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Abstract

We develop a general formalism of nonequilibrium thermodynamics with complex
information flows (i.e., the transfer entropy) induced by interactions among multi-
ple fluctuating systems. Characterizing nonequilibirium dynamics by causal networks
(i.e., Bayesian networks), we obtain novel generalizations of the second law of thermo-
dynamics and the fluctuation theorem, which include an informational quantity given
by the topology of the networks. Our formalism on causal networks gives thermo-
dynamics for small subsystems as a generalization of the stochastic thermodynamics
with information. Our theory is called “information thermodynamics on causal net-
works”.

Information thermodynamics on causal networks is applicable to quite a broad class
of nonequilibrium stochastic dynamics such as information transfer between multiple
Brownian particles, an autonomous biochemical reaction described by the master
equation, and complex dynamics in multiple fluctuating systems. Our result can
produce the previous study of the Maxwell’s demon for a special case of the feedback
control with a single measurement.

As an application of our general formalism, we can discuss the accuracy of the
information transmission in the biochemical signal transduction of sensory adaptation,
where there is not any explicit channel coding in contrast to the case of Shannon’s
information theory. Focusing on the robustness of the signal transduction against
the environmental noise, we show the analogical similarity between our information
thermodynamic result and Shannon’s noisy-channel coding theorem. Our result can
open up a novel biophysical and thermodynamic approach to understand information
processing in living system.

In our study, we clarify the physical meaning of information flow from a ther-
modynamic point of view. Information flow given by the transfer entropy from the
target system to the outside worlds characterizes the thermodynamic benefit of the
target system under the condition of the outside worlds. We also propose the novel
information flow called the “backward” transfer entropy, which characterizes the in-
evitable thermodynamic dissipation of the target system because of the effects of
outside worlds.

By the above, information thermodynamics on causal networks will be a basis of
the statistical physics and biophysics from the viewpoint of the information flow.
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Chapter 1

Introduction

After the publication of Shannon’s influential paper about an artificial communica-
tion [1], the importance of information theory has been increasing and several fields of
informational study has been emerging [2, 3]. Our study in this thesis is a challenge
for developing a novel field of physics with information, so-called information thermo-
dynamics as a fundamental theory of nonequilibrium physics including biophysics.
Nowadays, we can see information device such as a computer everywhere. On the
basis of Shannon’s information theory, the information quantity such as the mutual
information gives the coding redundancy and the accuracy of information transmis-
sion in artificial channel coding [1, 2]. From the viewpoint of the artificial information
transmission, the classical information theory has been well established, and we can
quantitatively discuss the efficiency of coding and the accuracy of information trans-
mission using the entropic quantities. The classical theory of communication (i.e.,
the noisy-channel coding theorem) is completely based on the assumption of the exis-
tence of artificial coding devices (i.e., the encoder and the decoder). Without artificial
channel coding, the physical meaning of informational quantity is elusive in terms of
the accuracy of signal transmission. The non-existence of channel coding is crucial in
living systems. For example, the biochemical signal transduction network inside or
outside cells is an example of nonequilibrium fluctuating dynamics, which describes
information transmission without artificial coding devices [4, 5]. Many researchers in-
tuitively believe the importance of information flow in biochemical system to maintain
life, and several studies have tried out to reveal the role of the information transfer on
biochemical networks. For example, the informational quantity such as the mutual in-
formation in the biochemical signal transduction has been calculated theoretically [6],
and measured experimentally for several biochemical systems [7, 8, 9, 10, 11]. How-
ever, due to the lack of the fundamental information theory for the biological system
without the explicit artificial channel coding, the application of the information theory
to the biological system has been unclear. Thus, the physical meaning of the mutual
information inside the biochemical system can be just a measure of independence
between two fluctuating components by definition. Although we usually say “infor-
mation” in a natural sense of the biochemical signal transduction, we do not have
a fundamental theory of information for living systems like the noisy-channel coding
theorem for artificial communication. To discuss the physical meaning of “informa-
tion” in living systems, we believe that we need more physical and fundamental theory
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of information transmission in nonequilibrium dynamics instead of the conventional
information theory.

On the other hand, the study of thermodynamics [12, 13, 14, 15] for a stochastic
nonequilibrium system (e.g., a Brownian particle, bio-polymer, enzyme, and molecular
motor) with information has been intensively discussed recently [16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, H9, 60, 61, 62, 63, 64,
65, 66], in relation to the study of Maxwell’s demon which is the thought experiment
about the validity of thermodynamics for a small systems in thel9th century [13,
67, 68]. Before Shannon established the classical information theory, Leo Szilard
had discussed the minimal model of Maxwell’s demon, and show the relationship
between the “Shannon” entropy and thermodynamics in 1929 [69]. In the last two
decades, nonequilibrium equalities that are universally valid for a nonequilibrium
small system, have been found [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,
85, 86, 87], and experimentally verified for several systems including the biopolymer
and the molecular motor [88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98]. Based on the
backgrounds of nonequilibrium equalities, thermodynamics under the feedback control
has been established by considering Maxwell’s demon as a feedback controller [25] and
experimentally verified [64, 65, 66] as a refinement of the discussion by Leo Szilard.
While the relationship between information and thermodynamics has been studied in
several simple setups with the demon [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], the general theory that can be applied
to the complex situations, such as biochemical signal transduction, had been elusive
before publishing our results [50, 59].

