculation, but the probe size of water was 1.6 Å. The grid spacing was set to 0.333 

Å. Swanson’s method was carried out using APBS program. Swanson’s method used the 

same condition as ours. 

 

2.2.7. Optimization of PB Radii 

We optimized our PB radii using a genetic algorithm (GA) to obtain good agreement 

between the implicit and the explicit solvents. We first searched for an optimal 

combination of PB radii in poly-alanines and, next, we searched for those of each amino 

acid. The PB radii were optimized to minimize a fitness function, f. 

𝑓 = ∑ 𝑓𝑖

𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑖

 

where fi is a fitness score of each conformation of optimized amino acids. We defined fi 

as follows: 

𝑓𝑖 = 𝑅𝑀𝑆(∆𝐺𝑃𝐵,𝑟𝑒𝑠𝑖𝑑𝑢𝑒) + 𝑎𝑅𝑀𝑆(∆𝐺𝑃𝐵,𝑎𝑡𝑜𝑚) + 𝑏𝑅𝑀𝑆(∆𝐹𝑝) 

where ∆𝐺PB,r𝑒𝑠𝑖𝑑𝑢𝑒 and ∆𝐺PB,a𝑡𝑜𝑚 are errors of the polar contribution of the solvation free 

energy between implicit and explicit solvents on a per-residue and per-atom basis, 

respectively. ∆𝐹𝑝 is the error of polar solvation forces for each dimension of each atom. 

We incorporated atom-based and residue-based terms to reduce the dependence of the PB 

radii on amino acid sequences. a and b are scaling factors for each component. Scaling 

factors 𝑎 and b were set to 0.5 and 1.0, respectively. The parameters of GA are as follows: 
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the population size is 600. The gene is represented as the combination of PB radii. Initial 

combinations were determined by random numbers. The PB radii were optimized by 

using genetic operators: an uniform crossover and a single-point mutation. The rate of the 

crossover and the mutation operator is 0.7 and 0.3 respectively. The step size of the 

mutation operator is 0.01. Five new genes were generated from each of 600 genes, and a 

gene having the best fitness score becomes the gene in the next iteration. 
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2.3. Results 

2.3.1. Explicit Solvent Simulations 

    We first validated our protocol of the explicit solvent simulation. Figure 2.2 shows 

the relation between the solvation free energy of a C-terminal asparaginic acid (CASP) 

and the cut-off distance applied to the calculation of the free energy. We also compared 

those characteristics between spherical caps of waters of different sizes. We observe 

almost perfect agreement between the free energies for different sphere sizes except for 

regions around the edge of each water sphere. The free energies around 20-30 Å are very 

similar in different sphere sizes but fluctuated. This is why multiple cut-off distances were 

used in this study. The free energies calculated using the multiple cut-off scheme show 

good agreement between solvent caps of different sizes (Table 2-3). We also observed 

different free energies between solvent caps of different sizes when using an infinite cut-

off distance.  

  Similar results were obtained for the N-terminal lysine mentioned in the introduction 

of this chapter (Table 2-1). It is important for our averaged free energy to be consistent 

with the free energies calculated under the periodic boundary condition. This result 

provided strong evidence to support the validity of our explicit solvent simulations. 

We also performed additional 500 ps MD for the production (total of 1000 ps) at 

each lambda point on the sphere size of 45 Å and obtained the free energy of -270.3 

kcal/mol (standard error was ±1.03 kcal/mol). There was little difference between the 

calculated free energies for different time lengths of production runs. This result 

confirmed that our simulation time was long enough for convergence. This was expected 

because our simulation times were several times longer than those of previous studies. 

 

2.3.2. Performance on Training set 

The statistical performances of our PB method and the other implicit solvents on 

molecules in the training set are listed in Table 2-4 (a). From this table, it is indicated that 
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both the average of the absolute errors and the root mean square errors of our PB method 

are quite small, which means that our optimization of PB radii using GA was successfully 

accomplished. (It should be noted that we cannot compare these values with other implicit 

solvents because our PB radii were designed to minimize these values.) Figure 2.3 shows 

comparison between the polar contribution of solvation free energies of molecules in the 

training set calculated by explicit and implicit solvents. All implicit solvents had strong 

correlations with explicit solvents where the correlation coefficients of all implicit 

solvents were more than 0.99; however, other implicit solvents tended to have low 

accuracies in some particular types of molecules (Figure 2.4-Figure 2.6). GB tended to 

overestimate the solvation free energy in most molecules, and most of these errors were 

the largest, except for negatively charged amino acids. Tan’s method tended to 

underestimate the solvation free energy of molecules in the training set, but showed good 

performances for charged amino acids. In addition, Tan’s method had relatively low 

accuracy for poly-alanines considering their low polarities. Swanson’s method had 

significant errors for charged molecules, especially for both N- and C-terminal amino 

acids. Swanson’s method tended to underestimate the solvation free energy for negatively 

charged molecules and to overestimate those for positively charged molecules. All the 

other implicit solvents had problems with regard to the estimation accuracy of the polar 

contribution of the solvation free energy. 

 

2.3.3. Performance on Test set 

We measured the performances of our PB method and other implicit solvents beyond 

the training set using larger molecules in the test set. Our PB method showed high 

estimation accuracies of solvation free energies of molecules in the test set (Table 2-4 (b) 

and Figure 2.7). On the other hand, other implicit solvents had strong correlations with 

explicit solvents, but large errors of solvation free energies were observed. GB tended to 

overestimate the solvation free energies in most molecules. However, GB seems to have 
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good accuracies for 11 conformations of Chignolin: the averaged absolute errors of 

solvation free energies was 2.28 kcal/mol and the root mean square errors was 1.33 

kcal/mol. GB certainly had good agreements with explicit solvents for the total solvation 

free energy, but errors in the solvation free energies on a per-residue basis were quite large. 

The fact suggests that the fairly accuracy of GB for Chignolin was due to an accidentally 

good balance between the overestimated and the underestimated solvation free energies. 

GB was useless for obtaining details of the solvation free energies at the residue-level. 

Swanson’s method also had large errors on a per-residue basis. It tended to overestimate 

the free energies for positively charged molecules and to underestimate those for 

negatively charged molecules. Tan’s method underestimated the free energies of all 

molecules. For all PB methods, the errors of solvation free energies on a per-residue basis 

were similar to those of the training set, but large root mean square errors were observed 

(Figure 2.8 - Figure 2.10). 

 

2.3.4. Performance on MM-PBSA 

Table 2-5 lists the binding free energies of 12 MDM2-peptide complexes calculated 

by the one trajectory method of MM-PBSA using various implicit solvents. Figure 2.11 

shows the comparison between the calculated and the experimental binding free energies 

of 12 peptides to MDM2. The shifts of absolute calculated binding free energies occurred 

between different implicit solvents, but the relative binding free energies (compared to 

unmutated TSFAEYWNLLSP peptide) were similar to each other, especially for 

Swanson’s method and our method. These two methods were the same except for the PB 

radii, and therefore, they tended to show similar binding free energies. The good 

correlations between calculated and experimental binding affinities were observed for all 

MM-PBSA method. Our method had subtly higher prediction accuracy of the binding 

affinities of 12 peptides in terms of the correlation coefficient. 

