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ABSTRACT

From biological cells to bee swarms and bird flocks, nature shows countless examples of

self-organized groups displaying a collective mind. In such species, individuals interacting

together end up producing an emergent behavior that increases their chances of survival

and reproduction.

This thesis shows an exploration of the evolution of communication through coordinated

behaviors in populations of embodied agents. The goal is to reach a better understanding

of nature’s conditions for the evolution and strategies for the maintenance of collective

behaviors.

For that purpose, we present a framework making use of agent-based modeling to

study the parallel evolution of coordination, cooperation and communication, for di↵erent

types of interactions and levels of complexity. Through computer simulations, we test

hypotheses on the conditions leading to synergistic behaviors and the evolution of honest

communication.

We first show signal-based swarming, in a population where the information exchanged

between agents via signaling is able to form temporary leader-follower relationships, allow-

ing them to flock together. Next, the emergence of static clusters of agents is investigated

in the case of a dynamic variant of the spatial prisoner’s dilemma, in which multistable

strategies exhibit formation and destruction of cooperative nuclei. After that, we study

the adaptation of social coordination in dynamic environments. By the use of agent-based

models, we show the evolutionary stability of cooperation, expressed as behaviors ranging

from migration to specific resource-saving strategies. Finally, we develop a model of genetic

and cultural evolution, implementing the niche-construction of language, where the bio-

logical selection on the genes is repeatedly masked, then unmasked by cultural evolution.

These results show how simple agents can reach higher-order computational capabilities

through the evolution of collective behavior. By self-organizing in collaborative groups,

individuals are able to overcome local errors and fluctuations in the environment, allowing

them to exploit more e�ciently the information present in the environment to reach higher

performance and thus fitness.

This study is significant for both scientific and technological reasons. Indeed, on the one

hand, it contributes to shed light on the evolution of coordination and communication. On

the other hand, a better understanding of the fundamental principles of collective behavior

may also lead to innovative methods in multi-agents systems, ubiquitous computing devices

and swarm computation.
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Chapter1
Introduction

The whole is more than the sum of its parts, said Aristotle. He was referring to synergistic

systems, in which multiple components interact to accomplish a greater result than could

be achieved individually.

Coordination into large groups can make individuals more e�cient. In particular, humans

have evolved to live in cooperative societies, taking advantage of distributed intelligence,

hierarchical structures, specialization and generalization of skills. But highly intelligent

agents are not needed in a group for the implementation of coordination. In fact, most

seemingly complex dynamics can emerge from very simple systems, with the agents having

a very limited use of intelligence, memory or awareness of each other. Such systems can

reach high levels of coordination and collaboration, giving them an edge on the realization

of specific goals.

Coordinated behaviors are often shaped over successive generations of living organisms,

slowly changing the inherited characteristics of populations to live better in their habitat

(Dobzhansky et al., 1970). This process, commonly known as evolution (Darwin & Wallace,

1858), acts on every individual interacting in a given environment to design their adaptive

behavior as a group (Hamilton, 1963; Dodson, 1975; Bergstrom, 2002; Wade, 2007).

Numerous examples of e�cient crowd behaviors are found in nature. Fish synchronize their

speed and direction with their neighbors, in schools of similar individuals (Parrish et al.,

2002; Helfman et al., 2009). The behavior notably helps foraging success, improves predator

avoidance and increases access to potential mates during migrations (Seghers, 1974; Pitcher

et al., 1982; Pitcher & Parrish). Ants collectively develop complex networks of pheromone

trails connecting their nest in the most e�cient way to di↵erent food sources, thus creating a

shared external memory usable by the colony (Attygalle & Morgan, 1985; Bonabeau et al.,

1



Chapter 1: Introduction

1999). Myxobacteria travel in swarms of many cells maintained together by intercellular

molecular signals (Kiskowski et al., 2004). The bacteria benefit from aggregation as it

allows accumulation of extracellular enzymes which they use to digest food.

Those self-organizing behaviors are enabled by an indirect coordination among agents, also

known as group stigmergy (Bonabeau et al., 1997; Theraulaz & Bonabeau, 1999; Marsh &

Onof, 2008). The trace left in the environment by every individual’s actions impacts on the

performance of the next action, by the same or another agent. Thus, subsequent actions

tend to reinforce and build on each other, leading to the spontaneous emergence of coherent,

apparently systematic activity. This produces elaborate, seemingly intelligent dynamics

without any planning or control. The cooperative coordination among agents coevolves with

the very interaction between them, resulting in systems where synchronization is allowed for

by useful information exchange, ranging from basic signaling to fully-fledged communication

systems.

The dream method of studying the evolution of coordination and communication would be

to have an experimental evolution in a social species. Unfortunately, experiments on such

species would be di�cult to study in the laboratory, especially given the long time they

would need to evolve.

In order to understand better the mechanisms of stigmergic behavior and its relation to the

evolution of communication, biologists and computer scientists have therefore attempted

to construct digital models reproducing the phenomena from nature. By using computer

models to simulate colonies of living creatures foraging inside artificial environments, the

hope is to recreate and understand the intricacies of the necessary conditions of emergence,

the information flow and the underlying properties proper to collective behavior.

The approach chosen in our work aims primarily at the grasp of the entangled concepts of

coordination, cooperation and communication, all of which possess a high level of abstrac-

tion. The models presented in this thesis will consequently be kept as abstract as possible,

such that the used frameworks, though grounded with realistic constraints, keep as much as

possible a high degree of generality. The models constructed throughout our work, adopt a

general and minimalistic view, allowing in turn to test for general hypotheses on biological

behaviors and social dynamics.

The goal of this thesis is to present an exploration of the interplay between the evolved be-

havior of autonomous agents embodied in a simulated environment, and the social dynamics

they create through their interaction with each other. The studies focus on shedding light

2



Chapter 1: Introduction

Figure 1.1: Exploration of the interplay of coordination, cooperation and commu-

nication in this thesis. Individuals choosing to collaborate with each other in coordinated

groups rely on signals from each other to coordinate. The cooperation depends on the ef-

fectiveness of the coordination, and the way it is a↵ected by every individual’s signaling.

The signaling mechanism can turn into real honest communication only in organized groups

where individuals are cooperating with each other.

on the interdependence of coordination, cooperation and communication. Coordination is

shown to be brought about by signal exchanges between agents, cooperative behaviors are

shown to be produced through the establishment of a signaling system, and communica-

tion itself is shown to emerge in an environment variable in time where cooperation allows

individuals to increase their chances of survival.

Recently a new modeling paradigm has been adopted by researchers, known as agent-based

modeling (ABM). This paradigm typically simulates a population of mathematical agents

interacting in a defined space, following a number of determined rules (Helbing, 2012; Grimm

& Railsback, 2013), and was initially based on the Ising model (Ising, 1925) and Cellular

Automata (Conway, 1970; Wolfram, 1994). In ABM however, this idea is extended further

by allowing asynchronous interactions among agents and objects in their environment, their

actions following discrete-event cues or a sequential schedule of interactions (Kohler & Gum-

merman, 2001; Grimm et al., 2006). The agents can also evolve in any kind of environment,

not especially grid-based. The programmed rules can be detailed, making this methodology

very appealing for the simulation of biological and social systems, for which the behaviors
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of interest and the complexity of the interacting actors is hardly reducible to any stylized

metaphor or simplistic mechanism. Especially in the last decades, individual-based models

have made a great leap forward, with recent advances in computer science allowing to easily

simulate larger and larger numbers of agents.

Our methodology applies individual-based modeling techniques along with evolutionary ap-

proaches to help understand the di↵erent aspects and the underlying mechanisms of stig-

mergy, coordination and communication among groups of organisms. The technologies used

fall under the domain of software-based artificial life , which studies living systems by a

bottom-up modeling of its processes (Bedau et al., 2000; Vidal, 2008). The research is also

relevant to the larger domain of computer science, to which ultimately belong most of the

research procedures, including simulation of populations, neuroevolution algorithms as well

as both innovative and classical information theory techniques. Finally, this work has deep

connections with biology as well, since it relates to the study of the behavior, evolution and

ecology of living organisms.

The diagram in Figure 1.1 shows focus of each chapter on the spectrum of interplay between

coordination, cooperation and communication, although each chapter still tackles all three

topics.

The structure of the thesis will be detailed in the next section, explaining the logical order

of the progression in chapters.

1.1 Thesis overview

The work presented in this thesis initially started as an e↵ort to understand the evolution of

communication in animal species, using an evolutionary robotics approach. At every step of

the research, we re-examined our hypotheses, constantly looking to explain our results with

simpler models.

Chronologically, our research first focused on the spread and evolution of a language or com-

munication system, in a population of simulated agents. This study, presented in Chapter 7,

brought new insights about the dynamics of the evolution of communication, based on the

assumption that the communication was directly contributing to the individual’s chances of

survival and reproduction, i.e. their fitness. This fitness importantly needs to improve from

the exchange of honest signals between individuals, if the model is to explain the evolution
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of language in nature.

Since the validity of such assumption was key to the research, it was decided to focus in more

on the conditions for communication to emerge in simplistic artificial simulations where the

individuals’ only purpose is to survive by foraging for food resources. In particular, the

experiments presented in Chapter 6 studied the e↵ect of variable resources on evolving

communication to help group coordination, as opposed to developing other resource-saving

strategies.

Finally, in an e↵ort to reach the simplest setup still able to give rise to the evolution of a

communication system, the resource availability was fixed in the simulations. The resulting

very basic model still showed the emergence of spatial coordination based on a local exchange

of simple signals between agents, in turn improving their fitness. These results, presented

in Chapters 4 and 5, represent the most important part of this thesis, giving a closure and

an incentive for the other studies, which is why they are introduced first.

In this thesis, we chose to present our work in a reverse chronological order, starting from

our latest, simplistic simulations, and moving from there to our previous, more complex

studies. Indeed, the most recent studies show how coordination can be achieved based

on the exchange of basic signals. These results fulfill the conditions justifying the study

of the increasingly more complex models, focusing on increasingly more complex levels of

communications, in the latter chapters of this thesis. By emphasizing the logical connection

between chapters over the chronological order of the original research, it is our hope that

the reading will be facilitated and the progression will feel clearer to the reader.

The chapters of this thesis are therefore organized as follows.

In Chapter 2, we review the related research on the topics directly connected to this thesis.

We focus on the evolution of coordinated behavior, the evolution of cooperation, and the

evolution of communication. For each topic, we provide the research carried out in both the

computer graphics and engineering communities.

In Chapter 3, we present the methods used in the works of this thesis. We mainly go over

agent-based modeling, genetic algorithms and neuroevolution, reviewing for each category

the basics and specifics on those techniques in the experiments we will present in the next

chapters.

In Chapter 4, we introduce a model of artificial creatures evolving in a three-dimensional

space via an asynchronous genetic algorithm, and exchanging sound-like signals. A goal-

5



1.2 Summary of contributions Chapter 1: Introduction

oriented fitness results in the agents emerging a swarming-like coordinated behavior from

their signaling system, resulting in the formation of neutral evolutionary space and genetic

drift.

In Chapter 5, we analyze a similar spatial model, with a task based on the agent’s per-

formance at an n-players Prisoner’s Dilemma. The ecosystem shows bistability with the

development of cooperator versus defector strategies, and also exhibits a degeneracy of the

behavior obtained in Chapter 4.

In Chapter 6, we discuss a series of simulations studying the emergence of adaptive behavior

in environments with a periodically dynamic fitness landscape, requiring both coordination

and resource management strategies for the artificial agents to survive. Three models are

presented, where agents are provided di↵erent levels of direct or indirect information, either

through their environment or the other agents in the population. A first model studies the

emergence of cooperative signaling behavior in a ring world. In a second model, agents are

shown to evolve signaling helping them to time their migration patterns. Finally, a third

spaceless model demonstrates the emergence of a resource hoarding behavior.

In Chapter 7, we present a variation on a recent computational model of gene-culture co-

evolution showing cyclic repetition of stages in which biological selection is masked than

unmasked by cultural evolution, resulting in phases of neutral selection and genetic drift.

In Chapter 8, we briefly summarize the results presented in this thesis, and give insights

about their meaning on a global scale. We also discuss the assets and limitations linked to

our approach. Finally, we conclude this thesis with a few closing remarks and guidelines for

future research.

1.2 Summary of contributions

The research introduced in Chapter 4 was presented as Asynchronous Evolution: Emergence

of Signal-Based Swarming at the Fourteenth International Conference on The Synthesis and

Simulation of Living Systems (Artificial Life 14) in New-York, in collaboration with Takashi

Ikegami (University of Tokyo). An extended version has also been submitted to the journal

PLoS Computational Biology, and is currently under review.

The work described in Chapter 5 was presented as Pseudo-Static Cooperators: Moving Isn’t

Always about Going Somewhere at the Fourteenth International Conference on The Synthesis
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and Simulation of Living Systems (Artificial Life 14) in New-York, in collaboration with

Nathanaël Aubert-Kato (Ochanomizu University).

The investigations from Chapter 6 were presented as When is Happy Hour: An Agent’s

Concept of Time at the Thirteenth International Conference on The Synthesis and Simula-

tion of Living Systems (Artificial Life 13) in Michigan, in collaboration with Geo↵ Nitschke

(University of Cape Town) and Takashi Ikegami (University of Tokyo), The Transmission of

Migratory Behaviors at the Twelveth European Conference on Artificial Life (ECAL 2013)

in Taormina, in collaboration with Geo↵ Nitschke (University of Cape Town), and Size Does

Matter: The Impact of Size on Hoarding Behaviour at the Thirteenth International Confer-

ence on The Synthesis and Simulation of Living Systems (Artificial Life 13) in Michigan, in

collaboration with Nathanaël Aubert-Kato (Ochanomizu University).
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Chapter2
Background review

The coevolution of social behavior in groups with the way individuals exchange information

has been a long studied problem in the field of evolutionary robotics (see Section 3.1) and

theoretical biology. Carrying out research in that topic evidently requires a thorough prior

background famliarization with the area.

This chapter begins with some background material covering the essentials about darwinian

evolution. We then propose a review of the main components of the literature related to this

thesis, organized around three main themes: the evolution of spatial coordinated motion,

the evolution of cooperative behavior and the evolution of communication.

The interplay between these three “c” elements – coordination, cooperation and commu-

nication – constitutes the basis to this thesis (cf. Figure 1.1). The coordination between

agents is the foundation to the emergence of cooperation, itself the central evolutionary

prerequisite to a real communication system. In every work presented in this thesis, those

three elements will be studied not individually, but with respect to the very influence they

have on each other.

2.1 The process of evolution

In 1858, a radically new theory about the evolution of species was jointly published by

two naturalists, Charles Darwin and Alfred Russel Wallace. Although their discovery was

first ignored by the face of the world, it was of prime importance for modern biology,

and represented a huge achievement for mankind. In their work (Darwin & Wallace, 1858),

Darwin and Wallace revealed that all living beings share a common ancestor. What separates

individuals from every species living today is merely just degrees of relationship. Since the
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moment the first self-replicating organisms appeared, the information of their structure has

been passed on with modification, so that each species is gradually changing from generation

to generation.

Every living being carries in him the traces of its ancestors, typically in the form of deoxyri-

bonucleic acid, or DNA, which encodes the genetic instructions used in the development

and functioning of its species. In certain species such as humans, these traces are not any-

more written exclusively in the genes, but also in the behavioral patterns. The full range of

learned behaviors in the human populations represents the human culture. In parallel with

the genes, this culture is also passed on to the next generations.

In this section, we explain the darwinian principles that allow us to study the emergence of

individual behavior. In order for the behavior to gradually shape itself, it is necessary for the

traits of an individual to be heritable. This means that a proportion of phenotypic variance

must be attributable to genetic variance, in other words the genetic individual di↵erences

contribute to individual di↵erences in observed behavior (Endler, 1986). If a behavior is

used to adjust to a specific environment, it is qualified as adaptive. An adaptive behavior

allows the individual to maintain and evolve by means of natural selection, by contributing

to its fitness and survival (Dobzhansky & Dobzhansky, 1937). Heritability, adaptiveness

and gradual evolution are considered fundamental principles in the evolutionary approach.

2.1.1 Individual of a species

The notion of species can be surprisingly di�cult to define, as many di↵erent definitions

coexist among communities of biologists. The most common one refers to groups of in-

terbreeding natural populations, which are reproductively isolated from other such groups

(De Queiroz, 2005). The definition remains unclear however about organisms reproducing

asexually, ring species (Dawkins, 2005), or species where the possibility of interbreeding is

not clear. Further complications may arise when considering horizontal transfer of genes,

which occurs when organisms exchange genes in a di↵erent manner than from parent to

o↵spring via reproduction, or microorganisms.

In the context of this thesis, we will focus on the level of the individual, defined by its

genetic material and its interactions with other individuals (Menand, 2001). Talking in

terms of relations rather than categories eliminates any ambiguity linked to vaguely defined

generalizations, as metrics can later be defined to cluster individuals into groups, mostly
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considering their genetic similarity and probability of reproductive success (Stackebrandt &

Goebel, 1994; Chun et al., 2007). Darwin himself just meant species as “one arbitrarily given

for the sake of convenience to a set of individuals closely resembling each other” (Menand,

2001).

More specifically, we will consider individuals in the autopoietic sense, as systems capable of

reproducing and maintaining themselves metabolically (Maturana, 1980). That definition

was originally meant to explain the nature of living systems, and applies to the whole

range of entities, from the self-maintained biological cell to multicellular organisms such as

animals and plants. Those systems continually produce the components which maintain the

organized bounded structure which itself gives rise to these components. This process is

usually compared to waves propagating through a medium. The autopoietic definition of

living systems emphasizes life’s maintenance of its own identity, its informational closure, its

cybernetic self-relatedness, and its ability to realize its own substance (Maturana & Varela,

1972).

Autopoietic systems are structurally coupled with their medium, which means that their

structure determines their trajectory of state changes that the systems undergo through

time (Maturana, 1975). The living systems interact recursively with their medium in a

relational network, all changing together in a process that lasts as long as the autopoietic

organization of the living systems is conserved (Maturana, 1980, 2002). The integration

of the sensory system and motor system, called sensory-motor coupling, binds dynamically

the living systems in their environment, because it allows them to take sensory information

and use it to execute motor actions. In that sense, it can be considered as a basic form of

knowledge and cognition in living systems.

2.1.2 Genes in an environment

The limit between genes and their environment has proven di�cult to define (Lewontin,

2000). Genes continuously interact with their environment, which itself constitutes a con-

tinuum of layers around them. The very definition of environment is often fuzzy, and the

frontier between what is inside and outside an individual can seem unclear.

For a species, the environment includes the other species, the geographical landscapes and

the climate. For an individual, it includes other individuals from the same species, individ-

uals of other species, the landscape and the climate. In the case of a body cell, it includes
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other cells of the same body, plus a part of the environment outside the body. For the genes,

it is the cell where they are located. Finally, for a single gene, it includes other genes and

the whole DNA molecule.

The importance of the environment shows its importance in the light of the study of epige-

netics. Indeed, the study of genes alone fails to explain the whole story. Epigenetics studies

on what controls the expression of genes, that is which informations from a gene are e↵ec-

tively used in the synthesis of a functional gene product. Naturally, though not evidently,

the expression is variable based on the surrounding environment of the gene (Grossniklaus

et al., 2013; Cortijo et al., 2014; Heard & Martienssen, 2014; Schmitz, 2014).

In certain species of turtles and crocodiles for example, the sex is determined by the external

temperature, favoring the generation of male and female hormones, in turn determining the

sex (Ewert & Nelson, 1991). In other species, the development of an organism depends

on symbiosis, with other species. For example, humans rely on bacteria for the way they

change our use of genes. The maturation of our immune system and the way we consume

energy depends indeed on the colonization of the newborn’s digestive system by bacteria

(Turnbaugh et al., 2007). Another typical example is found in fish and insects where the

interaction with other individuals, of respectively the same or another species, is crucial

to the expression of their genes. Some adult fish change their sex due to the nature of

their social environment, with members of the same species. In certain social insects such

as honeybees, the egg cell can develop in di↵erent ways, producing individuals that are

fundamentally di↵erent based on the food they are given (Maleszka, 2008). Feeding normal

food creates a simple worker bee, whereas feeding royal jelly triggers the development of

queen morphology, allowing for the fully developed ovaries needed to lay eggs (Herb et al.,

2012; Liang et al., 2012).

2.1.3 Interaction through a medium

The environment takes most of its importance, not only from its direct physical impact on

individuals, but mostly its role as a medium allowing for interaction between individuals of

either the same or di↵erent species (Thompson, 1999).

Through the intermediary of the environment, the organisms are able to transfer information

to each other, eventually allowing them to e↵ect on each other’s structure Maturana (1980);

Choo (1998). Whilst the simplest kind of feedback of an organism is on its own structure,
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as soon as we consider the e↵ect it has on distinct organisms, the interaction is brought to a

di↵erent level, because an entity’s interaction with a separate entity can imply consequences

on both of their survival and reproduction.

Most living organisms intrinsically need a combination of their own genetic machinery and

that of one or more other species (Jordan & Pollack, 2000). Because they live and evolve

in the same environment, they naturally influence each other in interactions as diverse as

mutualism, symbiosis, parasitism and commensalism, just to name a few (Johnson et al.,

1997; Thrall et al., 2007). Every interaction in the book is about manipulating other species

with the ojective of gaining resources, surviving and reproducing better (Dawkins & Krebs,

1978). The way they do it is rich, complex and has been the object of much research in

mathematical and evolutionary biology (Janzen, 1966; Clutton-Brock, 2002; Nowak, 2006).

The interaction between organisms can be either mutually beneficial or detrimental to the

species involved, and can also be more or less direct, ranging from interactions through the

simple sharing of one or more common resources (Stevens & Stephens, 2002; Holland et al.,

2005), to stronger relations such as symbiosis or predation where the survival of one species

depends totally on the other (Loeschcke & Christiansen, 1990; Nowak, 2006).

The interaction between di↵erent organisms causes transfers of information between them,

via the environment, allowing them to thereby change their own structures and creating the

opportunity for a whole range of communicative phenomena (Di Paolo, 1997). The details

of those communicative patterns constitute a major point of interest in this thesis, and will

be examined further in Section 2.4.

2.1.4 Flows of information

Walker & Davies (2013) proposed biological information as the key property in the evolution

of life. The information contained in an organism is considered in the sense of Shannon’s

concept of entropy (Shannon & Weaver, 1949), used in computer science and thermodynam-

ics. The entropy is generally defined as the amount of information contained in a message

in a probabilistic way, that is, based on the concept of uncertainty. The idea is that, in a

world where every possible message has a certain probability to be found, the less likely a

configuration of the message is, the more information it provides when it occurs.

Every life form can thenceforth be mathematically represented by a certain quantity of

information, encoding at each moment in time the combination of its genetic material and a
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characterization of its current state with respect to the environment in which it is situated.

The organism’s information does not amount only to the genome (Noble, 2008). The context

in which the genes are found determines the way they will be transcribed into RNA, in

turn generating proteins (Walker & Davies, 2013). The encoded information’s transcription

totally depends on the context that surrounds it, which continually changes by the e↵ect of

other organisms as explained earlier (in Section 2.1.3).

Furthermore, the circulation of information is not limited to the evolutionary level, which

occurs between generations of individuals. As mentioned in Section 2.1.1, the interaction –

and thus the information flow – starts between the individuals and the environment, which

occurs during the organism’s lifetime. By e↵ecting the environment around them at a given

moment, the individuals are able to influence the other organisms, resulting in an exchange

of information with those too.

This information exchange plays a central role in biology. Humans and other social animals

have developed very sophisticated communication systems, allowing individuals to modulate

their behavior in response to others in order to adapt better to their environment, in turn

improving their survival. The ability to coordinate with each other based on communication

has come to play a central role in the ecosystems. This aspect of information exchange will

be explored in Section 2.4.

2.2 Emergence of coordination

The concept of coordination is not always clear, especially regarding the nature of the

interaction it is based upon (Di Paolo, 1999). Describing the behavior resulting from the

interaction between autonomous entities realizing an adaptive function (see Section 2.1) does

not simply amount to the interaction itself. Maturana (1980) defines1 coordination as the

behavior of each agent depending strictly on the following behavior of the other, generating

a chain of interlocked behavior among two or more agents.

In this thesis, we intend coordination simply as the behavioral organization of di↵erent

agents, or elements of a complex entity, enabling them to fulfill a desired goal. Coordination

processes require mutually induced changes in each agent’s properties, so that the ensuing

1Maturana even goes further than simply defining coordination. He defines by the same occasion the

very concept of communication, which allows for coordination between participants. This aspect is explained

further in Section 2.4
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behaviors result in a coherent pattern. Our definition concerns the agents’ coordination in

the physical and consequential sense, as a collective pattern that is observable to the outside

observer. Note that this definition does not specify explicitly any condition on the sacrifice

of the agents’ own reproductive potential to help one another. In this thesis’ terminology,

that altruistic component is referred to as cooperation, which will be treated in Section 2.3.

2.2.1 Collective synchronization

The phenomenon of collective synchronization, consists in populations of oscillators spon-

taneously synchronizing to a common frequency, in spite of a range of di↵erent natural

frequencies among the oscillators (Winfree, 1967).

In mechanics, an oscillator is a system whose parameters oscillate in time (Strogatz, 2000).

The interaction between di↵erent oscillators allows them to coordinate with each other.

Oscillators are said to be coupled, when the values of the parameters of one oscillator have

an influence on another’s, eventually leading to their synchronization. For example, two

pendulum clocks mounted on a common wall will tend to synchronize (Huygens, 1665).

Similarly, any couple of oscillators, given a common medium, is able to achieve coupling

which may lead to synchronization.

Wiener (1958) studies the coupled oscillators in the natural world, analyzing them math-

ematically and proposing their connection to alpha rhythms in the brain. Since then, a

colossal number of examples of coupled oscillators have been pointed out in physical sys-

tems, ranging from the simple mechanical spring-mass systems (Huygens, 1665) to laser

arrays (Jiang & McCall, 1993; Kourtchatov et al., 1995), microwave oscillators (York &

Compton, 1991) or superconducting Josephson junctions (Wiesenfeld et al., 1996). These

are just a few examples. More can be found, especially in coordination structure formations

in thermodynamic systems away from equilibrium.