In this thesis, we develop the general formalism of nonequilibrium dynamics on
causal networks, by using the information theory and nonequilibrium statistical
physics [50, 59]. We mainly discuss the following two questions:

e Beyond the simple setup of Maxwell’s demon, how do we develop the theory of
stochastic thermodynamics with information that should be generally valid for
complex nonequilibrium dynamics?

e What is the physical meaning of information flow in biochemical signal trans-
duction, to which we cannot explicitly apply the noisy-channel coding theorem?

As a generalization of the study of Maxwell’s demon, we propose a general for-
malism of the study of nonequilibrium thermodynamics with complex information
flows induced by interactions between multiple fluctuating systems [50]. Charac-
terizing the complex dynamics by the causal networks (i.e., the Bayesian networks)
which can represent quite a broad class of nonequilibrium dynamics such as mul-
tiple Brownian particles and complex structure of the biochemical signal transduc-
tion [99, 100, 101, 102, 103, 104], we obtain a novel generalization of the second law
of thermodynamics with complex information flows. In our generalization of the sec-
ond law, the transfer entropy [105], which is a measure of the causal relationship and
information flow [106, 107, 108, 109], plays a crucial role as a lower bound of the
entropy production in a small subsystem.

Our study can be regarded as a general graphical formalism of thermodynamics
with information flow so-called “information thermodynamics on causal networks”,
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which gives thermodynamics for a small subsystem described by the causal networks.
Focusing on information flow characterizing the topology of the causal networks, we
show the fact that thermodynamical entropy production in a partial target system is
generally bounded by the information flow (i.e., the transfer entropy) from the target
system to outside worlds. In the generalization of the second law of thermodynamics,
we propose a novel information quantity called “backward” transfer entropy [50], as
an inevitable loss of thermodynamical benefit by information flow.

We apply our general result to a simple biochemical signal transduction of E.
coli bacterial chemotaxis [50], as a simple examination of the signal transmission in
nonequilibrium biochemical system. We find that our information thermodynamics
performs as a biochemical theory of communication without artificial channel coding
device. We generally show that the robustness of biochemical signal transduction
against the environmental noise is bounded by the conditional mutual information
between input and output. While it is remarkable that this information thermody-
namic argument is very similar to the argument of Shannon’s noisy-channel coding
theorem, there is a crucial difference between information thermodynamics and the
noisy-channel coding theorem. In the biological signal transduction, it is impossible
to define the archivable rate as the accuracy of signal transduction in the sense of
the noisy-channel coding theorem, because the signal transduction is achieved by a
coupled chemical reaction and there exists no artificial encoding or decoding device
that produces a redundant bit sequence. In contrast, the thermodynamic definition of
the robustness of the signal transduction proposed in our study is intrinsically related
to the dynamics of the biochemical signal transduction, and therefore powerful to
characterize its robustness. Our result can be experimentally validated by measuring
the amount of proteins during signal transduction in the same way as in the previous
experiments [8, 9, 10, 11], and we can discuss the thermodynamic efficiency of the
information transmission inside cells without explicit coding device.

We organize this thesis as follows [see also Figure 1.1]. The review parts are in
Chapters 2, 3, 4, and 5. The main results of this thesis are in Chapters 6, 7, 8, and
9.

In Chapter 2, we review the basis of the classical information theory well established
by Shannon. We introduce the informational quantities (i.e., the Shannon entropy,
the relative entropy, the mutual information and the transfer entropy), which play
a crucial role in this thesis. We discuss the argument of the classical information
transmission through a noisy communicational channel by Shannon (i.e., the noisy-
channel coding theorem), for comparison with our main result of biochemical signal
transduction in Chapter 7.

In Chapter 3, we summarize the modern thermodynamic theory for small classi-
cal systems called the stochastic thermodynamics [72, 73, 74]. We review stochastic
thermodynamics in terms of the relative entropy. We derive the second law of thermo-
dynamics from the nonnegativity of the relative entropy. We discuss two applications
of stochastic thermodynamics (i.e., the steady-state thermodynamics [113, 114, 115]
and feedback cooling [116, 31, 39, 169, 117, 118, 119, 120, 121}).

In Chapter 4, we focus on the relationship between stochastic thermodynamics and
information theory. In particular, we review the study of Maxwell’s demon, which is
the second law of thermodynamics under the feedback control (i.e., the Sagawa-Ueda
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Review
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Theory

Thermodynamics

Chapter 3
Chapter 5 Stochastic
Causal Thermodynamics

Networks

Chapter 6
Information Thermodynamics Chapter 9
on Causal Networks Futher Applications

N 7‘

Chapter 7
Application to Chapter 8
Biochemical Signal Transduction Stochastic Thermodynamics

for Small Subsystem

Main Results

Fig. 1.1 The network of this thesis. Each chapter has such a cause-effect rela-
tionship, which is described by directed edges (—) between nodes (i.e., Chapters
2-9). In our thesis, such a network plays a crucial role to discuss stochastic
thermodynamics with information flow.

relation [25, 43]). In the case of feedback control, the mutual information gives a
bound of an apparent violation of the second law. We discuss the minimal model of
Maxwell’s demon (i.e., Szilard engine [69]) as an example of the trade off between
information and thermodynamic entropy.

In Chapter 5, we introduce the probabilistic graphical model well known as the
Bayesian networks or causal networks [99, 100, 102, 104], which is a basis of our main
study in this thesis. We introduce the mathematical definition of the causal networks,
and show how to use causal networks for several physical situations.

