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Chapter 1

On Optimal Super-Hedging and
Sub-Hedging Strategies

This paper proposes optimal super-hedging and sub-hedging strategies for a derivative on two underlying assets
without any specification of the underlying processes. Moreover, the strategies are free from any model of
the dependency between the underlying asset prices. We derive the optimal pricing bounds by finding a joint
distribution under which the derivative price is equal to the hedging portfolio’s value; the portfolio consists of
liquid derivatives on each of the underlying assets. As examples, we obtain new super-hedging and sub-hedging
strategies for several exotic options such as quanto options, exchange options, basket options, forward starting
options, and knock-out options.!

1.1 Introduction

This paper proposes optimal super-hedging and sub-hedging strategies for a derivative on two underlying assets
without any specifications of the underlying processes.

The standard approach to pricing and hedging derivatives is to postulate a particular model for the behavior
of the underlying asset prices. Model-parameters are determined by calibration to market prices of liquid
derivatives or by estimation from historical data, and hedging is carried out based on the model with only liquid
derivatives in the market. For the case of multi-asset derivatives, the dependency structure among the assets
is usually estimated and cannot be hedged because there does not exist any derivatives containing information
on the dependency. The model with estimated parameters does not necessarily describe the actual behavior of
the market, which leads to lack of robustness of the hedging strategy. This is problematic especially in financial
turmoils such as the crisis in 2007.

In order to overcome the problem of the standard approach, many researchers have been investigating model-
independent super-hedging and sub-hedging strategies for single- or multi-asset derivatives, which is one of the
most challenging fields in mathematical finance: currency cross-rate options or spread options by (Chung and
Wang, 2008) and (Laurence and Wang, 2009); basket options or asian option by (H. Albrecher and Schoutens,
2005), (d’Aspremont and El-Ghaoui, 2006), (X. Chen and Vanmaele, 2008), (Hobson et al., 2005a), (Laurence

1Electronic version of an article published as International Journal of Theoretical and Applied Finance,
Vol. 16, No. 06, 2013, DOI:10.1142/S0219024913500386, (©2015 World Scientific Publishing Co Pte Ltd,
http://www.worldscientific.com/worldscinet /ijtaf
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and Wang, 2003), and (Linders et al., 2012); barrier options by (Brown et al., 2001) and (Neuberger and Hodges,
2000); forward starting options by (Hobson and Neuberger, 2012); lookback options by (Hobson, 1998). They
obtain the optimal super-hedging and sub-hedging portfolio for the multi-asset derivatives under an assumption
that they have no information on the joint distribution of the assets. The assumption of no information on the
joint distribution is reasonable because there is no derivatives including such information in most markets. On
the other hand, there exist certain researches (e.g. (Schmutz and Ziircher, 2010) and (Baldeaux and Rutkowski,
2010)) that make use of information embedded in some markets. For single-asset derivatives, it is assumed that
marginal distributions of the underlying price at each time are known. Moreover, they add an assumption that
the underlying asset price itself is a martingale, which reduces the problem to finding the solution to a Skorohod
embedding problem.

We are also in line with the previous works for multi-asset derivatives: our strategies are free from any
dependency between two underlying asset prices. The hedging strategy is carried out with a static portfolio
which consists of liquid derivatives on each underlying asset. Here, a static portfolio means a portfolio which does
not require any transaction after the inception of the contract. A model-independent static hedging strategy
with liquid derivatives is effective because it is easy to construct and maintain and never fails to hedge the
derivative even in the financial turmoil periods when many models and hedges collapse. We derive the optimal
pricing bounds through finding a joint distribution under which the derivative price is equal to the hedging
portfolio’s value as in the previous works.

On the other hand, we differ from the previous works studying some specific derivatives in that we deal with
more general derivatives including existing works such as quanto options, exchange options, basket options,
forward starting options and knock-out options. super-hedging and sub-hedging strategies for these apparently
different options are derived based on a common well-known inequality, namely Young’s inequality. We prove
the optimality based on copulas theory which is introduced to mathematical finance by (Cherubini and Luciano,
2002). Under the joint distribution in the optimal case, random variables appearing in a payoff function are co-
monotonic or counter-monotonic (see e.g. (Dhaene et al., 2002) for co-monotonicity). In particular, (X. Chen and
Vanmaele, 2008) derives optimal super-hedging strategies for basket call options using theory of comonotonicity
and (Linders et al., 2012) for basket call and put options. Our approach is more robust than (Brown et al.,
2001), (Neuberger and Hodges, 2000) and (Hobson and Neuberger, 2012), which assume a price process of the
underlying asset to be a martingale and require a transaction after the inception of the contract. Obviously,
as their assumption is violated in the real markets with nonzero interest rates, the result cannot be directly
applied in practice. Moreover, it is not necessarily possible to trade during the turmoil periods, which may
cause substantial hedging errors. In contrast, we neither impose this assumption nor require any transaction
after the inception.

The rest of the paper is as follows. The next sections describes the setup and the problem considered in this
paper. Section three proposes our new hedging strategies. In the fourth section, our result is applied to some
derivatives including quanto options, exchange options, basket options, forward starting options and knock-out
options.

1.2 Setup

We make some assumptions on the market environment. Suppose that two risky assets are traded in the market.
Let S and S} be the time-t prices of the assets respectively for ¢ € [0,T*], where T* is some arbitrarily
determined time horizon. The risk-free interest rate and the dividend yields of the assets are assumed to
be zero for simplicity. It is assumed that there exists a risk-neutral probability measure Q, under which the
instantaneous expected rate of return on every asset is equal to zero in our settings.
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Let X and Y be random variables which are dependent on each asset price SX and SY respectively. Then,
a derivative considered in this paper is a product with maturity 7" whose payoff is expressed for some function
K :R xR — [0,+00) which is integrable on R x R by

O(X,Y) :z/ /5 K(z,y)dydz, (1.2.1)

where a and 8 are some real numbers which are less than the essential infimum of X and Y respectively. Note
that the assumption that the function K takes a non-negative value is essential. Concrete examples are shown
in Section 1.4.

Remark 1. A payoff with both long and short is not represented in this form since K(x,y) takes negative values
in this case.

Let us suppose that the marginal distribution functions of the random variable X and Y are known.

Definition 1. The marginal distribution functions F and G of the random variable X and Y respectively are
defined for x,y € R by

F(z) = QX <u), (1.2.2)
Gly) = QY <y). (1.2.3)

Next, let us introduce some notation to express the joint distribution of the two random variables X and Y
with a copula function as in Appendix 1.5.

Definition 2. A joint distribution function HC of the random variables X and Y with a copula function C is
for x,y € R defined by
H(z,y) = C(F(x),G(y)
QYX < z,Y <y). (1.2.4)

Especially, if the copula function is Maximum copula M,

HM(z,y) = M(F(x),G(y))
QM(X <z,Y <y), (1.2.5)

where M (z,y) := min(z,y). In addition, EC is defined as the expectation operator under Q€ with a copula
function C.

Remark 2. The marginal distributions of X and Y under any risk-neutral probability measure Q° are inde-
pendent of choice of the copula function C. We may omit C' in QF and EC if it is concerned with only the
marginal distributions.

The problem in this paper is stated as follows.

Problem 1. Suppose that the marginal distribution functions of the random variable X andY are known, but
the joint distribution function is not known. Then, what is the cheapest super-hedging strategy on a derivative
with maturity T whose payoff is ®(X,Y)?
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In order to prove that the super-hedging strategy is the cheapest, one way is to compare the cost of a
super-hedging portfolio with the price of the derivative under some measure Q¢ with a copula function C. The
upper bound on the price of the derivative with payoff ®(X,Y) is

supEC(D(X,Y)), (1.2.6)
c
where C is an arbitrary copula function. Since the cost of any super-hedging portfolio is larger than E€ (®(X,Y"))

with any copula function C, if we find a particular measure Q¢ and a super-hedging portfolio whose cost is
EC(®(X,Y)), the strategy is the cheapest one.

1.3 Super-hedging and Sub-hedging Strategy

In this section, we first introduce the super-hedging strategy. Then, we derive the sub-hedging strategy using
the super-hedging strategy (See (K.C. Cheung and Linders, 2013) for the case where a pay-off function is not
twice differentiable). The following lemma is an extended version of Young’s inequality (See Theorem 2.3 in
(Mitroi and Niculescu, 2011)).

Lemma 1. Let f : R — R be a non-decreasing function. Then for every Lebesgue locally integrable function
K:RxR —[0,400) and real numbers X, Y and o, we have

X Y X f(z)
/ K(x,y)dyde < / < K(x, y)dy) dx
a f(e) e} f(a)

Y Feun(®)
+ / / K(z,y)dz | dy, (1.3.1)
fla) \Ja

is the right-continuous inverse function of f:

fs_u;(y) =inf{x e R |y < f(z)}. (1.3.2)

If in addition K is strictly positive almost everywhere, then the equality occurs if and only if y € [f(z—), f(z+)].

-1

where fq,,

Applying Lemma 1 to our problem, the value of ®(X,Y’) is dominated by the payoff of the following portfolio,
if 8 = f():

e a derivative with the payoff fj (ff((ogf)) K(z, y)dy) dx

1,
e a derivative with the payoff ffia) (fafsup(y) K(z, y)dx) dy.

Although these payoffs seem to be complicated, they can be replicated with liquid derivatives. For example,
when X and Y are dependent only on Si¥ and S¥ respectively, they can be replicated with plain-vanilla options
on each asset with maturity 7' as in (Breeden and Litzenberger, 1978) and (Carr and Madan, 1998) (See
(Baldeaux and Rutkowski, 2010) for the case where a payoff function is not twice differentiable).

The question is how to choose the function f in order for the portfolio to be cheap. The answer to the
question is that the function f should be f* in Definition 3, if we assume that Assumption 1 holds.

Assumption 1. F is continuous.
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Definition 3. Let f* : [a, +00) — R be a non-decreasing function defined by
ff(x):=inf{y e R| F(z) < G(y)}, (1.3.3)
where a, is the essential infimum of X.

The following lemma shows that the function f* can be viewed as a transform of X to some random variable
which has the same distribution of Y.

Lemma 2. Suppose that Assumption 1 holds. Then, the random variable f*(X) has the same distribution as
the random variable Y :

Q(f(X) <y) =G(y). (1.3.4)

Proof. First, we show Q(f*(X) <y) = Q(X < ¢g*(y)), where g*(y) :=inf{z e R | G(y) < F(x)}. f*(X) <y
means that f*(X) < y+ € for any € > 0, which is equivalent with F(X) < G(y + ¢) for any € > 0. On the other
hand, X < ¢g*(y) means that X — e < g*(y) for any € > 0, which is equivalent with F(X —€) < G(y) for any
€ > 0. By continuity of F', this is equivalent with F(X) < G(y). Then, we have Q(f*(X) <y) = Q(X < g*(y))
because of Q(F(X) = G(y)) = 0.

Next, we have F'(¢*(y) —¢) < G(y) < F(g*(y)+e¢) for any € > 0, when 0 < G(y) < 1. Then, F(g*(y)) = G(y)
by continuity of F'. This is also true when G(y) = 0 or G(y) = 1. Finally, we obtain Q(f*(X) < y) = Q(X

<
9" () = F(g*(y)) = G(y). H

The cheapest super-hedging strategy is obtained by taking a particular probability space such that ¥ =
f*(X), which means that the random variables X and Y are most “dependent”.

Theorem 1. Suppose that Assumption 1 holds and that f* is a function defined by Definition &8 which is
extended such that = f*(a) if needed. Then,

X fr(x)
B(X, f1(X)) = / </f*()K(x,y)dy> i

(X)) (F) e ®)
+ / / K(z,y)dx | dy (1.3.5)
f*(a) o

X [ (i@
EM(@®(X,Y)) = E K(z,y)dy | dz
(2(X,Y)) (/ (/ﬂa) <y>y> )
Y (F)zup W)
E K(z,y)dz | dy |, 1.3.6
+ (/f()(/ (2,9) >y> (1.3.6)

where EM is the expectation operator of the measure with Mazimum copula M defined by Eq.(1.2.5).

Proof. Eq(1.3.5) is followed by Lemma 1. Let x,y be real numbers and H(z,y) := Q(X < z, f*(X) <y). (i)
Suppose that F(z) < G(y). Then we have f*(z) < y and H(z,y) = Q(X < x) = F(z). (ii) Suppose that
F(z) > G(y). Then, we have f*(z) > y + € for some € > 0 and H(z,y) = Q(f*(X) <y) = G(y). (iii) Suppose
that F(z) = G(y). If f*(z) =y, we have H(z,y) = Q(X < z) = F(z). Otherwise, we have H(z,y) = F(z)
for f*(x) < y and H(z,y) = G(y) for f*(x) > y. Therefore, the function H is the same as Maximum copula
M. O

and
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Remark 3. Although we have defined o and B as some real numbers which are less than the essential infimum
of X and'Y respectively, Theorem 1 is also valid for any real numbers o and 8 such that 8 = f*(a).

Remark 4. Theorem 1 is also valid for functions (e.g. delta function) that can be approzimated by series of
locally integrable functions.

Remark 5. Let g*(y) := inf{x € R | G(y) < F(x)}. Then, ¢g*(Y) has the same distribution as X, if G is
continuous. In case where both F' and G are continuous, we have another hedging strategy where X and f* are
replaced with Y and g*. However, the hedging strategy dose not depend on the choice, since f*(X) = (g*) 5.5, (X)
holds almost surely.

Corollary 1. Suppose that Assumption 1 holds, that X > 0 and Y = 14 for some measurable set A and
Q(A) > 0. Then,

—(@ = X))y +2:1a < X1g < (X —2")p + 2714, (1.3.7)
where £* and x, are respectively defined by

¥ = inf{lzeR|Q(A°) < F(x)} (1.3.8)
z. = inf{z e R|Q(A) < F(x)}. 1.3.9

Proof. Under the assumptions, we have

0 (y<0)
Gly)=q p (0<y<1) , (1.3.10)
1

(1<vy)

)
21’ (1.3.11)

and

—oo (y<0)
(f) 'y =9 =* (0<y<1) . (1.3.12)
oo (1<y)

Theorem 1 leads to
1a
Xl, < / e+ [
= (X —a")1+2"14. (1.3.13)

Using the upper bound, we have

X1ae=X1a—-X < (X —a); — X +2*1,4 (1.3.14)
= (@ =-X)y—z"+2"14

If we view A¢ as A, we obtain the lower bound. O
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Let a, and S, be the essential infimum of X and —Y respectively. Then, we have

BX,Y) = - / ) [ BYK(z,y)dydx (1.3.15)

_ </ax /_YJF/QX /_[:*/;* /_;Y K(z, —y)dyda:). (1.3.16)

We obtain the sub-hedging strategy by applying Theorem 1 to Eq.(1.3.15) or the first integral of Eq.(1.3.16), if
all of the tree integrals of Eq.(1.3.16) are finite.

Remark 6. Note that the sub-hedging strategy is not necessarily determined uniquely, while the lower pricing
bound is unique.

1.4 Examples

In this section, we assume that S5 and S¥ are positive and their distribution functions are continuous and
strictly increasing for simplicity. Moreover, for random variables X and Y and K : R x R — [0, 400), let

Oy (z) and Py (y) be
v [ ()
/ / K(z,y)dy | dx
o \Jf (@

y (f) s W)
/ / K(x,y)dz | dy, (1.4.1)
fr(a) \Ya

-1
sup

CI)X(.’L‘)

Dy (y)

where f* is defined by Definition 3 for X and Y. Hereafter, we omit sup in for simplicity.

1.4.1 Quanto Options

Quanto options are dependent on a price of a foreign asset at maturity and a pre-fixed foreign exchange rate.
Let S be the time-T exchange rate and S¥ be the time-T foreign asset price. A quanto call option is a contract
which pays the holder a total of

(SY — k)4 (1.4.2)

in the domestic currency, where « is a positive number. See (Baxter and Rennie, 1996) for more details of the
Black formula and (Bennett and Kennedy, 2004) for an application of copulas.
Consider the payoff (1.4.2) denominated in the foreign currency:
1

3 (SY — k)4 (1.4.3)

Then we can directly apply our result to the payoff (2.3.5) with X = 2%, Y = (S} — )4 and K = 1 and obtain
T
the super-hedging portfolio:

X Y
Xy < /O F (@) + /0 (F) " (). (1.4.4)

This means that the quanto option is super-hedged by
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1

X
e an option on the exchange rate whose payoff is fOST [ (x)dx

Y
e an option on the foreign asset whose payoff is fO(ST _K”(f*)*l(y)dy,

where both of the payoffs are denominated in the foreign currency.
For sub-hedging, we have for any a > 0,

-Y

~ X ~ ~ ~
(X —a)(=Y = f(a)) < / (f(z) = f(a))dz +/ (f ' (y) — a)dy. (1.4.5)

f(e)

where f is defined by Definition 3 for X and —Y. We obtain the sub-hedging portfolio:
1

e an option on the exchange rate whose payoff is — fog (f(z) = fla))dz — f(a)<x

St

Y ~
e an option on the foreign asset whose payoff is — fo_(ST _N”(f Yy) — a)dy — a((S¥ — k)4 — f(@)),
where both of the payoffs are denominated in the foreign currency.

Remark 7. (Tsuzuki, 2011) investigates pricing bounds on quanto options with several numerical examples.

1.4.2 Exchange Options

Exchange options are options to exchange one risky asset for another (see (Margrabe, 1978)). The options
are equivalent to many financial arrangements such as spread options and cross-currency option. (Chung and
Wang, 2008) investigates the pricing bounds for a cross-currency option and (Laurence and Wang, 2009) does
for spread options. We obtain the same result as theirs.

Let us consider an exchange option whose payoff is:

(S7 = ST — K)+, (1.4.6)

where k is a positive number.
Let X = S, Y = —S¥ and K(x,y) = §(x + y — k) for deriving the super-hedging portfolio, where §(-) is
Dirac delta function. Then, the payoff is expressed as:

X Y
(X+Y —kr)y = / / K(z,y)dydz. (1.4.7)
0 —o0
Applying Corollary 4, we have
Ox(X) = (X —nrx)+ (1.4.8)
Py (Y) = (Y =ry)s,

where k% and k3 are defined by k% + f*(k%) = k and by k3 + (f*) ' (k}) = k respectively. Note that such x%
and k% are uniquely determined by Q(S3 < k%) = Q(S¥ > k%) and k% + k% = k. We obtained the hedging
portfolio:

e a call option on S¥ with strike &%
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e a put option on SY with strike £},

which is the same as (Chung and Wang, 2008) when x = 0.
Next, we consider the sub-hedging strategy for the exchange option.

X p-Y X 0
(X+Y —kr)y = —/ / K(x,—y)dydx+/ / K(x,—y)dydz

0 —o0 0 —00

X Y

> _/0 1{097@;@}(19;—/0 Liyrn<irwn®y + £ — (k= X)4,

where f is defined by Definition 3 for X and —Y. These imply the following sub-hedging portfolio:

X
e an option on S7¥ whose payoff is fOST Locon<fande — K+ (K — SX)4
e an opti SY wh ff i S)Tfl 5 d
ption on S} whose payoff is [; (ytr<f-1 () Y-

1.4.3 Basket Options

21

(1.4.10)

A basket option is an exotic option whose underlying is a weighted sum of different assets. (Hobson et al.,
2005b) derives upper bounds for general n-asset case when prices of call options on each underlying asset with
a continuum of strikes or a finite strikes are given. (Hobson et al., 2005a) also investigates lower bounds for

2-asset case under the same circumstance.

We consider a basket option whose underlying is a sum of two assets. Our assumption is the same as the
continuum case of (Hobson et al., 2005b) and (Hobson et al., 2005a). Let the payoff of the basket option be

(S + 57 = #)+,

where k is a positive number.

(1.4.11)

In order to derive the super-hedging, let us express the payoff with X = SX YV = SY and K(z,y) =

zx+y—kK):

(X+Y —r)+ :/j;/_ioK(;v,y)dydx.

Then, by applying Corollary 4, the payoff of the super-hedging portfolio is

Px(X) = (X—rX)t
Oy(Y) = (Y =—ry)s,

(1.4.12)

(1.4.13)
(1.4.14)

where k% and k% are defined by r% + f*(k%) = s and by k% 4+ f~ (k%) = k respectively. Note that such %
and k% are uniquely determined by Q(S¥ < k%) = Q(S¥ < k%) and K% + K} = . Finally, we obtained the

hedging portfolio:
e a call option on S¥ with strike k%

e a call option on S%f with strike &3
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Let us extend to an N-asset basket option whose underlying assets are S (1 < n < N). By appliying
mathematical induction, we have the following inequaility:

N N
(Z St — n) <> (S =K+ (1.4.15)
n=1 + n=1

where s, are positive numbers such that 25:1 ki =k and Q(ST < k) is common for all of n.
Next, let us consider the sub-hedging for the basket option:

X -Y X “+o00 0 “+o0

—/ / —|—/ / —|—/ / K(z,—y)dydx
0 —o0 0 —00 —oc0 J =Y
X Y

_/0 Vo< fa)+my 0 = /,m Logyrnsiron@+ X + (¥ —r)e. (1.416)

(X+Y—K])+

v

Then, the following portfolio is optimal:

X
e an option whose payoff is S — fOST Lipc o)+ nyd®

Y
e an option whose payoff is (S¥ — k)4 — f:oiT Loy tn< ity Y-
Sub-hedging an N-asset basket option(N > 2) is still open to our best knowledge. See (Hobson et al.,
2005a).

1.4.4 Forward Starting Options

Forward starting options are options whose strike will be determined at some later date. Let S; be the underlying
asset at time ¢, T be the date when the strike is determined and 75 be the date when the payoff is paid. There
are two types of payoffs of forward starting options. One is (St, — kST, )+ for a positive number . This is
equivalent to an exchange option, which has been studied in the previous section and in (Hobson and Neuberger,
2012). Then, in this section, we consider the other type of payoft:

St,
(ST1 Iﬁ:)+. (1.4.17)

First, let us consider super-hedging a payoff XY with X = Sy, and ¥ = ﬁ Applying the theorem, we
1

have XY < &x(X) 4+ @y (Y), where

b
D (X) /0 f(x)dx (1.4.18)
Y

oy (Y) = /(f*) '(y)dy. (1.4.19)

0

Then, the payoff of the forward starting option is satisfied with the following inequality as shown in Section
1.4.3:

(XY — k) < (@x(X) —hx) +(Py(Y) —ky),, (1.4.20)
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where kx and Ky are any positive number such that kx +kxy = k. In order to obtain the cheapest super-hedging,
let us define xz* by

Oy (z*) 4+ Py ((f*) 1 (z¥)) = k. (1.4.21)

Note that 2* is uniquely determined because the left-hand side of (1.4.21) is increasing with respect to z* from
0 to +oo. If we take kx = ®x(z*) and Ky = Kk — Kk*, the right-hand side of (1.4.20) implies the cheapest
super-hedging portfolio, because Y = f*(X) gives an equality of the inequality (1.4.20). Then, the hedging
portfolio is as follows:

e an option with maturity 75 whose payoff is (fOST2 f*(z)dx — Kx)
+

1

e an option with maturity 77 whose payoff is (fOSTl () Yy)dy — Hy> ,
+

where Ky = fo‘r* f*(x)dr and Ky = Kk — Kx.
Next, let us consider the sub-hedging strategy for the forward starting option. Applying the theorem to XY
with X = Sz, and Y = —g~, we have XY < ®x(X) + @y (Y), where

T’

X
By (X) /0 F(@)de (1.4.22)
Y

By(Y) = / () (9)dy. (1.4.23)

Then, the payoff of the forward starting option is satisfied with the following inequality:

(—XY — k)4 > (=P2x(X) — @y (Y) — k) (1.4.24)

+-

Since the right-hand side of the above inequality is the same as an exchange option considered in Section 1.4.2,
we have

(=XY — k)4

Y

(=Px (X) =Py (Y) —r),

V

—®x(X)
= (_(I)X(X) - ’i)+ - / ]-{Ofa:—/-igg*(m)}dx
0

Py (Y)
_/0 Ly 4n<(on) -1 ()1 4Y (1.4.25)

where ¢g* is defined as Definition 3 for —®x (X) and ®y (V). Since ¢*(—Px (X)) and @y (f*(X)) have the same
distribution as ®y (Y'), we have g* o (—®x) = Py o f* almost surely with respect to F' and ¢g*(—Px (X)) =
Dy (f*(X)) almost surely with respect to Q. If we take Y = f*(X), then we have &y (Y) = &y (f*(X)), which
means that the two equalities in (1.4.25) occur simultaneously. The hedging portfolio is as follows:

e an option with maturity 75 whose payoff is the payoff

—®x(St,)
(_q)X<ST2) - K‘)+ - / 1{0Szfngg*(x)}dx (1426)
0
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e an option with maturity 77 whose payoff is the payoff

1

¢Y(*W)
7/0 1{y+n§(g*)*1(y)}dy- (1427)

Remark 8. Although we assume that the interest rate is zero in this paper, there is a hedging error caused by
difference of payment in non-zero interest rate market, because the payoff of the forward starting option is paid
at Ty, while one of the components of the hedging portfolio is paid at Ty. It is sufficient that just multiplying a
discount factor fills the gap between Ty and Ty when interest rate is deterministic.

Remark 9. The hedging strategy for an exchange option in Section 1.4.2 can be applied to forward starting
options with payoff (St, — kST, )+. It is different from the strategy considered in (Hobson and Neuberger, 2012),
which allows to trade forward contracts at time Ty and requires the martingale condition E(St, | S1,) = Sty -

1.4.5 Knock-out Options

A knock-out option is a type of an exotic option that provides a payoff only if a certain predetermined event
does not occur. Let us first consider an option whose payoff is dependent on an asset price and knock-out event
is on another asset:

(St — K)4 14, (1.4.28)

where St is an asset price at maturity and A is an event regarding the other. For example, A is an event that
the foreign exchange rate reaches or does not reach a predetermined price, namely ”barrier level”. An option
whose payoff is 14 is called a one-touch option.

Directly applying Corollary 1 to the payoff with X = (St — k)4, we obtain the following inequality:

—(@ = (ST — K)4 )+ + @14

(57— K)41a
(ST — (k+2%))1 + %14, (1.4.29)

IAINA

where 2*, z, > 0 such that Q(A¢) = F(z*) and Q(A) = F(x.). This means that the super-hedging portfolio is
e a call option with strike x + x*
e the one touch option
and the sub-hedging portfolio is
e an option whose payoff is (z. — (ST — K)+)+
e the one touch option.