Table 2-6 lists the binding free energies of 12 MDM2-peptide complexes calculated 
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by the two trajectory method of MM-PBSA with various implicit solvents. Figure 2.12 

shows the comparison between the calculated and the experimental binding affinities. In 

the two trajectory method, large differences in the relative binding free energies of each 

peptide were observed as contrasted with the one trajectory method. Quite differences 

between Swanson’s and our PB method were also observed in ASFAEYWNLLSP and 

TAFAEYWNLLSP. Large differences were also observed in the correlation coefficients 

between MM-PBSA methods. The MM-PBSA method using our PB radii had best 

prediction performance for binding affinities, but correlation coefficients decreased in all 

MM-PBSA methods compared to those in the one trajectory method. 
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2.4. Discussions 

2.4.1. Performance of Our PB Radii 

Swanson’s method was inconsistent with the solvation free energy of charged 

molecules calculated by explicit solvent simulations. This was caused by the improper 

boundary conditions of the explicit solvent simulations. On the other hand, Tan’s method 

shows good accuracies for charged residues including N- and C-terminal residues. 

However, Tan’s method has lower accuracies as the length of peptides increases. This 

may be caused by insufficient selections of template molecules. Considerations of the 

secondary structures of proteins greatly affected to the accuracy of larger molecules. Our 

method could solve these problems by designing new PB radii. Our method showed the 

best performances for both estimations of the polar contribution of the solvation free 

energies of single molecule and of the binding free energies with MM-PBSA methods. 

Our method may be further improved by adding other template conformations. To 

improve the estimation accuracy, it is necessary to increase the number of template 

conformations according to the number of rotatable bonds in the side chain of each amino 

acid. For example, we observed relatively lower accuracy for the solvation free energy of 

methionine in the test set. Methionine has many rotatable bonds, but only three template 

conformations were included in our training set. Only three conformations cannot cover 

various conformations of methionine. Therefore, adding other conformations is expected 

to improve the accuracy of our PB method. 

 

2.4.2. Limitation of Modification of PB radii 

We observed great differences between Swanson’s and our PB radii. A typical 

example of these differences is the PB radius of the Cα atom in the backbone of amino 

acids. Our average PB radius of the Cα atom in non-terminal, N-terminal, and C-terminal 

amino acids is 2.428 Å, 2.827 Å and 1.431 Å, respectively. On the other hand, Swanson 

assigned a common PB radius of 2.353 Å and 2.428Å for the Cα atom of glycine and all 
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other amino acids, respectively. Because the PB radii represent the distances to the 

solvent-accessible surface, it is considered that atoms having large PB radii interact less 

with solvent molecules and atoms having small PB radii interact strongly with solvent 

molecules. Considering the results of Swanson’s method, where overestimations for 

positively charged molecules and underestimations for negatively charged molecules of 

the solvation free energies occurred, our PB radii of the Cα atoms were quite reasonable. 

Our PB radii provide an opportunity to consider the limitations of current PB 

methods. Too large or too small PB radii may work well in simple molecules such as 

those in our training set, but it is unknown how they would influence the solvation free 

energies of more complicated and larger molecules. Too small PB radii are especially 

problematic because they tend to generate small gaps in the interior of molecules. These 

gaps are regions having high dielectric constants, but they are not accessible by the 

explicit waters. It is easy to expect that these gaps cause errors in the calculated solvation 

free energies. In addition, small gaps increase the dependence of the free energy on the 

orientation of the solute to the PB grid. This is because wide grid spacing is insufficient 

to describe the distributions of dielectric constants around atoms having a small PB radius. 

We observed the fluctuation of the calculated solvation free energies between different 

orientations of the molecules in our training set to PB grid. A finer grid spacing is required 

to describe the small gaps well, but this increases the computational costs of PB 

calculations and requires a large amount of memory space on the computer resource. This 

is therefore no longer suitable for practical use. For these reasons, errors in the solvation 

free energy can be corrected to only a limited extent by modifying PB radii. Other 

approaches dealing with interactions between the charged moiety of the solute and 

solvents properly must be further studied. 

 

2.4.3. Toward Further Improvement of MM-PBSA 

In the one trajectory method of MM-PBSA, we observed similar relative binding 
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free energies for each peptide (Table 2-5). This seems to be caused by the cancellation of 

the errors in the solvation free energies of each complex, receptor, and ligand molecule 

in the calculations of the binding free energies. On the other hand, there were large 

differences in the binding free energies of each peptide calculated by the two trajectory 

method of MM-PBSA (Table 2-6). In the two trajectory method, these cancelling effects 

were decreased by half. The differences between implicit solvents were well reflected to 

the binding free energies. 

Although the one trajectory method provides a rougher approximation of the process 

of the ligand binding, its correlation coefficients are higher than those of the two trajectory 

method. One plausible explanation for this result is that errors in the one trajectory method 

are consistent with some contributions of the binding free energy lacking in the one 

trajectory method such as entropic contributions. This must be a special case for MDM-

peptide complexes; it does not always work well in other protein-ligand complexes. 

Nevertheless, the one trajectory method still remains the standard protocol of MM-PBSA. 

Our results revealed one reason for this: poor implicit solvents produce additional errors 

in the two trajectory method. Our results indicated that accurate implicit solvents showed 

good estimation accuracy for the binding free energy in the two trajectory method, but 

they create the need to describe lacking contributions of the binding free energies more 

precisely, e.g., entropic contributions. We did not include the entropic contribution from 

the normal mode calculation [51] in this study because of their large deviations. It is 

obvious that the protocol of normal mode calculations implemented in AMBER has a 

problem in an energy-minimization scheme. Recently, an improved method for the 

energy-minimization scheme in normal mode calculations was published [52]. It is worth 

applying this method to our studies. Furthermore, intermediate waters are also sources of 

errors in MM-PBSA calculations. We often observed in some receptor-ligand complexes 

that waters went into an interspace between ligand and receptor atoms and resulted in 

overestimated binding free energies. This will be more problematic when long MD 
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simulations are carried out, because the chances for waters to go into the interspace are 

increased. Although long MD simulation should be needed for the more precise 

description of biological processes, it results in producing the errors in MM-PBSA 

calculations. Often, more realistic treatments are problematic for MM-PBSA calculations. 

However, we believe these treatments are required for accurate estimations of binding 

free energies available for a wide range of protein-ligand complexes in the future. Our 

accurate PB radii are one of the steps toward that final goal. 