Chapter 6 is the main part of this thesis. Characterizing complex nonequilibrium
dynamics by causal networks, we construct a general formalism of the information
thermodynamics and derive the generalized second law of thermodynamics with in-
formation flow. On causal networks, we show the fact that the entropy production of
the target system is generally bounded by the informational quantity, which includes
the mutual information of the initial correlation between the target system and out-
side worlds, the mutual information of the final correlation between them, and the
the transfer entropy from the target system to outside worlds during the dynamics.
Our result can be a novel law of thermodynamics with information flow for classical
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small subsystems.

In Chapter 7, we apply our main result to the biochemical signal transduction of
the sensory adaptation and discuss the accuracy of the signal transmission in bio-
logical systems, where any explicit channel coding device does not exist in contrast
to the noisy-channel coding theorem in Chapter 2. We find the analogical similarity
between our information thermodynamic result and Shannon’s noisy-channel coding
theorem. We believe that our information thermodynamic approach is more relevant
and measurable in biochemical systems than Shannon’s noisy-channel coding theo-
rem. We analytically and numerically show that the signal transduction model of F.
coli chemotaxis is highly dissipative as a thermodynamic engine, but efficient as an
information transmission device.

In Chapter 8, we discuss further generalizations of our main result in Chapter
6. First we focus on information thermodynamics for a multi-dimensional Markov
process, and show the several relationship of information thermodynamics. We also
derive another expression of our main result using the Fokker-Planck equation [122].
From this expression, our result can be interpreted as the stochastic thermodynamics
for small subsystem. Next, we discuss the importance of the “backward” transfer
entropy, which is the novel information quantity that we introduced in Chapters 6
and 7. From the data processing inequality [2], we derive that the bound involving
the backward transfer entropy is tighter than the informational quantity discussed in
Chapter 6, as a lower bound of the entropy production.

In Chapter 9, we generalize our main result for the steady-state thermodynamics
introduced in Chapter 3. We also apply our main result to the feedback cooling. We
show that the transfer entropy gives a lower bound of the kinetic temperature, and
discuss the relationship between our main result and the third law of thermodynam-
ics [123], as the refinement of our previous study [31].

In Chapter 10, we conclude this thesis and discuss our future prospect.






Chapter 2

Review of Classical Information
Theory

We review the classical information theory in this chapter. The classical informa-
tion theory had been well established by Shannon in his historical paper entitled “A
mathematical theory of communication” [1]. Shannon discussed the relationship be-
tween the entropy and the accuracy of the information transmission through a noisy
communication channel with an artificial coding device, which is well known as the
noisy channel coding theory. In this chapter, we introduce various types of the en-
tropy (i.e. the Shannon entropy, the relative entropy, the mutual information and
the transfer entropy [105]) as measures of information, and the noisy channel coding
theorem [1, 2, 124].

2.1 Entropy

First of all, we briefly introduce various types of the entropy, which quantify measures
of information [1, 2].

2.1.1 Shannon Entropy

We first introduce the Shannon entropy, which characterizes the uncertainty of ran-
dom variables. Let p(z) be the probability distribution of a discrete random variable
x. The probability distribution p(zx) satisfies the normalization of the probability and
the nonnegativity (i.e., > p(z) =1, 0 < p(z) < 1). The Shannon entropy S(z) is
defined as

S(x) = — Zp(x) Inp(x). (2.1)

In the case of a continuous random variable x with probability density function p(x)
which satisfies the normalization and the nonnegativity (i.e., [ dxp(xz) =1,0 < p(z) <
1), the Shannon entropy (or differential entropy) is defined as

S(x) := —/d.rp(:c) In p(z). (2.2)

15
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In this thesis, the logarithm (In) denotes the natural logarithm. To discuss the discrete
and continuous cases in parallel, we introduce the ensemble average (f(x)) for any
function f(x) as

(@) = (F(@))y (2.3)
=S p(@)f() (2.4)

for a discrete random variable x and

(@) = (F@)) (2.5)
- / dep(x) f(z) (2.6)

for a continuous random variable . From the definition of ensemble average Egs.
(2.4) and (2.6), the two definitions of the Shannon entropy Egs. (2.1) and (2.2) are
rewritten as

S(z) = (~ Inp(z))
= (s(2)),
where we here say s(z) := —Inp(x) is a stochastic Shannon entropy. The Shannon

entropy S(X) of a set of random variables X = {x1,...,zy} with a joint probability
distribution p(X) is also defined as

S(X) == (—Inp(X)) (2.9)
= (s(X)). (2.10)

Let the conditional probability distribution of X under the condition Y be p(X|Y) :=
p(X,Y)/p(Y). The conditional Shannon entropy S(X|Y) with a joint probability
p(X) is defined as

S(X]Y) := (—Inp(X]|Y)) (2.11)
= (s(X]Y)), (2.12)
where s(X]Y) := —Inp(X|Y) is a stochastic conditional Shannon entropy. We note

that its ensemble takes an integral over a joint distribution p(X). From 0 < p <1,
the Shannon entropy S satisfies the nonnegativity S > 0.