Next, let us consider a knock-out option whose payoff and knock-out event are dependent on a common
underlying asset. Suppose that the payoff of the option is:

(St — k)4 14, (1.4.30)

where [ := [L,U] and A := {S; € T | 0 <Vt < T} for some L,U € [0,+0o0]. This is called a single or double
barrier call option.
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In this case, we cannot obtain the optimal super-hedging and sub-hedging portfolio by directly applying
our result. Instead, apply Corollary 1 to X*14 for super-hedging and X,1, for sub-hedging, where X* :=
(ST — k)14, and X, 1= (S7 — k)4 1a, +00-1ae (assume 0- 0o = 0). Then, we have

—(@s = (S — K)41ag)+1ar + 314

< (St —kK)4la
< ((Sp—#)4lay — )4 + 214, (1.4.31)
where
' = inf{z e [0,U—«]|Qx+x< ST <U)<Q(A)} (1.4.32)
ze = inf{x e [0,U—-k]|QA) <Q(L<Sr<z+k)}. (1.4.33)

This means that the super-hedging portfolio is
e an option whose payoft is ((S7 — k)+14, — %)+
e the one touch option
and the sub-hedging portfolio is
e an option whose payoff is (x, — (ST — k)4+1a,)+14a,
e the one touch option,
which is the same as (Tsuzuki, 2014).

Remark 10. The reason why the same result as (Tsuzuki, 2014) cannot be obtained by directly applying our
result is that the theorem of this paper does mot assume any dependency structure between the two random
variables, while both of the random wvariables (ST — k)4 and 14 are dependent on St.

1.5 Copula

Some standard notions and well-known results related to the two dimensional Copula are stated in this section
(see (Nelson, 1998) for more details).
First of all, let the definition of Copula be introduced.

Definition 4. A copula is any function C : [0,1] x [0,1] — [0, 1] which has the following properties:
1. for every z,y € [0,1]
C(z,0)=C(0,y)=0 (1.5.1)
and

C(z,1) =2,C(Ly) =y; (1.5.2)

2. for every x1,T2,y1,y2 € [0,1] such that 1 < zo and y1 < yo,

C(z1,91) — C(21,92) — C(x2,91) + C(22,92) > 0. (1.5.3)
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Definition 5. A distribution function F' of a random variable X is defined as F(z) := Q(X < z). A distribution
function H of two random variables X andY is defined as H(x) := Q(X < z,Y <vy). Here, Q is a probability
under which X and Y are defined.

The following is Sklar’s theorem, which elucidates the role that copulas play in the relationship between
multivariate distribution functions and their univariate margins.

Lemma 3. Let H be a joint distribution function with marginal distribution functions F and G. Then there
ezists a copula function C' such that for every x,y € R

H(x,y) = C(F(x),G(y)). (1.5.4)

Moreover, if F' and G are continuous, then C is unique. Otherwise, C' is uniquely determined on F(R) x G(R).
Conversely, if C is a copula and F and G are distribution functions, then the function H defined by Eq.(1.5.4)
s a joint distribution function with margins F and G.

Next, we introduce Fréchet-Hoeffding copula boundaries. There are two special copula functions: Minimum
copula and Maximum copula, which are defined as follows.

Definition 6. Minimum copula W is defined by
W(z,y) == max(z +y —1,0). (1.5.5)
Mazimum copula M is defined by
M (z,y) := min(zx, y). (1.5.6)

It is easily verified that these functions are copula functions. In addition, these are boundaries in the
meanings of the next lemma.

Lemma 4. For every copula function C and for every x,y € [0,1],
W(z,y) < Clz,y) < M(z,y). (1.5.7)

and for every joint distribution function H with marginal distribution functions F' and G and for every x,y €
[0,1],

W(F(x),G(y)) < H(z,y) < M(F(z), G(y)). (1.5.8)

Remark 11. The copula theory holds for n € N. Note that W is not a copula function for n > 2.



Chapter 2

Pricing Bounds on Quanto Options

This paper proposes model-independent pricing bounds on quanto options and the corresponding replicating
strategies, which are static ones whose portfolios consist of plain-vanilla options on the foreign asset and on
the FX rate. Since they are derived model-independently, one can make profits with no risk if quanto options
are priced outside the bounds. In addition, the pricing bounds can be improved if liquid quanto contracts such
as quanto forward contracts are used for replication. Numerical examples show our pricing bounds comparing
with the Black pricing formula and that with an ad-hoc adjustment.

2.1 Introduction

This paper proposes model-independent pricing bounds on quanto options and the corresponding replicating
strategies.

Quanto options are particular multi-asset options whose payoff are dependent on a price of a foreign asset
and a pre-fixed exchange rate. For example, a quanto call option is a contract which pays the holder a total of
k(S# — K), in the domestic currency, where S# is the foreign asset price denominated in the foreign currency
at maturity T, and K and « are constant. x is the pre-fixed exchange rate. The fixed exchange rate allows the
holder to investment in the foreign asset without carrying the risk of an exchange rate.

In the market, the standard approach to pricing quanto options is based on a Black-type model where
correlated lognormal dynamics for the foreign asset prices and the FX rates are assumed. An analytical solution
is obtained under the model (see (Baxter and Rennie, 1996)). But, in practice the Black volatility corresponding
to a quoted plain-vanilla option price is dependent on the strike of the option, indicating that the assumptions
of the Black model do not hold. To incorporate the effect of the volatility smile, practitioners often adopt an
ad-hoc approach and modify the Black formula. Note that this ad-hoc modification of the Black formula does
not provide a model consistent with the volatility smile observed in the market. This method can lead to a
mis-price.

In order to price these options consistently with the volatility smile observed in the market, the distribution of
the foreign asset price S4 under a domestic risk-neutral measure Q¢ is needed. While the marginal distribution
of FX rate S¥ under Q¢ and that of the foreign asset price S{} under a foreign risk-neutral measure Qf are
known by calibration to each volatility smile respectively, the distribution of the foreign asset price Sq‘i‘ under
Q% cannot be directly known. As shown later, this is equivalent to a joint distribution of the FX rate S%( and
the foreign asset price S# under Q7.

27
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A pricing methodology of quanto options is proposed by (Bennett and Kennedy, 2004) based on copulas
theory, which is introduced to mathematical finance by (Cherubini and Luciano, 2002). They separate the
modeling of the dependence structure of the underlying assets from the modeling of the implied marginal
distributions. Another method for quanto options is derived by (Jéckel, 2009), which also assesses the effect of
an implied volatility skew for an FX rate on quanto forwards and quanto options of an asset that itself is subject
to an implied volatility skew using a simplistic double displaced diffusion model. In an extension to (Jackel,
2009), (Jéackel, 2010) further investigates the performance of common quanto approximations in a context of
stochastic volatility for both the asset and the FX process. While it is well-known that the quanto adjustment
in the drift of the underlying has a significant impact on the prices of quanto options, (Giese, 2012) points out
that an additional quanto adjustment in the underlying’s volatility needs to be considered in the presence of
stochastic volatility. In addition, (Giese, 2012) derives closed-form solutions for standard quanto options and
uses for calibration quanto forward contracts, which are often liquidly traded.

On the other hand, we provide model-independent pricing bounds on quanto options consistent with volatility
smile of the FX rate and the foreign asset as well as the corresponding super-replicating and sub-replicating
strategies, whose portfolios consist of plain-vanilla options on the FX rate S’j)f and those on the foreign asset
S{}. Recently, model-independent super-replication and sub-replication for derivatives on multi-assets have
been studied (see (Labordére and Touzi, 2013) and (Tsuzuki, 2013)). Although basket options, spread options
and cross-currency options have been well-documented (see (Chung and Wang, 2008), (Hobson et al., 2005b),
(Hobson et al., 2005a), (Laurence and Wang, 2003), and (Laurence and Wang, 2009)), this paper is the first
attempt to consider model-independent pricing bounds on quanto options to our best knowledge. In addition,
we propose another strategy in order to improve our pricing bounds which uses liquid quanto contracts such as
quanto forward contracts in the same manner as (Avellaneda et al., 1995).

Pricing bounds on multi-asset derivatives are closely related to theory of comonotonicity (see e.g. (Dhaene
et al., 2002) for comonotonicity and (H. Albrecher and Schoutens, 2005), (X. Chen and Vanmaele, 2008) and
(K.C. Cheung and Linders, 2013) for the application). Consider a derivative whose payof! is a increasing function
on two assets, where marginal distributions of each underlying asset price are known. If a joint distribution
on these prices is unknown, a price of the derivative is not uniquely determined in general. An upper bound
which a price of the derivative can take is realized when the two asset prices are comonotonic, that is they are
perfectly correlated.

The rest of this paper is as followed: In the next section, we describe pricing quanto contracts as well as
the Black formula and its ad-hoc modification. The third section introduces our methodology of pricing bounds
and the corresponding replicating strategies for quanto contracts as well as its improvement using other quanto
contracts. The fourth section provides numerical examples, where we compare our pricing bounds with prices
by the Black formula and its ad-hoc modification.

2.2 Quanto Option Pricing

2.2.1 Settings and Notations

For the quanto problem, we need to consider a time-t price of a foreign asset StA and an FX rate S;%. Let DgT
and Dii o be the time-¢ value in domestic or foreign currency of the zero coupon discount bond with maturity
T respectively, Q¢ and Qf be the equivalent martingale measures associated with these numeraire and E?[]
and Ef[-] be the expectation operator with respect to these measures. We suppose that each distribution of the
time-T prices of a foreign asset S# and an FX rate S5 is uniquely determined by prices of call options on each
asset.
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A quanto call option is a contract which pays the holder a total of
K(SH — K)y (2.2.1)

in the domestic currency. Note that S# is a price denominated in th foreign currency and & is simply a scaling
factor, which represents a pre-determined exchange rate. More generally, a quanto option with the payoff
function g is a contract which pays the holder a total of g (574) in the domestic currency, which is equivalent to
é g (Sﬁ) in the foreign currency.

By standard arbitrage pricing theory, the time-t value in the domestic currency of this quanto option is
given by

(1)

Dy [g (S7)]
= S¥D],Ef [Sng (514)} (2.2.2)
T

and that of an options with the payoff function g in the foreign currency:

G(t) = DirE'[S7g(S7)]

= SXDI,E! [g(S3)]. (2.2.3)

There is no problem in evaluating Eq.(2.2.3) under our assumption, because the distribution of 574 under Q7 is
known. On the other hand, evaluation of Eq.(2.2.2) requires a distribution of S}‘ not under Q¢ but under Q7 or
equivalently a joint distribution of S# and S:¥ under Q/, which is unknown under our assumption. Uncertainty
of a joint distribution implies pricing bounds on the quanto contracts:

1 1 1
inf B¢ | —g¢(S7)| <E®| =g (S2)| < supE? | =g (S2)|, 2.2.4
0 B o0 (57)] < B0 [ geu (57)] < sup B | g (1) (2:2.0
where P is a set of all equivalent martingale measures associated with the foreign zero coupon bond such that
the marginal distribution on S? and S are equivalent to Q¢ and Q/ respectively, Q € P and EQ[] is the
expectation operator with respect to Q.

2.2.2 Black Formula

We introduce the Black formula for quanto options according to (Baxter and Rennie, 1996) in this subsection.
First, an assumption for the formula is as follows.

Assumption 2. We assume correlated lognormal dynamics for the foreign asset prices and the FX rates under
each risk-neutral measure:

ds¥ = (rt—r")SXdt + oxSXdw X (2.2.5)

sy = (rf —q)Sfdt + oaSPaw (2.2.6)
1 X A

p = ¥<W W), (2.2.7)

where WX and W4 are Brownian motions under Q% and Q7 respectively, r¢, rf and q are the domestic interest

rate, the foreign interest rate and the dividend rate of the foreign asset S, ox and o4 are volatilities of the
FX rate SX and the foreign asset S4 respectively and all of them are constant.
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The dynamics of the foreign asset under the domestic risk-neutral measure are derived by (Baxter and
Rennie, 1996):

s = (rf —q—poxoa)SPdt + o, SAdWA, (2.2.8)

where W4 is a Brownian motion under Q%. Then, the time-t price of a quanto call option under the Black
model can be derived:

CL(K,ox,04,p) = e~ (T=1) (gtAe(Tf_q)(T_t)N(dl) — KN(dQ)) , (2.2.9)
where
SA = Sferoxoall—t) (2.2.10)
g = 8 Gl R 9 [ Cid) (2.2.11)
oavVT —1

d2 = d1 - UA\/T —t (2212)

and N(-) is the standard cumulative Normal distribution function. In particular, the time-¢ price of a quanto
forward contract, which pays the price of the foreign underlying asset S4 at time T converted with a fixed forex
rate, is given by:

Fl(ox,04,p) = SAeCritri—a)(T—1) (2.2.13)

We need the following corollary to evaluate pricing bounds on quanto options by the Black formula. It
is derived straightforwardly by the Comparison Lemma as it can be found in (Karatzas and Shreve, 1988),
Chapter 5, Proposition 2.18.

Corollary 2. Suppose that Assumption 2 holds. Then, a quanto option price function
GUox,0a,p) = D E [g (S7)] (2.2.14)

is decreasing with respect to p for a non-decreasing function g.

2.2.3 Ad-hoc Adjustment

Although the Black formula admits an analytical solution, the assumptions underlying the Black model do not
hold in practice. The Black volatility corresponding to a vanilla option price is dependent on the strike of the
option. This well-known feature is termed the volatility smile. The quanto option must be priced consistently
with the prices of plain-vanilla options on the foreign asset and those on the FX rate. To incorporate the effect
of the volatility smile, practitioners often adopt an ad-hoc approach and modify the Black formula (2.2.9).
Let ox (K) and 04 (K) be the Black volatility corresponding to the price of the vanilla option on S and Sz
respectively. An ad-hoc approximation for the price of the quanto call option is calculated by substituting the

actual strike-dependent volatility o4 (K) for o4 and ATM-volatility o547 of FX option for ox in Eq.(2.2.9):

C4(K, p) = CL(K, 04T, 0.4(K), p). (2.2.15)
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2.3 Pricing Bounds on Quanto Options

This section devotes to deriving pricing bounds and the corresponding super-replication and sub-replication.
The domestic interest rate, the foreign interest rate and the dividend yield of the foreign asset are set to be zero
for simplicity. The results are still valid when they are not zero.

2.3.1 Review of (Tsuzuki, 2013)

We first review (Tsuzuki, 2013), which provides a general formula of model-independent super-replication and
sub-replication for a certain kind of derivatives including quanto options.

Let us consider a derivative which pays ®(X,Y) at time T, where X and Y are random variables and
®(X,Y) is represented with:

X Y
o(X,)Y) ::/ /ﬂ K(z,y)dydz, (2.3.1)

where K : RxR — [0,4+00), @ and 3 are some real numbers which are less than the essential infimum of X and
Y respectively. In addition, we assume that marginal distribution of X and Y are known: F(z) := Q(X < x)
and G(y) = Q(Y < y).

Then, an extended version of Young’s inequality (See Theorem 2.3 in (Mitroi and Niculescu, 2011)) suggests
a super-replicating strategy:

z f(x) y ')
o(X,)Y) §/ K(z,y)dy d:v+/ / K(z,y)dx | dy, (2.3.2)
a fla) fa) @

where f : R — R is a non-decreasing function, f~! is the right-continuous inverse function:

[ Hy) :=inf{z eR |y < f(x)}. (2.3.3)

and 8 = f(«). In particular, if f is chosen as f*(x) := inf{y € R | F(z) < G(y)}, the value of the super-
replicating portfolio is the cheapest, which is also equal to

sup EQ [®(X,Y)] = EM [®(X,Y)], (2.3.4)
QeP

where P is a set of all equivalent martingale measures such that the marginal distributions on X and Y
are equivalent to F' and G respectively and M stands for the joint distribution induced by Maximum copula
Q"M(X < 2,V < y) = min(F(z),G(y)). This shows that the strategy with f* is the best among possible
strategies and its cost is given by an expectation of the payoff under a certain measure.

2.3.2 Pricing Bounds

Let us consider a quanto option whose payoff is g (574) at maturity 7" in the domestic currency. Since the payoff
of this option is represented with

51%{ g (52) (2.3.5)



32 CHAPTER 2. PRICING BOUNDS ON QUANTO OPTIONS

in the foreign currency, we can directly apply the result of (Tsuzuki, 2013) to the payoff (2.3.5) with X = S%’

T

Y=g (5’7‘3) and K = 1 and obtain the super-replication:

X Y
XYg/O f*(x)dsc—i—/o (f) " (y)dy. (2.3.6)

This means that the quanto option is super-replicated by

1
X
e an option on the exchange rate whose payoff is fOST f*(x)dx

SA
e an option on the foreign asset whose payoff is fog( T)(f*)_l(y)dy,

where both of the payoffs are denominated in the foreign currency. For sub-replication, we have for any o > 0,
X -Y
(X=)(-Y = £l < [ (fla) = L) + /f U ) ey (2.3.7)
where f, is defined for X and —Y in the same manner of f*. We obtain the sub-replication:
1

e an option on the exchange rate whose payoff is — fog (fel@) = ful@))dz — fu(a)gx
T

_ A
e an option on the foreign asset whose payoff is — [, 9(s%) (fit(y) — a)dy — a(g (S2) — fu()),

where both of the payoffs are denominated in the foreign currency. Although these payoffs seem to be compli-
cated, they can be replicated with plain-vanilla options on each asset as in (Breeden and Litzenberger, 1978)
and (Carr and Madan, 1998).

Remark 12. The problem of finding the optimal super-replication and sub-replication is a dual problem of finding
upper/lower pricing bounds with respect to equivalent martingale measures. While (Tsuzuki, 2013) focuses on
the former, (Dhaene et al., 2002) studies the latter using a concept of comonotonicity. Two random variables
X and Y are said to be comonotonic (common monotonic), if almost every two outcomes (X (w1),Y (w1))
and (X (w2),Y (ws)) must be ordered componentwise: X (w1) < X(w2), Y(w1) < Y(ws) or X(we) < X(wy),
Y(w2) < Y(wi) (See (Dhaene et al., 2002) for a rigid definition). Eq.(2.3.4) is attained when X and Y are
comonotonic. In case of quanto contracts, if a payoff function g is non-decreasing or non-increasing, the upper
or lower pricing bound is obtained when (S7,—S#2) or (S, S%) are comonotonic respectively.

2.3.3 Pricing Bounds Using Liquid Quanto Contracts

There are quanto contracts which are liquidly traded in a market such as quanto forward contracts, which can
be used for calibration (see (Giese, 2012)). For the purpose of improving the pricing bounds introduced in the
previous subsection, we propose another super-replication and sub-replication using that of (Tsuzuki, 2013)
with these quanto contracts. This is in line with (Avellaneda et al., 1995), where they propose super-hedging
and sub-hedging strategies based on uncertain volatility model and use it to construct hedging portfolios that
use other liquid derivatives in addition to the underlying asset.

Let us assume that there are N liquid quanto contracts whose payoff is hi(S{}) and market prices are given
by H; for i =1,--- , N. Under no-arbitrage condition, there must exist a probability measure Q € P such that
for any a € RV

(a, H) =E% [{a,h (57))] (2.3.8)
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where E}[] := E2 [é], {-,-) represents an inner product in RY, h(s) := (h;(s)) € RY for s € R and
H := (H;) € RN. A contract that we consider is a quanto contract with payoff g (S’?) whose pricing bounds
are finite: infgep ES (9 (57})] > —o0 and SUPgep ES (9 (57})] < +o0.

We consider a super-replication where a; amounts of the i-th quanto contract are used for replication and
the result of (Tsuzuki, 2013) is applied with X = <&, Y =g (574) - <a, h (Sj‘i‘)> and K = 1. Then, a price of

SX >
the quanto contracts based on this strategy is givenTby
Vo(a) = SEEJE% (9 (S7) — {a,h (S7))] + (a, H)
= E% [9(57) — {(a.h (S£))] + (a, H), (2.3.9)

where E%[] := E%a [] and Q is defined using the maximum copula for X and g (52) — (a,h (S#)). Note that
not every Q € P reproduces the market prices for all of the liquid quanto options. The strategy we propose is
the optimal one with respect to a € RV and the pricing upper bound derived from it is:

Vé = inf Vg(a). (2.3.10)

a€RN

Let us investigate properties of the function Vg : RN — R. First of all, it is convex because we have for
a=(1—1t)a; + tay with ai,as € RVt €0, 1]:

Vola) < (1-1%) (Sllel};]E% [9(S7) — (a1, 1 (S2))] + tsup ES [9(S7) — (a2, 1 (S2))] + (a, H)

QeP
= (1-t)Vg(a1) + tVg(as). (2.3.11)
Next, V¢ is finite. Indeed, for a € RY and Q € P, it holds
Vi(a) 2 inf ES [g (S)] + (a, H) — ES [(a,h (S£))] - (2.3.12)

In particular, if Q € P is satisfied with (a, H) = Eg [<a, h (S%) >]7 it is found that

dnf B [ (S7)] < V5 < Va(0) = sup EX [9(S7)], (2.3.13)

which implies that V% is finite by our assumption. Moreover, if there exists Q € P for a € R with ||a|| = 1 such
that (a, H) > E% [{(a,h (S2))], then Vg(a) — +00 as ||a|| — +oo. In this case, the optimization problem
(6.3.1) is attained by a certain a* € R, that is V§ = V(a*).

Remark 13. Suppose that there exists a € RN with ||a|| = 1 such that
; Q A
62;3153)( [{a,h (57))] = (a,H), (2.3.14)

which implies that the market price of a quanto contract with payoﬁ‘<a7 h (S%)> is equal to the model-independent
lower bound using options on each underlying asset, since some measure Q, € P attains the equality. Let us
consider a quanto contract whose model-independent upper bound are given by the same measure Q.. Then, we
have Vg(ka) = Vg (0) = E(% [ (S2)] for any k > 0 and Vg(ka) > Ve (0) for k € R by convezity of V. This
means that the quanto contract with payoff <a, h (S?)> makes no contribution to improving super-replication on
the quanto contract with payoff g (S?). For example, if the quanto forward contract is quoted in a market with
its lower bound, the upper bound on a quanto put option, whose payoff is (K — Sﬁ)+, s not improved by using
the quanto forward contract.
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Let ¢(z, s;a) be a density function of X and Sq‘i‘ for the measure Q%, which is assumed to be differentiable
with respect to a. Then, we have

Vg(a)

// (a,h(s))) ¢(z,s;a)dxds + {a, H) (2.3.15)
VVe(a) = // (a, h(s))Vp(a, 51 dxds—//a:h oz, 5:0)dads + H,  (2.3.16)

where V is a differential operator with respect to a defined by V := (%). It is reasonable to assume that

the first term of the right hand side of Eq.(2.3.16) equals 0, because a function ¥ of a € R defined by
U(a;a) :=ES [g(58) — (a,h (S7))] takes the largest value at o = a. Then, we have E% [h; (S7})] = H; for
a € RN with VVg(a) = 0, which means that a probability measure Q% reproduces the market price of the liquid
quanto contracts. In other words, if VVg(a) = 0, the price V% is the best possible:

Ve = sup ER [g(S7)] (2.3.17)
QeP

where P is a subset of P such that every element of it reproduces the market prices of the liquid quanto contracts
H; fori=1,--- N.

Finally, let us conclude this section by posing further problems. We have seen that pricing bounds would
be tighter if there would be more liquid quanto contract used for replication. For an arbitrary joint distribu-

tion Q, a set H := {g (S?) | Eg {g (514)2} < Jroo} is a Hilbert space where the inner product is defined by

IE% [gl (S%) go (S{})] for ¢1 (S%) and go (S{«‘) € H. Any element g (S%) € H can be approximated by a basis
in the Hilbert space H, which is interpreted from a financial point of view that any quanto contracts can be
replicated with sufficient accuracy using a family of liquid quanto contracts whose payoffs are a basis in the
Hilbert space H. Practically, it is desirable for a smaller subset of a basis to span a larger subspace.

The joint distribution of Si¥ and S? is, however, assumed to be unknown in this paper and working on
a fixed Hilbert space H is not allowed. Then, an interesting problem is to find a smaller subset of a basis
which spans a large subspace without fixing a Hilbert space. This problem requires formulations: which Banach
space is considered, which criterion is adopted to gauge how large a spanned space is and so on. A solution to
this problem would be a guideline for market makers of quanto contracts to efficiently provide liquidity to the
market. This is our next research topic.

2.3.4 Quanto Call/Put Options

In this subsection, we focus on quanto call and put option, whose payoffs in the domestic currency are defined
by (S# — K), and (K — S#), with a strike price K. First, put-call parity also holds for quanto call and put
as well as for plain-vanilla options:

(8P —K)y = (S§ — K) + (K — S3),. (2.3.18)
Since the payoff functions of call and put are non-decreasing and non-increasing, measures which produce

upper bounds and lower bounds are comonotonic ones for (S%,94) and (S, —S%). Let CL(K), Cg(K),
PL(K), Ps(K), Fr, and Fg be lower and upper bounds for quanto call and put options and a forward contract.
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Then, we have

Cr(K) =BY [(54 - K),]. Ca(K)=E% [(s-K),], (2.3.19)
PL(K) =EY {(K - s;})J , Po(K)=EY [(K - 574)+] : (2.3.20)
Fp =EY [S4], Fe=E% [S4], (2.3.21)

where Q* and Q. are measures under which (Si¥, —S#) and (S, S#1) are comonotonic respectively.
A distance between an upper bound and a lower bound, supgep Eg [g (S’{«‘)] —infgep Eg [g (Sﬁ)], can be
regarded as a measure for uncertainty of price. Using put-call parity, we have

(Co(K) — CL(K)) + (Pa(K) — PL(K)) = Fg — Iy, (2.3.22)

which means that a sum of uncertainty of price for a quanto call option and that for a put option is that for a
quanto forward contract. In addition, if a quanto forward contract is used for replication, price uncertainty for
a quanto call option is equal to that for a quanto put option:

Ci(K) — O3 (K) = P(K) — Py(K), (2.3.23)

where C&(K), C;(K), PL(K) and Pj(K) are respectively upper and lower bounds with using a quanto forward
contract.

2.4 Numerical Examples

In this section, we show numerical examples of our pricing bounds comparing with the Black pricing formula
and that with an ad-hoc adjustment.

Suppose that the initial FX rate is Sg¥ = 1.0, the initial stock price is S§' = 100.0, and the domestic interest
rate, the foreign interest rate and the dividend yield of the foreign asset are set to be zero for simplicity. The
maturities of all options in this section are 7' = 1.0. Volatilities of FX volatility and those of the foreign asset
volatility are listed in Table 2.1' and Table 2.2 respectively. We assume that a quanto forward is liquid and its
price is calculated with a joint distribution where S§ and S3 are independent.

