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Chapter 1

Introduction

1.1 Literature Review

Auctions are an important market mechanism for determining prices and allocating

goods in many markets. Every day, many kinds of foods and flowers are sold via auc-

tions. Governments, as buyer of public goods, often choose suppliers using procurement

auctions. The percentages of governments’ expenditures for procurement auctions can-

not be ignored in the gross domestic product (GDP). Some web search engine companies

such as Google and Yahoo! have some advertising spaces on their own web pages and

determine the locations of individual advertisements through auctions. Such an auction

is called an internet advertisement auction, which is an important revenue source for

web search engine companies. Clearly, auctions play an essential role in our economy.

Furthermore, auctions became familiar as a place where we actually participate through

the emergence of online auction markets (e.g., eBay and Yahoo!). In the online auction

market, many people can become buyers or sellers and trade items easily.

It is natural that economists should take an interest in an important and universal

market mechanism such as auctions. In addition to the importance of auctions from a

practical perspective, there are several reasons auctions have been a fruitful research field
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for economists. In theoretical literature, economists often focus on how equilibrium prices

are determined. While we cannot observe the process of equilibrium price determination

in the general market, we can recognize the specific price determination process by

observing competitive bids in auctions. Therefore, auction offer an attractive market

arena in order to study the equilibrium price determination process. In particular, in

the general equilibrium model, the fictional Walrasian auctioneer plays an essential role

in the tâtonnement process, which is one of the most famous model that explains how

equilibrium prices are determined.

From a game-theoretic perspective, auction theory is one of the most successful appli-

cations of incomplete information games. The second-price, sealed-bid auction demon-

strated in Vickrey (1961) and Vickrey-Clarke-Groves (VCG) auction in general are typ-

ical examples of a strategy-proof mechanism that plays an essential role in the theory of

mechanism design. Such studies are useful for designing the institutions of auctions in

the real world.

From the empirical perspective, auction models are also an attractive research field

for econometricians. Hendricks and Porter (2007) emphasized that auction data sets are

often better than typical data sets in industrial organization. They describe two reasons

why the quality of auction data is often relatively high as follows. First, the auction game

is relatively simple, with well-specified rules. Second, the actions of the participants are

observed directly, and payoffs can sometimes be inferred. In addition to the availability

of high-quality data, there are several reasons auctions have been attractive to many

empirical researchers: the structural econometrics, the Bayesian econometrics, and the

nonparametric (or semiparametric) econometrics. These three econometric methodolo-

gies have succeeded in contributing to the econometrics of auction data. Below, we briefly

review these three econometric methodologies in the literature of empirical auctions.

2



1.1.1 Structural Econometrics

Structural estimation is an econometric model based on the economic theory. In particu-

lar, in the structural econometrics of auction data, the econometric models are described

by auction theory. In auction theory, economists consider the auction as a game, and

often compute the equilibrium bidding strategy from each bidder’s private type. In the

literature of the structural econometrics of auction data, econometricians regard the

auction theory model as the data generating process and interpret the observable auc-

tion data, such as bids, as the result of equilibrium behavior.1 In most studies of the

structural econometrics of auction data, by observing the equilibrium bids, we estimate

the structural parameters, such as bidders’ private types.

Paarsch (1992) is a seminal paper in this literature. After his pioneering work, struc-

tural econometrics has joined the mainstream of empirical auction literature. There are

several reasons why many important studies that contribute to the empirical research of

auctions adopt the methodology of structural estimation. First, the equilibrium transac-

tion prices in auctions are considered to depend on both the valuation of goods and the

magnitude of competition. Usually, both factors that help determine auction prices are

not observable individually. Therefore, we cannot estimate the individual effects in the

usual manner. However, auction theory tells econometricians the complex relationship

between the valuation of goods and the magnitude of competition. Therefore, applying

structural estimation enables econometricians to estimate both factors individually.

Second, since the bidder’s decision is modeled explicitly in structural econometrics,

we can conduct counterfactual simulations easily using estimated structural parameters.

For example, we could simulate how the distribution of the transaction price changes

if an auctioneer changes the auction format from English auction to Dutch auction.

1There are several exceptions. For example, Haile and Tamer (2003) made two assumptions that are
weaker than the usual assumptions to derive the dominant strategy equilibrium, and they estimated the
parameters in accordance with their assumptions. Aradillas-Lopez and Tamer (2008) dropped the Nash
equilibrium assumption and used rationalizability as the basis for strategic play. Under their assumption,
they studied identification in first-price auctions within the independent private values paradigm (IPVP).
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Paarsch and Hong (2006), Athey and Haile (2007), and Hendricks and Porter (2007)

provide excellent surveys of this literature.

We briefly review the methodology of structural estimation using the example of

second-price, sealed-bid auctions within the independent private values paradigm (IPVP).

Note that Chapter 2 is an application of the structural estimation of second-price, sealed-

bid auction within the IPVP.

Consider that in a second-price, sealed-bid auction, each bidder submits a bid si-

multaneously. The bidder who bids the highest bid among participants wins the object.

However, the price that the winner pays is not her own bid, but is equal to the second-

highest bid among participants. There are N potential bidders with risk-neutral prefer-

ences indexed by i = 1, ..., N . Each bidder’s willingness to pay is denoted by Vi, which is

an independent and identically distributed random variable from the distribution, F (·).

The realization of bidder i’s willingness to pay, vi, is her own private information, and

she does not know others’. However, the distribution of Vi, F (·), is common knowledge

to all participants. Under these assumptions, the equilibrium bid of bidder i with a

willingness to pay, Vi = vi, is denoted by bi = vi. In other words, it is a dominant

strategy for the bidder to tell her true willingness to pay.

Note that although the distribution of valuation, F (·), is common knowledge among

participants, F (·) is unknown for econometricians; our purpose is to identify and estimate

F (·) from the observed bids. Econometricians accept these results of auction theory.

We assume that observed bids are equal to their valuations for items in this example.

Furthermore, the econometric model inherits all of the settings of auction theory. Under

these settings, we can estimate the distribution of valuation, F (·), from the observed

bids. Observe T , independent and identical auctions of an identical item, with the

identical number of bidders, N , indexed by t{1, ..., T}. Let Bit be bidder i’s bid at

auction t which is observable for econometricians. Then, since each of bidder i’s bids

equals her willingness to pay (i.e., Bit = Vit), we gain the sample from the distribution,
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F (·). Therefore, the structural parameters of F (·) can be easily estimated from the

observed bid, Bit. For example, using the empirical distribution function, we have the

sample analogue of F (·), F̂ (·) as

F̂ (v) =
1

TN

T∑
t=1

N∑
i=1

1(Bit ≤ v).

1.1.2 Bayesian Econometrics

Econometricians often deal with models too complex to compute. In particular, frequen-

tist approaches, such as maximum likelihood estimation and least squares estimation,

require maximization or minimization of object functions; such optimizations often cause

computational difficulties. In contrast, Bayesian methods do not require maximization

procedures. Therefore, Bayesian approaches can contribute to the progress of econo-

metrics in various fields, especially when the econometric model is too complex. The

structural econometrics of auction data is no exception. Several studies use Bayesian

methods to circumvent difficulties in the literature of the structural estimation of auction

data.

As described above, the structural econometrics of the second-price, sealed-bid auc-

tions within the IPVP is made simply since the dominant strategy equilibrium bidding

functions are identity functions of bidders’ valuations and, hence, trivial functions for

econometricians. However, since the Bayesian Nash equilibrium bidding functions in

the first-price, sealed-bid auctions are complex and nonlinear functions of bidders’ val-

uations, the structural econometrics of the first-price, sealed-bid auctions is not made

simply.

Perhaps, one of the most famous problems in the literature of structural econometrics

of first-price, sealed-bid auctions is that a standard regularity condition that ensures the

asymptotic properties of the maximum likelihood estimator no longer holds. We review

this problem briefly.
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Consider that at first-price, sealed-bid auctions, each bidder submits a bid simulta-

neously. The participant with the highest bid wins the object and pays her own bid.

There are N potential bidders with risk-neutral preferences indexed by i = 1, ..., N .

Each bidder’s valuation for the object is denoted by Vi, which is an independent and

identically distributed random variable from the distribution, F (·;θ), where θ is a vec-

tor of parameters. The realization of bidder i’s willingness to pay is her own private

information. However, the distribution of Vi, F (·;θ), is common knowledge among all

participants. Under these assumptions, the equilibrium bidding functions for bidder i

with a valuation of Vi = v, β(v), is

β(v) = v −

∫ v
v [F (u;θ)]

N−1du

[F (v;θ)]N−1
,

where v denotes the lower bound of support of v.

The main difficulty is that the support of bids depends on parameters to be estimated,

θ. Let v̄ be the upper bound of support of v. Since β(v) is a strictly increasing function

with respect to v, the upper bound of support of bids is β(v̄). The upper bound of

support of bids, β(v̄), is computed by

β(v̄) = v̄ −

∫ v̄
v [F (u;θ)]

N−1du

[F (v̄;θ)]N−1

= v̄ −
∫ v̄

v
[F (u;θ)]N−1du. (since F (v̄;θ) = 1)

Therefore, β(v̄) depends on the unknown parameter, θ. Then, a standard regularity

condition that ensures the asymptotic properties of the maximum likelihood estimator

is violated.2

Donald and Paarsch (1993) and Donald and Paarsch (1996) proposed a pseudo max-

2Amemiya (1985) provides regularity conditions that ensure the consistency of extremum estimators.
In our case, it is difficult to show that the likelihood function converges to a non-stochastic function that
attains a unique global maximum value at true θ in probability uniformly over the parameter space.
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imum likelihood estimation that overcomes this difficulty. However, these estimators are

computationally burdensome. A simple alternative solution for this problem is to apply

the Bayesian method. Bayesian econometrics does not require the asymptotic theory,

since the Bayes rule justifies the inference using the Bayesian method. Furthermore,

thanks to the development of the Markov Chain Monte Carlo simulation method, the

computational burden of Bayesian inference can be relaxed considerably, in many cases.

Bajari and Hortaçsu (2003) utilized the Bayesian method to circumvent this problem in

the literature of structural estimation of second-price auctions within the common value

paradigm. In Chapters 2, 3, and 4, we used the Bayesian method to estimate structural

parameters.

1.1.3 Nonparametric (Semiparametric) Econometrics

One of the major criticisms of parametric models is that they are approximations of

the real process and lead to concerns about potential misspecifications. In particular,

since economic data, unlike natural science data, are usually not controlled, parametric

specifications often may be strong assumptions in econometrics. Structural econometrics

of auction data is no exception. In this literature, a typical structural parameter is the

distribution of a bidder’s valuation of an object. To the best of our knowledge, there

is no consensus among economists as to what distribution the buyer’s valuation should

follow. Obviously, we need nonparametric methods to overcome this problem.

Fortunately, in this literature, studies that focus on nonparametric identification and

nonparametric estimation methods are well developed. Athey and Haile (2007) provided

an excellent survey of the nonparametric (and semiparametric) structural estimation

of auction data. Most studies in this literature have been based on the following two

papers: Athey and Haile (2002) and Guerre et al. (2000) (hereafter GPV). Athey and

Haile (2002) discussed the nonparametric identification conditions in standard auctions.

They showed that the distribution of bidders’ valuations (viz., the structural parameters)

7



can be identified from observed bids in the independent private values model. GPV

provided a nonparametric estimation strategy for first-price, sealed-bid auctions. We

briefly review GPV’s estimation algorithm.

The settings are similar to the first-price, sealed-bid auction explained in the previous

subsection. The only difference is that we do not impose any parametric specifications

on the distribution of bidders’ valuations, F (·). Recall that the equilibrium bidding

function of bidder i with a valuation of Vi = v, β(v) is

β(v) = v −

∫ v
v [F (u)]

N−1du

[F (v)]N−1
. (1.1)

Then, if we have the inverse function of β(·), the distribution of bidders’ valuations can

be estimated from observed bids, since β(v) is a strictly increasing function of v. In

general, however, computing inverse function is very difficult.3 Therefore, GPV gave up

on trying to estimate the structural parameters from equation (1.1) directly.

Instead of equation (1.1), GPV used the following equation:

v = β(v) +
1

N − 1
· F (v)β

′(v)

f(v)
, (1.2)

where β′(·) is the derivative of β(·), and f(·) is the probability density function of

bidders’ valuations. Equation (1.2) can be derived from optimization problem of bidder

i.4 Let G(·) and g(·) be the cumulative distribution function and the probability density

function, respectively, of the bidder’s bid, b. Since b = β(v), we have G(b) = F (v) and

g(b) = f(v)/β′(v). Substituting these equations into equation (1.2), we have

v = b+
1

N − 1
· G(b)
g(b)

. (1.3)

3Bierens and Song (2012) estimated the distribution of bidders’ valuations directly using a sieve
approach.

4Note that the equilibrium function, β(·), satisfies equation (1.2). One can derive equation (1.2)
easily by differentiating both sides of equation (1.1), with respect to v.
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Note that each element in the right-hand side of equation (1.3) can be observed or

recovered from the observed data. Let Ĝ(·) and ĝ(·) be the sample analogues of G(·)

and g(·), respectively. Then, we obtain the pseudo values, v̂, from

v̂ = b+
1

N − 1
· Ĝ(b)
ĝ(b)

. (1.4)

For each observed bid, bit, we gain the corresponding pseudo values, v̂it, from equation

(1.4) for each i ∈ {1, ..., N} and t ∈ 1, ..., T , where index i denotes the bidder’s identity,

and index t denotes the observed auctions. Then, the kernel density estimator, with

trimming the boundary values of bids, enables us to gain the sample analogues of the

probability density function of the pseudo values, f̂(·). GPV showed the consistency of

the estimators and derived the optimal uniform convergence rate, which is slower than

the optimal rate when valuations vit were observed.5

Since implementing their estimator is simple, many papers apply their estimation

strategy. However, the nonparametric GPV estimator often faces two problems: the

curse of dimensionality and identifiability. The first difficulty of nonparametric estima-

tion like GPV’s is the curse of dimensionality, which stems from the dimensionality of

covariates. In particular, Hubbard et al. (2012) pointed out that even when there is no

covariate, the nonparametric estimator proposed in Li et al. (2002), which is an extension

of GPV’s estimator of first-price auctions within the affiliate private values paradigm,

suffers from the curse of dimensionality stemming from the number of bidders in the

first-price auctions within the affiliated private values paradigm. Hubbard et al. (2012)

proposed the semiparametric estimator, which is an extension of GPV and Li et al.

(2002). They utilized the parametric copula to capture the dependency of valuations

among bidders and succeeded in reducing the curse of dimensionality as it relates to the

5GPV did not derive the asymptotic distribution of their estimators. Marmer and Shneyerov (2012)
proposed a quantile-based nonparametric estimator, which is similar to GPV’s estimator. Their estimator
attains the optimal rate of the GPV estimator and has asymptotic normality.
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number of bidders.

The second problem of the nonparametric estimation is identifiability. As the econo-

metric model becomes complex, the structural parameters (e.g., the distribution of val-

uations) often cannot be nonparametrically identified from the observed data. Typical

examples are common value auctions and bidders with risk-averse preferences. Although

the common value auction model is an important theoretical model in auction theory,

little empirical research focuses on the common value model. The main reason is that

Athey and Haile (2002) showed that structural parameters cannot recovered nonpara-

metrically from the observed bids.6 Therefore, empirical studies such as that of Bajari

and Hortaçsu (2003) impose some parametric specifications in the literature of the struc-

tural estimation of auctions within the common value paradigm. For this same reason, in

Chapters 3 and 4, we impose the parametric specifications on the distribution of bidders’

types.

Considering bidders’ risk aversion also makes nonparametric identification of struc-

tural parameters difficult.7 The identification problem is simple, since the utility func-

tions are linear functions of valuations when we assume a risk-neutral preference of

bidders. When we consider risk-averse bidders, however, the identification problem be-

comes difficult. Since risk aversion only restricts the concave shape of the utility functions

with respect to valuations, the utility functions are not uniquely determined from the

observed bids, obviously. Lu and Perrigne (2008) and Campo et al. (2011) provided

semiparametric models for first-price auctions with risk-averse bidders and made esti-

mates assuming additional identification conditions. For a similar reason, Chapter 5 of

this thesis proposes a semiparametric estimation that is an extension of GPV’s for the

6Some papers have studied the identification condition of the common value auction model. For
example, Li et al. (2000) showed the identification under the additive separability of the common value
component. Février (2008) showed the identification of the common value auction model restricting the
shape of the density function of the common value. d’Haultfoeuille and Février (2008) proposed the
identification condition of the common value auction model, assuming the support of a private signal is
finite and varies depending on the common value.

7Guerre et al. (2009) investigated the nonparametric identification strategy for first-price auctions
with risk-averse bidders using exclusion restrictions.
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scoring auctions.

1.2 Auctions Focused on in the Thesis

As discussed in Section 1.1, various kinds of auctions are indispensable for our social

economy. However, in practice most auctions differ from the standard auction models

considered in auction theory. In this thesis, we focused on two sorts of auctions: online

auctions and scoring auctions. These two auction formats also differ from the typical

auction models studied in auction theory. In this section, we discuss the features of

online auctions and scoring auctions.

1.2.1 Online Auctions

With the emergence of online auction markets, auctions have become familiar places

where we can actually participate. In the online auction market, many people can

become buyers or sellers and trade items easily.

In online auctions, anonymous people can become both buyers and sellers. This may

lead to greater potential for Internet fraud related to online auctions. A typical example

of Internet fraud is that sellers do not send goods to winning bidders even though they

have received payment. For this reason, many online auction sites allow winning bidders

and sellers to leave feedback after each pair of users conducts a transaction. All of the

recorded ratings of all users are public information. This system is called the feedback

system. From this point of view, online auctions differ from the typical auctions in

auction theory. In Chapter 2, we focused on this issue.

Another difference between online auctions and typical auctions is the option of “buy

prices.” In online auction sites such as eBay, in addition to an auction, a seller can set a

fixed price and a bidder can purchase the object if she accepts the buy price. In online

auctions, therefore, bidders have to participate in auctions while observing the fixed
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prices. In Chapter 3, we proposed an empirical model of auctions with buy prices.

1.2.2 Scoring Auctions

Governments, as buyers of public goods, often choose suppliers using procurement auc-

tions. The percentages of governments’ expenditures for procurement auctions cannot

be ignored in the gross domestic product (GDP). In many countries, governments tend

to use the scoring auction format rather than the price-only auction.

The rules of price-only procurement auctions are simple. At price-only auctions, each

bidder submits a bid in a sealed envelope, and at some predetermined time, all of the

envelopes are opened. The participant with lowest bid wins the project contract, and

she fulfills the contract for the price she bids. The amounts of the bid determines the

winner in the price-only auctions.

In contrast, in scoring auctions, winners are determined not only by the amounts

of their bids. Other factors help determine the winners in scoring auctions. At scoring

auctions, each bidder submits a price-quality pair in a sealed envelope, and at some

predetermined time, all of the envelopes are opened. The participant with the lowest

score, which is calculated from the submitted price and the quality level, wins the project

contract. The winner receives the payment she bids and fulfills the contract, providing

the quality level she bids.8 The scoring rules (i.e., the method of calculating scores from

the submitted prices and qualities) have been published in advance. Thus, not only price

but also quality determines the winners in scoring auctions. Examples of quality include

noise level, completion time, and bidder experience.

A variety of forms of scoring rules are used in real-world public procurement. Some

U.S. states’ departments of transportation, for example, Delaware, Idaho, Oregon, Mas-

sachusetts, Utah, and Virginia, use quasilinear scoring rules. In quasilinear scoring

rules, the score, s, is computed by the difference between the payment, p, and the qual-

8These are called first score auctions in Chapter 5. In Chapter 5, other auction formats are considered
to compare the performance of the first score auctions.
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ity level, q (viz., s = p − q). On the other hand, Alaska, Colorado, Florida, Michigan,

North Carolina, and South Dakota use price-over-quality ratio rules. Price-over-quality

ratio scoring rules are also used in most public procurement scoring auctions in Japan.

In price-over-quality ratio scoring rules, the score, s, is computed by the dividing the

payment, p, and the quality level, q (viz., s = p/q).

In Chapter 5, we proposed an empirical model that covers various kinds of scoring

auctions, including quasilinear scoring rules and price-over-quality ratio scoring rules.

1.3 Organization of the Dissertation

1.3.1 Chapter 2: Inefficiency in Online Auctions

In Chapter 2, we estimated the inefficiency of online auctions. Online auctions can be

inefficient due to Internet fraud. A typical example of Internet fraud is when sellers do

not send goods to winning bidders, even though they have received payment. Therefore,

bidders always bear a risk of fraud, and this risk may lead to transaction failure. To

mitigate this risk, most online auction sites (e.g., eBay, and Yahoo!) utilize a feedback

system. All winning bidders and sellers can leave feedback after each pair of users

conducts a transaction. All of the recorded ratings are observable by all users before

they participate.

Many studies have examined the effect of reputation on winning bids. However, such

research mainly focuses on the effect that relates to the revenue of online auctions. We

focus on the effects of reputation that relate to not only the revenue but also the efficiency

of online auctions. Usually, a real-world auction is weakly efficient, in the sense that the

bidder with highest willingness to pay always wins the item at the auction without

reserve price. However, online auctions are not efficient because of Internet fraud. In

other words, a bidder with the highest valuation may fail to win the item if she estimates

the possibility of being defrauded to be relativity high. The main purpose of Chapter 2
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is to estimate the magnitude and the frequency of inefficiency in online auction markets.

In our empirical example, we use eBay PlayStation 3 auctions held in 2009. We

found that online auctions are inefficient with probability of more than 0.75. Namely, in

more than 75% of online auctions, the objects (PlayStation 3) are not awarded to the

bidders with the highest valuations. Besides, we found that the expected efficiency loss

is about $40. Since the market price of PlayStation 3 in 2009 was $400, the value of

estimated inefficiency is not small.

1.3.2 Chapter 3: Online Auctions with Buy Prices

One important difference between online auctions and the typical auction model in

auction theory is the buy price option. Most online auction sites allow sellers to set a

fixed buy price. In an auction with a buy price, the seller sets a fixed price, and a bidder

can purchase the item if he or she accepts the buy price. In other words, in auctions

with buy price options, buyers can receive the goods without going through an auction.

In online auctions with buy prices, bidders must participate in auctions while observing

the buy prices.

While many empirical studies have focused on the online auction market, most of

these studies ignore the buy prices. When we estimate the structural parameters in

the online auction model, ignoring the buy prices, the estimators may be incorrect. In

Chapter 3, we constructed a structural econometric model of online auction models with

buy prices.

Our empirical example is eBay mint coin auctions in 2013. We found that when we

ignore the buy prices, we underestimate the mean of bidders’ signals corresponding to

the value of an item and the effect on the signals of sellers’ positive rating. We computed

the optimal buy price that maximizes the sellers’ expected revenue using the estimated

parameters. The estimated optimal buy price is $53.20, which is higher than the average

buy price. We also conducted a revenue comparison. We compared the revenue between
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auctions with buy prices and those without buy prices. We found that the mean of the

revenue difference between auctions with optimal buy prices and auctions without buy

prices is $0.05.

1.3.3 Chapter 4: Bundling and Separate Sales in Online Auctions

In this paper, we focused on bundling auctions in the online auction market. Since there

are many buyers and many sellers in the online auction market, various forms of sales

are used in online auctions. In particular, some sellers often sell two or more items in

bundling auctions. However, other sellers sell the separately.

Many studies focus on bundling sales in theoretical literature. In contrast, few em-

pirical studies have researched bundling sales. In Chapter 4, we conducted an empirical

study using both the data of bundling auctions and separate auctions.

Our empirical example is eBay mint coin set auctions in 2014. In our data set, there

were two kinds of coin sets: 11-coin sets and 22-coin sets. We regarded 11-coin sets as

the separate item and 22-coin sets as the bundled item. We conducted some simulations

using the estimated parameters. We evaluated how aggressively bidders in separate

auctions bid and compared the revenue of bundling auctions and separate auctions.

We found that bidders in separate auctions will bid aggressively. Bidders in separate

auctions will bid higher than in bundling auctions by $2.4. For a revenue comparison, we

considered two scenarios: the independent signals case and the identical signals case. In

the independent signals case, we found that the expected revenue in bundling auctions

was higher than that in separate auctions by $0.37. In the identical signals case, we

found that the expected revenue in separate auctions was higher than that in bundling

auctions by $5.30.
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1.3.4 Chapter 5: Scoring Auctions

We established a structural estimation method of the scoring auction model that covers

a broad class of scoring rules, including the quasi-liner scoring rule and the price-over-

quality ratio rule.9 In many countries, when governments decide the suppliers of public

goods via procurement auctions, they often utilize scoring auctions rather than price-

only auctions. In scoring auctions, the winners are determined not only by the prices

but also by the quality that bidders bid. There are two typical scoring auction formats:

the quasi-linear scoring rule and the price-over-quality ratio rule.

Since in scoring auction models bidders’ types are often multi-dimensional, the model

often becomes complex. The complexity of the econometric model often obstructs econo-

metricians’ study of scoring auctions. We propose a semiparametric model for identifying

the joint distribution of biddersE multi-dimensional private signals from scoring auction

data and conduct an empirical experiment to quantify the welfare impact of changing of

formats and scoring rules for both bidders and the procurement buyer.

The data used in our empirical illustration contain the bid results of procurement

auctions for civil engineering projects from 2010 to 2013 by the Ministry of Land, In-

frastructure, and Transportation (MLIT) in Japan. We found that changing the auction

format has a very small impact on welfare; under the price-over-quality ratio scoring

rule, the procurement buyer has an approximately 0.003 to 0.004 percent lower utility

(higher exercised score) when using first score auctions rather than the second score

auctions, whereas the winning bidder earns a payoff greater by approximately 0.15 to

0.26 percent in first score auctions, as opposed to second score auctions. Furthermore,

with a well-designed quasi-linear scoring rule, we found that the procurement buyer im-

proves utility by approximately 0.29 percent, while bidders earn lower payoffs by 3.4

to 4.2 percent. In addition, the outcome of a price-only auction is compared with that

of currently used price-over-quality ratio first score auctions. In simulated price-only

9This is a joint work with Jun Nakabayashi.
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auctions, bidderspayoffs vary, ranging from -41.2 to 1.34 percent, whereas the procure-

ment buyer’s utility is consistently 1 to 36 percent lower than with a price-over-quality

ratio first score auction. These results suggest that a procurer can obtain an almost

equivalent (slightly lower) gain with the use of a price-only auction with a well-designed

fixed quality standard.
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Chapter 2

Estimating Inefficiency in Online

Auctions

2.1 Introduction

Many people use consumer-to-consumer electronic commerce sites to buy (or sell) goods.

A common example of this is the online auction, in which a consumer posts an item for

sale and other consumers bid to purchase it. In the third quarter of 2008, eBay, the

largest online auction marketplace, hosted 700 million listings with $14 billion in goods

trading and had 370 million registered users around the world.1 In light of this, several

studies have focused on online auctions. Examples include Melnik and Alm (2002),

Livingston (2005), Houser and Wooders (2006) and Resnick et al. (2006) in reputation

effects on sellers’ revenue, Bajari and Hortaçsu (2003) in common value auction and

winners’ curse, Bapna et al. (2008) and Giray et al. (2009) in consumer surplus, Adams

(2007) in demand in eBay, Hossain and Morgan (2005) in revenue equivalence theorem

and Roth and Ockenfels (2002) in snipe bidding.

However, the growth of online auction markets also leads to greater potential for

1See eBay Inc. Reports Third Quarter 2008 Results (http://investor.ebay.com).
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Internet fraud related to online auctions. A typical example of this is that sellers do not

send goods to winning bidders even though they have received payment. Bidders always

bear a risk of fraud, and this risk may lead to transaction failure. To mitigate this risk,

many online auction sites (e.g., eBay, Amazon, and Yahoo!) allow winning bidders and

sellers to leave feedback after each pair of users conducts a transaction. In addition, all

the recorded ratings are observable by any users before they participate in an auction.

This system is called the feedback system or the reputation system.

Many researchers have studied the effect of reputation on winning bids. Melnik and

Alm (2002) applied the Tobit model and estimated the impact of the seller’s reputation

on the willingness of bidders to bid on items using data concerning coin sales as an

example. They found that the seller’s reputation has a positive but small impact on the

price. Livingston (2005) examined the effect of the seller’s reputation on the bidders’

decision to participate and the willingness of bidders to bid on an item. Empirical results

using data for golf clubs sold show that the seller’s reputation has a positive impact on

both the bidders’ decision to participate and the willingness of bidders to bid on an

item. Houser and Wooders (2006) assumed a log linear relationship between the bids

and the reputation of the seller, and examined the effect of reputation on a winning bid.