By the definition of the conditional probability distribution p(X|Y) :=
p(X,Y)/p(Y), we have the chain rule in probability theory. The chain rule in
probability theory produces the product of conditional probabilities:

N

p(X) =p(ar) [ [ p(anlzr—1, ... 21). (2.13)
k=2
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From this chain rule Eq. (2.13) and the definitions of the Shannon entropy Egs. (2.10)
and (2.12), we obtain the chain rule for (stochastic) Shannon entropy:

s(X)=s(z1)+ Y s(xglrg—1,...,21). (2.14)

S(X)=85(1)+ )Y Sxr|lrg—1,...,21). (2.15)

M= [ []=

>
Il

2

The chain rule indicates that the (stochastic) joint Shannon entropy is always rewrit-
ten by a sum of the (stochastic) conditional Shannon entropy.

2.1.2 Relative Entropy

We next introduce the relative entropy (or the Kullback-Leibler divergence), which is
an asymmetric measure of the difference between two probability distributions. The
thermodynamic relationships (e.g., the second law of thermodynamics) and several
theorems in information theory can be derived from the nonnegativity of the rela-
tive entropy. The relative entropy or the Kullback-Leibler divergence between two
probability distributions p(x) and ¢(z) is defined as

Dxw(p(z)llg(x)) = (Inp(z) — Ing(z))y. (2.16)

We will show that the relative entropy is always nonnegative and is 0 if and only if
b=q.

To show this fact, we introduce Jensen’s inequality [2]. Let ¢(f(z)) be a convex
function, which satisfies ¢(Aa + (1 —A\)b) < Ao(a) + (1 — N)p(b) with Va,b € f(x) and
VA € ]0,1]. Jensen’s inequality states

o((f(x))) < (o(f(x)))- (2.17)

The equality holds if and only if f(x) is constant or ¢ is linear.
We notice that —In(f(x)) is a convex nonlinear function. By applying Jensen’s
inequality (2.17), we can derive the nonnegativity of the relative entropy,

Dy (p(z)llg(z)) = (—1In[g(x)/p(2)])p (2.18)
> —In(q(x)/p(z)), (2.19)
— _Inl (2.20)
=0, (2.21)

where we used the normalization of the distribution ¢, (¢(z)/p(x)), = [ dzq(x) = 1.
The equality holds if and only if ¢(z)/p(x) = ¢, where ¢ is a constant. Because p and
q satisfy the normalizations [ dzp(xz) = 1 and [dzg(z) = 1, a constant ¢ should be
¢ = 1, and we can show that the relative entropy Dx1,(p(z)||q(x)) is 0 if and only if

p=4q.
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From the nonnegativity of the relative entropy, we can easily show that S(z) < In |z|
where |z| denotes the number of elements of a discrete random variable x with the
equality satisfied if and only if x is uniformly distributed. Let p,(z) = 1/|x| be
a uniform function over z. The relative entropy Dkr,(p(x)||p.(x)) is calculated as
Dy (p(x)||pu(x)) = In|z| — S(x), and its negativity gives S(x) < In|z|.

The joint relative entropy Dkr(p(X)||g(X)) is defined as

Dy (p(X)|lq(X)) = (Inp(X) — Ing(X)), (2.22)

and the conditional relative entropy Dkr,(p(X|Y)||g(X|Y)) is defined as
Dxr(p(X[Y)[lg(X]Y)) = (Inp(X]Y) — Ing(X[Y))y. (2.23)

The joint and conditional relative entropy satisfy Dk, > 0 with the equality satisfied
if and only if p = ¢. The chain rule in probability theory Eq. (2.13) and the definition
of the relative entropy Eqs. (2.23) and (2.22) give the chain rule for relative entropy
as

Dy (p(X)]lg(X))

N

= Dxw(p(z1)llq(21)) + > Dxv(p(@lr—1, ... z1)llq(@rler—1, ..., 21)).  (2.24)
k=2

2.1.3 Mutual Information

We introduce the mutual information I, which characterizes the correlation between
random variables. The mutual information between X and Y is given by the rel-
ative entropy between the joint distribution p(X,Y) and the product distribution

p(X)p(Y):
I(X :Y) := Dxi(p(X,Y)|[p(X)p(Y))
(Inp(X,Y) —Inp(X) —Inp(Y))

= (s(X) +5(Y) = s(X,Y))
= S(X) +5(Y) - S(X,Y)
= 5(X) = S(X]Y)
=5(Y) = S(Y|X). (2.25)

The mutual information quantifies the amount of information in X about Y (or
information in Y about X). From the nonnegativity of the relative entropy Dxkiy, > 0,
the mutual information is nonnegative I(X : Y') > 0 with the equality satisfied if and
only if X and Y are independent p(X,Y) = p(X)p(Y). This nonnegativity implies
the fact that conditioning reduces the Shannon entropy (i.e., S(X|Y) < S(X)). From
the nonnegativity of the Shannon entropy S > 0, the mutual information is bounded
by the Shannon entropy of each variable X or Y (I(X :Y) < S(X) and I(X : V) <
S(Y)). To summarize the nature of the mutual information, the following Venn’s
diagram is useful (see Figure 2.1).
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A X

S(X) S(Y)

Fig. 2.1 The Venn’s diagram which represents the nature of the mutual infor-
mation (i.e., Eq. 2.25). The mutual information between X and Y represents
the correlation between them in the sense of the Shannon entropy.