Table 2.1: Implied Volatilities of the FX Rate
strike 0.8 09 10 11 1.2
volatility (%) | 15.0 12.0 10.0 11.0 11.0

Table 2.2: Implied Volatilities of the Foreign Asset
strike 80 90 100 110 120
volatility (%) | 30.0 25.0 20.0 15.0 15.0

We calculate prices of quanto call and put options with strike prices from 85 to 115:

e (1, Cq and Pp,, Pg are pricing bounds without using a quanto forward contract.

IThe strike prices are denominated in the foreign currency, namely S% =0.8,0.9,---.



36 CHAPTER 2. PRICING BOUNDS ON QUANTO OPTIONS

Ci, C& and P, P} are pricing bounds using a quanto forward contract.

C and P are quanto call and put option prices which are also calculated under a joint distribution where
S%X and S7¥ are independent.

C% (-, p) and PL(-, p) are prices of the Black pricing formula with ox = 10%, 04 = 20% and correlation p
(see Eq.(2.2.9)).

C%(-,p) and Pi(-, p) are prices of the ad-hoc adjusted Black pricing formula with ox = 10%, 04 = 04 (K)
and correlation p (see Eq.(2.2.15)).

Table 2.3 reports the numerical results. It is noteworthy that neither of the Black pricing formula nor the ad-
hoc adjusted Black pricing formula provides prices for quanto contracts which excludes arbitrage opportunities;
some of them are outside our pricing bounds. Largely, the Black pricing formula provides smaller values for
lower strikes because it uses smaller volatilities, while the ad-hoc adjusted Black pricing formula does larger
values because it uses larger volatilities.

The pricing bounds without using a quanto forward Cp, Cg, Pr, and Pg seem wide, which is typical for
model-independent pricing bounds. On the other hand, those using a quanto forward C7, C¢, P} and P are
actually improved especially for cases of in-the-money. It is not surprising because both of a quanto forward
contract and quanto options in the money are significantly exposed to correlation risk between S and Sz and
using a quanto forward contract is expected to lead substantial reduction of correlation risk.
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Table 2.3: Prices of Quanto Options

strike | 8 90 95 [ 100 | 105 [ 110 | 115

Ca 20.71 | 16.49 | 12.55 | 8.83 | 5.67 | 3.00 | 1.86

Ce 19.95 | 15.92 | 12.14 | 858 | 5.53 | 2.98 | 1.84

C 19.40 | 15.32 | 11.55 | 8.00 | 5.02 | 2.52 | 1.53

cr 18.80 | 14.68 | 10.93 | 7.40 | 4.49 | 2.10 | 1.27

CL 18.03 | 14.10 | 10.51 | 7.16 | 4.38 | 2.10 | 1.27

CL(-1) 1884 | 1511 | 11.85 [ 9.10 | 6.84 | 5.04 | 3.65
CL(-,0) 17.16 | 13.59 | 10.52 | 7.97 | 5.91 | 4.29 | 3.06
CL(-,—1) 15.57 | 12.17 | 9.29 | 6.94 | 5.07 | 3.63 | 2.55
Ch(,1) 21.54 | 17.11 [ 13.00 [ 9.10 | 5.79 | 2.96 | 1.84
C4(,0) 19.35 | 15.27 | 11.51 | 7.97 | 4.99 | 2.50 | 1.52
Ci(,-1) 17.31 | 13.57 | 10.14 | 6.94 | 4.28 | 2.10 | 1.25
Ce—Cp 115 | 123 | 1.21 | 1.19 | 1.04 | 0.88 | 0.57
Ce—Cp 2.68 | 239 | 2.04 | 1.68 | 1.28 | 0.90 | 0.59
CL(1)—C%(-,—1) | 328 | 294 | 256 | 216 | 1.77 | 142 | 1.10
Cl(,1)—C4(,—1) | 423 | 354 | 2.87 | 216 | 1.51 | 0.86 | 0.59
Pg 517 [ 6.24 [ 7.64 [ 9.28 [ 11.50 [ 14.21 | 18.36

P 4.87 | 583 | 7.05 | 850 | 10.45 | 12.90 | 16.76

P 432 | 523 | 647 | 7.92 | 9.94 | 12.44 | 16.45

P 3.72 | 4.60 | 5.85 | 7.31 | 9.40 | 12.02 | 16.19

P 346 | 4.23 | 5.28 | 6.55 | 837 | 10.67 | 14.49
PL(-,—-1) 2.55 | 415 | 6.27 [ 892 [ 12.05 | 15.61 | 19.53
PL(-,0) 2.16 | 3.59 | 552 | 7.97 | 10.91 | 14.29 | 18.06
PL(-,1) 1.82 | 3.09 | 4.83 | 7.08 | 9.82 | 13.02 | 16.63
Pi(,-1) 503 | 6.04 [ 7.37 [8.92 | 11.03 | 13.59 | 17.74
Pi(-,0) 4.35 | 527 | 6.51 | 7.97 | 9.99 | 12,50 | 16.52
Pi(,1) 3.74 | 4.57 | 5.71 | 7.08 | 9.00 | 11.45 | 15.33

Pl —Pj 115 | 123 | 1.21 [ 1.19 [ 1.04 | 0.88 [ 0.57

Pg - Pp 171 | 201 | 236 | 2.73 | 3.13 | 3.54 | 3.87
PL(,—1) = PL(-,1) | 072 | 1.06 | 1.44 | 1.84 | 223 | 259 | 2.90
Pi(,—1)—P3(,1) | 129 | 146 | 1.66 | 1.84 | 2.03 | 2.14 | 241
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Chapter 3

Pricing Bounds on Barrier Options

This paper proposes the optimal pricing bounds on barrier options in an environment where plain-vanilla options
and no-touch options can be used as hedging instruments.

Super-hedging and sub-hedging portfolios are derived without specifying any underlying processes, which
are static ones consisting of not only plain-vanilla options but also cash-paying no-touch options and/or asset
paying no-touch options that pay one cash or one underlying asset respectively if the barrier has not been hit.
Moreover, the prices of these portfolios turn out to be the optimal pricing bounds through finding risk-neutral
measures under which the barrier option price is equal to the hedging portfolio’s value.

The model-independent pricing bounds are useful because a price of a barrier option is significantly dependent
on a model. It is demonstrated through numerical examples that prices outside the pricing bounds can be
produced by models which are calibrated to market prices of plain-vanilla options, but not to that of a no-touch
option.!

3.1 Introduction

This paper proposes pricing bounds on barrier options.

Pricing and hedging barrier options have been researched widely so far. In particular, a lot of methods which
semi-statically hedge barrier options have been proposed by several researchers (see e.g. (Carr and Chou, 1997),
(Carr et al., 1998), (Derman et al., 1995), (Fink, 2003)). Here, semi-static hedging means replication of barrier
options by trading plain-vanilla options at no more than one time after inception. Since plain-vanilla options
are needed for these hedging strategies, models which price barrier options must be calibrated to plain-vanilla
options.

However, model risk on the valuation of barrier options has been pointed out, even if the model is perfectly
calibrated to a volatility surface. For instance, it is documented in (Hirsa et al., 2003) and (Lipton and McGhee,
2002) that models may produce similar prices of plain-vanilla options, yet give markedly different prices of barrier
options. As a result, they demonstrate that static hedging of barrier options with plain-vanilla options is model
dependent. (Schoutens et al., 2005) also reports a general feature of pricing exotic options under several models
calibrated nicely to the same volatility surface. Their results about barrier options show that the variation can
be significant, especially if the spot price is close to the barrier level.

1Electronic version of an article published as Journal of Futures Markets, 34(12):1170-1184, 2014, DOI: 10.1002/fut.21641,
(©2013 Wiley Periodicals, Inc., http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1096-9934
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Model risk of barrier options is explained as follows. Since barrier options are path-dependent options, joint
distributions of the underlying asset prices at different time points are significantly important in order to price
or hedge these options. In contrast, plain-vanilla options determine only the marginal distribution of the risk-
neutral measure, but leave considerable freedom in the specification of joint distributions. Joint distributions
are determined not by market prices but by models, if the models are calibrated only to plain-vanilla options.
Then, what model is used to price barrier options is heavily important. This implies that models must be not
only matched to the market prices of plain-vanilla options, but also be consistent with the observable prices
of exotic options. (Carr and Crosby, 2010) proposes a model which is calibrated to both the market prices
of plain-vanilla options and the observable prices of exotic options. They consider pricing of barrier options
in the foreign exchange (FX) options market. In this market, the most actively traded barrier options are
double-no-touch (DNT) options. They regard DNT options as instruments which are calibrated to.

In contrast, this study proposes not exact prices for barrier options but pricing bounds, using no-touch
options as well as plain-vanilla options, where a no-touch option is a knock-out option which is worthless if
the barrier is hit, pays one cash at maturity if the barrier has not been hit. Moreover, the corresponding
super-hedging and sub-hedging portfolios are also provided, which are static ones consisting of plain-vanilla
options and no-touch options. They are derived without any specification of underlying processes and are
the optimal pricing bounds among model-independent bounds. The optimality is proved through finding risk-
neutral measures under which the barrier option price is equal to the hedging portfolio’s value. In addition, if
one can use another type of a no-touch option which pays one underlying asset at maturity if the barrier has
not been hit, the pricing bounds are much tighter. In particular, this no-touch option is common in FX options
market because it is nothing but a no-touch option which pays one cash for a foreign trader. Hereafter, these
no-touch options are called cash-paying no-touch option and asset-paying no-touch option respectively in this
article.

The model-independent pricing bounds and the hedging portfolios are useful for checking a barrier option’s
price. If the price is outside the pricing bounds, it provides an arbitrage opportunity which yields a profit
without any risk. It will be demonstrated through numerical examples in this paper that prices outside the
pricing bounds may be produced by models which are calibrated to market prices of plain-vanilla options, but
not to that of a no-touch option. As (Carr and Crosby, 2010) does, this study also suggests that models for
pricing barrier options should be calibrated to the market prices of no-touch options. Otherwise, it is likely that
arbitrage opportunities are provided.

The strategy proposed in this article is unique, while model-independent pricing bounds and the hedging
portfolios have been studied so far. For example, (Brown et al., 2001) and (Cox and Obléj, 2011a) derive hedging
portfolios which consist of only plain-vanilla options and require a certain transaction at the first hitting time,
assuming that plain-vanilla options are liquidly traded and an underlying asset price itself is a martingale. The
approach of this study is more robust than theirs because their assumption is violated in the real markets with
nonzero interest rates and it is not necessarily possible to trade during the turmoil periods, which may cause
substantial hedging errors. It should be pointed out that the strategy is crucially dependent on liquidity of no-
touch options, while (Brown et al., 2001) is so general that they can be applied to these options as well. Pricing
bounds and the corresponding hedging strategies for no-touch options are well documented in these (Brown
et al., 2001) and (Cox and Obldj, 2011a). Also, pricing no-touch options under several models is studied by
(Lipton and McGhee, 2002). An interesting point in this study is, however, to make use of market prices of
no-touch options for the purpose of finding arbitrage opportunities. Actually, these options are likely to be
overestimated or underestimated, since they are highly dependent on models and market views of traders.

Numerical examples are used to demonstrate how useful the bounds are for pricing and hedging barrier
options. The pricing bounds are compared with exact prices under several models which are calibrated to plain-
vanilla options and with pricing bounds proposed by (Brown et al., 2001). In particular, a comparison with
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the prices in (Schoutens et al., 2005) shows that some models produce prices outside the model-independent
bounds. It is suggested that great care should be taken when choosing models to price barrier options and the
models should be calibrated to both the market prices of plain-vanilla options and no-touch options.

The rest of this paper is as follows: In the next section, the setup and the problem considered in this
paper are described. The third section is devoted to showing pricing bounds on the barrier option and hedging
strategies corresponding to them. The fourth section provides numerical examples. Finally, concluding remarks
are given in the last section.

3.2 Setup

Consider a problem of pricing and hedging barrier options in an environment where plain-vanilla options and
no-touch options are liquid.

In order to state the problem precisely, some assumptions and notations are introduced. First, a barrier
option under consideration is assumed to be a single or double knock-out option with maturity 1", payoff g and
barrier levels [, where 0 < I < u < 4+o00. This option is worthless if [ or « is hit at any time during its life.
If the barrier has not been hit by the expiration date, the terminal payoff is g. Let S; be the spot price of the
underlying asset at time ¢ € [0, 7] and | < Sy < u. Then, the payoff of the barrier option is:

9(57)1a, (3.2.1)

where I := [l,u] and A :={S; € I | 0 <Vt <T}. A cash-paying no-touch option with maturity 7" and barrier
levels [, u is a knock-out option which is worthless if the barrier is hit, pays one cash at maturity if the barrier
has not been hit. The payoff is 1 4. An asset-paying no-touch option pays one underlying asset instead of one
cash. The payoff is S714.

Next, some assumptions on the market environment are described. The risk-free interest rate r» and the
dividend yield ¢ of the underlying asset are assumed to be constant for simplicity. Different from other research
of barrier options, these two quantities are not required to be equal. In addition, the time-0 prices of all plain-
vanilla options with maturity T and a cash-paying no-touch option with the barrier level /,u and the same
maturity are assumed to be known. That is, the risk-neutral distribution of St is uniquely determined by prices
of plain-vanilla options and the risk-neutral probability that the barrier is hit at any time during its life is
known. Furthermore, it is assumed that the prices of plain-vanilla options are twice continuously differentiable
by strike and the second order derivative is positive. The last assumption ensures that the density of the random
variable St exists and is a continuous function.

All one knows is the risk-neutral distribution of St and the risk-neutral probability that the barrier is hit
until time 7. In these settings, one has no information about the risk-neutral distribution of Sy (¢t < T).

The problem is stated as follows: How can a knock-out call option be priced and hedged in an environment
where the underlying asset, all plain-vanilla options with the same maturity and a cash-paying no-touch option
with the same maturity and the same barrier levels can be used as hedging instruments?

Remark 14. This paper considers a knock-out call option with a single or double barrier. The theorems in this
paper introduced in Section 3.3 are however valid for other types of barrier options if it is slightly modified. For
example, the knock-out condition A can be replaced with {S; € I |Vt € J}, where J is a subset of the interval
[0,T], and with {X; € I |0 <Vt < T}, where X is an another asset price process.

The approach in this paper to this problem is not to derive an exact price and an exact hedging, but to
derive pricing bounds, and super-hedging and sub-hedging strategies corresponding to the bounds. These pricing
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bounds are the optimal under a certain condition, which means that the pricing bounds cannot be improved
without additional condition.

The undiscounted price, or forward price, of a call option and a cash-paying no-touch option at time t are
denoted by Cy(K) and N (I). All one requires of a pricing framework is that they are calibrated to market
prices of these options. In order to define this requirement, the following definition is introduced.

Definition 7. A pair of a probability space (2, F,Q) and a stochastic process {Si}iejo,r) on it is a calibrated
probability space if and only if

Co(K) = E((St—K),), (3.2.2)
NEI) = E(1a), (3.2.3)

where VK > 0 and E is the expectation operator under Q. P is a set of all calibrated probability spaces.

In addition, a constraint on trading strategies is imposed: trading is allowed only at the initial time. This
kind of strategies is called a static strategy in this paper. Limiting the strategy static one means that it is not
required that the process {e_(T_Q)tSt}te[OwT) is a continuous-time martingale? and that all of probability one
has to consider is P¢.

If a market is incomplete, the price of the barrier option cannot be determined uniquely. The next best
thing is to derive the optimal pricing bounds. If there are no arbitrage opportunities, undiscounted values of
the barrier option must lie somewhere between the bounds [W¢, W&, where

we glcfE(g(ST)lAL (3.2.4)

sup E(g(St)1a). (3.2.5)

wé

This study derives pricing bounds which are enforced by a static super-hedging strategy and a static sub-
hedging strategy. In particular, the bounds are turned out to be the optimal, which means that they are equal
to [Wf , Wg ]. This is proved by constructing specific calibrated probability spaces under which a price of the
barrier option is equal to the super-hedging and sub-hedging values respectively.

After establishing pricing bounds for this problem, it is considered how the pricing bounds are improved by
adding an assumption that one can use an asset-paying no-touch option as a hedging instrument. Similarly to
the problem stated above, the following notations are defined:

Definition 8. P4 is a subset of PC such that its element satisfies
NM(I) = E(Srla), (3.2.6)
where N64(I) is an undiscounted price of the asset-paying no-touch option.

The pricing bounds with this probability space P4 are

Wit = infE(g(Sr)1a), (3.2.7)
wg = s;PE(g(ST)lA). (3.2.8)

Lastly, a measure to be considered is a component of an element of P€orP# hereafter in this paper. Then,
Q or E is respectively used to denote the risk-neutral distribution or expectation of Sy and of A for simplicity
if it is not ambiguous, because they do not depend on a choice of an element of P orP4.

21t is required that the discrete-time process {So, e_(’"_‘I)TST} is a martingale, but it is imposed from the prices of plain-vanilla
options.
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3.3 Pricing Bounds

This section derives pricing bounds on barrier options and hedging portfolios corresponding to the bounds.
Theorem 2 is the main theorem of this paper.

Theorem 2. Define A. C I such that sup,eu, g(s) < infega, g(s) and A* C I such that supgg - g(s) <
infsea- g(s). Then,

(9(S1) — 9:)l{srea.y + 9:1a (3.3.1)
< g(S7)1a (3.3.2)
< (9(S1) = 9")sreary + 9" 1a, (3.3.3)

where g. and g* are arbitrary values such that g. € [sup,ec 4, 9(s),infsga, g(s)] and g* € [supg - g(s), infse 4+ g(s)]
respectively. Moreover, suppose that N§ (I) = Q(St € A.) and N§ (I) = Q(St € A*). Then,

WE = E((9(ST) — g:)l{srea.} + 9la
W& = E((9(St) — 9")lispea-y +971a

, (3.3.4)

)
)
Remark 15. The former part of Theorem 2 implies that the barrier option can be dominated by or dominate

some portfolios which consist of plain-vanilla options and a cash-paying no-touch option. The latter part of
Theorem 2 implies that the portfolios give the optimal pricing bounds respectively.

Remark 16. One can find A, and A* because it is assumed that the density of St is continuous.

In the following, two propositions which constitute Theorem 2 are provided. The first one shows that there
are families of super-hedging and sub-hedging portfolios.

Proposition 1 (super-hedging and sub-hedging portfolio). Suppose that g., A., g* and A* are defined as in
Theorem 2 for g. Then,

(9(ST) = g )1 (spea.y +9+1la (3.3.6)
< g(ST)1a (3.3.7)
< (9(S7) — g ) lspeay + 9" 1a. (3.3.8)
Proof. Inequality (5.3.6) is proved by
9(Sr(w)) (§T<w) € j*’w € f:)
(g(ST(w)) - g*)l{ST(w)GA*} + g*l{wGA} = zzST(w)) — g ES;E(:% i A:(: ; Ag
0 (S7(w) ¢ As,w ¢ A)
g(St(w)) (Sr(w) € Ay,w € A)
< 9(Sr(w)) (Sr(w) ¢ A, w € A)
= 0 (S7(w) € Ay,w & A)
0 (ST(UJ) ¢ A*vw ¢ A)
= g(St(w))1{weay (3.3.9)

and Inequality (5.3.8) is proved in the same manner. O



46 CHAPTER 3. PRICING BOUNDS ON BARRIER OPTIONS

Eq.(3.3.6) shows that the payoff of the knock-out option dominates that of the following portfolio:
e ¢, unit of the cash-paying no-touch option
e one unit of a European derivative with the payoff (9(S7) — g+)1s,ca.}-
Similarly, Eq.(3.3.8) shows that the payoff of the knock-out option is dominated by that of the following portfolio:
e ¢* unit of the cash-paying no-touch option
e one unit of a European derivative with the payoff (g(St) — ¢*)115,c4+}-

Remark 17. Construction of the payoffs (9(St)—g+)11srea.} and (g(St)—9*)1is,ea-} is theoretically possible
using call and put options (see (Breeden and Litzenberger, 1978)). However, the construction in practice requires
high transaction cost. One way to address this problem is to trade these options with an internal option trader
not with an external market participant. The internal option trader manages the options as a part of his or her
own position and hedging or taking risk is up to him or her.

Proposition 2 shows the optimality of the pricing bounds by constructing calibrated probability spaces under
which a price of the barrier option is equal to WLC and Wg respectively.

Proposition 2 (the optimality of the bounds). Suppose that N§' (I) = Q(St € A.) and N§ (I) = Q(St € A*).
(i) There exists a calibrated probability space (QF, F& QL {StL}te[O,T]) € PY such that

EX(9(ST)1a) = E((9(ST) = 9:)1{srea.) + g1a). (3.3.10)
(ii) There exists a calibrated probability space (Q¢, F¢, QC, {StG}te[O,T]) € PC such that

E%(g(Sr)14) = E((g(ST) — g")1{spea-) + 9" 1a). (3.3.11)

Proof. First, an arbitrary element (2, F,Q, {Si}rep0,17) € PC is chosen.
Let (QF, F£ QF) = (Q,F,Q) and X be a random variable on it such that

L ST (ST € A*)
X._{ o (oAl (3.3.12)

where x ¢ I is an arbitrary value. In addition, a stochastic process S* is defined by

Then, (QF, F& QF, {StL}te[o,T]) is a calibrated probability space, because the distribution of Sk is coincident
with that of Sp and QF(SF € 1|0<t<T)=Q(Sk € A,) = Q(A). Then,

E"(9(S¥)1a) = E"(g(SF)1stea,y)
= E((9(S7) — g«)1qsrea.} + 9xl{sreca.y)
= E((9(S7) — g:)1{srea.y + gla). (3.3.14)

Therefore, Eq.(3.3.10) holds.
One can prove Eq.(3.3.11) in the same manner. O
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Remark 18. The calibrated probability space (¢, F&, Q% {Sf}te[oj]) is explained intuitively as follows. Con-
sider the worst case scenario for a writer of a knock-out option whose payoff is g(St)1a under the condition
that the risk-neutral distribution of St and the risk-neutral probability that the barrier is hit are given. Since
the writer has to pay the payoff of the option at maturity if the barrier has not been hit, the worst scenario for
the writer is that the payoff is high if the barrier has not been hit and low if the barrier has been hit. Then, the
process {StG}te[o,T] should be constructed by distributing S (w) to A* for w € A. The event A has the same
probability as that of {SS € A*}. As a result, the upper bound is an ewpectation of the plain-vanilla payoff
g(S§) on the domain {SS € A*}.

In particular, the pricing bounds for a knock-out call option with strike K and an asset-paying no-touch
option are obtained:

Corollary 3. Suppose k € [K,u]. Then

(k= K)(1a = 1a,) + ((S7 = K)4+ — (57 = £)+)1a, (3.3.15)
< (Sr—K)ily (3.3.16)
< (k=K)la+ (St — K)+1as, (3.3.17)

where Ar := {St € I'}. Moreover,
(i) the expectation of Eq.(3.3.15) takes the supremum value at k = k. V K and the value is W§,
(ii) the expectation of Eq.(3.5.17) takes the infimum value at k = k* V K and the value is W,

where ks and K* are real numbers in [l,u] such that

Q) = Q({I<Sr <k} (3.3.18)
Q4) = Q{x" < Sr <u}) (3.3.19)

and x V y := maz(z,y).
Corollary 4. The following holds for any element of P¢

E(Srlu<sr<n.y) SE(ST1a) S E(STl{n<sr<u}); (3.3.20)
where ks and K* are defined as in Corollary 3.

Next, consider how the pricing bounds are improved by adding an assumption that one can use an asset-
paying no-touch option as a hedging instrument.

Theorem 3. Suppose a € R. Then

(h(ST) — h*)l{STeA*} +hla+aSrla (3.3.21)
< 9(Sr)la (3.3.22)
< (h(ST) — h*)l{STeA*} +h*l4 + aStly, (3.3.23)

where h(s) := g(s) — as and hy, A, h* and A* are defined as in Theorem 2 for h. Moreover, suppose that

g(s+XA) —g(s)

X < +o00 (3.3.24)

SUPxel—s

for s = ki and s = k¥, where Kk, and K* are defined as in Corollary 3. Then,
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(i) the expectation of Eq.(3.3.21) takes the supremum value at o = cv, and the value is W,

(ii) the expectation of Eq.(3.5.23) takes the infimum value at o = o* and the value is W&,

where o, and o are defined by Ng'(I) = E(Stlispea.y) = E(Srl{s,eax}) respectively.

Proof. The inequalities are from Theorem 2. The set A, is close to {I < St < K.} as @ — —oo and

{x* < Sp < u} as @ — +o0. By Corollary 4, one can find o, and A, such that Ng'(I) = E(S71{s,ca.}). One
can construct an element of P such that A = {Sr € A.}. Then,

E((h(ST)fh*)].{STeA*}+h*1A+Oz*ST1A) = E((h(ST)7h*)1A+h*1A+Oé*ST1A)
— E(g(Sr)la). (3.3.25)

O

Eq.(3.3.21) shows that the payoff of the knock-out option dominates that of the following portfolio:
e ), unit of the cash-paying no-touch option

e « unit of the asset-paying no-touch option

e one unit of a European derivative with the payoff (g(St) — @St — h.)1l{s,ca.}-

Similarly, Eq.(3.3.23) shows that the payoff of the knock-out option is dominated by that of the following
portfolio:

e h* unit of the cash-paying no-touch option
e « unit of the asset-paying no-touch option

e one unit of a European derivative with the payoff (g(St) — aSr — h*)1{g,ca+}-

3.4 Numerical Examples

This section shows numerical examples. The pricing bounds are compared with exact prices derived by some
specific models.

The Heston’s stochastic volatility model ((Heston, 1993)) is regarded as the process of the underlying asset,
which means all market options are produced by the model. The process of the underlying under the Heston
model is as follows:

s,
St
do? = k(n — o2)dt + 0o, dW,, (3.4.2)

= (r — q)dt + o dWy, (3.4.1)

where W and W are Brownian motions with correlation p under the risk-neutral measure.
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3.4.1 Pricing Bounds on Double Barrier Options

The first example of pricing bounds is for double barrier options. Double barrier options can be priced analyt-
ically under the Heston model with r» = ¢ and p = 0 (see (Lipton, 2001)). The barrier option considered in this
example is set to be a double knock-out call option with maturity 1-month or 3-month, K = 0.95, [ = 0.8 and
u = 1.1. The Heston prices, the model-independent pricing bounds and trivial upper bounds for this option are
calculated with the spot price varied from [ to v under the Heston model with the parameters listed in Table
5.1. Here, a trivial upper bound means a European option whose payoff is (St — K)414,, where Ap is defined
in Corollary 3.