They reported that the seller’s reputation has a statistically significant effect on the

winning bid, but that the bidder’s reputation does not. Resnick et al. (2006) conducted

a controlled field experiment. In the experiment, the same honest seller sold to several

bidders under his or her regular identity, which has a strong reputation, and under a

new seller identities. Their results show that the established identity fared better; the

difference in the bidder’s willingness to pay was 8.1% of the selling price.

However, few studies have tried to examine the effect of reputation on the efficiency

of the online auction. Usually, a “real-world” auction is a weakly efficient mechanism

(i.e., the bidder with highest valuation always wins the item at auction without reserve
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price) within the independent private values (IPV) paradigm.2 In an online auction,

however, the bidder with the highest valuation can fail to win the item if he estimates

the possibility of being defrauded to be relativity high. Therefore, an online auction can

be inefficient.

Though efficiency is an important consideration in market (or auction) design (e.g.,

Maskin (2003)), few attempts have been made to estimate the efficiency losses in online

auction markets. One possible explanation for the lack of attention is the difficulty of

identifying the inefficiency. To identify the inefficiency, we usually need the data from

efficient auctions to compare against that from online auctions. Unfortunately, these

data are often unavailable.

In this paper, we estimate the inefficiency in online auctions using only online auction

data. Dividing the private values in online auctions into the evaluation of risks and the

(original) willingness to pay, we estimate the distributions of private values using only

online auction data sets under our identification conditions. Consequently, we estimate

the inefficiency without the data of counterfactual efficient auctions. To the best of

our knowledge, this is the first empirical attempt to evaluate the inefficiency in online

auctions.

Our empirical example is eBay PlayStation 3 auctions held in 2009. We found that

bidders’ confidence increases with the number of positive ratings and decreases with the

number of negative ratings. These results are plausible for our intuition. Furthermore,

using the values of estimated parameters, we estimate the inefficiency and the revenue

difference. As discussed in Section 2.2, the efficiency loss can be computed by the

difference between the total surplus of the efficient auctions and the total surplus of the

online auctions. The inefficiency is estimated at $43.5. The probability of the inefficient

online auctions is estimated at 0.762. Thus, 76.2% online auctions are inefficient auctions.

The revenue difference between the efficient auctions and the online auctions is estimated

2Generally, real-world auctions can be inefficient as well as online auctions. For example, auctions
with asymmetric bidders may be inefficient (e.g., Maskin and Riley (2000)).
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at $83.0.

The rest of the paper is organized as follows. In Section 2.2, we present our inefficient

online auction model. In addition, we discuss the relationship between the inefficiency

and the total surplus in online auctions. In Section 2.3, we discuss how to estimate

the structural parameters in our inefficient online auction model described in Section

2.2. In this paper, we impose parametric specifications for the structural model and use

the Bayesian Markov Chain Monte Carlo (MCMC) method to estimate the structural

parameters. After explaining the estimation strategy, we discuss how to estimate the

inefficiency of an online auction market. Monte Carlo experiments are conducted in

this section. In Section 2.4, we explain the eBay PlayStation 3 auction data used in

our empirical example. We present the estimation results from the eBay PlayStation

3 auction data. In Section 2.5, we show the estimation result of inefficiency in eBay

PlayStation 3 auctions. Section 2.6 concludes.

2.2 The Model

We develop a theoretical model that describes the ex post heterogeneity of bidders’

evaluations for the risk of default. Furthermore, this model is useful for our empirical

analysis to estimate the efficiency loss in online auction markets. Throughout this paper,

we represent random variables in uppercase letters and their realizations in lowercase

letters.

2.2.1 Theoretical Model

We observe L online auctions. In each auction l ∈ {1, 2, · · · , L}, there are Nl risk neutral

potential bidders and a seller. The number of potential bidders, Nl is a random variable

and is an exogenous variable. At the beginning of auction l, seller l offers for sale a single

item and sets a reserve (or starting) price rl. Bidders submit their bids, and the bidder
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with the highest bid wins the object and pays the second highest bid. After auction l,

seller l decides whether to cooperate or to deceive. If he cooperates, then the winning

bidder receives the good from the seller. On the other hand, if he deceives, then the

winning bidder receives nothing or a low-quality good (e.g., a defective good, a fake good

and so on) from the seller. After the transaction, the winning bidder leaves a positive

report if seller l cooperates and leaves a negative report if seller l deceives.3

We focus on the symmetric independent private values (IPV) model. Each bidder

i ∈ {1, 2, · · · , Nl} has her private value vli which represents her willingness to pay for the

item at auction l and is the realization of a random variable Vli. These private values

are i.i.d. random draws from a probability distribution F (·) with density f(·). The

support of F (·) is denoted by [v, v̄] where v is a positive number. Each bidder i knows

the realization of her own valuation vli but does not know that of others. Instead, the

probability distribution F (·) is common knowledge among all bidders at auction l. Each

bidder i discounts her willingness-to-pay vli in online auction l because of the risk of

Internet fraud. Observing the ratings of seller l, each bidder i at auction l estimates the

risk that seller l deceives and discounts the willingness-to-pay vli. Let Dli ∈ [0, 1] denote

the risk-discount factor. The risk-discount factor Dli is an i.i.d. random draw from

a probability distribution Q(·|Xl) with density q(·|Xl), where Xl is the auction-specific

covariate vector. The auction-specific covariate vectorXl contains the number of positive

ratings and that of negative ratings of the seller l. The support of Q(·|Xl) is [0, 1] for any

auction-specific covariate vector Xl. Each bidder i knows the realization of her own risk-

discount factor dli but does not know that of others. Instead, the probability distribution

Q(·|Xl) is common knowledge for any auction-specific covariate Xl among all bidders at

auction l. We assume that bidder i’s valuation Vli and her risk-discount factor Dli are

mutually independent. In addition, we make an assumption on the risk-discount factor

3On eBay, winning bidders can leave either “Positive,” “Neutral,” or “Negative” reports. In addition,
winning bidders can leave comments about sellers. For the sake of simplicity, we assume that winning
bidders can leave only positive or negative reports. In our empirical example, the number of negative
ratings is the sum of the number of neutral ratings and that of negative ratings.
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Dli.

Assumption 1. The risk-discount factor Dli converges in probability to a constant d∗ ∈

[0, 1] as the number of ratings of seller l goes to infinity. Furthermore, the valued of d∗

can be computed from the number of positive ratings and that of negative ratings.

Assumption 1 implies when the number of ratings of seller l is sufficiently observed,

all bidders’ estimates for the risk of Internet fraud coincide. This assumption seems to

be plausible since the number of ratings reflects the actions of seller l and the decisions

of seller l are exogenously determined in our model.

We assume risk neutral bidders. Then, the utility function of bidder i is denoted by

u(bli, bl−i|vli, dli) =


dlivli −maxj ̸=i blj if bli = max{bl1, · · · , blIl}

0 otherwise.

where bli is bidder i’s bid at auction l and bl−i represents the vector of bids at auction

l except for bidder i’s bid. Let Zli ≡ DliVli, and let G(·) and g(·) be the cumulative

distribution function and the probability density function of Zli, respectively. Hereafter,

Zli is referred as bidder i’s “risk-discounted” willingness to pay or bidder i’s “risk-

discounted” valuation. Then, ignoring the possibility of a tie, we have the following

result.

Proposition 1. A bidding strategy profile {zl1, ..., zlNl
} is a Bayesian Nash equilibrium.

This result is similar to Houser and Wooders (2006). While they considered the

subjective probability instead of the risk-discount factor, and they assumed it is common

among all bidders at auction l, the realization of bidders’ risk-discount factor is different

in our model. Under such an equilibrium, the bidder with the highest risk-discounted

value zl(1) wins, and the winning bid wl is given by wl = zl(2), where Zl(i) is the i-th

largest order statistic. That is, Zl(1) ≥ Zl(2) ≥ · · · ≥ Zl(Nl).
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2.2.2 Efficiency Loss

In this subsection, we discuss why online auctions can be inefficient and discuss how to

calculate the efficiency losses in online auctions.

Suppose all buyers and a seller in an online auction use a real-world auction to trade

the object instead of an online auction. Notice that since all the participants trade in a

public and face-to-face situation, none of the buyers must worry about the risk of being

defrauded by the seller. Thus, each bidder’s risk-discount factor Dli (i ∈ {1, · · · , Nl})

equals one with probability one in real-world auctions. Then, the bidder with the highest

private value vl(1) wins, and the winning bid wl is given by wl = vl(2) where Vl(i) is the

i-th largest order statistic and vl(i) denotes the realization of Vl(i). Therefore, real-world

auctions are efficient.

In contrast to a real-world auction, the bidder with the highest risk-discounted private

value always wins in an online auction. This does not always imply that the bidder with

highest private value wins. Let Id(·) denote the mapping from the bidder’s private value

to her identity. That is,

Id(ali) = i, (ali = vli or zli).

Then, an online auction l is inefficient if and only if Id(vl(1)) ̸= Id(zl(1)). Furthermore,

we characterize the inefficiency using the valuations v. Let vl∗ denote the “original”

private value of bidder Id(zl(1)) (i.e., vl∗ = vlId(zl(1))). Then, the efficiency loss occurs

only when vl(1) ̸= vl∗ holds. In particular, since vl(1) ≥ vl∗ always holds, we gain the

following result:


vl(1) − vl∗ > 0 if efficiency loss occurs, and

vl(1) − vl∗ = 0 otherwise.

Actually, since we cannot observe the realized value of valuations and risk-discount

factors; therefore, we must estimate the value of vl(1) − vl∗.
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2.2.3 Relation between Efficiency and Surplus

Online auction l becomes inefficient if and only if vl(1) > vl∗ holds. However, the inter-

pretation of vl(1) − vl∗ itself is not clear. We discuss the relation between efficiency loss

and total surplus and show that vl(1) − vl∗ can be interpreted as the difference of total

surplus.

First, we consider the total surplus of real-world auctions. Since the winning bid

of real-world auction equals the second highest private value vl(2), the surplus of the

winning bidder is vl(1) − vl(2). Analogously, the surplus of the seller is vl(2) − vl0, where

vl0 is seller l’s valuation for the object. Therefore, the total surplus of real-world auction

l, TSlRA is denoted by

TSlRA = vl(1) − vl0. (2.1)

We gain the total surplus of online auctions in the same manner. Since the original

valuation of winning bidder in online auction l is denoted by vl∗, the surplus of the

winning bidder is given by vl∗− zl(2). Note that the winning bid of online auction equals

to the second highest risk-discounted valuation. Analogously, the surplus of the seller is

zl(2) − vl0. Therefore, the total surplus of online auction l, TSlOA is denoted by

TSlOA = vl∗ − vl0. (2.2)

Then, from equation (2.1) and equation (2.2), we have the difference of total surplus

as follows:

TSlRA − TSlOA = vl(1) − vl0 − (vl∗ − vl0)

= vl(1) − vl∗. (2.3)

The seller’s private value vl0 is difficult to estimate. Fortunately, however, the seller’s

private value vl0 is eliminated in equation (2.3). Consequently, the value of vl(1) − vl∗
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can be interpreted as that of the difference in total surplus.

2.3 Estimation

2.3.1 Identification

Though efficiency is an important consideration in auction theory, few attempts have

been made to estimate efficiency losses in online auction markets. One possible explana-

tion for this lack of attention is the difficulty of identifying the inefficiency. In our model,

to identify the inefficiency, we must identify the distribution of willingness to pay, Vli.

However, neither the distribution of valuations, F (·), nor the distribution of risk-

discount factors, Q(·), is identified nonparametrically. Recall that Zli = DliVli. Let

D′
li ≡ ϵDli and V

′
li ≡ ϵ−1Vli where ϵ ∈ (0, 1). Then, we have

Zli = DliVli

= (ϵ−1D′
li)(ϵV

′
li)

= D′
liV

′
li.

Therefore, even if the distribution of risk-discounted valuation, G(z), is identified, nei-

ther V nor D is identified. Therefore, we need additional assumptions to identify the

distribution of valuations, F (·), and the distribution of beliefs, Q(·), separately.

Assumption 1 is the key assumption of our identification strategy. Since both Xl and

Yl are observable for econometricians, the valued of d∗ is also known to econometricians.

If d∗ is known, and if the distribution of risk-discounted valuation, G(·), is identifi-

able, since Zli = d∗Vli, the distribution of “original” valuation, F (·), is also identifiable

nonparametrically as the number of ratings goes to infinity.

Once F (·) is recovered, then the distribution of risk-discount factor, QXl,Yl
(·), is also

identified for every finite Xl and Yl. Let Z̃li, D̃li, and Ṽli denote the logarithm of Zli,
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Dli and Vli respectively. Then, since Zli = DliVli, we have Z̃li = D̃li + Ṽli. That is, Z̃li

is the sum of two independent random variables. Therefore, we have

ψZ̃ = ψD̃ψṼ , (2.4)

where ψZ̃ is the characteristic function of Z̃li, ψZ̃ is the characteristic function of D̃li,

and ψZ̃ is the characteristic function of Ṽli. Since the distribution of Z̃li is identified from

the standard result when the number of potential bidders is known, the characteristic

function of Z̃li, ψZ̃ is also recovered from the data set. Since F (·) is recovered, the

characteristic function of Ṽli, ψṼ is also recovered. Therefore, the characteristic function

of D̃li, ψD̃ is recovered from equation (2.4). Since the characteristic function of D̃li

is recovered, the distribution of D̃li is identified. As a result, the distribution of risk-

discount factor Dli, Q(·|Xl, Yl), is identified for every Xl < ∞ and Yl < ∞. Therefore,

we have the following result.

Proposition 2. Suppose Q(·|Xl = 0, Yl = 0) is a non-singular distribution whose sup-

port is [0, 1]. Suppose that the distribution of discounted willingness to pay, G(·) is

identifiable. Then, both the distribution of willingness to pay F (·), the distribution of

belief Q(·|Xl, Yl) and efficiency loss Vl(1) − Vl∗ are identified at infinity (i.e., Tl → ∞).

So far, we assume that the distribution of risk-discounted valuation, G(·), is iden-

tifiable. If the number of potential bidders, Nl is observable, then G(·) is identified

in our model. 4 Unfortunately, the number of potential bidders, Nl is not observed

in eBay auctions. When the number of potential bidders, Nl is not known, the distri-

bution of risk-discounted valuation, G(·), is not identified from only winning bids wl

nonparametrically.

Several papers consider the identification of the auction model with an unknown

number of bidders. First, Guerre et al. (2000) assume the number of potential bidders,
4For example, Donald and Paarsch (1996) consider identification of auction model in parametric

setting and Athey and Haile (2002) study identification in nonparametric setting.
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N , is unknown for econometricians but is constant among all auctions. Under their

assumption, they show that the distribution of valuations (i.e., G(·) in our model) is

identifiable. Song (2004) considers the identification and estimation of eBay auctions

with an unknown number of bidders. She shows that the distribution of valuations

(i.e., G(·) in our model) is identifiable from observation of any two valuations for which

rankings from the top are known. Using the second and third highest bids in eBay

university yearbook auctions, she estimates the distribution of valuations by the semi-

nonparametric maximum likelihood estimation method proposed by Gallant and Nychka

(1987). An et al. (2010) study nonparametric identification and estimation of first-price

auction models with an unknown number of bidders. They develop a nonparametric pro-

cedure for recovering the distribution of bids using instruments that exogenously affect

the number of potential bidders. Shneyerov and Wong (2011) consider nonparametric

identification of first-price and Dutch auction models when the number of potential bid-

ders is unobservable. Although Song (2004) and An et al. (2010) focus on symmetric

independent private values models, they study identification of asymmetric IPV models.

In this paper, we apply Guerre et al. (2000)’s identification strategy to recover the distri-

bution of risk-discounted valuation, G(·). That is, assuming that the number of potential

bidders, N is constant among auctions, we recover the distribution of risk-discounted

valuation, G(·). Then the identification of efficiency loss follows from Proposition 2.

2.3.2 Estimation Procedure

From Proposition 2, if G(·) is identified, both the distribution of original valuations, F (·),

and the distribution of beliefs, Q(·), are also identified as the number of ratings goes to

infinity. Actually, the number of auctions seller l has held, the number of ratings is finite

for each l ∈ {1, ..., L}. Therefore, we must assume alternative conditions. Instead of

the identification condition described above, we assume each bidder i does not discount

her original valuation Vli if seller l is a PowerSeller. In other words, Dli = 1 if seller l
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is a PowerSeller. PowerSellers receive many positive ratings but few negative ratings.

Almost all PowerSellers in our data set gain more than 500 positive ratings.5

In this paper, we impose a parametric specification on the distribution of valua-

tion, F (·), and the distribution of belief, Q(·).6 We apply the Bayesian Markov Chain

Monte Carlo (MCMC) simulation method to estimate the parameters. We assume that

valuation Vli follows the gamma distribution. That is, we assume

Vli ∼ i .i .d .Ga(α, β).

Furthermore, given auction-specific covariates, we assume that risk-discount factor Dli

follows the truncated normal distribution with support [0, 1]. That is,

Dli|Xl ∼ i .i .d .Trunc-N[0,1](µl, σ
2
l )

where Xl is the auction-specific covariates and µl = γ ′Xl and σl = exp(δ′Xl). As

described in Section 2.2, bidder l’s risk-discount factor Dli depends on the positive and

negative ratings of seller l. Therefore, the number of positive ratings and the number of

negative ratings are plausible covariates.

First, we estimate the parameters of gamma distribution, α and β. Notice, since we

assume that Dli = 1 for each bidder i if seller l is a PowerSeller, and since Zli = DliVli,

g(·) andG(·) are equal to f(·) and F (·), respectively, if seller l is a PowerSeller. Therefore,

the likelihood of winning bids is

L(w1, ..., wL|α, β) =
L∏
l=1

 N

N − 2 1 1

 [1− F (wl|α, β)]f(wl|α, β)[F (wl|α, β)]N−2,

(2.5)

5In Section 2.4, we explain “PowerSeller” in detail.
6The distributions F (·) and Q(·) can be estimated nonparametrically using the decomposition tech-

nique. However, nonparametric estimation can be computationally burdensome.
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where N is the number of potential bidders. Note that letting nl be the number of

active bidders, which is observable for econometricians, we can estimate N consistently

by N̂ = maxn1, ..., nL. Therefore, without too much loss of generality, we can assume

that N is given.

For auctions in which sellers are not PowerSellers, belief Dli ̸= 1. Using the distri-

bution of risk-discounted valuations, G(·), we have the likelihood function

L(w1, ..., wL|α, β, µl, σl) =
L∏
l=1

 N

N − 2 1 1

 [1−G(wl|α, β, µl, σl)]g(wl|α, β, µl, σl)

× [G(wl|α, β, µl, σl)]N−2.

(2.6)

Unfortunately, the probability density function g(·) has no closed-form expression. Using

q(·) and f(·), g(·) can be described as

g(w) =

∫ 1

0

1

d
f
(w
d

)
q(d)dd.

Similarly, using q(·) and F (·), G(·) can be described as

G(w) =

∫ 1

0
F
(w
d

)
q(d)dd.

Therefore, we can compute the probability density function, g(·), and the probability

distribution function, G(·), by numerical integration.

The goal of this study is to estimate the efficiency loss of online auctions. The ef-

ficiency loss of online auctions can be computed from equation (2.3). The distribution

of original valuation Vli, F (·), can be estimated from the procedure described above.

Therefore, the distribution of the largest valuation Vl(1) can be recovered from the es-

timated distribution of original valuation Vli, F̂ (·). The distribution of risk-discounted
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valuation Zli, G(·), can also be obtained. As explained above, the distribution function

of risk-discount factor, Q(·), can be recovered from the estimated distribution function

of risk-discounted valuation Zli, Ĝ(·), and the estimated distribution function of original

valuation Vli, F̂ (·). Since the distribution of risk-discount factor Pli, Q(·), and the dis-

tribution of risk-discounted valuation Zli, G(·), can be estimated, the distribution of Vl∗

can be recovered from the estimated distributions Q̂(·) and Ĝ(·). Concretely, the distri-

bution of efficiency loss defined in equation (2.3) can be obtained by the Monte Carlo

method. First, generate random draws v
(s)
1 , ..., v

(s)
N and p

(s)
1 , ..., p

(s)
N from the estimated

distributions F̂ and Q̂. Then compute the maximum value v
(s)
(1) ≡ max{v(s)1 , ..., v

(s)
N }.

Similarly, compute z
(s)
(1) ≡ max{p(s)1 v

(s)
1 , ..., p

(s)
N v

(s)
N }. Calculate the realization of effi-

ciency loss v
(s)
(1) − v

(s)

Id(z
(s)
(1)

)
. Iterate this procedure until s becomes a large number, S.

2.3.3 Simulation Experiment

We estimate the parameters of our model using simulation data. The number of observed

auction markets is L = 750. The number of observed auctions with a PowerSeller

is L1 = 300 and the number of auctions with a non-PowerSeller is L2 = 450. In our

simulation experiments, the number of potential bidders, N is equal to 5 for all auctions.

We draw the valuations V from gamma distribution with parameters 6 and 2.

Analogously, we draw the risk-discount factor D from the truncated normal distribu-

tion, Trunc-N[0,1](µl, σl). The parameters of truncated normal distribution are given by

µl = γ1 + γ2 ·Pos.Rep.l + γ3 ·Neg.Rep.l and σ2l = exp(δ1 + δ2 ·Pos.Rep.+ δ3 ·Neg.Rep.).

The true values of γ and δ are

γ1 = 0.5, γ2 = 0.1, γ3 = −0.15,

δ1 = −1.0, δ2 = 0.17, and δ3 = −0.3.
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The prior distributions of gamma parameters α and β are

α ∼ N(0, 1000) and β ∼ N(0, 1000).

The prior distributions of the parameters of truncated normal distribution, γ and δ are

γ ∼ N(0, 1000I) and δ ∼ N(0, 1000I).

We apply the random walk-based MH algorithm to compute the posterior distribution

of parameters. The number of iteration is 70000, and burn-in period is 10000.

Table 2.1 shows p-values of the convergence diagnostics for the MCMC (CD) and

inefficiency factors.7 All p-values of the convergence diagnostics are more than 0.01.

Furthermore, the values of the inefficiency factor values are sufficiently low. The ineffi-

ciency factors are 63.06 to 228.63, which implies that we would obtain the same variance

of the posterior sample means from 300 uncorrelated draws, even in the worst case.

Hence, we conclude that the sample paths of estimated parameters converge to posterior

distributions.

Parameter Covariate (Coefficient Parameter) CD Inefficiency factor

α − 0.04 228.63
β − 0.04 228.42
µ Const (γ0) 0.30 98.96

Pos.Rep. (γ1) 0.98 126.66
Neg.Rep. (γ2) 0.51 133.84

σ2 Const (δ0) 0.27 104.88
Pos.Rep. (δ1) 0.65 63.06
Neg.Rep. (δ2) 0.20 64.67

Table 2.1: The convergence diagnostics for the MCMC (CD) and the inefficiency factors
for the simulation data

7The CD test statistic tests the equality of the means of the first part and last part of the sample
path. The definition of inefficiency factor is 1 + 2

∑∞
k=1 ρ(k), where ρ(k) is the sample autocorrelation

at lag k.
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The result is shown in Table 2.2. Our estimator contains the true values in a 95%

credible interval. We conclude that our estimator performs well.

Parameter Covariate (Coefficient Parameter) True Mean SD 95% credible interval

α − 6.00 5.89 0.50 (4.90, 6.93)
β − 2.00 1.92 0.16 (1.61, 2.25)
µ Const (γ0) 0.50 0.45 0.05 (0.34, 0.53)

Pos.Rep. (γ1) 0.10 0.09 0.01 0.07, 0.12)
Neg.Rep. (γ2) −0.15 −0.13 0.02 (−0.17,−0.11)

σ2 Const (δ0) −1.00 −1.12 0.27 (−1.63,−0.58)
Pos.Rep. (δ1) 0.17 0.20 0.04 (0.13, 0.29)
Neg.Rep. (δ2) −0.30 −0.34 0.04 (−0.43,−0.26)

Table 2.2: Posterior inferences for the simulation data

2.4 Empirical Examples

2.4.1 Data

Our empirical example is auctions of PlayStation 3 held on eBay in 2009. Data were

collected from 730 completed eBay auctions from June 10 through August 26, 2009.

Auctions with fewer than two actual bidders were dropped, since there are no competi-

tions with no bidder or one bidder. Since our model does not account for the use of the

“Buy-It-Now” option, auctions in which the item was sold with the Buy-It-Now option

were dropped. Consequently, 520 auctions were used to estimate the inefficiency of eBay

PlayStation 3 auctions.

A PlayStation 3 auction is an excellent example for estimating the inefficiency of

online auctions for at least two reasons. First, PlayStation 3 is a relatively high-value

item. In the United States, the market price of PlayStation 3 was about $400 in 2009.

Therefore, bidders would care about the risk of being defrauded by sellers. Second,

PlayStation 3 is a homogeneous item. For example, the color of almost all PlayStation

3s is black. Furthermore, we collected only auctions in which the condition of the
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PlayStation 3 was new. Auctions for used PlayStation 3s are excluded. Therefore, we

can estimate the distribution of valuation, F (·), with few covariates.

Table 2.3 provides the summary statistics. The first column describes variables.

“Winning bid” is the transaction price and second highest bid in the eBay auction.

Note that the market price of PlayStation 3 was about $400 in 2009. Therefore, winning

bidders could get a PlayStation 3 in eBay auction for $70 less than the market price on

average. “Starting price” is the price a seller sets at the beginning of an auction. All

bids must be higher than the starting price. “Positive ratings” denotes the number of

positive ratings a seller receives. “Negative ratings + Neutral ratings” is the sum of the

number of negative ratings and the number of neutral ratings a seller receives. Usually,

the number of neutral ratings and the number of negative ratings are small (see the mean

value). We regard neutral ratings as negative ratings. “Number of actual bidders” is the

number of participants who actually bid at auction l. Since bidders whose valuation is

lower than the starting price cannot bid, the number of actual bidders is less than that

of potential bidders. “Days” denotes the duration that auction l was held.

Mean Median Std Max Min

Winning bid 328.60 330.00 28.59 405.01 177.50
Starting price 79.92 15.99 98.37 325.00 0.01
Positive ratings 250.60 26.00 1135.97 21752.00 0.00

Negative ratings + Neutral ratings 2.94 0.00 13.19 263.00 0.00
Number of actual bidders 10.31 10.00 3.83 21.00 3.00

Days 3.54 3.00 2.41 17.00 1.00

Table 2.3: Descriptive Statistics (# of obs. = 520)

Next, we present descriptive statistics of PowerSellers in Table 2.4. PowerSeller

status is an award for sellers on eBay. Only sellers who have sold many items and receive

mostly positive ratings can become PowerSellers. Most PowerSellers receive more than

one hundred positive ratings. Indeed, the mean value of positive ratings is 796.83. To

compare PowerSellers with non-PowerSellers, we provide the summary statistics of a
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data set excluding PowerSellers in Table 2.5. The mean value of positive ratings of non-

PowerSellers is 39.81. Therefore, PowerSellers receive more positive ratings than non-

PowerSellers. The winning bids in PowerSellers’ auctions tend to be higher than those

in non-PowerSellers’ auctions. Most notably, the minimum value of transaction prices in

PowerSellers’ auctions is much higher than that in non-PowerSellers’ auctions. There are

few differences in the number of actual participants. However, since the starting prices

in PowerSellers’ auctions tend to be lower than those in non-PowerSellers’ auctions,

the number of potential bidders in PowerSellers’ auctions may be lower than that in

non-PowerSellers’ auctions.

Mean Median Std Max Min

Winning bid 336.04 335.00 23.51 405.01 266.99
Starting price 35.50 15.95 63.76 313.00 0.01
Positive ratings 796.61 306.00 2041.94 21752.00 12.00

Negative ratings + Neutral ratings 8.66 5.00 23.89 263.00 0.00
Number of actual bidders 11.11 11.00 3.33 21.00 3.00

Days 2.50 1.00 2.09 7.00 1.00

Table 2.4: Descriptive Statistics (PowerSellers, # of obs. = 144)

Mean Median Std Max Min

Winning bid 325.72 329.65 29.86 395.00 177.50
Starting price 97.09 49.95 103.94 325.00 0.01
Positive ratings 39.87 14.00 160.17 2892.00 0.00

Negative ratings + Neutral ratings 0.73 0.00 2.02 31.00 0.00
Number of actual bidders 10.00 10.00 3.96 21.00 3.00

Days 3.94 3.00 2.40 17.00 1.00

Table 2.5: Descriptive Statistics (Non-PowerSellers, # of obs. =376 )

New entrants are the users who have registered with eBay within one month. De-

scriptive statistics of new entrants are provided in Table 2.6. Both the mean of“Positive

ratings” and the mean of “Negative ratings + Neutral ratings” are less than one.8 The

8The definition of new entrant is the users who have registered with eBay within a month. Thus,
some new entrants have sold items and gained ratings.
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mean of the winning bids of new entrants’ auctions is 309.14. Since the mean value of

winning bids using all data is 328.60, new entrants earn relatively small profits.