The conditional mutual information between X and Y under the condition Z is
also defined as

I(X :Y|Z) := Dxu(p(X, Y |2)||p(X|2)p(Y|Z))
(Inp(X,Y|Z) —Inp(X|Z) —Inp(Y|Z))
= (s(X|2) + s(Y[Z) — s(X,Y|2))
S(X|Z) + 8(Y|Z) — S(X,Y|Z)
S(X|Z) — S(X|Y, Z)
= S(Y|Z) - S(Y|X, Z). (2.26)

For Z independent of X and Y (i.e., p(X,Y|Z) = p(X,Y)), we have I(X : Y|Z) =
I(X :Y). The conditional mutual information is also nonnegative I(X : Y|Z) > 0
with the equality satisfied if and only if X and Y are independent under the con-
dition of Z: p(X,Y|Z) = p(X|Z)p(Y|Z) (or p(X|Y,Z) = p(X|Z)). We also define
the stochastic mutual information (X : Y) and the stochastic conditional mutual
information i(X : Y|Z) as

(X :Y):
(X :Yl|Z2):

s(X|Z) + s(Y|Z) — s(X,Y]|Z) (2.27)
s(X|Z) + s(Y|Z) — s(X,Y]|Z) (2.28)

From the chain rule for (stochastic) Shannon entropy Eq. (2.15) and the defini-
tion of the mutual information Egs. (2.25) and (2.26), we have the chain rule for
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(stochastic) mutual information

i(X:Y) =iy Y) 4+ i(wg: YVagoa, ..., z1), (2.29)
k=2

IX:Y)=1(x1:Y)+ Y I(xg:Y|rK—1,...,21). (2.30)

] =

B
Il

2

2.1.4 Transfer Entropy

Here, we introduce the transfer entropy, which characterizes the directed information
flow between two systems in evolving time X = {xx|k =1,...,N} and Y = {yxlk =
1,..., N}. The transfer entropy was ordinarily introduced by Schreiber in 2000 [105]
as a measure of the causal relationship between two random time series. The transfer
entropy from X to Y at time k is defined as the conditional mutual information:

Tx—y = I(Yrs1 {2k Tt} Wks -+ Y—r) (2.31)
= (W1l Tt Yy 5 Yr—tr) — S(WUks1|Yry -+ Yk—1)) (2.32)
= (I p(Yrs1lYk> - > Yh—tr) = MP(Yrt1 | Ths o Thets Ybr - - - Y—rv))- (2.33)

The indexes [ and I’ denote the lengths of two causal time sequences {xg,...,xx_;}
and {Yk+1,Yk,-..,Yk—1r}. Because of the nonnegativity of the mutual information
Iyk+1 : {zky- -y k-1 }Yks - - -, Y—1r), the transfer entropy is always nonnegative and

is 0 if and only if the time evolution of Y system at time k does not depend on the
history of X system,

PWr1|Uks - Uk—1r) = PWrr1|Ths o Tty Yhs -5 Yrmt?) - (2.34)

Thus, the transfer entropy quantifies the causal dependence between them at time k.
If the dynamics of X and Y is Markovian (i.e., p(Yr+1|Tk, -« s Thel, Yk« -+, Yhet?) =
P(Yk+1|Tk,yr)), the most natural choices of | and I’ becomes [ = I’ = 0 in the sense
of the causal dependence.

Here, we compare other entropic quantities which represent the direction exchange
of information. Such conditional mutual informations have been discussed in the
context of the causal coding with feedback [127]. Massey defined the sum of the
conditional mutual information

N

IDI(‘X - Y) = Zl(yk} : {xla' .. 7wk}|yk—17 s 7y1)7 (235)
k=1

called the directed information. It can be interpreted as a slight modification of the
sum of the transfer entropy over time. Several authors [125, 126] have also introduced
the mutual information with time delay to investigate spatiotemporal chaos.

In recent years, the transfer entropy has been investigated in several contexts. For
a Gaussian process, the transfer entropy is equivalent to the Granger causality test
[106], which is an economic statistical hypothesis test for detecting whether one time
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series is useful in forecasting another [107, 108]. Using a technique of symbolization,
a fast and robust calculation method of the transfer entropy has been proposed [109].
In a study of the order-disorder phase transition, the usage of the transfer entropy has
been also proposed to predict an imminent transition [128]. In relation to our study,
thermodynamic interpretations of the transfer entropy [129, 130] and a generalization
of the transfer entropy for causal networks [131] have been proposed.

2.2 Noisy-Channel Coding Theorem

In this section, we show the fact that the mutual information between input and
output is related to the accuracy of signal transmission. This fact is well known as
the noisy-channel coding theorem (or Shannon’s theorem) [1, 2]. The noisy-channel
coding theorem was proved by Shannon in his original paper in 1948 [1]. In the case
of Gaussian channel, a similar discussion of information transmission was also given
by Hartley previously [124].

2.2.1 Communication Channel

We consider the noisy communication channel. Let x be the input of the signal and y
be the output of the signal. The mutual information I(z : y) represents the correlation
between input and output, which quantifies the ability of information transmission
through the noisy communication channel. Here, we introduce two simple examples
of the mutual information of the communication channel.