Table 3.1: Parameters of the Heston Model

r q os K n 0 P

0.03 0.03 0.15> 3.0 02° 04 0.0

The results are Figure 3.1 and Table 3.4 for 1-month and Figure 3.2 and Table 3.5 for 3-month?, which
show that all of the model-independent upper bounds or lower bounds are upper or lower than the exact prices
respectively. In addition, the pricing bounds using an asset-paying no-touch option are much closer to the
Heston prices than those using only a cash-paying no-touch option.

The upper bound with a cash-paying no-touch option seems much more conservative than the lower bound
in these examples. Although this is not true in general, the case of this example is explained as follows: Consider
the calibrated probability space (Q¢, F%, Q%, {SF}iej0,r)) € P, which gives the upper bound for the knock-
out call options in the examples. As in Remark 18, S (w) belongs to A* for a scenario w € A where the barrier
is not hit and S? (w) does not belongs to A* for a scenario w € A°. This scenario is, however, far from a reality,
because A* is a subset of I which is close to the barrier levels [ and u. On the other hand, the probability space
that gives the lower bound is more likely. This is a reason why the upper bound is much more conservative
than the lower bound.

3.4.2 Comparison with (Brown et al., 2001)

The second example is comparison with the method proposed by (Brown et al., 2001) for single barrier options,
which are up-and-out call options with maturity 1-month or 3-month, K = 0.95 and v = 1.1. The Heston
prices, the model-independent pricing bounds, pricing bounds of (Brown et al., 2001) and trivial upper bounds
for this option are calculated with the spot price varied from 0.95 to 1.075 under the Heston model with the
parameters listed in Table 3.2.

Table 3.2: Parameters of the Heston Model

r q o2 K n 0 P
0.0 0.0 0152 3.0 0.2%2 04 00

3The pricing bounds using asset-paying no-touch options are omitted from the figures since they are very close to the Heston
prices.
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The results are Table 3.6 for 1-month and Table 3.7 for 3-month. Generally, one cannot claim that either of
the two methods is superior to the other. The method proposed by this paper uses a no-touch option and do not
assume the underlying asset price is martingale, while (Brown et al., 2001) assume it is martingale. Actually,
Table 3.6 and Table 3.7 show that the lower bounds of (Brown et al., 2001) and the upper bounds of this paper
are more conservative.

3.4.3 Comparison with (Schoutens et al., 2005)

The third example is a comparison with the results of (Schoutens et al., 2005). They study prices of single
barrier options under several models: the Heston model (HEST) and its generalization allowing for jumps in
the price process (see e.g. (Bakshi et al., 1997)) (HESJ), the Barndorff-Nielsen-Shephard model introduced
in (Barndorff-Nielsen and Shephard, 2001) (BN-S) and Lévy models with stochastic time introduced by (Carr
et al., 2001). The Lévy models with stochastic time in their study are NIG Lévy process with CIR Stochastic
Clock(NIG-CIR), NIG Lévy process with Gamma-OU Stochastic Clock(NIG-OUT'), VG Lévy process with CIR
Stochastic Clock(VG-CIR), and VG Lévy process with Gamma-OU Stochastic Clock(VG-OUT), where NIG is
for the Normal Inverse Gaussian distribution and VG for the Variance Gamma distribution.

The barrier options considered in their example are knock-out call options with maturity 3 years, strike
equal to the spot Sy and several barrier levels (ranging from 1.055p to 1.55y). They price the barrier options
under models which are calibrated very well to a set of plain-vanilla options.

The pricing bounds proposed in this paper are compared with their exact prices under the above models.
The calculation is based on the Heston model with the parameters listed in Table 3.3. Note that the prices of
no-touch options are also calculated by the Heston model, which are different from those by the other models.

Table 3.3: Parameters of the Heston Model in (Schoutens et al., 2005)

So r q 03 K n 0 p
2461.44 0.03 0.0 0.0654 0.6067 0.0707 0.2928 -0.7571

The results are listed in Table 3.8.

First, it is noteworthy that there are significant differences in the prices of the barrier options even if the
models are calibrated very well to plain-vanilla options, according to (Schoutens et al., 2005). This is due to
the different structure in path-behaviour between these models.

Second, whether the prices under the above models are in the model-independent pricing bounds or not is
examined. Since the prices of no-touch options in the calculation is based on the Heston model, all prices under
the Heston model are in the pricing bounds. On the other hand, some prices are outside the bounds using only
cash-paying no-touch options; the prices under NIG-OUT', VG-CIR, VG-OUT and NIG-CIR take higher values
than the upper bounds at H/Sy = 0.95,0.9,0.85. The bounds using asset-paying no-touch options are so close
to the Heston prices that many prices produced by the other models are outside them.

3.5 Concluding Remarks
This paper provides model-independent pricing bounds on barrier options and corresponding hedging strategies

using no-touch options. Moreover, the optimal pricing bounds among them are derived and the optimality
is shown through finding risk-neutral measures under which the barrier option price is equal to the hedging
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portfolio’s value. Comparing the pricing bounds proposed by this study with exact prices under several models
which are calibrated only to plain-vanilla options, it is demonstrated that some models produce prices outside
the model-independent bounds. This implies that great care should be taken when choosing models to price
barrier options.

Finally, the next research topic will be to consider a pricing model for barrier options which is calibrated to
both the market prices of plain-vanilla options and no-touch options.
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Figure 3.1: Pricing bounds and Heston prices (1M)
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Table 3.4: Pricing bounds and Heston prices (1M)

spot | 0.950 | 0.975 [ 1.000 | 1.025 | 1.050 [ 1.075
wf 0.0162 [ 0.0308 [ 0.0470 [ 0.0587 | 0.0567 | 0.0336
wit 0.0162 | 0.0308 | 0.0472 | 0.0592 | 0.0582 | 0.0373
Heston 0.0162 | 0.0308 | 0.0472 | 0.0594 | 0.0586 | 0.0374
wg 0.0163 | 0.0308 | 0.0473 | 0.0595 | 0.0587 | 0.0377
w§ 0.0165 | 0.0314 | 0.0496 | 0.0663 | 0.0716 | 0.0516
trivial upper bound | 0.0165 | 0.0314 | 0.0496 | 0.0663 | 0.0756 | 0.0722
DNT 0.9940 [ 0.9878 | 0.9610 | 0.8886 | 0.7212 [ 0.4150
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Figure 3.2: Pricing bounds and Heston prices (3M)
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Table 3.5: Pricing bounds and Heston prices (3M)

11

spot | 0.950 | 0.975 [ 1.000 | 1.025 [ 1.050 [ 1.075
wg 0.0160 | 0.0225 [ 0.0263 | 0.0253 [ 0.0184 | 0.0070
wi 0.0187 | 0.0246 | 0.0284 | 0.0281 | 0.0225 | 0.0126
Heston 0.0193 | 0.0255 | 0.0298 | 0.0302 | 0.0249 | 0.0142
wg 0.0220 | 0.0271 | 0.0309 | 0.0310 | 0.0259 | 0.0153
w§ 0.0231 | 0.0322 | 0.0409 | 0.0475 | 0.0459 | 0.0305
trivial upper bound | 0.0231 | 0.0322 | 0.0409 | 0.0475 | 0.0503 | 0.0487
DNT 0.8739 | 0.8399 | 0.7638 | 0.6400 [ 0.4654 | 0.2460
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Table 3.6: Comparison with (Brown et al., 2001) (1M)

spot | 095 [ 0.975 [ 1.000 [ 1.025 [ 1.05 [ 1.075

lower bound of (Brown et al., 2001) | 0.0162 | 0.0303 | 0.0457 | 0.0549 | 0.0486 | 0.0236
wf 0.0163 | 0.0309 | 0.0474 | 0.0595 | 0.0580 | 0.0360

Heston 0.0164 | 0.0310 | 0.0477 | 0.0602 | 0.0598 | 0.0397

w§ 0.0165 | 0.0315 | 0.0497 | 0.0665 | 0.0723 | 0.0537

upper bound of (Brown et al., 2001) | 0.0165 | 0.0314 | 0.0493 | 0.0657 | 0.0747 | 0.0686
trivial upper bound 0.0165 | 0.0315 | 0.0497 | 0.0665 | 0.0758 | 0.0724

DNT 0.9976 [ 0.9905 | 0.9660 | 0.8961 | 0.7328 | 0.4361

Table 3.7: Comparison with (Brown et al., 2001) (3M)

spot | 095 [ 0975 [ 1.000 [ 1.025 [ 1.05 [ 1.075

lower bound of (Brown et al., 2001) | 0.0161 | 0.0200 | 0.0211 | 0.0179 | 0.0104 | 0.0022
w¢ 0.0187 | 0.0244 | 0.0277 | 0.0266 | 0.0196 | 0.0079

Heston 0.0197 | 0.0262 | 0.0306 | 0.0310 | 0.0260 | 0.0152

Wg 0.0233 | 0.0324 | 0.0412 | 0.0478 | 0.0469 | 0.0320

upper bound of (Brown et al., 2001) | 0.0223 | 0.0310 | 0.0394 | 0.0459 | 0.0491 | 0.0466
trivial upper bound 0.0233 | 0.0324 | 0.0412 | 0.0478 | 0.0507 | 0.0491

DNT 0.9295 | 0.8760 | 0.7884 | 0.6591 | 0.4828 | 0.2618
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Chapter 4

No-Arbitrage Bounds on Two
One-Touch Options

This paper investigates the pricing bounds of two one-touch options with the same maturity but different barrier
levels, where the pricing bound is a range within which a one-touch option can take a price when a price of
another one-touch option is given. The upper or lower bounds are the cost of a super-replicating portfolio and a
sub-replicating portfolio respectively. These consist of call options, put options, digital options and a one-touch
option. We assume that the underlying process is a continuous martingale, but do not postulate a model.!

4.1 Introduction

This paper investigates pricing bounds within which a one-touch option can take a price when the price of
another one-touch option with the same maturity but a different barrier level is given.

Financial markets trade many barrier option types such as single/double barrier knock-in/-out options. Of
these, one-touch and no-touch options are the simplest barrier options and widely are traded. A one-touch
option is a barrier option that pays a unit of currency at the maturity if the barrier is hit and is worthless if the
barrier has not been hit. In contrast, a no-touch option is worthless if the barrier is hit. These are important
instruments for traders of barrier options, because they reflect a market view of the probability of the barrier
being hit.

There has been considerable research on pricing and hedging barrier options. In particular, researchers have
proposed several methods that semi-statically hedge barrier options (see e.g. (Carr and Chou, 1997), (Carr
et al., 1998) and (Derman et al., 1995)). Here, semi-static hedging means the replication of barrier options by
trading European puts and calls no more than once after inception. Hedging strategies require options, thus
models that price barrier options must be calibrated to these. However, even if the model is perfectly calibrated
to a volatility surface there are risks attached to the valuation of barrier options. For instance, (Hirsa et al.,
2003), (Lipton and McGhee, 2002) and (Schoutens et al., 2005) all state that although models may produce
similar European put and call option prices, they give markedly different barrier option prices. Touch options
are recognized as important products because they are used as an instrument to which a model is calibrated
(see e.g. (Carr and Crosby, 2010)).

1Preprint of an article submitted for consideration in International Journal of Theoretical and Applied Finance, ©2015 World
Scientific Publishing Co Pte Ltd, http://www.worldscientific.com/worldscinet/ijtaf
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The model-independent approach has also been considered for exotic derivatives including barrier options
(see e.g. (Hobson, 1998), (Hobson and Neuberger, 2012), (Labordére et al., 2012) and (Hobson and Klimmek,
2012)). In particular, (Brown et al., 2001) propose robust super-replicating and sub-replicating barrier option
strategies including touch-options without assuming any specific models. (Cox and Oblgj, 2011a) and (Cox and
Obléj, 2011b) focus on touch options with two barrier levels in the same manner as (Brown et al., 2001). They
use call options and put options as well as digital options with the same maturity as replicating instruments and
trade forward contracts at the first barrier(s) hitting time(s). Generally, pricing bounds derived from model-
independent replications tend to be rather wide, which is also the case for touch-options. Hence, it is worth
investigating how much these pricing bounds are refined if other instruments are traded.

This paper investigates pricing bounds within which a one-touch option can take a price when a price of
another one-touch option with the same maturity but a different barrier level is given and those European
options (including call, put and digital options) with the same maturity. Suppose there is a pricing operator
on FEuropean options with a certain maturity and a touch option with the same maturity and a certain barrier
level. The question is how to extend this pricing operator to a space spanned by a touch option with the same
maturity but a different barrier level as well as these derivatives. To address this, we propose pricing operators
that provide upper and lower bounds for the touch option based on a super-replication and a sub-replication.
Our approach is in line with (Brown et al., 2001), (Cox and Obl6j, 2011a) and (Cox and Obléj, 2011b), in that
we assume the underlying asset process is a continuous martingale and our replications consist of static portfolios
and transactions of a forward contract in the first instances of hitting the barrier levels. We differentiate by
using a touch option as well as European options for the static portfolios.

Moreover, we provide pricing bounds on a touch/no-touch option that pays one unit of currency if and
only if the first barrier is hit but the second is not. In Section 4.4, we consider the pricing bounds on this
touch/no-touch option using the one-touch option with the second barrier as well as European options. If we
use, instead of the one-touch option, the upper- or lower bounds and the super- or sub-replications on this,
we obtain the pricing bounds as well as super- and sub-replications of the touch/no-touch option using only
European options.

The next section of this paper describes the settings and notations. The third section reviews the research
of (Brown et al., 2001). The super-replications and sub-replications for a one-touch option using another with
a different barrier level are derived in the fourth section. The fifth section provides numerical examples.

4.2 Settings and Notations

The settings and notations used in this paper are stated here.

First, we introduce some notations. Let us denote the spot price of the underlying asset at time ¢ € [0, 7]
by S, where T™ is some arbitrary time horizon and the time-t price of a call option and a put option with strike
K and maturity T € [0,7*) by C¢(K) and P;(K) respectively. The one-touch option is assumed to be a single
knock-in option with maturity 7' and barrier level B € (Sy, +00). This option is worthless if B has not been hit
by the expiration date. If the barrier is hit at any time during the option’s life, the terminal payoff is 1. Then,
the payoff of the barrier option is 1;;, <7}, where 75 is the first time of hitting B:

5 = 7B(S5)
inf{t <T*|S; > B}. (4.2.1)

A time-t price of this option is denoted as O;(B). The subscript ¢ may be omitted in case of ¢ = 0 such as
C(K), P(K) and O(B) for simplicity.
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Second, we make some assumptions. The first assumption is that the underlying price process S is a non-
negative martingale. The interest rates are also assumed to be zero. This is merely for simplicity, since our
results are valid by reading all prices of all options and portfolios as forward T prices in case of a non-zero interest
rate. Examples to which our results are applied are that the underlying process is a forward price or that the
underlying asset pays continuous dividends equal to the interest rate. We assume that forward transactions
are costless and all instruments — such as underlying asset, forward, — are traded without transaction costs.
Importantly, we assume that the underlying price process is continuous. This allows us to exchange a call
option with strike K, with (B — K) amounts of cash and a put option with the same strike by trading a forward
contract with zero cost at the first time of hitting B, since the following parity holds:

C.,(K)-P.,(K)=B-K. (4.2.2)

This type of trade is used throughout this paper. Moreover, we add an assumption in Section 4.4.1 and 4.4.2 that
the distribution of the underlying asset at maturity 7" under a risk-neutral measure is given. This distribution
is centered at Sy. We consider the case where only a finite number of call options are known in Section 4.4.3.
Knowledge of the distribution is equivalent to the knowledge of European call option prices without arbitrage
opportunities for the continuum of strikes by (Breeden and Litzenberger, 1978). The conditions for no arbitrage
are well-documented in (Davis and Hobson, 2007). We assume C(B) > 0 to avoid a trivial case. We denote by
v the risk-neutral distribution of the spot price at maturity 7' determined by prices of these options. It is also
assumed that call options, put options and digital call options can be used as replication, where the digital call
option with strike K is an option whose payoff is 1{x<g,} in this paper.

Third, we state the aim of this paper: to extend a pricing operator ¢ that is a linear operator defined on
X = L ([0,+00),v), a set of Lebesgue integrable functions on [0, +00) with respect to v, which associates a
payoff of an European option with its initial price such as ¢(K) = K, o((St — K)4+) = C(K), o((K —Sr)+) =
P(K). If a price of a one-touch option whose payoff is 1;,, <7y is known, we can extend the operator ¢ to X ®© Y,
where V is a linear space spanned by 1;;,<7) and & means a direct sum. This paper examines how to extend
the operator p to X &Y @ Y, where Y is a linear space spanned by 1, <7y with another barrier level B. To
address this, we propose sharp pricing bounds on one-touch options and the corresponding replicating strategies,
where sharpness means that the pricing bounds can not be improved without adding any other assumption.
The lower and upper bounds on the option are defined as follows under our settings:

L ._
w = I%fE [1{TB(S)§T}] (423)

w¢ supE [Lra(s)<y] > (4.2.4)
where P is a set of all risk-neutral probability spaces (€2, F,Q) and a continuous martingale process {S }c[0,7+]
on it that satisfies p(-) = E[-] on X ¢ and E is an expectation operator corresponding to the probability space.
Prices of super-replicating and sub-replicating portfolios are superior and inferior, but not necessarily equal,
to W& and W respectively. To prove the sharpness, we find super-replicating and sub-replicating portfolios
whose prices are equal to E [I{TB(S)ST}] with respect to a certain element of P.

Finally, we introduce some further technical notations. Every function f considered in this paper is a
combination of the call price function C. We expand the domain of the function f from [0,+00) to R by
C(K):=C(0)— K for K < 0 (recall that we assume that the underlying process is non-negative). The function
has left- and right-sided directional derivatives as does the function C. In this paper, we denote 0y as the
left-sided derivative operator. Moreover, the derivatives have finite total variations and the derivative 0, ;- can
be defined except for a countable set. The subdifferential of a function f at K can be defined and is denoted by

Ok f(K) == {k € R| f(r) > f(K) + k(x — K), Vr € R}. (4.2.5)



60 CHAPTER 4. NO-ARBITRAGE BOUNDS ON TWO ONE-TOUCH OPTIONS

We introduce the following notation for simplicity:

N0k f) ={K c¢R|0€ dxf(K)}. (4.2.6)

4.3 Review of (Brown et al., 2001)

In this section, we review the replications for a one-touch option with only European options, as proposed by
(Brown et al., 2001), because we use these results in Section 4.4. The one-touch option is assumed to have a
barrier level B, where Sy < B.

First, we prepare the following lemma:

Lemma 5. Suppose that there is a measurable set Qg € F such that St € [B,4+00) on Qy and E[St : Q] =
BQ[Q0]. Then, there ervists a continuous martingale {S{ }1cjo,r) such that Sy = S} and Q[rp(S*) <T] =
Q[$2].

Proof. Let Xy, X1 and X5 be random variables defined as X, := Sy, X5 := St and

X1 =B- 190 + ﬂ . 1967 (431)
where
B -5,
8:=B— —- 4.3.2
Q) (432)

Note that 8 < B and E[Sr: Q5] = BQ[Q§]. Then, {X,}n=012 is a discrete martingale with respect to a
filtration generated by X. By Dudley’s theorem (see, for instance, p.188 of (Karatzas and Shreve, 1988)), the
random variables X; — Xo, (X2 — X1) - 1o, and (X2 — X1) - Log can be expressed with stochastic integrals with
respect to the Winner processes. A continuous martingale process S; such that Q[rp(S*) < T| = Q[Qp] can
be constructed by these stochastic integrals. O

4.3.1 Super-Replication
Consider the following self-financing strategy G(K; B) for VK € [0, B):

1. At the initial outset
e Buy ﬁ units of a call option with strike K.
2. At the first time of hitting B

e Sell units of the forward contract.

1
B-K

The strategy G(K; B) super-replicates the one-touch option with any K € [0, B). We provide some optimal
strategies properties.

Definition 9. The initial value of strategy G(K; B) is defined as

G(K;B) := %, (4.3.3)
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G.(B) as the infimum value of G(K; B) with respect to K, Kz (B) as a strike price by which the infimum is
attained:

G«(B) := KE(leo,B)G(K;B)

= G(K¢g(B);B) (4.3.4)
and G.(B) as the corresponding strategy.

Proposition 3. The infimum of Fq.(4.5.4) is attained by any element of N (0xG(B)), an interval of [0, B).
For all K¢ € N(0xG(B)), the following holds:

St — Kg

QUK < S7] < Gu(B) =F | =<

1 Ke < Sr| <Q[K- < 57, (4.3.5)

where K_ := inf N (g G(B)) and K := sup N (g G(B)). In addition, there is a continuous martingale process
{StG}te[o 7] such that

G.(B)=Q[rp (S9) <T]. (4.3.6)

Proof. By differentiating G with respect to K, we obtain

ORG(K) = g (9R0) + 500 )
= o (RO(K) + GK) (43.7)
and
OpkG(K) = 0 C(K) + ﬁa;{cu{) + 2(3082)3
= Rk C(K) + o ORG(E). (4.3.8)

Since 9xG(0) = H(-1+4 2) < 0, limkx_p 9xG(K) = 400 and because Jg G > 0 if 0xG > 0, the set
N(0xG(B)) is an interval of [0, B) and we have Eq.(4.3.5). Apply Lemma 5 with Q¢ C Q such that {Kg <

St} C Qo C{K¢g < St} and Q [Q] = G, then we have a continuous martingale {StG}te[o L O

4.3.2 Sub-Replication
Consider the following self-financing strategy L(K; B) for VK € [0, B):
1. At the initial outset

e Buy ﬁ units of a call option with strike B.
e Buy 1 unit of a digital call option with strike B.
e Sell

57 units of a put option with strike K.

2. At the first time of hitting B
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e Sell Bi 7 units of the forward contract.

The strategy L£(K; B) super-replicates the one-touch option with any K € [0, B). We provide some optimal
strategies properties.

Definition 10. The initial value of the strategy L(K; B) is defined as

L(K;B) := BC(fB[)( - BPEI([){ — 0 C(B), (4.3.9)

L.(B) as the supremum value of L(K; B) with respect to K, K1,(B) as a strike price by which the supremum is
attained:

L.(B) := sup L(K;B)
Ke(—o00,B)

= L(Kp;B), (4.3.10)
and L.(B) as the corresponding strategy.

Proposition 4. The supremum of Eq.(4.3.10) is attained by any element of N'(0x L(B)), an interval of [0, B).
For all K1, € N(0x L(B)), the following holds:

Q[Sr < K_,B<S7] < L.(B)=E St = Ky

= 7IST§KL,B§ST S@[ST§K+,B§ST], (4311)
B-K,

where K_ := inf N(Ox L(B)) and Ky := sup N (0 L(B)). In addition, there is a continuous martingale process
{StL}te[o oo such that

L.(B)=Q[rs (S*) < T]. (4.3.12)

Proof. By differentiating L with respect to K, we obtain

LK) = — ! - (BC<BI)( — 9 P(K) — 5%)
1 _ _
= 5% (L(K) + 0xC(B) — 0x P(K)) (4.3.13)
and
O LK) = Q(BC_(ZQ):S e Ly 4@@;1)(@ —Z(BPEIQ)B
2 .
= S ORLK) = =05 P(K). (4.3.14)

Since 03 L(0) = 55 > 0, limg_,p O L(K) = —oo and because 0L < 0 if 0L < 0, the set N (dx L(B)) is
an interval of [0, B) and we have Eq.(4.3.11). Apply Lemma 5 with ¢ C Q such that {K; < Sp,B < St} C
Qo C{KL < St,B < Sr} and Q[Q] = L., then we have a continuous martingale {StL}te[o.T]' O
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4.4 Replication using another One-Touch Option

Here, we consider super-replication and sub-replication for a one-touch option with a barrier level B; using
European options and a one-touch option with a barrier level By, where Sy < B; < Bs. Rather than considering
the barrier option, we consider a touch/no-touch option whose payoff is 1¢,, <7<-,3 where 7 and 7 are the first
times of hitting By and Bg respectively, because of 1(, <7<r,} = 1{r; <7} — L{r,<7}-

For easing expression, we introduce the notation 7 : [0, 1] — F: where 7(p) is an element of F for p € [0, 1]
such that Q[n(p)] = p, and Sr(w) < Sp(w®) for w € m(p) and w® ¢ 7(p). We also define 7([p, q)) := w(p)°Nw(q)
for p,q € [0,1] and w(I) := U£Y=1 (1) for I := UQ’=1 I,,, where I,, are disjoint intervals. The Lebesgue measure
on [0,1] is denoted as p. Then, we have pu(I) = Q [x(I)] for any interval I C [0, 1].

4.4.1 Super-Replication
Consider the following self-financing strategy GZ(K; By, By) for VK € [0, B):
1. At the initial outset

1
B1—K

e Buy units of a call option with strike K.

e Sell BliK units of a call option with strike Bs.

e Buy % units of the one-touch option with a barrier level Bs.

e Sell gf:g units of a digital call option with strike Bs.

2. At the first time of hitting B,

e Sell Bli 7 units of the forward contract

3. At the first time of hitting By

e Buy Bl%K units of the forward contract.

Fig.4.1 shows that the GB(K; By, By) strategy super-replicates the touch/no-touch option with K € [0, By).
We investigate the optimal strategies properties. First, we define the following.

Definition 11. The initial value of the GB(K; By, Bo) strategy is defined as

C(K) — C(Bs) BB By — K

O(By) + 22—
B, - K B, — K (2)+317K

GB(K; By, By) == 0% C(Ba), (4.4.1)

GB(By1, By) as the infimum value of GB(K; By, Bs) with respect to K, KE(B1, B2) as a strike price by which
the infimum is attained:

GB(Bi,B,) = inf  GP(K;By,B
« (B1, B2) Ke(l—noo,Bl) ( 1, B2)
= GP(KE(B1, Bz); Bi, Bs) (4.4.2)

and GB(B1, Bs) as the corresponding strategy.

There is another super-replication: the G.(Bj) strategy combined with a short position of the one-touch
option with barrier Bs. The following theorem states that the better of the two strategies is the sharp upper
bound, because the bound is attained by an expectation of the payoff with respect to a certain martingale.
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Theorem 4. If the set N (OxGB(By, Bs)) is not empty, the infimum of Eq.(4.4.2) is attained by any element
of a set N(0xGP(By, Ba)), an interval of (—oo, By). For all KE € N(0xGB(B1, Bz)), the following holds:

Q[K+ < St < Bs)

Sr— KB By — By
B, - K& B, —KE
< QIK_ < Sr < By, (4.4.3)

IN

GP(B1,B;) =E : K& < Sr < Bo| + [r2 < T

where K_ = inf N (0GP (B1, B2)) and K := sup N (0x GP(B1, Ba)). If the set N(0xGB(B1, B)) is empty,
the infimum of Eq.(4.4.2) is not attained and GB(By, By) = Q[St < Ba).
IfGE(By, By) < G.(B1)—0(Bs), then N (0x G (B, By)) is a non-empty interval of (sup N (0x G(By)), By).