Mean Median Std Max Min

Winning bid 309.14 310.00 27.85 395.00 235.00
Starting price 93.61 65.00 91.66 300.00 0.99
Positive ratings 0.28 0.00 1.20 9.00 0.00

Negative ratings + Neutral ratings 0.02 0.00 0.13 1.00 0.00
Number of actual bidders 9.71 9.00 3.50 18.00 3.00

Days 3.66 3.00 1.69 10.00 3.00

Table 2.6: Descriptive Statistics (New Entrants, # of obs. =61 )

2.4.2 Estimation Results

We estimate the structural parameters using eBay PlayStation 3 data. We assume the

valuation Vli follows the gamma distribution. That is,

Vit ∼ i .i .d .Gamma(α, β),

where both α and β are the parameters of gamma distribution. Similarly, the distri-

bution of each bidder’s risk-discount factor D is assumed to be the truncated normal

distribution. That is,

Dit ∼ i .i .d .N[0,1](µl, σ
2
l ),

where µl = γ0 + γ1 · Pos.Rep.l + γ2 · Neg.Rep.l and σ2l = exp(δ0 + δ1 · Pos.Rep.l + δ2 ·

Neg.Rep.l).

We generate random samples from the posterior distributions by the random walk-

based MH algorithm. The number of iteration is 800000, and the burn-in-period is

10000. Figure 2.1 presents sample paths of the estimated parameters.
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Figure 2.1: Sample path of the gamma parameters (α and β) and the truncated normal
parameters (γ = (γ0, γ1, γ2) and δ = (δ0, δ1, δ2))

Table 2.7 shows p-values of the convergence diagnostics for the MCMC (CD) and

inefficiency factors. All p-values of the convergence diagnostics are more than 0.01.

Moreover, the values of the inefficiency factor values are sufficiently low. The inefficiency

factors are 187.7 to 1220.6, which implies that we would obtain the same variance of the

posterior sample means from 650 uncorrelated draws, even in the worst case.
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Parameter Covariate (Coefficient Parameter) CD Inefficiency factor

α − 0.80 1051.70
β − 0.80 1051.80
µ Const. (γ0) 0.43 1220.60

Pos.Rep. (γ1) 0.14 1139.0
Neg.Rep. (γ2) 0.34 994.80

σ2 Const. (δ0) 0.29 1186.00
Pos.Rep. (δ1) 0.01 632.10
Neg.Rep. (δ2) 0.92 187.70

Table 2.7: The convergence diagnostics for the MCMC (CD) and the inefficiency factors
(IF) from the eBay data

All p-values of the convergence diagnostics are sufficiently high. In addition, the

inefficiency factors are low. From Figure 2.1 and Table 2.7, we conclude that the random

samples of estimated parameters converge to posterior distributions.

Table 2.8 shows the posterior means, the posterior standard deviations, and the 95%

credible intervals. 9 Figure 2.2 presents the posterior densities of estimated parameters.

Parameter Covariate (Coefficient Parameter) Mean SD 95% credible interval

α − 26.75 3.29 (20.74, 33.47)
β − 10.27 1.13 (8.20, 12.57)
µ Const. (γ0) 1.89 0.39 (1.29, 2.75)

Pos.Rep. (γ1) 0.08 0.03 (0.04, 0.14)
Neg.Rep. (γ2) −0.41 0.21 (−0.88,−0.05)

σ2 Const. (δ0) −1.18 0.20 (−1.58,−0.84)
Pos.Rep. (δ1) 0.003 0.001 (0.002, 0.004)
Neg.Rep. (δ2) 0.03 0.03 (−0.03, 0.09)

Table 2.8: Posterior inferences for the eBay data

9We divide winning bids by 100 when we estimate the parameters.
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Figure 2.2: Posterior densities of the gamma parameters (α and β) and the truncated
normal parameters (γ = (γ0, γ1, γ2) and δ = (δ0, δ1, δ2))

From Table 2.8 and Figure 2.2, the posterior means of gamma parameters, α and β

are 26.75 and 10.27, respectively. That is, on average, bidders’ willingness to pay for

PlayStation 3 is estimated at about $270. Since the mean of winning bids is about $330

(Table 2.3), this result is plausible.

Note that the mode of the truncated normal random variable with parameters µl and

σ2l is given by µl. Since in our specification µl = γ0+ γ1 ·Pos.Rep.+ γ2 ·Neg.Rep., if the

sign of γ1 is positive (negative), the mode of risk-discount factor, D increases (decreases)

with respect to the number of positive ratings. Similarly, if the sign of γ2 is positive

(negative), the mode of risk-discount factor, D increases (decreases) with respect to the

number of negative ratings. From Table 2.8, the signs of the posterior means of γ1 and
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γ2 are positive and negative, respectively. Thus, the mode of risk-discount factor, D,

increases with respect to the number of positive ratings and decreases with respect to

the number of negative ratings. Furthermore, intuitively, the bidders will trust the seller

if the number of positive ratings increases and will not trust the seller if the number of

negative ratings increases. These results are consistent with this intuition.

2.5 Inefficiency and Revenue Comparison

The goal of our paper is the estimation of inefficiency in online auction markets. As dis-

cussed in Section 2.2, the value of efficiency loss is the difference of total surplus between

(counterfactual) efficient auctions and online auctions. In this section, we estimate the

efficiency loss of eBay PlayStation 3 auctions using the parameters estimated in Sec-

tion 2.4. Furthermore, from estimated structural parameters, the difference of revenue

between efficient auctions and online auctions can be computed. We also present the

revenue comparison in this section.

We estimate inefficiency in the eBay PlayStation 3 auction market using the esti-

mated parameters in Section 2.4. Let ᾱ, β̄, γ̄ = (γ̄0, γ̄1, γ̄2) and δ̄ = (δ̄0, δ̄1, δ̄2). be

the posterior means of α, β, γ and δ. In addition, let Pos.Rep. and Neg.Rep. be the

sample average of the number of positive and negative ratings, respectively, in “Non-

PowerSeller” auctions. That is,

ᾱ = 26.75, β̄ = 10.27, γ̄ = (1.89, 0.08,−0.41), δ̄ = (−1.18, 0.003, 0.03)

and

(Pos.Rep.,Neg.Rep.) = (39.814, 0.74).

We estimate efficiency loss in the eBay PlayStation3 auction market using ᾱ, β̄, γ̄, δ̄

and (Pos.Rep.,Neg.Rep.). The computation method is described in Section 2.3. We
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conducted 50000 random draws to compute the efficiency loss.

Table 2.9 presents the result of the estimated inefficiency and the difference of rev-

enue. Figure 2.3 is a histogram of the estimated efficiency loss.

Mean Standard dev. Min 5% quantile 95% quantile Max

Efficiency loss 0.44 0.41 0.00 0.00 1.20 2.99
Difference of revenue 0.83 0.32 0.00 0.32 1.38 2.33

Table 2.9: Estimated inefficiency and the difference of revenue
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Figure 2.3: Histogram of Estimated Inefficiency from the eBay PlayStation 3 data

Note that since we divide the winning bids by 100 when we estimate the parameters,

the estimated value of inefficiency is also divided by 100. From Table 2.9, the average

inefficiency is about $40. In other words, on average, the total surplus will increase by

$40 in efficient auctions. Since the market price of PlayStation 3 in 2009 was $400, the
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value of estimated inefficiency is not small. The probability that inefficiency will occur

can be computed numerically. The estimated probability that inefficiency will occur is

equal to 0.762. That is, in more than 75% auctions, the objects (PlayStation 3) are not

awarded to the bidders with highest willingness to pay.

We estimate the revenue difference between the counterfactual efficient auctions and

the online auctions using the values of ᾱ, β̄, γ̄, δ̄ and (Pos.Rep.,Neg.Rep.). Table 2.9

shows the result of the estimated revenue difference. Figure 2.4 is a histogram of the

estimated revenue difference.
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Figure 2.4: Histogram of the revenue difference from the eBay PlayStation 3 data

The mean of the revenue difference between efficient auctions and online auctions is

$83.0. Therefore, if there were efficient auctions, sellers could gain additional revenue of

$83. Since the market price of PlayStation 3 in 2009 was about $400, the value of the
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additional gain is not small.

2.6 Conclusions

In the paper, we estimate the inefficiency in online auction markets. Online auctions

may be inefficient due to the Internet fraud. A typical example of Internet fraud related

to online auctions is when sellers do not send objects to winners even though they have

received payment. Since bidders always bear a risk of fraud, online auctions can be

inefficient.

We propose that the online auction is inefficient due to Internet fraud. A bidder

who does not trust a seller’s action can fail to obtain the object even if he or she has a

high willingness to pay. As a result, the objects are awarded to the bidders with a low

willingness to pay.

We discuss the identification and estimation strategies to estimate the structural

parameters in the inefficient online auction model. We use the Bayesian MCMC method

to estimate the structural parameters. In the Monte Carlo experiments, our estimation

method works well.

Our empirical example is eBay PlayStation 3 auctions in 2009. We found that the

mode of bidders’ estimates of the risk not to be defrauded is increasing with respect to

the number of positive reputations and decreasing with respect to the number of negative

reputations. Using the values of estimated parameters, we compute the inefficiency and

the revenue difference. The inefficiency which is the difference between the total surplus

of the efficient auctions and the total surplus of the online auctions, is estimated $43.50.

The probability of the inefficient online auctions is estimated at 0.762. Therefore, 76.2%

of online auctions are inefficient auctions. The revenue difference between the efficient

auctions and the online auctions is estimated at $83.0.
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2.A Implementation of the Metropolis-Hastings Algorithm

We describe the MCMC implementation for the procedure in Section 2.3.

First, we set initial values. For example, in Section 2.4, we set initial values α(0) =

25, β(0) = 10, γ(0) = (γ
(0)
0 , γ

(0)
1 , γ

(0)
2 ) = (2.0, 0.1,−0.4), and δ(0) = (δ

(0)
0 , δ

(0)
1 , δ

(0)
2 ) =

(−1.0, 0.0, 0.0).

2.A.1 Sampling α and β

From equation (2.5), the posterior density of (α, β) is

π(α, β|w1, ..., wL) ∝
L∏
l=1

[1− F (wl|α, β)]f(wl|α, β)[F (wl|α, β)]N−2π(α, β),

where π(α, β) is the prior density of (α, β). In Section 2.4, the prior distributions of α

and β are

α ∼ N(0, 1000) and β ∼ N(0, 1000).

The most commonly used algorithm for simulating from posterior distribution is the

Metropolis-Hastings (MH) algorithm. At iteration t, we generate the proposal value,

α∗, from

α∗ ∼ N(α(t−1), σ2α),

where α(t−1) is the draw at iteration t−1 and σα is the standard deviation of the proposal

density. The proposal draw, α∗, is accepted into the posterior sample with probability

ρ(α(t−1), α∗) = min

[
π(α∗|β(t−1), w1, ..., wL)

π(α(t−1)|β(t−1), w1, ..., wL)
, 1

]
,

where π(α|β(t−1), w1, ..., wL) is the posterior density conditional on β(t−1). If α∗ is re-

jected, then α(t−1) is included in the posterior sample.
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Similarly, we draw the posterior sample β(t). We draw the proposal value β∗ from

β∗ ∼ N(β(t−1), σ2β),

where β(t−1) is the draw at iteration t−1 and σβ is the standard deviation of the proposal

density. The acceptance probability, ρ(β(t−1), β∗), is

ρ(β(t−1), β∗) = min

[
π(β∗|α(t), w1, ..., wL)

π(β(t−1)|α(t), w1, ..., wL)
, 1

]
,

where π(β|α(t), w1, ..., wL) is the posterior density conditional on α(t). Then we obtain

the posterior sample β(t) by the following rule:

β(t) =


β∗ with probability ρ(β(t−1), β∗) and

β(t−1) with probability 1− ρ(β(t−1), β∗).

2.A.2 Sampling γ and δ

From equation (2.6), the posterior density of (γ, δ) conditional on (α(t), β(t)) is

π(γ, δ|α(t), β(t),Ω) ∝
L∏
l=1

[1− F (wl|α, β)]f(wl|α, β)[F (wl|α, β)]N−2π(α, β),

where Ω = (w1, ..., wL, X1, ..., XL, Y1, ..., YL) and π(α, β) is the prior density of (γ, δ). In

Section 2.4, the prior distributions of γ and δ are

γ ∼ N(0, 1000I3) and δ ∼ N(0, 1000I3),

where I3 is the identity matrix of size 3. We use the random walk-based MH algorithm

to draw the posterior sample, γ(t). For each k ∈ {1, 2, 3}, we draw the proposal value
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γ∗k from

γ∗k ∼ N(γ
(t−1)
k , σ2γk),

where γ
(t−1)
k is the draw at iteration t − 1 and σγk is the standard deviation of the

proposal density. The acceptance probability, ρ(γ
(t−1)
k , γ∗k), is

ρ(γ
(t−1)
k , γ∗k) = min

[
π(γ∗k |α(t), β(t),γ

(t−1)
−k , δ(t−1),Ω)

π(γ
(t−1)
k |α(t), β(t),γ

(t−1)
−k , δ(t−1),Ω)

, 1

]
,

where π(γk|α(t), β(t),γ
(t−1)
−k , δ(t−1),Ω) is the posterior density conditional on (α(t), β(t),γ

(t−1)
−k , δ(t−1)).

Then we obtain the posterior sample γ
(t)
k by the following rule:

γ
(t)
k =


γ∗k with probability ρ(γ

(t−1)
k , γ∗k) and

γ
(t−1)
k with probability 1− ρ(γ

(t−1)
k , γ∗k).

Similarly, we draw the posterior sample δ
(t)
k for each k ∈ {1, 2, 3}. We draw the

proposal value δ∗k from

δ∗k ∼ N(δ
(t−1)
k , σ2δk),

where δ
(t−1)
k is the draw at iteration t−1 and σδk is the standard deviation of the proposal

density. The acceptance probability, ρ(δ
(t−1)
k , δ∗k), is

ρ(δ
(t−1)
k , δ∗k) = min

[
π(δ∗k|α(t), β(t),γ(t), δ

(t−1)
−k ,Ω)

π(δ
(t−1)
k |α(t), β(t),γ(t), δ

(t−1)
−k ,Ω)

, 1

]
,

where π(δk|α(t), β(t),γ(t), δ
(t−1)
−k ,Ω) is the posterior density conditional on (α(t), β(t),γ(t), δ

(t−1)
−k ).

Then we obtain the posterior sample γ
(t)
k by the following rule:

δ
(t)
k =


δ∗k with probability ρ(δ

(t−1)
k , δ∗k) and

δ
(t−1)
k with probability 1− ρ(δ

(t−1)
k , δ∗k).
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Chapter 3

An Empirical Model of Online

Common Value Auctions with

Buy-It-Now Prices

3.1 Introduction

Recently, auctions have become familiar for many people with the emergence of online

auction sites. For example, eBay, the largest online auction marketplace, hosted 700

million listings with 14 billion dollars of goods traded and had 370 million registered

users around the world in the third quarter of 2008.

However, there are some differences between online auctions and conventional auc-

tions. One example of these difference is “buy-it-now price” option.1 In an auction with

a buy price, a seller sets a fixed price and a bidder can get the item if he or she accepts

it. In other words, in auctions with buy prices, buyers can purchase goods without the

auctions.

1For example, in eBay, the largest online auction site in the world, the buy price option is called
“Buy-It-Now” option.
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In standard second-price auctions (i.e., auctions without buy prices), each bidder

submits a bid. At the end of the auction, the bidder with the highest bid wins the

object, and he or she pays the winning bid, which equals the second-highest bid. On the

other hand, in buy price trading, a buyer can purchase the object for the fixed price set

by the seller. In online auction markets, identical objects are often sold in both auction

and buy-it-now formats. Thus, bidders in online auctions with buy-it-now options must

participate in auctions observing fixed buy prices.

There have been many studies regarding structural estimation, which focuses on

online auction markets. However, to the best of our knowledge, few studies have focused

on the buy price options. Most empirical studies in online auction literature ignore

the buy price options and estimate the revenue difference between online auctions and

(counterfactual) real-world auctions. Houser and Wooders (2006) assume a log-linear

model and examine the effect of reputation on a winning bid. They reported that the

seller’s reputation has a statistically significant effect on the winning bid but that the

bidder’s reputation does not. Melnik and Alm (2002) applied the Tobit model and

estimated the impact of the seller’s reputation on the willingness of bidders to bid on

items using data concerning coin sales. They found that the seller’s reputation has

a positive but small impact on the price paid. Livingston (2005) examined the effect

of the seller’s reputation on the bidders’ decision to participate and the willingness of

bidders to bid on item. Empirical results using data for golf clubs sold show that the

seller’s reputation has a positive impact on both the bidders’ decision to participate and

the willingness of bidders to bid on item. Resnick et al. (2006) conducted a controlled

field experiment. In the experiment, the same honest seller sold to many bidders under

his regular identity, which has a strong reputation, and under a new seller’s identity.

Their results show that the established identity fared better; the difference in bidder’s

willingness to pay was 8.1 % of the selling price.

However, since these papers do not focus on the buy price option, these models
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may cause incorrect estimates. In this paper, we construct a structural econometric

model of online common value auction model with a buy-it-now option. Shahriar (2008)

constructed a common value auction model with a buy-it-now option. In experimental

economics literature, Shahriar and Wooders (2011) conducted controlled experiments for

both private and common value auctions with buy prices. While nether study empirical

using real data, we focused on empirical study and the estimation strategy. Ackerberg

et al. (2011) constructed an econometric model of online auctions that focused on buy

price option. They identified risk preference parameters and time impatience parameters

using buy price auction data. While they focused on the independent private values

model, we have focused on the pure common value model.

While the common value auction model is an important theoretical auction model,

few papers have studied the structural estimation of common value auctions. Most stud-

ies on the structural estimation of auction models focus on the private values model. Few

empirical studies focus on the common value model due to the negative result of non-

parametric identification of common value auctions (Athey and Haile (2002) and Athey

and Haile (2007)). 2 Therefore, we specify the parametric forms of the distribution of

structural parameters to avoid the identification problem. A few empirical researches

which study the common value online auctions. Bajari and Hortaçsu (2003) proposed

the Bayesian estimation method for online common value auction models, specifying nor-

mality for the common value. Wegmann and Villani (2011) also proposed the Bayesian

estimation method for online common value auction models, specifying the gamma dis-

tribution for the common value.

Our empirical example involves eBay mint coin auctions in 2013. We found that when

we ignore the buy prices, we underestimate the mean of bidders’ signals corresponding to

2Recently, some papers studied the identification condition of the common value auction model. Li
et al. (2000) showed the identification under the additive separability of common value component.
Février (2008) restricted the shape of density function of common value and showed the identification
of the common value auction model. d’Haultfoeuille and Février (2008) proposed the identification
condition of common value auction model assuming the support of private signal is finite and variates
depending on the common value.
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the value of the good as well as the effect on the signals of positive rating for sellers. We

found that the percentage of positive reputations has a positive effect on the mean of the

signal. We computed the optimal buy price that maximizes the sellers’ expected revenue

using the estimated parameters. The estimated optimal buy price is $52.20, which is

almost equal to the average buy prices. We also conducted a revenue comparison. We

compared the revenue between auctions with buy prices and auctions without buy prices.

We found that the mean of the revenue difference between auctions with buy prices and

those without is $0.05.

The rest of this paper is organized as follows. In Section 3.2, following Shahriar

(2008), we describe the theoretical model of online common value auctions with buy-it-

now options. Section 3.3 describes the estimation strategy for the model described in

Section 3.2. Monte Carlo experiments are conducted in Section 3.4. In Section 3.5, we

explain the eBay mint coin auction data used in our empirical example. We also present

the estimation results from the eBay mint coin auction data. In Section 3.6, we show

counterfactual simulations. We compute the optimal buy price that maximizes sellers’

expected revenues. In addition, we compare revenue between auctions with and without

buy-it-now prices. Section 3.7 makes some concluding remarks.

3.2 The Model

Since our inference is based on the model of Shahriar (2008), it is worthwhile to review

the theoretical result of Shahriar (2008). Following the precedent of Shahriar (2008),

and Shahriar and Wooders (2011), we describe a common value model of auctions with

a buy-it-now option.

Consider a seller who sells an individual object through an auction. In the auction,

there are n ≥ 2 potential bidders. Each bidder, i, receives a private signal, Si, which is

identically and independently distributed random variable from the distribution function,
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F (the density function f). In this model, we consider the pure common value model,

i.e., the ex post value of the item is the same for each bidder. Furthermore, we consider

a specific functional form for the common values. We assume that the ex post valuation

is equal to the average of all signals. That is, the valuation takes the form of

v =
1

n

n∑
i=1

si.

Each bidder, i, knows the value of its own signal, si, but does not know the realization of

others’ signals, s. Therefore, each bidder does not know the realization of the common

value, v. However, the distribution of signal, F (·), is common knowledge among bidders.

We assume that each bidder has a risk neutral utility. Therefore, if bidder i buys the

item and pays a price, p, her utility is v − p.

3.2.1 Auctions with Buy Prices

We regard auctions with buy prices as two-stage games. In the first-stage, the seller

sets a buy price, p, and all bidders decide to accept or reject buy price p simultaneously.

If at least one bidder accepts buy price p, the auction game ends and the bidder who

accepts wins the item and pays price p.3 If no bidder accepts buy price p, the first-stage

of the game ends and the auction proceeds to the second stage. In the second stage, the

winner and winning price are determined via a second-price sealed-bid auction. That is,

the winning bidder is the bidder who makes the highest bid, and the winning price is

equal to the second highest bid.

In the first-stage, after bidder i observes the realization of her signal, si, she decides

whether to accept or reject the buy price, p. Following Shahriar (2008), we considered

symmetric cutoff strategies. A cutoff strategy for bidder i is a constant, c, such that the

3If n ≤ 2 bidder accept the buy price p, we assume that the bidder who accepts the buy price win
the item with probability 1/n.
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bidder will 
accept if si > c

reject otherwise.

Suppose that all bidders except i follow the same cutoff strategy. Then, the expected

payoff to bidder i with signal si from accepting buy price p is given by

UA(si, c) =
n−1∑
l=0

[n− 1

l

F (c)n−1−l(1− F (c))l
(

1

l + 1

)
ul(si)

]
, (3.1)

where l is the number of bidders except bidder i who accepts buy price p, and

ul(s) =

∫ c

−∞
· · ·
∫ c

−∞

∫ ∞

c
· · ·
∫ ∞

c

[
1

n

(
s+

∑
j ̸=i

sj

)
− p

]

× f(s1)

1− F (c)
· · · f(sl)

1− F (c)

f(sl+2)

F (c)
· · · f(sn)

F (c)
ds−i.

Next, consider the case in which bidder i rejects buy-it-now price p. Then, she can

get the item only if all of her opponents also reject buy price p and the realization of

bidder i’s signal si is the highest among all bidders’ signals. Let z be the highest signal

among rivals (i.e., z = maxj ̸=i sj) and b(·) be the equilibrium bidding function of the

second-stage auction.4 Then, if bidder i wins, her payment is b(z). Note that since we

assume the pure common value paradigm, the equilibrium bidding function is

b(s) = E(V |Si = s, z ≡ max
j ̸=i

Sj = s).

Thus, the expected payoff of bidder i with signal si from rejecting buy price p is given

4In the second-stage, each bidder knows that no bidder accepts the buy price at the first-stage game.
Therefore, in the second-stage auction, each bidder knows that all bidders’ signals are sufficiently low to
reject the buy price.
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by

UR(si, c) =

∫ min{si,c}

−∞

{∫ s2

−∞
· · ·
∫ s2

−∞

[
1

n

(
si +

∑
j ̸=i

sj

)
− b(s2)

]
f(sn)

F (s2)
dsn · · ·

f(s3)

F (s2)
ds3

}
× (n− 1)F (s2)

n−2f(s2)ds2

= (n− 1)

∫ min{s,c}

−∞

∫ s2

−∞
· · ·
∫ s2

−∞

[
1

n

(
si +

∑
j ̸=i

sj

)
− b(s2)

]
dF (sn) · · · dF (s2),

(3.2)

where x2 = z.

A cutoff, c∗, is a symmetric Bayesian Nash equilibrium if a bidder gets a higher-than-

expected payoff by accepting buy price p if x > c∗ and she gets a higher-than-expected

payoff by rejecting buy price p if x < c∗. Therefore, we obtain the following proposition.

Proposition 3 (Shahriar (2008)). A symmetric equilibrium cutoff, c∗, satisfies

UA(c∗, c∗) = UR(c∗, c∗). (3.3)

3.3 Estimation Procedures

Before discussing how to estimate the auction model with a buy price, we briefly describe

the estimation strategy for the simple auction model (i.e., an auction without a buy

price).

We observe T auctions, indexed by t = 1, ..., T . We observe the number of bidders,

nt, and the winning bid, wt, in auction t. Furthermore, we observe the auction-specific

covariate, Xt. The same item is sold in each auction, t ∈ {1, ..., T}. While we focus

on the pure common value auction model, few researchers have studied the econometric

model of the pure common value auction model. One reason that few empirical studies

focus on the the pure common value auction model is that the common value auction
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model is not nonparametrically identified from observed bids.5 Therefore, we specify the

parametric form of the distribution of signal, F (·). We assume that bidders’ signals are

normally distributed with mean µt and variance σ2t . That is,

Si ∼ N(µt, σ
2
t ),

where

µt = α′Xt

and

σt = exp(β′Xt),

where (α,β) is the unknown coefficient parameter vector to estimate.

Recall that the equilibrium bidding function of the second-stage auction, b(·), is given

by

b(s) = E(V |Si = s, Z = max
j ̸=i

Sj = s)

= E

(
1

n

n∑
i=1

Si|Si = s, Z = s

)
.

Since b(·) is a strictly increasing function, there exists an inverse function, ϕ(·). There-

fore, if we observe only second-stage auctions, the likelihood function of winning bids,

wt, is given by

L(w1, ..., wT |µ,σ) =
T∏
t=1

nt∏
i=1

 nt

1 1 nt − 2

 [F (ϕ(wt)|µt, σt)]nt−2

× f(ϕ(wt)|µt, σt)
1

b′(ϕ(wt))
[1− F (ϕ(wt)|µt, σt)], (3.4)

where µ = (µ1, ..., µT ), and σ = (σ1, ..., σT ).

5See Athey and Haile (2002) for detail.
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Next, we discuss how to estimate the structural parameters of auctions with buy

prices. As described in the previous section, each bidder must decide whether to accept

or reject buy-it-now price p in the first-stage. We assume that the econometricians can

observe the buy prices, pt, in auction t. If at least one bidder accepts buy-it-now price

pt, the likelihood is given by

1− F (c∗|µt, σt)nt .

If each bidder rejects buy-it-now price pt, cutoff value c∗ exceeds signal si for all i ∈

{1, ..., nt}. Then, the likelihood of winning bid wt is given by

nt∏
i=1

 nt

1 1 nt − 2

 [F (ϕ(wt)|µt, σt)]nt−2f(ϕ(wt)|µt, σt)
1

b′(ϕ(wt))
[F (c∗|µt, σt)−F (ϕ(wt)|µt, σt)].

Let R = {1, ..., R} where R < T is the set of buy-it-now trading. Therefore,

{1, ..., T}\R is the set of auctions without buy-it-now prices. Then, the likelihood func-

tion of w = (w1, ..., wT ) and p = (p1, ..., pT ) is given by

L(w,p|µ,σ) =
∏
t∈R

nt∏
i=1

[1− F (c∗t |µt, σt)nt ]

×
∏
t∈Rc

nt∏
i=1

 nt

1 1 nt − 2

 [F (ϕ(wt)|µt, σt)]nt−2

× f(ϕ(wt)|µt, σt)
1

b′(ϕ(wt))
[F (c∗t |µt, σt)− F (ϕ(wt)|µt, σt)].

(3.5)

Note that from equation (3.4) and equation (3.5), when we estimate the structural

parameters, ignoring the buy prices, the estimator may be incorrect.

We estimate the structural parameters using the Bayesian method. We compute the

posterior distribution by the standard Markov Chain Monte Carlo (MCMC) simulation

method. Let α(0) and β(0) be the initial value of α and β, respectively. Then we repeat
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the following algorithm for a sufficiently large number, j ∈ {1, ..., J}:

1. Generate α(j)|β(j−1),w,p

2. Generate β(j)|α(j),,w,p.

We generate random samples from posterior distributions via random walk-based Metropolis-

Hastings algorithm. Note that from equations (3.1) - (3.3), observing the buy price, pt,

and the random draws, α(j) and β(j), the value of equilibrium cutoff strategy c∗t can

be computed numerically. Since the inverse bidding function, ϕ(·) = b−1(·), cannot be

obtained analytically, we compute the inverse bidding function, ϕ(·), numerically. Anal-

ogous to cutoff strategy c∗t , observing buy price pt and random draws α(j) and β(j),

the signal corresponding to winning bid wt can be computed by the Newton-Raphson

method.