Finally, we add some considerations of the LR MM-PBSA method [53]. The LR 

MM-PBSA method is one of the modified MM-PBSA methods. This method adjusts the 

magnitudes on each component of MM-PBSA (bonded, electrostatic, and van der Waals 

terms for the EMM, EPB, and ESA terms) by the use of scaling factors. The original purpose 

of LR MM-PBSA is to force the calculated binding affinities to be consistent with 

experimental binding free energies. A similar strategy may be useful for correcting 

imbalances between the implicit and the explicit solvation free energies for previous PB 

solvents. However, this attempt ended unsuccessfully in our study. Significant 

improvements in correlations were not observed in all MM-PBSA methods. LR MM-

PBSA will be useful only when similar ligand molecules are compared, because the 

optimal scaling factor is different according to the physiochemical characteristics of 

ligand molecules. Because peptides change their characteristics easily by the replacement 

of just one amino acid, LR MM-PBSA method would not be effective for peptide-protein 

complexes.  

  



- 66 - 

 

2.5. Conclusion 

We developed novel PB radii set to improve the estimation accuracy of Poisson 

Boltzmann implicit solvents. The use of our PB radii showed the good accuracies of 

estimations of the solvation free energies on single peptide molecules. The accuracy 

maintained stable if the length of amino acid residues of peptides was up to 24. 

Unfortunately, we cannot examine the performances on larger molecules, because the 

explicit solvent simulations cannot be performed due to the limit of computational 

memory. However, it is expected that our PB will show better performances than other 

implicit solvents. 

In the one trajectory method of MM-PBSA, the use of our PB radii set showed the 

best performance although the correlation coefficients between calculated and 

experimental binding free energies were similar in different MM-PBSA protocols. This 

is because a large portion of the errors in the solvation free energies were canceled in 

binding affinity calculations. In the two trajectory method of MM-PBSA, only the MM-

PBSA method using our PB radii set showed high estimation performances for the 

binding free energies. The two trajectory method also revealed inaccuracies of 

conventional implicit solvents. To improve the accuracy of MM-PBSA methods, more 

precise descriptions of other components such as entropies are also required in addition 

to our PB radii set. 

Our PB radii showed the limitation of optimizing the PB radii for accurate estimation 

of the solvation free energy. A too small radius on negatively charged groups tends to 

generate small gaps between solute atoms, which would cause the errors of the solvation 

free energy. Other approaches must be studied to describe appropriate interactions 

between the solutes and the solvents involved in charged moieties. 
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2.6. Figures 

 

 

Figure 2.1 Radial Solvent Charge Distributions for Solvent Caps of Various Sizes 

Radial solvent charge distributions around a Cα atom of an N-terminal lysine are 

calculated from explicit solvent simulations using solvent caps of different sizes (r: sphere 

radius). 
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Figure 2.2 Calculated Free Energy vs. Cut-off Distance 

The graph illustrates the relation of the polar contribution of the solvation free energy of 

a C-terminal asparaginic acid and the cut-off distance. We calculated the free energy with 

spherical water caps of different sizes. 
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Figure 2.3 Comparison between Implicit and Explicit Solvent in Training Set 

The relation of the polar contribution of the solvent free energy between explicit and 

implicit solvents model are illustrated as follows: 

Circles: non-terminal amino acids. 

Triangles: N- or C- terminal amino acids. 

Filled marks: non-charged amino acids. 

Blank marks: charged amino acids. 

x-marks: poly-alanines. 

   



- 70 - 

 

 

Figure 2.4 Errors in Solvation Free Energy per Residue (Training Set, Non-terminal 

Residues) 

Averaged errors of the polar contribution of the solvation free energy on a per-residue 

basis ΔGPB,residue [kcal/mol] for non-terminal residues in the training set. The number of 

residues included in molecules is listed in parentheses. 
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Figure 2.5 Errors in Solvation Free Energy per Residue (Training Set, N-terminal 

Residues) 

Averaged errors of the polar contribution of the solvation free energy on a per-residue 

basis ΔGPB,residue [kcal/mol] for N-terminal residues in the training set. The number of 

residues included in molecules is listed in parentheses. 
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Figure 2.6 Errors of Solvation Free Energy per Residue (Training Set, C-terminal 

Residues) 

Averaged errors of the polar contribution of the solvation free energy on a per-residue 

basis ΔGPB,residue [kcal/mol] for C-terminal residues in the training set. The number of 

residues included in molecules is listed in parentheses. 
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Figure 2.7 Comparison between Implicit and Explicit Solvents in Test Set 

The relation of the polar contribution of the solvent free energy between explicit and 

implicit solvents model is illustrated as follows: 

Circles: 12 different peptides 

Triangles: 11 conformations of Chignolin (including a pdb structure) 
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Figure 2.8 Errors of Solvation Free Energy per Residue (Test Set, Non-terminal 

Residues) 

Averaged errors of the polar contribution of the solvation free energy on a per-residue 

basis ΔGPB,residue [kcal/mol] for non-terminal residues in the test set. The number of 

residues included in molecules is listed in parentheses. 
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Figure 2.9 Errors of Solvation Free Energy per Residue (Test Set, N-terminal 

Residues) 

Averaged errors of the polar contribution of the solvation free energy on a per-residue 

basis ΔGPB,residue [kcal/mol] for N-terminal residues in the test set. The number of residues 

included in molecules is listed in parentheses. 
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Figure 2.10 Errors of Solvation Free Energy per Residue (Test Set, C-terminal 

Residues) 

Averaged errors of the polar contribution of the solvation free energy on a per-residue 

basis ΔGPB,residue [kcal/mol] for C-terminal residues in the test set. The number of residues 

included in molecules is listed in parentheses. 
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Figure 2.11 Performance on MM-PBSA using One Trajectory Method 
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Figure 2.12 Performance on MM-PBSA using Two Trajectory Method 
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2.7. Tables 

Table 2-1 Dependence of Solvation Free Energy on System Size 

Polar contributions of the solvation free energies calculated by each method are listed. 

An N-terminal lysine is used as a template. Simulation protocol of “Spherical Boundary” 

and “Periodic Boundary” was based on Swanson’s paper [35] and Tan’s paper [36], 

respectively. 

Spherical Boundary (Swanson) 

sphere radius (Å) 15 20 25 30 

solvation free energy (kcal/mol) -185.88 -186.78 -187.11 -187.45 

 

Periodic Boundary (Tan) 

length of each edge (Å) 50 60 70  

solvation free energy (kcal/mol) -168.12 -167.73 -167.74  

 

Our Method: Spherical Boundary with Infinite Cutoff Scheme 

sphere radius(Å) 20 30 40 45 

solvation free energy (kcal/mol) -159.53 -169.37 -174.52 -176.37 

 

Our Method: Spherical Boundary with Multiple Cutoff Scheme 

sphere radius(Å)   40 45 

solvation free energy (kcal/mol)   -168.04 -168.00 
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Table 2-2 Information of Molecules in Test Set  

Protein Name 
PDB 

ID 
Length Sequence Reference 

Met-enkephalin 1PLW 5 YGGFM [54] 

A fragment of 

ribonucleotide reductase 
1AFT 7 Ac-FTLDADF [55] 

Angiotensin II 1N9V 8 DRVYIHPF [56] 

Histon H3 analogue 1CS9 9 CGGIRGERA [57] 

Chignolin 1UAO 10 GYDPETGTWG [45] 