In addition, there is a continuous martingale process {Sﬁ}te[o 7] such that

min {GZ(B1, B2),G+(B1) — O(B2)} = Q [ (8¢) < T < (S9)]. (4.4.4)

Proof. First, by differentiating G” with respect to K, we obtain

_ B B 1 _ C(K)—-C(B2) By — By _
ORGP (K) = g0 OK) + =g + (s (O(B2) + 0, C(B2)
1
= (GP(K) + 05 C(K) — 05 C(B>)) (4.4.5)
B - K
and
_ B _ 1 _ 2 _ C(K) - C(B2)
O G7(K) = B K KZ?KKC(K) + 7(31 —RY) 0 C(K) + 2—(B1 —R)
By — By _
_ 1 - 2 - B
Note that 8I_<GB takes at least one positive value, because
lim (B, — K)?03GP(K) = C(By) — C(B2) + (B2 — By) (O(B2) + 95C(Bs)) > 0. (4.4.7)

K*}Bl

Since 9y GP > 0 if 9GP > 0, N(0x GP (B, B2)) is empty or a non-empty interval. If N'(0xGP (B, Bs)) is
empty, we have

G*(Bh Bg) = K1—1>r£100 G(K, By, Bg) = Q [ST < BQ} . (448)

If N(0xGB(By, By)) is not empty, we have Eq.(4.4.3). Moreover, if the following holds:
GP(B1,By) < G.(B1) — O(By), (4.4.9)
then NV (0x GB(By, B)) is a non-empty interval of (sup N (0xG(By)), B1), because

Q[KE < St < By <GP < Q[Ka(B1) < St < Bs] — (O(Bs) — QB> < Sr)), (4.4.10)
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where any K& € N (0xGP(B1, Bs)) and K¢ (B1) € N(9xG(B1)). Note that if N (9x GB (B, Bz2)) is not empty,

we have

E[Sr—Bi:m([kG,b2))] = E[Sr—K§:m([kG.b2))] + (KG — B ([kG,b2))
= C(K§)—C(By) — (Ba — K§)u([ba, 1)) + (KE — B ([k&, b))
= C(K§)—C(Bs) — (Bo — B1)p([b2,1]) — (B1 — K&)u ([kE,1])
— (Bi-B,)Q[r <T], (4.4.11)

where by = Q[S < Bz] and kZ = by — GB, and if N (0xGP(By, By)) is empty, we have

E[Sr—By:m([kG b)) =  lim (By— K)*0xGP(K) + (By — B2)Q[r2 < T}
= (B1—B2)Q[r <T7. (4.4.12)

Next, suppose that Eq.(4.4.9) holds. We show that there an interval [z, y] C [O, kg] exists such that
([, y) Ulb,1]) = Q[ra < T7 (4.4.13)
and
E[St — By : w([z,y) U [be, 1])] = 0. (4.4.14)

Let © = 0 and y be a real number satisfied with Eq.(4.4.13) with = 0. Then, since y > kf) = L.(Ba)—(1-by),
we have

E[Sr— B :n([0,5)Ulb2 1)) < E[Sr— By m((0,k) U b, 1))]
— o (4.4.15)
Conversely, let y = kB and x be a real number satisfied with Eq.(4.4.13) with y = k5. By Eq.(4.4.9), we have
N([k27b2)) < G*(Bl)_u([mvkg)u[b%l])
= w([k.)) = w ([, kE) U2, 1)) (4.4.16)

where kg) :=1— G«(B;). Then, we have z > kg). In addition, by Eq.(4.4.11), we have
E[Sr— By : ([z,k&) Ub2,1))] = E[Sr— B : 7 ([x,kd) U[b2,1])] + (B1 — B2)Q[r2 < T]
> E [ST — By 7 ([kg>,kg) U [be, 1])} +(By — Bo)Qlm < T

= —-E [ST—Bl W([k‘g,bg))] —|—(Bl—BQ)Q[TQST]
= 0. (4.4.17)

Therefore, we can find an interval [z,y) and have

E[Sp: 7 ([z,y) U [kjg, 1))] = Bop([z,y)Ubo,1]) +E [Sp: 7 ([kg,bz))]
= DBip ([m,y) U [k‘g, 1)) , (4.4.18)
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using Eq.(4.4.11) again. Then, we construct a martingale {StG}te[o 7 Let X; and X3 be random variables
defined as

_f By, w(z,y)U[kE 1])
M= { B1, otherwise ’ (4.4.19)

and

327 7([xay)u[b271])
X2 = 62, ™ ([]{737 bg)) 5 (4420)
b1, otherwise

where 81 € [0, By), 52 € [0, Bs) are taken as in Lemma 5 and S} is a stochastic process defined as
St* = SOl{t<%T} + Xl]‘{%TSt<%T} + X21{%TSt<T} + ST].{t:T}. (4.4.21)

Then, applying the same argument from Lemma 5 to {S} }+cjo,7], We obtain a continuous martingale with
respect to a certain filtration. We obtain Q[ < T < 1] = GE.

Finally, suppose that Eq.(4.4.9) does not hold. If O(Bz) = G.(Bz2), we have E {ST —By ' ([k:g), 1] )} =
0, where kg) :=1— G.(B2). If Eq.(4.4.9) holds with equality, we have

IE[ST—BQ : ﬁ([kg%kg] u[b2,1])] - E[ST—Bl : w([kgkkg] U[bg,l])} +(Bl—Bg)u([kg),k§} u[b2,1])

= “E[Sr - Bi s 7 ([KE,b2])] + (Br — Ba)u [k KE] U b2,1))

= 0. (4.4.22)

Then, we can take an interval [z,y) C {k8)7b2) which is satisfied with Eq.(4.4.13) and Eq.(4.4.14), because

of k:g ) < kg ). Similar to the previous case, a continuous martingale can be constructed such that Eq.(4.4.4)
holds. O

4.4.2 Sub-Replication
Consider the following self-financing strategy £LZ(K; By, B) for YK € [0, By):

1. At the initial outset

e Sell Bll_K units of a put option with strike K.

e Buy % units of the one-touch option with a barrier level Bs.

2. At the first time of hitting B,

e Sell 3117 7 units of a forward contract.

3. At the first time of hitting By

L 7 units of the forward contract.

e Buy 5
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Fig.4.2 shows that the £LB(K; By, By) strategy sub-replicates the touch/no-touch option with K € [0, By).
We investigate the optimal strategy properties. First, we define the following.

Definition 12. The initial value of the strategy LP(K; By, By) is defined as
—P(K) n By — B
Bi—-K B —-K

LB(By1, Bs) as the supremum value of LP(K; By, Ba) with respect to K, KB(B1, By) as a strike price by which
the supremum is attained:

LB(K; By, By) := O(By), (4.4.23)

LZ(By1,By) = sup  LP(K; B, By)
Ke(—o00,B1)

= LP(KP(B1, Ba); B, Bs) (4.4.24)
and LE(By, By) as the corresponding strategy.

There is another sub-replication: the strategy £.(B;) combined with a short position of the one-touch option
with barrier Bs. The following theorem states that the better of the two strategies is the sharp lower bound,
because the bound is attained by an expectation of the payoff with respect to a certain martingale.

Theorem 5. The supremum of Eq.(4.4.24) is attained by any element of N'(0x LP(By, Bs)), an interval of
(0, sup N (O L(B1))]. For all KP € N(0x LP (B1, By)), the following holds:

S B, — B
Q[Sr < K_] < LZ(B1,B,) = E T—B Sr<KP|+2—1Q[rn <T] < Q[Sr < K4], (44.25)
By - K7 B, — K7
where K_ = inf N (0 LP(By, By)) and K = sup N (0x L?(By, Bz)).
In addition, there is a martingale process {StL}te[o,T] such that
max { L7 (B, Bz), Li(B1) = O(B2)} = Q [y (8%) < T < 15 (8%)] . (4.4.26)
Proof. First, by differentiating L? with respect to K, we obtain
_ -1 P(K) By — By
B _
aKL (K) - By — Ka P( ) (Bl — K)Q (Bl *K)2O(BQ)
_ 1 - B
B (—0x P(K)+ L”(K)) (4.4.27)
and
_ -1 _ 2 _ P(K) By — By
B _ _ _
B 2 B 1
= B K@ L (K) - B KGKKP( ). (4.4.28)

Note that 0z L?(0) = £25210(B) > 0 and by Eq.(4.3.11)
1

P(Ky) By — By
+71B _ +p _ +
aKL (K+) - By K 8 (K-‘r) (Bl — K+)2 (Bl — K+)2

__CB) , BB
(Bi—K:+)? | (Bi— K. )
0, (4.4.29)

O(Bz)

IN
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where K = sup N (O L(B1)) and 9;; is the right-sided derivative operator. Since 9y L? < 0 if 0 LP <0,
N (0x LB(By, By)) is an interval of (0, K] and we have Eq.(4.4.25). Note that

E[By—Sr:7([0,k]))] = E[KP—Sr:7([0,k]))] +E [Br— K[ :7([0,k[))]
= P(ED)+ (B~ KD)u([0. k7))

where kP .= LP.
Next, suppose that the following holds:

L.(B1) — O(By) < LEB(By, By). (4.4.31)
We show that there exists an interval [x,y] C [kf, 1)1]7 where by = Q[ST < Bj], such that
(12,9 U o1, 1)) = Q[r < T (14.32)
and
E[Sr — By : 7 ([z,y) U[b1,1])] = 0. (4.4.33)
We can take an interval that satisfies Eq.(4.4.32) because Eq.(4.4.31) implies

Qr<T] > u ([o,k(;)) U [b1,1]) —u([0,kB))

where k(Ll) = L*(B;) — (1 — b1). Let y = b and x be a solution of Eq.(4.4.32) with y = b;. We have
x> kg) :=1—G,(Bz) because Q[r2 < T| < p ([k:g), 1]) Then, we have

E[Sr—By:n(@ )] > E[sr—By:n([K2.1))]
W (4.4.35)

Conversely, let # = kP and y be the solution of Eq.(4.4.32) with # = kP. We have y > k:(Ll), because
Qe <T)>p ([kf kS)) Ubr, 1}) by Eq.(4.4.31). Then, by Eq.(4.4.30), we have

E[Sr—Bo:m ([kf.y) Ub1,1])] = E[Sy—Bi:w([kP,y)U[b1,1])] + (B1 — B2)Q[r2 < T
< E [ST — By ([k’f,k(;)) U [b1,1])] +(B1— B)Qlm < T)
= E[Bi—Sr:7([0,kf))] + (B1 — B2)Q[r2 < T
= 0. (4.4.36)

Therefore, we can find the interval [z, y) and we have for this interval

E[Sp:m ([O,kf) Ulz,y)Ub1,1])] = E[Sr:= ([0, kf))] + Bop([z,y) U b1, 1])
Bip ([0,k7) Uz, y) U by, 1]), (4.4.37)
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using Eq.(4.4.30) again. Then, we construct a martingale {StL}te[o AR Let X; and X5 be random variables
defined as

X, ::{ B, ([0.k7) U [z,y) U b1, 1]) (4.4.38)

b1, otherwise ’

and

B2a W([.’E,y)u[bl,l])
Xy =4 B2, 7([0,kP)) , (4.4.39)
81, otherwise

where 81 € [0, B1), B2 € [0, By) are taken as in Lemma 5 and S} be a stochastic process defined as
S;k = SOl{t<%T} + Xll{%T§t<%T} + X21{%T§t<T} + ST].{t:T}. (4.4.40)

Then, applying the same argument from Lemma 5 to {S} }icjo,7], We obtain a continuous martingale with
respect to a certain filtration. We obtain Q[ < T < 7] = LB.
Finally, suppose that Eq.(4.4.31) does not hold. If O(Bs) = L.(B>) and let k(LZ) := L.(Ba) — (1 — by), we

have E {ST — By : @([0, k(LQ)) U [be, 1])} = 0. If Eq.(4.4.31) holds with equality, we have by Eq.(4.4.30)

IE[ST—B2 : w([kf,kf)) U[bl,l])} - IE[ST—B1 : w([kﬁk(;)) u[bl,l]ﬂ +(By — B)Qlm < T

—E[Sr — By : 7 ([0,k]))] + (By — B2)Q[r2 < T}
0. (4.4.41)

Note that k(LQ) < k(Ll)7 because (B — K)?07 L(K; B) is decreasing with respect to B and K. Then, we can take
aset D C [0, k;(Ll)} U [b1, b2) which is satisfied with

p(D U, 1)) =Qlre < T (4.4.42)

and
E[Sr — By : w (DU [bs,1])] = 0. (4.4.43)
Similar to the previous case, a continuous martingale can be constructed such that Eq.(4.4.26) holds. O

4.4.3 The Finite Basis Situation

In this section, we consider the case where only a finite number of strikes are given. Suppose that call options
with strikes Ko < K71 < --- < Ky, where Ky = 0 and Bs < K, are traded with no-arbitrage prices {C’n}ﬁfzo.
We consider super-replication and sub-replication for the touch/no-touch option with barrier levels By and Bs
using the one-touch option with a barrier level By. We assume that a no-arbitrage price of the digital call option
with strike B is given as Ds in case of the super-replication and that with strike B is given as D; in case of
the sub-replication. Here, a no-arbitrage price D of digital call option with strike B € (K,,_1, K] satisfies
Cpy1—C Cn—1—C(B)

nngfn

—_—— 4.4.44
Kn+1 - K, K,_1—B ’ ( )
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where C(B) = %(3 — K,,) + C,. Even if these digital call options are not liquid, we can regard the
lower bound as the digital call price with strike By in case of the super-replication and the upper bound as the
digital call price with strike B; in case of the sub-replication.

First, we consider the super-replication. We suppose that the no-touch option with a barrier level Bs is

traded and the price of this no-touch option satisfies

sup L(K,;B2) < O(B) < inf G(K,;Ba). (4.4.45)
K,<B> K,<B:>

The upper bound on the touch/no-touch option derived from the super-replication is
min {GZ (B1, Bo; {Ku}0p) , G (Br; {Kn}0y) — O(B2)}, (4.4.46)

where G*B (Bl, BQ; {Kn}évzo) = ian'n.<Bl GB(Kn; Bh BQ) and G* (Bl; {Kn}évzo) = ian'n.<Bl G(Kn, B1) Al-
though the marginal distribution of S7 is not uniquely specified in this case, the following corollary shows
that there is a distribution consistent with the given option prices under which we can construct a martingale
attaining the upper bound.

Corollary 5. There is a distribution uc of St which is consistent with the given call prices, the given digital
call option with a strike By and the given no-touch option with a barrier level By satisfying Eq.(4.4.45) such
that Eq.(4.4.46) is equal to Eq.(4.4.4) with distribution pc.

Proof. First, we assume By € {K,, }n—0,... v and Dy = —%,
prices {C(K)}kejo,4+00): C(K) is the linear interpolation of Cy, if K € [Ko, Ky] and an arbitrary extrapolation
excluding arbitrage opportunities if K € [Ky,+00). Let uc be a distribution implied by the call option prices
C. We can apply Proposition 3 and 4 with the distribution pc to the no-touch option with a barrier level By
and obtain the optimal strikes K¢ (B2) and K, (Bz). These may not be uniquely determined, but can be taken
as one of the given strikes, since the distribution uc consists of atoms at K, on [0, By). Hence, the distribution
pe is consistent with Eq.(4.4.45). By the same reason, Eq.(4.4.4) with distribution pc is attained by one of the
given strikes. Then, Eq.(4.4.46) is equal to Eq.(4.4.4) with distribution pc.

In the general case, two call prices, C(K) and C(Bz), with strikes, K := By — ¢ and Bz, can be added

into the given call price set as: C(K) := —Dy(K — K) + C for K = K, By, where By € (K,_1, K,], (K,C) =

(Kp—1,Cp—1) in case of Dy > —%, (R’, C’) = (K, C,) in the other case, ¢ is a sufficiently small positive

value such that K is not the optimal strike for G,(By) and L,(Bs). Then, the same argument from the first
case can be applied. O

where By = K, Let us consider call options

Next, we consider the sub-replication. This is more involved than the super-replication. The lower bound
on the touch/no-touch option derived from the sub-replication is

max { LY (B, Ba; {Kn}h_o) . Ls (B1; {Kn}h_o) — O(B2)}, (4.4.47)

where L (By, Bo; {Kn}3) :=supg, ., L?(Ky; B1, B2) and L, (By; {K,}2,) :=supg, ., L(Ky; Bi). We
assume By € {K,}n=0,... v and

sup L(K,;Bs2) < O(B2) < inf G(K,;Ba). (4.4.48)
K, <B> K, <B2

Owing to these assumptions, we have the similar result to Corollary 5.
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Corollary 6. There is a distribution uc of St which is consistent with the given call prices which includes that
with strike By, the given digital call option with o strike B1 and the given no-touch option with a barrier level
By satisfying Eq.(4.4.48) such that Eq.(4.4.47) is equal to Eq.(4.4.26) with distribution pc.

Proof. Let n € {0,1,---,N} be such that By = K,,. The proof is the same as the first part of Corollary 5, if
n—1"MNn

C(K):= —Di(K — K,) + C,. We can take ¢ such that

In the general case, let K:=By—¢>K,_, for a sufficiently small positive value € and

K,Ki<B2 K,K;<B>

Let pc be a distribution implied by an interpolation of the given call option prices C' and C (R' ). Then, we have
the conclusion for the distribution puc by the same argument from Corollary 5. O

4.5 Numerical Examples

This section provides numerical examples.
We regard Heston’s stochastic volatility model ((Heston, 1993)) as the underlying asset process. The process
underlying the Heston model is as follows:

s,
St
do? = k(n—o?)dt+ 0o, dW,, (4.5.2)

(7’ — q)dt+0tth, (451)

where W and W are Brownian motions with correlation p under a risk-neutral measure. In addition, we assume
that the parameters of the Heston model are as shown in Table 5.1.

r q o5 K n 0 p
0.0 0.0 0.15> 3.0 022 04 0.0

Table 4.1: Parameters of the Heston Model

The one-touch option considered has a 3-month maturity and a barrier level of 1.05 USD. We calculate the
pricing bounds of our method, those of (Brown et al., 2001) and exact prices by a Monte Carlo simulation with
the initial spot price varied from 0.9 USD to 1.04 USD. We calculate pricing bounds derived from G2 and £B
strategies using another one-touch option with B = 1.06. This is evaluated by the Heston model with the same
parameter set. The results are shown in Fig.4.3 and Table 4.2. Our lower bounds are proved to be higher than
those of (Brown et al., 2001) across the entire range and our upper bounds proved lower in the [0.9,0.98] range.

Additionally, Fig.4.4 shows a relationship between pricing bounds on the two one-touch options with barrier
levels 1.05 USD and 1.06 USD, where the market conditions are the same as for the above example and the
initial spot price is fixed at 1 USD. The pricing bounds of (Brown et al., 2001) on the two one-touch options are
[0.315,0.609] for the barrier level 1.05 USD and [0.263, 0.529] for barrier level 1.06 USD. However, we established
that a condition for no-arbitrage prices of these two options does not lie within these ranges but is within the
range indicated in Fig.4.4.
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Figure 4.1: Payoff of Strategy GP(K; By, Bo) with Sy =1, K = 0.95, By = 1.05 and B, = 1.06
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Figure 4.2: Payoff of Strategy LP(K; By, By) with Sy = 1, K = 0.95, B;

= 1.05 and B, = 1.06
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4.5. NUMERICAL EXAMPLES

Figure 4.3: Pricing bounds on a one-touch option
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Table 4.2: Pricing bounds on a one-touch option (%)

spot 10.90 [ 0.92]0.94]0.96[0.98 [ 1.00 [ 1.02 [ 1.04

(Brown et al., 2001)’s upper bound | 8.0 | 13.0 | 20.4 | 30.8 | 44.5 | 60.9 | 78.5 | 94.4
Our upper bound W¢ 7.3 | 12.1 | 19.2 | 29.6 | 43.6 | 61.6 | 82.8 | 105.8
Heston price (B = 1.05) 5.1 85 | 13.7 | 214 | 32.1 | 46.1 | 63.6 | 83.2

Our lower bound Wt 42 | 7.0 | 11.5 | 182 | 276 | 40.5 | 57.1 | 77.1
(Brown et al., 2001)’s lower bound | 3.3 | 5.5 | 89 | 14.0 | 21.3 | 31.5 | 45.9 | 68.3
Heston price (B = 1.06) 4.1 6.8 | 11.1 | 17.6 | 26.7 | 39.0 | 54.7 | 73.3




4.5. NUMERICAL EXAMPLES

Figure 4.4: Pricing bounds on two one-touch options
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Chapter 5

No-Arbitrage Conditions for Barrier
Options

This paper investigates no-arbitrage conditions for barrier options. No arbitrage conditions for European call
options are well-known: absence of calendar and butterfly spread arbitrage, but those for barrier options have
not been documented.

The question considered in this paper is whether there are arbitrage opportunities or not for a given price
set which consists of barrier options as well as European options. The findings of this study are as follows: a
condition that excludes arbitrage opportunities if only static trading strategies are allowed, the pricing bounds
on barrier options using other barrier options, how a term structure of touch options improves these bounds in
case of single barrier options, and no static arbitrage conditions between barrier options with different maturities.

5.1 Introduction

This paper investigates no-arbitrage conditions for barrier options under various circumstances.

No arbitrage conditions for European call and put options are well-known: absence of calendar and butterfly
spread arbitrage (see e.g. (Davis and Hobson, 2007), (Carr and Madan, 2005) and (Cousot, 2007) for details) and
many methods of interpolation and extrapolation of volatility smiles/surfaces without arbitrage opportunities
have been proposed (e.g. (Fengler, 2009) and (Gatheral and Jacquier, 2013)). These studies on no-arbitrage
conditions are quite general and do not rely on modeling an underlying process with a stochastic process.
Motivated by the previous research and by the fact that barrier options are most liquidly traded among exotic
derivatives, this paper tackles the same kind of problems for barrier options, namely what is no arbitrage
condition for a given set of derivative prices and how barrier options are priced in a way of excluding arbitrage
opportunities as well as reproducing given derivative prices. Here, the given derivatives considered in this paper
are forward contracts, Furopean options and barrier options with the common barrier conditions. Study on
barrier options without using specific models for an underlying process is worthy, since barrier option prices
are significantly model-dependent even if the model is calibrated to European option prices (see (Hirsa et al.,
2003), (Lipton and McGhee, 2002) and (Schoutens et al., 2005)).

This paper considers the following four problems.

The first problem is to establish no-arbitrage conditions for prices of barrier options with the common barrier
condition and maturity as well as European options with the same maturity. The characteristics for pricing

7
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barrier option in this context are provided by the marginal distribution of the underlying asset, that of the event
that the barrier is hit, and a joint distribution of them. The second corresponds to the relevant one-/no-touch
option, where the one-/no-touch option is a barrier option which pays a unit of currency if the barrier is/is
not hit. The last one is an expectation of the indicator function of the second quantity conditional on the
underlying price at maturity. The no-arbitrage condition is reduced to this function and corresponds to absence
of butterfly spread arbitrage for European options.

Second, model-independent pricing bounds are considered. Model-independent pricing bounds have been
investigated by several authors: (Brown et al., 2001) study when the underlying asset is a martingale, (Cox
and Oblgj, 2011a), (Cox and Obléj, 2011b) and (Tsuzuki, 2015) focus on several types of touch options under
the similar conditions as (Brown et al., 2001). (Tsuzuki, 2014) derives pricing bounds using no-touch options
as well as European options. The study in this paper is an extension of (Tsuzuki, 2014) and investigates the
bounds on a barrier option if other barrier options can be used in addition to instruments which (Tsuzuki, 2014)
uses for replication.

The third problem focuses on no-touch options with a common single barrier but with different maturities.
(Tsuzuki, 2014) shows that a knock-out forward contract can be used for replication in addition to a no-touch
option, pricing bounds are significantly improved. However, under the condition that the underlying asset is
a continuous martingale, the knock-out forward contract is redundant because this can be replicated by the
no-touch option. Then, an interesting question is what if the underlying process is not a martingale, but the
forward process is and both of them do not necessarily a martingale. Instead of postulating a model, how
different the underlying process is from a continuous martingale are given by no-touch options and knock-out
forward contracts with different maturities. This paper considers no arbitrage conditions for these options and
contracts and whether the pricing bounds are improved or not by them.

The final finding of this paper is no-arbitrage conditions when one trades FEuropean options and barrier
options with a common barrier conditions but with different two maturities. This corresponds to absence of
calendar spread arbitrage for European options.

Moreover, pricing methods incorporating these conditions as well as market prices of relevant derivatives
are proposed. An advantage of this method over the standard one which postulates a stochastic process as an
underlying process is flexibility for specifying a pricing kernel. Most of the standard method inevitably produce
a high probability that the barrier has been hit conditional on that the underlying price at maturity is close to
the barrier level. This may be desirable in most cases, but is not necessary.

As a final remark, barrier options considered in this paper may be knock-in/-out options whose knock-in/-
out condition is irrelevant to the underlying asset for a terminal payoff, although barrier options are usually
dependent on a single asset. An example is an option which pays a payoff dependent on a stock price at maturity
if a foreign exchange rate has reached a certain level. CVA, credit value adjustment, is another example and
will be studied in this paper as an application.

The next section describes the notations. No-arbitrage conditions mentioned above are investigated in the
third section. The fourth section provides a method of how to price barrier options excluding the no-arbitrage
opportunities. In the fifth section, some examples that the method is appropriate are given. The sixth section
provides numerical examples.