Even more examples of coordinated phenomena – often responding to more complex dynam-

ics – can be found when looking at synchronization in biological systems (Strogatz et al.,

1993; Schank, 1997).
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2.2.2 Biological coordination

The environment in which the agents evolve, previously introduced in Section 2.1.2, can be

considered to possess a certain memory. That is to say, the actions operated on it at a given

moment a↵ect its future states, in turn indirectly influencing the agent’s future too. The

agent’s actions build on each other, eventually producing elaborate, seemingly intelligent

dynamics. This mechanism of indirect coordination is called stigmergy.

Stigmergy is a form of self-organization that happens when an agent’s actions leave traces

in the environment, later used by other agents or itself to build future actions (Bonabeau

et al., 1997; Theraulaz & Bonabeau, 1999; Marsh & Onof, 2008). This phenomenon may lead

to complex, seemingly intelligent organization of behavior, without need for any planning,

control, or sometimes even direct communication between the agents.

In Chapter 1, we already introduced a few examples of coordination. In actuality, countless

cases of coupled oscillators can be found in biological communities, including populations

of synchronously flashing fireflies (Mirollo & Strogatz, 1990), crickets chirping in unison

(Strogatz et al., 1993), networks of electrically synchronous pacemaker cells (Winfree, 1967;

Pikovsky et al., 2001), and groups of women whose menstrual cycles become mutually syn-

chronized (McClintock, 1971; Mirollo & Strogatz, 1990; Stern & McClintock, 1998; Pikovsky

et al., 2001).

The ubiquity of synchronization suggests the necessity for a global theory of its emergence

and dynamics (Arenas et al., 2006; Gómez-Gardenes et al., 2007). The range of properties

synchronized in the agents varies in each system.

2.3 Evolution of cooperation

Cooperation is the adaptation (see Section 2.1) evolving in groups of organisms that work

together for mutual benefits, increasing each other’s chances of survival or reproductive

success (Gardner et al., 2009).

The notion of cooperation is not equivalent to coordination, which just refers to the organi-

zation of the group’s parts into a certain pattern (cf. Section 2.2). In this thesis, we intend

the term of cooperation rather in a game theorist or an evolutionary sense, as relative to

actions that are directed to other agents’ benefit, as opposed to uniquely competitive or

selfish benefit. In other words, an agent is considered to be cooperating if it acts for a
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common or mutual benefit (Gardner et al., 2009).

In turn, cooperation allows to satisfy the condition necessary for the emergence of a com-

munication system (Ulbaek, 1998). Without reciprocal altruism, communication would not

be an evolutionarily viable behavior, since the signaller would not have an incentive to

produce an honest signal, which would be more costly than a deceptive one, as suggested

by the handicap principle (Zahavi, 1977). Ultimately, since the signalling system has to

be shaped by the mutual interests of signallers and receivers, only cooperation may allow

for the emergence of real honest communication, a topic that is reviewed in more detail in

Section 2.4.

2.3.1 The darwinian antithesis

What makes the evolution of cooperation so fascinating might be its apparent contradiction

with natural selection (Darwin & Wallace, 1858), which favors organisms achieving the

greatest fitness and reproductive success, while cooperation has costs attached that precisely

endanger the individual’s survival (Dawkins, 2006; Gardner et al., 2009). For that reason,

cooperation poses a fundamental problem to the traditional theory of natural selection, based

on the principle that individuals compete for their survival and replication. Yet cooperation

is observed at every level of biological organization, from genes cooperating in genomes

and cells forming mutually beneficial organisms, to social species collaborating in complex

societies (Hall et al., 2008; Axelrod & Hamilton, 1981).

The evolution of cooperation is subject to research in progress, and the details of its emer-

gence and evolution are not yet fully understood. However, a number of theories have

been established in the field, o↵ering diverse explanations to specific types of cooperative

behavior.

2.3.2 Mechanisms of cooperation

In evolutionary biology, plenty of hypotheses have been proposed of mechanisms governing

cooperation. For the scope of this thesis, we will only consider the main ones, which are kin

selection (Fisher, 1930; Smith, 1964; Haldane, 1990; Hamilton, 1964), reciprocal altruism

(Trivers, 1971; Axelrod, 1984), and group selection (Smith, 1964; Trivers, 1971; Wilson,

1975; Axelrod, 1984; Bowler, 1989; Dawkins, 1989).
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John B. S. Haldane’s famous answer “I would lay down my life for two brothers or eight

cousins” (Connolly & Martlew, 1999), when asked if he would give his life to save a drowning

brother, illustrates perfectly the idea of kin selection, although the term was first coined

by Smith (1964). This mechanism works as a simple consequence of the “selfish gene”

(Dawkins, 1989). The condition for the viability of cooperation is defined by Hamilton’s

rule (Wright, 1922; Hamilton, 1964; Nowak, 2006). The rule stipulates that the coe�cient

of relatedness r has to exceed the cost-to-benefit ratio, i.e. r > c
b where r is the probabitlity

that a gene at the same locus is identical, b the additional benefit gained by the recipient

of the altruistic act and c the cost to perform the act. Kin selection works for two reasons,

either individuals are able to identify their relatives, or dispersal is rare enough in so-called

viscous populations, i.e. populations where individuals remain closely related. The viscous

population mechanism makes kin selection and social cooperation possible in the absence of

kin recognition.

A second mechanism is reciprocal altruism, where the organisms reduce their own fitness

while increasing other individuals’ fitness, with the expectation that those organisms will re-

ciprocate later (Trivers, 1971; Axelrod, 1984). The studies of reciprocal cooperation usually

imply individuals playing a version of the Prisoner’s Dilemma game, in which two prisoners

have the choice to either cooperate or defect, leading to di↵erent costs to each of them

(Tucker, 1950). In the context of that game, reciprocal cooperation means cooperating

unconditionally in the first iteration and then simply copying the opponent’s actions the

previous turn, in a strategy called “tit-for-tat”. Axelrod (1984) shows that this behavior is

optimal in simple cases of direct competition.

A more advanced version of that strategy can be superior, called “forgiving tit-for-tat”, which

occasionally cooperates anyway, even if the previous move of the opponent was defecting.

This is meant to avoid signal transmission errors, which typically lead to a cycle of defections.

A drawback is the superiority of tit-for-tat over its forgiving variant (Gintis, 2009).

Nowak (2006) shows that direct reciprocity if the probability w of another encounter between

the same two individuals exceeds the cost-to-benefit ratio of the altruistic act (w > c
b ). If

the reciprocity is indirect, that is if the reciprocation doesn’t occur at the level of a single

couple of individuals, then the condition should be based on reputation instead of simple

probability of encounter. Details are given in Nowak (2006) and the concept is extended to

the case of reciprocity networks2.

2Reciprocity networks are relevant to the study of cooperation in populations that are not well-mixed,

but in the context of this thesis (particularly in Chapter 4) this issue is solved by other means, as the
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A third mechanism is group selection, in which natural selection acts at the level of the

group instead of at the more conventional level of the individual (Smith, 1964; Williams,

1966; Wilson, 1975). Many theoretical and empirical studies have been carried out on the

topic, more recently giving birth to the new concept of multilevel selection (Axelrod &

Hamilton, 1981; Wilson, 1975; Dawkins, 1989; Keller, 1999; Wilson & Hölldobler, 2005). In

spite of recent progresses, the theories concerning group selection are still controversial in

the field (West et al., 2007).

The question left is in which way then a system can develop reciprocal altruism from kin

selection. Let C be a cooperative behavior and D a defective behavior. If C is more fit

than D when adopted by a certain number n of individuals in a population, the cooperative

behavior is then considered as stable in the sense of game theory (Wilson, 1975). The

question then becomes, what are the conditions for its emergence, since it is not profitable

under the minimal number n of cooperative agents. Several scenarios have been hypothesized

to give rise to the altruistic behavior, one of which is isolation. Indeed, in an isolated

population, the individuals have more chance to share common genes with one another,

and as mentioned above, this may amplify the tendency to kin selection, thus resulting in

all isolated individuals adopting behavior C. Then, when the population is reintroduced

in the initial population, will make C, the more e�cient behavior, crystallize to the whole

population from a so-called inbred founder e↵ect (Provine, 2004; Sapolsky, 2004).

The concepts introduced in this section will take their importance when discussing the results

of our artificial simulations, in Chapters 4 through 7.

2.3.3 Cooperation vs. coordination

The coordination among individuals of a population, a behavior previously introduced in

Section 2.2, eventually e↵ects their survival and reproduction, and many behaviors can take

place, ranging from altruistic strategies to mutually aggressive ones. Cooperation is needed

for a higher level of organization to build on the lower one, allowing life to fill the gap from

genomes and cells to multicellular organisms, social animals and societies. Although at every

level a fierce competition is taking place at all times to promote one species’ evolutionary

success, cooperation is undeniably the most remarkable aspect of evolution, even referred

to as evolution’s third fundamental principle beside mutation and natural selection (Nowak,

neighborhood graph is not as simple as in classical cases of game theory (Nowak & Sigmund, 2004; Lieberman

et al., 2005; Ohtsuki et al., 2006).
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2006).

Cooperation is therefore essential when considering evolution, in the e↵ects it has on groups,

making them altruistically organize their patterns with each other, coordinating their actions

for the common good.

Cooperation has been studied in evolutionary game theory. In that context, spatial coordi-

nation of agents has been shown to impact on their patterns of selection (Nowak & May,

1993). Notably, cooperative strategies may coexist with interactions specific to a spatial

environment, that would not occur in homogeneous populations. This can be due to the

possibility given to individuals to isolate spatially from each other, changing the network of

interactions and allowing dynamics such as the previously mentioned founder e↵ect (Mayr,

1942).

2.3.4 Cooperation vs. communication

Signal reliability has long been considered a major obstacle to the evolution of a fully-fledged

communication system. Animal signal and calls, such as a cat’s purring, are usually hard

to fake, and for that reason can be trusted up to some extent(Goodall, 1986; McCune,

1995). On the contrary, monkeys and apes often attempt to deceive one another. This

Machiavellian behavior would naturally prevent language to evolve, since the evident way to

avoid deception is to stop paying attention to the fallacious signal (Byrne & Whiten, 1989).

Reciprocal altruism (Trivers, 1971) is invoked as a condition for language to evolve (Ulbaek,

1998). The idea is that through reciprocity, communication honesty is an evolutionarily

viable behavior. However, the way in which altruist communication could have been enforced

on the whole population is unclear, due to the complexity of the prisoner’s dilemma and

free riders problem that it involves.

Fitch (2004) proposes the natural reasoning following which kin selection (Hamilton, 1987;

Axelrod & Hamilton, 1981), the convergence of interests between genetically related indi-

viduals, especially in the case of humans in which inter-generational dependency is very

developed due to o↵spring immaturity, might be the key explanation to the evolution of

language. Shared genetic interests would have led to su�cient trust and cooperation for

intrinsically unreliable signals to become accepted as trustworthy and thus start being used

and evolve.

Even though kin selection is not unique to humans (arguably the only species with highly
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complex language), and even though the incest taboo must have forced individuals to interact

with other kin (Tallerman, 2013), the argument is considered major.

2.4 Evolution of communication

The interaction between living organisms enables them to transfer information to each other,

creating the possibility for more or less complex communicative mechanisms (Di Paolo,

1997). The organisms can modulate their behavior in response to others to improve their

sustenance and reproduction. The ability to cooperatively evolve coordinated patterns of

behavior among populations, as introduced in the previous sections of this chapter, will

allow the individuals to build more and more complex systems of communication.

2.4.1 Definition of communication

Communication is a form of behavioral coordination between partners whose actions are

modified and regulated by each other, as a result of interactions occurring in a consensual

domain (Dewey, 1958; Maturana, 1980; Maturana & Varela, 1987; Maturana et al., 2005).

Every information exchange between living organisms can be considered a form of com-

munication. In that sense, animal communication is already found in the most primitive

species of the life complexity continuum. It includes cell signaling, cellular communication,

and chemical transmissions between primitive organisms such as bacteria (Kiskowski et al.,

2004; Waters & Bassler, 2005) and corals (Baker et al., 2004) and within the plant and

fungal kingdoms (Rolland et al., 2006). At the other end of the continuum, can be found

mammals and humans, capable of a richer type of communication, enabled by more complex

cognitive systems.

The transfer of information may be intentional (e.g. birds emitting an alarm call when a

predator is seen) or unintentional (e.g. a predator detecting the scent of its prey) (Ekman

et al., 1996; Schaefer & Ruxton, 2011). It can involve any type of sensors or mode (e.g.

visual, auditory).

In the literature signaling is often distinguished from communication. A signal is defined as

any act or structure from a sender agent, which alters the behavior of another agent, which

evolved because of that e↵ect, and which is e↵ective because the receiver’s response has also

evolved (Smith et al., 2003a). The di↵erence is therefore that the information sent from the
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sender to receiver manipulates the behavior of the receiver.

Signaling theory predicts that for the signal to be maintained in the population, the receiver

should also receive some benefit from the interaction. Both the production of the signal from

the sender and the perception and subsequent response from the receiver need to coevolve.

2.4.2 From basic signaling to fully-fledged language

Every known human society has had a language and though some nonhumans may be able to

communicate with one another in fairly complex ways, none of their communication systems

begins to approach language in its ability to convey information. Nor is the transmission of

complex and varied information such an integral part of the everyday lives of other creatures.

Nor do other communication systems share many of the design features of human language,

such as the ability to communicate about events other than in the here and now. But it is

di�cult to conceive of a human society without a language.

The evolution of human language might be the hardest problem in science (Christiansen &

Kirby, 2003). Not only doesn’t it provide any direct fossil evidence, but the complexity of the

underlying dynamical systems responsible for its evolution make it a challenging problem for

science. For those reasons, the emergence of language has been mentioned as the most recent

of a small number of highly significant evolutionary transitions in the history of life on earth,

on account of the fact that it enables an entirely new system for information transmission:

human culture (Maynard-Smith & Száthmary, 1997). Indeed, language is unique in being

a system that supports unlimited heredity of cultural information, allowing our species to

develop a unique kind of open-ended adaptability (Kirby et al., 2008).

Many di↵erent scenarios have been proposed for the emergence of language. Chomsky (1995,

2005) argues that a single mutation occurred in one individual on the order of 100,000 years

ago, instantaneously creating the language faculty in a finished form. Pinker & Bloom

(1990), while still viewing the language faculty as innate, have proposed a more gradual

type of scenario. In the same innate and intellectual school, Ulbaek (1998) proposed that

the increasing complexity of cognition led to the emergence of language. The inspection of

early human fossils, aimed to find traces of physical adaptation to language use have shown

some success (Lieberman et al., 1972; Shultz et al., 2012). Attempts have been made to

identify language-relevant genes, leading to the discovery of for example FOXP2 (Diller &

Cann, 2009).
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The other school of thought sees language as a socially acquired tool for communication,

which gives an adaptive benefit to all individuals that would not be possible in the case

of a sudden single mutation (Tomasello, 1996). Within that school, most diverse scenarios

have been built, proposing that the emergence of language happened from causes such as

major social changes (Tallerman & Gibson, 2012) or largely cooperative behavior (Savage-

Rumbaugh & McDonald, 1988; Knight, 2008).

2.5 Intricacies of human language

In the Descent of Man, Charles Darwin mentions that Man is not the only animal that can

make use of language to express what is passing in his mind and can understand what is

so expressed by another (Darwin, 1871). One may legitimately wonder whether human lan-

guage really di↵ers from animal language, whether they can formally be distinguished from

each other following defined criteria. In general, the features originally thought to be unique

to human language have progressively been found as well in nonhuman communication. In

the following, the main arguments will be concisely and critically reviewed.

2.5.1 Uniqueness of human language

Human language has been argued to be distinct from animal communication (Denham &

Lobeck, 2012), because of a series of di↵erences in properties. The list notably includes the

arbitrariness of signals with respect to their meaning (Fitch, 2011), the discreteness of signals

related to the categorizability of linguistic signals into distinct classes without continuous

shading (Hockett, 1960b), productivity which designates the ability of speakers to create an

indefinitely large number of utterances (Fitch, 2011), high-level reference which means the

ability to exchange information about things not situated in their immediate vicinity in space

or time (Fitch, 2011; Hauser et al., 2002), the ability to ask questions (Zhordania, 2006) and

finally the so-called double articulation which consists in the use of both meaningful and

meaningless elements within the human language (Hockett, 1960a). Many other properties

can be added to this list, following the theory that defined them.

However, most of those properties have been individually found to be contradicted by a

counter example in nature or an experiment in the laboratory. Arbitrariness, dicreteness

and productivity of signals has been shown in gorillas and chimpanzees (Gardner & Gardner,

1969, 1975; Patterson & Linden, 1981; Fernández & Cairns, 2010). Bee’s waggle dance shows
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elements of spatial and temporal displacement (Von Frisch, 1967; Towne & Gould, 1988; Dyer

& Dickinson, 1996; Grüter & Farina, 2009). Finally, it would be hard to defend that the

double articulation is strictly human, given the complex and (up to three-level) hierarchical

structure of bird songs (Albert & Margoliash, 1996) and (Coleman & Keith, 2006).

The case of the other features mentioned in the literature are usually considered as being

either less significant, or actually found partially as well in nonhuman animals, though in

a lower level than in humans. For instance, many primates show abilities like pretending,

conceiving shard plans, repairing failed communication or intentional deception, although

none of those are found in the same degree of complexity as in human society (Baron-Cohen

et al., 1999).

2.5.2 About recursion

One key feature to distinguish human language would be recursion, according to one school

of thought. In a highly controversial paper, Hauser et al. (2002) have argued that language

recursion di↵erentiates the faculty of language in the broad sense (FLB), supposedly shared

between humans and other species, from the faculty of language in the narrow sense (FLN),

which would be uniquely human. The universality of this recursion is denied by certain

scholars, taking the example of some rare non-recursive languages such as Pirahã (Everett,

2005).

Pinker & Jackendo↵ (2005) have claimed that other, non-recursive aspects of human lan-

guage distinguish it from other forms of animal communication. Nevertheless it seems clear

that recursion is at least one of the distinguishing attributes of human language, which

raises the challenge of showing that some nonhuman species may be capable of producing

or parsing recursive sequences.

Other di↵erences have been argued to make human language unique, ranging from number

representation (Whalen et al., 1999; Hauser et al., 2000), theory of mind or the awareness of

the other’s wants and intentions (Bruner, 1981; Courtin, 2000; Jacob, 2008) and high-level

reference or deixis (Hauser et al., 2002).

However, many animal communication systems – natural calls and systems acquired through

human training – exhibit features previously thought unique to human language (Premack,

1971; Grainger et al., 2012). The long-cherished idea that human language is qualitatively

di↵erent from animal communication and marks us as special and superior to other species
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appears increasingly insecure. Additionally, one important point should be made about

distinguishing between communication naturally self-evolved in nonhuman animals, and

artificially taught by humans. Whilst the former one can be studied and compared to

human language to find di↵erences, the latter should be treated cautiously, as the features

analyzed might turn out to be artifacts introduced by the human artificial teaching of a

language of its own confection.

Another understanding of animal language, popularized by works of fiction, concerns the

e↵ort made to fully communicate ideas and concepts with wild populations of animals such

as apes or dolphins so as to “speak” to them and share respective cultures and histories. In

our case, animal language must be clearly understood as the emerged communication evolved

within an animal species, and not any artificial attempt of bridging between humans and

animals.
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Chapter3
Methods

This thesis presents research on the emergence of coordination and communication in groups

of agents. Modeling this type of systems is challenging for a variety of reasons, including the

presence of heterogeneity, non-linearity, asynchrony, adaptation and spatial relationships.

Those challenging characteristics can be largely overcome by the use of a specific set of

tools, most of which are well established in the field of artificial life.

In this chapter, we present the tools used in the next chapters to simulate synthetic en-

vironments in which artificial organisms evolve communication mechanisms. The methods

presented are agent-based models, neural networks and evolutionary algorithms.

3.1 Agent-based modeling as a tool

A natural approach to try and understand the scenarios by which animal communication

came or could have come about, is to reconstruct this emergence with a model as simple

as possible. Such a model should keep its components easier to study than the real world,

while maintaining all of the system’s key properties. Agent-based modeling has been used

successfully to model complex adaptive systems in many disciplines.

3.1.1 Evolving autonomous agents

Agent-based modeling (ABM) is a bottom-up approach, characterized by synthetic methods,

that is, understanding systems via building computational models which will simulate the

actions and interactions of autonomous agents in a given environment. This class of models

combines elements of game theory, complex systems, multi-agent systems and evolutionary
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programming, as we will see in details after defining first a few additional terms.

Evolutionary robotics (ER) constitutes a biologically inspired approach to the use of au-

tonomous agents to solve a task, using evolutionary computation to develop their controllers

(Nolfi & Floreano, 2001; Vargas et al., 2014). The vast majority of ER works use a genetic

algorithm (GA), a common stochastic optimization method (Holland, 1975). Its basic idea

is to mimic natural selection and the survival of the fittest principle, in order to generate and

find the best controller fitting to a particular set of fitness criteria. Through evolutionary

experiments, artificial organisms autonomously develop their behaviour in close interaction

with their environment (Marocco et al., 2003).

ABM is an analogical system that aids ethologists in constructing novel hypotheses, and

allow the investigation of emergent phenomena in experiments that could not be conducted

in nature (Webb, 2009). Numerous studies in ethology have formalized mathematical models

of migratory patterns in various species (Bauer et al., 2011). However, there have been

few studies that examine ontological and phylogenetic conditions requisite for emergent

migratory behavior.

In the first step, an initial population of artificial chromosomes is created, each encoding

the control system of an agent. The agent is then put into an environment and set free

to act (look, move around, interact) according to its genetically specified controller, while

its performance on a certain number of tasks is being evaluated. The fittest candidates are

selected for reproduction based on a fitness function (Mitchell, 1998), aiming to bias the

individuals towards subsets with better, though not necessarily optimal, performances. The

reproduction is modeled by swapping and recombining parts of the genetic material, with

small random variations.

Let us also take a moment to insist on the importance of embodiment of the agents in an

environment, in the models we describe. Turing (1950) argued “it is best to provide the

machine with the best sense organs that money can buy, and then teach it to understand and

speak English” and “that process could follow the normal teaching of a child”, an approach

then followed by many researchers, as will be described in the next sections. The terminology

of embodiment itself comes from the theory of embodied cognition, originating from Kant &

Jaki (1981). This theory defends that providing a body in an environment to an agent will

largely determine the nature of its cognitive abilities (Maturana & Varela, 1987; Brooks,

1992). This vision of the living animal’s mind is compatible with recent cognitive views

in neuropsychology and the study of consciousness, as in Ramachandran et al. (1998) and
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Edelman (2006).

3.1.2 Advantages for the evolution of communication

The ER and ABM approach is useful for testing scientific hypotheses in biological mecha-

nisms and processes (Floreano et al., 2008; Bonabeau et al., 2000), which includes investi-

gating useful controllers for real-world robot tasks, exploring the intricacies of evolutionary

theory such as the Baldwin e↵ect, reproducing psychological phenomena, and finding out

about biological neural networks by studying artificial ones. The usual contender is the

classical approach, that is formal mathematical models, which should be the first place to

look when studying a new problem. However, very often that type of approach proves to be

insu�cient compared to ABMs, as is detailed in the following.

In particular evolutionary robotics can be advantageous to study the evolution of adaptive

behaviors and communication, in setups where agents generally solve collective problems

by means of developing cooperating and communicating behaviors through a self-organizing

process (Marocco et al., 2003). Indeed, sensorimotor coordination, social interaction, evolu-

tionary dynamics and the use of neural systems all have a potential impact in the emergence

of coordinated communication (Steels, 2003; Nolfi, 2005).

Communication evolved as a complex adaptive system, which self-organizes and evolves

through the collective dynamics of the agents involved (Steels, 2003). For that reason, the

system proves to be extremely di�cult to deal with directly, hence the advantage to study

it by employing a constrained, simpler framework with a limited parameter space, where a

predefined hypothesis can be examined more e�ciently and in detail.

Another obvious asset resides in the individual-level focus itself, as the system properties

are often tightly linked to the co-evolution of interacting agents, where the key dynamics

are best studied on the system as a whole, including all its possibly complex characteristics.

The emergence of communication in natural history also su↵ers from a severe lack of em-

pirical data, which agent based models can help to fix by partly reproducing the original

landscape and testing di↵erent hypotheses on it (Christiansen & Kirby, 2003). With ABMs,

various evolutionary processes can be simulated and variations in resultant adaptive behav-

iors examined.

One more advantage to the ABM approach is, as mentioned a little earlier, that it models

agents that are embodied and situated (Brooks, 1991; Pfeifer & Scheier, 1999). Evolution-
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ary robotics represent an ideal framework for synthesizing robots whose behavior emerges

from a large number of interactions among their constituent parts (Marocco et al., 2003).

Throughout evolutionary experiments, robots are synthesized through a self-organizing pro-

cess based on random variation and selective reproduction, with the selection being based on

the behaviors that emerge from the interactions among the robot’s constituent elements and

between these elements and the environment. This allows the evolutionary process to freely

exploit interactions without the need to understand and engineer in advance the relation

between interactions and emerging properties, as would necessarily be required in di↵erent

approaches relying more on explicit design.

For these reasons the evolutionary robotics approach has been successfully applied to study

systems in which communicative and non-communicative behavior can co-adapt and shape

one another.

3.1.3 Relevant agent-based approaches in the literature

The examples of evolutionary agent-based models for emergence of communication are nu-

merous, and represent a continuum between, on the one hand, abstract models where only

the most basic properties of agents and their environment are being modeled (Harnad, 1990;

Oliphant, 1999; Cangelosi, 2001; Kirby, 2001), and on the other hand robots that are em-

bodied in a physical body, with a simulated nervous and cognitive system, and situated in

an external environment (Beer, 1995; Steels & Vogt, 1997; Quinn, 2001; Nolfi & Floreano,

2002). One should note the importance of embodiment, as was argued earlier in Section 3.1.

A first example showing how communication may emerge from the attempt to solve a task

that requires cooperation and coordination has been provided by Quinn (2000, 2001); Quinn

et al. (2003). In the study, simulated agents are provided with neural networks and equipped

with proximity sensors and wheels, then presented with a coordinated movement task. With-

out any dedicated or functionally isolated channels, the agents manage to evolve a very basic

communicative behavior, which eventually allows them to stay close to each other.