Designed peptide 2O0S 12 YVLWKRKRMIFI [58] 

A fragment of 

staphylococcal nuclease 
2FXZ 13 KMVNEALVRQGLA [59] 

mab198 bound peptide 2JRV 15 PMTLPENYFSERPYH [60] 

GCN4 trigger peptide 2OVN 17 
NYHLENEVARLKKLV 

GE 
[61] 

Designed peptide 2DX4 18 
INYWLAHAKAGYIVH 

WTA 
[62] 

TRP-cage 1L2Y 20 
NLYIQWLKDGGPSSG 

RPPPS 
[63] 

Phosphopeptide P140 

(non-phosphorylated form) 
2L5I 21 

RIHMVYSKRSGKPRG 

YAFIEY 
[64] 

Prion protein 1OEI 24 
HGGGWGQPHGGGWGQ 

PHGGGWGQP 
[65] 
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Table 2-3 Polar Solvation Free Energy Calculated by Our Method 

Radius of  

Spherical Cap 

Calculated Free Energies [kcal/mol] 

Infinite Cut-off Distance 
Multiple Cut-off Scheme 

(Range) 

40Å -232.35 
-271.16 ± 1.12 

(20-25 Å) 

45Å -232.99 
-270.32 ± 1.86 

(25-30 Å) 

50Å -235.31 
-271.42 ± 1.56 

(25-30 Å) 
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Table 2-4 Statistical Performance of Implicit Solvents 

Averaged absolute error (AAE) and the root mean square errors (RMSE) of the polar 

contribution of the solvation free energies between implicit and explicit solvents are listed. 

RMSE of polar solvation forces are listed. 

(a) Performance on training set molecules 

Implicit Solvents 

AAE and RMSE of 

Solvation Free Energy  

[kcal/mol] 

RMSE of Forces 

[kcal/mol/Å2] 

GB 13.09 ± 9.33 1.377 

Tan 1.34 ± 1.79 1.977 

Swanson 8.72 ± 7.40 0.616 

Our PB 0.32 ± 0.31 0.740 

 

(b) Performance on test set molecules 

Implicit Solvents 

AAE and RMSE of 

Solvation Free Energy  

[kcal/mol] 

RMSE of Forces 

[kcal/mol/Å2] 

GB 23.27 ± 27.63 1.384 

Tan 21.24 ± 9.32 1.715 

Swanson 29.85 ± 13.04 0.767 

Our PB 2.43 ± 2.39 0.958 
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Table 2-5 Binding Free Energy Calculated by One Trajectory Method of MM-PBSA 

Experimental and calculated binding free energies of each peptide are listed. Relative 

binding free energy compared to TSFAEYWNLLSP is also listed in brackets. All 

experimental data were derived from ref. [46]. 

 

 

Experimental 

Relative Binding 

Free Energy 

[kcal/mol] 

Calculated Binding Free Energy [kcal/mol] 

GB Tan Swanson Our PB 

ASFAEYWNLLSP 0.39 
-46.41 

(-3.19) 

-56.63 

(-3.87) 

-72.96 

(-2.16) 

-67,39 

(-1.21) 

TAFAEYWNLLSP 1.24 
-46.78 

(-3.55) 

-56.92 

(-4.16) 

-72.69 

(-1.90) 

-67.52 

(-1.34) 

TSAAEYWNLLSP 5.46 
-35.39 

(+7.83) 

-43.26 

(+9.49) 

-57.03 

(+13.76) 

-53.66 

(+12.52) 

TSFAEYWNLLSP 0 
-43.23 

(0) 

-52.75 

(0) 

-70.79 

(0) 

-66.18 

(0) 

TSFAAYWNLLSP 1.10 
 -41.13 

 (+2.10) 

-49.29 

(+3.47) 

-66.56 

(+4.23) 

-62.40 

(+3.78) 

TSFAEAWNLLSP 3.06 
-41.01 

 (+2.22) 

-48.77 

(+3.99) 

-65.38 

(+5.41) 

-61.08 

(+5.10) 

TSFAEYANLLSP 6.31 
-34.41 

 (+8.82) 

-39.22 

(+13.54) 

-57.37 

(+13.42) 

-54.29 

(+11.89) 

TSFAEYWALLSP -1.10 
-44.57 

 (-1.34) 

-53.13 

(-0.37) 

-69.46 

(+1.33) 

-65.41 

(+0.77) 

TSFAEYWNALSP -0.17 
-44.05 

(-0.82) 

-56.05 

(-3.30) 

-69.59 

(+1.20) 

-65.42 

(+0.76) 

TSFAEYWNLASP 3.28 
-40.83 

(+2.40) 

-50.25 

(+2.50) 

-65.10 

(+5.69) 

-60.87 

(+5.31) 

TSFAEYWNLLAP 0.12 
-42.67 

(+0.55) 

-51.05 

(+1.71) 

-66.44 

(+4.35) 

-62.06 

(+4.11) 

TSFAEYWNLLSA -0.25 
-41.41 

(+1.82) 

-52.44 

(+0.31) 

-67.79 

(+3.00) 

-63.83 

(+2.34) 

Correlation 

Coefficient  0.838 0.850 0.858 0.881 
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Table 2-6 Binding Free Energy Calculated by Two Trajectory Method of MM-PBSA 

Experimental and calculated binding free energies of each peptide are listed. Relative 

binding free energy compared to TSFAEYWNLLSP is also listed in brackets. All 

experimental data were derived from ref. [46]. 

 

 

Experimental 

Relative Binding 

Free Energy 

[kcal/mol] 

Calculated Binding Free Energy [kcal/mol] 

GB Tan Swanson Our PB 

ASFAEYWNLLSP 0.39 
-47.07 

(-6.49) 

-59.03 

(-9.78) 

-72.75 

(-6.59) 

-66.80 

(-4.18) 

TAFAEYWNLLSP 1.24 
-46.20 

(-5.62) 

-57.97 

(-8.71) 

-73.33 

(-7.17) 

-67.45 

(-4.84) 

TSAAEYWNLLSP 5.46 
-38.40 

(2.19) 

-49.86 

(-0.60) 

-61.92 

(4.24) 

-58.07 

(4.55) 

TSFAEYWNLLSP 0 
-40.59 

(0.00) 

-49.26 

(0.00) 

-66.16 

(0.00) 

-62.62 

(0.00) 

TSFAAYWNLLSP 1.10 
-41.45 

(-0.87) 

-50.54 

(-1.28) 

-66.99 

(-0.84) 

-62.81 

(-0.19) 

TSFAEAWNLLSP 3.06 
-41.81 

(1.22) 

-50.44 

(-1.18) 

-66.98 

(-0.83) 

-62.85 

(-0.23) 

TSFAEYANLLSP 6.31 
-37.12 

(3.47) 

-42.75 

(6.51) 

-59.93 

(6.23) 

-55.20 

(7.42) 

TSFAEYWALLSP -1.10 
-43.73 

(-3.14) 

-52.22 

(-2.96) 