5.2 Notations

The notations used in this paper are stated here.
First, let S; be an asset price at time ¢ € [0,7*] and sy be the time-0 price, where S; € Ry := [0, 4+00) is
assumed and T is some arbitrary time horizon. This paper focuses on a knock-out option, instead of a knock-in
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option, whose payoff is an arbitrary function dependent only on the underlying asset price at maturity when it
is not knocked out. The results for knock-in options are obtained by in-out parity'. The knock-out event is that
the underlying asset price has not reached a certain level(s) or some event which is irrelevant to the underlying
asset. The former types of barrier options are actively traded in foreign exchange option markets. A payoff of
barrier options with maturity 7" and an arbitrary payoff function g : R — R are represented with

9(ST) 14, (5.2.1)

where A is the event that the option pays payoff. For example, the payoff of a double knock-out call option with
strike  and barrier levels L and U, 0 < L < 5o < U < 400, is (Sp — K)414, where A:={S, € I |0 <Vt <T}
and I := [L,U]. Single barrier options can also be expressed in this manner with L < 0 or U = +o0. In
case where the knock-out event is irrelevant to the underlying asset, the event A is independent of {S}c(o,77-
An example of this kind of barrier options is a knock-out option whose payoff is dependent on a stock price
and knock-out event is on a foreign exchange rate. Conventionally, put I := R, in this case. In particular, a
no-touch option is a knock-out option which is worthless if the knock-out event happens, and pays a unit of
currency at the maturity if the knock-out event does not happen. The payoff is 14. Let Eq.(5.2.1) be called as
payoff of a barrier option and g(St) be as terminal payoff in this paper.

Second, some notations about the market environment are introduced. Let r and ¢ be the risk-free interest
rate and the dividend yield of the underlying asset respectively. They are assumed to be deterministic. A time-t;
price of a domestic zero-coupon bond delivered at time ¢ and that with respect to the dividend yield are denoted

2,4 _ (2.4 . r D4 r D7 L.
by Dj , =e Jif reds and D}, =e Jif 4545 pespectively and Dfl/tQ =522, D /q 22 In addition,
: : : Tt

tite *= DI
the time-0 prices of European call options with the same maturity as barrier options under clonzsideration and
arbitrary strike prices are assumed to be known at time 0. Knowledge of the distribution of the underlying
asset at maturity is equivalent to the knowledge of European call option prices without arbitrage opportunities
for the continuum of strikes by (Breeden and Litzenberger, 1978). For a random variable X and a distribution
i, X ~ p denotes in this paper that the distribution of X is p. Let Cp (k) be the time-0 call price with
maturity T and strike x and pp be the distribution of Sp implied by them, that is Sp ~ pp. In particular, a

forward price of the underlying asset delivered at time T is also given by ng(o)’ which is assumed to be equal
0,T

to ngfso. Probability measures in this paper are not unique and several notations are used such as Q, Q*,
Q. and so on. Expectation operators with respect to these probability measures are denoted as E[-], E*[-] and
E.[] respectively and the first time for the knock-out event to happened is denoted as 7, 7* and 7, under each
probability measure, if there is no ambiguity from the context.

Next, some technical notations are defined. Let (R4, M, ) be a measurable space, where M is the set of
all Lebesgue measurable sets on Ry and pu is a probability measure. Two norms for a function on this space
f Ry — R are defined by

1f] = / Fldis [|flloe = esssup ], (5.2.2)

L, and Ly by the Banach space with respect to the norms, and a function (-, -) ., on L, x Ly by

o0
(f1, fo) ::/O fi-foodp (f1 €L, foo €LY). (5.2.3)

1In-out parity is a relationship which states that the payoffs of a knock-in option and a knock-out option sum to the payoff of
an option without a barrier condition.
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The subscript © may be omitted if it is obvious.
Finally, some important concepts and results in this paper are introduced. The convex order is one of
stochastic orderings between two measures:

Definition 13. For uy and pe be probability measures on (Ry,B(Ry)), where B(Ry) is a set of all Borel
measurable sets of Ry, pa dominates py in the convex order, if fR+ oduy < fR+ ddpo for each p;-integrable
convex function ¢ : Ry — R for each i = 1,2. This is denoted as p1 = pa.

Note that p; < g, if fR+(s — K)+dps(s) < fR+ (s — K)dus(s) for all k > 0.
Kellerer’s theorem ((Kellerer, 1972)) relates the existence of a martingale to conditions on marginal distri-
butions and is often used in this paper:

Theorem 6 (Kellerer’s Theorem). Let (ut)ieo,1) be a family of probability measures on (Ry, B(Ry)) with first
moment, such that, for s <t, u; dominates us in the convexr order, i.e. for each convex function ¢ : Ry — R,
ug-integrable for each t € [0,T], one has fR+ odpy > fR+ ¢dps. Then, there exists a Markov process (My)ie(o,1]
with these marginal distributions under which it is a submartingale. Furthermore if the means are independent
of t then (My).epo,1) i a martingale.

5.3 No Arbitrage Conditions

The following subsections consider no arbitrage conditions under different assumptions about admissible trading
strategies and tradable derivatives. All tradable derivatives are assumed to have single cashflows at maturity.
Following Definition 4.1 of (Cox and Hobson, 2005), this paper adopts Definition 14 as no-arbitrage.

Definition 14. There is no arbitrage in the family of derivative prices {V§*; o € A}, if there is a filtered proba-
bility space (Q, F,Q,{F:}) for which {DgéqSt}te[o’T*) is a non-negative discrete- or continuous-time martingale
and Vy* = Dg 1 E [Vr,] for all a € A, where Ty, is a maturity, Vr, is a cashflow of the derivative and E[-] is
an expectation operator of Q.

The probability space in Definition 14 is called as discrete-time or continuous-time model hereafter.

No static arbitrage conditions on European call option prices are well-known: absence of calendar and
butterfly spread arbitrage (see e.g. (Davis and Hobson, 2007), (Carr and Madan, 2005) and (Cousot, 2007) for
details). Absence of butterfly spread arbitrage is Co r(k — Ak) —2Co, (k) + Cor(k+ Ar) > 0 for all kK, Ak >0
and T > 0 and is equivalent to non-negativity of a density function. This kind of condition for barrier options
is provided by Section 5.3.1. Absence of calendar spread arbitrage is D7, 5, Cor, (D;{ ?TQ k) < Co,1, (k) for all
k > 0 and T7 < T and can be expressed with the convex order as in Definition 13. Section 5.3.4 investigates
no arbitrage conditions for barrier options with different two maturities.

5.3.1 No Static Arbitrage Conditions

This section assumes that tradable derivatives are
e European call and put options with maturity T’

e Knock-out options with maturity 7 and with payoff g(St)14 for any g € £*.
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The distribution of St is derived from European option prices: p := pup. Let ®(g) be a forward price of a knock-
out option whose payoff is g(S1)14, namely DS’TCP(g) is the knock-out option price. This section investigates
a no arbitrage condition on ®. First, trading is allowed only at inception and then it is relaxed.

Consider the problem in a heuristic way, before no-static arbitrage condition is stated. If a model (Q, F, Q, {F:})
is given, a forward price of the knock-out option is

Elg(Sr)1a] = El[g(S7)E[14|57]]
= /gadu, (5.3.1)

where a(s) := E[14|St = s]. From this expression, the price depends on the three factors: a distribution of Sp,
a probability that the knock-out event happens (a distribution of 14), and a dependency between the two. The
first one is implied by European call prices and the second is by ®(1), where 1 is a function that always takes
1. The third one is given by «, a conditional expectation of 14 conditional on Sp. Let this kink of functions be
defined as follows:

Definition 15. A kernel function for the event A is o € L7 such that 0 <a <1 onRy and a =0 on I°. A
1s a set of all kernel functions for the event A.

Proposition 5 provides no arbitrage condition on ® under the static trading constraint.
Proposition 5. The following statements are equivalent:
(a) There exists o € A such that ®(g) = (g,a) for any g € L.
(b) There is a model with respect to discrete-time {0,T}.

Proof. Suppose that (a) holds. Consider two random variables X and Y on a probability space (2, F,Q), where
the distribution of X is p and that of Y is given by Q[Y = 0] =1 — ®(1) and Q[Y = 1] = ®(1). In addition,
a joint distribution between the two random variables is assumed to be given by Q[X < s,V = 1] := f[o,s] adp
and QX <s,Y =0]:= f[o,s](l —a)dy for s € Ry. Then, one can define a process {S} }+c[o,7) such that S7. = X
and the knock-out event happens if and only if Y = 1. In case of single or double barrier options, an example is

St = soly—op + (#liy—oy + Srliy=1}) Lieo,ryy + X =1}, (5.3.2)

with any « ¢ I. The similar construction can be applied to a case of a knock-out condition irrelevant to the
underlying asset. If F; is the filter generated by S;, the probability space (Q, Fr,Q,{F:}) turns out to be a
discrete model.

The converse statement is clear from Eq.(5.3.1). O

Next, it is assumed that continuous trading is allowed. In case of a knock-out condition irrelevant to the
underlying asset, the model in Proposition 5 can be made continuous. The other case requires an additional
condition under an assumption about D9/ as follows:

Corollary 7. Suppose that Dfﬁ/f =1 for allt € [0, T]. The existence of a continuous model is equivalent to (a)
in Proposition 5 and

(in case of a single barrier) 8 ¢ I, where

B = (5.3.3)
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(in case of a double barrier) there is ¢ € R and 0 € [0,1] such that 8, < L and By > U, where

e s = a(s))ulds) + 0c(1 — ale))u({c})
L Jio.oy (1 — a(s))ualds) +6(1 — a(e))u({c}) (5.3.4)
._ f(c,+oo) s(1—a(s))u(ds) + (1 —0)e(l — ale))u({c})
e Jerrooy (X = als))pu(ds) + (1 = 0)(1 — a(e))u({c}) - (5.3.5)

5.3.2 Pricing Bounds using Liquid Barrier Options

(Tsuzuki, 2014) proposes model-independent pricing bounds using a no-touch option as well as European op-
tions. This section devotes to extending results of (Tsuzuki, 2014) to the case where K + 1 liquid knock-out
options are available in a market. The assumptions in this section are that trading is allowed only at inception
and that tradable derivatives are

e European call and put options with maturity T'
e Knock-out options with maturity 7" and with terminal payoff h;(St)14 for h; € £! (i =0,--- , K), where
ho = 1.

Although (Tsuzuki, 2014) assumes that a distribution of St is strictly positive without atom, the same
results hold without assuming strict positivity and being atomless. Let g € L]° be a terminal payoff of a
knock-out option and Hy be the forward price of the no-touch option. The following is the generalized version
of the theorem in (Tsuzuki, 2014).

Proposition 6. Let A, C I be defined such that sup,ca, g(s) < infoga, g(s) and A* C I be such that
Supgg 4+ 9(s) < infseax g(s). Then, one has

(9(S1) — 9:)l{srea.y + 9:1a (5.3.6)
< g(S7)la (5.3.7)
< (9(57) = 9" ) {sreay +9"1a, (5.3.8)

where g, and g* are arbitrary values such that g. € [sup,e 4, 9(s),infoga, g(s)] and g* € [sup g 4- 9(s), infsea~ g(s)]
respectively. Moreover, if g. and g* are respectively taken as Q[g(ST) < g+] < Hy < Q[g(ST) < g4] and
Qlg* < g(St)] < Hy < Qlg* < g(Sr)], then there are models Q. and Q* under which the knock-out option
prices are respectively given by

E. [(9(S1) — 9:)1{srea.}y + 9<1a], (5.3.9)
E* [(9(ST) = 9" ) (sreary +9"1a] . (5.3.10)

By Proposition 5, there are corresponding kernel functions. Let agL and a? respectively be elements of A
corresponding to the models which provides the lower and upper bounds for a terminal payoff g.

Suppose that in addition to a no-touch option there are K liquid knock-out options in a market whose
terminal payoffs are hy : Ry — R and forward prices are Hy € R for k =1,--- K. Let h and H be vectors
whose elements are hy and Hy, for k =1,--- , K respectively, h := (hy)E_| and H := (Hy)&_, and (-, ), be an
inner product of K-dimensional Euclidean space. This section considers super-replication of a knock-out option
whose terminal payoff function is g using the K liquid knock-out options as well as the no-touch option. The

same results in this section is obtained for sub-replication by considering —g instead of g.
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Apply the super-replication of Proposition 6 to a knock-out option whose terminal payoff is g — (x, h) - for
x € RX. This is a terminal payoff of the target barrier option and replicating portfolio if z € RX amount of
the K liquid knock-out options are used for replication. Then, a kernel function that provides the upper bound
for g — (z,h) ¢ is U, = af_%m}( and the upper bound is given by W(]G_@,h)K = W;(z) := Wy(x,z), where
W, : RE x RE — R is defined by

W) = (g = (o B W)+ (o) e = [ (9= (0,000 Wi+ (o ) (5.311)

Note that Wy (z,z) = sup,cpx Wy(z,y).

Since amounts of the K liquid knock-out options for this strategy is arbitrary, the optimal replicating strategy
is the one which minimizes the cost of replication Wy (x) with respect to # € R¥. Proposition 7 shows that this
strategy is also the best among all static strategies which use European options, the no-touch option and the
K liquid knock-out options.

Proposition 7. Suppose that (x, H) ;- > <<a:, hy oz<LI7h>K> for any x € RX. Then, there exists x* € R such
that Wy (z*) = inf,epx W (x) and the kernel function Wy« satisfies (hg, Wy+) = Hy fork=1,--- | K.
Proof. Clearly, the function Wy is linear with respect to z and W/ is convex, because for x,y € RE and
a € [0,1],

Wilaz+(1—a)y) = aWy(z,az+ (1 —-a)y) + (1 —a)Wy(y,ar + (1 - a)y)

aWy(x) + (1 —a)W;(y). (5.3.12)

A

Then, W, is continuous. For any y € RE with VY, y) =1and ¢t >0, let x :=ty. Then, one has
W@ = (9= (0h)x,af, )+ @ H)g

= (g.0bm, )+t (W — (b ok, ) (5.3.13)

Since W, () — +oc as t — +oo and W is a convex function, W take a finite minimum value.
For fixed k < K, let y € R¥ such that y,, = 2 for n # k. Then,

aawq (x*7y) _ Wg(yay) ivv;q(x*vy)
Tk Yk xk
_ (Wy(yy) = Wy(a", = L) - (Kg(x y) = Wy(z®,2%) (5.3.14)
k=L

This derives %_—%(m*,y) > 0 for yr > z} and %%g(a:*,y) < 0 for yr < zj. Then, from the continuity of Wy,
MW (2%, 2*) = — (hg, Upe) + Hy, = 0. O

8:Ck

Remark 19. One can construct an example to fail the attainability of the infimum. Let K = 1, kK > 0, pu
be the uniform distribution on [0,2k], g(s) := lyssxy and hi(s) := s — k. In addition, take a knock-out event

independent of the underlying process with Q[A] = % and a liquid knock-out option price Hy as the lower bound:
Hy = (hy,al), where a*(s) = 1{5<y. Then, the followings hold for x > 0: ¥, = Lo.n— 2 )Ulk et ) and
K n+ﬁ 3
Wi(x) = / xhy(s)ds + / (1 —zhi(s))ds = s (5.3.15)
K— o K

2z

This shows that inf,er Wy (x) is not attainable.
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5.3.3 Single Barrier Options with Term-structure of No-touch Options

While this paper has considered barrier options with a general barrier condition so far, this section focuses on a
single barrier option with a barrier level L € (0, sp). Previous studies of model-independent pricing bounds such
as (Brown et al., 2001) consider the problem under the assumption that the underlying asset is a continuous
martingale, but (Tsuzuki, 2014) does not. As shown later, if the underlying process is a continuous martingale,
the martingale condition is taken into account by adding a knock-out forward contract into liquid knock-out
options, where the knock-out forward contract is a knock-out option whose payoff is g(s) = s. However, in
general, the underlying process S; is not a martingale, but the forward process Di/Tr St is and both of them do
not necessarily a martingale. Then, the study in this section is motivated by how to incorporate the martingale
condition of DZA/QT Sy into the pricing bounds of (Tsuzuki, 2014).

First, consider for an instructive purpose the case where the underlying asset price is continuous and Dfﬁ/i,f =1

for all ¢ € [0,7], namely S; is a continuous martingale. In this case, if the no-touch option price is given by
No,r, the knock-out forward contract is redundant because the contract is replicated as follows:

(1) Buy a forward contract with maturity 7" at the initial time

(2) Buy Dg/Trso — L units of the zero-coupon bond with maturity 7" at the initial time
(3) Buy L units of the no-touch option at the initial time
(4) Sell a forward contract at the first hitting time to the barrier level L.

The price is DS’T(DS)/:;SO — L)+ LNy 1, where 7 is the first hitting time to the barrier L. This strategy makes
use of two facts: there is zero cost of carry and the underlying asset price is L at the first hitting time. The
presence of non-zero cost of carry makes information on when to hit the barrier more important and a possibility
of jump introduces uncertainty of the forward price at the first hitting time.

Then, this section relaxes the condition of a continuous martingale and instead adds tradable instruments.
Let Tho=0<Ty < -+ <Ty =T with A,, := (T,,-1,T3,] forn =1,--- | N be a time series. This section assumes
that continuous trading is allowed and that time-¢ prices Dy - and DZT are constant on each interval A,, and

i =D} =1on Ay. Tradable derivatives in this section are as follows:

e European call and put options with maturity T
e no-touch options with a barrier level L and with maturity 7,, forn=1,--- | N,

e knock-out forward contracts with a barrier level L and with maturity 7;, forn=1,--- | N.

The above tradable no-touch options and knock-out forward contracts replicate/are replicated by one-touch
options which respectively pay a a unit of currency and a unit of the underlying asset at time T if the first
hitting time is in A,, for n = 1,--- | N. These one-touch options are used in this section for ease of notation
instead of the no-touch options and the knock-out forward contracts, although they are not standard in practice.
Let Oé 7 be prices of the one-touch options which pay a unit of currency and OOA7 }’A be prices of the one-touch
options which pay a unit of the underlying asset. Note that the price of the no-touch option and that of

the knock-out forward contract with maturity 7" are given respectively by Nor := Dy — 22;1 Oé‘% and
A L N A A
Ngir = Dg,TSO =D =1 Oo,T .

This section first investigates no-arbitrage conditions for these one-touch option prices {OOA’%}RNZ1 and
{Oé %’A}ﬁ[:l and then investigates whether these one-touch options improve the pricing bounds of Section
5.3.2 with the knock-out forward contract price N(fT.
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Forn=1,---, N, define

A A
. Oo. 1 . D — > k-1 Ok (5.3.16)
n - b n ) b
Dy ¢ Dy ¢
An,A Ap A
_ Y1 D 10— 31 Opr
Tn = —X—, Yn = . - A (5.3.17)
O 1 Dgr =251 O

v = qnOy, and ¢ := ZTILI Dndz, , where §, is the Dirac delta function located at x € R;. Moreover, let pn
be the smallest restriction of 1 whose 0-th and 1-st moments are gy and gyyn respectively, and p% := p— pn-.
Proposition 8 provides the answer to the first question.

Proposition 8. Suppose that
(A1) un(I¢) =0 and z, < D%/:TL <Yp formn=1,--- N,
(A2) v° = pjy.

Then, there is a continuous model. Conversely, if there is a continuous model Q, (A1) and (A2) hold for fin
and i = p — fin instead of py and pS;, where fin([a,b)) := Q(St € [a,b),7 > T) for a,b € Ry.

Proof. Suppose that (A1) and (A2) hold. By (A2) and Theorem 6, there exist subsets Q, C Q for n =
1,---, N such that O3 = Dj7Q[Q], 053 = D§zE[ST : Q], Nor = Dj7Q [(UN_19,)°], and Ny =
Dy +E [ST : (U,JYZIQH)C]. Let F} be a process defined by

N-1
Ft* = D’llz"é,TTSO + Z an{tEAn} + XNl{tE(TNfl,TN)} + STl{t:T}7 (5318)
n=1
where
Sr(w) (we Uiz )
X,(w):=4¢ xn (we Q) ) (5.3.19)
Yn (w ¢ Ui )
The process Sf := —- F; satisfies S% ~ p. If a filtration J; is taken as one generated by Q,, Up_ Q. and

A
{BNUZ{Q|B € F} for t € A, then, the process F* is a martingale with respect to the filtration F, because
Fy =E[Sr] and for t € A,

E[ST : Qn] E[ST : (nglﬂk)c]

E[ST|.Ft] = ST].U;ct;lle + @[Qn] ]-Qn + Q[(Uzzlﬂk)c] 1(U2:19k)“
= ST]-UZ;llﬂk + xnlﬂn + ynl(ugzlﬂk)c
= F}. (5.3.20)

Finally, one has O3 = Dj 7E [Li;ea,}] and Og3™ = Dj 1 E [Stliren,y] for n=1,--+ N, because of (Ad).
The converse statement is obvious. O
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A
Next, consider the second question. Suppose that K = 1 and hy(s) = s and Hy = % The notations
0.7

A
g?:T. The following corollary provides conditions that the
0.T

pricing bound is not improved by the information of the touch option prices {OOA){,Z}nN:l and {OOA) %’A N

in Section 5.3.2 are K =1 and h(s) = s and H =

Corollary 8. Suppose that the assumption of Proposition 7 holds for h and H. Let g € L', X be the restriction
w whose 0-th and 1-st order moments are respectively qn and qnyn, and z* € R be the optimal value so that
the optimal upper pricing bound Wy (z*) is represented with

W (a®) = / (g(s) — 2*5)d\ + 2* H. (5.3.21)

If (A1) and (A2) of Proposition 8 hold for A and \° := p — X, then there is a continuous model for which the
price of the knock-out option is Dy W

From a practical point of view, (A1) and (A2) are likely to hold for A and \¢, because {z,,})_; are accumu-
lated around L, if the interest rate and the dividend yield are not extremely high and there are no fear about
huge jumps in the underlying asset process.

5.3.4 No Arbitrage Condition with Different Maturities

This section devotes to deriving no static arbitrage conditions on two sets of barrier option prices with different
maturities, 71 and T (77 < T»). Assumptions in this section are that continuous trading is allowed and that
time-t prices D5, and D{, are constant on Ay and D = D}, = 1 on Ay. Tradable derivatives in this
section are as follows:

e European call and put options with maturity 7; for i = 1,2

e Knock-out options with maturity 7; and with payoff g(Sz,)14, for any g € £! for i = 1,2, where A; is the
event for not being knocked out.

Barrier option prices with maturity 7; are individually characterized with (u;, ;) for ¢ = 1,2, where p;
is a distribution of the underlying asset at time 7; and «; is a kernel function for A;. For ease of nota-

tion, expressions for Sy, are transformed to those of Th-forward measure using a;(f) = (D;{ qT2 f) and

11([0, ) :== w1 (|0, D;{qnf ) In order to focus on no arbitrage condition on as, it is assumed that there is

a model up to 77, namely (u1, 1) satisfies the assumptions of Corollary 7 in case of a single or double barrier.
In addition, assume ji; < puo and ny > ng, where n; := faidm.
To exclude static arbitrage opportunities, the following conditions must be satisfied.

Assumption 3. There is a1 € ﬁff; such that
o as(s) < aia(s) for any s € Ry.
o Jo T sman(s)in(ds) = [ smaia(s)pa(ds) for m =0, 1,

[ ] dldﬂl j Ollgd/LQ and (1 — dl)dﬂl j (]. - Oélg)dp,g.
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As Proposition 9 will show, these assumptions are sufficient if the knock-out condition is irrelevant to the
underlying price. However, the cases of a single barrier and a double barrier are more involved and require
more than those. Consider the following two distributions uf, and uf with ¢ € I and 6 € [0,1]: for any Borel
measurable set B,

1S,(B) = i/ adpiy + "2 55(B), (5.3.22)
1 B
where ( := nlinz f0+o° s(a12(s) — aa(s))pa(ds) and
ph(B) = [ andis + M8, (B) + 205, (B), (5.3.23)
ni Jp ni ny
where
1
Br = — (/ s(a12(s) — aa(s))p2(ds) + cf(aiz(c) — az(c))p2 ({C})> ; (5.3.24)
nL \Jj.e)
1
v = — </ s(on2(s) — az(s))p2(ds) + c(1 = 0)(a12(c) — az(c))p2 ({C})> : (5.3.25)
o\ J(e,+00)

ni = fi o (en2 — az)ds + Oona(e) — an(e))ps ({e}) and gy s=my —m — .

Assumption 4. There is a1 € EZZ such that

(in case of a single barrier) aidji; < duf, and 3 ¢ I.

(in case of a double barrier) &;dji; < du%, and B, < L and By > U for some c € I and 0 € [0, 1].

Proposition 9. Suppose that Assumption 3 holds and that Assumption 4 holds in case of single or double
barrier options. Then, there is a continuous model. Conversely, if there is a continuous model Q, Assumption
3 and Assumption 4 hold for a12(s) =E 14, | S1, = $].

Proof. By Assumption 3 and Theorem 6, one can construct a model such that {S;}:e[r, ) is a martingale
if the knock-out condition is irrelevant to the underlying asset. In case of a single barrier option, because
ar1dpg = dulsz = aq2dps and these tree distributions have the same moments up to 1-st order, {St}tE[Tl,Tg] can
be a model. This is the case for a double barrier case.

Conversely, suppose that there is a continuous model Q. Assumption 3 is clear. In case of a single barrier,
one has

B—E[STZ : T1<TST2]
Q< T<T

¢ 1. (5.3.26)

In case of a double barrier, one has

E [ST2 : minte(ThTz] St S L] <L. U< E [ST2 U S maxte(ThTz] St]

<
Pz Q [minge (7, 1) St < L] - T QU £ maxie(r, 1) St

< By. (5.3.27)
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If the underlying asset is limited to a continuous martingale, Proposition 9 can be simplified in case of a
single barrier. Let ajy be

aiy = ag + (1= az) (Lap) +0alay +Oly), (5.3.28)

where a,b € R and 0,0, € [0,1] are taken such that [ ajydps =nq and —— [ s(ajy(s) — aa(s))pa(ds) = L.

ny—n2

Corollary 9. Suppose that DZ/TZ =1 fort € [0,T]. Then, there is a continuous model for which Sy is

continuous, if and only if ai, is satisfied with f0+oo saq(s)r(ds) = 0+°° saiq(s)pa(ds), (1 —aq)dp < (1 —
aly)dps and &ydiiy < duly, where iy is p5y with aly.

5.4 Construction of Kernel Functions

This section provides some examples to construct kernel functions under several circumstances.

5.4.1 Construction with a No-Touch Option

The first example is to construct a kernel function where a marginal distribution p of an underlying asset and
a no-touch option price Ny with a maturity 7" are given. This section focuses on the case where the barrier is
single or double: L € (—o0, s¢) and U € (sg, +00], since a copula approach can be applied if a knock-out event
is irrelevant to the underlying asset. This method has two steps: the first step is to construct a kernel function
which does not necessarily reproduce the given price of the no-touch option and the second step is to adjust
the function so as to reproduce it. Let A* be a subset of A such that the no-touch option price is reproduced:
N07T = DS,T fOéd/.t

Step 1 Construct a kernel & € A
Step 2 Adjust the kernel & and obtain « € A*

Although a choice of a kernel function in the first step is arbitrary as long as it is in A, it is desirable in
ordinary circumstances for a kernel function to take a value close to zero in a neighborhood of the barrier level
L or U. In this case, Brownian bridge techniques are useful to construct a kernel function which equips this
property. The following lemma is well-known (see e.g. (Revuz and Yor, 1994)).