3.4 Simulation Experiments

In this section, we estimate the structural parameters in our model using simulation

data. The number of observed auctions is T . We examine the performance of our

estimator with T = 150, 300 and 700. In our simulation experiments, the number of

potential bidders for all auction is N = 5. We set the constant buy price, p = 45.0, for

all t ∈ {1, ..., T}. We generate the auction-specific covariate, Xt, from a standard normal

distribution. We draw the signals, S, from the normal distribution. That is,

Si ∼ i .i .d .N(µt, σ
2
t ),

where µt = α0 + α1Xt and σt = exp(β0 + β1Xt). The true values of α and β are

α0 = 40.0, α1 = 0.4, β0 = 7.0, and β1 = 0.7.
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The prior distribution of α and β are

α ∼ N(0, 100I)

and

β ∼ N(0, 100I),

where I is the identity matrix of size 2.

We use the random walk-based Metropolis-Hastings algorithm to generate the ran-

dom draws from posterior distributions. The number of iteration is 20000, and the

burn-in period is 2000 in each case. We estimate the parameters using both the true

likelihood (3.5) and the wrong likelihood (3.4) to compare the performance of the esti-

mation results.

3.4.1 The Case of T = 150

Tables 3.1 and 3.2 show results using the true likelihood (3.5) and the wrong likelihood

(3.4), respectively. From Table 3.1, the 95% credible intervals contain the true values

using the likelihood (3.5).

(True) Likelihood (3.5)
True Mean Stdev. 95% interval

α0 40.00 39.56 0.46 (38.62, 40.40)
α1 0.40 -0.05 0.66 (-1.32, 1.27)
β0 7.00 7.12 0.12 (6.89, 7.37)
β1 0.70 0.77 0.14 (0.50, 1.04)

Table 3.1: Estimation result with true likelihood (3.5) (T = 150)
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(Wrong) Likelihood (3.4)
True Mean Stdev. 95% interval

α0 40.00 36.01 1.22 (33.66, 38.48)
α1 0.40 -2.63 1.13 (-4.94, -0.42)
β0 7.00 6.94 0.13 (6.69, 7.20)
β1 0.70 0.64 0.15 (0.35, 0.92)

Table 3.2: Estimation result with wrong likelihood (3.4) (T = 150)

From Table 3.2, however, the 95% credible intervals do not contain the true values for

α0 and α1 using likelihood (3.4). Therefore, we find that the estimation using likelihood

(3.5) performs well. On the other hand, we find that when we ignore the buy prices, p,

we fail to estimate the structural parameters correctly.

Figures 3.1 and 3.2 show the posterior densities using likelihood (3.5) and likelihood

(3.4), respectively.
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Figure 3.1: Posterior densities using True Likelihood (3.5) with T = 150
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Figure 3.2: Posterior densities using Wrong Likelihood (3.4) with T = 150

(True) Likelihood (3.5) (Wrong) Likelihood (3.4)
CD IF CD IF

α0 0.23 22.71 0.86 10.98
α0 0.97 8.70 0.38 11.15
β0 0.26 12.92 0.40 5.22
β0 0.38 8.28 0.43 5.24

Table 3.3: The Convergence Diagnostics for the MCMC (CD) and the Inefficiency Fac-
tors (IF) (T = 150)

Table 3.3 reports p-values of the convergence diagnostics for the MCMC (CD) and the

inefficiency factors (IF).6 In Table 3.3, from column 2 to column 3, we use true likelihood

(3.5) (i.e., likelihood with buy prices). From column 4 to column 5, we use wrong

likelihood (3.4) (i.e., likelihood ignoring buy prices). All p-values of the convergence

diagnostics are more than 0.2. Furthermore, the inefficiency factor values are sufficiently

6The CD test statistic tests the equality of the means of the first and last parts of the sample path.
The definition of inefficiency factor is 1 + 2

∑∞
k=1 ρ(k), where ρ(k) is the sample autocorrelation at lag

k.
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low. The inefficiency factors are 5.22 to 22.71, which imply that we would gain the same

variance of the posterior means from 880 uncorrelated draws, even in the worst case.

Figures 3.3 and 3.4 show the sample paths of the estimated parameters using likelihood

(3.5) and likelihood (3.4), respectively. From Figures 3.3 and 3.4, it can be seen that the

sample paths of these parameters converge to posterior distributions. Thus, we conclude

that the sample paths of the estimated parameters converge to posterior distributions.
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Figure 3.3: Sample paths of parameters with T = 150 (true Likelihood (3.5))
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Figure 3.4: Sample paths of parameters with T = 150 (Wrong Likelihood (3.4))

3.4.2 The Case of T = 300

Results are shown in Tables 3.4 and 3.5. In Table 3.4, we use the true likelihood (3.5)

(i.e., likelihood with buy prices) to compute the posterior distributions. In Table 3.5,

in contrast, we use the wrong likelihood (3.4) (i.e., likelihood ignoring buy prices) to

compute the posterior distributions.

(True) Likelihood (3.5)
True Mean Stdev. 95% interval

α0 40.00 39.80 0.28 (39.24, 40.32)
α1 0.40 -0.26 0.33 (-0.88, 0.43)
β0 7.00 7.01 0.08 (6.85, 7.17)
β1 0.70 0.68 0.08 (0.52, 0.82)

Table 3.4: Estimation result with true likelihood (3.5) (T = 300)
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(Wrong) Likelihood (3.4)
True Mean Stdev. 95% interval

α0 40.00 37.38 0.82 (35.76, 39.01)
α1 0.40 -1.65 0.70 (-3.04, -0.27)
β0 7.00 6.88 0.09 (6.71, 7.06)
β1 0.70 0.63 0.09 (0.45, 0.79)

Table 3.5: Estimation result with wrong likelihood (3.4) (T = 300)

From Table 3.4, the 95% credible intervals contain the true values using likelihood

(3.5). However, from Table 3.5, the 95% credible intervals do not contain the true values

for α0 and α1 using likelihood (3.4). Therefore, we find that the estimation using the

likelihood (3.5) performs well. On the other hand, we find that when we ignore the buy

prices, p, we fail to estimate the structural parameters correctly.

Figures 3.5 and 3.6 show the posterior densities using likelihood (3.5) and likelihood

(3.4), respectively.
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Figure 3.5: Posterior densities using true likelihood (3.5) with T = 300
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Figure 3.6: Posterior densities using wrong likelihood (3.4) with T = 300

(True) Likelihood (3.5) (Wrong) Likelihood (3.4)
CD IF CD IF

α0 0.46 21.36 0.70 10.34
α0 0.74 13.05 0.72 11.40
β0 0.68 17.57 0.77 4.57
β0 0.99 6.88 0.42 5.77

Table 3.6: The Convergence Diagnostics for the MCMC (CD) and the Inefficiency Fac-
tors (IF) (T = 300)

Table 3.6 reports p-values of the convergence diagnostics for the MCMC (CD) and the

inefficiency factors (IF). In Table 3.6, from column 2 to column 3, we use true likelihood

(3.5) (i.e., likelihood with buy prices). From column 4 to column 5, we use wrong

likelihood (3.4) (i.e., likelihood ignoring buy prices). All p-values of the convergence

diagnostics are more than 0.4. Furthermore, the inefficiency factor values are sufficiently

low. The inefficiency factors are 4.57 to 21.36, which imply that we would gain the same

variance of the posterior means from 930 uncorrelated draws, even in the worst case.
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Figure 3.7 and 3.8 show the sample paths of the estimated parameters using likelihood

(3.5) and likelihood (3.4), respectively. From Figures 3.7 and 3.8, it can be seen that the

sample paths of these parameters converge to posterior distributions. Thus, we conclude

that the sample paths of the estimated parameters converge to posterior distributions.
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Figure 3.7: Sample paths of parameters with T = 300 (true likelihood (3.5))

65



alpha0 

0 5000 10000 15000 20000

36

38

40
alpha0 alpha1 

0 5000 10000 15000 20000

-4

-3

-2

-1

0
alpha1 

beta0 

0 5000 10000 15000 20000

6.8

7.0

beta0 beta1 

0 5000 10000 15000 20000

0.4

0.6

0.8

beta1 

Figure 3.8: Sample paths of parameters with T = 300 (wrong likelihood (3.4))

3.4.3 The Case of T = 700

Results are shown in Tables 3.7 and 3.8. In Table 3.7, we use the true likelihood (3.5)

(i.e., likelihood with buy prices) to compute the posterior distributions. In Table 3.8,

in contrast, we use the wrong likelihood (3.4) (i.e., likelihood ignoring buy prices) to

compute the posterior distributions.

(True) Likelihood (3.5)
True Mean Stdev. 95% interval

α0 40.00 40.12 0.17 (39.77, 40.44)
α1 0.40 0.58 0.22 (0.15, 1.01)
β0 7.00 6.96 0.05 (6.86, 7.07)
β1 0.70 0.66 0.06 (0.54, 0.77)

Table 3.7: Estimation result with true likelihood (3.5) (T = 700)
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(Wrong) Likelihood (3.4)
True Mean Stdev. 95% interval

α0 40.00 37.44 0.52 (36.41, 38.46)
α1 0.40 -1.54 0.49 (-2.51, -0.63)
β0 7.00 6.80 0.06 (6.68, 6.92)
β1 0.70 0.51 0.07 (0.38, 0.64)

Table 3.8: Estimation result with wrong likelihood (3.4) (T = 700)

From Table 3.7, the 95% credible intervals contain the true values using likelihood

(3.5). However, from Table 3.8, the 95% credible intervals do not contain the true values

for all parameters using likelihood (3.4). Therefore, we find that the estimation using

the likelihood (3.5) performs well. On the other hand, we find that when we ignore the

buy prices, p, we fail to estimate the structural parameters correctly.

Figures 3.9 and 3.10 show the posterior densities using likelihood (3.5) and likelihood

(3.4), respectively.
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Figure 3.9: Posterior densities using true likelihood (3.5) with T = 700
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Figure 3.10: Posterior densities using wrong likelihood (3.4) with T = 700

(True) Likelihood (3.5) (Wrong) Likelihood (3.4)
CD IF CD IF

α0 0.22 11.89 0.42 10.22
α0 0.84 5.05 0.20 10.26
β0 0.98 8.32 0.64 4.02
β0 0.34 11.06 0.44 5.41

Table 3.9: The Convergence Diagnostics for the MCMC (CD) and the Inefficiency Fac-
tors (IF) (T = 700)

Table 3.9 reports p-values of the convergence diagnostics for the MCMC (CD) and the

inefficiency factors (IF). In Table 3.9, from column 2 to column 3, we use true likelihood

(3.5) (i.e., likelihood with buy prices). From column 4 to column 5, we use wrong

likelihood (3.4) (i.e., likelihood ignoring buy prices). All p-values of the convergence

diagnostics are more than 0.2. Furthermore, the inefficiency factor values are sufficiently

low. The inefficiency factors are 5.05 to 11.89 with true likelihood. This implies that we

would gain the same variance of the posterior means from 1680 uncorrelated draws, even
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in the worst case. Similarly, the inefficiency factors are 4.02 to 10.26 when we ignore the

buy prices. Therefore, we would gain the same variance of the posterior sample means

from 1949 uncorrelated draws even in the worst case. Figures 3.11 and 3.12 show the

sample paths of the estimated parameters using likelihood (3.5) and likelihood (3.4),

respectively. From Figures 3.11 and 3.12, it can be seen that the sample paths of these

parameters converge to posterior distributions. Thus, we conclude that the sample paths

of the estimated parameters converge to posterior distributions.
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Figure 3.11: Sample paths of parameters with T = 700 (true likelihood (3.5))
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Figure 3.12: Sample paths of parameters with T = 700 (wrong likelihood (3.4))

3.5 Empirical Illustrations

3.5.1 Data Description

Our empirical example examines auctions of 2005 U.S. mint silver proof coin sets held on

eBay in 2013. Data were collected from 152 completed eBay auctions from June through

July of 2013. Auctions with fewer than two actual bidders were dropped since there is

no competition with no bidder or one bidder.

As we can see from the studies of Bajari and Hortaçsu (2003) and Wegmann and

Villani (2011), who studied coin auctions in their empirical illustrations, coin auctions

are excellent examples in the empirical study of common value auction models. While

both Bajari and Hortaçsu (2003) and Wegmann and Villani (2011) collected various

kinds of coins in their empirical illustrations, we collected only 2005 U.S. mint silver

proof coin sets. Therefore, we can estimate the distribution of signals, F (·), with fewer
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covariates.

Mean Median Std Max Min

Winning bid 38.74 39.07 3.22 46.43 29.53
Rating ratio 0.91 0.98 0.15 1.00 0.22

Number of actual bidders 4.32 4.00 1.12 8.00 2.00
Buy-it-now price 45.74 45.96 3.19 54.15 37.91

Table 3.10: Summary statistics (2005 U.S. mint silver proof coin set, # of obs. = 152)

Table 3.10 summarizes the statistics. The first column describes the variables. The

“winning bid” is the transaction price and the second-highest bid in the eBay auction.

Note that the “winning bid” does not contain the transaction price via the “buy-It-Now”

option. From Table 3.10, on average, one could get the mint silver proof coin for $39 via

auction. The “rating ratio” is the percentage of “positive ratings” in the total ratings

(i.e., sum of “positive ratings” and “negative ratings”). “Positive ratings” denotes the

number of positive ratings a seller receives. “Negative ratings” is the sum of the number

of negative ratings and the number of neutral ratings a seller receives. Since the number

of neutral ratings and the number of negative ratings are usually small relative to the

number of positive ratings, we regard neutral ratings as negative ratings. “Number of

actual bidders” is the number of participants who actually bid at auction t. “Buy price”

denotes the transaction price via the buy-it-now option. From Table 3.10, the average

“buy-it-now price” is about $46. Therefore, the transaction price via the “buy-it-now”

option is higher than the transaction price via auction by an average of $7.

3.5.2 Estimation Results

We estimate the structural parameters using the U.S. mint silver proof coin data de-

scribed above. We assume that the signal, Si, follows the normal distribution. That

is,

Si ∼ i .i .d .N(µt, σ
2
t ),
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where µt = α0 + α1Xt and σt = exp(β0 + β1Xt). The parameters α = (α0, α1) and

β = (β0, β1) are unknown to econometricians. In this empirical illustration, the auction-

specific covariate, Xt, is the “rating ratio.” That is, Xt is the percentage of “positive

ratings” in the total ratings.

The prior distributions of α and β are

α ∼ N(0, 100I)

and

β ∼ N(0, 100I),

where I is the identity matrix of order 2.

Similar to the simulation experiments in Section 3.4, we estimate the parameters

using likelihood (3.5) (i.e., true likelihood) and likelihood (3.4) (i.e., wrong likelihood).

We use the random walk-based Metropolis-Hastings algorithm to generate the random

draws from posterior distributions. The number of iterations is 100000, and the burn-in

period is 10000 when we use the likelihood (3.5). Similarly, The number of iterations is

70000, and the burn-in period is 5000 for the estimation using likelihood (3.4).

(True) Likelihood (3.5) (Wrong) Likelihood (3.4)
CD IF CD IF

α0 0.15 335.12 0.06 238.44
α0 0.14 333.25 0.05 236.95
β0 0.43 331.09 0.97 256.15
β0 0.45 327.86 0.98 255.10

Table 3.11: The Convergence Diagnostics for the MCMC (CD) and the Inefficiency
Factors (IF)

Table 3.11 reports p-values of the convergence diagnostics for the MCMC (CD) and

inefficiency factors (IF). All p-values of the convergence diagnostics are more than 0.05.

Furthermore, the values of the inefficiency factor values are sufficiently low. For like-
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lihood (3.5), the inefficiency factors are 327.86 to 335.12, which imply that we would

gain the same variance of the posterior means from 298 uncorrelated draws, even in the

worst case. Similarly, for likelihood (3.4), the inefficiency factors are 236.95 to 256.15,

which imply that we would gain the same variance of the posterior means from 273

uncorrelated draws, even in the worst case.

Figures 3.13 and 3.14 shows the sample paths of the estimated parameters using

true likelihood (3.5) and wrong likelihood (3.4), respectively. From Figures 3.13 and

3.14, it can be seen that the sample paths of these parameters converge to posterior

distributions. Thus, we conclude that the sample paths of the estimated parameters

converge to posterior distributions.

alpha0 

0 20000 40000 60000 80000 100000

40

45

50

alpha0 alpha1 

0 20000 40000 60000 80000 100000

0

5

10

alpha1 

beta0 

0 20000 40000 60000 80000 100000

7

8

9

10

11
beta0 beta1 

0 20000 40000 60000 80000 100000

-3

-2

-1

0

1
beta1 

Figure 3.13: Sample paths of parameters using true likelihood (3.5)
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Figure 3.14: Sample paths of parameters using wrong likelihood (3.4)

Tables 3.12 and 3.13 provide the posterior inferences using likelihood (3.5) and (3.4),

respectively. In Tables 3.12 and 3.13, the second column is the posterior mean, the third

column is the posterior standard deviation, and the fourth column provides the 95%

credible intervals of the posterior distributions.

(True) Likelihood (3.5)
Mean Stdev. 95% interval

α0 44.78 2.80 (39.10, 49.71)
α1 4.23 2.97 (-1.06, 10.24)
β0 8.33 0.74 (6.94, 9.77)
β1 -0.95 0.80 (-2.49, 0.55)

Table 3.12: Estimation result with true likelihood (3.4)
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(Wrong) Likelihood (3.4)
Mean Stdev. 95% interval

α0 38.37 1.78 (34.48, 41.65)
α1 1.39 1.92 (-2.18, 5.51)
β0 5.18 0.84 (3.57, 6.95)
β1 -0.17 0.91 (-2.08, 1.59)

Table 3.13: Estimation result with wrong likelihood (3.4)

Figures 3.15 and 3.16 show the posterior densities.
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Figure 3.15: Posterior densities using true likelihood (3.5)
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Figure 3.16: Posterior densities using wrong likelihood (3.4)

Comparing the estimation results, both the values of α0 and α1 in Table 3.12 are

higher than those of α0 and α1 in Table 3.13. Since µt = α0 +α1Xt is the mean of each

bidder’s signal, Sit, estimation without buy prices (i.e., estimation result using likelihood

(3.4)) may underestimate the true distribution of bidders’ signals. The posterior mean

of α1 with buy prices is higher than that of α1 without buy prices. Since the covariate

is the percentage of “positive ratings,” estimates without buy prices may underestimate

the effect of “positive ratings.” Both the 95% credible intervals of α1 in Table 3.12 and

3.13 contain zero. However, Figure 3.15 shows that most of α1 takes positive values

using likelihood (3.5). The probability that α1 takes negative values is 0.07 when we use

likelihood (3.5). In contrast, Figure 3.16 shows that α1 takes negative values at a rate

that cannot be ignored when we estimate without buy prices. The probability that α1

takes negative values is 0.23 when we use likelihood (3.4). Similarly, the 95% credible

intervals of β1 in Table 3.12 and 3.13 contain zero. However, Figure 3.15 shows that

most of β1 takes negative values using likelihood (3.5). The probability that β1 takes
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negative values is 0.87. In contrast, Figure 3.16 shows that α1 takes positive values at

a significant rate using likelihood (3.4). The probability that β1 takes negative values is

0.56.

From the estimation results, we find that the posterior mean of α1 is positive. This

implies that the percentage of positive reputations has a positive effect on the mean

of bidders’ signals, S. On the other hand, the posterior mean of β1 is negative. This

result implies that if the ratio of the positive reputations increases, the variance of signal

becomes smaller. These results seem plausible.

3.6 Counterfactual Simulations

In this section, we present several counterfactual simulations using the estimated param-

eters. First, we compute the optimal buy price which maximizes the sellers’ expected

revenues.

3.6.1 Optimal Buy Price

In our theoretical model described in Section 3.2, each bidder decides whether to accept

or reject buy prices after watching the buy-it-now prices. Therefore, the expected revenue

(i.e., the expected transaction price) of the seller depends on the buy prices. In this

subsection, we compute the optimal buy price that maximizes the expected revenue of

sellers using the estimated parameters, α = (α0, α1) and β = (β0, β1).

Let ᾱ = (ᾱ0, ᾱ1) and β̄ = (β̄0, β̄1) be the posterior means of α and β. In addition,

let “ ¯PRN” be the sample average of the “rating ratio,” i.e.,

ᾱ = (44.78, 4.23), β̄ = (8.33,−0.95), and ¯PRN = 0.91.

We compute the optimal buy price using the parameters ᾱ, β̄, and ¯PRN. We employ

the grid search method to compute the optimal buy price. From the buy prices of
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p = $40.00 to $60.00 with increment $0.01, we execute the following procedure.

First, we generate random draws, s
(t)
1 , ..., s

(t)
N from N(µ, σ2), where µ = ᾱ0+ ᾱ1

¯PRN

and σ2 = exp(β̄0 + β̄1 ¯PRN). Then we compute the transaction prices of auctions with

buy price, p, and the winning bids of auctions without buy prices. The equilibrium

transaction prices of auctions with buy prices can be computed using the procedure

described in Section 3.2 for each buy price of p = 40.00, 40.01, ..., 60.00. Let w
(t)
∗ be

the transaction price of auctions with buy prices. Similarly, since bidder i with signal

si in auctions without buy prices bids bi = E( 1
N

∑n
i=1 Si|Si = s,maxj ̸=i Sj = s), we

can compute the bids of auctions without buy prices from s
(t)
1 , ..., s

(t)
N and the estimated

parameters. Iterate this procedure until t becomes a large number, T . In our example,

T = 5000. Since the expected revenue is E(W∗), the sample average of w
(t)
∗ estimates

the expected revenue.
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Figure 3.17: Expected revenue and buy prices from the eBay mint coin data

Figure 3.17 shows the expected revenue of auctions with buy prices and corresponding
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buy prices from $40.0 to $60.0. The horizontal axis is the buy price, and the vertical

axis represents the expected revenue of auctions with buy prices.

When the seller sets the buy price too low, each bidder accepts the buy prices.

Therefore, the expected revenue of sellers is equal to the buy price that the seller sets

when the buy price is sufficiently low. In Figure 3.17, the expected revenues are equal

to buy prices from $40.0 to $43.0. That is, we find that bidders will accept the buy

prices when p ∈ [40.0, 43.0]. On the other hand, when the seller sets the price too high,

every bidder rejects the buy price. Thus, the expected revenue of a buy price auction is

equal to that of a standard auction (i.e., auction without buy-it-now prices) when the

buy price is sufficiently high. In our empirical example, the estimated expected revenue

of standard auctions is about $45.56. In Figure 3.17, we find that the expected revenues

of auctions with a buy-it-now option are equal to those of standard auctions, $45.56,

when buy prices are higher than $56.24. Besides, for p > 49.00, the expected revenue

does not substantially change in our empirical example.

According to the results of our computation, the optimal buy price that maximizes

expected revenue is $53.20. Note that from Table 3.10, the average buy prices is about

$45.74. Therefore, we find that in eBay mint coin auctions, the optimal buy price is

higher than the average buy price that sellers set.

3.6.2 Revenue Comparison

As discussed in Section 3.2, the transaction prices in auctions with buy prices may not

be equal to the transaction prices in auctions without buy prices since buyers may accept

the buy prices. Therefore, the expected revenue of auctions with buy prices may not

equal that of auctions without buy prices. In this subsection, we compare the revenues

of auctions with buy prices and those without.

We estimate the expected revenue difference (i.e., the difference between the expected

revenue with buy prices and those without) in the eBay mint coin auction market using
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the estimated parameters. Similar to the previous subsection, let ᾱ = (ᾱ0, ᾱ1) and

β̄ = (β̄0, β̄1) be the posterior means of α and β. In addition, let “ ¯PRN” be the sample

average of the “rating ratio,” i.e.,

ᾱ = (44.78, 4.23), β̄ = (8.33,−0.95), and ¯PRN = 0.91.

We estimate the revenue difference using ᾱ, β̄, and ¯PRN. The procedure is similar to

the computation of the expected revenues of price auctions. First, we generate random

draws s
(t)
1 , ..., s

(t)
N from N(µ, σ2), where µ = ᾱ0 + ᾱ1

¯PRN and σ2 = exp(β̄0 + β̄1 ¯PRN).

Then, we compute the transaction prices of auctions with buy prices and the winning

bids of auctions without buy prices. Since bidder i with signal si in auctions without

buy prices bids bi = E( 1
N

∑n
i=1 Si|Si = s,maxj ̸=i Sj = s), we can compute the bids of

auctions without buy prices from s
(t)
1 , ..., s

(t)
N and the estimated parameters. Let w(t) be

the winning bid of an auction without a buy price. Similarly, the equilibrium transaction

prices of auctions with buy prices can be computed following the procedure described

in Section 3.2. Let w
(t)
∗ be the transaction price of an auction with a buy price. Then,

the revenue difference between auctions with buy prices and auctions without them can

be obtained by w
(t)
∗ − w(t). Iterate this procedure until t becomes a large number, T .

In our example, T = 5000. We execute the procedure for buy prices p = $40.0 to $60.0

with the increment $0.01.
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Figure 3.18: Expected revenue difference from the eBay mint coin data

Figure 3.18 shows the expected revenue difference, E(W∗ −W ), and corresponding

buy prices from $40.0 to $60.0. The horizontal axis is the buy price, and the vertical

axis represents the expected revenue difference.

Since the expected revenue of standard auctions does not depend on the buy price and

equals $45.56 in eBay mint coin auctions, the graph of the expected revenue difference

in Figure 3.18 is same shape as that of the expected revenue of buy price auctions in

Figure 3.17 except the scale of vertical axis. Therefore, the buy price that maximizes the

revenue difference is $53.20, which is the optimal buy price that maximizes the expected

revenue of auctions with a buy-it-now option. The maximized revenue difference is $0.05.

This result implies that, on average, sellers can realize an additional profit of $0.05 when

they set the buy price at $53.20.

When the seller sets price too low, every bidder accepts the buy price. Therefore, the

graph for the buy prices p ∈ [40.0, 43.0], has a linear shape. On the other hand, when

the seller sets prices too high, every bidder rejects the buy price. Thus, the expected
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revenue of an auction with a buy-it-now option is equal to that of a standard auction

when the buy price is sufficiently high. Then, the revenue difference equals zero. In

Figure 3.18, we find that the expected revenues of auctions with buy-it-now prices are

zero when the prices are higher than $56.24. However, the revenue difference is nearly

zero and does not substantially change for p > 49.00. Furthermore, for p ≤ 49.00, the

revenue of auctions without buy price is greater than that of auctions with buy price

for p ≤ 49.00. As a result, the revenue difference is negative or nearly zero for any buy

price p.

Table 3.14 presents the summarized statistics of the revenue differences and buy

prices. In Table 3.14, the “acceptance rate” represents the estimated probability that at

least one bidder will accept the buy price in first-stage game.

Buy price AR Mean Stdev. 25% quantile Median 75% quantile IQR

40.00 1.00 -5.57 11.26 -13.52 -6.20 1.81 15.33
43.00 1.00 -2.57 11.26 -10.52 -3.20 4.80 15.33
45.00 0.99 -0.83 10.92 -8.52 -1.20 6.48 15.00
50.00 0.65 -0.03 7.90 -3.52 0.00 1.75 5.27
52.00 0.41 -0.05 6.44 0.00 0.00 0.00 0.00
53.20 0.27 0.05 5.47 0.00 0.00 0.00 0.00
56.00 0.01 -0.02 0.82 0.00 0.00 0.00 0.00
60.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00

Table 3.14: Summary statistics of revenue differences and buy prices (AR: Acceptance
rate, IQR: Interquartile range)

As described above, when the buy price is $53.20, the expected revenue difference is

maximized and equal to $0.05. Since the acceptance rates are 1 for p ∈ [40.00, 43.00],

the transaction prices are equal to the buy prices. In addition, the winning bids without

buy prices do not depend on those prices. Therefore, for p ∈ [40.00, 43.00], the standard

deviation and interquartile range are invariant. We find that the acceptance rate de-

creases quickly for buy prices p > 47. The standard deviation decreases as the buy price

increases. Similarly, the interquartile range of revenue difference (i.e., difference between
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the 75% quantile and the 25% quantile of revenue difference) decreases. In particular,

for p ∈ [52, 60], both the 25% quantile and the 75% quantile are 0, and the standard

deviation is quite small. These results imply that the distribution of revenue differences

converges to the degenerate distribution that only takes 0 as p increases in probability.