2.2.1.1 Example 1: Binary symmetric channel

Suppose that the input and output are binary states x = 0,1 and y = 0, 1. The noise
in the communication channel is represented by the conditional probability p(y|x).
The binary symmetric channel is given by the following conditional probability,

ply=1zr=1)=ply=0z=0)=1-—e, (2.36)
ply=1z=0)=ply =1z =1) =e, (2.37)
where e denotes the error rate of the communication. We assume that the distribution

of the input signal is given by p(x = 1) = 1 —r and p(x = 0) = r. The mutual
information between input and output is calculated as

I(z:y)=(1—¢e)ln(l —¢e) +elne— (1 —€)In(1 —€') — €' In¢’, (2.38)

where €’ := (1 — e)r 4+ e(1 — r). This mutual information represents the amount of
information transmitted through the noisy communication channel. In the case of
e = 1/2, we have I(z : y) = 0, which means that we cannot infer the input signal
x from reading the output y. The mutual information depends on the bias of the
input signal r. To discuss the nature of the communication channel, the supremum
value of the mutual information between input and output with respect to the input
distribution. Let the channel capacity for the discrete input be

C:=supl(x:y). (2.39)

p(z)
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For a binary symmetric channel, the mutual information has a supremum value with
r = 1/2, and the channel capacity C is given as

C=In2+elne+ (1—e)ln(l —e). (2.40)

2.2.1.2 Example 2: Gaussian channel
Suppose that the input and output have continuous values: = € [—o0,00] and y €
[—00, 00]. The Gaussian channel is given by the Gaussian distribution:

_ 1 [ @-ye
plole) = g exp | -] (2.41)

where 0%, denotes the intensity of the noise in the communication channel. We assume
that the initial distribution is also Gaussian:
1 2

T
= —— 2.42
pr(r) = e | 5| (242

where 0% = (22) means the power of input signal. The mutual information I(z : y)

is calculated as

2
I(z:y) = lln (1 + —) (2.43)
2 oN
In the limit 03, — oo, we have I(z : y) — 0, which indicates that any information
of input signal x cannot be obtained from output y if the noise in communication
channel is extremely large. We have I(z : y) — oo in the limit 0% — oo, which means
that the power of input is needed to send much information.

In the continuous case, the definition of the channel capacity is modified with the
power constraint:

C= sup I(z:y). (2.44)
(z2)<o%

The channel capacity C' is given by the mutual information with the initial Gaussian
distribution Eq. (2.43),

1 2
L (1 + "—5) . (2.45)

ONn

To show this fact, we prove that the mutual information I (z : y) = (lnp(y|z) —

In [ dzp(y|r)q(x)) for any initial distribution g(z) with (z?) = 0%, < 0% is always

lower than the mutual information for a Gaussian initial distribution Eq. (2.43).
Hz:y) = Iy(z:y) = =(npp(y))pe + (Inq(y))q (2.46)

—(Inpp (Y))pp + (Inq(y))q ( )
—(Inpp(y))q + (Ing(y))q (2.48)
(2.49)

(2.50)

= Dxw(q()llpr (y))

> 0,
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where pp(z,y) = p(ylz)pp(z), q(z,y) = p(ylr)q(z), and we use (—Inpp(y))p, =
27 In[27 (0% + 0%)] + 271,

2.2.2  Noisy-Channel Coding Theorem

We next review the noisy-channel coding theorem, which is the basic theorem of
information theory stated by Shannon in his original paper [1].

Communication
Input Output

channel
message message

M, -> Encoder p(yk ’gjk) Decoder.> M,

JInput Output\__J
X ={a1,...,on)} Y = {y,....yn}

Fig. 2.2 Schematic of the communication system. To send an input message
M;, through a noisy artificial communication channel, the input message should
be encoded in a redundant sequence of bits by a channel coding protocol, and the
encoded bits sequence X is transmitted through a noisy communication channel
p(yk|zk) (e.g., a Gaussian channel). The output sequence Y does not necessary
coincide with the input sequence X, because of the noise in the communication
channel. However, if the redundancy N of the encoded bit sequence is sufficiently
large, one can recover the original input message Mout = Min correctly from the
output sequence Y. This is a sketch of the channel coding.

Here, we consider the situation of information transmission through a noisy commu-
nication channel (see also Figure 2.2). First, the input message is encoded to generate
a sequence of the signal (e.g. 0010101010). Second, this signal is transmitted through
a noisy communication channel. Finally, the output signal (e.g. 0011101011) is de-
coded to generate the output message.

To archive the exact information transmission through a noisy communication chan-
nel, the length of encoding should be sufficiently large to correct the error in output
signal. The noisy-channel coding theorem states the relationship between the length
of encoding (i.e., the archivable rate) and the noise in the communication channel (i.e.,
the channel capacity). Strictly speaking, the noisy-channel coding theorem contains
two statements, the noisy-channel coding theorem and the converse to the noisy-
channel coding theorem. The former states the existence of coding, and the latter
states an upper bound of the coding length. In this section, we introduce the noisy-
channel coding theorem for a simple setting.

Let the input message be M;, € {1,...,M}, where M denotes the number of
types of the message. The input message is assumed to be uniformly distributed:
p(Myn) = 1/M (M, = 1,...,M). By the encoder, the input message is encoded
as a discrete sequence X (M) = {x1(Min),...,xn(Mi,)}. Through a noisy com-
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munication channel defined as the conditional probability p(yx|zr) (e.g., the binary
symmetric channel), the output signal Y = {y1,...,yn} is stochastically obtained
from the input signal X:

N

p(Y1X (M) = [] plyrlan(Min)), (2.51)
k=1

which represents a discrete memoryless channel. The output message M, (Y) is a
function of the output signal Y. We define the rate as

_lnM

R: N

(2.52)

which represents the encoding length N to describe the number of the input messages
M. A code (M, N) indicates (i) an index set {1,..., M}, (ii) an encoding function
X (M) and (iii) a decoding function Moy (Y). A code (eNV%, N) means ([eN ], N),
where [...] denotes the ceiling function. Let the arithmetic average probability of
error P, for a code (eNVE N) be

Puim 22 S p(Mow(Y) £ 1X (M = ). (253)

In this setting, we have the noisy-channel coding theorem.