Lemma 6. Suppose that {St}iepo,1) 95 a stochastic process defined on a probability space (2, F,Q):
dSt == bStdt + O'SvthVt7 (541)

where b and o are constant and W is a Brownian motion under Q. Let p(x,y;o,L,U) be the probability that
the barrier L,U is hit under the condition Sy = x and St =y. Then, it holds for x,y € [L,U]:

exp _210g<w/@>‘w> L+#0,U=+o)

(

;o,LU) = (
p(x,y,a, ) )_ exp _2log(:c/U)log(y/U)) (L:O,U#—FOO) 5

(

(5.4.2)
[o [T

o0 (BA" _ eBk)

e oo otherwise)
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where
Ay = _leog(U/L)(kl()li(QUj{L) + log(y/x)) (5.4.3)
and
By v o (K10B(U/L) +108(a/U))(log(U/ L) + log(y/U)) )

|o*T

The assumption of Lemma 6 is not satisfied in most option markets, since they have volatility smiles. A
way to incorporate volatility smiles into the Brownian bridge is

arv(s) :=1—p(So,s;0i(s), L, U), (5.4.5)

where 04, () : Ry — (0,400) is a volatility smile function observed in a market. Let the function (5.4.5) be
called as L.V. kernel. Numerical examples of these functions are in Section 5.6.
The second step is straightforward: a kernel o € A* is obtained by

Dy +—No,1 o~ .
a(s) = i\/_ DS,T*NO,T (1 OL(S)) (NO,T > ]YO,T) 7 (546)
Noma(s) (No,r < No,r)

where Z\~707T = D(T)’T fddu.

5.4.2 Construction with Several Knock-out Options

Next, consider how to construct a kernel function in a case as in Section 5.3.2, where there are K liquid knock-
out options whose payoffs are h,, : R, — R and forward prices are H,, for n = 1, .-, K, in addition to the
assumption in Section 5.4.1, namely a marginal distribution p of an underlying asset and a price of a no-touch
option Ny r with a maturity 7". For simple notation, let hy be the payoff of the no-touch option and Hy be the
forward price. It is assumed that there is no-static arbitrage opportunity among these liquid barrier options.
The problem is equivalent to finding o € A* such that (hx,a) = Hy for k=0, , K.

First, these conditions can be represented in terms of the Banach spaces £! and £>°:

(1) (0s,) €[0,1] for s e[
(2) (0s,a) =0for s e I°
(3) (hg,a) =Hp for k=0,--- K,
where J; is the Dirac delta function located at s € R;. Then, the problem is to choose an element of the subset
Aj C A
A= (V{ee£®] ($s,a) € 0,130 [ {a€L®| (ds,0) =0} [ {a€L®] (h,a) = Hi}. (5.47)
sel sele 0<k<K

Note that A} is not empty, because no-static arbitrage is assumed. Since every element of the subset A} is a
candidate of a kernel function that reproduces the market prices of liquid knock-out options, one needs some
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criteria in order to choose one element. One way is to take best approximations of A} from g which has
desirable properties but is not necessarily an element of A} :

PA,*L(CVO) = {a* S .A;.; | ||040 - a*H = alenff\.* ||a0 — a||} . (548)
h

The number of elements of Py4:(ap) is one since the subset Aj; is closed and convex in a normed space. For
example, the element of Pyx (o) is appropriate for those who believe that barrier levels are likely to have been
hit when the underlying price St at maturity is close to the barrier level L or U, if aq is taken as a kernel
function using Brownian bridge techniques as in Section 5.4.1.

Finally, a practical procedure for obtaining the element of Pa: (o) is proposed. Suppose that hy for
k=1,---,K are in £? instead of £'. Then, the operator (,) can be regarded as an inner product in a Hilbert
space £2. In addition, the problem is discretized with respect to the space I (for example, I = Uf\il[m‘i, Tit1)
for some natural number M and an increasing sequence {z;}2 ') and reduced to a finite dimensional problem.
Then, Dykstra’s algorithm can be applied to the discretized problem (see (Deutsch, 2001) for more details).

5.4.3 Construction with Different Maturities

The third example is how to construct two kernel functions with different maturities 73 and 75 (71 < T3) such
that they exclude semi-static arbitrage opportunities as in Section 5.3.4. It is assumed that pairs of a marginal
distribution p; and a probability n,; that the barrier has not been hit up to maturity 7; are given for ¢ = 1,2,
where po is larger than p; in a sense of convex order and n; > ny. In addition, there may be liquid knock-out
options for each maturity.

The problem is to construct ay, as and aqo satisfying the conditions in Section 5.3.4. These conditions are
represented by convex sets of the triple of Banach space 51111 X ﬁ;lu X E}Q. The first step is see if there are
no arbitrage opportunity among given market instruments. Suppose that a barrier option with maturity 7% is
quoted in a market with a certain price. Then, calculate the maximum and the minimum of the price using
(2, n2, ag) over aq, as and aqo which are satisfied with the conditions and compare the price bounds with the
market price. If there are no semi-static arbitrage opportunity, there are solutions. Then, Dykstra’s algorithm
can be applied to a discretized problem in the same way as in Section 5.4.2.

5.5 Application

While the approach proposed in this paper can be used to find arbitrage opportunities, it has more applications
for pricing barrier options thanks to its flexibility. Its flexibility comes from the fact that it directly describes
dependency between a marginal distribution and the event of hitting to barriers. Indeed, standard approaches
that postulate a stochastic process as an underlying process may be more appropriate for pricing barrier options
under ordinary circumstances. Here, the ordinary circumstance is the case where barriers are likely to have
been hit when an underlying price at maturity is close to the barrier levels. However, the approach of this paper
is more appropriate under circumstances where an underlying price is not expected to behave in the ordinary
circumstance. An example is to price barrier options under potential intervention in a foreign exchange (FX)
market. Credit value adjustment (CVA) is another application, because it is exposed to wrong-way risk and
this risk is difficult to measure. It is helpful for risk management to calculate a range of CVA by modeling a
kernel function.
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5.5.1 Pricing Barrier Options under Potential Intervention

Central banks sometimes intervene FX markets. This section considers how to price barrier options under
potential intervention of a central bank. Suppose a central bank announces that it will intervene when an FX
rate Sy reaches a certain level L € [0, Sp) and it surely does at that time, but it may fail. For simplicity, the
intervention in a period [0, T) is regarded as failure if and only if S < L. After the announcement, the market
view is incorporated into option prices: the digital put option whose payoff is 1o 1) reflects a probability of
failure, the one touch option with barrier L does a probability that the intervention takes place, and so on.

Suppose that there are traders who have the same view about the above two options as the market, but
predict a significant change in an FX rate after the intervention. Their view after the intervention is that
the intervention fails with the same probability as incorporated in the market, the digital put price, but the
intervention is so efficient that the FX rate significantly goes up with some probability. The standard approach
that postulates a stochastic process is not appropriate for them, because it is likely that the barrier has not
been hit, if the underlying price at T is far from the barrier level. The approach that characterise « is more
appropriate for them.

5.5.2 Credit Value Adjustment

Credit value adjustment (CVA) is the difference between the risk-free portfolio value and the true portfolio
value that takes into account the possibility of a counterparty’s default ((Pykhtin and Zhu, 2007)). Suppose
that a bank which is assumed not to default has transactions with a counterparty which may default. Then,
CVA for the bank can be defined by?

CVA:=(1-R)E

T
/ Vﬁl{r_t}dt] , (5.5.1)
0

where R is a recovery rate, E[-] is an expectation operator under a risk-neutral measure, V;* is a positive
part of a risk-free portfolio value at time ¢, and 7 is a time when the counterparty defaults. Typically, V,"
is dependent on time-t prices of what are observable in markets such as foreign exchange rates, equity prices,
interest rates, and so on and the random variable 7 is modeled such that market prices of corporate bonds or
Credit Default Swap (CDS) of the counterparty are reproduced. If this quantity is discretized with respect to
time A, := (Ty,—1,Ty] for n=1,--- | N with Ty = 0 and Ty = T, Eq.(5.5.1) become

N
CVAx = (1-R)> E[Vilgeay] (Tn —Tao1)

n

Il
-

WE

= (=R BV remnn] —EVE e r, ) (To = Toma). (5.5.2)

Il
_

n

A bank is said to be exposed to wrong-way risk if V;" is expected to be large when the counterparty’s
probability of default is high. An example of wrong-way risk is an FX forward contract with a company in
an emerging country in which the bank pays a fixed amount in an emerging currency and receives a fixed
amount in dollar. In this case, it is likely that a strong depreciation of the country currency and deterioration
of the credit quality of the counterparty would simultaneously take place when the government in the emerging
country declares its default. However, it is impossible to know the actual dependency between the FX rate and

2A definition of CVA is not unique. In this paper, the simplest one is adopted.
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the counterparty’s credit quality, because the counterparty may hedge a depreciation of the currency. To know
a range of CVA is important especially in this case.

The approach in Section 5.4 can be applied to this example. In this case, it is necessary to construct a
kernel function o, as well as a,—1,,, which is corresponding to a;2 in Section 5.3.4, for n = 1,--- ,N. The
function a,, describes a dependency between the foreign exchange rate at time T, and the default probability
during (Ty, T;,] and the function c,_1, describes a dependency between the foreign exchange rate at time T,
and the default probability during (Tp, T, —1]. In addition, suppose that the counterparty issues its corporate
bonds both in dollar and its country currency with maturity 7,,, n = 1,--- , N. This means that information
on E [1{reAn}] and E [S’THI{TGA"}] are given, where S; is the time-t foreign exchange rate. Then, the method
proposed in Section 5.4.2 can be applied to constructing kernel functions with ho(s) = 1 and hy(s) = s. This
approach can take into account of various dependencies between underlying assets and default probability, and
calculate not only CVA with wrong-way risk but also upper and lower bounds of CVA. Since wrong-way risk is
difficult to correctly capture, bounds of CVA is useful for risk management.

5.6 Numerical Examples

This section devotes to numerical examples of the method proposed in Section 5.4.1 for pricing barrier options.
It is demonstrated that the method is so flexible that it can produce various prices of barrier options inside the
model-independent pricing bounds.

It is assumed in this section that the process of the underlying asset price follows the Heston model:

d

—5t = (r—q)dt + o dW; (5.6.1)
t

do? = k(n—o?)dt+ Oord Wy, (5.6.2)

where W and W are Brownian motions with correlation p under a risk-neutral measure. The parameters of
the Heston model in the examples are listed in Table 5.1. The Heston model with these parameters produces 6
month implied volatilities as in Table 5.2.

S r q o2 K n 0 0
100 0.03 0.03 0.15° 1.0 0.2° 04 0.0

Table 5.1: Parameters of the Heston Model

strike 80 90 100 110 120 130
implied volatility (%) | 18.28 16.10 15.00 1593 17.51 18.99

Table 5.2: 6M Volatility Smile

The barrier option considered in the example is double knock-out call options with maturity 6-month, L = 80
and U = 110. Prices of the double barrier options can be analytically calculated under the Heston model with
r =q and p = 0 (see (Lipton, 2001)). In particular, this model evaluates the double no-touch option as 0.615.
Double knock-out call options with strike price varied from L to U are evaluated using the following methods:
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(1) the model-independent lower bound of (Tsuzuki, 2014)

(2) the Heston’s stochastic volatility model ((Heston, 1993)) with parameters in Table 5.1
(3) the method in Section 5.4.1 using a L.V. kernel function

(4) the method in Section 5.4.1 using a constant kernel function

(5) the model-independent upper bound of (Tsuzuki, 2014),

where the L.V. kernel function in (3) is Eq.(5.4.6) using Eq.(5.4.5) with the volatility smile of Table 5.2 and the
constant kernel function in (4) is that using a constant value instead of Eq.(5.4.5).

Figure 5.1 and Table 5.3 are the results. First of all, as is expected, all prices of the methods (3),(4) as well
as those of the Heston model (2) are insides the pricing bounds (1) and (5). In addition, prices of the method
(3) are close to those of the Heston model (2). This can be interpreted that there remains little freedom in
dependency between a distribution of St and the knock-out event in ordinary circumstances, where barriers are
likely to have been hit when an underlying price at maturity is close to the barrier level. On the other hand,
prices of the method (4) are significantly different from those of (2) and (3), which shows that the method in
this paper is flexible enough to generate various dependency structure between a distribution of S and the
knock-out event. The discrepancy between (3) and (4) is due to the difference of kernel functions as described
in Fig.5.2 and Fig.5.3.
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price

80 85 90 95 100 105 110
strike

Figure 5.1: Price of double knock-out call options

pricing method \strike\ 80 \ 85 \ 90 \ 95 \ 100 \ 105 \ 110

(1) lower bound 9.25 | 6.26 | 3.57 | 1.44 | 0.22 | 0.00 | 0.00
(2) Heston model 10.42 | 7.38 | 4.56 | 2.23 | 0.71 | 0.09 | 0.00
(3) L.V. kernel 10.19 | 7.16 | 4.37 | 2.10 | 0.66 | 0.09 | 0.00
(4) constant kernel 10.85 | 7.84 | 5.06 | 2.71 | 1.06 | 0.22 | 0.00
(5) upper bound 12.66 | 9.59 | 6.51 | 3.53 | 1.38 | 0.28 | 0.00

Table 5.3: Price of double knock-out call options
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Chapter 6

Rebalancing Static Super-Replications

This paper proposes a trading strategy that dynamically rebalances static super-replicating portfolios, which
is very useful for both investment and hedging strategies. In order to investigate general properties of the
strategy, we derive the Doob-Meyer decomposition for the value process without any specifications of models
under the continuous processes of the underlying variables. In particular, we find that the increasing part
of the decomposition characterizes the performance of the strategy. Also, we obtain more concrete features
for cross-currency and one-touch options based on our general framework. Moreover, numerical examples for
cross-currency options demonstrate the effectiveness of our strategy for investment and hedging.

6.1 Introduction

This paper introduces a trading strategy that dynamically rebalances static super-replicating portfolios, which
is very attractive for both investment and hedging. Specifically, we derive the Doob-Meyer decomposition
for the value process of this strategy without any specifications of models under the continuous processes of
the underlying variables: the increasing part of the decomposition is a key element since it characterizes the
performance of the strategy.

Super-replications have been more attractive since 2007 after the financial crisis, because they provide
a protection against substantial losses. In particular, thanks to the robustness of their model-independent
properties, they put a rigid floor on the maximum loss whatever the subsequent paths of the underlying prices.

The problem of finding the cheapest super-replication has first been introduced by (El Karoui and Quenez,
1995) for the case of dynamic trading strategies. Subsequently, various types of super-replicating strategies have
been proposed. Among them, several model-independent and static/semi-static super-replications have been
investigated by (Chung and Wang, 2008), (Neuberger and Hodges, 2000) and (Tsuzuki, 2013). Here, static
replication is a method of replicating a derivative with portfolio whose composition does not change until the
maturity of the derivative and semi-static one is a method of replication by trading no more than once after
inception. While they are robust, these strategies have a serious drawback that the probability of suffering the
maximum loss is extremely high.

In order to overcome this drawback, we propose a dynamically rebalancing strategy of the cheapest super-
replication. As an intuitive explanation for the feature of this strategy, consider static super-replications whose
portfolios are derived as the cheapest among some family of super-replicating portfolios. First, the super-
replicating portfolio is constructed as the cheapest one. After the market conditions have changed, the original

99
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portfolio is no longer the cheapest and another one becomes the cheapest. By liquidating the original one and
constructing the new cheapest one, an amount of cash is withdrawn from the position:this amount should be
positive because the latter is cheaper than the former. The strategy continues this operation until the maturity.
Then, thanks to the accumulation of these positive cash flows, the probability of the maximum loss is reduced.
We remark that (Neuberger and Hodges, 2000) examines a numerical example of this type of strategy for barrier
options. ((Dupire, 2010) called it “roll-down”.)

This paper analyzes properties of the strategy without assuming any models under the continuous processes
of the underlying variables. In particular, to the best of our knowledge, it is the first work that derives the
Doob-Meyer decomposition for the value process, which is a super-martingale process because it is defined as an
infimum of a certain family of portfolios. Moreover, we give a financial interpretation to the decomposition and
obtain general properties of the strategy through the increasing part of the decomposition;the increasing part is
practically important because it characterizes the performance of the strategy. More concrete features become
known by applications of our results to specific derivatives such as cross-currency and one-touch options under
some additional assumptions that are satisfied for usual cases. Further, numerical examples for cross-currency
options demonstrate the effectiveness of our strategy for both investment and hedging.

The organization of this paper is as follows: Section 2 states assumptions and notations. Section 3 is
devoted to our main theorem on the Doob-Meyer decomposition. Section 4 applies our result to cross-currency
and one-touch options. Numerical examples for cross-currency options are demonstrated in Section 5. The last
section gives concluding remarks. Appendix presents analytical results for cross-currency options under the
Black-Scholes model.

6.2 Assumptions and Notations

We consider the problem of hedging a derivative by liquid instruments such as bonds, risky assets as well as
plain-vanilla options on those assets in a frictionless and no-arbitrage market, which is defined on a filtered
probability space (2, F,{F;}ieo, 7+, Q) for some arbitrary time horizon 7 > 0. The no-arbitrage condition
ensures the existence of a risk-neutral measure QQ such that the instantaneous expected rate of return on every
asset is equal to the instantaneous interest rate. For sake of simplicity, the interest rate and the dividend yields
are assumed to be zero.

Let Ox be a domain of RY and X : Q x [0,7*] — Ox be an N-dimensional {F;}-adapted continuous
process which represents all the underlying random variables such as asset prices and their volatilities:

Xt = X() + At + Mt (621)
Xo x, (6.2.

where A; is an N-dimensional finite variation process, M; is an N-dimensional continuous local martingale and
x € Ox. The i-th component of the each vector is expressed by Xt(i)7 Agi) or Mt(i).

Let Y : Qx[0,T*] — RP be an D-dimensional process which denotes time-¢ prices of all tradable securities,
which is {F; }-adapted and continuous. Note that Y is a local martingale under our assumption that the interest
rate is zero. We define a trading strategy ¢ by an D-dimensional {F;}-adapted process ¢ : Q x [0,T] — RP,
whose i-th component is the number of the security Y (* held by the strategy, where T is the end of a trading
period. In particular, a trading strategy ¢ is a semi-static strategy if and only if ¢ is constant on [0,7) and
(7,T) for some stopping time 7 and a strategy is static if and only if 7 = T.

Let Y* : Q x [0,7%] — R be a price process of the derivative to be hedged, which is assumed to be {F;}-
adapted. Y;* may not be measurable with respect to the o-algebra generated by Y; for any ¢ € [0,7*], which
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means that the derivative Y* can not be replicated by the tradable securities. Then, we consider the strategy
that super-replicates the derivative. Here, a super-replicating strategy of Y;* is a trading strategy such that for
any t € [0, 7],

D
vy <> ey, (6.2.3)
n=1
In particular, suppose that ¢ is a semi-static super-replicating strategy for a stopping time 7. Then, for ¢ € [0, 7)

D
vy < ey, (6.2.4)

n=1

Assume that there exists a family of static strategies that super-replicate the derivative Y*. Let us denote
the time-t prices of static portfolios in the family by {H(t,z, K)}keo,, where H is assumed to depend on
a parameter K € Ok with some domain Ok in R as well as on the time parameter ¢ and market variables
z € Ox.

Remark 20. Some derivatives can be super-replicated by portfolios consisting of plain-vanilla options whose
strike prices are arbitrary. In these cases, the parameter K of {H(t,x, K)}keco, corresponds to the strike price.
We will look at those examples in Section 6.4.

6.3 Rebalancing Super-Replications

This section investigates the strategy which dynamically rebalances super-replications.

The strategy is explained as follows. First, the super-replicating portfolio is constructed at time ¢ = 0 as
the cheapest one by solving the optimization problem (6.3.1) below. Then, rebalancing the super-replicating
portfolio is continuously executed until the maturity 7. This is carried out by solving the optimization problem
(6.3.1) under the market conditions at time ¢. It is noteworthy that the strategy is not self-financed because an
amount of cash is extracted from the position until the maturity 7. The performance of the strategy depends
on how much these cash flows are. In order to investigate them, we derive the Doob-Meyer decomposition of
the process {H; }+cjo,7], which is the value process of the strategy.

Some assumptions and lemmas are necessary for obtaining the decomposition.

Assumption 5. H(t,z, K) is assumed to have the unique infimum value with respect to K for allt € [0,T)
and x € Ox. Let H*(t,x) be the infimum value and K*(t,z) be a point where the infimum is attained:

H*(t,z) = inf H(t,z,K)
K>0
= H(t,z, K*(t,x)). (6.3.1)

Hereafter, the following notations will be used for simplicity: Hy(K) := H(t, X;, K), K} := K*(¢, X;) and
SO om.

Assumption 6. H(t,z, ) and K*(t,z) are sufficiently smooth with respect to t and x.

The process Hy(K) for each K € Ok is the price process of the static position of a super-replicating portfolio.
Under the assumption that the interest rate is assumed to be zero, the process is a local martingale.
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Lemma 7. Supposet >0 and K € Og. Then

tOH
X,, K)ds X, K)dAWY
T — (s, +Z/ 9z (s, )
1 0°H o
@ @\ —
+ Y / 25205 sXS,K)d<M M > 0 (6.3.2)
i,j<N
and
Hy(K) = Ho(K +Z/ (s, Xg, K)dM. (6.3.3)

Proof. By Ito’s formula, we have for V¢t > s > 0,VK € Og

¢
H
Ht(K) = HS(K)+/ %(U,XU,K)dU
O0H
(@)
+2/ 3o, T (u, Xy, K)dx(
‘1 0°H N
———(u, Xy, K)d (M, M) 3.4
+ij; /S 2 Gatiaxj (U7 ’ ) < ’ >u (6 3 )
Since the process {H;(K)};cpo,r] is a local martingale, Eq.(6.3.2) and Eq.(6.3.3) are obtained. O

Theorem 7 depends on the following assumption, which is satisfied in usual cases where the optimization
problem (6.3.1) admits the unique solution.

Assumption 7. H(t,z, K) is twice continuously differentiable in the neighborhood of K*(t,x) with respect to
K for allt €[0,T) and x € Ox. Moreover,

0H

ar ho K (t2)) =0 (6.3.5)
O (b K" (1,2)) > 0. (6.3

Theorem 7. Suppose Assumption 7. Then, the process {H{ }icjo,1) s a super-martingale and its Doob-Meyer
decomposition is given by

Hf = Hf — AF + My, (6.3.7)
where the process { A} }ieo,1) 15 increasing:

62

A= 0K?

(5, X5, KJ)d(K™),, (6.3.8)
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and the process {M; }icjo,1) s a martingale:

N

YOH ,
M = Z/O (8, X5, KX)dM.

8581'

i=1

Proof. By Assumption 7, we have for any ¢t € [0,T], € Ox,

OH . oK™
87K(t, 7K (t,x))w(t,x) 0
OH . oK™
and
0 (0H .
o2, <8K(t x, K*(t, x)))
0’H . 0*H . 0K
= W(taxaK (t,a:))—l—w(t,x,l( (t,z))
= 0.
Ito’s formula implies that
H = Hj+ | ——(s,Xs)ds
o Ot
N t
OH* 1 9*H*
Z)
+Z:/0 3%( +Z/283:6x]
i=1 1,j<N

S

0K 9K ot

H *
- Ha‘—i—/ (8 (s, X5, KI) + OH s XS,K*)aK (s, Xs)
0

N t *
+Z/ (aH(s X, K*) + 6—H(s XS,K*)aK (s, X,

t 2 / (aizaxj( Ko+ 8?:;((-,1(;)88[2(-))( ’

= HO +Z %(S’stKs)dMs

PH_ oK N
: 0 x0)
> / 2 omok &Ko K)o Xd (X0, X

i, <N

where we have used Lemma 7.

103

(6.3.9)

(6.3.10)

(6.3.11)

(6.3.12)

(6.3.13)
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Let the first integral be defined as M} and the last one be defined as —A}. Then, we have

¢ = 81.0K G KY) —— , @ x )
A Z / 2 9,0K (s, X5, K7) o, (S,Xé)d<X X >

N0 s

1 [t9%2H OK* OK* . ,
_ 1 . oK™ @) ()
) /0 (5, X0, K5) (5, X0) 5 (s,Xs)d<X X >s

t 92 N . %
= % g}g(s,Xs,K:)d<Z/ %[;dx<i>> . (6.3.14)

It is found that the process {M; },c(o,r] is a martingale and { A} };c[o,7 is increasing by Assumption 7. O

Remark 21. In case where H*(t,x) takes the infimum value at a boundary point, Eq.(6.3.5) of Assumption 7
may not hold. Nevertheless, Theorem 7 holds under an assumption that K*(t,x) is constant on the subset of
[0,T) x Ox that H*(t,x) takes the infimum value at a boundary point, because Eq.(6.3.10) and (6.5.11) hold
and A} =0 on the set.

A financial interpretation of Theorem 7 is as follows. The variation of the martingale part M is approximated
by the difference between the time-t value and the time-s value of the time-s optimal portfolio by Eq.(6.3.3) for
all s < t, which is a variation of the price of a portfolio held at time s:

M} — M = Z/ T (uy X, K2)dMD

Q

* (4)
SCIEEINT

where AM,' @, = M, @) Ms(i) and we have used the approximation

Hy(K) — Hy(K) ~ gH (s, X, K)AM (6.3.16)
i=1
with K = K.
Then, we obtain
Af — AL~ Hy(K[) — Hi(K7), (6.3.17)

which is the difference between the time-t value of the time-t optimal portfolio and that of the time-s optimal
portfolio. Hence, the increasing part A is regarded as the accumulation of cash flows generated by each re-
balancing. Consequently, the value process for a trader shorting the derivative with the optimally rebalancing
super-replication strategy is given by

Hf + Af —Y; = Hj + M; — Y. (6.3.18)

This implies that the larger is A}, the more profitable the strategy is.
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A general property is derived through this analysis. Eq.(6.3.8) shows that the time-t cash flow is a change in
the quadratic variation of the optimal parameter K* weighted by the second-order derivative of H with respect
to the parameter K at K = K*. The former represents the extent of the fluctuation of the optimal parameter
K* while the latter expresses the extent of convexity of the function H(¢,z,-) at an optimal point K*. For
further detailed properties, we study some specific options in the next section.