This result is reasonable, since the transaction prices with buy prices become the win-

ning bids without buy prices when the buy prices are too high. When the buy price, p,

is too high, no bidder accepts the price in the first stage. Then, the transaction prices

are determined in the second-stage auction games. Since the second-stage auction games

coincide with auctions without buy prices, the transaction prices with buy prices equal

the winning bids without buy prices when the buy prices are sufficiently high. Decreases

in the standard deviation and the interquartile range of revenue difference represent this

phenomenon.

3.7 Conclusions

In this paper, we provide a method for estimating online common value auction models

with buy price options. In online auction markets, buyers must submit their bids while

observing the fixed buy prices. Therefore, when we estimate the structural parameters

of online auction models, we must take into account the buy price. When we ignore the

buy-it-now prices, estimates may be incorrect.

Our empirical example is eBay mint coin auctions in 2013. We found that when we

ignore the buy prices, we underestimate the mean of bidders’ signals corresponding to

the value of the good as well as the effect on the signals of positive ratings for sellers.

Furthermore, we found that the percentage of positive reviews has a positive effect on

the mean of the signal. We computed the optimal buy price that maximizes the sellers’

revenue using the estimated parameters. We found that the optimal buy price was

$53.20, which is higher than the average buy prices that we observed. We also conducted
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a revenue comparison. We compared the revenue between auctions with and without

buy prices. We found that the mean of the revenue difference between auctions with and

without buy prices was $0.05. Therefore, sellers can realize additional gain from auctions

with buy-it-now price options when they set the optimal price, p = $53.20. Furthermore,

we found that at least one bidder accepts the optimal buy price with probability 0.27.

Our findings open the door to areas of future research. In this paper, we assume

that the bidder is risk neutral. However, Ackerberg et al. (2011) cover risk aversion and

time impatience in their model. Therefore, risk aversion and time impatience can be

considered in this model.
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Chapter 4

An Empirical Analysis of

Bundling Sales in Online Auction

Markets

4.1 Introduction

Today, many people use consumer-to-consumer electronic commerce sites to buy (or sell)

goods. In particular, with the emergence of online auction sites (e.g., eBay and Yahoo!),

many people have become familiar with auctions.

Many studies have focused on online auctions. Examples include Melnik and Alm

(2002), Livingston (2005), Houser and Wooders (2006), and Resnick et al. (2006) regard-

ing the effect of reputation on sellers’ revenue; Bajari and Hortaçsu (2003) regarding

common value auctions and the winners’ curse; Bapna et al. (2008) and Giray et al.

(2009) regarding consumer surplus; Adams (2007) regarding demand on eBay; Hossain

and Morgan (2005) regarding the revenue equivalence theorem; and Roth and Ockenfels

(2002) regarding snipe bidding.

In such tradings, sellers often sell two or more items as bundling auctions. However,
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other sellers sell the same items separately. In this paper, we focus on bundling auctions

of online auction markets. We propose an empirical model of online common value

auctions for both bundling auctions and separate auctions.

Some papers focus on the bundling auction model in theoretical literature. Palfrey

(1983) studied bundling auctions with two bidders. He found that bundling auctions

generate more expected revenues with two bidders within the private values paradigm.

Chakraborty (1999) extended Palfrey (1983) to a general number of bidders. He found

that if the number of bidders grows large, the expected revenue of separate sales becomes

greater than that of bundling auctions. While Chakraborty (1999) studied the private

values model, Chakraborty (2002) studied the common value auction model and found

the effect that they call the winner’s curse reduction effect in bundling auctions. He also

compared the expected revenues between bundling auctions and separate auctions.

Our empirical example involves eBay mint coin auctions in 2014. In our data set,

there are two kinds of coin sets: 11-coin sets and 22-coin sets. We regard the 11-coin

sets as separate items and the 22-coin sets as bundled items. We also conduct some

counterfactual simulations using the estimated parameters. We evaluated the winner’s

curse reduction effect in the sense of Chakraborty (2002) and compared revenue between

bundling auctions and separate auctions. Chakraborty (2002) showed that bidders will

bid more aggressively in separate auctions than in bundling auctions; he named this

effect the winner’s curse reduction effect. We measured the magnitude of the winner’s

curse reduction effect. We found that bidders in separate auctions will bid $2.5 higher

than in bundling auctions. For revenue comparison, we found that the expected revenue

in a bundling auction is higher than that in separate auctions by $0.37. Since the average

transaction price of bundled items (22-coin sets) is $8.98, the value of additional gains

are not negligible.

The rest of this paper is organized as follows. In Section 4.2, we describe the model

of online auctions within the pure common value paradigm. Additionally, following
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Chakraborty (2002), we review the theoretical results for the bundling auctions. Section

4.3 describes the estimation strategy for the model described in Section 4.2. We utilize

Bayesian estimation to estimate the structural parameters. In Section 4.4, we conduct

some simulation experiments. In Section 4.5, we estimate the structural parameters using

real auction data. Our empirical example is eBay mint coin set auctions in 2014. In

Section 4.6, we compute the winner’s curse reduction effect in the sense of Chakraborty

(2002) and compare the revenue between separate auctions and bundling auctions using

the estimated parameters. Section 4.7 features some concluding remarks.

4.2 The Model

There are N risk neutral potential bidders and a seller. The number of potential bidders,

N , is a random variable and an exogenous variable. The seller sells two different objects

k = 1 and 2. In this model, we consider the pure common value model in which the

ex post valuation of the item is the same for each bidder. Let V1 and V2 denote the

values for items 1 and 2, respectively. The realizations of values are unknown to the

bidders. Instead, each bidder, i, receives her private signals corresponding to V1 and V2,

which are denoted by S1i and S2i, respectively. Each bidder knows the realization of her

own private signal but does not know the others’ before auctions. However, both the

distribution of S1i and the distribution of S2i are common knowledge among bidders.

In this paper, we consider a specific functional form for V1 and V2. We assume that the

value of each item to bidders is the average of their signals. That is, the valuations take

the form of

V1 =
1

N

N∑
i=1

S1i and

V2 =
1

N

N∑
i=1

S2i,
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respectively. 1 For the bundled item, we impose the additive separability on bidder i’s

signal for the bundled items, Si. Namely, we assume that Si = S1i + S2i. Then, from

our specific functional form for the value, the valuation of the bundled item, V , is

V =
1

N

N∑
i=1

Si

=
1

N

N∑
i=1

(S1i + S2i)

= V1 + V2.

We assume that Sk1, ..., SkN are independently and identically distributed. Namely,

Ski ∼ i .i .d . Fk(x)

for k ∈ {1, 2}. We assume that S1i and S2i are independently distributed. Furthermore,

we assume that for each k ∈ {1, 2}, Ski is affiliated with S1i+S2i in the sense of Milgrom

and Weber (1982).

4.2.1 Equilibrium

In this paper, we regard online eBay auctions as second-price auctions. That is, each

bidder submits her bid and the bidder with the highest bid among bidders wins the

object and pays the second highest bid. Then, the equilibrium bidding strategies in

separate auctions for items k = 1 and 2 are straightforward arguments from Milgrom

and Weber (1982).

Let Yki be the highest signal except bidder i’s signal, Ski. That is, Yki = maxj ̸=i Skj .

Then, the equilibrium bidding functions for bidder i with private signals S1i = s1 and

1This specification is the special case of Chakraborty (2002) and has been used in several papers.
Example are Goeree and Offerman (2002) for auctions within common value and private values paradigm
and Shahriar (2008) and Shahriar and Wooders (2011) for auctions with buy prices model.
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S2i = s2 in separate auctions are given by

b1(s1) = E[V1|S1i = s1, Y1i = s1] (4.1)

and

b2(s2) = E[V2|S2i = s2, Y2i = s2] (4.2)

for items k = 1 and 2, respectively.

Analogously, the equilibrium bidding function for bundling auctions can be derived

in the same manner. Let Si = S1i + S2i be the sum of bidder i’s signals, S1i and S2i.

Furthermore, let G(·) denote the cumulative distribution function of Si = S1i + S2i.

In other words, G(·) is the convolution of F1(·) and F2(·). Then, S1, ..., SN are also

independently and identically distributed with the CDF G(·). Namely,

Si ∼ i .i .d . G(s).

Let Yi be the highest signal except bidder i’s signal, Si. That is, Yi = maxj ̸=i Sj . Then,

using an argument similar to that of a separate auction, we gain the equilibrium bidding

function for bidder i with signal Si = s in the bundling auctions

b(s) = E[V1 + V2|Si = s, Yi = s]. (4.3)

4.2.2 Bundling Auctions versus Separate Auction

Since we computed the various effects of bundling auctions in our empirical example, it is

worthwhile to review the theoretical result of bundling auctions within the common value

paradigm. Chakraborty (2002) discussed the bundling auctions model and the separate

auctions model within the pure common value paradigm. Furthermore, he discussed the

effect of bundling auctions and separate auctions with some useful examples. In this

89



subsection, we review the results of Chakraborty (2002).

Chakraborty (2002) discussed that bundling auctions have a winner’s curse reducing

effect. The intuitive explanation of the winner’s curse reducing effect is as follows. In

separate auctions of k = 1 and 2, winning the items k = 1, 2 implies that each winner

has the highest signal on each item. On the other hand, in a bundling auction, winning

the bundled item implies that the winner has the highest signal for the bundled item

but not for individual items, k = 1 and 2. Therefore, winning the bundling auction is

not as bad as winning two separate auctions. The following theorem is the Theorem 1

in Chakraborty (2002). They call the result of Theorem 1 the winner’s curse reducing

effect.

Theorem 1 (Chakraborty (2002)). A bidder bids more aggressively when the objects

are bundled. That is,

b(s) ≥ b1(s1) + b2(s2),

where s = s1 + s2.

4.3 Estimation

The results of equilibrium bidding strategies (4.1), (4.2), and (4.3) are familiar to

economists. However, few empirical studies focus on the structural estimation of common

value auction models. The main reason is the negative result of nonparametric identi-

fication on the common value auction model. Athey and Haile (2002) and Athey and

Haile (2007) showed the conditional distribution of Ski, given Vk is not identified from

the observed bids in the common value auction model without additional identification

conditions.

Therefore, most studies of structural estimation of the auction model focus on the

private values model. Recently, some papers have studied the identification condition

of the common value auction model. For example, Li et al. (2000) showed the identifi-
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cation under the additive separability of the common value component. Février (2008)

restricted the shape of the density function of the common value and showed the identifi-

cation of the common value auction model. d’Haultfoeuille and Février (2008) proposed

the identification condition of the common value auction model, assuming the support

of a private signal is finite and varies depending on the common value. In this paper,

we impose parametric specification to avoid the identification problem.

4.3.1 Estimation Procedure

We observe Tk auctions indexed by t = 1, ..., Tk for item k ∈ {1, 2}. The same items

are each sold in separate auctions. Analogously, we observe T auctions indexed by

t = 1, ..., T for bundling auctions. We can observe each bidder’s bid, Bkit, and the

number of actual bidders, nt, for bidder i, for item k{1, 2}, and for auction t{1, ..., Tk}.

We cannot observe each bidder’s signals, Skit and Sit, the common value, Vkt and Vt,

and the number of potential bidders, Nt.

An unknown number of potential bidders, Nt, can be a problem for identification, in

general. Within the private values paradigm, several papers proposed a novel method for

identifying the structural parameters when econometricians cannot observe the number

of potential bidders (Paarsch (1997); Song (2004); An et al. (2010); and Shneyerov and

Wong (2011)). However, for common value auctions, to the best of our knowledge, no

paper has focused on this issue. Therefore, we assume that the number of potential

bidders is constant among auctions as is the maximum number of actual number of

bidders observable by econometricians such as Guerre et al. (2000).

Following the example of Bajari and Hortaçsu (2003), we assume that bidders’ sig-

nals, Skit, are normally distributed with mean, µkt, and variance, σ2kt. That is, for

k ∈ 1, 2,

Skit ∼ N(µkt, σ
2
kt),
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where

µkt = α′
kXkt

and

σ2ktk = (exp(βk1), ..., exp(βkd))Xkt,

where d represents the dimensionality of the vector of the coefficient parameter, and

Xkt is the vector of the auction-specific covariate. The values of αk = (αk1, ..., αkd)

and βk = (βk1, ..., βkd) are unknown to econometricians; therefore, we estimate these

parameters.

Recall that the equilibrium bidding function bk(·) is given by

bk(sk) = E(Vkt|Skit = sk, Ykit = sk).

Since bk(·) is a strictly increasing function, there exists an inverse function ϕk(·). Note

that since we considered second-price auctions, the winning bid of item k, wkt, in auction

t is the second-highest bid in auction t. Therefore, observing the winning bids, the

likelihood function for separate auctions is given by

L(w1, ..., wkt|αk,βk, (Xk1, ..., Xkt)) =

Tk∏
t=1

 N

1 1 N − 2

 [Fk(ϕk(wkt)|µkt, σ2kt)]N−2

× fk(ϕk(wkt)|µkt, σ2kt)
1

b′k(ϕk(wkt))

× [1− Fk(ϕk(wkt)|µkt, σ2kt)], (4.4)

where fk(·) is the probability density function of Skit. In this case, fk(·) is the normal

density function.

The likelihood function for bundling auctions can be derived in the same manner.
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We assume that Sit is the normal random draw with mean µt and variance σ2t . That is,

Sit ∼ N(µt, σ
2
t )

where

µt = α′Xt

and

σ2t = (exp(β1), ..., exp(βd))Xt,

where α = (α1, ..., αd) and β = (β1, ..., βd) are the unknown coefficient parameter vector

to be estimated.

Since the equilibrium bidding function, b(·), is a strictly increasing function, there

exists an inverse function, ϕ(·). Similar to the separate auctions, since we considered

second-price auctions, the winning bid, wt, in auction t is the second-highest bid in

auction t. Therefore, in observing the winning bids, the likelihood function for the

bundling auction is given by

L(w1, ..., wt|α,β, (X1, ..., Xt)) =

T∏
t=1

 N

1 1 N − 2

 [G(ϕ(wt)|µt, σ2t )]N−2

× g(ϕ(wt)|µt, σ2t )
1

b′(ϕ(wt))

× [1−G(ϕ(wt)|µkt, σ2kt)], (4.5)

where g(·) is the probability density function of Sit. In this case, g(·) is the normal

density function.
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4.4 Simulation Experiments

In this section, we estimate the structural parameters in our model using simulation

data. The numbers of observed auction markets are T = 200, 500 and 1000 for item

k ∈ {1, 2} and the bundling auctions. In our simulation experiments, the number of

potential bidders is N = 5 for all auctions.

Throughout this section, we assume that S1it and S2it are random variables drawn

independently from identical distributions. We draw the signals for item k ∈ {1, 2} from

the normal distribution. That is,

Skit ∼ i .i .d .N(µkt, σ
2
kt),

where µkt = αk0 + αk1Xkt, and σ
2
kt = exp(βk0) + exp(βk1)Xkt. We draw covariate Xkt

from gamma distribution Ga(7, 2). The true values of αk and βk are

αk0 = 36.5, αk1 = 0.2, βk0 = 2.5, and βk1 = −0.7.

The bundling auction features the bundling of items 1 and 2. From the reproductive

property of normal distributions,

Sit ∼ i .i .d .N(µt, σ
2
t ),

where µt = α0 + α1Xt, and σ
2
t = exp(β0) + exp(β1)Xt. The true values of α and β are

α0 = 73.0, α1 = 0.4, β0 = log 2 + 2.5, and β1 = log 2− 0.7.

We estimate the structural parameters using the Bayesian method. We utilize the

Markov Chain Monte Carlo (MCMC) method to compute the posterior distribution of

parameters. We use the random walk-based Metropolis-Hastings (MH) algorithm to
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compute the posterior distribution of the parameters.

For each case, the prior distributions of αk, βk are

αk ∼ N(0, 100I), and βk ∼ N(0, 100I),

where I is the identity matrix of order 2. Similarly, the prior distribution of α, β are

α ∼ N(0, 100I), and β ∼ N(0, 100I).

4.4.1 The Case of T = 200

Hereafter, we omit subscript k ∈ {1, 2} for the separate auctions since signals for the

two separate items follow the identical distributions in our setting. That is, (α0, α1) ≡

(αk0, αk1) and (β0, β1) ≡ (βk0, βk2). In this case, we draw 20000 random samples from

the random walk-based MH algorithm, and the burn-in period is 2000 for both the

separate item and bundled item.

True value Mean Stdev. 95% interval CD IF

α0 36.5 36.99 1.37 (34.34, 39.98) 0.18 186.15
α1 0.2 0.13 0.10 (-0.10, 0.32) 0.07 181.58
β0 2.5 2.29 0.27 (1.68, 2.70) 0.24 152.40
β1 -0.7 -0.37 0.28 (-0.95, 0.11) 0.12 179.13

Table 4.1: Estimation results for separate auctions (Sample size: T = 200)

Table 4.1 shows the estimated posterior distributions of the parameters for separate

auctions. Our estimator contains the true values in 95% credible intervals. All p-values

of the convergence diagnostics (CD) are more than 0.07.2 Furthermore, the inefficiency

factor (IF) values are sufficiently low.3 The values of inefficiency factors are, at most,

187, which implies that we would obtain the same variance of the posterior sample means

2The CD test statistic tests the equality of the means of the first and last parts of the sample path.
3The definition of inefficiency factor is 1 + 2

∑∞
k=1 ρ(k), where ρ(k) is the sample autocorrelation at

lag k.
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from 105 uncorrelated draws, even in the worst case. Figure 4.1 represents the sample

paths from estimated posterior distributions for the separate auctions. Figure 4.2 shows

the estimated posterior densities. As a result, our MCMC simulation performs well.
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Figure 4.1: Sample paths for separate auctions (Sample size: T = 200)
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Figure 4.2: Posterior densities for separate auctions (Sample size: T = 200)

True value Mean Stdev. 95% interval CD IF

α0 73.0 73.06 0.48 (72.17, 74.00) 0.16 67.72
α1 0.40 0.40 0.03 (0.33, 0.46) 0.19 67.56
β0 3.19 3.59 0.21 (3.02, 3.81) 0.31 99.22
β1 -0.01 -5.01 4.23 (-15.10, 0.31) 0.71 31.91

Table 4.2: Estimation results for bundling auctions (Sample size: T = 200)

Table 4.2 shows the estimated posterior distributions of the parameters for bundling

auctions. Our estimator contains the true values in 95% credible intervals. All p-values

of the convergence diagnostics (CD) are more than 0.16. Furthermore, the inefficiency

factor values are sufficiently low. The values of inefficiency factors are, at most 99,

which implies that we would obtain the same variance of the posterior sample means

from 202 uncorrelated draws, even in the worst case. Figure 4.3 represents the sample

paths from estimated posterior distributions for the bundling auctions. Figure 4.4 shows

the estimated posterior densities. As a result, our MCMC simulation performs well.
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Figure 4.3: Sample paths for bundling auctions (Sample size: T = 200)
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Figure 4.4: Posterior densities for bundling auctions (Sample size: T = 200)
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4.4.2 The Case of T = 500

In this case, we draw 20000 random samples from the random walk-based MH algorithm,

and the burn-in period is 2000 for the separate items. For the bundled item, the number

of iteration is 50000 and burn-in period is 2000.

True value Mean Stdev. 95% interval CD IF

α0 36.5 37.17 0.92 (35.34, 38.93) 0.25 68.61
α1 0.20 0.17 0.07 (0.04, 0.30) 0.38 68.05
β0 2.5 2.46 0.12 (2.21, 2.69) 0.05 54.46
β1 -0.7 -0.68 0.21 (-1.14, -0.31) 0.09 55.27

Table 4.3: Estimation results for separate auctions (Sample size: T = 500)

Table 4.3 shows the estimated posterior distributions of the parameters for separate

auctions. Our estimator contains the true values in 95% credible intervals. All p-values

of the convergence diagnostics (CD) are more than 0.05. Furthermore, the inefficiency

factor values are sufficiently low. The values of inefficiency factors are, at most 69,

which implies that we would obtain the same variance of the posterior sample means

from 289 uncorrelated draws, even in the worst case. Figure 4.5 represents the sample

paths from estimated posterior distributions for the separate auctions. Figure 4.6 shows

the estimated posterior densities. As a result, our MCMC simulation performs well.
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Figure 4.5: Sample paths for separate auctions (Sample size: T = 500)
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Figure 4.6: Posterior densities for separate auctions (Sample size: T = 500)
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True value Mean Stdev. 95% interval CD IF

α0 73.0 72.79 0.32 (72.18, 73.43) 0.95 88.75
α1 0.40 0.42 0.02 (0.38, 0.47) 0.78 92.15
β0 3.19 3.31 0.32 (2.63, 3.83) 0.02 197.81
β1 -0.01 -0.54 2.31 (-8.41, 0.83) 0.10 96.28

Table 4.4: Estimation results for bundling auctions (Sample size: T = 500)

Table 4.4 shows the estimated posterior distributions of the parameters for the

bundling auctions. Our estimator contains the true values in 95% credible intervals.

All p-values of the convergence diagnostics (CD) are more than 0.02. Furthermore, the

inefficiency factor values are sufficiently low. The values of inefficiency factors are, at

most 198, which implies that we would obtain the same variance of the posterior sample

means from 252 uncorrelated draws, even in the worst case. Figure 4.7 represents the

sample paths from estimated posterior distributions for the separate auctions. Figure

4.8 shows the estimated posterior densities. As a result, our MCMC simulation performs

well.
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Figure 4.7: Sample paths for bundling auctions (Sample size: T = 500)
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Figure 4.8: Posterior densities for bundling auctions (Sample size: T = 500)
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4.4.3 The Case of T = 1000

In this case, we draw 20000 random samples from the random walk-based MH algorithm,

and burn-in period is 2000 for both the separate items and bundled item.

True value Mean Stdev. 95% interval CD IF

α0 36.5 3.66 0.64 (35.31, 37.79) 0.01 67.46
α1 0.2 0.27 0.05 (0.17, 0.36) 0.01 66.38
β0 2.5 2.52 0.09 (2.34, 2.68) 0.01 63.49
β1 -0.7 -0.72 0.16 (-1.07, -0.43) 0.02 63.94

Table 4.5: Estimation results for separate auctions (Sample size: T = 1000)

Table 4.5 shows the estimated posterior distributions of the parameters for separate

auctions. Our estimator contains the true values in 95% credible intervals. All p-values

of the convergence diagnostics (CD) are more than 0.01. Furthermore, the inefficiency

factor values are sufficiently low. The values of inefficiency factors are, at most 68, which

implies that we would obtain the same variance of the posterior sample means from 294

uncorrelated draws, even in the worst case. Figure 4.9 represents the sample paths

from estimated posterior distributions for the separate auctions. Figure 4.10 shows the

estimated posterior densities. As a result, our MCMC simulation performs well.
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Figure 4.9: Sample paths for separate auctions (Sample size: T = 1000)
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Figure 4.10: Posterior densities for separate auctions (Sample size: T = 1000)
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True value Mean Stdev. 95% interval CD IF

α0 73.0 72.92 0.20 (72.52, 73.31) 0.08 71.70
α1 0.40 0.41 0.01 (0.38, 0.44) 0.15 72.41
β0 3.19 3.07 0.25 (2.42, 3.44) 0.59 162.33
β1 -0.01 0.30 0.27 (-0.30, 0.81) 0.61 166.61

Table 4.6: Estimation results for bundling auctions (Sample size: T = 1000)

Table 4.6 shows the estimated posterior distributions of the parameters for the

bundling auctions. Our estimator contains the true values in 95% credible interval.

All p-values of the convergence diagnostics (CD) are more than 0.08. Furthermore, the

inefficiency factor values are sufficiently low. The values of inefficiency factors are, at

most 167, which implies that we would obtain the same variance of the posterior sam-

ple means from 119 uncorrelated draws, even in the worst case. Figure 4.11 represents

the sample paths from estimated posterior distributions for the separate auctions. Fig-

ure 4.12 shows the estimated posterior densities. As a result, our MCMC simulation

performs well.
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Figure 4.11: Sample paths for bundling auctions (Sample size: T = 1000)
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Figure 4.12: Posterior densities for bundling auctions (Sample size: T = 1000)
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4.5 Empirical Examples

4.5.1 Data Description

Our empirical example consists of auctions of 2005 U.S. mint coin set held on eBay in

2014. Data were collected from 208 eBay auctions completed in October, 2014. There

are two types of goods in our data set. One is the 11-coin mint set and the other is the

22-coin mint set. The 22-coin mint set includes two packages of the 11-coin mint set.

The sample sizes are 107 and 101, respectively.

As Bajari and Hortaçsu (2003) and Wegmann and Villani (2011) studied coin auc-

tions in their empirical illustrations, coin auctions are excellent examples in the em-

pirical study of the common values auction model. While Bajari and Hortaçsu (2003)

and Wegmann and Villani (2011) both collected various kinds of coins in their empirical

illustrations, we only collected 2005 U.S. mint coin sets (11-coin sets and 22-coin sets).

Therefore, we estimated the distribution of signals with fewer covariates.

Mean Std Median Max Min

Winning bid 6.55 2.64 5.99 15.5 2.25
Positive reputation 6515.74 17105.87 388.00 73913 5
Negative reputation 9.52 28.49 0.00 194 0.00

Number of actual bidders 2.87 1.61 3.00 6.00 1.00
Days 5.26 2.28 7.00 10.00 0.00

Table 4.7: Summary statistics (2005 U.S. mint coin sets, (11-coin set) # of obs. = 107)

Mean Std Median Max Min

Winning bid 8.98 3.35 8.25 17.0 3.3
Positive reputation 22553.29 33006.16 1303.00 73892.00 0.00
Negative reputation 13.39 17.17 3.00 57.00 0.00

Number of actual bidders 3.47 2.04 3.00 7.00 1.00
Days 5.98 2.06 7.00 10.00 1.00

Table 4.8: Summary statistics (2005 U.S. mint coin sets, (22-coin set) # of obs. = 101)
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Tables 4.7 and 4.8 provide the summary of statistics for the 11-coin set and 22-

coin set, respectively. The first column describes the variables. “Winning bid” is the

second highest bid in the eBay auction. As seen in Tables 4.7 and 4.8, on average,

one could purchase a mint coin set for $7.3 or $9.2 for the 11-coin set or 22-coin set,

respectively. “Positive reputation” denotes the number of positive ratings a seller has

received. Similarly, “negative reputation” is the sum of the number of negative ratings

and the number of neutral ratings a seller receives. Since the number of neutral ratings

and the number of negative ratings are usually small relative to the number of positive

ratings, we regard neutral ratings as negative ratings. “Number of actual bidders” is

the number of participants who actually bid at auction t. “Days” denotes the duration

of the auctions held.

4.5.2 Estimation Results

We estimate the structural parameters using the U.S. mint coin data described above.

The 11-Coin Set

For the 11-coin set, we assume that the signal, Si, follows the normal distribution. That

is,

Sit ∼ i .i .d .N(µ1t, σ
2
1t),

where µ1t = α0 + α1Xt1 + α2Xt2, and σ
2
1t = exp(β0) + exp(β1)Xt1 + exp(β2)Xt2. The

parameters α = (α0, α1, α2) and β = (β0, β1, β2) are unknown to econometricians.4

In this empirical illustration, the auction-specific covariates, Xt = (Xt1, Xt2) are the

logarithm of “Positive reputation + 1” and “Negative reputation + 1”; that is,

Xt1 = log(Positive reputation + 1) and Xt2 = log(Negative reputation + 1)

4Analogous to the simulation experiments (Section 4.4), we omit subscript k = 1 for the coefficient
parameters α and β.
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for observed auction t.

The prior distribution of α and β are

α ∼ N(0, 10I)

and

β ∼ N(0, 10I),

where I is the identity matrix of order 3.

Similar to the simulation experiments described in Section 4.4, we used the random

walk-based Metropolis-Hastings algorithm to generate random draws from the posterior

distributions. The number of iteration is 20000, and the burn-in period is 1000.

Table 4.9 reports the probabilities parameters take positive (PP), the p-values of

convergence diagnostics for the MCMC (CD) and Inefficiency Factors (IF). All p-values

of the convergence diagnostics are more than 0.06. Furthermore, the inefficiency factor

values are sufficiently low. In particular, the inefficiency factors are 39.88 to 95.65, which

implies that we would obtain the same variance of the posterior sample means from 209

uncorrelated draws, even in the worst case. Figure 4.13 shows the sample paths of

estimated parameters. From Figure 4.13 it can be seen that the sample paths of these

parameters converge to posterior distributions. Thus, we conclude that the sample paths

of estimated parameters converge to posterior distributions.