Theorem (Noisy-channel coding theorem) (i) For every rate R < C, there exists
a code (eNE N) with P, — 0.

(ii) Conversely, any code (eNE N) with P, — 0 must have R < C.

The converse theorem (ii) can be easily proved using the nonnegativity of the rel-
ative entropy. Here, we show the proof of the converse theorem. From the initial
distribution p(M;y), we have

NR = S(My) (2.54)
= [(Min : Mows) + S(Min| Mos). (2.55)

We introduce a binary state E: E := 0 for M;, = Moy and E := 1 for M;, # Myys.-
From S(E|Min, Mout) = 0, we have

S(Min|Mout) — S(Min|Mout) + S(ElMin7 Mout)
= S(E‘Mout) + S(Min|E7 Mout)
<In2+ P.NR, (2.56)

where we use S(Min|E, Moyw) = P.S(Mn|E = 0,Myy) < P.S(My), and
S(E|Moywt) < S(E) <In2. This inequality (2.56) is well known as Fano’s inequality.

The Markov property p(Min, X,Y, Mout) = p(Min)p(X | Min)p(Y|X)p(Mout|Y) is
satisfied in this setting. From the Markov property, we have I(M;, : Myu|Y) = 0,
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I(Mi, : Y|X) =0, and

I(Miy : Mow) < I(Miy 0 Y) 4+ I(Miy : Moy |Y)
I(X :Y)+ I(My : Y]X)
I(X:Y)

) —

(Inp(Y")

IA A

S {Inp(exlye)

i
< Zf(ivk L Yk)

%
< NC. (2.57)

The inequality using the Markov property (e.g., Eq. (2.57)) is well known as the data
processing inequality. From Eqs. (2.55), (2.56) and (2.57), we have

R<C+ IHWQ + P.R. (2.58)
For sufficiently large N, we have In2/N — 0. Thus we have proved the converse to
the noisy-channel coding theorem, which indicates that the channel capacity C gives
a bound of the archivable rate R with P, — 0. We add that the mutual information
I(Miy : Moyt) (or I(X :Y)) also becomes a tighter bound of the rate R with P, — 0
from Eq. (2.57).






Chapter 3

Stochastic Thermodynamics for Small
System

In this chapter, let us consider a classical small system attached to a large heat bath
(e.g., a Brownian particle, bio-polymer, enzyme, and molecular motor). The dynamics
of the classical small system is generally described by a stochastic process (e.g., the
Langevin dynamics and the Master equation). For a small system, thermodynamics in
a stochastic description, so-called stochastic thermodynamics has been developed in
the last two decades [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87,
132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 116, 143, 144, 145, 146, 147, 148,
149, 169, 150, 151, 152, 153, 154, 155, 156, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98]. We
here introduce the stochastic thermodynamics for a small system, and the relationship
between information theory and stochastic thermodynamics for a small system.

3.1 Stochastic thermodynamics

First of all, we introduce the stochastic thermodynamics, which is a framework for de-
scribing classical thermodynamic quantities such as the work, the entropy production
and the heat in a stochastic level.

3.1.1 Detailed Fluctuation Theorem

Historically, the stochastic thermodynamics was numerically discovered as the fluc-
tuation theorem by Evans et al. [75]. The fluctuation theorem had been proved by
many researchers for a chaotic dynamics [76], a stochastic process [77], and diffu-
sive dynamics [78]. C. Jarzynski has derived a nonequlibrium equality [80], called
the Jarzynski equality or the integral fluctuation theorem, which is a generalization
of the second law. G. Crooks [82] has indicated that the Jarzynski equality can be
derived from the fluctuation theorem. The fluctuation theorems and the Jarzynksi
equality have been confirmed experimentally for several systems such as the colloidal
particle, the electric circuit and the RNA folding [89, 90, 91, 92, 93, 94, 95, 98]. Such
a nonequilibrium relationship can be derived from the detailed fluctuation theorem,
which is the refinement of the detailed balance property [122].

27



28

Chapter 3 Stochastic Thermodynamics for Small System

We here consider the time evolution of a system X from time ¢ to time ¢'. Let
x; = {z;,2; } be the phase space of a system at time ¢, where x;" denotes an even
function of the momentum (e.g., the position, and the chemical concentration) at time
t, and x; denotes an odd function of the momentum (e.g., the velocity, the magnetic
field) at time ¢. If the microscopic dynamics of a system such as a Hamiltonian
dynamics satisfies the reversibility, we have a detailed balance property:

p(f, xy o, 2 peq(ze) = plaf, —ay |2, =2} )peq (zv), (3.1)

where peq is the equilibrium distribution. This detailed balance property Eq. (3.1) is
valid for a closed, isolated and finite physical system. The detailed balance property
can also be generalized to a small system interacting with multiple heat baths, and its
generalization is sometimes called the detailed fluctuation theorem in the context of
the fluctuation theorem [70]. For example, the Hamiltonian derivation of the detailed
fluctuation theorem was given by C. Jarzynski [83].