A second interesting work is brought by Iizuka & Ikegami (2002, 2003) who evolved two

populations of simulated agents living in an unstructured arena that should exchange their

roles of chaser and evader, so as to produce a form of turn-taking behaviour. Chasing

and evading are defined as staying or not staying behind the other agent, respectively. The

obtained results demonstrate how in early evolutionary phases agents tend to display regular
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trajectories that allow agents to exchange their role periodically, before showing more and

more chaotic turn-taking in later stages of the evolution.

These two examples are picked, out of many, to illustrate typical experimental results for

those kinds of models, demonstrating how individuals selected for the ability to perform a

cooperative task might not only develop forms of communication but also primitive forms

of communication protocols that in turn enhance their communication/interaction abilities

(Nolfi, 2005).

3.2 Recent model-based approaches

Although the present thesis focuses on the previously mentioned type of model, with the

emergence of a system of communication from a non-communicative system under the pres-

sure of task solving in an environment, more works are worth mentioning that make use of

evolutionary robotics in a di↵erent way.

In the Talking Heads experiment, Steels (1999) shows self-organization of a shared lexicon

and perceptually grounded categorization of the world from the interaction among a popu-

lation of embodied and communicating agents. In that work, agents play a language game

in which they interact according to a predetermined ritualised interaction scheme, aiming

to develop an ability to successfully categorize external objects according to a self-organized

shared vocabulary and ontology.

In another category of experiments, Smith et al. (2003b) present an iterated learning model

of the emergence of compositionality, a fundamental structural property of language. They

show that the poverty of the stimulus available to language learners creates a bottleneck on

cultural transmission, leading to a pressure for linguistic structure, which imposes conditions

of generalizationability for the language to be stable. Based on that model, the authors argue

that compositionality is language’s adaptation to stimulus poverty.

Such works have inspired the research presented in this thesis.

3.3 Artificial neural networks

The previous section presented agent-based models, in which every agent’s behavior is de-

termined by a set of parameters. In a good number of works, the simulated organisms are

29



3.3 Artificial neural networks Chapter 3: Methods

constructed with predetermined and fixed behaviors, decided only by a certain number of

parameters that mutate through the simulations. In that case, each agent is defined by a col-

lection of finite parameters, each controlling the di↵erent aspects of the organism following

a set of rules.

However, the simulations can also be made richer by making those parameters determine

a real decision system, that is a pseudo-brain for every agent. In that case, every agent is

given a neural network tuned by certain parameters. By this mechanism, the agent is given

the ability to learn through its lifetime, adding a new important degree of liberty to the

simulations.

3.3.1 Neural network model

Artificial neural networks (ANNs) are computational models inspired by the animal central

nervous system, particularly the brain, used to approximate functions depending on a large

number of inputs (McCulloch & Pitts, 1943). Those networks are generally presented as sys-

tems of interconnected units called neurons which calculate result values based on a certain

number of inputs. By their adaptive nature, they are capable of learning and recognizing

patterns.

An ANN (see Figure 3.1) is composed of a set of nodes called neurons, connected together

to form a network which mimics a biological neural network. The nodes are typically,

though not necessarily, organized in layers within which units have no connections. Each

connection is assigned an adaptive weight value, to be tuned by a learning algorithm, so

that the network is capable of approximating non-linear functions of the inputs. When a

neuron is activated with a certain input value, it responds with an output result, defined by

an activation function.

Each neuron comes with an activation function which determines what output value it

responds with based on the input values. A first possibility is a step function, used in the

original perceptron (Rosenblatt, 1958). The output is a certain value A
1

if the input sum is

above a certain threshold and A
0

otherwise, with typically A
1

= 1 and A
0

= 0. The most

common activation function is probably the log-sigmoid function �(t) = 1

1+e��t , where �

is the slope parameter. Conversely, the hyperbolic tangent function can be used instead of

this logarithm, making the function a tan-sigmoid.

An ANN is thus defined by three types of parameters: the interconnection pattern between
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Figure 3.1: An example of artificial neural network. Each circular node represents

an artificial neuron and each arrow represents a connection from the output of one neuron

to the input of another. Image credit: Glosser.ca on Wikimedia, licensed under Creative

Commons.

the neurons, the learning process for updating the weights of the interconnections, and the

activation function that converts a neuron’s weighted input to its output activation.

Mathematically, a neural network’s function f(x) is defined as a composition of other func-

tions gi(x), which can further be defined as a composition of other functions, typically in

a nonlinear weighted sum, where f(x) = K
P

i wigi(x) , where the activation function K

is some predefined function, such as the hyperbolic tangent. It will be convenient for the

following to refer to a collection of functions gi as simply a vector g = (g
1

, g
2

, . . . , gn).

3.3.2 Learning algorithm

The most important point of neural networks is perhaps their possibility to learn.

An ANN model is often attached to a given learning rule. Considering a class of functions

F , the learning task can be be defined as finding the instance f⇤ 2 F that solves the given

task in an optimal way. In order to realize this, a cost function C : F ! R is defined such

that 8f 2 F , C(f⇤)  C(f), where f⇤ is the optimal solution. The algorithms searching

through the function space to minimize the cost are multiple. They are usually classified

into supervised, unsupervised and reinforcement types.
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In supervised learning, the goal is to infer a mapping function from a set of examples i.e.

find a function f : X ! Y 2 F that matches given pairs (x, y), with x 2 X and y 2 Y .

In this case, the cost function must be a measure of the error between a tentative mapping

and the data. This method, though e�cient, is only applicable to problems with available

knowledge of the result requirements and constraints.

A common algorithm is based on minimizing the average squared error MSE = 1

n

Pn
i=1

(fi(x)�

yi)2 where f(x) is the network’s output vector and y is the vector of target values from the

example pairs, which can be done using gradient descent. This method is called back-

propagation, and is usual in training the so-called multilayer-perceptron neural networks.

Supervised learning usually applies though is not limited to pattern and sequence recognition

tasks.

For unsupervised learning, some data x is given and the cost function C(x, f(x)) to be min-

imized, which is dependent on the task. Usual applications of this paradigm are clustering,

classification and compression.

In the case of reinforcement learning, the data is not directly presented to the learning

system, but rather is obtained by interactions with an environment so as to maximize some

cumulative reward. Reinforcement methods apply particularly well to complex search spaces

where classical approaches would be intractable since they require prior knowledge about the

MDP. A typical reinforcement learning model, based on Markov decision processes (MDP),

consists of a set of environment states S, a set of actions A, a number of rules of transition

between states, a description of the agent’s input data and a reward function for each

transition (Howard, 1960). To avoid wasting resources on exploring search spaces that are

often considerably large, this approach can benefit from clever exploration mechanisms.

3.3.3 Search space exploration

A purely random exploration of the search space is obviously not an acceptable strategy to

find an optimum. To attain a good performance, it is necessary to plan a search following

an e�cient schedule or adaptively based on a heuristic. The search is then said to follow a

policy, that is a mapping assigning a certain probability distribution over the directions to

all possible histories of search.

In case structural aspects of the space are known or can be learned online during the search,

the algorithm can avoid brute forcing by biasing the search towards more likely directions,
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for example at the very least by implementing gradient descent on the data. The search

can indeed without any loss of generality be restricted to the set of the so-called stationary

policies, which depend only on the last state visited.

Nevertheless, policy search methods may converge slowly because of noisy information.

Alternatives include fully or partly gradient-free algorithms, such as simulated annealing,

cross-entropy search or methods of evolutionary computation (Deisenroth et al., 2013). The

approaches chosen in this thesis is derived from the latter one.

Evolutionary computation uses pseudo-genomes representing artificial neural networks by

describing, directly or indirectly, their connectivity structure and weights. Further details

about evolutionary algorithms are explicited in section 3.4.

The problem of convergence depends on di↵erent factors, notably the presence of local min-

ima, the dependency on initial conditions, and the scalability on input data or parameters.

3.3.4 Network architectures

In a neural network, the first neurons that receive information directly from the environment

form the input layer. The neurons that produce the resulting data processed by the network

constitute the output layer. Layers between the input and the output layer are called hidden

layers. Based on the connectivity in place between the input and the output, neural networks

are able to process and store various amounts and complexities of information. The number

of hidden units and the architecture of the network they form determine the capacity, that

is the ability of the system to model any given function.

The number of neurons present in the hidden layer is one of the main factors influencing

the capacity. More hidden layers can make the system more robust and flexible to the

learning. However, this power comes with a more costly training algorithm because the

overspecification can make generalization di�cult.

The simplest architecture is the feedforward network (see Figure 3.1, represented by a di-

rected acyclic graph of processing units. In this case, the di↵erent layers of neurons are just

receiving their input from the previous layer, and outputting the processed result to the

next one, without any feedback. Formally, this means that the weights from a neuron to an-

other neuron in a previous layer is zero, as well as the weights from the units to themselves.

A feedforward network with nonlinear activation functions and using backpropagation (see

section 3.3.2) is called a multilayer perceptron (MLP), and is able to classify non linearly
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separable data.

If the feedback connections weights are not zero, the network is called recurrent, and contains

feedback to previous layers or self-feedback from units to themselves. Typically, the weights

of the feedback paths are set to one. The additional complexity from the added cycles has

a certain number of e↵ects on the network.

A notable example of recurrent network is the Elman model (see Figure 3.2), which contains

four layers of units: input, output, hidden and context. The context layer is the layer

outputting at iteration n its result computed at iteration n�1 into the hidden layer (Elman,

1990). The internal state of those network allows exhibit dynamic temporal behavior, which

can process sequences of inputs with a limited memory e↵ect. This therefore o↵ers a capacity

for pattern sequence prediction which is not present with the feedforward architecture.

Figure 3.2: An example of Elman simple recurrent neural network. The con-

text layer (u
1

to ul) provides a limited memory e↵ect to the network, allowing for pattern

sequence prediction. Image credit: yedernoggersnodden on Wikimedia, licensed under Cre-

ative Commons.

Multilayer perceptrons were popular in the 1980s, with many major applications such as

image recognition, text mining and speech processing. Since the 1990s other systems such

as support vector machines have presented a strong competition, before the neural networks

recently regaining success notably with deep neural networks (Schmidhuber, 1992; Hinton,
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2007).

3.4 Neuroevolution

Evolution is central to the study of living systems. A way to include this aspect in artificial

life models is to add a natural selection process in them. In this section, we review the

details of genetic algorithms and their application to the evolution of neural networks, a

very common approach in robotics and artificial life.

3.4.1 Evolutionary algorithms

Natural selection can be thought as an optimization process that searches through a set of

possible individuals, in order to find those with the highest fitness. Fisher (1958) founded

mathematical genetics by viewing the chromosome as a string of genes and providing a

mathematical formula specifying the rate at which particular genes would spread through

a population. Holland (1995) later generalized this concept, creating the genetic algorithm

(GA), which is a generalized, computer-executable version of Fisher’s formulation.

A genetic algorithm emulates the process of evolution and natural selection, including fitness

evaluation, selection process, and descent with modification. The fitness evaluates each

individual in the current population with a value characterizing its level of performance

at a task. The selection process picks the best performing individuals to reproduce into

the next generation of artificial brains. Finally, the descent with modification updates the

current population by removing previous individuals and generating the o↵spring of the ones

previously selected, by creating copies of their parents with slight modifications.

3.4.2 Selection methods

Genetic algorithms use di↵erent methods to select the potentially good solutions among the

individuals present in the population, after each one has been assigned a fitness value. Two

largely used selection methods are the roulette wheel and tournament selection.

The roulette wheel selection proceeds by using the fitness values to associate a probability of

selection to each individual. The selection is based proportionally on each individual’s fitness

f . The probability of an individual i in the population of n members is pi = fiPn
j=1 fj

. As a

35



3.4 Neuroevolution Chapter 3: Methods

result, candidates with a higher fitness will be more likely to be selected, without removing

the possibility for them to be rejected, unlike methods such as truncation selection, which

eliminate a fixed percentage of the weakest candidates. Previously executed in O(logn), this

algorithm has recently been implemented in O(1) by picking an individual choosing it for

selection with probability fi
fM

, where fM is the maximum fitness in the population (Lipowski

& Lipowska, 2012).

A variant of the roulette wheel consists in choosing several individuals from the population

by repeated random sampling, with a single random value to sample all of the solutions

by choosing them at evenly spaced intervals, thus giving individual with a weaker fitness a

better chance to be chosen. This method is called stochastic universal selection, and removes

an unfair bias from the roulette wheel method, by avoiding the fittest members to saturate

the candidate space (Baker, 1987). This selection method will be used in most of the studies

presented in the following chapters of this thesis.

Another method is tournament selection, which implies running several tournament tests

among a few individuals chosen at random from the population, assigning them di↵erent

fitnesses. The winner of each tournament, with the best fitness, is usually selected for

crossover. But a variant of the method may also include them all in the mix, with their

respective cumulative assigned fitness. The selection pressure can be adjusted by changing

the tournament size. This selection method will be used in one simulation setup of Chapter

6.

A usual variant called elitist selection consists in taking the best individuals in a generation

unchanged in the next generation. Another variant is based on a cut-o↵ value for the fitness,

getting rid of every value under a given threshold.

All the methods presented above are reward-based, which means the probability for an indi-

vidual to be selected is proportional to the cumulative reward, obtained by each individual

during its lifetime.

Once a subset of fit individuals has been selected, there are several ways to generate the

individuals to add to the next population. A single crossover point on both parents’ organism

strings is selected. All data beyond that point in either organism string is swapped between

the two parent organisms (Haynes & Sen, 1997). Two-point crossover calls for two points to

be selected on the parent organism strings. Everything between the two points is swapped

between the parent organisms (Eiben & Smith, 2003). Another crossover variant, the so-

called cut and splice approach, results in a change in length of the children strings. The
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reason for this di↵erence is that each parent string has a separate choice of crossover point.

3.4.3 Evolving neural networks

Neuroevolution is machine learning that uses evolutionary algorithms to train artificial neu-

ral networks.

While supervised learning algorithms require to gather a database of correct input-output

pairs to train the system on, neuroevolution is fine with only a measure of a network’s

performance at a task, as mentioned in section 3.3.2.

This concept is commonly applied in the study of computer games, where the result of a

game can be obtained from iterating a given strategy until the ending conditions are met.

The stretch is not hard to imagine from those games to a more general type of game that

would involve an agent embodied in an environment, whose decisions would decide for its

survival. The system is evidently a metaphorically relevant system for the study of living

creatures, in biology or evolutionary robotics, not only because of that intuitive stretch, but

also for its multiple inherent qualities.

In neuroevolution, genotypes are mapped to neural network phenotypes by a direct or in-

direct encoding scheme. The produced networks are then evaluated according to a fitness

function corresponding to a given task they need to perform. In direct encoding schemes,

the genotypes directly map to the phenotypes, in the sense that every element, neuron or

connection, of the neural network is specified explicitly inside the genotype. In the case

of an indirect encoding, the genotype specifies only indirectly how that network should be

generated, so as to allow for recurring features, to reduce the genotype search space or to

better map the genotype to the problem domain.

A notable example of neuroevolution algorithm is NEAT (Stanley & Miikkulainen, 2002),

which evolves both the weights and the structures of the artificial neural networks, so as to

balance between the fitness of evolved solutions and their diversity. The method is based on

tracking genes with history markers to allow crossover among topologies, applying speciation

to preserve innovations, and incrementally developing more and more complex topologies.

NEAT performs particularly well compared to other methods, and has been extended to

many more specialized methods, notably HyperNEAT (Stanley, 2006) which is aimed for

large-scale networks and using compositional pattern producing networks (CPPN).
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3.4.4 Neuroevolution in artificial life

Neuroevolution is commonly used in the field of artificial life, by mixing evolutionary and

learning techniques. This type of approach is motivated by the fact that learning can

enhance the adaptive power of evolution (Nolfi & Parisi, 1993). Combining ANNs with EAs

for adapting agent behavior has recently received significant research attention (Floreano

et al., 2007; Mitri et al., 2009b).

In artificial life studies, as mentioned in Section 3.1, agents are controlled by fixed neural

network controllers. The behavior of the agents can benefit from the combination of learning

techniques with the neuroevolution of the controllers. The algorithm gradually improves the

agents’ performance on tasks such as pattern matching or foraging for a resource in a spatial

environment.

Examples of such studies involving neuroevolution and embodied agents, have been intro-

duced in Sections 3.1.3 and 3.1. More references will be contextually given in the following

chapters, when comparing the literature’s model to our own.
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Chapter4
Signal-based coordination and neutral se-

lection

Since Reynold’s boids, coordinated motion has often been reproduced in number of artifi-

cial models, but the conditions leading to its emergence are still subject to research, with

candidates ranging from obstacle avoidance to virtual leaders. The relation of spatial co-

ordination and group cooperation has long been studied in game theory and evolutionary

biology.

This chapter presents a model of simulated agents moving in a three-dimensional environ-

ment. Their movements are controlled by artificial networks, evolved through generations

of an asynchronous selection algorithm, at the term of which the agents become able to

produce cooperative, coordinated behavior.

We present results in which individuals develop swarming using only their ability to listen

to each other’s signals. The agents are selected based on their performance at finding

invisible resources in space giving them fitness. The agents are shown to use the information

exchanged between them via signaling to form temporary leader-follower relations allowing

them to flock together. The swarmers outperform the non-swarmers at finding the resource,

thus reaching a neutral evolutionary space which leads to a genetic drift.

4.1 Swarming behavior

The ability of fish schools, insect swarms or starling murmurations (Figure 4.1) to shift shape

as one and coordinate their motion in space has been studied extensively because of their

implications for the evolution of social cognition, collective animal behavior and artificial

life (Couzin, 2009).
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Figure 4.1: A murmuration of starlings in Gretna (Scotland). Image credit:

Flickr user ad551, licensed under Creative Commons.

Swarming is the phenomenon in which a large number of individuals organize into a coordi-

nated motion. Using only the information at their disposition in the environment, they are

able to aggregate together, move en masse or migrate towards a common direction.

The movement itself may di↵er from species to species. For example, fish and insects

swarm in three dimensions, whereas herds of sheep move only in two dimensions. Moreover,

the collective motion can have quite diverse dynamics. While birds migrate in relatively

ordered formations with constant velocity, fish schools change directions by aligning rapidly

and keeping their distances, and insects swarms move in a messy and random-looking way

(Budrene et al., 1991; Czirók et al., 1997; Shimoyama et al., 1996).

Numerous evolutionary hypotheses have been proposed to explain swarming behavior across

species. These include more e�cient mating, good environment for learning, combined search

for food resources, and reducing risks of predation (Zaera et al., 1996). Pitcher & Partridge

(1979) also mention energy saving in fish schools by reducing drag.

In an e↵ort to test the multiple theories, the past decades counted several experiments

involving real animals, either inside an experimental setup (Partridge, 1982; Ballerini et al.,

2008) or observed in their own ecological environment (Parrish & Edelstein-Keshet, 1999).

Those experiments present the inconvenience to be costly to reproduce. Furthermore, the

colossal lapse of evolutionary time needed to evolve swarming makes it almost impossible to

study the emergence of such behavior experimentally.
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Computer modeling has recently provided researchers with new, easier ways to test hypothe-

ses on collective behavior. As mentioned in Section 3.1, simulating individuals on machines

o↵ers easy modification of setup conditions and parameters, tremendous data generation,

full reproducibility of every experiment, and easier identification of the underlying dynamics

of complex phenomena.

4.1.1 From Reynolds’ boids to recent approaches

In a massively cited paper, Reynolds (1987) introduces the boids model simulating 3D swarm-

ing of agents called boids controlled only by three simple rules:

• Alignment : move in the same direction as neighbours

• Cohesion: Remain close to neighbours

• Separation: Avoid collisions with neighbours

Various works have since then reproduced swarming behavior, often by the means of an

explicitly coded set of rules. For instance, Mataric (1992) proposes a generalization of

Reynolds’ original model with an optimally weighted combination of six basic interaction

primitives1. Hartman & Benes (2006) come up with yet another variant of the original

model, by adding a complementary force to the alignment rule, that they call change of

leadership. Unfortunately, in spite of the insight this kind of approach brings into the

dynamics of swarming, it shows little about the pressures leading to its emergence. Many

other approaches are based on informed agents or fixed leaders (Cucker & Huepe, 2008; Su

et al., 2009; Yu et al., 2010).

For that reason, experimenters attempted to simulate swarming without a fixed set of rules,

rather by incorporating into each agent an artificial neural network brain that controls its

movements. The swarming behavior is evolved by copy with mutations of the chromosomes

encoding the neural network parameters. By comparing the impact of di↵erent selective

pressures, this type of methodology, first used in Eberhart & Kennedy (1995) to solve

optimization problems, eventually allowed to study the evolutionary emergence of swarming.

Tu & Terzopoulos (1994) have swarming emerge from the application of artificial pressures

consisting of hunger, libido and fear. Other experimenters have analyzed prey/predator

systems to show the importance of sensory system and predator confusion in the evolution

1Namely, those primitives are collision avoidance, following, dispersion, aggregation, homing and flocking.
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of swarming in preys (Ward et al., 2001; Olson et al., 2013).

In spite of many pressures hypothesized to produce swarming behavior, designed setups

presented in the literature are often complex and specific. Previous works typically introduce

models with very specific environments, where agents are given specialized sensors designed

to be more sensitive to a particular type of inputs. While they are bringing valuable results

to the community, one may wonder about systems with a simpler, more general design.

In addition, even when studies focus on fish or insects that swarm in 3D (Ward et al., 2001)

most keep their model in 2D. While the swarming can be considered to be similar in most

cases, the mapping from 2D to 3D is found to be non-trivial (Sayama, 2012). Indeed, the

addition of a third degree of freedom may enable agents to produce significantly distinct

and more complex behaviors.

4.1.2 Signaling agents in a resource finding task

This work studies the emergence of swarming in a population of agents using a basic signaling

system, while performing a simple resource gathering task.

Simulated agents move around in a three dimensional space, looking for a vital but invisible

food resource randomly distributed in the environment. The agents are emitting signals

that can be perceived by other individuals’ sensors within a certain radius. Both agent’s

motion and signaling are controlled by an artificial neural network embedded in each agent,

evolved over time by an asynchronous genetic algorithm. Agents that consume enough food

are enabled to reproduce, whereas those whose energy drops to zero are removed from the

simulation.

Each experiment is performed in two steps: training the agents in an environment with

resource locations providing fitness, then testing in an environment without fitness.

During the training, we observe that the agents progressively come to coordinate into clus-

tered formations. That behavior is then preserved in the second step. Such patterns do not

appear in control experiments having the simulation start directly from the second phase,

with the absence of resource locations. If at any point the signaling is switched o↵, the

agents immediately break the swarming formation. A swarming behavior is only observed

once the communication is turned back on. Furthermore, the simulations with signaling

lead to agents gathering very closely around food patches, whereas control simulations with

silenced agents end up with all individuals wandering around erratically.
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The main contribution of this work is to show that collective motion can originate, without

explicit central coordination, from the combination of a generic communication system and

a simple resource gathering task. As a secondary contribution, our model also demonstrates

how swarming behavior can lead to a neutral evolutionary space, where no more selection

is applied on the gene pool.

A specific genetic algorithm with an asynchronous reproduction scheme is developed and

used to evolve the agents’ neural controllers. In addition, the search for resource is shown

to improve from the agents clustering, eventually leading to the agents gathering closely

around goal areas. An in-depth analysis shows increasing information transfer between

agents throughout the learning phase, and the development of leader/follower relations that

eventually push the agents to organize into clustered formations.

4.2 Asynchronous agent-based simulation

4.2.1 Agents in a 3D world

We simulate a group of agents moving around in a cubic, toroidal arena of 600⇥ 600⇥ 600.

The agents rely on energy to survive. If at any point an agent’s energy drops to zero, it

is immediately removed from the environment. The task for the agents is to get as close

as possible to a preset resource spot. By getting close to one of those spots, agents can

gain more energy, allowing them to counterbalance the energy losses due to movement and

signaling. An agent whose energy drops to zero is removed from the simulation. In this

regard, the energy also represents each agent’s fitness, and in this work both terms are used

interchangeably.

The agent’s position is determined by three floating point coordinates between 0.0 and 600.0.

Each agent is positioned randomly at the start of the simulation, and then moves at a fixed

speed of 1 unit per iteration. Every iteration, the agent’s new velocity ~ct is obtained by

rotating its velocity vector at the previous time step ~ct�1

by two Euler angles:  for the

agent’s pitch (i.e. elevation) and ✓ for the agent’s yaw (i.e. heading). The rotation is

determined by the two motor output values of the neural controller o
1

and o2, determining

respectively the acceleration in y and z in the agent’s inertial frame of reference, while the

norm of the velocity is kept constant. The agent’s position ~xt is then updated according to

its current velocity with ~xt = ~xt�1

+ ~ct.
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4.2.2 Communication among agents

Every agent is also provided with one communication actuator capable of sending signals

with intensities (signals are encoded as floating point values ranging from 0.0 to 1.0), and

six communication sensors allowing it to detect signals produced by other agents up to a

distance of 100 from 6 directions, namely frontal (0, 1, 0), rear (0,�1, 0), left (1, 0, 0), right

(�1, 0, 0), top (0, 0, 1) and bottom (0, 0,�1)). The communication sensors are implemented

so that every source point in a 100-radius sphere around the agent is linked to one and

only one of its sensors. The distance to the source proportionally a↵ects the intensity of a

received signal, and signals from agents above a 100 distance are ignored. The sensor whose

direction is the closest to the signaling source receives one float value, equal to the sum of

every signal emitted within range, divided by the distance, and normalized between 0 and

1.

4.2.3 Agents controlled by neural networks

The agent’s neural controller is implemented by a modified Elman artificial neural network

with 6 input neurons, encoding the activation states of the corresponding 6 sensors, fully

connected through a 10-neuron hidden layer to 3 output neurons controlling the two motors

and the communication signal emitted by the agent. The hidden layer is given a form of

memory feedback from a 10-neuron context layer, containing the values of the hidden layer

from the previous time step.

All nodes in the neural network take input values between 0 and 1. All output values are also

floating values between 0 and 1, the motor outputs are then converted to angles between �⇡

to ⇡. The activation state of internal neurons is updated according to a sigmoid function.