Parameter Covariate (Coefficient Parameter) PP CD IF

µ1 Const. (α0) 1.00 0.77 87.41
log(Pos.Rep.+ 1) (α1) 1.00 0.85 95.65
log(Neg.Rep.+ 1) (α2) 0.46 0.96 66.27

σ21 Const. (β0) 0.51 0.06 54.85
log(Pos.Rep.+ 1) (β1) 1.00 0.32 47.15
log(Neg.Rep.+ 1) (β2) 0.44 0.77 39.88

Table 4.9: The convergence diagnostics for the MCMC (CD) and the inefficiency factors
(IF) for the 11-coin set
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Figure 4.13: Sample paths of parameters (11-coin set)

Figure 4.14 shows the posterior densities of parameters for the 11-coin set. Table

4.10 and Figure 4.14 provide some posterior inferences. In Table 4.10, “Mean,” “Stdev,”

and “95% interval” represent the posterior mean, the posterior standard deviation, the

95% credible interval, respectively.

Parameter Covariate (Coefficient Parameter) Mean Stdev. 95% credible interval

µ1 Const. (α0) 4.59 0.71 (3.23, 6.00)
log(Pos.Rep.+ 1) (α1) 0.46 0.17 (0.12, 0.79)
log(Neg.Rep.+ 1) (α2) -0.03 0.39 (-0.78, 0.73)

σ21 Const. (β0) 0.01 1.76 (-3.56, 3.12)
log(Pos.Rep.+ 1) (β1) 2.27 0.22 (1.71, 2.60)
log(Neg.Rep.+ 1) (β2) -0.35 1.60 (-3.70, 2.44)

Table 4.10: Posterior inferences for the 11-coin set
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Figure 4.14: Posterior densities (11-coin set)

As seen in Table 4.10, the posterior mean of α0 is 4.59. Since α0 is the con-

stant term corresponding to the mean parameter µ1, when a seller has no reputation

(i.e., a new entrant), the mean of the bidders’ signal is $4.59. As seen in Table 4.10,

the posterior mean of α1 is 0.46, which is the coefficient parameter of the covariate

log(Positive reputation + 1) corresponding to the mean parameter µ1. Therefore, if a

seller earns a more positive reputation, the mean of the bidders’ signals will increase.

This result seems intuitively plausible. The posterior mean of α2 is −0.03, and α2 takes

a positive value with probability 0.46. Since α2 is the coefficient parameter of the covari-

ate log(Negative reputation + 1) corresponding to the mean parameter µ1, the number

of negative ratings does not have much effect on the mean of the bidder’s signal. This

result is not intuitively plausible. One possible reason for the tiny effect of negative

reputations on the mean of bidders’ signals is the positive correlation between positive

reputations and negative reputations. The correlation coefficient between positive rep-

utations and negative reputations is 0.86, which represents a high positive correlation.
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The scatter plot is given in Figure 4.15.
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Figure 4.15: Logarithms of “Positive reputation + 1” and “Negative reputation + 1”
(11-coin set)

From Table 4.7 , the number of negative ratings is small relative to the number of

positive ratings. There are very few auctions in which sellers receive negative ratings.

In most cases, sellers receive positive ratings. From Figure 4.15, many sellers with

log(Positive reputation + 1) < 7 (i.e., sellers with positive reputations, less than 1100

total) had no negative ratings. All sellers with log(Positive reputation+1) ≥ 7 had some

negative ratings. Therefore, sellers with more trades receive more (both positive and

negative) ratings. From these facts, we conclude that the number of negative ratings

does not represent the insincerity of seller but, rather, the abundance of the seller’s

experience, in our empirical example.
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The 22-Coin Set

Similar to the case of 11-coin set, we assume that the signal Si follows the normal

distribution. That is,

Sit ∼ i .i .d .N(µt, σ
2
t ),

where µt = α0 + α1Xt1 + α2Xt2, and σ
2
t = exp(β0) + exp(β1)Xt1 + exp(β2)Xt2. The pa-

rameters α = (α0, α1, α2) and β = (β0, β1, β2) are unknown to econometricians. In this

empirical illustration, the auction-specific covariates, Xt = (Xt1, Xt2) are the logarithm

of “Positive reputation + 1” and “Negative reputation + 1”.

The prior distribution of α and β are

α ∼ N(0, 100I)

and

β ∼ N(0, 100I),

where I is the identity matrix of order 3.

Similar to the case of 11-coin set, we use the random walk-based MH algorithm to

generate random draws from the posterior distributions. We draw 30000 random samples

from the posterior distribution via MH algorithm for each parameter. The burn-in period

is 3000.

Table 4.11 provides the summary of statistics of posterior distributions and the p-

values of convergence diagnostics for the MCMC (CD) and Inefficiency Factors (IF). All

p-values of the convergence diagnostics are more than 0.06. Furthermore, the inefficiency

factors are less than 188. Therefore, we would obtain the same variance of the posterior

sample means from 159 uncorrelated draws, even in the worst case. Figure 4.16 shows the

sample paths of estimated parameters. We conclude that the sample paths of estimated

parameters converge to posterior distributions.

113



Parameter Covariate (Coefficient Parameter) PP CD IF

µ1 Const. (α0) 1.00 0.19 166.34
log(Pos.Rep.+ 1) (α1) 0.99 0.10 187.68
log(Neg.Rep.+ 1) (α2) 0.30 0.06 160.56

σ21 Const. (β0) 1.00 0.85 53.65
log(Pos.Rep.+ 1) (β1) 0.18 0.81 21.81
log(Neg.Rep.+ 1) (β2) 0.24 0.41 16.99

Table 4.11: The convergence diagnostics for the MCMC (CD) and the inefficiency factors
(IF) for the 22-coin set
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Figure 4.16: Sample paths of parameters (22-coin set)

Parameter Covariate (Coefficient Parameter) Mean Stdev. 95% credible interval

µ Const. (α0) 5.15 1.36 (2.53, 7.90)
log(Pos.Rep.+ 1) (α1) 0.70 0.29 (0.12, 1.25)
log(Neg.Rep.+ 1) (α2) -0.28 0.58 (-1.42, 0.89)

σ2 Const. (β0) 4.68 0.24 (4.27, 5.02)
log(Pos.Rep.+ 1) (β1) -3.56 3.79 (-12.37, 1.71)
log(Neg.Rep.+ 1) (β2) -3.18 3.94 (-12.21, 2.48)

Table 4.12: Posterior inferences for the 22-coin set
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Figure 4.17: Posterior densities (22-coin set)

Figure 4.17 shows the posterior densities of parameters for the 22-coin set. Table

4.12 and Figure 4.17 provide some posterior inferences. As seen in Table 4.12, the

posterior mean of α0 is 5.15. Since α0 is the constant term corresponding to the mean

parameter µ. Therefore, when a seller has no reputation (i.e., a new entrant), the

mean of the bidders’ signal will be $5.15. The posterior mean of α1 is 0.70. Since α1

is the coefficient parameter of the covariate log(Positive reputation + 1) corresponding

to the mean parameter µ, we find that positive reputation has positive effect on the

mean of bidders’ signals. The posterior mean of α2 is −0.28 and α2 takes a positive

value with probability 0.30. Recall that α2 is the coefficient parameter of the covariate

log(Negative reputation + 1) corresponding to the mean parameter µ. According to our

results, the number of negative ratings does not have much effect on the mean of bidders’

signals. This result is not plausible to our intuition. A possible reason is the same as in

the case of 11-coin set. That is, a high positive correlation between positive reputations

and negative reputations. The correlation coefficient between positive reputations and
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negative reputations is 0.92, which represents a high positive correlation between positive

reputations and negative reputations. The scatter plot is shown in Figure 4.18.
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Figure 4.18: Logarithms of “Positive reputation + 1” and “Negative reputation + 1”
(22-coin set)

Table 4.8 shows the number of negative ratings is small relative to the number of pos-

itive ratings. There are very few auctions in which sellers receive negative ratings.

In most cases, sellers receive positive ratings. From Figure 4.18, many sellers with

log(Positive reputation + 1) < 7.2 (i.e., sellers with positive reputations, less than 1330

total) had no negative ratings. All sellers with log(Positive reputation+1) ≥ 7 had some

negative ratings. Analogous to the case of 11-coin set, we conclude that the number of

negative ratings does not represent the insincerity of seller but, rather, the abundance

of the seller’s experience. As a result, negative ratings do not have much impact on the

mean of bidders’ signals.
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4.6 Counterfactual Simulations

In this section, we compute the winner’s curse reduction effect in the sense of Chakraborty

(2002) and compare the revenue of separate auctions and bundling auctions using the

estimated parameters from Section 4.5.5

In our empirical model, the distribution of bidders’ signals depends on auction-

specific covariates. We compute the winner’s curse reduction effect and the expected rev-

enue for a “representative” auction using the sample means of covariates, log(Positive reputation+

1) and log(Negative reputation+1), in Tables 4.7 and 4.8 and the posterior mean of the

estimated parameters in Tables 4.10 and 4.12. The sample means of log(Positive reputation+

1) and log(Negative reputation + 1) are

log(Positive reputation + 1) = 6.77 and log(Negative reputation + 1) = 1.34,

respectively. The number of participants for a representative auction is N = 7. Subse-

quently, the bidding functions can be computed using equations (4.1) and (4.3).

In our empirical example, since the separate items, k = 1 and k = 2, are the same

item, we cannot estimate the parameters for item k = 2 directly. In other words, we

cannot obtain the estimates for coefficient parameters (α,β) for item 2 from observed

bids. However, for an arbitrary fixed covariates (and hence for the representative auc-

tion), the distribution of bidders’ signals for item 2 can be identified. Since bidder i’s

private signal for item k = 1, S1i, and bidder i’s private signal for item k = 2, S2i,

are independent, the distribution of bidders’ signals for item 2 can be recovered from

the identified distributions of bidders’ signals for item 1, S1i, and bidders’ signals for

5Chakraborty (2002) also discussed the expected revenues of both bundling auctions and separate
auctions. Under the regularity conditions that are satisfied in our parametric specifications (i.e., nor-
mally distributed signals), He found that revenue ranking between the revenue of bundling auctions and
separate auctions depends on the number of potential bidders, N . He found that bundling auctions
generate more expected revenue than do separate auctions for all N < N∗, where N∗ is a sufficiently
small number.
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bundled item, Si. Note that while we assume the independence, we do not assume that

S1i and S2i have identical distributions.6

Since our parametric specification imposes that S1i, S2i, and Si are normal random

variables, from the reproductive property of normal distributions, we have

S2i ∼ N(µ− µ1, σ
2 − σ21),

where (µ, σ2) and (µ1, σ
2
1) are the parameters for distributions of Si and S1i, respectively.

Let (µ2, σ
2
2) be the parameter vector for distributions of S2i. By the estimated parameters

and the sample mean of covariates, we gain µ2 = 1.85 and σ22 = 40.53. Note that, since

the mean of the signals for item 1 is µ1 = 7.66, E(S1i) > E(S2i) holds. This inequality

seems intuitively plausible because the willingness to pay for the second item is usually

less than that for the first item.

The statement of Theorem 1 is the winner’s curse reduction effect, as proposed

by Chakraborty (2002). Namely, bi(s) ≥ b1i(s1) + b2i(s2). For each fixed signal s =

5, 10, 15, varying the value of the signal for item 1, s1, from 3.0 to s, we compute

bi(s)− (b1i(s1) + b2i(s2)).

6Our simulation experiments in Section 4.4 dealt with the special case of independent signals. In our
simulation experiments, we assume the identical distribution of S1i and S2i.
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Figure 4.19: Difference of the bidding function with s = 5 (Independent signals case)
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Figure 4.20: Difference of the bidding function with s = 10 (Independent signals case)

119



Bi(s) − (B1 i(s1) + B2 i(s2)) 

3 4 5 6 7 8 9 10 11 12 13 14 15

2.
50

2.
75

3.
00

3.
25

3.
50

3.
75

Signal s1

D
if

fe
re

nc
e

Bi(s) − (B1 i(s1) + B2 i(s2)) 

Figure 4.21: Difference of the bidding function with s = 15 (Independent signals case)

Figures 4.19, 4.20, and 4.21 report the difference of the bidding function bi(s)−(b1i(s1)+

b2i(s2)) for fixed signals s = 5, 10, 15, respectively. The shape of the graph with s = 5 is

not similar to that of the graphs with s = 10, 15. When s = 5, the difference decreases

as the signal for item 1, s1, increases. On the other hand, when s = 10 and 15, the

difference decreases for s1 ∈ (3.0, 8.0) and s1 ∈ (3.0, 11.0) and it increases for s1 > 8.0

and s1 > 11.0, respectively. The values of bi(s)− (b1i(s1) + b2i(s2)) for s = 5, 10, 15 are

similar, around $2.50.

One may mistakenly conclude that Theorem 1 implies the revenue of bundling auc-

tions is higher than that of separate auctions. Actually, Theorem 1 does not imply

revenue ranking. In Theorem 1, for any signal of bundling auctions, Si = s, the equa-

tion s = s1i + s2i must hold. When we compare the revenues, the equation s = s1i + s2i

need not hold. The realizations of S1i and S2i are determined independently.

The expected revenues are computed by the Monte Carlo simulation method. Using

the estimated parameters and the sample means of covariates, we draw the signals of
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bundling and separate auctions from the estimated distributions. We assume that the

number of potential bidders is N = 7. Then, the equilibrium bids for signals are com-

puted via equation (4.1), (4.2), and (4.3). The winning bids are the second-highest bids

for both bundling and separate auctions. The revenue difference is computed by the

difference between the bundling auction’s winning bid and that of the separate auction.

We iterate this procedure 5000 times.
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Figure 4.22: Density of revenue difference between bundling auctions and separate auc-
tions (Independent signals case)

Mean Stdev. .25 quantile Median .75 quantile PP

Revenue (bundle) 8.67 3.12 6.61 8.85 10.88 -
Revenue (item 1) 6.99 2.48 5.39 7.10 8.73 -
Revenue (item 2) 1.32 1.90 0.09 1.41 2.67 -
Revenue difference 0.37 4.47 -2.60 0.38 3.40 0.53

Table 4.13: Summary statistics of revenue and revenue differences (Independent signals
case)

The density of revenue differences between bundling and separate auctions is shown
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in Figure 4.22. The shape of the density is symmetrical at point 0. Table 4.13 reports

the summary statistics of revenues and revenue differences. In Table 4.13, “Mean” and

“Stdev.” are the mean and the standard deviation of revenue differences, respectively.

Similarly, “.25 quantile,” “Median,” and “.75 quantile” represent the first quartile, the

second quartile, and the third quartile. The probability that the revenue of bundling

auctions is higher than that of separate auctions is denoted by “PP.”

According to Figure 4.22 and Table 4.13, the revenue of bundling auctions is higher

than that of separate auctions with probability 0.53. The expected revenue difference is

$0.37. Therefore, sellers can gain an additional profit of $0.37 by using a bundle auction

rather than two separate auctions. Since the average transaction price of bundled items

(22-coin sets) is $8.98, we find that the value of additional gains are not negligible. In

the theoretical literature, Chakraborty (2002) discussed the revenue ranking between the

revenue of bundling auctions and separate auctions. He found that bundling auctions

generate more expected revenue than do separate auctions when the number of bidders is

sufficiently small. According to Tables 4.7 and 4.8, the number of participants at most 7.

Therefore, our empirical example does not contradicts the result of Chakraborty (2002).

4.7 Conclusions

In this paper, we focused on bundling auctions in online auction markets. In online

auction markets (e.g., eBay and Yahoo!), sellers often sell two or more items in bundling

auctions. Conversely, other sellers sell the same items separately. We propose an esti-

mation procedure for bundling auction models within the pure common value paradigm.

Our empirical example is eBay mint coin set auctions in 2014. In our data set, there

are two kinds of coin sets: 11-coin sets and 22-coin sets. We regard the 11-coin sets

as the separate item and the 22-coin set as the bundled item. We also conducted some

counterfactual simulations using the estimated parameters. We computed the winner’s
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curse reduction effect following Chakraborty (2002) precedent and compared the revenue

of bundling auctions and separate auctions. We found that the value of the winner’s

curse reduction effect is about $2.5. For revenue comparison, we found that the expected

revenue in the bundling auctions is higher than that in the separate auctions by $0.37.

Since the average transaction price of bundled items (22-coin sets) is $8.98, the value of

additional gains are not negligible.

There are some avenues for future research in this paper. For one, we ignored the

endogenous entry of bidders. In general, bidders will decide endogenously to participate,

whether in bundling auctions or separate auctions. Analogously, we also ignored the

seller’s incentive to decide which item (the bundled item or separate items) to sell. The

seller’s decision as to which item to sell will depend on the revenue ranking between

bundling auctions and separate auctions.
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Chapter 5

Structural Estimation of the

Scoring Auction Model

5.1 Introduction

Public sectors purchase a variety of goods and services from the private sector, from

snow removal services to weapons systems. OECD (2007) reported that the amount

of expenditure incurred for public procurement accounts for 10 to 15 % of GDP in

OECD countries. For public funds to be spent efficiently and effectively, value for money

(relevant prices and qualities of proposals in the whole procurement cycle are assessed)

is the key principle in public procurement. Although low-bid auctions are a common

awarding mechanism, more and more procurement buyers introduce competitive bidding

processes in which the highest value-for-money offer is selected. The scoring auction, or

equivalent multi-parameter bidding, is one of the most prevalent mechanisms that meets

the objective.

In the scoring auction, bidders are asked to submit a set of multi-dimensional bids

that include price and non-price attributes (quality), such as service life, delivery date,

and the extent of environmental burden of the production processes. An ex ante publicly
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announced scoring rule maps the multiple-dimensional bid into a variable, a so-called

score, and the awarder is the bidder whose score is the highest or lowest. Scoring

auctions allow a procurement buyer to obtain more valuable (or greater value-for-money)

contracts without reducing the bidders’ profits than do price-only auctions (Milgrom

(2004)).

A variety of forms of scoring rules are used in real-world public procurement. In

US states’ departments of transportation, for instance, Delaware, Idaho, Oregon, Mas-

sachusetts, Utah, and Virginia, use quasilinear (QL) rules in the first-score (FS) auction,1

whereas Alaska, Colorado, Florida, Michigan, North Carolina, and South Dakota use

price-over-quality ratio (PQR) rules, in which the score is equal to the price bid divided

by a quality measure that aggregates all nonmonetary bids. The PQR scoring rule is also

used in most public procurement scoring auctions in Japan and some in Australia.2 In

addition, some governments in EU countries use the scoring auction in which the score

is the sum of the price and quality measurements but the score is nonlinear in the price

bid. Note that any monotonic function cannot transform these nonquasilinear scoring

rules into a QL form, because a necessary condition for quasi-linearity requires price to

be linear in score.

A growing number of empirical works on FS auctions have been developed (e.g.,

Bajari et al. (2007) and Lewis and Bajari (2009)). Nevertheless, they are confined to

either nonstructural approaches or FS auctions with awarding rules and no reservation

price. Theoretical literature, such as Asker and Cantillon (2008), has shown that, unless

the scoring auction is quasilinear and the reserve price is nonbinding, the bidder’s optimal

choice in non-price attributes hinges on the bidder’s score. This implies that the bidder’s

pseudo-type in Asker and Cantillon (2008) may not be monotone in the bidder’s signal.

As a result, the structural estimation method of the first-price auction model cannot

1In a FS auction, the successful bidder receives a payment equal to its price bid and provides the
quality level specified in its quality bid. See Section 5.2 for more details.

2The Ministry of Land, Infrastructure and Transportation in Japan allocates most public construction
project contracts through scoring auctions based on PQR awarding rules.
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directly apply to scoring auction data with a nonquasilinear scoring rule.

In this article, we propose a structural estimation procedure of the FS auction model

where the scoring rule accepts a nonquasilinear form. The model is established by

Hanazono et al. (2013), which is an extension of Che (1993), allowing a broader class

of scoring rules,3 including nonquasilinear forms and binding reservation prices. In

addition, imposing a condition on the bidder’s cost function, the model guarantees the

existence of the monotone pure equilibrium in scoring auctions in which bidders have

multi-dimensional signals. Thus, the model fits the typical FS auction data in which price

and quality are scattered in the price quality space. Based on the model, we establish a

procedure for identifying the bidder’s multi-dimensional signals from FS auction data.

Our framework allows for a wide variety of scoring auction data to be used in empirical

studies.

Several assumptions are made in the FS auction model. First, multi-dimensional sig-

nals are separable and monotone in conjunction with both the bidder’s cost function and

score function (Assumption 2). More specifically, each bidder with an L+1-dimensional

type is asked to submit a price bid as well as an L-dimensional quality bid. For any

quality, the bidder’s marginal cost of providing an additional unit of l-th dimensional

quality hinges solely on the bidder’s dimension l signal for all l = 1, . . . , L. The re-

maining dimension of the signal, i.e., l = 0, affects the bidder’s total costs; the total

cost is strictly increasing in the dimension-zero signal given quality. This specification

simplifies the mechanism design problem with multi-dimensional signals in a way that

the bidder’s information rent hinges solely on the distribution of dimension zero signal.

The bidder’s strategic interaction in the selection of the score is thus reduced to a single

dimensional problem with single dimensional private information. In addition, Assump-

tion 2 constitutes a sufficient condition for the identification of the FS auction model

3A scoring rule is interdependent if the bidder’s score is determined not only by his/her p and q but
also other bidders’ p and q such that Si(p1, . . . , pn, q1, . . . , qn). In this article, we restrict attention to
independent scoring rules. See Albano et al. (2009) for the classification of scoring rules.
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with multi-dimensional signals. Note that Assumption 2 is satisfied, for instance, under

a PQR scoring rule if a set of cost functions with an identical dimension-zero signal are

homothetic with each other.

Second, the bidder’s expected payoff function satisfies the log-supermodularity con-

dition (Assumption 3). By Assumption 2, the bidder’s choice in quality components

(non-price attributes) is thoroughly endogenous in the score. Hence, the strictly pos-

itive cross partial derivative of the log of the bidder’s expected payoff with respect to

both score and dimension-zero signal implies the log-supermodularity condition, which

guarantees the existence of the pure monotone strategy in the first-score auction.

To identify the bidder’s multi-dimensional signals from observed multi-dimensional

bid data, we choose a semi-parametric estimation methodology. The bidder’s cost func-

tion is assumed to be known except for the L+ 1-dimensional parameters (signals). In

the FS auction, the bidder’s signals are implicitly included in the bidder’s first-order con-

dition, in general. In other words, the first-order condition just constitutes an implicit

function of the bidder’s multi-dimensional signals. We, thus, exploit the monotonicity

condition given in Assumption 1 to indicate that the implicit function is monotone in

the dimension-zero signal. The identification of the remaining L dimensional signals

is straightforward given the assumption of the bidder’s cost function, i.e., the marginal

cost of l-th dimensional q is monotone in l-th dimensional signal. Finally, we identify the

distribution of the bidder’s multi-dimensional private signals. The structural estimation

method of first-price auctions has been developed by Laffont et al. (1995), Guerre et al.

(2000), and Li et al. (2002); and a growing number of empirical analyses of first-price

auction data have been provided in the literature. Our methodology is an extension of

Guerre et al. (2000) to the scoring auction model.

We conduct a Monte Carlo study to investigate the consistency and the finite sample

property of our estimation method. Simulated bid data samples are created with the di-

mension zero signal following a uniform distribution, which indicates that the symmetric
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monotone equilibrium bidding strategy of the FS auction is explicitly obtained. Then,

our structural estimation method is applied to the simulated scoring bid data to recover

the distribution of the bidder’s signal. The recovered cumulative distribution functions

are presented in Section 5.3.

As an empirical application, we conduct a series of counterfactual analyses using the

scoring auction data. The data is from public procurement auctions for construction

projects in Japan, where the scoring rule is PQR. Throughout the article, we assume

that the procurement buyer’s true preference is represented by the observed PQR scoring

rule. In addition, bidders’ true cost functions are either quadratic, cubic, and quartic

polynomials. All three functions satisfy the conditions that guarantees the existence of

a unique monotone equilibrium under the PQR scoring rule. Then, the impact of the

change in scoring rules or auction formats on both the procurement buyer’s and suppliers’

utilities is measured. Furthermore, the extent to which the utility of the buyer using

scoring auctions would change by the use of price-only auctions is quantified.

The results of our empirical application are as follows. First, a change in the auction

format has a very small impact on welfare; under the PQR scoring rule, the procure-

ment buyer has an approximately .003 to .004 percent lower utility (higher exercised

score) when using FS rather than SS auctions, whereas the winning bidder earns a pay-

off greater by approximately .15 to .26 percent in FS, as opposed to SS, auctions. Note

that Hanazono et al. (2013) suggests that nonequivalence stems from the overproduction

in quality in FS auctions. Accordingly, we observe that the expectation of the winner’s

quality provision is .001 to .002 percent larger in FS, as opposed to SS, auctions. Second,

there is a QL FS auction that dominates the currently used PQR FS auction. With a

well-designed QL scoring rule, the procurement buyer improves utility by approximately

.29 percent while bidders earn lower payoffs by 3.4 to 4.2 percent. Finally, the outcome

of a price-only auction is compared with that of the currently used PQR FS auctions.

In simulated price-only auctions, bidders’ payoffs vary, ranging from -41.2 to 1.34 per-
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cent, whereas the procurement buyer’s utility is consistently 1 to 36 percent lower than

with the PQR FS auction. These results suggest that a procurer can obtain an almost

equivalent (slightly lower) gain with the use of a price-only auction with a well-designed

fixed quality standard.

The remaining part of this article is organized as follows. Section 5.2 describes

the theoretical consideration of scoring auctions with general scoring rules. Section

5.3 discusses the identification of the distribution of bidders’ cost schedule parameters.

Section 5.4 conducts empirical examinations using the structural estimation method.

The final section is the conclusion.

5.2 A Theoretical Consideration

5.2.1 The Model

A procurement buyer auctions a project contract to n risk-neutral bidders.4 The scoring

function S(p, q) : RL+1
+ → R is common knowledge, mapping the bidder’s price-bid

p ∈ R and a quality level q = (q1, . . . , qL) ∈ [q1, q̄1] × · · · × [qL, q̄L] ≡ Q with qℓ > 0

for all ℓ = 1, . . . , L into a single dimensional value, the score, denoted by s ∈ R. The

scoring function is smooth and strictly monotone, i.e., Sp(p, q) > 0, Sqℓ(p, q) < 0, and

S
qℓqℓ̃

(p, q) = 0 for all ℓ = 1, . . . , L and ℓ̃ ̸= ℓ. For instance, the PQR scoring rule

with an unbinding reservation price is S(p, q) = p/V (q) where V > 0 for all q and

Vqℓ > 0 for all ℓ = 1, . . . , L. In addition, the QL scoring rule with an unbinding reserve

is S(p, q) = p − V (q). The procurement buyer’s utility function is represented by the

scoring function, namely U(p, q) = −S(p, q).5

At the bid preparation stage, each bidder obtains an L-dimensional signal θ ∈

[θ0, θ̄0] × · · · × [θL, θ̄L] ≡ Θ distributed following the publicly known cumulative joint

distribution F (θ). We allow for θℓ and θℓ̃ with ℓ̃ = 0, . . . , L and ℓ̃ ̸= ℓ to be correlated

4The argument in this section follows Hanazono et al. (2013).
5We relax this assumption in Section 5.4.
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with each other; however, θ is identically and independently distributed for every bidder.

Finally, we denote by Fℓ(θ
ℓ) the marginal distribution of θℓ with ℓ = 0, . . . , L.

The bidder’s cost function C(q|θ) is increasing and strictly convex inQ and is smooth

in Q and Θ. Furthermore, we normalize the cost function such that i) C(q|θ) is strictly

increasing in θ0, ii) Cqℓ is strictly decreasing in θℓ for all ℓ = 1, . . . , L, and iii)Cqℓ is

constant in θℓ̃ for any ℓ̃ = 1, . . . , L and ℓ̃ ̸= ℓ. The interpretation of this specification

is that the dimension-zero signal, θ0, represents the bidder’s overall productivity that

affects total cost, whereas the rest of the signal dimensions, θℓ with ℓ = 1, . . . , L, are

scale parameters in technology; the bidder with a larger θℓ with ℓ = 1, . . . , L has a lower

marginal cost to make an additional provision of ℓth-dimension quality.

Two auction formats are considered. In a FS auction, the successful bidder receives a

payment, p. In a SS auction, the successful bidder can freely choose the contracted p and

q as long as the score stemming from the contracted p and q equals the second-lowest

score in the auction.

The scoring auction game can be equivalently considered as follows. Bidders are

asked to submit a scoring bid, s ∈ R. The lowest-score bidder wins the contract. Only

the winner chooses a quality vector, q, with which the winner performs the project work.

The monotonicity of the scoring function implies the existence of the inverse function

with respect to p. That is, for a score value s, the payment function, P (s, q), is defined

such that

S(P (s, q), q) ≡ s,

for any relevant score s ∈ S(p,Q) with p ∈ R.

Let se be the exercised score. In a FS auction, the exercised score is the winning

bidder’s score, i.e., se = s. In a SS auction, it is equal to the second-lowest score. Then,
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the bidder’s problem in a scoring auction is given by

max
s,q

[P (se, q)− C(q|θ)] Pr{win|s}.