-67.64 

(-1.49) 

-63.66 

(-1.05) 

TSFAEYWNALSP -0.17 
-43.73 

(-3.15) 

-57.97 

(-8.71) 

-68.98 

(-2.83) 

-66.46 

(-3.84) 

TSFAEYWNLASP 3.28 
-45.31 

(-4.72) 

-55.01 

(-5.75) 

-64.19 

(1.97) 

-60.79 

(1.82) 

TSFAEYWNLLAP 0.12 
-40.64 

(-0.05) 

-48.90 

(0.36) 

-63.25 

(2.90) 

-59.72 

(2.90) 

TSFAEYWNLLSA -0.25 
-39.74 

(0.85) 

-52.73 

(-3.47) 

-66.41 

(-0.26) 

-62.46 

(0.16) 

Correlation 

Coefficient  0.470 0.509 0.615 0.708 
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Chapter 3 

in silico 

Peptide Screening  

against SH2 domains 
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3.1. Introduction 

In chapter 1, we improved the prediction accuracy of binding conformations of 

peptides to their target proteins by developing our original program for molecular docking. 

In chapter 2, we parameterized new PB radii and showed high performances on 

estimations of polar contributions of the solvation free energies of single molecules and 

on predictions of binding affinities by Molecular Mechanics and Poisson-Boltzmann 

Surface Area (MM-PBSA) method [51]. In this chapter, we combined our improved 

methods and applied them to in silico screening of peptides against various Src Homology 

2 (SH2) domains. 

SH2 domain is one of modules of adaptor proteins. Adaptor proteins basically have 

no catalytic activities, but they have several protein-binding modules. Each module of 

adaptor proteins physically associates with upstream or downstream signaling proteins in 

a signaling pathway and enhances the formation of protein complexes. SH2 domains 

recognize phosphorylated states of the specific tyrosine of upstream proteins and bind 

only to the phosphorylated state of the tyrosine (pY). On the other hand, SH3 domains 

binds proline-rich amino acid sequences of downstream signaling proteins. Adaptor 

proteins recruit upstream and downstream signaling proteins via binding of specific 

regions of signaling proteins to each protein-binding module of adaptor proteins. 

Adaptor proteins are involved in some cancer cell activities, therefore, they are 

attractive therapeutic targets [66, 67]. For example, an activity level of Src proteins 

increased in many types of tumors. An activity level of Crk proteins is also elevated in 

many types of tumors, especially in the colon and lung cancers [68]. Grb2 proteins are 

involved in inappropriate cell proliferations in some leukemia [69] and in breast and 

ovarian cancers [70]. Then, preventing the signals mediated by adaptor proteins are 

promising approaches for several cancer therapies. Many researchers studied the design 

of peptide or small molecule inhibitors binding to SH2 or SH3 domains [71-73]. 

SH2 domains are optimal systems to examine the ability to discriminate binding 
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peptides for in silico screening method. SH2 domains are highly structurally conserved 

modules, but they selectively bind to signaling proteins. Each SH2 domain has a certain 

preferential binding sequence, called binding motif [74]. For example, pYxxI, pYxxP and 

pYxNx is the binding motif for Src, Crk and Grb2 SH2 domains, respectively (x indicates 

any amino acids). Recently, Liu et al. investigated the binding selectivities of 50 SH2 

domains by SPOT analysis [75]. In this chapter, we utilized this experimental data to 

measure the performances of our screening method. 

In this chapter, we tried to discriminate binding peptides of several SH2 domains 

from a small peptide library using our screening method. Our goal in this chapter is to 

find the optimal condition of peptide screening for each protein toward the large scale of 

screening. Our screening method was based on the molecular docking and MM-PBSA 

rescoring. Structures of ligand-receptor complexes were predicted by our molecular 

docking program, and binding affinities were estimated by MM-PBSA method using our 

PB radii. We compared our method with conventional methods in terms of the 

performances on peptide screening. Furthermore, we examined the dependency of the 

conformations of the receptor proteins on the screening performance. 

In addition, we investigated the effects of the reorganization of ligand molecules on 

peptide screening. In other words, we applied the two trajectory method to the docking-

based screening. The reorganization effects are explained as a free energy difference 

caused by a conformational change through the binding process. Both the ligand and the 

receptor molecules usually change their conformations into suitable conformations 

according to their binding partners. The free energy difference associating these 

conformational changes are unfavorable for each molecule (it is also referred as a restraint 

energy), however free energies obtained from the binding partner overcomes these free 

energy loss and lead to the formation of the complex structure. In the one trajectory 

method, the unstable binding conformations of the ligand molecule in the complex 

structure are permitted because the restraint energies are completely neglected. Only (so-
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called) interaction energies are the interests in the one trajectory methods. However, it is 

questionable whether these binding conformations can represent the correct binding 

conformations. 

The reorganization effects are more effective for molecules having the high 

conformational flexibility, like peptides. In chapter 2, we applied the two trajectory 

method of MM-PBSA to 12 MDM2-peptide complexes. Because binding peptides used 

in chapter 2 were in the forms of α-helixes, the reorganization effects were potentially 

small. Peptides used in this chapter, which are adjusted to 8-mer length, has no stable 

secondary structures of proteins. Thus, the reorganization effects of peptides may 

influence strongly the performances on peptide screening. 

In this chapter, we performed additional conformational search of peptides in the 

unbound state. We used the same program described in chapter 1 to search stable 

conformations of peptides. Because the conformations of unbound peptides are highly 

fluctuated in solvents, just one stable conformation predicted by our program does not 

reflect the actual conformations of peptides in waters. However, the energy difference 

between the bound- and the unbound state of peptides may be useful as a rough estimation 

of the restraint energy. 
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3.2. Methods 

3.2.1. Experimental Data 

Our study was based on experimental data by Liu [75]. Liu examined the interactions 

between 192 phosphorylated peptides and 50 SH2 domains by SPOT analysis. We 

selected four SH2 domains, Crk, Grb2, Nck1, and Src SH2 domains, as target proteins of 

our peptide screening from 50 SH2 domains, because their 3D structures of peptide-SH2 

complexes were available. We used 100 peptides illustrated in Figure 2 of Liu’s paper as 

a small set of the peptide library. Peptides having more than 3 times greater binding 

intensity than the average intensity of 100 peptides were regarded as binding peptides: 16 

peptides for Crk, 11 peptides for Grb2, 14 peptides for Nck1, and 14 peptides for Src SH2 

domains were selected as the binding peptides respectively. 

 

3.2.2. Procedures of Screening 

Our protocol to predict the binding affinity of each peptide is as follows: we first 

prepared linearly extended structures of the peptide. We carried out the molecular docking 

using the extended structure as the input structure and obtained 30 candidate binding 

conformations of the peptide-receptor complexes. We also carried out the conformational 

search of the peptide in the unbound state and obtained 30 candidate-conformations. All 

predicted structures were energetically minimized in the box of TIP3P waters. After 

minimizations, all solvents and ions were removed. Receptor conformations were fixed 

in the whole processes. 