The weights of each connection in the neural network, comprised between 0 and 1, are stored

in an array. That array, constituting the agent’s genotype, is then evolved using a specific

genetic algorithm described below.

4.2.4 An asynchronous reproduction scheme

Genetic algorithms (Fraser, 1960; Bremermann, 1962; John, 1992), inspired by Darwin’s

principle of natural evolution (cf. Section 2.1), simulate the descent with modification of

a population of chromosomes, selected generation through generation by a defined fitness
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function.

Our model di↵ers from the usual genetic algorithm paradigm (cf. Section 3.4), in that

it designs variation and selection in an asynchronous way. The reproduction takes place

continuously throughout the simulation, creating overlapping generations of agents. This

allows for a more natural, continuous model, as no global clock is defined, that could bias

or weaken the model.

Every new agent is born with an energy equal to 2.0. In the course of the simulation, each

agent can gain or lose a variable amount of energy. At iteration t, the fitness function fi for

agent i is defined by fi(t) = r
di(t)

where r is the reward value and di is the agent’s distance to

the goal. The reward value is controlled by the simulation such that the population remains

between 100 and 500 agents. All the way through the simulation, the agents also spend a

fixed amount of energy for movement (0.01 per iteration) and a variable amount of energy

for signaling costs (0.001 ⇥ signal intensity per iteration).

The weights of every connection in the neural network (apart from the links from hidden

to context nodes, which have fixed weights) are encoded in genotypes and evolved through

successive generations of agents. Each weight is represented by a unique floating point value

in the genotype vector, such that the size of the vector corresponds to the total number of

connections in a neural network. The simulation uses a genetic algorithm with overlapping

generations to evolve the weights of the neural networks. Whenever an agent accumulates

10.0 in energy, a replica of itself (with a 5% mutation in the genotype) is created and added

to a random position in the arena. The agent’s energy is decreased by 8.0 and the new

replica’s energy is set to 2.0. The choice for random initial positions is to avoid biasing the

proximity of agents, so that reproduction does not become a way for agents to create local

clusters.

Indeed, a local reproduction scheme (i.e. giving birth to o↵spring close to their parents) leads

rapidly to an explosion in population size, as the agents that are close to the resource create

many o↵spring that will be very fit too, thus able to replicate very fast as well. This is why

the newborn o↵spring is placed randomly in the environment. On a side note, population

bursts occur solely when the neighborhood radius is small (under 10), while values over 100

do not lead to population bursts.

For the genetic algorithm to be e↵ective, the number of agents must be maintained above

a certain level. Also, the computation power limits the population size. The fitness allowed

to the agents is therefore adjusted in order to maintain an ideal number as close as possible
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to 200 (and always comprised between 50 and 1000) agents alive throughout the simulation.

In addition, agents above a certain age (5000 time steps) are removed from the simulation,

to keep the evolution moving at an adequate pace.

4.2.5 Experimental setup

Each simulation is executed in two steps: training and testing. In the training step, the

resource locations are randomly distributed over the environment space. In the testing step,

the fitness function is ignored, and the resource is simply distributed equally among all the

agents. That second step therefore conserves the population of individuals, in order to test

their behavior. From here, whenever not mentioned otherwise, the analyses are referring to

the first step, during which the swarming behavior comes about progressively. The purpose

of the second step of the experiment is to study the behavior of the resulting population of

agents.

The parameter values used in the simulations are detailed in Table 4.1.

4.3 Results

4.3.1 Emergence of swarming

Agents are observed coordinating together in clustered groups. As shown in Figure 4.2 (top)

the simulation goes through three distinct phases. In the first one, agents wander in an

apparently random way across the space. During the second phase, the agents progressively

cluster into a rapidly changing shape, reminiscent of animal flocks2. In the third phase,

towards the end of the simulation, the flocks get closer and closer to the goal3, forming a

compact ball around it.

Figure 4.3 shows more in detail the swarming behavior taking place in the second phase.

The agents coordinate in a dynamic, quickly changing shape, continuously extending and

compressing, while each individual is executing fast paced rotations on itself. Note that this

fast looping seems to be necessary to the emergence of swarming, as all trials with slower

2As mentioned in section 4.1), swarming can take multiple forms depending on the situation and/or the

species. In this case, the clustering resemble in some aspects mosquito or starling flocking.
3Even though results with one goal are presented, same behaviors are observed in the case of two or more

resource spots.
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Table 4.1: Summary of the simulation parameters

Parameter Value

Initial/average number of agents 200

Maximum number of agents 1000

Minimum number of agents 100

Agent maximum age 5000 iterations

Maximum agent energy 100

Maximum energy absorption 1 per iteration

Maximum neighborhood radius 100

Map dimensions (side of the cube) 600

Reproduction radius 10

Initial energy (newborn agent) 2

Energy to replicate (threshold) 10

Cost of replication (parent agent) 8

Survival cost 0.01 per iteration

Signaling cost 0.001 per intensity signal per iteration

Range of signal intensity [0; 1]

Range of neural network (NN) weights [0; 1]

Ratio of genes per NN weight 1

Gene mutation rate 0.05

Presented in this tables are the values of the key parameters used in the simulations.

Figure 4.2: Visualization of the three successive phases in the training procedure

(from left to right: t = 0, t = 2 · 105, t = 2 · 107) in a typical run. The simulation is

with 200 initial agents and a single resource spot. At the start of the simulation the agents

have a random motion (a), then progressively come to coordinate in a dynamic flock (b),

and eventually cluster more and more closely to the goal towards the end of the simulation

(c). The agents’ colors represent the signal they are producing, ranging from 0 (blue) to 1

(red). The goal location is represented as a green sphere on the visualization.
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rotation settings never achieved this kind of dynamics. One regularly notices some agents

reaching the border of a swarm cluster, leaving the group, and ending up coming back in

the heart of the swarm.

Figure 4.3: Visualization of the swarming behavior occurring in the second phase

of the simulation. The figure represents consecutive shots each 10 iterations apart in

the simulation. The observed behavior shows agents flocking in dynamic clusters, rapidly

changing shape.

In spite of the agents needing to pay a cost for signaling (cf. description of the model

in section 4.2 ), the signal keeps an average value between 0.2 and 0.5 during the whole

experiment (in the case with signaling activated).

It is also noted that a minimal rotation speed is necessary for the evolution of swarming.

Indeed, it allows the agent to react faster to the environment, as each turn making one sensor

face a particular direction allows a reaction to the signals coming from that direction. The

faster the rotation, the more the information gathered by the agent about its environment

is balanced for every direction.
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4.3.2 Neighborhood

We choose to measure swarming behavior in agents by looking at the average number of

neighbors within a radius of 100 distance around each agent. Figure 4.4 shows the evolution

of the average number of neighbors, over 10 di↵erent runs, respectively with signaling turned

on and o↵. A much higher value is reached around time step 105 in the signaling case, while

the value remains for the silent control. The swarming emerges only with the signaling

switched on, and as soon as the signaling is silenced, the agents rapidly stop their swarming

behavior and start wandering randomly in space.
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Figure 4.4: Comparison of the average number of neighbors (average over 10 runs,

with 106 iterations) in the case signaling is turned on versus o↵.

We also want to measure the influence of each agent on its neighborhood. To do so, the

inward average transfer entropy on agent’s velocities is calculated4 between each neighbor

within a distance of 100 and the agent itself. We will refer to this measure as inward

neighborhood transfer entropy (NTE). This can be considered a measure of how much the

agents are “following” their neighbors at a given time step. The values rapidly take o↵ on

the regular simulation (with signaling switched on), while they remain low for the silent

control, as we can see for example in Figure 4.5.

Similarly, we can calculate the outward neighborhood transfer entropy (i.e. the average

transfer entropy from an agent to its neighbors). We may look at the evolution of this value

through the simulation, in an attempt to capture the apparition of local leaders in the swarm

clusters. Even though the notion of leadership is hard to define, the study of the flow of

information is essential in the study of swarms. The single individuals’ outward NTE shows

4The calculations are analogous to Wibral et al. (2013).
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Figure 4.5: Plot of the average inward neighborhood transfer entropy for signaling

switched on (red curve) and o↵ (blue curve). The inward neighborhood transfer

entropy captures how much agents are “following” individuals located in their neighborhood

at a given time step. The values rapidly take o↵ on the regular simulation (with signaling

switched on, see red curve), whereas they remain low for the silent control (with signaling

o↵, see blue curve).

a succession of bursts coming every time from di↵erent agents, as illustrated in Figure 4.6.

This frequent switching of the origin of information flow can be interpreted as a continual

change of leadership in the swarm. The agents tend to follow a small number of agents, but

this subset of leaders is not fixed over time.

On the upper graph in Figure 4.7, between iteration 105 and 2 ⇥ 105, we see the average

distance to the goal drop to values oscillating between roughly 50 and 300, that is the best

agents reach 50 units away from the goal, while other agents remain about 300 units away.

On the control experiment graph (Figure 4.7, bottom), we observe that the distance to the

goal remains around 400.

Swarming, allowed by the signaling behavior, allows agents to stick close to each other. That

ability allows for a winning strategy in the case when some agents already are successful at

remaining close to a resource area. Swarming may also help agents find goals in the fact

that they constitute an e�cient searching pattern. Whilst an agent alone is subject to basic

dynamics making it spatially drift away, a bunch of agents is more able to stick to a goal

area once it finds it, since natural selection will increase the density of surviving agents

around those areas. In the control runs without signaling, it is observed that the agents,
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Figure 4.6: Plot of the individual outward neighborhood transfer entropy (NTE),

aiming to capture the change in leadership. The plot represents the average transfer

entropy from an agent to its neighbors, capturing the presence of local leaders in the swarm-

ing clusters. Each color corresponds to a distinct agent. A succession of bursts is observed,

each corresponding to a di↵erent agent, indicating a continual change of leadership in the

swarm.

unable to form swarms, do not manage to gather around the goal in the same way as when

the signaling is active.

4.3.3 Controller response

Once the training step is over, we test neural networks of each swarming agent as they are

in the testing step, compared against the non-swarming agents’ networks. We observe that

characteristic shapes for the curve obtained with swarming agents presented a similarity

(see Figure 4.8, top), and di↵ered from the patterns of non-swarming agents (see Figure 4.8,

bottom) which were also more diverse. In swarming individuals’ neural networks, patterns

were observed leading to higher motor output responses in the case of higher signal inputs.

This is characteristic of almost every swarming individual, whereas non-swarming agents

present a wide range of response functions. A higher motor response may allow the agent

to slow down its course across the map by executing quick rotations around itself, therefore

keeping its position nearly unchanged. If this behavior is adopted in the case where the

signal is high, that is in presence of signaling agents, the agent is able to remain close to

them.
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Figure 4.7: Average distance of agents to the goal with signaling (top) and a

control run with signaling switched o↵ (bottom). The average distance to the goal

decreases between time step 105 and time step 2 ⇥ 105, the agents eventually getting as

close as 50 units away from the goal on average. In the same conditions, the silenced control

experiment results in agents constantly remaining around 400 units away from the goal in

average.

4.3.4 Signaling

On the one hand signaling having a cost in energy, one expects it to be selected against in

the long run since it lowers the survival chances of the individual. However, if the signaling

behavior is beneficial to the agents, it may be selected for. But agents that do not signal

may profit from the other agents’ signals and still swarm together. A value close to zero

for the signal saves them a proportional cost of energy in signaling, hypothetically allowing

those freeriders to spend less energy and eventually take over the living population.

In order to study the agent’s choice of signaling over remaining silent, we examine the e↵ect

of artificially introducing silent agents in the population. To that purpose, during a run

at the end of its training step, 5 agents are picked at random in the population, and their
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Figure 4.8: Plots of evolved agents’ motor responses to a range of value in input

and context neurons. The three axes represent signal input average values (right

horizontal axis), context unit average level (left horizontal axis), and average motor responses

(vertical axis). The top two graphs correspond to the neural controllers of swarming agents,

and the bottom ones correspond to non-swarming ones’.

genotype is modified such that the value of the signal they produce becomes zero. Indeed, the

values in each agent’s genotype encodes directly the weights of its artificial neural network.

In order for the rest of the controller response to be identical, the only weights being changed

are the ones of the connections to the signal output (O
3

on the diagram in Figure 4.9).

As a result, the modified (silent) agents take over the population, slowly replacing the

signaling agents. As the signaling agents progressively disappear from the population (cf.

Figure 4.10), so does the clustering behavior. About 200k iterations after the introduction

of the freeriders, the whole population has been replaced by freeriders and the swarming

behavior has stopped. This confirms silent freeriding as an advantageous behavior when a

part of the population is already swarming, however leading to the advantageous swarming

trait being eradicated from the population after a certain time.
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Figure 4.9: Architecture of the agent’s controller, a recursive neural network

composed of 6 input neurons (I
1

to I
6

) , 10 hidden neurons (H
1

to H
10

) , 10

context neurons (C
1

to C
1

0) and 3 output neurons (O
1

to O
3

). The input neurons

receive signal values from neighboring agents, with each neuron corresponding to signals

received from one of the 6 sectors in space. The output neurons O
1

and O
2

control the

agent’s motion, and O
3

controls the signal it emits.

If there is an evolutionary advantage to swarming, and if that behavior relies on signaling,

the absence of signaling directly reduces the swarm’s fitness. This is not the case however if

the change in signaling intensity occurs progressively, slowly leading to a lower, cost-e�cient

signaling, while swarming is still maintained. We observe this e↵ect of gradual decrease in

average signal at Figure 4.11.

4.3.5 Genotypic diversity

The decisions of each agent are defined by the parameters describing its neural controller,

which are encoded directly in each agent’s genotype. That genotype is evolved via random

mutation and selection in the setup environment. In order to study the variety of the

genotypes through the simulation, the average Shannon entropy (Shannon & Weaver, 1949)

is calculated over the whole population using:
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Figure 4.10: Invasion of freeriders resulting from the introduction of 5 silent

individuals in the population. About 200k iterations after their introduction, the 5

freeriders have replicated and taken over the whole population.

Figure 4.11: Average signal intensity over the population versus evolutionary time

(5 runs).

H = �
nX

i=1

pilogpi

where pi is the frequency of genotype i. The value of H ranges from 0 if all the genotypes

are similar, to log n for evenly distributed genotypes, i.e. 8 i pi = 1

n . H is used as

a measure of genotypic variety and plotted against simulation time (Figure 4.12). The

measure progressively decreases during the simulation, until it reaches a minimal value of
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50 hartleys (information unit corresponding to a base 10 logarithm) around the millionth

iteration, before restarting to increase, with a moderate slope. The fast drop in diversity is

explained by a strong selection for swarming individuals in the first stage of the simulation.

Once the advantageous behavior is reached, a genetic drift can be expected, resulting in

genetic drift and reduced selection, as will be discussed further below.

0 0.5 1 1.5 2 2.5

x 10
6

0

50

100

150

200

250

300

350

400

Time steps (2 106 iterations)

S
h

a
n

n
o

n
 in

d
e

x 
(i
n

 h
a

rt
le

ys
)

Evolution of genotypic diversity through simulation measured by Shannon index

Figure 4.12: Genotypic diversity measured by Shannon’s information entropy. The

information entropy measures the variety in the measure progressively decreases during the

simulation, until it reaches a minimal value of 50 hartleys (information unit corresponding

to a base 10 logarithm) around the millionth iteration, then restarts to increase slowly.

4.3.6 Phylogeny

The heterogeneity of the population is visualized on the phylogenetic tree at Figure 4.13.

At the center of the graph is the root of the tree, which corresponds to time zero of the

simulation, from which start the 200 initial branches. As those branches progress outward,

they create ramifications that represent the descendance of each agent. The time step scale

is preserved, and the segment drawn below serves as a reference for 105 iterations. Every

fork corresponds to a newborn agent5. Therefore, every “fork burst” corresponds to a period

of high fitness for the concerned agents.

In Figure 4.14, one can observe another phylogenetic tree, represented horizontally in order

to compare it to the average number of neighbors throughout the simulation. The neighbor-

hood becomes denser around iteration 400k, showing a higher portion of swarming agents.

This leads to a firstly strong selection of the agents able to swarm together over the other

5The parent forks counterclockwise, and the newborn forks clockwise.
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Figure 4.13: Phylogenetic tree of agents created during a run. The center cor-

responds to the start of the simulation. Each branch represents an agent, and every fork

corresponds to a reproduction process.

individuals, a selection that is soon relaxed due to the signaling pattern being largely spread,

resulting in a heterogeneous population, as we can see on the upper plot, with numerous

branches towards the end of the simulation.

The phylogenetic tree shows some heterogeneity, and the average number of neighbors is

a measure of swarming in the population. The swarming takes o↵ around iteration 400k,

where there seems to be a genetic drift, but the signaling helps agents form and maintain

swarms.

To study further the relationship between heterogeneity and swarming, we classify the set

of all the generated genotypes with a principal component analysis or PCA (Pearson, 1901).

In practice, we operate an orthogonal transformation to convert the set of weights in every

genotype into values of linearly uncorrelated variables called principal components, in such

a way that the first principal component PC1 has the highest possible variance, and the

second component PC2 has the highest variance possible while remaining uncorrelated with

PC1.

In Figure 4.15, the PCA results on a typical long run of the simulation, over one million

iterations, are visualized as a biplot of the two principal components. On the plot, the
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Figure 4.14: Top plot: average number of neighbors during a single run. Bottom

plot: agents phylogeny for the same run. The roots are on the left, and each

bifurcation represents a newborn agent. The two plots show the progression of the

average swarming in the population, indicated by the average number of neighbors through

the simulation, compared with a horizontal representation of the phylogenetic tree. Around

iteration 400k, when the neighborhood becomes denser, the selection on agents’ ability to

swarm together is apparently relaxed due to the signaling pattern being largely spread.

This leads to higher heterogeneity, as can be seen on the upper plot, with numerous genetic

branches forming towards the end of the simulation.

genotype of each individual present in the simulation is represented as one circle. The

radius of each circle represents the average number of neighbors around the agent during its

lifetime. Finally, the color shows the iteration in which the agent dies, ranging from light

green for the earliest time steps, to bright red when the simulation approaches one million

iterations.

We observe a large cluster on the left of the plot for PC1 2 [�1; 0], and a series of smaller

clusters on the right for PC1 2 [3; 5]. The genotypes in the early stages of the simulation

belong to the right clusters, but get to the left cluster later on, reaching a higher number of

neighbors.
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Figure 4.15: Biplot of a PCA on the genotypes of all agents of the simulation.

Each circle represents one agent’s genotype, the diameter representing the average number

of neighbors over the lifetime of the agent, and the color showing its time of death ranging

from bright green (at time step 0, early in the simulation) to red (at time step 106, towards

the end of the simulation).

The classification shows a di↵erence between early and late stages in terms of genotypic

encoding of behavior. The genotypes are first observed to reach the left side cluster on

the biplot, which di↵ers in terms of the component PC1. It also corresponds to a more

intensive swarming, as shown by the individuals’ average number of neighbors. The agents

then remain in that cluster of values for the rest of the simulation. The timing of that

first change corresponds to the first peak in number of neighbors, which is an index for the

emergence of swarming. The agents’ genotypes then seem to evolve only by slowly in terms

of PC2, until they reach the last and highest peak in number of neighbors.

4.4 Discussion

In the simulations, the agents progressively evolve the ability to flock through communi-

cation to perform a foraging task. We observe a dynamical swarming behavior, including

coupling/decoupling phases between agents, allowed by the only interaction at their dis-

posal, that is signaling. Eventually, agents come to react to their neighbors’ signals, which

is the only information they can use to improve their foraging. This can lead them to either

head towards or move away from each other. While moving away from each other has no

special e↵ect, moving towards each other, on the contrary, leads to swarming. Flocking with
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each other may lead agents to slow down their pace, which for some of them may keep them

closer to a food resource. This creates a beneficial feedback loop, since the fitness brought to

the agents will allow them to reproduce faster, and eventually multiply this type of behavior

within the total population.

In this scenario, agents do not need extremely complex learning to swarm and eventually get

more easily to the resource, but rather rely on dynamics emerging from their communication

system to create inertia and remain close to goal areas.

It should be noted that the simulated population has strong heterogeneity due to the asyn-

chronous reproduction schema, which can be visualized in the phylogenetic tree (Figure

4.13). Such heterogeneity may suppress swarming but the evolved signaling helps the popu-

lation to form and keep swarming. The simulations do not exhibit strong selection pressures

to adopt specific behavior apart from the use of the signaling. Without high homogeneity in

the population, the signaling alone allows for interaction dynamics su�cient to form swarms,

which proves in turn to be beneficial to get extra fitness as mentioned above.

The results suggest that by coordinating in clusters, the agents enter an evolutionary neutral

space, where little selection is applied to their genotypes. The formation of swarms acts as

a shield on the selection process, as a consequence allowing for the genotypes to drift. This

relaxation of selection can be compared to a niche construction, in which the system is ready

to adapt to further optimizations to the surrounding environment. This can be examined

in further research by the addition of a secondary task.

In the presented model, the population of genotypes progressively reach the part of the

search space that corresponds to swarming, as it helps agents achieve a higher fitness. The

behavioral transition between non-swarming and swarming happens relatively abruptly, and

can be caused by either the individual behavior improving enough or the population dy-

namical state satisfying certain conditions, or a combination of both. The latter one is

highlighted by the variable amount of time necessary before swarms can reform after the

positions have been randomized, thus illustrating the concept of collective memory in groups

of self-propelled individuals. Indeed, although one agent’s behavior is dictated by its geno-

type, the swarming also depends on the collective state of the neighborhood. Couzin et al.

(2002) brought to attention that even for identical individual behaviors, the previous history

of a group structure can change its dynamics. In the light of that fact, reaching the neutral

space relies on more than just the individual’s genetic heritage.

The phenomenon of freeriding, observed when artificially introducing silent individuals, is
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comparable to a tragedy of the commons (ToC) or an evolutionary suicide, in which an

evolved selfish behavior can harm the whole population’s survival [Haldane 1932, Hardin

1968]. This e↵ect, here provoked artificially, is however unlikely to happen in our setup, as

the decrease in produced signal intensity would progressively result in an ine�cient perfor-

mance, with a smooth decrease of fitness over the search space. The ToC has better chances

to arise in a setup with a larger map, in which parts of the population can be isolated for a

longer time, leading to di↵erent populations evolving separately, until they meet again and

confront their behaviors.

The results of this research can be compared to previous works in the literature. Ward et al.

(2001) and Olson et al. (2013) also show the emergence of swarming without explicit fit-

ness, though those are based on a predator-prey model. The type of swarming obtained with

simple pressures is usually similar to the one obtained in this study, that presents the advan-

tage of being based on a very simple system based on resource finding and signaling/sensing.

Among others, Blondel et al. (2005), Cucker & Huepe (2008) and Su et al. (2009) achieve

swarming behavior based on explicit exchange of information from leaders. Our simulation

improves on this kind of research in the sense that agents naturally switch leadership and

followership by exchanging information over a very limited channel of communication. Fi-

nally, our results also show the advantage of swarming for resource finding (it’s only through

swarming, enabled by signaling behavior, that agents are able to reach and remain around

the goal areas), comparable to the advantages of particle swarm optimizations (Kennedy

et al., 1995), here emerging in a model with a simplistic set of conditions.

In this work we have shown that swarming behavior can emerge from a communication

system in a resource gathering task. We implemented a three-dimensional agent-based model

with an asynchronous evolution through mutation and selection. The results show that

from decentralized leader-follower interactions, a population of agents can evolve collective

motion, in turn improving its fitness by reaching invisible target areas. Our results represent

an improvement on models using hard-coded rules to simulate swarming behavior, as they

are evolved from very simple conditions. The model does not rely on any explicit information

from leaders, nor does it impose any explicit leader-follower relationship beforehand, letting

simply the leader-follower dynamics emerge and self-organize. In spite of being theoretical,

the swarming model presented here o↵ers a simple, general approach to the emergence of

swarming behavior once approached via the boids’ rules.

In the perspective of this thesis, this first research led to the development of the most
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minimalistic model of this thesis, that leads to the emergence of a communication system

helping the agents to coordinate together. This chapter constitutes the central piece in our

exploration of the evolution of coordination and communication, as it enables us to build up

on the same approach by complexifying the environment and its feedback on the population

of agents. In the next chapters, we will examine variations of this simple setup, to investigate

further the behavior and stability of coordination based on various types of exchanges of

information.
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Chapter5
Cooperative coordination in a dynamic

spatial Prisoner’s Dilemma

The evolution of cooperation is studied in game theory, and stretches have been made to

include spatial dimensions, as mentioned in Section 2.3. This problem is often tackled by

using simple models, such as considering interactions to be a game of Prisoner’s Dilemma

(PD)

We will now examine a variation of the model with a distinct fitness function, based this

time on the agents playing a spatial version of the Prisoner’s Dilemma. We study the impact

of the movement control on optimal strategies, and show that cooperators rapidly join into

static clusters, creating favorable niches for fast replications. It is also noted that, while

remaining inside those clusters, cooperators still keep moving faster than defectors. The

system dynamics are analyzed further to explain the stability of this behavior.

This chapter presents a model of simulated agents moving in a three-dimensional environ-

ment. Their movements are controlled by artificial networks, evolved through generations

of an asynchronous selection algorithm, at the term of which the agents become able to

produce cooperative, coordinated behavior.

We also introduce a variation of the model with a distinct fitness function based on the

agents’ performance on a spatial version of the Prisoner’s Dilemma. We investigate the

movement control in optimal strategies, and show that cooperators rapidly join into static

clusters, creating favorable niches for fast replications. It is also noted that, while remain-

ing inside those clusters, cooperators still keep moving faster than defectors. The system

dynamics are analyzed to explain the stability of this behavior.
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5.1 Spatial Prisoner’s Dilemma

The problem of the evolution of cooperation has been of interest for a long time. This

problem is often tackled by using simple models, such as considering interactions to be a

game of Prisoner’s Dilemma (PD). Early results in game theory showed that cooperation

in the case of well-mixed population was not a given (Axelrod & Hamilton, 1981; Smith,

1982), yet it is a very common phenomenon in nature.