We assume that, for any se, there exists a unique internal solution of q that maximizes the

bidder’s payoff upon winning, i.e., P (se, q)−C(q|θ). Let qℓ(se,θ) denote the maximizer

of the bidder’s payoff upon winning for each ℓ = 1, . . . , L dimension such that

qℓ(se,θ) = argmax
qℓ

P (se, q)− C(q|θ). (5.1)

A sufficient condition for the uniqueness of the optimal quality choice is that, for all ℓ =

1, . . . , L, Pqℓ(s
e, q(se,θ))−Cqℓ(q(s

e,θ)|θ) = 0 with Pqℓqℓ(s, q(s,θ))−Cqℓqℓ(q(s,θ),θ) <

0. For notational convenience, we define u(se,θ) = P (se, q(se,θ))−C(q(se,θ)|θ). Then,

the bidder’s maximization problem is reduced into the following one-dimensional opti-

mization problem:

max
s
u(se,θ) Pr{win|s}. (5.2)

Recall that we have normalized that Ps(·) = 1/Sp(·) > 0 and Cθ0 > 0. Therefore, the

derivatives of u(·), with respect to se and θ0, are given by

us(s
e,θ) = Ps(s

e, q(se,θ)) > 0,

uθ0(s
e,θ) = −Cθ0(q(s

e,θ)|θ) < 0.

It suggests that the scoring auction game is a single-dimensional auction game in which

bidders with nonlinear utility functions submit scores.
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5.2.2 Equilibrium in a FS Auction

A symmetric monotone equilibrium in a FS auction with the multi-dimensional type

space is analyzed by adding the following two technical assumptions to the bidder’s

utility function. The first assumption (Assumption 2) simplifies the analysis of the

scoring auction with the multi-dimensional type space, whereas the second assumption

(Assumption 3) is required for the existence of an equilibrium in a FS auction.

Let u(s, θ0) be the payoff of the smallest-scale bidder whose efficiency level is θ0, so

that u(s, θ0) = u(s, θ0, θ1, . . . , θL). Then, Assumption 1 is summarized as follows.

Assumption 2 (Separability). There exists a monotonic function h(θ) = h1(θ0, θ1)h2(θ0, θ2)

· · ·hL(θ0, θL) with hℓ(θ0, θℓ) ≥ 1 and h(θ0, θ1, . . . , θL) = 1 such that, for any θ0,

dhℓ(θ0, θℓ)/dθℓ > 0 for all ℓ = 1, . . . , L and for all s and θ0,

u(s,θ) = h(θ)u(s, θ0). (5.3)

Assumption 2 ensures that the equilibrium bidding strategy is a sole function of

θ0, i.e., sI(θ
0). Together with the specification of the cost function such that Cqℓ is

decreasing in θℓ for all ℓ = 1, . . . , L, Assumption 2 implies that bidders with an identical

θ0 but different θℓ in any ℓ never choose the same quality set in equilibrium. The

monotonicity of the marginal cost is needed for the identification of the bidder’s type

from observables s and q. A detailed discussion is delivered in Section 5.3.2.

To see that Assumption 2 is sufficient for the bidding strategy sI(·) to be independent

of θℓ with ℓ = 1, . . . , L, suppose that two bidders have an identical θ0 but different θℓ

for some or all ℓ = 1, . . . , L. Let θ and θ̃ be their L + 1 dimensional signals. The

equilibrium bid strategy sI(·) maximizes the bidder’s expected payoff. The bidders’

objective functions are given by

max
s
h(θ)u(s, θ0) Pr{win|s}, max

s
h(θ̃)u(s, θ0) Pr{win|s}.
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Since the two maximization problems are monotonic transforms of each other, the two

objective functions are maximized at the same s. This implies that the equilibrium bid

strategy sI(·) depends solely on θ0.

Assumption 2 is interpreted as a generalization of the homothetic cost function. If

the scoring function is PQR such that S(p, q), the cost function C(q|θ) is a homothetic

function of C(q|θ0, θ1, . . . , θL), where h(θ) is a multiplier. In other words, C(q|θ) is

homogeneous of degree zero such that

C(q1(s,θ)h1(θ0, θ1), . . . , qL(s,θ)hL(θ0, θL)|θ) = h(θ)C(q(s,θ)|θ0, θ1, . . . , θL),

if the scoring rule is PQR.

Given Assumption 2, only one dimension of the bidder’s multi-dimensional signal, θ0,

associates the strategic interaction in the score choice game. Therefore, the existence of a

Bayesian Nash equilibrium in a FS auction only requires that the cross-partial derivative

of the log of u(se,θ) with respect to se and θ0 is strictly positive.

Assumption 3 (Log-Supermodularity). The smallest-scale bidder’s utility, u(s, θ0), is

log-supermodular, namely

∂2

∂s∂θ0
log u(s, θ0) > 0.

Note that Assumption 3 is required only in the analysis of a FS auction, since, as

will be seen in the next subsection, a dominant strategy equilibrium exists in a SS

auction. Also note that, given Assumption 2, the expected payoff of any bidder is log-

supermodular, because Assumption 2 ensures that the cross partial derivative of the log

of u(se,θ) is independent of θℓ with ℓ = 1, . . . , L:

∂2 log u(se,θ)

∂s∂θ0
=

∂

∂θ0

(
u(se,θ)

us(se,θ)

)
=

∂

∂θ0

(
h(θ)u(se, θ0)

h(θ)us(se, θ0)

)
=
∂2 log u(se, θ0)

∂s∂θ0
. (5.4)

Given these assumptions, a symmetric, increasing equilibrium strategy in a FS auction
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is characterized as follows. Let sI(θ
0) be a symmetric, increasing equilibrium in a FS

auction. The log-supermodularity of the bidder’s utility function is sufficient to guaran-

tee the existence of a strictly increasing Bayesian Nash equilibrium as shown by Athey

(2001). Then, the bidder’s problem (5.2) is given by

max
s
u(s,θ)

[
1− F0(s

−1(s))
]n−1

in equilibrium. By imposing the symmetric condition, the first-order condition is given

by

us(sI(θ
0),θ)s′(θ0)

[
1− F0(θ

0)
]n−1

= u(sI(θ
0),θ)(n− 1)f0(θ

0)
[
1− F0(θ

0)
]n−2

. (5.5)

Let θ−0 = (θ1, . . . , θL). Solving the differential equation for u(sI(θ
0),θ) yields

P (sI(θ
0), q(sI(θ

0),θ)) = C(q(sI(θ
0),θ)|θ)

+

∫ θ̄0

θ0
Cθ0(q(sI(τ), τ,θ

−0)|τ,θ−0)

[
1− F0(τ)

1− F0(θ0)

]n−1

dτ, (5.6)

which characterizes the equilibrium strategy sI(θ
0) in a FS auction.

5.2.3 Equilibrium in a SS Auction

Let s(2) be the second-lowest score in a SS auction. Then, the bidder’s payoff upon

winning in a SS auction:

u(s(2),θ),

is independent of his own scoring bid. Because the winning bidder has a non-negative

payoff, bidding the break-even score (the minimum score the bidder with type θ makes

with a non-negative utility) is a dominant strategy in a SS auction. Therefore, a domi-
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nant strategy equilibrium sII(·) in a SS auction satisfies

u(sII(θ
0),θ) = 0. (5.7)

As in the case of a FS auction, the equilibrium strategy in a SS auction is independent

of θℓ with ℓ = 1, . . . , L since u(sII(θ
0),θ) = u(sII(θ

0), θ0) = 0 for any θ.

In the scoring auction, the profit-maximizing quality is first-best if the exercised

score is equal to the bidder’s break-even score.6 Therefore, the bidder’s quality choice at

bidding is always equal to first-best in a SS auction. Let qFB(θ) be the first-best quality.

Under the PQR scoring rule, for instance, qFB(θ) satisfies

Cqℓ(q
FB(θ)|θ)qFB,ℓ(θ) = C(qFB(θ)|θ). (5.8)

5.2.4 Revenue Ranking

Revenue ranking is possible in scoring auctions. The exercised score se represents the

auctioneer’s utility from the scoring auction. Hanazono et al. (2013) showed that the

equivalence regarding expected exercised scores (revenue) does not generally hold in the

scoring auction. If we restrict attention to a class of scoring rules that are linear in price

e.g., PQR and QL, then the expected exercised score is weakly greater in FS than in SS

auctions. In particular, if the scoring rule is PQR, a FS procurement auction creates

a higher expected score than does a SS counterpart. Thus, the auctioneer prefers a SS

auction if his true preference is PQR.

Using the characterization of the equilibrium strategies as well as the equilibrium

properties in FS and SS auctions, a series of empirical examinations are highlighted in

Section 5.4. As in the theoretical model, risk-neutral bidders and independently and

identically distributed signals are assumed.

6The profit-maximizing quality is always first-best under the QL scoring rule even if the bidder’s score
is strictly greater than the break-even score (Che (1993)).
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5.3 Structural Estimation of the Scoring Auction Model

5.3.1 Outline

In the scoring auction model, the bidder’s induced utility u(s,θ), is generally an unknown

nonlinear function, although the bidder is risk neutral. This situation is somewhat

similar to auctions with risk-averse bidders. Guerre et al. (2009) showed that the model

of auctions with risk-averse bidders is generally unidentified from bid data. A question

might be whether the scoring auction model is identified only from bid data.

Because observed bids are L+1 dimensions in the scoring auction model, up to L+1

dimensions of parameters can be identified if bidders are symmetric and homogeneous

goods or services are auctioned. Therefore, a possible way to identify the scoring auction

data should be to assume that the bidder’s cost function is parametric with L + 1

dimensional latent parameters. Given the specification, the bidder’s nonlinear utility

function becomes parametric.

In the next subsection, we show that, if Assumption 2 is satisfied, then the derivative

of the bidder’s objective function with respect to each dimension of the bid is obtained

parametrically and that it is strictly monotone in each dimension of the latent parame-

ters. From the next subsection, we deliver a more detailed argument on the identification

and the estimation procedure of the L+1 dimensional latent parameters from the L+1

dimensional scoring auction data.

5.3.2 Identification of the Bidder’s Cost Function in a FS Auction

First, we show that, given the assumptions discussed in the previous section, an identifi-

cation of the cost function parameters, θ = (θ0, . . . , θL), is possible as follows. Since the

equilibrium strategy depends only on θ0 in a FS auction, and since sI(θ
0) is a strictly

increasing function of θ0, the inverse function of the equilibrium strategy, s−1(·), exists.

Therefore, the distribution of parameter θ0 is identified from observed score s. Next,
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from (5.1), ignoring the boundary solution (i.e., qℓ = qℓ or q̄ℓ for some ℓ = 1, . . . , L), the

optimal quality q satisfies Pqℓ(s, q) = Cqℓ(q|θ) for all ℓ = 1, . . . , L.

For notational convenience, define

θ−0 = (θ1, . . . , θL).

Note that the value of Pqℓ(s, q) is observable from observed score s and observed quality

q. Furthermore, as θ0 can be recovered from observed score s, Cqℓ(q|θ) is known up to

θ−0. If Cqℓ(q|θ) is a strictly decreasing function of θℓ, the function y(θℓ) = Cqℓ(q|θ)

has its inverse. Therefore, if Cqℓ(q|θ) is a strictly decreasing function of θℓ for all

ℓ = 1, . . . , L, parameter θℓ is also identified from observed score s and quality q. The

following proposition summarizes this point.

Proposition 4. We define that a distribution G(·) of observed scores (s1, . . . , sn) is

rationalized by the distribution of the bidder’s multi-dimensional private signal F (·) in

the scoring auction if G(·) is the distribution of the equilibrium score bid. Then, the

model of scoring auctions with symmetric risk-neutral bidders is identified if the bidder’s

utility function is i) separable (Assumption 2) and ii) log-supermodular (Assumption 3)

and iii) if the bidder’s marginal cost for qℓ is monotone in θℓ for all ℓ = 1, . . . , L.

We have two remarks on the monotonicity condition of Cqℓ(q|θ). First, in the PQR

scoring rule, Assumption 2 is sufficient for implying the monotonicity condition. To see

this, we have

mC(q|θ) = C(mq|θ0,mθ−0)

for all m > 0 in the PQR scoring rule. Therefore, we gain

Cqℓ(q|θ) = Cqℓ(mq|θ0,mθ−0), (5.9)

for all ℓ = 1, . . . , L. Ifm > 1, because Cqℓ(q|θ) is a strictly convex function of q, Cqℓ(q|θ)
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is a strictly increasing function of q. That is,

Cqℓ(q|θ) < Cqℓ(mq|θ), (5.10)

for all ℓ = 1, . . . , L. From (5.9) and (5.10),

Cqℓ(mq|θ) > Cqℓ(mq|θ0,mθ−0) = Cqℓ(q|θ),

for all ℓ = 1, . . . , L. Therefore, Cqℓ(q|θ) is strictly decreasing in θℓ. Similarly, if m ∈

(0, 1], Cqℓ(q|θ) is strictly decreasing in q. Thus, Assumption 2 is sufficient for identifying

θ.

Second, Assumption 2, in general, does not imply the monotonicity of Cqℓ(q|θ). In

other words, the monotonicity condition, in general, is required. A typical example is

seen under a QL awarding rule.
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C(·)

O qq∗

C(q|θ0, θ1)C(q|θ0, θ̃1)

s

Figure 5.1: Example of nonidentifiable parameter (PQR scoring rule)

Figure 5.1 shows an example in which parameter θ = (θ0, θ1) is not identifiable from

the observed score s and quality q ∈ R+. In this example, a bidder with cost function

Cq(q|θ0, θ1) submits score s and quality q∗, whereas another bidder with cost function

Cq(q|θ0, θ̃) with θ1 ̸= θ̃1 also submits s and q∗. Therefore, from the observed score s and

quality q∗, parameter θ1 is not identified.
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5.3.3 Estimation for the Distribution of Cost Function Parameter Vec-

tor θ

The estimation of θ from the observed data (si,t, qi,t) proceeds as follows. By the

equilibrium bidding function, we have

sI(θ
0) = si,t. (5.11)

In addition, from (5.1), ignoring boundary solution (i.e., q = q or q̄), observed quality

qi,t satisfies Equation (5.1). Therefore, we obtain

Pqℓ(si,t, qi,t) = Cqℓ(qi,t|θi,t) with ℓ = 1, . . . , L (5.12)

as an empirical counterpart of (5.1).

Let θ̂i,t = (θ̂0i,t, . . . , θ̂
L
i,t) be the solution of the simultaneous equations (5.11) and

(5.12). Because sI(θ
0) is strictly increasing, parameter θ0 is possibly obtained, using the

inverse function, s−1(·). Furthermore, the assumption that Cq(q|θ) is monotone in θℓ

for all ℓ = 1, . . . , L implies that, for given si,t, qi,t, and θ
0
i,t, parameter θℓi,t is obtained for

all ℓ = 1, . . . , L. Therefore, θ̂ would be estimated.

Unfortunately, the inverse function s−1
I (·) cannot be obtained analytically in general.

It could be possible to obtain the inverse function s−1(·) directly from (5.6) with a

numerical computation; however, given the fact that the distribution of θ is unknown,

it is a computational burden. Therefore, we estimate θ from the first-order condition

instead of solving the equilibrium strategy explicitly.

Let G(s) be the cumulative distribution function of sI(θ
0) and g(s) be its density.

Then, letting s−1
I (·) be the inverse function of sI(·) such that s−1

I (sI(θ
0)) = θ0, we have

G(s) = 1−F0(s
−1
I (s)). By the inverse function theorem, g(s) = f0(s

−1
I (s))/s′I(θ

0) holds.

From (5.5), i.e., the bidder’s first-order condition in a FS auction, and given an optimal
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quality q(s,θ) and parameter vector θ, we obtain

J(s, θ0) ≡ u(s,θ)

us(s,θ)
− 1

n− 1

1−G(s)

g(s)
= 0. (5.13)

Note that Assumption 2 (separability) ensures that J(·) is independent of θ−0. It follows

that u(s,θ))/us(s,θ)) = u(s, θ0, θ̃−0)/us(s, θ
0, θ̃−0) for all θ and θ̃−0. Therefore, J is

expressed as a function of s and θ0. Moreover, (5.13) satisfies J(sI(θ
0), θ0) = 0 for all

θ0 in equilibrium. These suggest that the first-order condition, i.e, J(s(θ0), θ0) = 0,

constitutes an implicit function that uniquely defines the inverse of a strictly increasing

function sI(θ
0). Therefore, using (5.13), we can estimate θ0 from the observed score s.

The following proposition summarizes this result.

Proposition 5. Let G(s1, . . . , sn) be the joint distribution of (s1, . . . , sn) with sup-

port [s, s̄]. Then, there exists a distribution of bidders’ private signal F (·) such that

G(s1, . . . , sn) is the distribution of the equilibrium scores in a FS auction with symmet-

ric, risk-neutral bidders if

1. G(s1, . . . , sn) = Πn
i=1G(si).

2. The scoring rule and the true cost function satisfy Assumption 2 and 3.

Moreover, the following implicit function,

J(si,t, θ
0
i,t) ≡

u(si,t, θ
0
i,t)

us(si,t, θ0i,t)
− 1

n− 1

1−G(si,t)

g(si,t)
= 0,

uniquely defines a strictly increasing and differentiable function that coincides with the

inverse bidding strategy s−1(si,t) = θ0i,t

Proof. See 5.A.
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Two observations are made here. First, if we define

k(sI(θ
0), θ0) ≡ sI(θ

0)− u(s, θ0)/us(s, θ
0),

the first-order condition (5.13) explicitly gives k:

k(sI(θ
0), θ0) = sI(θ

0)− 1−G(sI(θ
0))

(n− 1)g(sI(θ0))
.

As discussed in Hanazono et al. (2013), k is known as the bidder’s pseudotype (Asker and

Cantillon (2008)) if the scoring rule is QL and the reservation price is nonbinding.7 In a

nonquasilinear scoring rule, however, estimating k may not be sufficient for obtaining the

parameter θ0; if the second partial derivative of u(·) with respect to s is strictly negative,

i.e., uss < 0, then k(sI(θ
0), θ0) may not be strictly increasing in θ0 in equilibrium.8 In

other words, a Bayesian Nash equilibrium is characterized in a FS auction with an

independent scoring rule regardless of whether the equilibrium s is strictly increasing in

the equilibrium k(·). Therefore, no one-to-one mapping is guaranteed from the estimated

k to the private signal θ0 in the scoring auction model.

Second, although function J(s, θ) includes an unknown parameter θ−0, obtaining the

functional form of J(·) only requires the values of G(s) and g(s), Assumption 2 allows us

to obtain J(·) explicitly. In practice, we can set Θ−0 to be any arbitrary vector in Θ−0,

e.g., θ−0 = θ−0 to obtain the functional form of J . A unique inverse function s−1(·) is

implied by the implicit function J(s, θ0) = 0, regardless of the value of θ−0. Thus, given

Assumption 2 and Assumption 3, using J(·) = 0 is a general procedure for estimating

θ0 from scoring auction data.

The nonparametric estimation of the distribution of θ is given as follows. Because

s is observable, the cumulative distribution function, G(s), and its density, g(s), can be

7The pseudotype is also discussed in Che (1993) as productive potential as generalized cost.
8See Hanazono et al. (2013) for an example of the nonmonotonic k(·).
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estimated by the standard kernel estimator. Let T be the number of scoring auction

samples, each indexed by t = 1, . . . , T . Auction-specific heterogeneities, such as the

number of bidders, project location, time, and the maximum quality level, are controlled;

let nt and xt denote the number of bidders and the covariates of auction t, respectively.

Let g(s, n,x) denote the joint density function of s, n, and x. Then, the kernel estimator

for G(s, n,x) :=
∫ s
−∞ g(v, n,x)dv is provided by

Ĝ(s, n,x) =
1

ThGnh
d
Gx

T∑
t=1

1

n

n∑
i=1

1(si,t ≤ s)KG

(n− nt
hGn

,
x1 − x1,t
hGx

, · · · ,
xd − xd,t
hGx

)
,

(5.14)

where 1(·) is an indicator function, KG is a kernel with a bounded support, and hGn

and hGx are bandwidths. Similarly, the kernel density estimator for g(s, n,x) is given

by

ĝ(s, n,x) =
1

Thshgnh
d
gx

T∑
t=1

1

n

n∑
i=1

Kg

(s− st
hs

,
n− nt
hgn

,
x1 − x1,t
hgx

, · · · ,
xd − xd,t
hgx

)
, (5.15)

where Kg is a kernel with a bounded support and hs, hgn , and hgx are bandwidths. In

practice, the discrete variables, such as the number of bidders and the maximum quality

level, are smoothed out in the way discussed in Li and Racine (2006).

The estimation for F (θ,x) :=
∫ θ0

−∞ · · ·
∫ θL−1

−∞ f(τ ,x)dτ0 · · · dτL−1 is given by the stan-

dard kernel method:

F̂ (θ,x) =
1

ThdFx

T∑
t=1

1(θ0 ≤ θ0i,t, . . . , θ
L−1 ≤ θL−1

i,t )KF

(x1 − x1,t
hFx

, · · · ,
xd − xd,t
hFx

)
,

where KF is a kernel with bounded support and hFx is a bandwidth. Similarly, the

kernel density estimator for the joint density function of θ and the covariate vector x is
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given by

f̂(θ,x) =
1

Thfθ · · ·hfLhdfx

T∑
t=1

Kf

(θ0 − θ0i,t
hf0

, . . . ,
θL−1 − θL−1

i,t

hfL
,
x1 − x1,t
hfx

, · · · ,
xd − xd,t
hfx

)
where Kf is a kernel with bounded support, and hf0 , hf1 , and hfx are bandwidths. The

property of the estimator f̂(θ,x) is examined in Guerre et al. (2000).

5.3.4 Simulation Experiments

To illustrate our identification procedure, we conduct a numerical simulation. Our Monte

Carlo study consists of R = 500 replications with T = 500 auctions in each replication

and two bidders in each auction. The cost function is specified as

C(q|θ) = (1 + θ1)

[(
q

1 + θ1
− 1

)2

+ θ0

]
.

Signal θ is independently and identically distributed with the marginal distributions of

θ0 and θ1) being Uniform (U(0, 1)) and Beta (B(3, 2)), respectively, for each replication

r = 1, 2, ..., 500. Given the specification, the equilibrium bidding function is explicitly

obtained as 9

sI(θ
0) = −2 +

√
2θ0 + 6,

q(sI(θ
0),θ) = (1 + θ1)

[
sI(θ

0)

2
+ 1

]
.

Substituting the random samples θ into these equilibrium strategies, we generate a

five hundred pairs of sample bids sI(θ
0). Then, using our estimation procedure, the

private signal θ is recovered. We follow Guerre et al. (2000) for the nonparametric

estimation: the use of the triweight kernel and the selection of the bandwidth. The

recovered distributions of θ0 and θ1 are given in Figures 5.2 and 5.3, respectively. The

9See 5.B for the derivation of the equilibrium strategy.
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results imply that our nonparametric estimation method can identify the private signals

from bid data.

Figure 5.2: Estimated CDF of θ0 [Uniform(0,1)]
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Figure 5.3: Estimated CDF of θ1 [Beta(3, 2)]

5.4 Empirical Experiments

5.4.1 Data

The data used in our analysis contain the bid results of the procurement auctions for

civil engineering projects from April 2010 through January 2013 by the Ministry of

Land, Infrastructure, and Transportation (MLIT) in Japan. The number of contracts

awarded during this period was 7,538. The bid results are posted on the Public Works

Procurement Information Service (PPI) website.10 The information available from PPI

includes project names, project types, dates of auctions, engineers’ estimates, scoring

10The address is http//www.ppi.go.jp.
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auctions or not, and submitted bids with the bidder’s identity. MLIT procures 21 types of

construction work including civil engineering (or heavy and general construction work),

buildings, bridges, paving, dredging, and painting. The civil engineering projects cost

approximately 750 billion yen a year, which accounts for approximately 54 percent of the

entire expenditure of the ministry, as well as for approximately 7 percent of the public

construction investment in the country. Most of the procurement contracts for the civil

engineering projects (7,489 out of 7,538) are allocated through scoring auctions. The

data on price-only auctions have been removed from our samples.

Percentage Bids

In the scoring auctions held by the MLIT, the bidder with the highest-score wins the

project. The scoring bid is calculated as the factor bid divided by the price bid. The

factor bid consists of multiple components, such as noise level, completion time, and

bidder experience.

The data set records each bidder’s quality bid, Q, as a number. The lower bound

of the factor bids is 100 for all auctions, and the upper bound is 110 to 200, depending

on the auction. In practice, each bidder submits a technical proposal that is converted

into the factor bid according to the publicly announced tender notice for the auction.

The bidder proposing nothing has a factor bid equal to 100. The method of converting

a technical proposal into a factor bid differs for each project. For instance, each one

decibel reduction in noise accounts for five additional factor bid points.

We incorporate the scoring auction data into the model. Let Bi and Qi be the values

of the price and factor bids, respectively. Let Si be bidder i’s score. Under the price–

factor (quality) ratio scoring rule, Si = Bi/Qi. To control for project size heterogeneity,

we introduce the percentage score; let B̄ and Q be the engineer’s estimated cost and the

factor bid evaluating nothing (the lowest possible factor bid), respectively. Then, a base
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score, S̄, is defined such that S̄ ≡ B̄/Q. Then, bidder i’s percentage score is defined as

si =
Si
S̄
, (5.16)

where the bidder with the lowest percentage score wins.

Let T denote the number of procurement contracts to be auctioned off by the buyer.

Furthermore, let S(1),t, S̄t, and B̄t be the winning bidder’s score, the base score, and

the engineer’s estimated cost in auction t = 1, . . . , T , respectively. Our model assumes

that the scoring rule represents the procurement buyer’s utility. Thus, a higher value-

for-money contract (Q/B is higher) implies a contract with a lower quality-adjusted

cost (B/Q is lower). The winning score is the quality-adjusted procurement cost. The

effective procurement cost of purchasing T contracts is, thus, given by
∑T

t=1 S(1),t. In

our data, Q is normalized to be 100 for all T projects. Hence, the average percentage of

the winning score is given by

1

T

T∑
t=1

s(1),t, (5.17)

where s(1),t = S(1),t/S̄t. In what follows, this value is considered to be the effective

procurement cost.

Covariates

The sample auction data involve significant heterogeneity, such as in the number of

bidders, the project size, and the maximum quality level. The percentage score somehow

mitigates the project size heterogeneity but not perfectly. Therefore, we introduce a

covariate vector x to control for the auction-specific effects. In our analysis, the covariates

include the maximum quality level, the auction date, and the log of the engineer’s

estimated costs (as a proxy of project sizes).
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5.4.2 Specifications under the PQR Scoring Rule with a Parametric

Cost Function

Estimation of θ

Let us assume that the cost function we estimate is parameterized with the following

two-dimensional signal θ = (θ0, θ1) as

C(q|θ) = θ1
[( q
θ1

− α
)β

+ θ0
]
, (5.18)

with q = αθ1. We fix α = 1 but set β as being equal to either 2, 3, or 4, i.e., the cost

function being quadratic, cubic, or quartic polynomials, to see the robustness of our

empirical examinations against the variations of the cost function specification.

Given these cost functions, θ0 and θ1 remain representing the efficiency and scale

parameters, respectively; the lower θ0 is, the lower the bidder’s cost is given all other

things are constant, whereas the higher θ1 is, the greater the bidder’s quality provision

level is at the break-even (zero profit) score, even if the value of the break-even score is

constant. Consequently, the marginal cost is monotonic in θ1. With the PQR scoring

rule, the separability of the θ dimension is achieved as long as cost functions with an

identical θ0 are homothetic with each other. All three parametric cost functions are

homothetic.

The estimated implicit function that provides the inverse bidding function is given

by

J(s, θ0) = s− θ1

q(s, θ0, θ1)

[(
q(s, θ0, θ1)

θ1
− α

)β

+ θ0

]
− 1−G(s)

(n− 1)g(s).

Here, q(s, θ0, θ1) is the solution of argmaxq P (si,t, q) − C(q|θ0, θ1), which is explicitly

obtained by

q(s, θ1) = θ1

[(
s

β

) 1
β−1

+ α

]
.
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This equation is also used for estimating θ1, with the fact that the observation, qi,t, must

satisfy q(si,t, θi,t) = qi,t. Therefore, with the observations qi,t and si,t and the estimated

distribution and density Ĝ and ĝ, we have

θ̂0i,t =

[
si,t −

1− Ĝ(si,t)

(n− 1)ĝ(si,t)

]
·

[(
si,t
β

) 1
β−1

+ α

]
−
(
si,t
β

) β
β−1

,

θ̂1i,t =
qi,t(

si,t
β

) 1
β−1

+ α

.

For estimating Ĝ and ĝ, the following triweight kernel is used:

K(u) =
35

32
(1− u2)31(|u| < 1).