We calculated the binding affinities by MM-PBSA method as the rescoring of the 

docked structures. First, we calculated the free energy of 30 complex structures and 30 

ligand structures of each peptide by MM-PBSA method. Next, we selected the most stable 

structures of the complex and of the peptide structure in terms of the calculated free 

energies. We calculated binding affinities in two manners: the one trajectory method and 

the two trajectory method. In the one trajectory method, conformations of the receptor 
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and ligand molecule were extracted from the complex structure. The binding affinity ΔG 

was calculated as follows: 

𝛥𝐺 = 𝐺𝑐𝑜𝑚 − (𝐺𝑟𝑒𝑐,𝑏𝑜𝑢𝑛𝑑 + 𝐺𝑙𝑖𝑔,𝑏𝑜𝑢𝑛𝑑) 

where Gcom is the free energy calculated by MM-PBSA using the complex structure 

predicted by molecular docking, Grec,bound and Glig,bound is the free energy calculated by 

MM-PBSA using the receptor and ligand structure extracted from the complex structure. 

On the other hand, two trajectory methods uses two predicted structures of the complex 

and the peptide. The binding affinity ΔG was calculated as folllows: 

𝛥𝐺 = 𝐺𝑐𝑜𝑚 − (𝐺𝑟𝑒𝑐,𝑏𝑜𝑢𝑛𝑑 + 𝐺𝑙𝑖𝑔,𝑢𝑛𝑏𝑜𝑢𝑛𝑑) 

where Glig,unbound is the free energy calculated by MM-PBSA with the ligand structure 

predicted by conformational search in the unbound state. 

 

3.2.3. Structural Preparation 

In chapter 1, we demonstrated the efficacy of Molecular Dynamics (MD) 

simulations on structural preparations for our molecular docking. In this chapter, we 

prepared five conformations of each peptide-receptor complexes by MD simulations. The 

initial structures were downloaded from the PDB web site. PDB IDs are 1JU5 [26] for 

Crk, 1JYR [27] for Grb2, 2CI9 [76] for Nck1, and 1KC2 [28] for Src SH2 domains. The 

length of amino acids of all ligand peptides were adjusted to 8-mer (X-2-X-1-pY0 -X+1-

X+2-X+3-X+4-X+5: each residue was named after the relative positions from pY for 

convenience). All protonation states of the solute were determined by the protonate3D 

module of MOE [43]. All solutes were soaked in the box of TIP3P waters. A total of 13 

ns MD simulations was performed on each complex molecules. We used the receptor 

conformations at 5, 7, 9, 11, and 13 ns of MD simulations (named MD5, MD7, MD9, 

MD11, and MD13 for convenience). The position of ligand peptides of each 
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conformations were also used as reference positions of positional restraints. MD 

simulations were carried out using the pmemd module of AMBER 12 [24]. 

 

3.2.4. Molecular Docking 

We carried out the molecular docking using two software: our program accelerated 

by GPU described in chapter 1 and GOLD [77]. In our program, the number of parent-

conformations was set to 1,000 and the number of child-conformations per parent-

conformation was 30. Positional restraints were applied as follows: the position of the 

phosphorus atom in the phosphorylated tyrosine were fixed during simulations. Cα atoms 

at -1, 0, +1, +2, +3, and +4 residues were harmonically restrained with the force constant 

of 10.0 kcal/mol/Å2 when the atoms are located more than 3.0 Å away from the reference 

positions. We carried out the molecular docking three times, and each 10 conformations 

from top 10 clusters were used for following processes. 

The force field for the phosphorylated tyrosine (pY) was derived from the work of 

Homeyer et al [78]. 

For GOLD, positional restraints were applied to the phosphorus atom of the 

phosphorylated tyrosine and every Cα atom. Constraint weights were 30 and the 

constraint radius is 3.0 Å from reference positions. The binding sites were determined 

with the center point of the reference ligand structure with sphere radius 20Å. A searching 

efficiency was set to 200%. The number of docking runs was 30, and the top conformation 

of each docking run were used for following processes. All other parameters remain as 

defaults. 

 

3.2.5. Rescoring by MM-PBSA 

We calculated the binding affinities using various MM-PBSA methods developed by 

Tan et al. [36], Swanson et al. [35] and us. Simulation conditions was the same described 

in chapter 2. We designed PB radii for the phosphorylated tyrosine in the same manners 
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described in Chapter 2 and used for our PB method. For Swanson’s PB, the BONDI radii 

with optimal offset for smoothing dielectric functions were used [35, 79]. 

3.2.6. Performance Metric 

We used the area under the receiver operating characteristics curve (ROC AUC) to 

measure the performances of peptide screening. ROC AUC was often used as a metric of 

the performance to discriminate binders from non-binders in virtual screening [80]. ROC 

AUC ranges from 0 to 1. ROC AUC of 0.5 corresponds to the random selection. Higher 

ROC AUC indicated a better performance of the screening method. We used ROC AUC 

of 0.7 as a criterion for good performances. 
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3.3. Results 

3.3.1. Screening Performance of GOLD 

Before discussing our method, we discuss the performance of conventional docking 

program, GOLD, on peptide screening. We described in previous chapter that GOLD is 

incapable of predicting correct binding poses without any positional restraints. Here, we 

discuss the performance of GOLD with the positional restraints: Table 3-1 lists the ROC 

AUCs of each screening using only GOLD: the conformations of the peptide-receptor 

complexes were predicted by GOLD, and docking scores were used as binding affinities. 

ROC AUCs higher than 0.7 were observed in only 1 of 4 proteins. This result indicated 

that GOLD was incapable of predicting correct binding affinities of peptides. 

 

3.3.2. GOLD with MM-PBSA Rescoring 

We measured performances of combined methods of GOLD and MM-PBSA 

rescoring where the binding conformations of the peptide-receptor complexes were 

predicted by GOLD and binding affinities were predicted various MM-PBSA rescoring.  

In all proteins, the best ROC AUC values were higher than those using only GOLD. 

The deviations of ROC AUCs are also increased in all proteins. It suggested the MM-

PBSA rescoring is sensitive to the binding conformations. 

MM-PBSA method using Swanson’s PB showed the highest performance in 2 of 3 

proteins. MM-PBSA method using our PB method showed the highest performance in 1 

of 3 proteins. The ROC AUCs of these two methods are similar, because these two PB 

methods was the same except for the PB radii set. It resulted in the high correlation 

coefficients, 0.873, between the binding affinities of peptides on the Crk MD9 structure 

calculated by our and Swanson’s method. On the other hand, the correlation coefficient 

of Tan’s PB with Swanson’s and our PB is 0.654 and 0.709, respectively. This indicated 

the PB methods strongly influence the screening performances.  
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3.3.3. Our Molecular Docking with MM-PBSA Rescoring 

We measured performances of screening methods using our program for molecular 

docking and various MM-PBSA rescoring (Table 3-3). For all proteins, the best ROC 

AUC values are higher than those using combined methods of GOLD and MM-PBSA 

rescoring. This result indicated the superiority of our molecular docking. 