The PD is a classic two-player “game” in which players are given two options: cooperate (C)

or defect (D). The payo↵s are such that T > R > P > S, where T stands for Temptation (D

versus C), R for Reward (C versus C), P for punishment (D versus D) and S for Sucker’s

payo↵ (C versus D). It is also often admitted that 2R > T +S, meaning that cooperating is

overall better for the whole system, while defecting is better for the individual. In particular,

T > R and P > S means that it is always the best choice for an individual to defect, no

matter the strategy of its opponent. In a system where everyone can interact with everyone

else, without memory of past games or ways to distinguish opponents, defecting is obviously

the best strategy. However, it has been shown that spacial locality helps cooperators survive

and even thrive (Nowak & May, 1993).

This early work has triggered several lines of investigation, in particular attempts to add

movement. While results can be mixed in specific cases (Sicardi et al., 2009), it is widely

recognized that movement is helpful (Vainstein et al., 2007). Particular interest has been

given to random movement (Chen et al., 2011; Gelimson et al., 2013). In this case, though, we

argue that this movement acts as a way to restrict the neighborhood of specific individuals,

thus increasing locality. Di↵usion (Vainstein & Arenzon, 2014) is another example where

the environment is sparse, allowing agents to move to empty areas. Interesting dynamics

can also be obtained when the agents can actually choose on their own when and/or where

to move (Aktipis, 2004, 2011).

In this work , we investigate the impact of limited movement control on agents in a three

dimensional space. Agents are all moving at a common constant speed, but choose their

direction through the output of a neural network. We also add the possibility to communi-

cate, through the emission of signals. Such communication might be similar to greenbeards,

a phenomenon where an otherwise useless phenotype element is used to choose whether

to cooperate or not (see for instance Gardner & West (2010)). We argue, however, that

a slightly di↵erent mechanism is at work in our case. Indeed, since the signal is also an
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output of the neural network, agents can adapt their response to the environment. Signals

may be used both to detect where friendly agents are, or as a way to choose a strategy. In

this last case, cooperation can arise both from the fact that related agents will have similar

signaling (as in kin selection), or the adaptability of an external agent (mimicry). We show

that, when left to their own devices, cooperators will move more than defectors, even though

their cluster is static. They also tend to communicate much more than defectors, displaying

a complex dynamic to prevent defectors from taking over. We also show that speed matters,

as it impacts the radius of the clusters.

In the following, we describe the details of the model used in our experiments. Then,

we present the proportion of cooperators over time, and compare it to the static case (no

movement allowed). We also show other metrics, such as the average displacement over

time and the amount of received signal over time. We then analyse those results and give a

simple condition on the survival of a cluster before concluding.

5.2 Model

The model presented in this chapter builds up on the work described in detail in section 4.2.

However, given the number of tiny changes operated to adapt the model to the PD game, a

brief description is presented again here.

A population of agents move around in a three-dimensional space. Each one is playing

the Prisoner’s Dilemma game with its direct neighbors. The strategies are evolved via a

continuous genetic algorithm, that is agents with high level of fitness are allowed to replicate

with mutation whenever possible.

5.2.1 Environment

Agents are placed in a three-dimensional world with periodic boundary conditions. While

most previous work focuses on two-dimensional simulation, a third dimension gives the

system more freedom of movement, making it easier to choose not to play (i.e. move away).

The environment is a toroidal cube of size 600 (arbitrary unit), where each face connects

directly to the opposite one. The world is considered to be continuous, so that agents can

get arbitrarily close to each other (Figure 5.1), up to the precision of the simulation. Thus,

the dimensionality of the simulation comes down to the choice of the agent’s interaction
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Figure 5.1: Graphical representation of the world in a simulation. Each agent is

represented as an arrow indicating its current direction. The color of an agent indicates its

current action, either cooperation (blue) or defection (red). Note the cluster of cooperators

being invaded by defectors.

radius.

We enforce a maximum size for the population. This makes it easier to compare, for instance,

to lattices, where the number of agent also has a physical maximum due to the number of

positions. Note that this maximum does not have to be equal to the number of agents at

any moment in the simulation. This might also happen in lattices, for instance in Vainstein

& Arenzon (2014) where partially empty lattices are used to add a di↵usion phenomenon.

Finally, a given simulation is prevented from stopping from lack of agents by adding one

new random agent per time step if the current population is below a threshold (see Table

1).
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5.2.2 Agents

Agents are given a certain energy, that also acts as their fitness. Each agent comes with a set

of 12 di↵erent sensors. The neural network (represented on Figure 5.2) takes the information

from those sensors as inputs, in order to decide the agent’s actions at every time step. The

possible actions amount to the agent’s movement, a Prisoner’s Dilemma action (cooperate

or defect) and two output signals. The architecture is composed of a 12 input, 10 hidden, 5

output, and 10 context neurons connected to the hidden layer (see Figure 5.2).

The agents’ motion is controlled by M
1

and M
2

, outputting two Euler rotation angles:  

for pitch (i.e. elevation) and ✓ for yaw (i.e. heading), with floating point values between 0

and ⇡. Even though the agents’ speed is fixed, the rotation angles still allow the agent to

control its average speed (for example, if  is constant and theta equals zero, the agents

will continuously loop on a circular trajectory, which results in an almost-zero average speed

over 100 steps).

The outputs S(1)

out

and S(2)

out

control the signals emitted on two distinct channels, which are

propagated through the environment to the agents within a neighboring radius set to 50.

The choice for two channels was made to allow for signals of higher complexity, and possibly

more interesting dynamics than greenbeard studies (Gardner & West, 2010).

The received signals are summed separately for each direction (front, back, right, left, up,

down), and weighted by the squared inverse of the emitters distance. This way, agents

further away have much less impact on the sensors than closer ones do. Every agent is

able to receive signals on the two emission channels, from 6 di↵erent directions, totalling

12 di↵erent values sensed per time step. For example, the input S(6,1)
in

corresponds to the

signals reaching the agent from the neighbors below.

5.2.3 Fitness

At every time step, agents are playing a N-player version of the prisoner’s dilemma with

their surrounding, meaning that they make a single decision that a↵ects all agents around

them. They get reward and/or punishment based on the number of cooperator around them.

Their decision is one of the outputs of their neural network.

The payo↵ matrix is an extension of Chiong & Kirley (2012), where we added the distance
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Figure 5.2: Architecture of the agent’s controller. The network is composed of 12

input neurons, 10 hidden neurons, 10 context neurons and 5 output neurons.

to take into account the spatial continuity. It is defined by:

8
>>>>>>>>><

>>>>>>>>>:

C : b
X

coop2radius

1

1 + distance(coop,me)

�c
X

any2radius

1

1 + distance(any,me)

D : b
X

coop2radius

1

1 + distance(coop,me)

(5.1)

With b the bonus, c the cooperation cost, b > c > 0, and distance the Euclidian distance

between two agents. The radius radius is to refer to a spherical neighborhood area around

the agent. Note that the agent itself is not considered part of its neighborhood. The distance

is not part of the original fitness, which made sense since Chiong & Kirley (2012) are basing

their simulation on a lattice, where the distance is always the same. Our version integrates

nicely the fact that interactions with distant agents should be much weaker than with closer

ones.

Another advantage of this fitness is that defection can also be assimilated to not playing (no

cost). Note that there is also no cost and no reward for cooperating when alone.

We can see that this fitness is equivalent to the traditional PD game, since, for two agents

A and B at a distance d of each other, (1) yields the payo↵ matrix:
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Initial energy 2

Maximum age 5000

Maximum energy 20

Maximum population size 500

Population threshold 100

Reproduction threshold 10

Reproduction cost 2

Reproduction radius 2

Survival cost per turn 2

Mutation rate (per gene) 0.05

Table 5.1: Parameters used for the simulation.

C D

C
(b� c)

1 + d
� c

1 + d

D
b

1 + d
0

It is clear that for the conditions b > c > 0, this matrix correspond to a PD.

Based on the outcome of the match, agents can choose a new direction, which is similar to

leaving the group in the walk away strategy (Aktipis, 2004), the main di↵erence being that,

in our case, it is also possible for groups to split. It is also similar in another aspect: there

is a cost to leaving a group, as a lone agent may need time to meet others.

5.2.4 Evolution/Parameters

The evolution is performed continuously over the population. Agents with negative or zero

energy are removed, while agents with energy above a threshold are forced to reproduce,

within the limits of one infant per time step. The reproduction cost is low enough, consid-

ering the threshold, to not put the life of the agent at risk. Table 5.1 indicates the various

parameters used for evolution.

5.3 Results

Results were obtained on a set of 10 runs, with additional sets used for control. In our setting,

all agents have a constant speed, but can choose in which direction they are heading. This
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Figure 5.3: First quartile, average and third quartile of cooperation proportion

over 20 runs. Note that agents may choose at each time step which action (cooperation

or defection) they will perform, leading to high-frequency noise.

allows for pseudo-static behaviors by looping in circles.

While some characteristics, such as agents’ movement, were strongly run dependent, the

overall dynamics of the system was not. At the beginning of the run, the environment is

seeded with random agents. Since all weights in their neural network are set at random,

roughly half of the agents initially choose to cooperate while the other half choose to defect.

This leads to a fast extinction of cooperators (Figure 5.3, until approximately 50000 time

steps), until a group emerges strong enough to survive. The second phase follows, in which

cooperators are quickly increasing in number due to the autocatalytic nature of this strategy

(Figure 5.3).

A third step happens eventually, where defectors invade the cluster, followed either by the

survival of the cluster due to cooperators running away or a reboot of the cycle. In case

of survival, oscillations in the proportion of cooperators can be observed. However, this

phenomenon is averaged away over multiple runs, since period and phase of the oscillations

are not correlated from one experiment to the other. Figure 5.4 shows those oscillations in

a typical run. The frequency of those phenomenon is shown in Table 5.2.

As a control, we ran the simulation after removing the possibility for agents to move. In

this case, cooperators have much less to fear from defectors and quickly overtake the whole

population while defectors quickly exhaust their energy as well as the energy of their coop-

erative neighbors (Figure 5.5). Were a defector to appear near a cluster of cooperators, the
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Figure 5.4: Proportion of cooperating agents in a typical run. Clear oscillations

between the “high cooperation” state and the “low oscillation” state are observable.

Minimum 2

First quartile 2.5

Median 4

Third quartile 8

Maximum 9

Average 5

Table 5.2: Number of oscillations between high and low cooperations over 106 time steps in

ten runs
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cluster would react by “reproducing away”. However, the chances to be overtaken by the

defectors is much higher than in the dynamic case.

Figure 5.5: Average proportion of cooperators, comparison between the static

and dynamic cases.

Another control was to allow agents to have a neighborhood large enough to interact with

all other agents, or a speed such that the system is virtually well-mixed. In both cases,

the classical result holds, with an almost homogeneous population of defectors, with the

occasional cooperator obtained from random generation.

Finally, we observed the movement tendencies (figure 5.6) and signal transmission (figure

5.8) among the two groups of agents. The average displacement is the norm of the total

movement over 100 steps (an example for 5 steps is illustrated at figure 5.7). It is interesting

to note that, even though they mostly stay in clusters, cooperators move more than defectors.

In the next section, we will attempt to interpret those results.

5.4 Analysis of cooperation and clustering

The critical mass necessary for a cooperator to survive can be computed from its surround-

ing and from the costs of cooperation (Nowak & May, 1993). Let us note R the maximum

interaction radius, N the total number of agents inside the neighborhood (excluding the

cooperator itself), and n the number of other cooperators in the radius. For the cooper-

ator to survive over time, the costs have to exactly balance or be less than the benefits

of cooperation. If we assume that agents are homogeneously distributed in the euclidian
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Figure 5.6: Average displacement of agents over a 100 steps sliding window.

Figure 5.7: Illustration of the average displacement based on 5 time steps

sphere around our focus, we can rewrite the sum over all surrounding agents weighted by

the distance as an integral over the densities ⇢
coop

and ⇢
all

:

⇢
coop

=
3

4
· n

⇡R3

⇢
all

=
3

4
· N

⇡R3

This gives us the equivalence:

X

coop

1

1 + dist
'

Z R

0

⇢
coop

· 1

1 + r
dr

Which yields:

fit
coop

= (bn� cN)
3 ln(1 + R)

4⇡R3
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Figure 5.8: Average signal transmitted by cooperators and defectors.

Therefore the condition for survival is simply that the proportion of cooperators should be

at least n
N = c

b .

Note that this condition is strongly dependent on the actual distribution of agents. The

closer the cooperators, the stronger they are against external threats. Conversely, a defector

at the very center of a group of cooperators can be much more damaging.

In previous work (Chen et al., 2011), it has been observed that random mobility was helping

cooperator, if the speed is low enough. However, in this case, this mobility has only the e↵ect

of reducing the neighborhood. Additionally, if the speed is too high, the system gets to an

almost well-mixed state, with the expected results on cooperation. Note that even the e↵ect

of high speed can be counterbalanced by a motion keeping the agents in a neighborhood.

In absence of movement, we have pseudo-movement arising from cooperators dying near de-

fectors. As a result, the cluster of cooperators “reproduces away” from its previous position.

When movement is enabled, cooperators also appear in clusters, inside which they seem to be

moving quickly. This mainly results from the major phenomenon helping cooperators, that

is their autocatalytic tendencies, which might be a bias from the limit on the population size.

If enough cooperators are close to each other, they will keep their energy high at all times,

allowing them to reproduce as much as possible. Once the population reaches its maximum

capacity, the cooperators typically represent a larger fraction of the population, especially

when weighted by the energy they possess. For this reason, the cluster will remain stable

until some agents die of old age, before being immediately replaced by other cooperators

with a high probability.
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Also, this strategy might allow them to avoid spending too much time close to defectors,

while remaining constantly in the neighborhood of fellow cooperators.

The clustering is strongly dependent on signaling among the cooperating agents, hinted

by the di↵erence in signal emission between cooperators and defectors. Additionally, we

performed two batches of five control runs with respectively signal on or o↵ the whole time.

In the “o↵” case, no cluster can form, yielding a near-uniform population of defectors. The

“on” case still shows qualitatively the emergence of clusters, but are much more di↵use as

signaling is now ambiguous.

5.5 Discussion

In this work, we introduced a three-dimensional model of agents playing the Prisoner’s

Dilemma. A first result is that cooperators, when they are present, quickly evolve to form

clusters as they represent a favorable pattern. The clustering behavior can be interpreted

as a degenerated version of the simulations presented in Chapter 4, since the cooperating

agents present the same capacities of information exchange as that model. The possibility

of this degeneracy is mentioned in Section 4.2.4.

While the clustering itself can be expected, it is interesting to observe that their overall

movement rate is still higher than defectors. This is even more surprising considering that

those clusters do not seem to move fast. Instead, analysis shows that cooperators are moving

quickly inside the cluster, which may be a way to adapt to an aggressive environment.

In addition, comparison with the static case showed that movement made the apparition

of cooperators harder, but more stable in the long run. Since it is harder for defectors to

overtake a cluster of cooperators, our systems often show a soft bistability, meaning that

they will eventually switch from one state to the other. It is even possible to observe a

sort of symbiosis, where cooperators are generating more energy than necessary, which is in

turn used by peripheral defectors. In this case, replacement rates allow cooperators to stay

ahead, keeping this small ecosystem stable.

This cohesion among cooperators seems to be enhanced by signaling, even though signals

might attract defectors. Additional investigation on the transfer entropy, for instance, could

be a promising next step.

Finally, another original contribution of this chapter resides in the choice of actions, which is
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generated by the neural networks without consideration of the past actions. The interesting

point is the creation of a memory e↵ect, that usually requires to be encoded in each agent,

here emerging from the agents’ movements in space.

Recently, the Prisoner’s Dilemma game has become a paradigmatic model, used as a tool

in evolutionary biology to study the outcomes depending on the costs characterizing an

ecosystem. In this chapter, we have focused on a model with a fitness based on the results

of such game, and showed the emergence of spatial coordination based on a the exchange

of signals between agents. Like in Chapter 4, the signals remained very basic, and the

environment was fixed in time. In the next chapters, we will explore di↵erent types of com-

munication and variable resource environments, to test further the stability of the emergence

of communication and its impact on the evolution of group coordination.
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Synchronization in variable resource envi-

ronments

In behavioral ecology, populations change through the course of evolution, with each in-

dividual adapting to its environment. The individual’s adaptative behavior determines its

survival and reproductive success. The presence of other individuals a↵ects the environment

itself, causing all individuals to end up entangled in an interdependent interaction network.

Over successive generations, the organisms must adapt to their surrounding conditions in

order to develop their ecological niche. As structural changes occur in the external environ-

ment, the organisms’ niche has to evolve accordingly, building on prior knowledge acquired

by the population. In turn, this has the power to increase the survival and reproductive

success of the species.

In this chapter, we focus on adaptive behavior in the context of variable environments,

specifically with periodic fluctuations of resource availability. This naturally follows up on

Chapter 4, where coordinated behavior has been studied in stable ecological conditions.

When the environment is altered, the individuals can adapt to the new conditions either by

reacting to cues they are able to detect in the environment or by observing the behavior

of other individuals around them. In the following, we present three di↵erent simulations1

demonstrating the emergence of such adaptations, each based on di↵erent types of direct

or indirect information provided to the agents, and discuss the conditions giving rise to the

phenomenon.

In a first experiment, we use a model with dual seasonal change of food distribution in a

unidimensional space. The food resource is made plentiful in artificial summers, whereas

1As mentioned in the introduction of this thesis, the works presented in this chapter have preceded the

ones utilized in Chapters 4 and 5. They nevertheless belong here, as part of a study on adaptiveness in

environments with fluctuating resources.
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it almost disappears in winters. In the simulation, the agents are observed to adapt by

slowing down their motion in winter to save energy, to wake up once the food distribution

becomes favorable again. This is realized not only by detecting the food scarcity but more

interestingly by reacting to the other agents’ signaling. The emergence of this coopera-

tive signaling behavior demonstrates a basic set of conditions leading to the emergence of

adaptive coordination.

In a second setup, we study the impact of seasons on agents’ coordination in a bidimensional

space. The food resource location switches between two di↵erent areas according to the

season, resulting in agents migrating from one to another. In order to find out the right

time to move, the agents rely again on other individuals’ signals. This study not only focuses

on the cooperative emergence of signaling, but also addresses the debate on the biological

component associated with the learning process in ecological adaptive behavior.

Finally, we present a third experiment with the direct communication channel this time

removed, the agents are only allowed to interact through resource consumption. Once again,

we look at the evolved foraging behavior through generations, to see how the information

is used by lineages of agents to take evolutionary advantageous paths. As a result of the

seasonal change, we observe the emergence of a resource caching behavior, depending on

agent size, also known as hoarding.

6.1 Signaling in dynamic environments

Many behaviors found in nature are tightly related to the abundance of resources in the

environment. In case of changes in the availability of those resources, the living organisms

need to adapt their strategies to survive. In such unpredictable environments, signaling has

been proposed as an adaptive behavior meant to filter out the reliable information (Levins,

1968; Johnstone, 1997; Torney et al., 2011).

In the field of artificial life, computational agent-based modelling is a popular synthetic ap-

proach. Such models attempt to replicate the evolutionary conditions responsible for group

behavior adaptation in response to the learning of symbolic or complex syntactical structures

(Parisi, 1997; Cangelosi, 2001). Communication plays a key role in social species, facilitating

crucial information transfer in a group and increasing its survival chances (Maynard-Smith

& Száthmary, 1997).
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Signal evolution has been extensively studied in the context of resource foraging where

task and environment constraints facilitate signal evolution. For example, evolving signals

to di↵erentiate between edible and poisonous food sources (Cangelosi, 2001; Mitri et al.,

2009a) is similar to the coevolution of signaling and altruistic behavior in nature, in turn

hypothesized to increase group fitness and survival chances.

Similarly, the impact of the spatial distribution and relative availability of resources (Arita

& Koyama, 1998), including cyclic resource variability (Grim & Kokalis, 2004) has been

studied in the context of agent based simulation models, as has the use of an environment’s

landmarks to increase foraging e�cacy (Bartlett & Kazakov, 2005).

Through the experiments presented in the following sections, we explore the adaptive be-

haviors emerging in order to cope with dynamic environments.

6.2 Signal-based synchronization to environment vari-

ability

We study the emergence of signaling in a population of autonomous robots, whose actions

are chosen by a recurrent neural network (RNN), embodied in a physical space with a time

cyclic distribution of resource, to find out how the agents’ communicating behavior can

impact on their ability to coordinate and improve a time-dependent foraging task.

6.2.1 Evolution of signaling behavior

Most researches related to synthetic models have focused on signaling that emerges in the

form of a common lexicon (Parisi, 1997; De Boer, 1999; Bartlett & Kazakov, 2005). These

models have used signal evolution as a means of identifying resources in the environment

and increasing the e�ciency of group foraging behavior. However, few works have focused

on how proto-concepts of time can be used by agents as indirect learning mechanisms.

This work investigates how an evolved “sense of time”2 can be used to adapt agent group

behavior. This figurative way of describing the objectives concretely translates into the

use of a minimalist simulation model, with a spatial distribution of food and agents, in an

attempt to demonstrate that learning to act at the right moment facilitates group foraging

2Alternatively, this notion can simply be described as temporal coordination, as was introduced in Chapter

2.
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behavior. The general benefits of agent-based approaches in this kind of work have been

detailed in Section 3.1.2.

Specifically, for the purposes of the present work, the notion of time is embedded into agent

signals, which indirectly indicate distance to food. Also, the concept of time encapsulates the

environment’s behavior, since there are seasonal variations, where food quantity oscillates

between scarce and plentiful. Thus, the notion of time is instantiated to communicate

distances to resources as well as defining cyclic resource growth periods. Each agent is

defined by a local clock (its lifetime), and the environment by a global clock (oscillations of

resource growth).

The considered hypothesis is that specific resource growth cycles coupled with agent signaling

about resource locations are su�cient and necessary conditions for an agent group to learn

to use the concept of time. That is, as a result of food abundance and scarcity cycles and

agent signaling, agents adapt their behavior to exploit their neighbor’s signals and learn

when food is plentiful versus when it is not. This in turn increases the e�ciency of group

foraging behavior.

6.2.2 Model details

We make use of an Agent-Based Modeling (ABM) (cf. Section 3.1). In the simulation, agents

are striving to obtain the energy contained in food patches that are spatially distributed on

a ring-world. The simulation map is represented in Figure 6.1.

Every turn, agents can choose among 3 possible actions: moving forward, turning around, or

stopping, which makes them consume the resource on the cell where they are located. The

agents can also choose to signal or remain silent. All those signals and actions are determined

by the outputs of their control mechanism, which is a recurrent neural network (RNN). The

basics of those networks were explained in Section 3.3. The choice for the present architecture

is based on its capacity to learn time series, making a capture of seasonal patterns possible.

Agent controllers are adapted via applying an Evolutionary Algorithm (EA) to evolve con-

nection weights. Agent’s fitness equals the amount of food it consumes during its lifetime.

If the agent manages to synchronize its resource foraging with the seasons, it will consume

more resource than other agents, thus increasing its chances of survival through the EA.

Agents consume U energy units for standing still, and U + W energy units for moving.

Signaling also consumes U/100 energy units each turn it is switched on. The evolutionary
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Figure 6.1: Ring world environment. There are P evenly spaced food patches and

N agents. Every iteration, each agent emits a signal that indicates the time (number of

iterations) since it was last on a food patch.

algorithm selects for agent behaviors that stop and conserve energy when food is scarce, and

behaviors that move about foraging when food is plentiful.

The environment is a two dimensional torus consisting of P evenly spaced food patches, gov-

erned by cyclic periods of food abundance (summer) and scarcity (winter). Each iteration,

agents (speakers) emit a signal that conveys how many iterations in the past the speaker

was on a food patch. From this, receivers (the closest agents in signal range) learn that

a food patch is Y grid spaces away in a given direction (agents receive signals from both

directions).

6.2.3 Results

To test the hypothesis that agent groups learn to use the concept of time, a comparative

study is conducted. Experiments are executed where agent signaling and cyclic resource

growth are switched on and switched o↵.
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SI-0:�
Signal Heard�
(Behind)�

MM�Maximum�

Action�

Hidden�
Layer�

SI-1:�
Signal Heard�
(In front)�

SI-2:�
Energy�
Level�

SI-5 ... SI-11:�
Hidden Layer Output State�
at iteration:�t� - 1�

Stop�Move�
Switch�
Direction�

SI-3:�
Current�
Time�

SI-4:�
On Food�
Patch�

Figure 6.2: Agent neural controller architecture. The signal range equals the distance

between food patches. Agent controller is a recurrent feed-forward neural network. SI :

Sensory Input.

Figure 6.3: Average internal activation vs. input signal in winter (left plot) and

in summer (right plot). The internal activation is broad in summer, and compactly

clustered in winter.

Results indicate that agents evolve a meaningful association between signals, cyclic resource

growth periods, and foraging behavior. That is, agents interpret signals di↵erently given

di↵erent contexts of seasonal variation, and adapt their foraging behavior based on signals

received. That is, in the cycle when there are few resources in the environment then agents

signal that food has not been eaten (on average) in a long time. This causes agents to
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Figure 6.4: Average internal activation vs. input signal with signaling turned o↵,

in winter (left plot) and in summer (right plot). With signaling artificially turned

o↵, the disparity in internal state values is not observed.

Figure 6.5: Position of the fittest agent from generation 200 plotted against sim-

ulation time, with signaling turned on (left plot) and signaling turned o↵ (right

plot). The typical signaling agent movement slows down during periods of food scarcity,

and switches directions more often to move towards food patches.

conserve energy by moving less, whereas, in the cycle when resources are plentiful then

agents signal that food has been eaten recently.

The agents’ signaling behavior is selected for. After 100 generations, more than 90% of the

agents are indeed signaling most of the time. If all non-signaling agents are removed from

the population, the signaling behavior progressively reappears after about the same number

of generations. It is noted that in runs containing a larger number of agents, the signaling

takes longer to evolve, and sometimes does not emerge at all.

The average hidden layer activation (internal) state as it relates to signal intensity confirms

this on the plots of Figure 6.3. Signal intensity in the periods of scarce food (winter) is

relatively high compared with the wide range signal intensities emitted in the periods of

abundant food (summer). The agents’ RNN average internal activation is broad in summer,
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and compactly clustered in winter. This signaling behavior indicates that agents e↵ectively

adapt to the environment’s seasonal variation.