As usual, the bandwidths hs and hx are given by the so-called rule of thumb; hs =

ηs(
∑m

k=1 nk)
−1/6 and hx = ηx(

∑m
k=1 nk)

−1/6, where ηs = 2.978 × 1.06σ̂s and ηx =

2.978 × 1.06σ̂x, respectively. Both σ̂s and σ̂x are sample variances of the normalized

scoring bids and the observed covariate, respectively.

From the pseudo-values of θ0, we compute the quality-adjusted costs, k̂i,t = si,t −

u(si,t, θ̂)/us(si,t, θ̂). Corollary 1 in Hanazono et al. (2013) suggests that, under an IPV

environment, the expectation of the lowest scoring bid will coincide with the expectation

of the second-lowest bidder’s k. The average of the obtained 6,088 pseudo-values of the

second-lowest bidders’ k̂i,t is 0.583358. The average of the winning bidders’ scores is

0.583358. Therefore, our estimation result is in line with the theoretical prediction.

The following figures are the estimated joint density functions assuming that the

cost function is the quadratic polynomial (β = 2). Axes x (horizontal) and y (depth)

represent θ0 and θ1, respectively. Recall that we parameterize the cost function so

that the cost function shifts up vertically as the efficiency parameter θ0 rises. Given

this specification, a strong negative correlation is observed between θ0 and θ1 (R2 =

−0.8657), suggesting that more (less) efficient supplies tend to be larger (smaller).
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Figure 5.4: Estimated PDF (3D)
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Figure 5.5: Estimated PDF (Pseudo Color)
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Rationalizability

The scoring auction model imposes an additional restriction on the observations such

that Js(si,t, θi,t) > 0. In this subsection, we show that the restriction is a necessary

condition for the scoring auction data to be rationalizable. Because Js contains the

latent variable θ0, the restriction is not directly obtained from the observations and their

distributions. Furthermore, our observations include covariates, which also prevents us

from obtaining the restriction explicitly from the data. Therefore, we choose to check

whether the estimated θi,ts are indeed strictly increasing in si,t in each auction.

We have 6,115 auction samples from which θs have been effectively obtained. Of

these, 22 auctions, accounting just for 0.36 % of all auction samples, exhibit nonmono-

tonic θ̂0 with respect to s. Except for one auction, the nonmonotonicity is observed in

a pair of bidders in which one bid a lower score but the bidder’s θ0 is estimated to be

higher than that of the other. The observed scores that result in the nonmonotonic θ0

are relatively close to the lower bound of the observed scores. Therefore, it is hard to

conclude that the nonmonotonicity occurs simply because the auction samples are not

rationalizable or because the non-parametric estimation suffers from biases close to the

boundary.

On the other hand, the rest of the auction samples exhibit a strict monotonicity

between the observed scores and the estimated θ0. Hence, we conclude that our scoring

auction data is rationalizable from the scoring auction model with symmetric risk-neutral

bidders.

5.4.3 Counterfactual Analyses

Second-Price vs. FS Auctions

We first examine the welfare effect by using scoring auctions for government procurement.

As Milgrom (2004) addressed, one of the appeals of multi-parameter auctions is that
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bidders increase profits without reducing the auctioneer’s utility. Our first empirical

examination thus focuses on measuring how much the use of scoring auctions raises the

procurement buyer’s utility U(p, q), which is assumed to be represented by the observed

PQR scoring rule, S(p, q), namely U(p, q) = p/q.

We design a series of second-price auctions, in each of which the quality level is

fixed at q = 1, 1.3, 1.4, 1.5, and 1.6, where q = 1 is the minimum quality level the

bidder can propose in the observed scoring auctions, representing no quality improve-

ment. Given the estimated bidder’s private information, bidders’ costs are computed

for all q = 1.0, . . . , 1.6, and the second-lowest costs are collected for all auction samples

as the contract prices of the counterfactual second-price auctions. In a counterfactual

second-price auction, the price quality ratio, p/q, no longer represent a score. Therefore,

we denote by −U(p, q) = p/q the procurement buyer’s quality-adjusted procurement

cost. The buyer’s quality-adjusted procurement cost for each contract is measured by

the second-lowest cost divided by q, where q = 1.0, . . . , 1.6. Because the bidder’s cost

functions are differentiated by β = 2, 3, and 4, 15 types of counterfactual second-price

auctions are created.

Table 5.1 compares the procurement buyer’s quality-adjusted procurement costs in

the observed FS auction versus those in cases where price-only auctions take place in-

stead. The extent of the government’s expected welfare gain from the scoring auction

crucially depends on the fixed quality level of the counterpart second-price auction. The

government utilities would drop quite trivially (approximately 1 to 2 percent) if a second-

price auction with q = 1.5 were to be used while the drops would be nontrivial (greater

than 30 percent) if a second-price auction with q = 1.0 were to be used. This suggests

that a simple low-price auction works well if the design (a fixed quality standard) is

appropriate.

The bidder’s payoff also varies, depending on the quality standard in the price-only

auction. Table 5.2 reports the winning bidders’ payoffs. Bidders earn significantly lower
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payoffs upon winning in a first-price auction if the quality standard is less than 1.4.

On the other hand, bidders earn larger payoffs in a price-only auction if the quality

standard is greater than 1.5. The positive relationship between a larger payoff and a

higher quality standard in a price-only auction stems from the fact that bidders with

larger θ1 are selected in price-only auctions with higher quality standards.

Although a price-only auction for a contract with an appropriate quality level still

performs worse than does an observed PQR FS auction, the difference is not remarkably

large. In addition, the bid preparation costs for a scoring auction may be greater than

those for a simple price-only auction, which discourages potential bidders’ entry into a

scoring auction. Furthermore, the bid evaluation, with respect to quality proposals, is

costly for a procurement buyer who is unfamiliar with the process. Taking into account

these disadvantages in using a scoring auction, a price-only low-bid auction has still

been a good mechanism to allocate the government contract if the quality standard of

the contract is appropriate (in our case, q = 1.5).
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Form C(q|·) q Obs Mean Std. Dev. Min Max Change∗3

FS∗1 - 6,063 0.5800 0.0680 0.2623 0.9945 -

1.0 6,043 0.7638 0.0600 0.2907 1.1245 31.68%
1.3 6,050 0.6097 0.0593 0.2401 1.0266 5.124%

Quadratic 1.4 6,049 0.5909 0.0644 0.2488 1.0746 1.877%
1.5 6,049 0.5857 0.0709 0.2680 1.1345 0.975%
1.6 6,049 0.5917 0.0783 0.2825 1.2061 2.014%

1.0 6,045 0.7758 0.0638 0.2998 1.1770 33.76%
1.3 6,047 0.6160 0.0598 0.2460 1.0800 6.200%

SP∗2 Cubic 1.4 6,049 0.5941 0.0659 0.2502 1.2068 2.435%
1.5 6,049 0.5885 0.0767 0.2682 1.3779 1.466%
1.6 6,048 0.5995 0.0923 0.2825 1.5932 3.354%

1.0 6,045 0.7906 0.0655 0.3132 1.2092 36.31%
1.3 6,047 0.6224 0.0600 0.2514 1.1592 7.313%

Quartic 1.4 6,048 0.5975 0.0686 0.2515 1.4016 3.021%
1.5 6,049 0.5918 0.0866 0.2684 1.7635 2.036%
1.6 6,040 0.6077 0.1075 0.2825 1.8473 4.777%

∗1 Observed FS auctions. ∗2 Counterfactual second-price auctions. ∗3 Change in mean from FS
to SP auction. ∗ Sample auctions with the number of bidders equal to or greater than 2; In FS
auctions, profits are less than 1 and normalized bids are less than 150% of reservation prices; In
simulated SP auctions, profits are less than 1 and price bids are less than 250% of reservation
prices.

Table 5.1: Quality-adjusted procurement costs
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Form C(q|·) q Obs Mean Std. Dev. Min Max Change∗3

FS∗1 - 6,034 0.0640 0.0750 0.0018 0.7103 -

1.0 6,027 0.0376 0.0601 0.0000 0.7684 -41.20%
1.3 6,034 0.0506 0.0726 0.0000 0.8279 -20.92%

Quadratic 1.4 6,034 0.0568 0.0787 0.0000 0.8512 -11.26%
1.5 6,034 0.0635 0.0861 0.0000 0.8761 -0.80%
1.6 6,034 0.0707 0.0949 0.0000 0.9029 10.40%

1.0 6,032 0.0445 0.0657 0.0000 0.8108 -30.69%
1.3 6,033 0.0511 0.0733 0.0000 0.8290 -20.22%

SP∗2 Cubic 1.4 6,034 0.0570 0.0816 0.0000 0.8483 -10.99%
1.5 6,032 0.0649 0.0933 0.0000 0.9875 1.34%
1.6 6,020 0.0736 0.1017 0.0000 0.9954 14.96%

1.0 6,032 0.0448 0.0661 0.0000 0.8155 -30.02%
1.3 6,033 0.0507 0.0740 0.0000 0.8278 -20.78%

Quartic 1.4 6,034 0.0571 0.0864 0.0000 0.9976 -10.83%
1.5 6,018 0.0643 0.0924 0.0000 0.9772 0.54%
1.6 5,996 0.0747 0.0976 0.0000 0.9996 16.75%

∗1 Observed FS auctions. ∗2 Counterfactual second-price auctions. ∗3 Change in mean from FS
to SP auction. ∗ Sample auctions with the number of bidders equal to or greater than 2; In FS
auctions, profits are less than 1 and normalized bids are less than 150% of reservation prices; In
simulated SP auctions, profits are less than 1 and price bids are less than 250% of reservation
prices.

Table 5.2: Bidders’ payoffs

SS vs. FS Auctions

Next, the extent to which the expected scores would be changed by introducing SS

auctions is estimated. Given the parametric cost function, the bidder’s induced utility

function u(s, θ) is convex in s for any β > 1 if the scoring rule is PQR, as the second

derivative of u is given by

uss(s, θ) = θ1
1

β − 1

(
s

β

)−β−2
β−1

> 0 with β ≥ 2. (5.19)
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Therefore, the expected exercised score will be lower in SS than FS auctions as suggested

by Theorem 3 in Hanazono et al. (2013). In this subsection, we conduct a counterfactual

analysis to empirically measure the difference between FS and SS auctions regarding

expected exercised scores (the buyer’s welfare), bidders’ payoffs, and quality levels.

The counterfactual samples related to the SS auction is created from the estimated

parameters, θ̂i,t. First, the pseudo-samples of the first-best quality qFB(θ) is created

from (5.8), which is given by

(
qFB

θ1i,t
− α

)β

+ θ0i,t =
qFB

θ1i,t
β ·

(
qFB

θ1i,t
− α

)β−1

,

under the specific cost function. Thus, the first-best quality of bidder i in auction t is

created as

q̂FB(θ̂i,t) ≡
{
q : (1− β)rβi,t(q)− αβrβ−1

i,t (q) + θ̂0i,t = 0
}
, (5.20)

where ri,t(q) = q/θ̂1i,t − α. Next, the counterfactual samples of the bidder’s break-even

score is created. From (5.7), the first-best quality, and the observed data, the break-even

score of the bidder whose type is equal to θi,t is predicted as

k−(θ̂0i,t) =
θ̂1i,t
q̂FBi,t

( q̂FBi,t
θ̂1i,t

− α

)β

+ θ̂0i,t

 , (5.21)

under the PQR scoring rule.

The awarded bidder’s quality choice in the SS auction is also estimated. Let θ̂(i),t

be the signal of the bidder whose score is the ith lowest in auction t. In SS auctions,

the exercised score is the second-lowest bidder’s break-even score k−(θ0(2)). Thus, the

winning bidder chooses the optimal quality level q(k−(θ̂0(2),t), θ̂(1),t). Let q̂
II
t denote the

quality level. The first-order condition of the bidder’s quality choice given s suggests
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Cq(q̂
II
t |θ̂(1),t) = k̂−(θ0(2),t), which is expressed as

qIIt = θ̂1(1),t ·

(k−(θ̂0(2),t)
β

) 1
β−1

+ α

 , (5.22)

given our parametric cost functions. Thus, the awarded bidder’s payoff, u(k̂−(θ0(2),t),θ(1),t),

is given by

u(k−(θ̂0(2),t), θ̂(1),t) = q̂IIt

[
k−(θ̂0(2),t)− k(q̂IIt ,θ(1),t)

]
. (5.23)

In a SS auction, the score in the final contract equals the break-even score of the

lowest losing bidder, denoted by k−(θ0(2),t). The data on k−(θ0(2),t) is shown in Table 5.3.

The expected score declines approximately by .04 percent (when β = 2) and .02 percents

(when β = 4) if the auction format alters from FS to SS mechanisms. The variances are

greater than that in the FS auction similar to the difference in the variance of first- and

second-price auctions. Table 5.4 shows that the quality level finalized in the contract is,

on average, declined approximately by 3 to 4 percents if SS auctions are used.

C(q|θ) Obs Mean Std. Dev. Min Max Change
FS∗1 - 6,004 0.5803 0.0495 0.4624 0.9142 -

Quadratic 6,004 0.5801 0.0680 0.2399 0.9945 -0.0417%
SS∗2 Cubic 6,004 0.5801 0.0679 0.2458 0.9945 -0.0288%

Quartic 6,005 0.5802 0.0679 0.2497 0.9945 -0.0257%
∗1 Observed FS auctions (PQR). ∗2 Hypothetical SS auctions with the PQR rule. ∗ Sample
auctions with the number of bidders equal to or greater than 2; In FS auctions, profits are less
than 1 and normalized bids are less than 150% of reservation prices; In simulated SP auctions,
profits are less than 1 and price bids are less than 250% of reservation prices.

Table 5.3: Exercised scores (quality adjusted procurement cost) in FS and SS auctions
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Form C(q|θ) Obs Mean Std. Dev. Min Max Change
FS∗1 - 6,004 1.5391 0.0968 1.3100 1.9000 -

Quadratic 6,004 1.5389 0.1002 1.2968 1.9078 -0.012%
SS∗2 Cubic 6,004 1.5387 0.0986 1.3170 1.8988 -0.028%

Quartic 6,005 1.5388 0.0980 1.3177 1.8985 -0.024%
∗1 Observed FS auctions (PQR). ∗2 Hypothetical SS auctions with the PQR rule. ∗ Sample
auctions with the number of bidders equal to or greater than 2; In FS auctions, profits are less
than 1 and normalized bids are less than 150% of reservation prices; In simulated SP auctions,
profits are less than 1 and price bids are less than 250% of reservation prices.

Table 5.4: Contracted quality level in FS and SS auctions

Form β Obs Mean Std. Dev. Min Max Change
FS∗1 - 6,004 0.0637 0.0749 0.0018 0.7103 -

Quadratic 6,004 0.0638 0.0820 0.0002 0.8863 0.255%
SS∗2 Cubic 6,004 0.0638 0.0818 0.0002 0.8851 0.194%

Quartic 6,005 0.0638 0.0817 0.0002 0.8845 0.151%
∗1 Observed FS auctions (PQR). ∗2 Hypothetical SS auctions with the PQR rule. ∗ Sample
auctions with the number of bidders equal to or greater than 2; In FS auctions, profits are less
than 1 and normalized bids are less than 150% of reservation prices; In simulated SP auctions,
profits are less than 1 and price bids are less than 250% of reservation prices.

Table 5.5: Bidder’s payoffs in FS and SS auctions

QL vs. PQR Rules

Finally, we explore a QL scoring rule that dominates the current PQR scoring rule.

Specifically, we suppose that the buyer uses a QL scoring rule that differs from the

buyer’s true preference −U(p, q) = p/q. To construct a well-performing QL rule, we

relax the assumption that the quality price in the QL rule (the derivative of the score

function with respect to q) is one such that, for some ϕ > 0,

S(p, q) = p− ϕ(β)q. (5.24)

The lower utility caused by the use of a FS auction under PQR lies in over-provision
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in quality. In SS auctions, that upward distortion in quality provision is not observed.

Therefore, a candidate of a QL rule that dominates the current PQR FS auction is such

that the average of the winning bidders’ first-best quality is equivalent to the average of

the quality level to be chosen in a SS auction. We thus choose the following three values

of the quality price: ϕ(2) = 0.6502278, ϕ(3) = 0.6493106, and ϕ(4) = 0.6477461, each

equal to the average of the exercised score in the counterfactual SS auction at β = 2, 3,

and 4, respectively. Given ϕ(β), we predict the expected value of the wining score in SS

auctions with the QL rule.

Under the QL rule, the bidder’s quality-adjusted cost is given by k(q,θ) = C(q|θ)−

ϕ(β)q, and the first-best quality qFB(θ) satisfies Cq(q
FB(θ)|θ) = ϕ(β). Given the para-

metric cost function, the marginal cost is given by Cq(q|θ) = β·
(
q/θ1 − α

)β−1
. Therefore,

qFB(θ) is given by

qFBQL(θ̂) = θ̂1 ·

(
α+

(
ϕ(β)

β

) 1
β−1

)
. (5.25)

Using qFBQL(θ) and the estimated θ, we compute the bidder’s break-even score, k−(θ̂0),

under QL rules. With our parameterized cost function, this is expressed as

k−(θ̂0) ≡ θ̂1 ·

(qFBQL(θ̂)

θ̂1
− α

)β

+ θ̂0

− qFBQL(θ̂). (5.26)

Because bidders are symmetric, the bidder with the lowest k(qFBQL(θ̂), θ̂) is the awarder,

receiving the payment PQL = C(qFBQL(θ̂(1))|θ̂(2)) in the SS auction with the QL scoring

rule. Thus, both the contract price and the quality level are given by PQL and qFBQL(θ̂(1)).

The buyer’s utility is thus computed by

sQL = p̂QL/q
FB
QL(θ̂(1)).

Table 5.6 reports the buyer’s utility sQL in counterfactual SS auctions with QL rules.

In all cases, sQLs drop on average approximately by 5 to 15 percent. The greater variances
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in SS auctions due to the non-negative variance of the conditional second-order statistic

can be remedied by the use of FS auctions. Table 5.7 shows the bidder’s profit. The

bidder’s profit drops by 1 to 12 percent. Hence, the use of an appropriate QL rule

extracts more rents from bidders.

Form β Obs Mean Std. Dev. Min Max Change
FS∗1 - 6,004 0.5803 0.0495 0.4624 0.9142 -

Quadratic 5,995 0.5786 0.0654 0.2650 0.9457 -0.295%
SS∗2 Cubic 5,996 0.5786 0.0655 0.2653 0.9424 -0.286%

Quartic 5,997 0.5786 0.0654 0.2655 0.9447 -0.288%
∗1 Observed FS auctions (PQR). ∗2 Hypothetical SS auctions with the QL rule. ∗ Sample
auctions with the number of bidders equal to or greater than 2; In FS auctions, profits are less
than 1 and normalized bids are less than 150% of reservation prices; In simulated SP auctions,
profits are less than 1 and price bids are less than 250% of reservation prices.

Table 5.6: Exercised scores (quality adjusted procurement cost) under simulated QL
rules

Form β Obs Mean Std. Dev. Min Max Change
FS∗1 - 6,004 0.0637 0.0749 0.0018 0.7103 -

Quadratic 5,971 0.0610 0.0763 0.0000 0.8693 -4.232%
SS∗2 Cubic 5,972 0.0614 0.0768 0.0000 0.8707 -3.659%

Quartic 5,972 0.0615 0.0770 0.0000 0.8714 -3.386%
∗1 Observed FS auctions (PQR). ∗2 Hypothetical SS auctions with the QL rule. ∗ Sample
auctions with the number of bidders equal to or greater than 2; In FS auctions, profits are less
than 1 and normalized bids are less than 150% of reservation prices; In simulated SP auctions,
profits are less than 1 and price bids are less than 250% of reservation prices.

Table 5.7: Payoffs under simulated QL rules

The additional rent extraction by the QL scoring rule stems from the downward

distortion of the quality provision. Table 5.8 presents the contracted quality level in the

observed FS auction and simulated QL scoring auctions. The quality levels would be

sharply declined under the well-designed QL scoring rule. Although the well-designed

QL scoring rule is not optimal, the lower contracted quality levels by the QL scoring rule
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limits the winner’s informational rent, resulting in the greater welfare of the procurement

buyer.

Form β Obs Mean Std. Dev. Min Max Change
FS∗1 - 6,034 1.5388 0.0968 1.3100 1.9000 -

Quadratic 6,009 1.5135 0.1051 0.8414 1.8892 -1.648%
QL∗2 Cubic 6,010 1.5209 0.1035 0.7695 1.8920 -1.163%

Quartic 6,010 1.5249 0.1030 0.7334 1.8938 -0.907%
∗1 Observed FS auctions (PQR). ∗2 Hypothetical SS auctions with the QL rule. ∗ Sample
auctions with the number of bidders equal to or greater than 2; In FS auctions, profits are less
than 1 and normalized bids are less than 150% of reservation prices; In simulated SP auctions,
profits are less than 1 and price bids are less than 250% of reservation prices.

Table 5.8: Contracted quality levels in FS and QL scoring auctions

Summary of Empirical Experiments

Our counterfactual analyses suggest that FS auctions perform poor under PQR scoring

rules. However, it does not mean that FS auctions never benefit procurement buyers

whose preference is based on PQR. The performance of a price-only auction strongly

depends on the choice of the fixed quality level. In many occasions, auctioneers have

limited information regarding bidders’ cost structures. Thus, only experienced buyers

can choose the quality level that renders a higher expected utility to the buyer in a

price-only auction than in a FS auction. For inexperienced buyers, the use of a FS

auction is the best option even if their true preference is based on PQR. The same is

true for QL scoring rules. We observed that, when a FS auction is used, a QL scoring

rule may dominate the PQR rule in terms of the expected contracted score. However,

for the procurement buyer with PQR preference, designing a well-performing QL scoring

function, in particular, choosing the best quality price in a QL scoring function, requires

accurate information on the bidders’ cost structures. Less informed buyers with PQR

preference will thus benefit from the use of his/her true preference as a scoring function

since the quality price is determined in the market under a PQR scoring rule.
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In scoring auctions, bidders’ advantages in non-monetary attributes are evaluated.

Therefore, the procurement buyer may obtain a better contract without reducing the

bidder’s profit. However, this is just an advantage of scoring auctions. Rather, the

advantage of the use of scoring auction is in that even an inexperienced buyer can pursue

the best value in procurement since he does not need to specify the quality level. If an

inexperienced buyer is not familiar with bidders’ advantages in non-monetary attributes

rather than in costs, the scoring function selects the winner who provides the most

value-for-money contract.

We found that bidders’ earnings are greater in the FS auction than in the SS auction

with the PQR scoring rule or than in the FS auction with the well-designed QL scoring

rule. This result suggests that a major advantage of the currently adopted FS auction

format lies in the promotion of bidder participation. The intensified competition by a FS

auction will lower the quality-adjusted procurement cost even if the procurement buyer

has limited information on bidders’ cost structures. An interesting extension will be to

take into account potential bidders’ endogenous participation in the structural model.

5.5 Conclusion

In this research, we provided a structural estimation method for a scoring auction with

generalized scoring rule. From the scoring auction data that typically include scores

and quality bids, latent parameters in the bidder’s cost function was estimated. From

observed quality levels, the bidder’s marginal costs are estimated through the bidder’s

profit maximization behavior such that the marginal cost equals the quality price. Bid-

ders’ costs were estimated through the first-order condition by the application of the

non-parametric estimation methodology for the first-price auction model. It is obvious

that the number of parameters capable to be identified is equal to or less than the num-

ber of dimensions of the observed data. Thus, for instance, the degree of concavity of
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the cost function is the one that is unable to be identified. We thus conducted a series

of empirical experiments in which the parameters of the cost function vary to ensure the

robustness of estimation results.

We also showed an simulation experiment to illustrate that our structural estimation

method does identify the latent distribution of the bidder’s signal. The recovered density

and cumulative distribution functions were coincident with the true density and distri-

bution functions except in the areas of boundaries. Therefore, our estimation method

effectively identifies the bidder’s multi-dimensional signal.

Furthermore, we applied our estimation technique to real world scoring auction data.

Theory has suggested that the non-equivalence in the expected winning scores stems from

the overproduction in quality in a FS auction with the PQR scoring rule. Accordingly,

we observed that the expectation of the winner’s quality provision is larger in FS than

in SS auctions. Furthermore, with a well-designed QL scoring rule, we found that the

procurement buyer improves utility while bidders earn lower payoffs. Generally, the

optimal design problem is hard to be solved if the bid and signal are multi-dimensional.

Therefore, our counterfactual analysis uses a standard FS or SS auction with a well-

designed QL scoring rule as a suboptimal mechanism. Nevertheless, a flavor of the

optimal design problem has been seen in our empirical result, the quality provision is

distorted downward (allocative inefficiency) and the bidder’s informational rents are

limited.

In this article, we restrict attention to the independent scoring rule, in which the

bidder’s score depends only on his or her price and quality bids. In the real-world

procurement auctions, however, a wider-variety of scoring rules are used including the

one in which the bidder’s score depends also on the other bidders’ price and quality bids

(an interdependent scoring rule). Literature suggests that an interdependent scoring rule

involves some inefficiency when bidders choose optimal quality levels since the realized

exercised score generally differs from the score predicted by the bidder when choosing the
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quality bid. As a result, the expected exercised score (the procurement buyer’s utility)

is greater (smaller) than the scoring auction with an independent scoring rule. Albano

et al. (2009) suggests that the welfare loss of the procurement buyer is approximately 11

%. Theoretical literature, on the other hand, has so far been silent on the equilibrium

in the scoring auction with such an interdependent scoring rule. An interesting future

research may lie in the structural analysis of the scoring auction with an interdependent

scoring rule. A counterfactual analysis would quantify the expected score difference

between the FS and SS auctions with an interdependent scoring rule.

5.A Proof of Proposition 5

Proof. Assumption 3 (log-supermodularity) suggests that

∂

∂θ0
us
u
> 0,

for all θ0. Therefore,

∂

∂θ0
u

us
= Jθ0 < 0.

Assumption 3 also suggests the existence of a strictly increasing equilibrium strategy

sI(θ) for all θ
0 ∈ [θ0, θ̄0]. Therefore, for an arbitrary θ̃0 ∈ [θ0, θ̄0] and a strictly increasing

equilibrium strategy sI(θ), we have

J(sI(θ̃
0), θ0) ≡ u(sI(θ̃

0), θ0)

us(sI(θ̃0), θ0)
− 1

n− 1

1−G(sI(θ̃
0))

g(sI(θ̃0))
.

Therefore, for all θ0, we have

J(sI(θ̃
0), θ0) ⋚ 0 if θ̃0 ⋚ θ0.
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Because sI(·) must be strictly increasing, we have

J(s, θ0) ⋚ 0 if s ⋚ sI(θ
0),

for all θ0 in a neighborhood of (θ0, sI(θ
0)). Hence,

Js(s, θ
0) > 0.

at s = sI(θ
0).

Applying the implicit function theorem indicates that there are a neighborhood U

of θ0 and a unique C1 function φ such that θ0 = φ(s) and J(s, φ(s)) = 0 for all θ0 ∈ U .

The derivative of φ at θ0 is

φ′(s) = − Js(s, θ
0)

Jθ0(s, θ
0)
,

which is strictly positive, because Js > 0 and Jθ0 < 0 for all θ0 ∈ [θ0, θ̄0]. In addition,

φ(s̄) = θ̄0. Thus, φ(s) must be the inverse bidding strategy s−1 if the distribution of the

observed score is rationalizable.

5.B The Equilibrium Strategy in the Simulation Experi-

ment

The optimal quality is given by q(s, θ) = (1 + θ1)(s/2 + 1). Therefore, we have

u(s,θ)

us(s,θ)
=

(sI(θ
0))2 + 4sI(θ

0)− 4θ0

2sI(θ0) + 4
.

Given the uniform distribution of θ0, the first-order condition (5.5) is written as

s′(θ0) =
1

1− θ0
(sI(θ

0))2 + 4sI(θ
0)− 4θ0

2sI(θ0) + 4
.
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Because sI(θ
0) is strictly increasing in θ0 and u(sI(θ

0),θ) = 0 at θ0 = 1, we obtain

sI(1) = 2
√
2− 2 as a boundary condition. Thus, the equilibrium bidding strategy is the

solution of the differential equation


s′(θ0) = 1

1−θ0
(sI(θ

0))2+4sI(θ
0)−4θ0

2sI(θ0)+4

sI(1) = 2
√
2− 2

Solving the differential equation gives

(1− θ0)
[
(sI(θ

0))2 + 4sI(θ
0)− 2(1 + θ0)

]
= 0. (5.27)

Applying the implicit function theorem ensures that (5.27) be the solution of the dif-

ferential equation. Taking (5.27) as a quadratic equation, we obtain the equilibrium

bidding function explicitly as

sI(θ
0) = −2 +

√
2θ0 + 6.
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