In most structures of Crk, Nck1, and Src, the ligand reorganization affected 

positively to the screening performance. The impact of the reorganization effects seems 

to be relatively small for MM-PBSA rescoring using Tan’s PB method. The screening 

performances of Grb2 were decreased by including the reorganization effects except for 

Swanson’s PB. By including the reorganization effects, MM-PBSA rescoring based on 

Swanson’s and our PB methods accomplished the ROC AUC almost higher than 0.7 in 

all proteins.  
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3.4. Discussions 

3.4.1. Ligand Reorganization Effects 

Including reorganization effects of ligand molecules improved the screening 

performances on Crk, Nck, and Src SH2 domains. This effect decreased the ROC AUCs 

in some cases, but this losses were quite small in most cases. The reorganization effects 

were less effective for peptide screening of Grb2 SH2 domain. One plausible explanation 

for this results is the conformational flexibility of the ligand molecule in the bound state. 

The N-terminal and C-terminal regions of Grb2-binding peptides are exposed to solvents. 

We observed highly fluctuations of these regions (Figure 3.1). If ligand peptides change 

their conformations freely even in the bound state, it is unreasonable to represent binding 

conformations of peptides using just a single stable conformation predicted by molecular 

docking. Furthermore, considering this situation, the reorganization effects cannot be 

represented because the two trajectory method estimate the energy loss between only two 

stable conformations in bound and unbound states. Multiple conformations may be 

required for both the bound and the unbound state of ligand molecules to describe the 

conformational change in the fluctuated structures. One trajectory method seems to be 

rather appropriate for the highly fluctuated peptides, because it ignore the conformational 

change of peptides completely. The reorganization effects should be applied after the 

careful considerations of the conformational flexibility of peptide in the bound state. 

The reorganization effects seems to work favorably to molecules having relatively 

less conformational flexibility, such as peptides including a proline residue. Because the 

conformational change between in the bound and the unbound state are less small for 

these molecules, the expected restraint energies tended to be small. There is a potential 

bias to increase the binding affinities for specific kinds of molecules. In our study, the 

binding motif of Crk SH2 domain, pYxxP, is relevant to this problem. We examined the 

high performances for Crk SH2 domain was caused by such biases or not. We measured 

the discrimination performances of known non-binding peptide sequences having pYxxP 
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motif. In our peptide library, 8 from100 peptides have pYxxP sequence but do not bind 

to Crk SH2 domain. ROC AUC for discriminating non-binding pYxxP peptides are listed 

in Table 3-4. This result indicated that our screening can discriminate pYxxP binding 

peptides from pYxxP non-binding peptides. The reorganization effects worked 

unfavorably to pYxxP non-binding peptides. MM-PBSA using Swanson’s PB method 

showed subtly high ROC AUCs compared to other implicit solvents, which may be more 

problematic at the large scale of the peptide screening. 

 

3.4.2. Negative Effects of the Use of MD Structure on Src SH2 

The screening performances on Src SH2 domains were relatively low compared to 

other proteins. It was caused by structures used in the screening and the selection of the 

peptide library. 

We described the importance of MD simulations to generate structures used in 

molecular docking in chapter 1. MD simulations can equilibrate molecular systems and 

generate stable conformations of molecules. As a result, these conformation of the 

receptor proteins were optimized according to their ligand molecules. It is known as an 

induced fit. Because we used the induced fitted conformations of the receptor proteins for 

peptide screening, there are some biases on discrimination of binding peptides. We did 

not get rid of these biases because the conformation of the receptor proteins were fully 

fixed in the whole process. In the case of peptide screening for Src SH2 domain, the amino 

acid sequences of the ligand peptide is PQpYEEIPI. The conformations of Src SH2 

domain were optimized to its sequence. The binding motif of Src SH2 domain is known 

as pYxx(I/M/L); however, only 4 of 14 binding sequences from our peptide library fulfill 

this binding motif. Especially, the binding sequences satisfying pYxxI was just one 

sequence: EDpYGDIEI. This should be a major reasons for relative low ROC AUCs for 

Src SH2 domain. Perhaps, experimental data for Src SH2 domains did not meet the 

requirement to measure the performances of peptide screening. We will confirm to 
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screening performances of Src SH2 by rebuilding the peptide library for screening. 

 

3.4.3. Best Implicit Solvents for MM-PBSA 

MM-PBSA using Swanson’s PB method showed totally high performances on four 

proteins. However, there should be any biases considering the results in chapter 2. We 

described the underestimations of the solvation free energies for negatively charged 

molecules for Swanson’s PB method in chapter 2. In general, the binding peptides to SH2 

domains are negatively charged. Therefore, the use of Swanson’s method is inadvisable. 

Furthermore, the reorganization effects are useful for peptides as long as the peptides are 

less free in the bound state. However, the errors of the solvation free energy were 

increased for Swanson’s PB by including the reorganization effects. We consider the only 

our PB method can estimate the solvation free energy of the solute correctly. 
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3.5. Conclusions 

We measured our screening performances on four SH2 domains compared to 

conventional methods. We demonstrated the inability of conventional docking score to 

discriminate the binding peptides from the other. MM-PBSA rescoring with predicted 

structures by GOLD improved on the screening performances, however, our molecular 

docking showed further improvements in ROC AUCs. 

It needs careful considerations for including the ligand reorganization effect in 

peptide screening. It may be useless if ligand peptides have high conformational 

flexibility even in bound states. These characteristics can be investigated in advance using 

MD simulations of the peptide-protein complex structure. MD simulations are also useful 

for generation the structure used in screenings. Because MM-based binding affinity 

predictions are highly dependent on the receptor conformations, the pre-screening using 

a small library against several conformations is essential. 

MM-PBSA rescoring using Swanson’s PB method showed high performances on 

peptide screening. However, the use of their PB radii set is not good idea because SH2-

binding peptides are generally charged because of the inaccuracy of Swanson’s PB for 

charged residues. The errors of the solvation free energies affect unfavorably to the large 

scale of peptide screening. 
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3.6. Figures 

 

 

Figure 3.1 Superimposed Structures of Grb2-peptide complexes 

Snapshots extracted every 1 nsec from 13 nsec MD simulations of Grb2-peptide 

complexes are superimposed. Backbones are represented by the ribbons. The 

phosphorylated tyrosine and the asparagine in the binding motif of Grb2 SH2 domain are 

represented as sticks. Receptor molecules are illustrated in green and ligand molecules 

are illustrated in cyan. 
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3.7. Tables 

 

Table 3-1 Screening Performance of GOLD 

The values of ROC AUC are listed. Best ROC AUC for each protein is highlighted in 

bold. 

 Crk Grb2 Nck1 Src 

MD5 0.746 0.763 0.458 0.432 

MD7 0.520 0.557 0.654 0.469 

MD9 0.545 0.715 0.470 0.535 

MD11 0.516 0.779 0.586 0.561 

MD13 0.496 0.404 0.643 0.420 

Average 0.565 0.644 0.562 0.483 
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Table 3-2 Screening Performance with GOLD and MM-PBSA 

The values of ROC AUC are listed. Best ROC AUC for each protocol is highlighted in 

bold. 