The observed correlation of activation level with heard signals shows how the agent relies

on them to survive. In simulations that exclude signaling and cyclic resource growth, this

disparity in average signal intensity and internal state values is not observed. Whereas, in

simulations including the notion of time (signaling and cyclic resource growth), agents use

signals sent under di↵erent environmental conditions in order to adapt foraging behavior and

attain a higher fitness (compared to simulations where agents do not employ the concept of

time).

We observe (Figure 6.5) that the typical signaling agent movement slows down during periods

of food scarcity, and switches directions more often to move towards food patches. When

signaling is turned o↵, agents behave in a simpler way giving them lower fitness, which tends

to show the usage of signals to improve their synchronization with the seasons.

6.2.4 Discussion

In this first work, we explored a simulation showing the emergence of a very simple wake-up

system, based on the the exchange of signals with the right timing. The agents may choose

to signal or not, although they are not able to choose the exact value of their signal. This

study is therefore key to our exploration of the emergence of communication in groups of

individuals, as it constitutes the most simple start to communication. Namely, the agents

become able to develop a signaling system just by showing more or less of their very imprint

on the environment. An typical example of this in nature is dogs, which rely a lot on smell

to detect their environment. A representant of the canine species may not control the nature

of the smell it is producing, and releasing in the air for all the others dogs to smell. However,

an individual can use its body to let more or less of those signals spread, for example by

either waving its tail, sharing the smell with the whole neighborhood, or keeping it between

its legs, thus keeping the signal from spreading around.

As mentioned in Section 2.4, the lowest level of signaling is the unintentional one, as the

signaling individual cannot choose not to do so during its lifetime. The first study of this

chapter focuses on such level of communication. The only way for the species to stop

signaling is to evolve the signaling behavior to disappear. Although simple, the signaling

studied here is controlled by each agent during its lifetime, giving it the choice to o↵er this
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information to the other individuals or not.

In our simulations, based on their sharing of signals, the agents reach a coordinated state, in

which they adapt to each other’s signal they perceive to slow down or speed up their motion

based on the food distribution.

From the game theory view, the agents can be considered to take advantage of their neigh-

bors, given that the signal is there to be exploited. However the agents are free to turn

o↵ their signaling, allowing them to save their own energy, but eliminating the possibility

for their pairs to make use of the information. The choice to signal, which takes place in

the simulations, can be attributed to an altruist behavior. The emergence of cooperation is

linked to the associated costs (Axelrod & Hamilton, 1981), and a higher cost to signaling

would most naturally change the chances of cooperation ever coming about.

The results are compatible with the principle of kin selection (Smith, 1964; Williams, 1966;

Wilson, 1975), because a higher degree of relatedness – which happens in smaller populations

– can lead to higher levels of cooperation by a founder e↵ect (cf. Section 2.3). This is coherent

with larger populations having a harder time to evolve the signaling behavior. It can be

confirmed either by tuning the size of the population, or by isolating part of the population,

o↵ering a simple ABM-approach display of the role of bottlenecks and founder e↵ects in the

emergence of cooperation.

This first study in the present chapter showed that the synchronization based on very simple,

chosen but non-controlled signals allowed agents to improve their foraging behavior in a

resource variable environment. Next, we will look at variants of the model, starting with a

model introducing for a choice of signals for agents with their neighbors, along with an easy

way to imitate them.

6.3 Mimicry and seasonal migratory synchronization

In this second setup, agent-based modeling is used to investigate the adaptive coordination

resulting from a dynamic fitness landscape in two dimensions. The study is applied to

migratory behavior, which can be either genetically or culturally determined. Our model

aims to investigate the evolutionary and cultural conditions that give rise to migratory

behaviors and more generally adaptive foraging in dynamic fitness environments.

In cultural behavioral transmission, ontogenetic transfer occurs between agents during their
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lifetime. Alternatively, migratory behavior is phylogenetically transmitted through succes-

sive generations. A minimalist simulation model (distribution of four food patches and 200

agents on a grid) demonstrates the impact of ontogenetic versus phylogenetic transmission

of migratory behavior and thus agent group adaptivity.

6.3.1 An agent-based model of migration

In nature, animals rely upon migratory behaviors in order to adapt to seasonal variations

in their environment. However, the transmission of migratory behaviors within populations

(either during lifetimes or throughout successive generations) is not well understood (Bauer

et al., 2011).

Agent-based modeling (ABM) is an analogical system that aids ethologists in construct-

ing novel hypotheses (see Section 3.1). It allows the investigation of emergent phenomena

in experiments that could not be conducted in nature (Webb, 2009). Numerous studies

in ethology have formalized mathematical models of migratory patterns in various species

(Bauer et al., 2011). However, there have been few studies that examine ontological and

phylogenetic conditions requisite for emergent migratory behavior.

ABM is advantageous compared to formal mathematical models of migratory behavior,

since various evolutionary processes can be simulated, and variations in resultant migratory

behaviors examined. For example, ABM has been used to predict the consequences of forced

human migrations (Edwards, 2009), and migratory behavior between groups of Macaque

monkeys (Hemelrijk, 2004).

In this research, ABM is used to investigate the hypothesis posited in ethological literature

that migratory behavior is adopted as an adaptive foraging behavior, where such behavior is

either genetically or culturally determined (Huse & Giske, 1998). The goal is to investigate

the evolutionary and cultural conditions that give rise to migratory behaviors and thus

adaptive foraging.

In cultural behavioral transmission, ontogenetic transfer occurs between agents during their

lifetime. Alternatively, migratory behavior is phylogenetically transmitted through suc-

cessive generations (Bauer et al., 2011). A minimalist simulation model demonstrates the

impact of ontogenetic versus phylogenetic transmission of migratory behavior and thus agent

group adaptivity.
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6.3.2 Model details

Agents use an ANN controller (Figure 6.8) to decide on their actions. ANN connection

weights are adapted with an EA. Agent fitness is the food amount consumed during a lifetime

(200 iterations). The EA selects for e↵ective foraging behaviors, which depends upon agents

periodically migrating to where food is plentiful. Stimuli for migratory behavior take the

form of cyclic “seasons” in the environment and agents signaling their movement direction

to neighbors. The signaled direction is simply coded in a floating point between 0 and 1.

Only the closest agent’s signal is perceived. If there is more than one neighboring agent at

the same distance, then a neighbor is selected at random. When it is winter (food is scarce)

in one half of the environment, it is summer (food is plentiful) in the other half, where each

seasonal cycle (50 iterations) the winter and summer zones are switched.

Food patch

Agent

Winter area

Summer area

Figure 6.6: Visualization of the simulated environment with agents moving from cell to cell,

looking for food resource. Each agent can (a) move to an adjacent grid square, (b) mimic

or (c) mate with a neighboring agent.

Each iteration, agents receive the sensory inputs: signal from the closest agent, their current

fitness and recurrent connections (activation value of the hidden layer in the previous itera-

tion). Agent behavior is: move to an adjacent grid square, mimic or mate with a neighboring

agent. The output with the highest activation is selected (see Figure 6.8). Each iteration,

agents also emit a signal (output not depicted in Figure 6.8), conveying the sender’s current

direction of movement and thus indicating migratory behavior.

If an agent moves, then it moves one grid cell north, south, east, or west.

Via choosing to mimic or mate, agents either imitate their neighbor’s migratory behaviors
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or pass genetically encoded migratory behaviors onto their o↵spring. If an agent mimics, it

copies the ANN connection weights of its closest neighbor with a certain probability P , thus

mimicking its neighbors’ behavior, which includes the direction signal sent each iteration. If

an agent mates, a roulette-wheel selection is used to select a mate from the agent population.

Genotypes (floating-point value strings) encoding the ANNs are recombined using 2-point

crossover (see section 3.4.2). Those genotypes are kept in a pool that will be used to generate

the next generation of agents.

Figure 6.7: Reproduction scheme. Each mating agent has its genes recombined by 2-point

crossover with another agent picked by fitness-proportionate selection, and the resulting

genotype is added to a gene pool used to generate the next generation of agents.

6.3.3 Results

Figure 6.9 illustrates agent adaptation occurring over evolutionary time. Agents become

e↵ective gatherers via learning a migration behavior allowing them to move about the en-

vironment in synchronization with the seasons, moving to where food is plentiful. The plot

also delineates a cyclic process in agent adaptive behavior, and the relationship between

fitness and behavioral mimicry.

Mimicry ratio indicates the average preference of an agent to mimic over another behav-

ior. Figure 6.9 (top) also indicates agents periodically adapt to e↵ective foraging behavior,

indicated by fitness spikes. Fitness increases result from agents adopting migratory behav-

iors to adapt to the environment’s seasonal variation, where such increases are enhanced by

behavioral mimicking in preceding generations.

The genotypes (randomly generated in the initial population and corresponding to the

weights at the start of each generation) always maintain a certain variability but rapidly

show a higher degree of homogeneity as can be observed in Figure 6.10, where values of
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Figure 6.8: Each agent is controlled by a recurrent feed-forward ANN. SI: Sensory

Input. MO: Motor Output. HL: Hidden Layer. Center: Average agent group fitness over

400 generations of neuro-evolution. Right: Average mimicry ratio over 400 generations.

initial weights are represented by a range of colors from blue to red.

6.3.4 Discussion

Subsequent periodic fitness drops and preceding mimicry ratio decreases (Figure 6.9, bot-

tom), are coherent as a result of the selection and propagation of fit yet non-robust behaviors.

Periodic fitness increases in Figure 6.9 (top) indicate that the agents converge towards an

e↵ective gathering behavior. However, concurrently, behavioral heterogeneity is bred out of

the population. Convergence results in a homogenous agent group that is unable to cope

with seasonal variation in the environment. This in turn causes the periodic fitness crashes

from Figure 6.9 (top) where most of the population dies o↵, and only those agents with

robust behaviors, in sync with seasonal variations, survive and are selected for.

Thus, behavioral takeover in the population (accelerated by behavioral mimicry and fitness

proportionate selection) results in a largely homogenous population with low genotype and

fitness diversity (Wineberg & Oppacher, 2003) and non-robust behaviors. Subsequent fitness

decreases re-introduce behavioral heterogeneity (and fitness diversity) into the population
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Figure 6.9: Average agent group fitness over 400 generations of neuro-evolution

(top plot) and average mimicry ratio over 400 generations (bottom plot).

Figure 6.10: ANN initial weights (�10 to 10) vs. agent generation (0 to 1000) vs.

agent ID (0 to 200). The colors represent the value of the weights.
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and allow agents to re-adapt to the environment’s seasonal variation via adopting a migratory

behavior. Figure 6.9 also indicates that variations in the mimicry rate impact the rate of

agent adaptation and re-adaptation, as well as the duration of fitness spikes. That is,

fitness increases are correlated with high mimicry ratios and fitness crashes cause behaviors

containing the propensity to mimic to be periodically lost, and then rediscovered in the

subsequent re-adaptation phase.

The modeling of mimicry itself by a probability of weight copy in ANNs is quite an over-

simplification of the mimicry studied in biology. However, we argue that this approach is

suitable to the purposes of the minimalist model presented here.

The results indicate the importance of behavioral mimicry and genetic transmission of mi-

gratory behaviors to a population’s overall adaptivity, supporting ethological research. How-

ever, their contribution to adaptive behavior is still subject to ongoing research, to study the

conditions under which cultural versus genetic transmission of migratory behaviors prevail,

and the impact of lifetime duration on cultural and genetic transmission of behaviors.

This second study of the chapter again shows a synchronization of the agents’ behavior based

on the signals they exchange, eventually allowing them to improve their foraging based on

a migration-like behavior. This constitutes a second strategy for the agents to save energy,

to overcome the seasonal change. It should be noted that although the specific focus on

imitation and conformity is not explored further in this chapter, it will be treated further

in Chapter 7, where it truly plays a central part of the model.

6.4 Periodic resource scarcity leads to size-dependent

saving strategies

This section studies the behavior of populations of foraging agents facing resource variation in

time, while interacting only through resource consumption. The results show the emergence

of various size dependent strategies, among which is found resource saving behavior, also

known as hoarding.
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6.4.1 Hoarding behavior

Hoarding is the act of storing a resource without any plan to use it in a foreseeable future,

and has been shown to be a viable, adaptive behavior (Andersson & Krebs, 1978; Smulders,

1998).

A significant amount of e↵ort has been made to understand pilferage control and tolerance

(Clarke & Kramer, 1994; Vander Wall & Jenkins, 2003; Ekman et al., 1996). In addition,

many of those models study cache spacing (Kraus, 1983) and collective hoarding (Bardin &

Markovets, 1991; Brodin & Ekman, 1994). However, Andersson & Krebs (1978) show that

reciprocal pilfering can make hoarding systems resilient to invasions of cheaters, and argue

that the hoarding behavior does not need to be considered as an altruistic mechanism. Most

of the research on food-hoarding has disregarded the influence of primary factors such as

distribution of food over time or the consequences of agents’ size on their caching behavior.

This is the point where the modelling facet of Artificial Life may bring new highlights on

hoarding behavior.

This research investigates the impact of changes in environment resources, available to a pop-

ulation of individuals, on their caching strategy. To do so, we present a simple agent-based

model incorporating a population of individuals capable of storing resources, adapting their

behavior through generations, in a world o↵ering a di↵erentiated cyclic food distribution.

6.4.2 Model

Our model is based on agents striving to obtain food from the environment. They are

given five possible actions: eat, forage, store food, reproduce or do nothing. The decision

mechanism is implemented by an artificial neural network with inputs set to food availability

(“temperature”), current energy of the agent (“hunger”) and result of the last forage. We

also feedback the results of the cached layer to give the agent some kind of memory.

The weights of the neural network, randomized at first, are refined through mutations and

crossovers on the span of multiple generations. The genotype also determines the agent’s

size, that influences the cost of its actions. In the genotype, each weight is coded by one

floating point value, while the size is represented by 10 values. The genotype is evolved

through an evolutionary algorithm (EA), with a two-point crossover and a 5% mutation

rate.
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Agents are only interacting indirectly, through food availability. Every action having its

defined cost, the choice of the agents to hoard collected resources is made at the expense

of an extra cost in energy. Other factors, such as pilfering, guarding or recaching, are

abstracted to action costs.

In this paper, we aim to identify a number of behaviors resulting from the variation of

environment conditions in a minimalistic agent-based model. Our first research hypothesis

was that in the emergence of hoarding behavior when winters get more arduous, that is

when agents need to survive longer periods of time on restricted supply of resources.

6.4.3 Results

In a first attempt to exhibit this phenomenon, we first simulated “gentle” winters, during

which the food was su�cent for individuals to survive on it. We observe that after 30 to 40

generations, hoarding behavior is completely discarded in favour of scavenging for food as

much as possible even during winter, and reproducing during summer. In the case of gentle

winters, the population curve fits closely to the food availability (see figure 6.11), whereas

tougher winters force the agents to hoard in order to survive (see figure 6.12). From this

point on, all the results presented correspond to those tough winter settings.

Figure 6.11: Population size and the food availability distribution through time

in “gentle” winters setup. The resources remain relatively abundant, never dropping

down to zero.
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Figure 6.12: Population size and the food availability distribution through time

in “hard” winters setup. The food is rarer than in the other setup, dropping down to

zero in winter.

From there, we gradually made winters more deadly, with the food availability function

e↵ectively dropping to zero. In the simulation runs in which agents are able to survive

a few more winters, we can rapidly observe a wide range of adapted sizes and behaviors.

Progressively selected by increasingly di�cult winters, we can observe the agents storing

food and eating from their stores in periods where the food supply drops to lower values.

Furthermore, we find that hoarding behavior depends on agent size. In general, the agents

tend to evolve to a certain range of sizes (see figure 6.13) and perform hoarding to survive

the increasingly di�cult winters. However, if the agent’s size passes a certain threshold

(approximately 20), it usually adopts a hibernation strategy during winters to save energy.

Agents of size 10 to 20 tend to adopt a mix of both strategies.

The hoarding behavior is detected as a chain of cycles formed by foraging then caching the

food, preceding its consumption. The proportion of hoarders with respect to the size is

displayed at Figure 6.14.

The agents’ survival remains more or less linear with respect to their size, up to larger sizes

from 50, where the number of individuals becomes very low as shown in Figure 6.13.

Two control experiments were first implemented: eternal winter (no food availability) and

eternal summer (food availability always high). In the first case, agents are dying quickly as

expected. In the second case, the hoarding behavior is completely marginal, and sizes are

almost evenly distributed, with a slight bias toward bigger agents. Since in real simulations

smaller agent sizes were favored, this bias was dismissed as irrelevant.
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More controls were then assessed, notably that no selection occurs on sizes if the competition

is removed (infinite resource supply), and that obviously all agents rapidly die o↵ when

deprived of food resource.
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Figure 6.13: Number of individuals of each size within the population.
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Figure 6.14: Proportion of agents of each size that exhibit hoarding behavior.

We observe that large agents can forage for more resource, but seem to be limited by the

environment’s carrying capacity. By contrast, small agents dont need much food, but can’t

find much either. A behavior recurrently appears, when small agents take advantage of their
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Figure 6.15: Average age of agents at their death plotted against their size.

cheap cost of reproduction, in order to produce as many o↵spring as possible. This is visible

in Figure 6.16, where sudden peaks of small agents are observable.

Another interesting result is the gaps observed in the distribution of sizes (Figures 6.14 and

6.16).

Figure 6.16: Distribution of agents’ sizes over simulation time
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6.4.4 Discussion

The indirect interaction of the agents in the model presented in this section contrasts with

the fixed-value signals exchanged in Section 6.2 and the free signals exchanged with close

neighbors in Section 6.3. In the absence of such solutions, the only possible adaptation is

to directly optimize one’s behavior to the fluctuations of the environment, and that is what

is observed in this model.

The agents develop a hoarding behavior that enables them to survive in sometimes easy,

sometimes extreme conditions, using the available solutions to them in a way similar to

what is observed in behavioral ecology (Andersson & Krebs, 1978; Bardin & Markovets,

1991; Brodin & Ekman, 1994).

The behavior involving small agents taking advantage of their cheap reproduction cost can

be related to a known phenomenon in mathematical biology. This strategy of survival

focusing on the quantity of progeny over its quality, typically adopted by bacteria or insects,

is referred to as an “r-strategy” (MacArthur and Wilson, 1967). The emergence of this so-

called “r/K” opposition visibly demands no more than simplistic laboratory settings such

as our model. These concepts have recently regained interest in panarchy theories and

age-specific mortality (Gunderson, 2001; Reznick et al., 2002; Sabeti et al., 2007).

Whether our hypotheses are compatible with other r/K characteristics is still to be examined

further, notably by looking in more detail at a limited number of o↵spring. Besides, more

action choices can be given to the modeled agents, such as the ability to share food, in order

to let more K behaviors emerge.

Our results indicate that the agents’ size and the environment time cycles are major factors

influencing their behavior, as may be observed in nature. This also suggests that our model

could somewhat predict behavior modification to adapt to di↵erent conditions, such as

abnormally long winters.

Finally, our model produces gaps, observed in the distribution of sizes. This unexpected

result may be due to the formation of local attractors for particular sizes in the system, and

could benefit from a larger scale analysis, to shed light on eventual unknown e↵ects linked

to the emergence of hoarding behavior.

This model can be considered as a control experiment to the two first works of this chapter.

The agents’ interaction is limited to resource consumption, letting the system develop opti-

mizations based on the remaining cards available, i.e. the optimization through the choice

97



6.4 Size-dependent saving strategies Chapter 6: Synchronization

of optimal sequences of actions, which are the di↵erent cycles of actions we have detected,

that agents use as saving strategies in variable resource environments.

98



Chapter7
Neutral selection in gene-culture coevolu-

tion

In the study of biocultural evolution, human behavior is the product of two di↵erent and

interacting evolutionary processes: genetic and cultural evolution. The dual-inheritance

theory (DIT) defines culture as information and behavior acquired through social learning,

and claims that this culture evolves through a process analogous, although not identical, to

genetic evolution (Lumsden & Wilson, 1981; Boyd & Richerson, 1992; Richerson & Boyd,

2008). As genetic evolution is relatively well understood, the DIT focuses on cultural evo-

lution and the interactions between cultural evolution and genetic evolution.

One example of the recurrent objects of study of the theory is the controversial Baldwin

e↵ect (Baldwin, 1896; Simpson, 1953; Weber & Depew, 2003), which states that unlearned

can replace learned behavior. This e↵ect has been specifically applied to the evolution of

language (Munroe & Cangelosi, 2002; Deacon, 2003a; Christiansen & Kirby, 2003), which

will be of interest in this chapter.

Yamauchi & Hashimoto (2010) have introduced a computational model of gene-culture co-

evolution to investigate that very Baldwin e↵ect. This type of computational simulation

takes a special importance in language evolution, due to the lack of empirical data. Unfor-

tunately, although the study presents powerful results, a large part of the behaviors reported

in the model turned out to be artifacts produced by the specific design and set of parameters

(McCrohon & Witkowski, 2011).

In this chapter, after a short review of the area, we present a new gene-culture model, in the

hope to demonstrate specific dynamics without the hidden biases present in the previous

model. Adapting once again the ABM approach presented in the previous chapters, we

improve on the simulation of the agent controller’s architecture, the cultural landscape and
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reproduction scheme. We then discuss the dynamics of the gene-culture model, and its

utility in artificial life and behavioral ecology.

7.1 The Baldwin e↵ect

The most famous theoretical evolutionary gene-culture interaction is the Baldwin E↵ect

(Baldwin, 1896; Simpson, 1953). Proposed independently by Baldwin, Osborne and Morgan

over a century ago, the Baldwin e↵ect is referred to as learning being able to change the

environment for a species so that the selective pressures on the learned behavior or a closely

correlated character would be influenced (Weber & Depew, 2003). Put di↵erently, the

Baldwin e↵ect is the notion that a learned behavior can be replaced by an unlearned one

through the work of evolution.

The simplest scenario involving the Baldwin e↵ect is constituted by a single environmental

change coupled to a single change in the phenotype, followed by a corresponding change in

the development layer controlling this part of the phenotype. In a population of animals

having their natural habitat invaded by a new predator, a progressive adaptation to the

new selective pressure can lead the individuals to learn new behaviors for their survival,

ranging from intensified vigilance to predator avoidance. Those changes are analogous to

toughened skin on the hands of people climbing boulders or playing string instruments, and

rely on phenotypic plasticity. But eventually, individuals possessing genetic biases favoring

those changes will be selected for, until the advantageous behavior becomes more and more

innate.

The importance of this e↵ect can be extended to the case of the evolution of language and

culture (Deacon, 1997; Dennett, 2003). If the Baldwin E↵ect were in operation in lan-

guage evolution it would work to increase the overall genetic contribution to the phenotype.

However Deacon (1997, 2003b) has argued that language evolution is characterized by the

opposite, a decrease in genetic contribution. A relaxation of biological selection pressures,

similar to that seen in domesticated animals, would have given our lineage the evolutionary

flexibility to evolve complex language. It has been argued that this relaxation of selection

may have been caused through a cultural niche construction process (Odling-Smee et al.,

2003; Yamauchi, 2004), by which cultural transmission was able to take over some of the

burden of transmitting communicative behaviors between generations. This would have re-

moved any selective pressure to keep these traits genetically hardwired, e↵ectively allowing
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our ancestors to “self-domesticate” themselves via the culture they created.

7.2 A model of gene-culture coevolution

Gene-culture coevolution (Lumsden & Wilson, 1981; Boyd & Richerson, 1992), also referred

to as dual inheritance theory (DIT), constitutes a view of the evolution of behavior as

a product of two di↵erent and interacting evolutionary processes: genetic evolution and

cultural evolution (Richerson & Boyd, 2008; McElreath & Henrich, 2007). This coevolution

has been studied the most in the case of human language, for which the intertwined biological

and cultural components have been subject to research for centuries. The importance of this

interaction has recently received growing recognition in the field of evolutionary linguistics

(Deacon, 1997; Tomasello, 1999; Hurford & Kirby, 1999) and is coming to be recognized as

well in mainstream linguistics (Briscoe, 1998).

In the study of gene-culture coevolution, as in the case of the emergence of communication

systems, traditional research methods may fall short. Indeed, as explained in Section 2.4.2,

the field su↵ers from a severe lack of direct historical data. To cope with this handicap,

one can turn to computational modeling (see Section 3.1.2) such as the one presented in

Section 7.2.2, which not only allows to test hypotheses, but provides a simple way to generate

valuable data.

7.2.1 Basics on gene-culture coevolution models

Gene-culture coevolution models describe the evolution and perpetuation of cultures, us-

ing the following major mechanisms: random variation and darwinian selection of cultural

features (also known as variants), cultural drift, guided variation and transmission bias

(Richerson & Boyd, 2008; Henrich et al., 2008).

In this type of model, culture is meant as the information stored in individuals’ brains, that

is capable of a↵ecting behavior and got there through social learning (Richerson & Boyd,

2008). Cultural features can therefore range from dietary habits, to knowledge of linguistic

grammar and soup recipes.

Random variation in cultural features may arise from imperfect learning, display or recall

of cultural information, which is analogous to the process of mutation in genetic evolution

(Richerson & Boyd, 2008). Cultural di↵erences among individuals may lead to di↵erential
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survival of individuals. The patterns of this selective process depend on transmission biases

and can result in behavior that is more adaptive to a given environment. In cultural drift,

analogous to genetic drift in evolutionary biology (Bentley et al., 2004), the frequency of

cultural traits in a population may be subject to random variations, causing cultural features

to disappear from a population. This e↵ect should be especially strong in small populations.

Cultural traits are gained in a population through learning, novel traits being transmitted

to other members of the population. This process of guided variation depends on an adap-

tive standard that determines which cultural variants are learned. Culture traits can be

transmitted between individuals in di↵erent ways. The so-called transmission biases occur

whenever some features are favored over others in the process of cultural transmission. The

biases can be of di↵erent types, linked to their content, context, individual (or model-based)

or conformity (more generally frequency-dependent) (Henrich & McElreath, 2003).

7.2.2 Repeated masking and unmasking of natural selection

Yamauchi & Hashimoto (2010) presents a computational model designed to investigate the

gene-culture coevolution. The model claims to show a cyclic repetition of stages in which

biological selection is masked by cultural evolution, before being vigorously reasserted. More

specifically, the three successive stages are the Baldwin e↵ect, the functional redundancy and

the unmasking of natural selection.