6.4 Applications

This section applies our result to cross-currency and one-touch options, where we assume conditions normally
satisfied for plain-vanilla European options;for instance, the prices of these options are sufficiently smooth with
respect to every parameter and the delta and the vega ! of call options are positive.

6.4.1 Cross-Currency Options

This subsection applies Theorem 7 to cross-currency European options. Let a currency exchange rate X:(FZ) be
the price of the unit amount of Currency 4 in terms of a base currency such as USD(U.S. dollar). Consider a
cross-currency rate representing the price of the unit amount of Currency 1 in terms of Currency 2. Then, the
payoff of a call option on the cross-currency with strike 1 and maturity 7'(in terms of Currency 2) is given by

(X /XP 1)y = (1/x) (XY - X2

Hence, for pricing this option we need to evaluate an exchange option(see (Margrabe, 1978)) whose payoff is
(x5 = x).
Next, note that the following super-/sub-replication is a well-known strategy.

Lemma 8. For all K > 0, the payoff of an exchange option with maturity T must satisfy the following
inequalities:

x® - xP), <(xWP - k), + (K - x,, (6.4.1)

(X =X > man{(XY - K)y - (X - K)4,
—(K = X)e + (K - X)) (6.4.2)

Proof. Suppose z1, 22,k € R. Then

(21 = k) + (k= 22)),
(Zl — k)Jr + (k - ZQ)+. (643)

(21 — 22)4

IN

by Jensen’s inequality. If we substitute z; = X;l), 29 = X;z), k = K in Inequality (6.4.3), then Inequality (6.4.1)
is derived. If we substitute z; = Xj(}), 2o =K, k= Xj(?) and z; = K, 2o = Xq(?), k= Xq(}) in Inequality (6.4.3),
then Inequality (6.4.2) is derived. O

IThe delta(vega) is the derivative with respect to the price(volatility) of the underlying asset price.
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Let C¥(t, 2, K) and P¥(t, 2, K) be the time-t prices of call and put options on the exchange rate i(i = 1, 2)
respectively, where x € Ox is a N-dimensional vector consisting of all parameters relevant for option prices,
such as the underlying exchange rates and their volatilities. Especially, we assume that the first component x
and the second one x5 stand for the underlying exchange rates. The value process of the super-/sub-replicating
portfolio which corresponds to H in the previous section is given as follows:

Definition 16. Let G and L be the value of super-/sub-replicating portfolios with the strike K :

Glt,z,K) = CY(t,z,K)+ Ptz K) (6.4.4)

Lt,z,K) = —maz{L°(t,z, K), L (t,z, K)}, (6.4.5)
where

LYz, K) = CY(t,z,K)—CH(t 1, K), (6.4.6)

LP(t, 2, K) = —PW(t,z,K)+PA(t,z K). (6.4.7)

In addition, let K¢ and KT be the optimal strike prices for super-/sub-replication respectively.
Remark 22. The optimal strike prices K€ and K become the same as those in (Chung and Wang, 2008).

We see if Assumption 7 is satisfied for these strategies. The optimal super-replicating portfolio is always
determined uniquely as in the following lemma. On the other hand, the optimal sub-replicating portfolio is not
always determined uniquely. We show a sufficient condition for uniqueness under the Black-Scholes model(see
Appendix 6.7).

Lemma 9. Suppose H = G. Then, Assumptions 5 and 7 hold.

Proof. By differentiating G(t, z, K') with respect to K,

oG oc® opP®
aW(ﬁ,l‘,K) = aT(t,x,K)+87(t,x7K)
oc) oc ()
= K (t,z, K)+ 3K (t,z, K)+1 (6.4.8)
0%*G o) 920®
The fact that 8;LK(;)(t,x,K) > 0 implies %(t,z,[() > (0. Since g—g(t,x,()) = —1 and g—g(t,x,+oo) = +1,
G(t,z, K) has the infimum value at K which satisfies g—g(t, z,K)=0. O

By investigating the property of K™, it is found that K* depends on the correlation of the two underlying
exchange rates.

G G L L
Proposition 10. Suppose Assumption 7 holds for sub-replication. Then %I; aaliz >0 and aaiij %1; < 0.

Proof. By Assumption 7,

orM . oP®)
9K (t,amK (Lx))—f— K

(t,z, K9(t,2)) —1=0 (6.4.10)
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and

(1) (2)
L;DK (t,z, K"(t,x)) = 8§K (t,z, K- (t,z)). (6.4.11)

By differentiating these equations with respect to x; for ¢ = 1,2, we obtain

0*°G OK¢ 9?P®

— (t,x, K¢, =— tox, KC(t 6.4.12
8K2 ( 'Tv ( 1’)) 8$1 8](83?1 ( 3xﬂ ( ,.T)) ( )
and
O*L OK™ 1q 0P
tya, K (t = (—1)"** tyx, KL (t 6.4.13
8K2 ( 7I7 ( ,I')) 8$i ( ) 8K8.TZ ( 7‘7"3 ( ,l’)), ( )
where L = —L€ or LT g;(Pa(;). is negative because the probability that the price at the maturity is less than
any value goes down if a spot price goes up, and vice versa. This leads to the proposition. O
Remark 23. Proposition 10 shows that the integrand %I; %{; of the last term in the following approximation

is positive for K* = K& and negative for K* = K*:

o = () a0 () ),

tOK* OK*
s s g xW x@N 4.14
+/0 0z Oxo < ’ >s (6 )

This implies the following relations approximately hold:
(i) The quadratic variation of K€ is positively correlated to the quadratic covariation of XMW gnd X3,
(ii) The quadratic variation of K is negatively correlated to the quadratic covariation of XM agnd X@),

Note that our strategy is useful for an investment in the correlation of the two exchange rates.(See Section 5.1.)

6.4.2 One-Touch Options

We apply Theorem 7 to one-touch options. A one-touch option with maturity 7" and a barrier level B € R
is an option which is worthless if the barrier has not been hit, and pays one at the maturity if the barrier has
been hit. Let the event that the barrier has been hit be

A={weQ|S; ¢1I forsomet e [0,T)}, (6.4.15)

where I := [0, B] and S; is the time-¢ price of the underlying asset with Sy < B. Then, the payoff is 14.
(Brown et al., 2001) and (Neuberger and Hodges, 2000) introduced a model-independent static super-
replication under the assumption that the risk-free interest rate and the dividend yield of the underlying asset
are zero and that the underlying asset process is continuous?. They consider the following family of strategies
parameterized by a strike price K € [0, B) for a short position of a one-touch option. The strategy consists of

2If the assumption fails, their results are weakened.
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at most two steps: the first step is to buy (B — K)~! amounts of a European call option with strike K at the
beginning; the second step is to sell the call option and buy (B — K)~! amounts of a European put option with
strike K at the first hitting time. By the put-call parity, one amount of cash is left after the operation at the
first hitting time.

We apply our theorem to this strategy until the first hitting time. Then, the value of the super-replicating
portfolio is given by

C(t,z, K)

H(t’z7K): B—K 9

(6.4.16)

where C(t, z, K) is the time-t price of a European call option and x € Ox is a N-dimensional vector consisting
of all parameters relevant for option prices such as the underlying price S and its volatility o.

Lemma 10. H(t,z, K) satisfies Assumption 5 and 7.

Proof. By differentiating with respect to K, we obtain

g%(t’x’m - M (6.4.17)
and
%(t,x,f() = ﬁ%(m,f{) - M, (6.4.18)
where
g(t,z, K) = g%(t,w,K)(B—KHC(t,x,K). (6.4.19)

g—g = 0 has solutions by the fact that g—g(t,x,O) =£(-1+ %) <0 and limg_,p g—g(t,x,K) = +o00. At these
points, we have

0’H 1 0%C
— K) = — K 4.2
which leads to the uniqueness of the solution. O

Let us investigate the properties of the optimal strike K* which uniquely satisfies 0H/0K = 0 in Eq.(6.4.17).
The optimal strike K* has a graphical interpretation(see Fig.(6.1)): (K*,C(z, K*)) is the point at which a line
through two points (B,0) and (K*,C(z, K*)) is tangent to the function C(z, K) .

We analyze how the optimal strike K* is affected by the underlying price S and its volatility ¢ that are
main factors for pricing the options. We assume the following assumption which usually holds true.

Assumption 8. Suppose that g defined as Eq.(6.4.19) is strictly increasing with respect to S and o (some
components of a N-dimensional vector x).

Remark 24. Assumption 8 usually holds true because it is expected that the absolute variation of g—g with
respect to S and o respectively is smaller than that of C.

Then, we obtain the following property of K*.
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Optimal Srke Price

" optonpy ——
optimal strike price (]

a1 915 92 925 93 935 9% 945 9%
stike price

Figure 6.1: The optimal strike (B = 94)

Proposition 11. Suppose Assumption 8 holds. Then 88{(9: 852': > 0.

Proof. Let the price of a European call option be C(a, K) with a = S or o for short, where we ignore other
market parameters and K be the strike price which gives the unique zero for the equation g(«, K) = 0. Then,
we have ¢g(-,0) =S — B < 0. Let us consider the sign of g(8, K) for 5 > «. Assumption 8 implies

9(57—[(&) = ﬁ(ﬂ7Ka)(B_Ka)+C(ﬂ7Ka)
oC . X ¥
> 6—K(a, K:))(B—-K.)+ C(a, K}) = 0. (6.4.21)
Therefore, Kj; must be uniquely in the interval (0, K) by the continuity of g, which leads to the fact that K
is strictly decreasing with respect to «. O
OK* OK*

6{? 5o of the last term in the following approximation

i LroKr\? L rOK:\?
w o~ [ (Ge) o [ (57) a0,
YOKY OK:
. 95 00 d(S,o),. (6.4.22)

Remark 25. Proposition 11 shows that the integrand
1S positive:

Hence, roughly speaking, the quadratic variation of K* is positively correlated to the quadratic covariation of S
and o.

6.5 Numerical Examples

In this section, we implement two types of Monte Carlo simulation tests of the dynamically rebalancing super-
replication for cross-currency options: the purpose of the first simulation is to confirm that it can be used as an
investment strategy on the correlation as stated in Remark 23, and the second is intended to demonstrate the
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effectiveness of our strategy in hedging through comparing a hedging performance of our strategy with those of
other hedging strategies.

Consider a trading strategy where the dynamically rebalancing super-replication is applied against shorting
an ATM cross-currency option. For example, let a currency exchange rate S¢(S7) represent a time-t price of
the unit amount of USD in terms of AUD(JPY)?. Consider a cross-currency rate representing the price of the
unit amount of AUD in terms of JPY. Then, the payoff of a call option on the cross-currency with strike spot
ATM(S]/S§) and maturity T in terms of JPY is given by

g J ) a J
St _So) g L (5 _5% (6.5.1)
St S6) . Se\St 87/,

In the following simulations, we normalize the processes of the exchange rates so that S§ = Sg =1.

6.5.1 Investment on Correlation

In order to focus on a correlation investment, we adopt a simple model that is a correlated log-normal model
with a constant correlation as in the following assumption.

Assumption 9. The processes of the exchange rates Sg and S7 are assumed to be correlated log-normal with
constant volatilities and a constant correlation:

s = olSlaw} (6.5.2)
ds¢ = o°Sdwy, (6.5.3)
(W, we), = pt, (6.5.4)

where W} and W are 1 dimensional Brownian motions and o’, ¢ and p are constant.

Our simulation settings are listed in Table 6.1, where we have two values of the correlation in order to see
how the performance of the strategy is affected by the correlation. We sell 100.0 units of a cross-currency option
at 14.14% implied volatility, which corresponds to p = —0.25 and rabalance static portfolios every five days.

Table 6.1: Settings of the simulation

T S S§ o’ o p
30(days) 1.0 1.0 10.0(%)  10.0(%) 0.0/-05

Fig.6.2 shows the result of the simulations in terms of JPY; it shows histograms of the performance corre-
sponding to the correlation values. It is found that the higher is the correlation, the more profit is obtained,
which is consistent with Remark 23.

6.5.2 Effectiveness as a Hedging Strategy

This subsection considers hedging as an application of the dynamically rebalancing super-replication. Espe-
cially, hedging a short position by the strategy seems attractive to risk-averse investors. The strategy has two

3AUD and JPY stand for Australian dollar and Japanese yen, respectively.
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distinctive features: one is to avoid substantial losses and another is to prevent the worst-case scenario which
would often occur if rebalancing would not be carried out.

In order to demonstrate those, a hedging performance of the strategy is compared with those of two other
hedging strategies; Black-Scholes dynamic hedging and the static super-replication of (Chung and Wang, 2008),
which is a static position introduced in Lemma 8. We implement a simulation test where paths are generated
by a realistic model, where the volatilities of both exchange rates are stochastic. The following model is used
for generating paths of the simulation.

Assumption 10. The processes of the exchange rates Sf and S§ are assumed to follow the model:

ds! = Sioldw} (6.5.5)
asy = StoldWy, (6.5.6)
where Cf = log ag and ¢ :=log oy follow
dc) = &0 —dt +07dz], (6.5.7)
a¢t = &*(n* = ¢Hdt+0dzy. (6.5.8)

(&9,m7,67) and (£%,m*,0%) are constant and W7, W, ZJ and Z® are 1-dimensional Brownian motions with
d(WI, W) =p, d(W3,Z7) = pl, d(W*,Z%) = p*, (6.5.9)
where the other correlations are zero.

Our simulation settings are listed in Table 6.2. We sell 100.0 units of a cross-currency option at 20.18%
implied volatility that is computed by o7, = 14.0%, of, = 16.0% and p = 0.1. Then, we rebalance static
portfolios every five days while rebalancing the delta every day for Black-Scholes hedging, where the delta is
evaluated with 20.18% cross-currency rate volatility. The implied volatilities are set to be flat with 14.0% and

16.0%.

Table 6.2: Settings of the simulation

T Sg Sg P 0-7,?71 O-?U
30(days) 1.0 1.0 0.1 140(%)  16.0(%)

j 9.50(%) 347.22 2.75 2357 -0.0011

r 11.93(%)  311.08 2.7 23.3 0.0015

Fig.6.3 shows histograms of the performances of the strategies and Table 6.3 shows their statistics, where
C&W stands for (Chung and Wang, 2008). First, while there are substantial losses(over 2.0yen) in the results of
B.S., the maximum loss is 1.12 yen in our strategy, which means that out strategy can avoid substantial losses.
Second, it is found from Fig.6.3 that almost half scenarios of the strategy of (Chung and Wang, 2008) are the
worst, where the maximum loss is 1.12 yen. On the other hand, our strategy mostly avoids the worst case and
achieve improvements in VaR over the (Chung and Wang, 2008)(see Table 6.3). Consequently, it is confirmed
that our strategy can avoid substantial losses and mostly prevent the worst case scenario of (Chung and Wang,
2008).
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Table 6.3: Statistics of Hedging Errors(yen)
Strategy Mean Std Err Mode  Min 1% 5%  10%  25%
B.S. 0.03 1.22 043 -23.06 -4.59 -2.03 -1.22 -0.35
C&W 0.00 1.77 -1.12 -1.12 -1.12 -1.12 -1.12  -1.12
out strategy | -0.05 1.39 -098 -1.12 -1.11 -1.05 -1.00 -0.84

6.6 Concluding Remarks

We introduced a trading strategy that dynamically rebalances super-replicating portfolios; this strategy is
attractive for both investment and hedging. Then, without assuming any models under the continuous processes
of the underlying variables, we derived the Doob-Meyer decomposition for the value process of this strategy to
obtain the general properties: specifically, we found that the performance of the strategy is characterized by
the the increasing part of the decomposition. Also, our general framework was successfully applied to cross-
currency and one-touch options, which provides more concrete implications in practice. Moreover, numerical
examples for cross-currency options confirmed the property shown in the previous sections, and demonstrated
our strategy is useful for hedging under stochastic volatility environment.

Finally, our next research topic will be to analyze properties of the dynamics of the optimal parameter K*
and to evaluate the expectation of the increasing part of the super-martingale process in order to calculate a
price of the option based on the strategy. Also an extension of our result to discontinuous processes of the
underlying variables is an interesting theme.

6.7 Appendix:Analytical Results for Exchange Options under Black-
Scholes Model

In this section, we derive analytical results under the Black-Scholes model of exchange options. For simplicity,

we express the price of asset 1 and asset 2 with X; and Y; respectively instead of Xt(i). We assume the following
assumption.

Assumption 11. The processes of both asset 1 and asset 2 are assumed to be log-normal with constant volatility:

dX; = ox X dW;* (6.7.1)
dY; oy Y dW) (6.7.2)

where WX WY are 1 dimensional Brownian motions under the risk neutral measure Q, and ox and oy are
constant.

In addition, we define some notations:

1l

N(z) = \/% /_90 ez dy (6.7.3)

(6.7.4)

(6.7.5)
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where 7 =T —t.
First, we derive the optimal strike price and the value of optimal portfolio for the super-replication and the

sub-replication respectively.

Proposition 12. The optimal strike of the super-replication is:

IX

KC(t,z,y) = r7xtey yTxtoy ¢ 2OXOVT (6.7.6)
and the upper bound of an exchange option is:
CBS (t7 x,Y, |0X + UY|) . (677)

Proof. By Eq.(6.4.8), K%(t,z,y) must satisfy g—g(t,x, y, K& (t,2,y)) = 0. So, dy = —dy. Then, we get (6.7.6).
The value of super-replicating portfolio is:

X(t,x,K) +PY(t,y, K)
= aN(dy) — KN(dy) + KN(=dy) — yN(=dy’)
= aN(dy) —yN(-dy)
Cps (t,z,y,0x +0oy), (6.7.8)
G log + (ox+oy)3r _ log ‘%—%(ox—&-oy)%'
where K = K% (t,x,y), di oxtorr 0 % (0x2+oy)ﬁ
O
Proposition 13. Assume ox < oy. The optimal strike of the sub-replication is:
KE(t x,y) = aTxooy yf’XaX"Y e2TXINT (6.7.9)
and the lower bound of an exchange option is:
CBS (t> z,Y, |UX - UY|) . (6710)
Proof. Put dx = d}, dy = d;‘;, we have
62CX 1 X 12
tK) = ————re 2% 6.7.11
aK2 ( ) /27TK20'X\/F6 2 ( )
(92CY 1 Yy 12
tK) = ————ree 2%, 6.7.12
8K2 ( ) /271' K2O'y\/Fe 2 ( )
In order to investigate the sign of 2 8 e  and %LK , we define the ratio ¥(K):
a2cx (K)
Y(E) = G5
ax= (K)
_ TOY —i(dk-d}) (6.7.13)

Yyox
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There are at least two roots of the equation ¢(K) = 1, because f+°° aagf f+°° 862: )JdK =1 and
limg 0¥ (K) = limg 400 ¥(K) = 0 by the assumption ox < oy. Consider the sign of dw
o

8K( ) = K o%T o3

29(K 1 1 1
P(K) (( 5 >logK+ logz — — logy>.
Kr o3 0% o% oy

Then, the number of the roots of the equation ¢(K) =1 is exactly two.

2¢)(K) (log %+ 30k log % + %0%7’)

(6.7.14)

The fact that ‘?TLS > 0 is equivalent to ¥(K) > 1 and limg ¢ %L—KC =limg 400 %L—; = 0 implies that the

equation % = 0 has an unique solution. By the same reason, the equation % = 0 has an unique solution.
The definition of LY (¢,,y, K) and LY (¢, z,y, K) shows that
lim LO(t,z,y, K) = x—y (6.7.15)
K—0
lim LY (t,z,y, K) = 0, (6.7.16)
K—0
and
lim L¢ K) = 7.1
(Jm Ly, K) 0 (6.7.17)
lim L” K) = z—uy. 7.1
(m LE(,y, K) T—y (6.7.18)

As a result, we find that LE(¢,z,y, K) has only one local minimum and L (t,z,y, K) has only one local
maximum.
In order to compare a maximum of LY (t,z,y, K) with that of LY (t,x,y, K ) e calculate the maximum of

LY (t,z,y, K). Let K, be the solution of the equatlon (t z,y, K) = 0. By (t z,y, K) = 1;: (t,z,y, K),
we can derive dy = dy and then,

— Y IX

K, = x7x-ov yox-ay ¢20XoYT (6.7.19)
The maximum of LY (¢, z,y, K) is:
—P¥ (2, K) + PY(t,y, K)
= —(KN(=dy)—aN(=dy)) + (KN(=dy) —yN(=dy))
= aN(=d}) - yN(-dy)

= Cps(z,ylox —ovl), (6.7.20)
24 l(ox—oy)?T z_Lligy—oy)?r
where K = K,, d| = log y‘sz_(ni‘ \/; ) and dy = l yln)f_(;;l \/;Y ) This maximum is bounded below by

(z—y)+-
Finally, we conclude that the optimal strike is:

KE(t,z,y) = K., (6.7.21)
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and the lower bound of an exchange option is:

sup maz{LE(t, z,y, K), L” (t, 2,y K)} = L” (t, 2, y, K" (z,y)). (6.7.22)
K>0

O

By the proof of Proposition 13, we have the following proposition, which means that Assumption 7 holds
true for sub-replication under a certain condition.

Proposition 14. Assume ox < oy, then the optimal strike price of sub replicating portfolio is determined
uniquely. L(t,x,y, K) can be differentiated with respect to x,y and K in the neighborhood of K = KL (t,z,y)
and KE(t,x,1) can be differentiated with respect to x,y. Moreover, we have

oL

87[((157xvvaL(t7xay)) = 0 (6723)
0*L
W(Lx,y, KE5(t,z,y)) > 0. (6.7.24)

We have the Doob—Meyer decomposition explicitly.

Corollary 10. Assume Assumption 11 and
X Y\ _
(WA, W), = pt, (6.7.25)

where p € [—1,1] is constant. Let 1 be the probability density function for the standard normal distribution :
22

Y(z) = ﬁe_T-

Then, in case of the super-replication,

t 1 +p X Y. ox0y 2
Ar = S(dg) + =) ) | ——— ) d 6.7.26
t 0 m(UX’(/}( X)+O'Y¢( Y)) (O’X+O'y) S ( )
t X Y
ocC oP
M = (s, X5, KdX, + ——(s,Y,, K&)dY, ), 6.7.27
= [ (%X kDax. + O s VK Eay, (6.7.27)
where
log 2= + Loy +0y)3(T —s)
46 = 8¥. TROX TV (6.7.28)
X ((Tx+0y)\/Tfs ’
G - BV alox oy T - (6.7.29)
v (Ux+0y)\/T—S ’ o
KSG — Xsrx‘ﬁrygy }/S—UX“J}X oy e—%oxoy(T—s). (6730)

In case of the sub-replication with ox < oy,

* K 1- P Xs L Ys L Ox0y 2
Aj = /o T (wa(dx) - W¢(dy)> <UX — O’y) ds (6.7.31)
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tropX oPY
M= / ( (5, X, KE)X, ay(s,YS,KSL)dYS) : (6.7.32)
0
where
. log i(, + 2(ox —oy)* (T — s)
s = , (6.7.33)
(O’X — O’y)\/T— S
Yo (ox —oy)VT —s ’ o
KSL — Xsa;?;y YSUXU%UY e%o’xo’y(T*S)' (6.7.35)

Proof. Combine Proposition 12, 13 and Theorem 7. O
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correlation : 0.0
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frequency
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Figure 6.2: Comparison of Correlation

Figure 6.3: Comparison of Hedging Schems
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Chapter 7

A New Improvement Scheme for
Approximation Methods of Probability
Density Functions

This paper develops a new scheme for improving an approximation method of a probability density function,
which is inspired by the idea in the Hilbert space projection theorem. Moreover, we apply “Dykstra’s cyclic
projections algorithm” for its implementation. Numerical examples for application to an asymptotic expansion
method in option pricing demonstrate the effectiveness of our scheme under SABR model.

Preprint of an article has been accepted by The Journal of Computational Finance, (©Incisive Risk Infor-
mation (IP) Limited 2015, Published by Incisive Risk Information Limited.! This is most likely to appear in
the middle of 2016. Because we do not have permission to open the article on the Web, only the abstract is
available.?

7.1 Abstract

This paper develops a new scheme for improving density approximation methods, which also provides precise
approximations of option values. Specifically, our scheme is inspired by the idea in the Hilbert space projection
theorem and the so called “Dykstra’s cyclic projections algorithm” is applied for its implementation. We also
remark that our scheme can be easily implemented in practice, where we need only market data for usual
calibration such as option prices with strikes.

We firstly note that our scheme can start with any given approximate density. Then, we improve the density
so that it meets a set of conditions such as the non-negativity and the total mass being one that the density
function must satisfy. Moreover, based on our method it becomes possible to create a new approximate density
to possess certain properties desirable in practice such as calibration to the market forward and option prices. In
addition, the method enable a new density to incorporate known information if any, such as the decreasing speed
of the tails of the true density. In this manner, we develop a generic scheme which achieves the improvement of
the approximation, whatever a starting approximate density is.

Lhttp://www.risk.net/type/journal /source/journal-of-computational-finance
2This research is supported by JSPS KAKENHI Grant Number 25380389.
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Next, let us remark on the criteria on improvement of a density approximation. In general, as the criteria
vary such that an improved density provides more accurate ATM option prices, nonnegative prices or butterfly
spreads and so on, they are inevitably subjective. For instance, which is the better is not definite between

(1) approximation which excludes negative butterfly spreads

approximation which produces prices close to model prices aroun , but admits negative butterfly
2 imati hich d i lose t del pri d ATM, but admit tive butterfl
spreads.

For example, Doust (Doust, 2012) is a kind of the first, while (Hagan et al., 2002) is of the second. As for our
method, it guarantees the first criterion (non-negativity of butterfly spreads) together with our best effort at the
second one (accuracy for model prices). Consequently, the method is robust with respect to the first criterion.
In terms of the second criterion, although the accuracy depends on a starting approximation, our method is
still robust with a decent initial approximation.

Furthermore, numerical experiments for vanilla option pricing under SABR model demonstrate the validity
of our scheme. In fact, with few additional computational costs our scheme improves the third and fifth order
asymptotic expansion preserving the required conditions such as nonnegative densities under an appropriate
forward measure.

We finally remark that our scheme is general and flexible enough to include a set of conditions and information
as one would like to put on an approximate density, and it can be applied to approximation methods other
than the asymptotic expansion method. For example, a number of researches have been going on in order to
extend SABR model with fixing the problem of the negative densities in the method of (Hagan et al., 2002).
(For instance, see (Doust, 2012).) We note that our scheme is also a candidate for handling this issue. Also, the
estimate of the absorption probability based on Monte Carlo simulations as in (Doust, 2012) can be consistently
reflected in our scheme.
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