(a) Crk SH2 domain 

 Tan Swanson Our PB 

MD5 0.623 0.663 0.637 

MD7 0.569 0.354 0.407 

MD9 0.575 0.524 0.521 

MD11 0.664 0.530 0.523 

MD13 0.593 0.503 0.501 

Average 0.605 0.515 0.518 

 

(b) Grb2 SH2 domain 

 Tan Swanson Our PB 

MD5 0.733 0.740 0.655 

MD7 0.810 0.787 0.830 

MD9 0.669 0.740 0.647 

MD11 0.886 0.730 0.813 

MD13 0.633 0.662 0.709 

Average 0.746 0.732 0.731 
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(c) Nck1 SH2 domain 

 Tan Swanson Our PB 

MD5 0.363 0.660 0.601 

MD7 0.508 0.724 0.647 

MD9 0.446 0.609 0.605 

MD11 0.545 0.576 0.581 

MD13 0.438 0.673 0.624 

Average 0.460 0.648 0.612 

 

 

(d) Src SH2 domain 

 Tan Swanson Our PB 

MD5 0.525 0.608 0.587 

MD7 0.584 0.535 0.536 

MD9 0.428 0.590 0.581 

MD11 0.513 0.599 0.622 

MD13 0.547 0.583 0.556 

Average 0.519 0.583 0.576 
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Table 3-3 Screening Performance with Our Program and MM-PBSA Rescoring 

The values of ROC AUC are listed. Left values in each PB method are ROC AUCs of 

screening not including the reorganization effects of peptides. Right values are those of 

screening including the reorganization effects of peptides. Best ROC AUC for each 

protocol is highlighted in bold. 

(a) Crk SH2 domain 

 Tan Swanson Our PB 

MD5 0.693 0.719 0.635 0.705 0.609 0.759 

MD7 0.507 0.651 0.379 0.632 0.502 0.646 

MD9 0.580 0.616 0.725 0.806 0.750 0.773 

MD11 0.722 0.706 0.589 0.792 0.554 0.734 

MD13 0.633 0.696 0.583 0.727 0.532 0.804 

MD15 0.644 0.766 0.529 0.742 0.592 0.841 

Average 0.630 0.692 0.573 0.734 0.590 0.760 

 

(b) Grb2 SH2 domain 

 Tan Swanson Our PB 

MD5 0.888 0.866 0.901 0.813 0.890 0.764 

MD7 0.816 0.719 0.698 0.755 0.862 0.734 

MD9 0.811 0.783 0.723 0.772 0.845 0.640 

MD11 0.867 0.832 0.753 0.813 0.854 0.799 

MD13 0.635 0.627 0.673 0.741 0.863 0.660 

MD15 0.668 0.558 0.717 0.653 0.717 0.609 

Average 0.781 0.731 0.744 0.758 0.839 0.701 
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(c) Nck1 SH2 domain 

 Tan Swanson Our PB 

MD5 0.414 0.473 0.665 0.733 0.653 0.613 

MD7 0.568 0.621 0.679 0.728 0.528 0.661 

MD9 0.571 0.586 0.699 0.706 0.638 0.625 

MD11 0.470 0.605 0.747 0.790 0.689 0.725 

MD13 0.686 0.660 0.666 0.717 0.648 0.642 

MD15 0.716 0.822 0.797 0.819 0.792 0.824 

Average 0.571 0.628 0.709 0.749 0.658 0.681 

 

(d) Src SH2 domain 

 Tan Swanson Our PB 

MD5 0.453 0.538 0.620 0.680 0.576 0.609 

MD7 0.605 0.606 0.603 0.699 0.547 0.585 

MD9 0.524 0.537 0.540 0.633 0.610 0.602 

MD11 0.578 0.564 0.567 0.703 0.591 0.693 

MD13 0.453 0.496 0.488 0.601 0.488 0.497 

MD15 0.474 0.535 0.496 0.631 0.442 0.639 

Average 0.515 0.546 0.552 0.657 0.542 0.604 
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Table 3-4 Screening Performance for nonbinding pYxxP sequences 

The values of ROC AUC are listed. Left values in each PB method are ROC AUCs of 

screening not including the reorganization effects of peptides. Right values are those of 

screening including the reorganization effects of peptides. Best ROC AUC for each 

protocol is highlighted in bold. 

 

Crk SH2 domain 

 Tan Swanson Our PB 

MD5 0.558 0.450 0.572 0.635 0.760 0.557 

MD7 0.504 0.484 0.482 0.473 0.486 0.467 

MD9 0.552 0.486 0.620 0.537 0.573 0.500 

MD11 0.554 0.527 0.490 0.500 0.427 0.493 

MD13 0.440 0.440 0.628 0.654 0.709 0.592 

MD15 0.484 0.598 0.550 0.561 0.476 0.554 

Average 0.515 0.498 0.557 0.560 0.572 0.527 
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Conclusion 

Molecular docking-based approaches on in silico screening have been developed for 

the design of drug like small molecules. Because peptides have different characteristics 

from drug like small molecules, these approaches cannot be applied for peptide design.  

Molecular docking have two main purposes: prediction of binding conformations 

and binding affinities. These two purposes are accomplished using the scoring functions. 

We developed our docking program for peptide design. We incorporated molecular 

mechanics (MM) into scoring functions, because MM have been well studied using 

proteins and peptides. We also incorporated implicit solvent model (generalized born 

model) into our scoring functions because many polar functional groups of peptides 

require the precise descriptions of interactions with solvents. Our program showed high 

performances on prediction of binding conformations of the peptide to its receptor 

proteins. In addition, our program was accelerated by the GPGPU technology. We could 

process the computing for the molecular docking more than 100 times faster than a single 

core of CPU. 

We also tried to improve an accuracy of the molecular mechanics and Poisson-

Boltzmann surface area (MM-PBSA) method used in rescoring of binding affinities. We 

improved the accuracy of Poisson-Boltzmann (PB) implicit solvents by modifying PB 

radii, which are important parameter for PB calculations. Our PB method showed high 

performances on the estimation the polar contributions of solvation free energy of single 

molecules. We also demonstrated improved accuracies for prediction of binding affinities 

by MM-PBSA method. 

Combining our improved methods showed high performances on peptide screening 

of several SH2 domains. We incorporated the reorganization effects of ligand molecules 

into docking-based approaches. The reorganization effects are effective for Crk, Nck1, 

and Src SH2 domains but less effective for Grb2 SH2 domain. These efficiencies may 
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relevant with the conformational flexibility of the ligand molecules in the bound state. 

We must take careful considerations whether the reorganization effects are included or 

not to docking-based approches. Molecular dynamics simulations are useful to determine 

the screening protocols such as positional restraints and the reorganization effects. 

We showed the beneficial information for docking-based peptide screening through 

this study. Our two improved methods are first important steps for accurate prediction of 

binding affinities of peptides.  
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