The progression of gene-grammar match1 is depicted in Figure 7.1. The learning intensity2 is

shown in Figure 7.2. This type of cycle has not been attested clearly in empirical data. This

may indeed be the product of an artificially high rate of simulated biological evolution when

compared with the rate of cultural change, as suggested by Chater et al. (2009), arguing

that faster rates of culture change provide a moving target that biological evolution has a

hard time adapting to.

However, McCrohon & Witkowski (2011) show that the model’s apparent cyclic behavior

can be better described as a random walk between a linearly ordered set of attractor states

(see Figure 7.3), as a result of arbitrarily chosen model parameter settings. The original

conclusions therefore lie on artifactual dynamics, which challenges the claim for cyclic stages

of shielding and unmasking.

1the average hamming distance between mature agents’ grammars and chromosomes
2the average amount of learning resource consumed by agents in the learning phase

102



Chapter 7: Gene-culture coevolution 7.3 Remarkable features of the model

Figure 7.1: Gene-Grammar Matches (based on the original model from Yamauchi &

Hashimoto (2010), reproduced in McCrohon & Witkowski (2011)) [Seed=1303050913721,

Runs=1, Generations=5000]

Figure 7.2: Number of Genotypes (based on the original model from Yamauchi &

Hashimoto (2010), reproduced in McCrohon & Witkowski (2011)) [Seed=1303050913721,

Runs=1, Generations=5000]

In the next section, we present a model improving on the original design, able to show

special dynamics in the gene-culture dynamics. In particular, we introduce new agent con-

trollers, incorporate contrasted gene-culture landscapes, get rid of discrete parametrization

and augment the agent population’s scale.

7.3 Remarkable features of the model

We now introduce a series of drastic changes in the model presented previously, based on

Yamauchi & Hashimoto (2010), in order to build a robust model of gene-culture coevolution.

In the following, we justify every change and analyze the results.
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7.3.1 Neuroevolution approach

We adopt the artificial neural network (ANN) paradigm to model the agent’s decision con-

troller, using the approach detailed in Section 3.4. At the start of every generation, each

simulated agent’s ANN is initialized with weights corresponding to the values in its geno-

type, that was inherited and mutated from its two parents’ own genotypes. Throughout

the agent’s lifetime, its learning and testing phases, the ANN’s weights determine its clas-

sifier, which decides of every choice the agent makes based on the inputs received from the

environment. In this particular case, we use a recursive neural network (RNN), which is

a modified version of the Elman architecture (see Section 3.3.4). Those networks possess

cyclic subnetworks in their connections, thus creating the capacity for a limited memory.

However, unlike regular abm models using typical reinforcement learning, the model pre-

sented relies simply on the agent’s interaction not with a simulated environment, but ex-

clusively with a neighborhood of its pairs. This is common in gene-cultural settings, where

the focus is on the culture-gene interaction, while the relation with the environment is ab-

stracted out to other parameters such as the fitness function, the learning paradigm and

reproduction scheme. In any case, this type of model, as the ones previously introduced in

this thesis, has to be apprehended as a minimalist simplification meant to study a particular

aspect and specific dynamics of the real world.

The genotypes therefore represent the RNN weights “at birth”. As in the original model,

those are randomly set at the start of the simulation. During its lifetime, the agent modifies

the weights of its controller, resulting in a progressive shift which makes it di↵erent from

another agent starting o↵ with the same genotype but going through a di↵erent set of

self-modifying interactions.

During the learning phase, the agent tries to fit its outputs with the teacher’s using a back-

propagation algorithm (see Section 3.3.2). After being taught by several teachers, which

belong to the agent’s cultural teaching neighborhood, the agent is tested against its com-

munication neighborhood. Although we here present results in which those neighborhoods

are equivalent, this does not always have to be the case. However, we take it as a reasonable

assumption in a system in which agents learn continually through interaction.

Each phenotype produces outputs, which are compared with their teachers’. The real name

of the game is therefore output matching, as a higher fitness is attributed to individuals

producing phenotypes which respond similarly to given inputs. This seems to mean that the
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best matchers end up to be those having the most identical phenotypes, as this ensures that

their function is perfectly identical. However, this does not have to be the case. Indeed, one

should keep in mind that agents producing similar responses may very well rely on di↵erent

phenotypes to produce them, as same functions can be encoded in di↵erent ways.

A discrete way to model learning and communication phases may easily lead to the creation

of artifacts, as spotted in McCrohon & Witkowski (2011). The previous model, by using

only twelve binary values to represent the genotype or the phenotype, led to the creation of

the attractors3 shown in Figure 7.3. By allowing for a continuous space of values, the model

avoids attractors caused by integer sums of learning tokens, as depicted in Figure 7.4. We

notice how the gene-grammar matches are not restrained anymore in the same conditions.

Figure 7.3: Gene-culture matches on the original model from Yamauchi & Hashimoto

(2010) [Seed=1303127096921, Runs=10, Generations=10000]

Figure 7.4: Gene-culture matches on the modified model. The matches are normal-

ized on 12 for comparison [Seed=1303127096921, Runs=10, Generations=10000]

Furthermore, one should note the capacity of RNNs to keep an internal state, which in

3cf. McCrohon & Witkowski (2011)
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turn influences the behavior indirectly. This non-explicit internal state indeed makes the

agents not simply learn to match the teacher’s behavior, but learn to match in a certain

context. The sequence of interactions an agent undergoes in its lifetime produce a reinforced

modification of its controller, before finally being evaluated against the fitness function. At

all times, the phenotype of the agent is represented by its current state, which is composed

of the weights of its connections and its internal state.

The use of the neural network paradigm proves to be conclusive in a gene-culture model, in

accordance with conditions of generality and with su�cient learning properties.

7.3.2 Spatiality

Perhaps the most crucial part of the design of the gene-culture model is the fitness landscape

in which are evaluated the individuals of the population. The fitness space is determined

by the evaluation of the performance of each phenotype. As explained in the previous

section, this phenotype, although based upon the genotype that made it initially, is modified

according to its surrounding environment, by interaction with neighboring agents.

The dynamics of the model rely heavily on the learning, fitness evaluation and reproduction

network. In our case, the agents are taught and evaluated by individuals in their immediate

vicinity on a circular-shaped graph (see Figure 7.5). However the reproduction scheme takes

place at a global level, which has the consequence to change the agent’s genetic neighborhood

every generation.

As a consequence, the neighborhood is never kept the same for more than one generation

and dialects do not have time to take shape, as can be seen in Figure 7.7. The observed

e↵ect is that changes occuring in the culture all either eventually take over the population,

or gradually disappear. The cultural evolution, even for as many as 1000 agents, usually

exhibits only one single culture at the time, and never more than a few of them.

The time progressions show a dependency on the genetic connectivity, which at a high level

impose a constant shu✏ing over the whole population every generation, ending up lowering

the global genetic diversity through time. As a consequence, phenotypes need less work to

produce in order to match with each other, leading to a high fitness for all agents. A shielding

does apparently take place, but the specific phases claimed in Yamauchi & Hashimoto (2010)

are not observed (Figure 7.6 and 7.7). As we will see next, the situation is di↵erent in the

case where individuals are grounded spatially, by setting a dependency of the social network
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Figure 7.5: Circular neighborhood graph of distance two. This geography is used for

learning, communication and eventually reproduction phases.

Figure 7.6: Genotype progression for cyclic culture transmission with global re-

production scheme (1000 agents, 10000 generations). Each generation is represented

by one column of pixels placed on a timeline from left to right. Each color corresponds to a

di↵erent genotypic value.

Figure 7.7: Phenotype progression for cyclic culture transmission with global re-

production scheme (1000 agents, 10000 generations). Each generation is represented

by one column of pixels placed on a timeline from left to right. Each color corresponds to a

di↵erent phenotypic value.

on the reproduction network, that is in the present simulation a cyclic graph for all the

interactions: learning, communication and reproduction.

We now modify the model by constraining the agent’s genetic interaction to its closer neigh-

borhood, in a reproduction scheme commonly called local reproduction, in exactly the same

way that we limit the cultural transmission in the learning and evaluation phases. With this

restrained reproduction scheme, we observe the formation of clusters of similar phenotypes,

instead of a simple noisy continuum.

The results (Figures 7.8 and 7.9) are as expected given that all the interactions are now made

local, as the neighborhood is limited to a distance of three on the agents’ relationship circular

graph. The agents are expected to get a chance to develop dialects, as they might be isolated
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generation after generation, learning a culture that slowly drifts away from others. Figure

7.9 shows several species living together but also, more importantly, Figure 7.9 exhibits a

number of di↵erent cultures coexisting at the same time, which contrasts with the previous

unconstrained case, and contrasts with the original model.

Figure 7.8: Genotype progression for cyclic culture transmission with local repro-

duction scheme (1000 agents, 10000 generations). Each generation is represented by

one column of pixels placed on a timeline from left to right. Each color corresponds to a

di↵erent genotypic value.

Figure 7.9: Phenotype progression for cyclic culture transmission with reproduc-

tion scheme (1000 agents, 10000 generations). Each generation is represented by one

column of pixels placed on a timeline from left to right. Each color corresponds to a di↵erent

phenotypic value.

One may naturally wonder, looking at Figure 7.9, whether the dynamics are preserved over

time. We therefore show a longer evolution based on the same seed in Figure 7.10, indicating

that the results hold in the longer runs.

Figure 7.10: Phenotype progression for cyclic culture transmission with global

reproduction scheme, on a longer run (1000 agents, 10000 last generations out

of 100000). Each generation is represented by one column of pixels placed on a timeline

from left to right. Each color corresponds to a di↵erent phenotypic value.

Lastly, we show the case of phenotypic interaction having a higher relative connectivity

than genotypic interaction. Concretely, we set the learning and communication networks to

a lattice graph (Figure 7.12), mimicking the connectivity on a go or checkers board, with

a neighborhood distance set to 2. The reproduction is kept within a cyclic graph as it was

previously. The agents reproduce exclusively with their 2-neighbors within the same row

(with the exception that the last agent of a row is connected directly, with one unit of
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distance, to the first agent of the next row).

An instant capture of the simulation is shown in Figure 7.11, where the left plot (genotypes)

displays similarities on rows caused by the circular reproduction graph, while the right plot

(phenotypes) shows the expected two-dimensional clusters, caused by the social connectivity.

We observe that the subsequent results of these settings lead to few phenotypes (Figure 7.14),

whereas the genotypes form the same clusters as observed before (Figure 7.13) due to the

lower connectivity cyclic graph but remain diverse overall.

Figure 7.11: Snapshot visualization of genotypes (left plot) and phenotypes (right

plot), during a simulation on lattice cultural transmission with row reproduction

(1000 agents, after 5000 generations). Each color corresponds to a di↵erent genotypic

or phenotypic value.

Figure 7.12: Lattice graph representing the cultural connections between agents.

Each intersection represents an agent. Each agent communicates with neighbors up to a

distance of two on the graph.

Figure 7.13: Genotype progression for 2D-lattice cultural transmission with

within-row reproduction (1000 agents, 10000 generations). Each generation is

represented by one column of pixels placed on a timeline from left to right. Each color

corresponds to a di↵erent genotypic value.
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Figure 7.14: Phenotype progression for 2D-lattice cultural transmission with

within-row reproduction (1000 agents, 10000 generations). Each generation is

represented by one column of pixels placed on a timeline from left to right. Each color

corresponds to a di↵erent phenotypic value.

7.3.3 Scale-dependency and judicious choices of parameters

An important issue in the discrete model pointed out in McCrohon & Witkowski (2011) is

the dependency on population size, which must be su�cient to avoid unwanted attractors.

This is illustrated in Figure 7.15. A population of over 1000 individuals fixes the drift

between attractors, which tend to disappear at that scale. The original model therefore

shows qualitatively di↵erent dynamics for di↵erent sizes of population. With a su�cient

number of agents, the discrepancies fade away and the model is observed to be scale free.

Figure 7.15: Gene grammar matches for a population of 200 (left), 400 (middle)

and 1000 individuals (right) with Yamauchi & Hashimoto’s simulation (50 runs, 12000

generations).

Overall, the choice for parameter settings must be carefully made, as it may limit the

simulated genetic and cultural diversity. These limits interact with the model’s learning

mechanism and result in a number of semi-stable attractor states. We argue that it is the

properties of these attractors that account for the long run behavior of the model, directly

conflicting with the analysis given in the original paper. As was mentioned previously in

Section 7.3.1, the presence of artifactual attractors (see Figure 7.3, and left plot from Figure

7.15) is caused by phenotypic uniformization with a few-term linear combination of integer

parameters constraining the cultural learning process.
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7.4 Discussion

A gene-culture model is meant to represent the interacting evolution of genes and cultures.

Each agent i of the modeled population can abstractly be conceptualized as a genotype

vector ~gi and a phenotype vector ~pi(t) (for a certain time step t 2 Z) in a multidimensional

space Rn, where each of the n dimensions represent a phenotype component. The individual

i is initially given a certain initial phenotype ~pi(0) = ~gi, before this phenotype gets modified

through interactions, taking di↵erent values for each time step: ~pi(t) = f(~pi(t� 1),~e(t� 1))

where f is a function of the previous state and the environment ~e(t� 1). The environment

depends itself on the state of other agents in the environment, for a neighborhood defined

by the rules of the model. The individuals can thus be metaphorically viewed as depicted

in Figure 7.16. This illustration relies however on simplifying assumptions of components

orthogonality and symmetry.

Figure 7.16: Illustration of the gene-culture evolution.

Since the model determines the rules for the dynamical progression of the phenotypic vectors

~pi in time depending on a given task, the model can be seen as a computation akin to a

discrete optimization process, in which individuals are attempting to use their internal states

in order to match random inputs from the environment with the results obtained by their

pairs. This assumption the model takes relies on the hypothesis that cooperation is beneficial

to individuals within groups, which justifies the fact that agents should synchronize their

outputs to obtain a greater fitness. In some way, the real fitness-awarding task is abstracted

out from the model, and assumed to be accomplished more e�ciently if the agents coordinate

on some agreement basis that would require them to evolve a common binding between

perceived and produced signals.

In this sense, the abstraction therefore refers to the particular topic of emergent cooperation,

which we tackled in Chapter 2 and analyzed further in Chapters 5 and 6. The ameliorations

in communication ability in individuals of a cultural group are here simply assumed to
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contribute to the better chances of survival and reproduction of the individual.

These assumptions might sound related to hard behaviorist views of the evolution of com-

munication (Skinner, 1957), where communication is strictly learned through a set of habits

acquired by means of conditioning. This has been criticized as the process would be too

slow, especially for a phenomenon as complicated as language learning (Chomsky, 1959).

However, the behaviorist view suggests that humans could construct linguistic stimuli that

would then acquire control over their behavior, in the same way as external stimuli could

(Skinner, 1969). The idea has recently been extended through the relational frame theory

(Blackledge, 2003), which argues that the building blocks of human language and higher

cognition reside in the ability to create links between concepts.

Nevertheless, as far as the present model is concerned, no real assumption is made in one

direction or the other of the debate. The ABM approach, with the associated declensions

including ANN paradigm and evolutionary algorithm, are compatible with both theories

and may o↵er adequate tools to study them further. Indeed, neural networks do not simply

associate vectors of inputs together, but are also able to perform complex, non-linear classi-

fications and provide responses accordingly, based on the learning algorithms used to train

them, namely evolutionary process and backpropagation.

The reader must be warned on the perhaps classic mode of visualization used in Section 7.3.3

for genetic and phenotypic evolution plots. Although visually clear, they present the obvious

flaw of easily showing clusters in only one dimension. This was especially visible in the case of

latttices, which rapidly show the repetition of lines, which are the artifactual outcome of grid

interactions projected on a single dimension. More advanced methods were used for example

in Chapter 4, taking into account unbounded dimensionality. Also, di↵erent cultures are

simply visualized from weights, which presents a risk of confusion between phenotype and

culture. Furthermore, phenotypes should be graphed as the result of classification tests

on the phenotypes, so that two phenotypes will be similar if they respond in the same way.

Despite these problems, the model is acceptable as a simplification, although must be applied

carefully to evolutionary problems, to avoid the risks of misreading results.

Each individual in Figure 7.16 is shown as a point representing its initial culture, and another

point showing the culture resulting from its learning. The individuals then interact from

neighbor to neighbor, generating the dynamics described above. This is conceptually equiv-

alent to models from oscillator theory, based upon the Ising model (Ising, 1925; Glauber,

1963), or its generalization, the Potts model (Ashkin & Teller, 1943; Potts, 1952). Indeed,

112



Chapter 7: Gene-culture coevolution 7.4 Discussion

the Potts model, by simulating in a very simple way the interaction of spins on a crystalline

lattice, reveals important insights about the behavior of ferromagnets, and demonstrates

basic dynamics of synchrony and phase transitions.

In the light of the theories of phase-coupled oscillators (Strogatz & Mirollo, 1988; Strogatz

et al., 1993), gene-culture models can be seen as a variant allowing to study general interac-

tive systems. The oscillators are found to synchronize in certain configurations, based on the

one hand on their learning patterns from their neighbors’ signals, and on the other hand on

their replication through mutation and selection, which relies on a communicative evaluation

of their fitness. As a result of the creation of this dual interaction between individuals, they

are able to couple and decouple in the same way as oscillators, but with richer dynamics

(Huygens, 1665; Strogatz et al., 1993; Strogatz, 2000, 2003), perhaps as one would expect

from a system involving human behavior.

In the future, the model we presented may o↵er enough generality to study di↵erent phe-

nomena. It may be suited to the study of the emergence of cooperation, while keeping clarity

concerning the ongoing debate on group selection (see Chapter 2). Also, the model is a good

tool to test hypotheses in the study of optimal cultural group sizes in human society.
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Conclusion

This thesis finds its roots from a combination of interests in evolutionary biology, group

dynamics and social behavior. Our goal was to investigate the evolution of collaborative

behaviors of agents based on their communicative interactions. To the best of our knowledge,

a complete explanation of the dynamics and conditions leading to these phenomena has yet

to be established.

Throughout the chapters, we have utilized the agent-based modeling approach to study

the evolution of coordination, as a process occurring among individuals on di↵erent levels of

interaction complexity. Through simulations and analyses, we have shown that coordination

emerges as a product of the cooperation between autonomous agents, given the availability

of a channel for interaction. In every study that was presented, we have demonstrated the

intricate interdependence between coordination, cooperation and communication.

The research methodology, directed at exploring the reasons for the emergence and evolution

of communication, eventually led towards the use of the most simplistic models. In this the-

sis, every chapter posed new questions about the impact of communication on coordination

in increasingly complex systems, from the minimalistic models in Chapters 4 and 5 with

a very simple fitness function, to variable resource environments in Chapter 6, and finally

studying the dynamics of an already established communication system in a gene-culture

coevolution model.

The emergence of communication relies on more than a checklist of conditions that a popu-

lation must fulfill. Rather, it ought to be understood as a historical process of interactions

between generations of individuals embodied in an environment. The population dynamics

must allow the agents to evolve the need to cooperate with each other, so that they would

evolve synergistic relation, which will slowly benefit from growing richer and more complex,
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until reaching the level of a fully-fledged communication system.

With these general conclusions in mind, in the following we will summarize the main con-

tributions of this thesis, and evaluate its impact considering past research. We will also

address the shortcomings of our work, and mention possible ameliorations in future work.

The raison d’être of this chapter is to clarify the claims made earlier in this thesis, to ensure

the reader possesses all the elements to accurately grasp the nature and significance of the

results we present. Finally, we also want to o↵er a larger picture, placing the presented

research in a general context.

8.1 Recapitulation and contributions

The coordination between agents, a concept defined in Chapter 2, is surely the most recur-

rent of the themes of this thesis, as it holds a central role in each of the presented works.

Every presented study indeed shows a new result that completes the large picture on the

evolution of stigmergic behavior, self-reinforcing activities among groups and exploring the

establishment of increasingly complex coordination patterns. Along the chapters of the thesis

are explored, ordered by complexity, increasingly intricate mechanisms, starting from basic

signaling interactions and simple synchronizations patterns to finish with more convoluted

kinds of coordinations.

In Chapter 4, we demonstrated the emergence of swarming behavior based on signaling.

A minimalistic simulation of autonomous agents, uniquely exchanging local signals in a

three-dimensional environment, become able to form temporary leader-follower relations to

dynamically flock together.

Another type of swarming is then shown in Chapter 5, where we simulate a dynamical

version of the spatial Prisoner’s Dilemma. The cooperating agents are found to evolve a

clustering behavior corresponding to a degenerated version of the dynamics produced in

Chapter 4. This spatial coordination is especially interesting for it is explicitly connected

with the cooperative behavior. The clustering is also found to be bistable, and cooperators

are moving quickly inside the cluster to avoid cheating predators. A moving cluster of

cooperators is more stable against defector invasions, bringing a soft bistability to the system,

which may easily switch between cooperative to defective state.

Next, Chapter 6 puts coordination to the test with simulations in unpredictable environ-
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ments, showing evolutionary stable solutions involving coordination. Individuals are shown

to either evolve the ability to synchronize based on each other’s signals, or evolve other adap-

tive behaviors to overcome the variable resource conditions. The coordination in this chapter

takes the form of a temporal synchronization, able to synchronize the group’s motion around

a ring map, to synchronize the right timing to solve the migration timing problem, or indi-

vidual specific resource-saving strategies, which synchronize simply with the environments

in case no other information channel is open apart from food scarcity.

Up to this point of the thesis, all the studied adaptive behaviors, with the exception of the

hoarding behavior in Section 6.4, are coordinations based on signaling. The agents eventually

evolve a signaling behavior such that it can be used by the group to coordinate together

in an e�cient behavior, giving the agents greater fitness, and thus chances of survival and

reproduction.

Finally, in Chapter 7 coordination is observed both within genetic and phenotypic timelines

in a coevolution model. The individuals’ genotypes are able to climb fitness gradients by

themselves, but may be helped by the appendage of cultural learning. Learned behaviors

may then take over unlearned ones (shielding), and vice versa (Baldwin e↵ect, cf. Section

7.1), creating a di↵erent type of information transfer, not only among individuals of the

population this time, but from one evolutionary system to another. Coordination is thus

dual, with the formation of clusters in the cultural or genetic space, but also with the creation

of dynamical information flows between genetic and cultural lineages.

The synergistic coordination among agents originates from cooperation, which constitutes

a second recurrent theme in this thesis, is based upon the interactions involved in the

coordination dynamics that were just mentioned. The selection of cooperation is in essence

a delicate topic in the study of behavioral and evolutionary ecology, in part because of its

debated theories of group selection and the origins of altruism, as evoked in Chapter 2.

Nevertheless, it is compulsory to discuss its mechanisms, as they have a direct impact on

the creation of positive feedbacks on the evolution of coordination.

In particular, Chapter 5 details the possible impact of cooperative behavior on coordination

of behaviors, focusing on the dynamics of spatial groups. Chapters 4 and 6 also tackle the

subject of cooperation, as the behaviors are evolved based on the help of kin-selection in

relatively small populations. Lastly, Chapter 7 takes cooperation as granted, and based on

this assumption, examines further certain high-level dynamics of gene-culture coevolution.

The evolution of a communicative system is the third of the main themes treated in this
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thesis, although its importance is as fundamental as the previous ones, as it is intimately

related to them. Indeed, communication is commonly considered to be a complex adaptation

facilitating cooperative behavior (Richerson & Boyd, 2010). As such, it is directly based on

coordination and cooperation.

The way communicative behavior was treated in the thesis follows once more a progression of

less to more complex level of communication. Chapters 4 and 5 have basic signaling emerge

from local interactions, Chapter 6 takes the signaling system a little further by assigning

meaning values in certain cases (see Section 6.2), and finally in Chapter 7 (and partly Section

6.3) communication is considered in its accomplished form, with a cultural tradition passed

on via social learning.

Given our approach is borrowed from evolutionary robotics (Section 3.1), evolutionary e↵ects

constitute a very important topic in every chapter of the thesis. In particular, Sections 6.3

and 7.3 show the e↵ects of cultural learning by mimicry, that is by partly matching the

learner’s culture to another agents’. The results show that this learning leads to rapid

fitness increases over the whole population, but also brings a higher risk of fitness drops.

Those are found to be caused by occasional mimicking of ine�cient phenotypes in Chapter

6. In the case of the gene-culture model introduced in Chapter 7, the drops are not caused

directly by an overfitting issue between individuals, but by the interaction between gene

and culture. That interaction is found to create a transfer of fitness-fulfilling load back and

forth from the genotypes to the culture and vice-versa.

8.2 Limitations

The work presented in this thesis contributes to the literature in a number of fields such as

artificial life modeling, swarm dynamics and social behavior. Scientific research is almost

never a complete success story, and numerous parts in this thesis could have been approached

in a di↵erent way than they were.

Firstly, the goal was the investigation of collaborative behaviors based on communication, in

an evolutionary perspective. In nature, the stigmergic phenomena, in which mechanisms of

coordination between agents are observed, based on a certain interaction they have among

them. The connection between their global coordination and their local interaction repre-

sents the subject of this thesis. A complete theory of the evolution of coordination and

communication should explain and justify all the initial ingredients and all the subsequent
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dynamics necessary to the emergence of the observed phenomena. Although this thesis

brings the elements mentioned above to answer that question, it does not yet allow for a

complete explanation of the emergence of coordination based on communication in the sense

of a complete theory. For that reason, our research has to be understood as an attempt to

improve existing frameworks of theories in the field.

Secondly, a confusion may occur in the reader’s mind, as for the distinction made between

coordination and cooperation, underlined in Chapters 1 and 2. The definition given in

Chapter 2 classifies coordination as the behavioral organization between agents which en-

ables them to fulfill a desired goal. Cooperation, on the other hand, is defined as the action

for a common or mutual benefit, which is typically defined as an adaptation to increase the

reproductive success of other agents rather than itself. As a matter of fact, coordination,

as it was observed in the di↵erent experiments of this thesis, always arose from the coop-

eration between agents, i.e. their collaboration to fullfill common goals. This is due, in

our setups, to the emergence of reciprocal selection (Trivers, 1971; Axelrod, 1984) and kin

selection (Smith, 1964; Hamilton, 1964), which lead the agents in the simulated populations

to evolve altruistic behaviors, which is the coordinated behavior of interest. That behavior

is signal-based swarming in Chapters 4 and 5, and signal-based synchronization in Chapter

6.

Thirdly, a minor source of confusion may arise from the diverse formulations of the agent-

based modeling we refer to in the literature, as the field of study continually crosses borders

between di↵erent areas, from nonlinear systems to behavioral biology. For instance, the mod-

eled actors are often referred to as agents, creatures, oscillators and phenotypes, depending

on the context of the discussion. In this thesis, we have put special e↵ort into making the

vocabulary uniform accross the chapters, but certain cases remained problematic where the

choice of terminology was relevant to the discussion. This type of hyperonymy, although

possibly confusing to the neophyte, is probably not new to the researcher working at the

intersection of di↵erent fields of research, which has become more and more frequent in

modern science. The reader may refer to the glossary at the end of this thesis, or to the

literature review and explanations of this thesis, in Chapters 2 and 3.

Other limitations must be considered, that are inherent to the very choice of our method-

ology, using agent-based modeling (ABM). Indeed, such models come with a certain set of

limitations, which can be dangerous if not taken seriously (Castle & Crooks, 2006).

Firstly, the design of the model always constrains its level of description (Couclelis, 2002).
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This problem must not be stigmatized in ABM approaches only, as simplifying assumptions

are common too in classical approaches. However, the coordinated patterns we observed

in every chapter required additionally careful analysis. For example, in Chapter 4, the

swarming behavior could have been produced by simple local reproduction, which would

have produced clusters of agents without any need for signaling. Another example is the

avoidance of unwanted, artifactual attractors in Chapter 7.

Secondly, the results must be interpreted appropriately, as the accuracy and completeness

depends on the model’s definition. Multiple runs must always be performed, with a system-

atical varitation of the initial parameters to assess the robustness of results (Axtell, 2000).

This can be an issue in the case that high computational requirements are needed, typically

when the size of the population grows higher, which is a limitation for every one of the stud-

ies presented in this thesis. In particular the evolution of swarming in Chapter 4 required

many runs with a large number of agents, that were modeled by computing-costly neural

networks.

Thirdly, in spite of the biological context in our studies, no empirical study was o↵ered. The

experiments presented in this thesis, although inspired by biological phenomena and given

similar designs, rely exclusively on abstract modeling of natural phenomena. Consequently,

the obtained results will require a distinct set of studies to establish the link with the

real world phenomena. However, we must underline that every model’s purpose was not

to give an accurate quantitative forecast of real biological individuals. But rather, ABM

is used as a tool to explore the intricacies of complex behaviors found in nature, because

of its abstraction (making it verifiable), modularity (each agent is modeled individually),

stochasticity (allowing to assess the probability of emergence by running the simulation

many times) and ability to model emergent properties (local properties translating into

global results).

Of course, if this thesis had to be done all over again, it could be improved on numerous

points, and our methodology can be improved in every way mentioned above. Nevertheless,

in spite of these imperfections, we have brought awareness on concepts, modeling approaches

and specific techniques with a valuable contribution to the field of study.
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8.3 Future directions

Although the studies presented in this thesis are considered to have reached a stage of

completion, it is our hope at this point that the reader will be left with the feeling that the

research could be expanded much more along similar lines of research. We will conclude with

some ending considerations on the completed work and a few thoughts for future research.

In this thesis, we introduced the problems of the evolution of coordination and communica-

tion. We successfully demonstrated the emergence of spatial coordination from the exchange

of signals between agents in a resource foraging task. Cooperation has been shown to emerge

and create niches through the establishment of signaling. Communication itself has been

shown to emerge in an environment changing with time where cooperation allows individ-

uals to save energy. We have presented multiple models demonstrating the evolution of

communication in populations of agents.

The models we introduced present a significance for both scientific and technological inter-

ests. On the one hand, the ecological studies contribute in themselves to shed light on the

evolution of coordination and communication. On the other hand, a better understanding

of the fundamental principles of collective behavior may also help to design robust control

structures for multi-agents systems, ubiquitous computing devices and swarm computation.

This thesis is intended as a first step towards the comprehension of the evolution of coordi-

nation and communication, by using the methodology of artificial neural networks, shaped

by artificial evolution to control autonomous agents. The long-term goal is to extend our

models for a full understanding of the necessary and su�cient conditions for the emergence

of cooperation between agents, and the dynamics through which they evolve a language.

In the future, in order to achieve these longer term goals, we can easily imagine extensions

for the models we created. Here, we would like to speculate on possible directions in which

to take the next step.

It would be interesting to study, for instance, the impact of the groups’ size on the observed

dynamics. By achieving a critical size, systems may give rise to qualitative changes, allowing

to develop crowd intelligence. The approach introduced in Chapter 4 seems particularly

fruitful to extend along these lines. Also, the approach from Chapter 6 can be appropriate

to study the ability of larger size groups to overcome the small errors and fluctuations arising

in an unpredictable environments, leading them to climb more e�ciently the gradients of

information of their environment, in order to survive better than single individuals would.
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A robust theory of criticality in biological systems could benefit from this approach, helping

to characterize the emergence of critical points and phase transitions in real swarms (Mora

& Bialek, 2011; Attanasi et al., 2014b,a).

We would also like to study the influence of sexual dimorphism on the interactions occurring

between agents, in particular the evolution of cooperation in groups. The idea is that sexual

selection could shape groups’ cooperation and conformity to norms (Gintis et al., 2001;

Krebs & Janicki, 2004). The latter one was part of the modeling hypotheses we made in

Chapter 7.

Lastly, we would like to propose an application of our models to the understanding of the

emergence of a “herd morality” (Nietzsche, 1967, 2011), a sense of morality inherent to

cultures. Modeling crowd dynamics may provide insights on the evolution of cooperation

and morality.
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Glossary

ABM Agent-Based Modeling 80

adaptive behavior In behavioral ecology an adaptive behavior is a behavior which contributes

directly or indirectly to an individual’s survival or reproductive success and is thus subject

to the forces of natural selection. 1, 9

ANN An ANN, or artificial neural network, is a computational model inspired by biological neural

networks and are used to estimate or approximate functions that can depend on a large

number of inputs and are generally unknown. 38, 104

coevolution In evolutionary biology, coevolution refers to the changes to which a biological species

is subject, which are triggered by the changes in another species. That is, coevolution refers

to the phenomenon of two species’ genetic compositions reciprocally a↵ecting each other’s

evolution. 8

communication Communication is the interaction between agents that enables them to trans-

fer information to each other across space and time, creating the possibility for complex

mechanisms such as language. 2–4

cooperation In evolutionary game theory, cooperation is the adaptation in groups of agents that

makes them work together for mutual benefits, as opposed to uniquely competitive or selfish

benefit. An agent is considered to be cooperating if it sacrifices some of its own reproductive

potential to help increasing other agents’ chances of reproductive success. 2–4, 14, 15

coordination In the context of adaptive behavior, coordination is the organization of di↵erent

individuals of a population, or elements of a complex entity, enabling them to work together

e↵ectively. 1–4, 15

DNA DNA, or deoxyribonucleic acid, is a molecule that encodes the genetic instructions used in

the development and functioning of living organisms. They contain the hereditary material

in every species, what makes them unique. 9, 124
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Glossary Glossary

embodied An embodied agent is an agent which is given a body in a material or simulated

world, which will largely determine the nature of its cognitive abilities (Brooks, 1992). The

terminology comes from the theory of embodied cognition, originating from Kant & Jaki

(1981). 2, 27

epigenetics In biology, epigenetics is the study of cellular and physiological traits that are not

caused by changes in the DNA sequence; Epigenetics describes the study of stable, long-term

alterations in the transcriptional potential of a cell. Some of those alterations are heritable.

11

evolution Evolution is the process by which di↵erent kinds of living organisms gradually develop

and diversified from earlier forms during the history of the earth. 1, 2

gene The term gene refers to the cause of an inheritable phenotype characteristic (e.g. skin color

or number of legs). 9

go The game of go, also known as igo, baduk or weiqi, is a board game involving two players

playing black and white stones on the vacant intersections of a board with a 19x19 grid of

lines. 108

heritable A characteristic or trait in an individual is said to be heritable, if it is transmissible

from parent to o↵spring. Heritability is therefore considered to be the proportion of observed

di↵erences on a trait among individuals of a population that are due to genetic di↵erences.

9

locus In genetics, a locus refers to a specific location on a chromosome, that can correspond to a

gene or DNA sequence. 17

Prisoner’s Dilemma Canonical example of a non-zero-sum game, where two players can choose

between two moves, either “cooperate” or “defect”. The idea is that each player gains when

both cooperate, but if only one of them cooperates, the one who defects gains more. If

both defect, both lose (or gain less) although not as much as the cheated cooperator whose

cooperation is not returned. 64

RNA RNA, or ribonucleic acid, is a polymeric molecule implicated in the coding, decoding, regu-

lation, and expression of genes. 13

shielding Shielding is the e↵ect of learned behavior replacing unlearned behavior. Shielding is

said to “mask” natural selection. It is often considered as the opposite of the Baldwin e↵ect,

in the sense that a species that learns a feature, does not need to evolve it. 102, 106, 116

signal A signal is defined as any act or structure which alters the behavior of other organisms,

which evolved because of that e↵ect, and which is e↵ective because the receiver’s response

has also evolved. 125
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Glossary Glossary

signaling Use of signals between agents. 2

stigmergy Stigmergy is a mechanism of indirect coordination between agents or actions. The

principle is that the trace left in the environment by an action stimulates the performance of

a next action, by the same or a di↵erent agent. In that way, subsequent actions tend to rein-

force and build on each other, leading to the spontaneous emergence of coherent, apparently

systematic activity. Stigmergy is a form of self-organization. It produces complex, seemingly

intelligent structures, without need for any planning, control, or even direct communication

between the agents. As such it supports e�cient collaboration between extremely simple

agents, who lack any memory, intelligence or even individual awareness of each other. 2, 15

theory of mind The ability to attribute mental states (e.g. beliefs, intentions or desires) to oneself

and others and to understand that others have beliefs, desires, and intentions that are di↵erent

from one’s own. 23
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Dario Floreano, Sara Mitri, Stéphane Magnenat and Laurent Keller. 2007. Evolutionary conditions

for the emergence of communication in robots. Current biology, 17, 514–519.

AS Fraser. 1960. Simulation of genetic systems by automatic digital computers vii. e↵ects of repro-

ductive ra’l’e, and intensity of selection, on genetic structure. Australian Journal of Biological

Sciences, 13, 344–350.

Andy Gardner, Ashleigh S Gri�n and Stuart A West. 2009. Theory of cooperation. eLS.

Andy Gardner and Stuart A West. 2010. Greenbeards. Evolution, 64, 25–38.

R Allen Gardner and Beatrice T Gardner. 1969. Teaching sign language to a chimpanzee. Science,

165, 664–672.

132



REFERENCES REFERENCES

R Allen Gardner and Beatrice T Gardner. 1975. Early signs of language in child and chimpanzee.

Science, 187, 752–753.

Anatolij Gelimson, Jonas Cremer and Erwin Frey. 2013. Mobility, fitness collection, and the

breakdown of cooperation. Physical Review E, 87, 042711.

Herbert Gintis. Game theory evolving: A problem-centered introduction to modeling strategic inter-

action. Princeton University Press, 2009.

Herbert Gintis, Eric Alden Smith and Samuel Bowles. 2001. Costly signaling and cooperation.

Journal of theoretical biology, 213, 103–119.

Roy J Glauber. 1963. Time-dependent statistics of the ising model. Journal of mathematical

physics, 4, 294–307.
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examination of emergent properties. The biological bulletin, 202, 296–305.

Brian L Partridge. 1982. The structure and function of fish schools. Scientific american, 246,

114–123.

Francine Patterson and Eugene Linden. The education of Koko. Holt, Rinehart, and Winston New

York, 1981.

Karl Pearson. 1901. Principal components analysis. The London, Edinburgh, and Dublin Philo-

sophical Magazine and Journal of Science, 6, 559.

Rolf Pfeifer and Christian Scheier. Understanding intelligence. MIT press, 1999.

Arkady Pikovsky, Michael Rosenblum and Jürgen Kurths. 2001. A universal concept in nonlinear

sciences. Self, 2, 3.

Steven Pinker and Paul Bloom. 1990. Natural language and natural selection. Behavioral and brain

sciences, 13, 707–727.

Steven Pinker and Ray Jackendo↵. 2005. The faculty of language: what’s special about it? Cogni-

tion, 95, 201–236.

TJ Pitcher, AE Magurran and IJ Winfield. 1982. Fish in larger shoals find food faster. Behavioral

Ecology and Sociobiology, 10, 149–151.

TJ Pitcher and JK Parrish. Functions of shoaling behaviour in teleosts, pitcher tj, behaviour of

teleost fishes, 1993, 363-439.

TJ Pitcher and BL Partridge. 1979. Fish school density and volume. Marine Biology, 54, 383–394.

Renfrey Burnard Potts. Some generalized order-disorder transformations. In Mathematical Proceed-

ings of the Cambridge Philosophical Society, volume 48, pages 106–109. Cambridge Univ Press,

1952.

David Premack. 1971. Language in chimpanzees. Science, 172, 808–822.

140



REFERENCES REFERENCES

William B Provine. 2004. Ernst mayr genetics and speciation. Genetics, 167, 1041–1046.

M. Quinn. Evolving cooperative homogeneous multi-robot teams. In Proceedings of the International

Conference on Intelligent Robots and Systems (IROS 2000), pages 1798–1803, Takamatsu, Japan,

2000. IEEE Press.

M. Quinn. Evolving communication without dedicated communication channels. In Proceedings

of the European Conference on Artificial Life, pages 357–366, Prague, Czech Republic, 2001.

Springer.

M. Quinn, L. Smith, G. Mayley and P. Husbands. 2003. Evolving controllers for a homogeneous

system of physical robots: Structured cooperation with minimal sensors. Philosophical Transac-

tions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences,

361, 2321–2344.

Vilayanur S Ramachandran, Sandra Blakeslee and Oliver W Sacks. Phantoms in the brain: Probing

the mysteries of the human mind. William Morrow New York, 1998.

Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM SIGGRAPH

Computer Graphics, volume 21, pages 25–34. ACM, 1987.

David Reznick, Michael J Bryant and Farrah Bashey. 2002. r-and k-selection revisited: the role of

population regulation in life-history evolution. Ecology, 83, 1509–1520.

Peter J Richerson and Robert Boyd. Not by genes alone: How culture transformed human evolution.

University of Chicago Press, 2008.

Peter J Richerson and Robert Boyd. 2010. Why possibly language evolved. Biolinguistics, 4,

289–306.

Filip Rolland, Elena Baena-Gonzalez and Jen Sheen. 2006. Sugar sensing and signaling in plants:

conserved and novel mechanisms. Annu. Rev. Plant Biol., 57, 675–709.

Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information storage and orga-

nization in the brain. Psychological review, 65, 386.

Pardis C Sabeti, Patrick Varilly, Ben Fry, Jason Lohmueller, Elizabeth Hostetter, Chris Cotsapas,

Xiaohui Xie, Elizabeth H Byrne, Steven A McCarroll, Rachelle Gaudet et al. 2007. Genome-wide

detection and characterization of positive selection in human populations. Nature, 449, 913–918.

Robert M Sapolsky. Why zebras don’t get ulcers: The acclaimed guide to stress, stress-related

diseases, and coping-now revised and updated. Macmillan, 2004.

Sue Savage-Rumbaugh and Kelly McDonald. 1988. Deception and social manipulation in symbol-

using apes.

141



REFERENCES REFERENCES

Hiroki Sayama. Morphologies of self-organizing swarms in 3d swarm chemistry. In Proceedings

of the fourteenth international conference on Genetic and evolutionary computation conference,

pages 577–584. ACM, 2012.

H Martin Schaefer and Graeme D Ruxton. Plant-animal communication. Oxford University Press,

2011.

Je↵rey C Schank. 1997. Problems with dimensionless measurement models of synchrony in biological

systems. American journal of primatology, 41, 65–85.

Jürgen Schmidhuber. 1992. Learning complex, extended sequences using the principle of history

compression. Neural Computation, 4, 234–242.

Robert J Schmitz. 2014. The secret garden—epigenetic alleles underlie complex traits. Science,

343, 1082–1083.

Benoni H Seghers. 1974. Schooling behavior in the guppy (poecilia reticulata): an evolutionary

response to predation. Evolution, pages 486–489.

Claude E Shannon and Warren Weaver. The mathematical theory of communication (urbana, il,

1949.

Naohiko Shimoyama, Ken Sugawara, Tsuyoshi Mizuguchi, Yoshinori Hayakawa and Masaki Sano.

1996. Collective motion in a system of motile elements. Physical Review Letters, 76, 3870.

Susanne Shultz, Emma Nelson and Robin IM Dunbar. 2012. Hominin cognitive evolution: identi-

fying patterns and processes in the fossil and archaeological record. Philosophical Transactions

of the Royal Society B: Biological Sciences, 367, 2130–2140.

Estrella A Sicardi, Hugo Fort, Mendeli H Vainstein and Jeferson J Arenzon. 2009. Random mobility

and spatial structure often enhance cooperation. Journal of theoretical biology, 256, 240–246.

G. Simpson. 1953. The baldwin e↵ect. Evolution, 7, 110–117.

BF Skinner. 1957. Verbal behavior. new york: Appleton-century-crofts. Richard-Amato, P.(1996),

page 11.

Burrhus Frederic Skinner. 1969. Contingencies of reinforcement.

J Maynard Smith. 1964. Group selection and kin selection. Nature, 201, 1145–1147.

John Maynard Smith. Evolution and the Theory of Games. Cambridge university press, 1982.

John Maynard Smith, David Harper and John Maynard Smith. Animal signals. Oxford University

Press New York, NY, USA:, 2003a.

Kenny Smith, Simon Kirby and Henry Brighton. 2003b. Iterated learning: A framework for the

emergence of language. Artificial life, 9, 371–386.

142



REFERENCES REFERENCES

Tom V Smulders. 1998. A game theoretical model of the evolution of food hoarding: applications

to the paridae. The American Naturalist, 151, 356–366.

EaBMG Stackebrandt and BM Goebel. 1994. Taxonomic note: a place for dna-dna reassociation

and 16s rrna sequence analysis in the present species definition in bacteriology. International

Journal of Systematic Bacteriology, 44, 846–849.

Kenneth Stanley and Risto Miikkulainen. 2002. Evolving neural networks through augmenting

topologies. Evolutionary computation, 10, 99–127.

Kenneth O Stanley. Exploiting regularity without development. In Proceedings of the AAAI Fall

Symposium on Developmental Systems, page 37. AAAI Press Menlo Park, CA, 2006.

Luc Steels. 1999. The talking heads experiment.

Luc Steels. 2003. Evolving grounded communication for robots. Trends in cognitive sciences, 7,

308–312.

Luc Steels and Paul Vogt. Grounding adaptive language games in robotic agents. In Proceedings

of the fourth european conference on artificial life, volume 97, 1997.

Kathleen Stern and Martha K McClintock. 1998. Regulation of ovulation by human pheromones.

Nature, 392, 177–179.

Je↵rey R Stevens and David W Stephens. 2002. Food sharing: a model of manipulation by

harassment. Behavioral Ecology, 13, 393–400.

Steven Strogatz. Sync: The emerging science of spontaneous order. Hyperion, 2003.

Steven H Strogatz. 2000. From kuramoto to crawford: exploring the onset of synchronization in

populations of coupled oscillators. Physica D: Nonlinear Phenomena, 143, 1–20.

Steven H. Strogatz and Renato E. Mirollo. 1988. Phase-locking and critical phenomena in lattices of

coupled nonlinear oscillators with random intrinsic frequencies. Physica D: Nonlinear Phenomena,

31, 143 – 168. ISSN 0167-2789. URL http://www.sciencedirect.com/science/article/pii/

0167278988900747. (doi:http://dx.doi.org/10.1016/0167-2789(88)90074-7)

Steven H Strogatz, Ian Stewart et al. 1993. Coupled oscillators and biological synchronization.

Scientific American, 269, 102–109.

Housheng Su, Xiaofan Wang and Zongli Lin. 2009. Flocking of multi-agents with a virtual leader.

Automatic Control, IEEE Transactions on, 54, 293–307.

Maggie Tallerman. 2013. Kin selection, pedagogy, and linguistic complexity: Whence protolanguage.

The Evolutionary Emergence of Language: Evidence and Inference, page 77.

143

http://www.sciencedirect.com/science/article/pii/0167278988900747
http://www.sciencedirect.com/science/article/pii/0167278988900747


REFERENCES REFERENCES

Maggie Tallerman and Kathleen R Gibson. The Oxford handbook of language evolution. Oxford

University Press, 2012.

Guy Theraulaz and Eric Bonabeau. 1999. A brief history of stigmergy. Artificial life, 5, 97–116.

John N Thompson. 1999. The evolution of species interactions. Science, 284, 2116–2118.

Peter H Thrall, Michael E Hochberg, Jeremy J Burdon and James D Bever. 2007. Coevolution of

symbiotic mutualists and parasites in a community context. Trends in Ecology & Evolution, 22,

120–126.

M. Tomasello. The cultural origins of human cognition. Harvard University Press, 1999. ISBN

9780674000704. URL http://books.google.com/books?id=ji2_pY4mKwYC.

Michael Tomasello. 1996. The cultural roots of language. Communicating meaning: The evolution

and development of language, pages 275–307.

Colin J Torney, Andrew Berdahl and Iain D Couzin. 2011. Signalling and the evolution of cooper-

ative foraging in dynamic environments. PLoS computational biology, 7, e1002194.

William F Towne and James L Gould. 1988. The spatial precision of the honey bees’ dance

communication. Journal of Insect Behavior, 1, 129–155.

Robert L Trivers. 1971. The evolution of reciprocal altruism. Quarterly review of biology, pages

35–57.

Xiaoyuan Tu and Demetri Terzopoulos. Artificial fishes: Physics, locomotion, perception, behavior.

In Proceedings of the 21st annual conference on Computer graphics and interactive techniques,

pages 43–50. ACM, 1994.

Albert Tucker. 1950. A two person dilemma. lecture at stanford university. Prisoner’s Dilemma,

2nd Edition. Anchor Books, New York.

Alan M Turing. 1950. Computing machinery and intelligence. Mind, pages 433–460.

Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire Fraser-Liggett, Rob Knight and Je↵rey I

Gordon. 2007. The human microbiome project: exploring the microbial part of ourselves in a

changing world. Nature, 449, 804.

Ib Ulbaek. 1998. 3 the origin of language and cognition.

Mendeli H Vainstein and Jeferson J Arenzon. 2014. Spatial social dilemmas: Dilution, mobility and

grouping e↵ects with imitation dynamics. Physica A: Statistical Mechanics and its Applications,

394, 145–157.

Mendeli H Vainstein, Ana TC Silva and Jeferson J Arenzon. 2007. Does mobility decrease cooper-

ation? Journal of theoretical biology, 244, 722–728.

144

http://books.google.com/books?id=ji2_pY4mKwYC


REFERENCES REFERENCES

Stephen B Vander Wall and Stephen H Jenkins. 2003. Reciprocal pilferage and the evolution of

food-hoarding behavior. Behavioral Ecology, 14, 656–667.

Patricia A Vargas, Ezequiel A Di Paolo, Inman Harvey and Phil Husbands. The Horizons of

Evolutionary Robotics. MIT Press, 2014.

Clément Vidal. 2008. The future of scientific simulations: from artificial life to artificial cosmogen-

esis. arXiv preprint arXiv:0803.1087.

Karl Von Frisch. 1967. The dance language and orientation of bees.

Michael J Wade. 2007. The co-evolutionary genetics of ecological communities. Nature Reviews

Genetics, 8, 185–195.

Sara Imari Walker and Paul CW Davies. 2013. The algorithmic origins of life. Journal of The

Royal Society Interface, 10, 20120869.

Christopher R Ward, Fernand Gobet and Graham Kendall. 2001. Evolving collective behavior in

an artificial ecology. Artificial life, 7, 191–209.

Christopher M Waters and Bonnie L Bassler. 2005. Quorum sensing: cell-to-cell communication in

bacteria. Annu. Rev. Cell Dev. Biol., 21, 319–346.

B. Webb. 2009. Animals versus animats: Or why not model the real iguana? Adaptive Behavior,

17, 269–286.

Bruce H Weber and David J Depew. Evolution and learning: The Baldwin e↵ect reconsidered. Mit

Press, 2003.

Stuart AWest, Ashleigh S Gri�n and Andy Gardner. 2007. Social semantics: altruism, cooperation,

mutualism, strong reciprocity and group selection. Journal of evolutionary biology, 20, 415–432.

John Whalen, CR Gallistel and Rochel Gelman. 1999. Nonverbal counting in humans: The psy-

chophysics of number representation. Psychological Science, 10, 130–137.

Michael Wibral, Nicolae Pampu, Viola Priesemann, Felix Siebenhner, Hannes Seiwert, Michael

Lindner, Joseph T Lizier and Raul Vicente. 2013. Measuring information-transfer delays. PloS

one, 8, e55809.

N Wiener. Nonlinear problems in random theory., 1958.

Kurt Wiesenfeld, Pere Colet and Steven H Strogatz. 1996. Synchronization transitions in a disor-

dered josephson series array. Physical review letters, 76, 404.

George C Williams. 1966. Adaptation and natural selection: a critique of some current evolutionary

thoughts. Princeton, New Jersey.

145



REFERENCES REFERENCES

David Sloan Wilson. 1975. A theory of group selection. Proceedings of the national academy of

sciences, 72, 143–146.

Edward O Wilson and Bert Hölldobler. 2005. Eusociality: origin and consequences. Proceedings of

the National Academy of Sciences of the United States of America, 102, 13367–13371.

M. Wineberg and F. Oppacher. The underlying similarity of diversity measures used in evolutionary

computation. In Proceedings of the Fifth Genetic and Evolutionary Computation Conference,

pages 1493–1504, Berlin, 2003. Springer.

Arthur T Winfree. 1967. Biological rhythms and the behavior of populations of coupled oscillators.

Journal of theoretical biology, 16, 15–42.
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