Let T; be the temperature of the ith heat bath, H; be the Hamiltonian of the ith
heat bath, and z; be the phase space point of the multiple heat bathes at time t. Here
we consider the time evolution of the small system x; interacting with multiple heat
baths z;, where the interaction Hamiltonian between z; and z; is sufficiently small
and negligible. The detailed fluctuation theorem of a small system x; is given by

p(ag, ey, 27 Jpeq(2t) = Py, —2 |2, —2y )peq (21), (3.2)

Deq(2t) = Z Lexp [— Z %;) (3.3)

where kp is the Boltzmann constant, and Z := [ dz,exp[— Y., H;(2)/(kgT;)] is the
partition function. The detailed fluctuation theorem is rewritten by the entropy
changes Aspatninthemultipleheatbaths such as

In p(xt/’xt> = Asbatha (34)
PB(fL’t"l“t)
Hz' Zt) — Hi Zt!
Asbath = Z ( t)k’BT ( t )7 (3'5)

where we introduce the backward transition probability defined as pg(zy|zi) =
p(x}, —z, |z, —z; ). The quantity Aspag, indicates the sum of the entropy changes
in multiple heat baths caused by the time evolution of the system from x; to x4, be-
cause the Hamiltonian difference H;(zy ) — H;(2;) means the heat dissipation from the
system to the ith heat bath, and [H;(z:) — H;(z+)]/(kpT;) gives the entropy change in
the ith heat bath. The detailed fluctuation theorem states that the entropy changes
in heat baths is given by the ratio between the forward transition probability p and
the backward transition probability pg.

This description of the entropy changes in the heat baths is useful even for the

stochastic model where the Hamiltonian of the heat bath is not explicitly defined.
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For example, we show the case of the following overdamped Langevin equation:

v (t
{€*(t)
(€ (1€ (t)

where v is the friction constant, U(z,t) is the time dependent inertial energy, 0,
denotes the partial derivative symbol with respect to x, and () is a white Gaussian
noise of the heat bath with a temperature T%.

The stochastic differential equation (3.6) is mathematically defined as the following
discretization:

=0, U(z,t) + £°(1),

) =
)=
) = kBde(t —t'), (3.6)
(

YLt+dt = YTt — (%U(:Ut, t)dt + \ 2”}’kBTdet, (37)
where we define z; := x(t), 414t = z(t + dt) with an infinitesimal time interval

dt. dB; = t+dt dt&*(t)//2vkpT® = Biyq — By is given by a Wiener process B,
distributed as the normal distribution:

p(dBy) = M} . (3:)

1
V2mdt P [ 2dt

Substituting Eq. (??7) to Eq. (3.8), we have the forward transition probability of the
Langevin equation (3.6) at time ¢:

(3.9)

X _m+axU$,tdt2
P(Tiqae|re) = Ny exp [— (Yt+dr — vt (w¢,t)dt) ]

AvkpT*dt
= g(l’t;$t+dt;t), (310)

where z; := z(t) denotes the state at time ¢, and N is the normalization constant
which satisfies [ dziaip(zitar|re) = 1. The backward transition probability of the
Langevin equation (3.6) at time ¢ + dt is defined as

pB(Tt|Trrar) := G(Tirar; Te; t + dt) (3.11)

= N, exp [— (02t = YTivar + 0o UlTevarst + dt)dt)2] . (3.12)

AvkpT=dt

Thus, the ratio between the forward and backward transition probabilities is calcu-
lated as

P(Ti4-dt|ze) 1 0,U(xe,t) + 05U (esar, t + dt)

i - Titrdt — T 3.13

bB ($t|xt+dt) kgT*® ) ( t+dt t) ( )
0. U o dx(xy,t)

- 14

kT (3.14)

_ (§7(t) —ryi(t)) o da 51s)

kgT ’
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where dx = x4 q4: —x+ and o denotes the Stratonovich integral defined as fodz(z,t) :=
[f(zppar, t + dt) + f(xe, )] (xe4ar — x¢)/2 for any function f(z,t). The Stratonovich
product 0, U odx = (£* —~y&)odx gives the definition of the heat flow for the Langevin
equation, which has been historically developed by K. Sekimoto [72]. Thus, the ratio
In[p(x¢sat|zt)/pB(Tt|Ti1at)] can be considered as the entropy change rate in the heat
bath with a temperature T%.

3.1.2 Entropy Production

Next, we define the entropy production, which is the sum of the stochastic entropy
changes in a small system and in heat baths. Let z; be the state of the system X at
time k = 1,..., N. We assume that the dynamics of X is given by the Markov chain:

p(X) = p(z1)p(x2]21) - pln|zN-1), (3.16)

where X := {z1,...,xnx} also denotes the stochastic trajectory of the system X.
From the detailed fluctuation theorem, the entropy changes in heat baths from time
k to k + 1 is given by

P(Tpt1|w)
Asp o = In 20 3.17
bath pB(Tk|Tr41) ( )
The entropy change in a small system from time 1 to N is defined as
As, :=Inp(z1) —Inp(zy). (3.18)

This ensemble average gives the Shannon entropy difference (As,) = S(zn) — S(z1).
The entropy production from time k£ =1 to kK = N is defined as

N-1

0:=As, + Y Asfg, (3.19)
k=1

p(wl)p(@\l’l) . -p(SUfoN—l)

= 1In )
p(ezn)pe(@N_1|zN) -+ - pB(T1]22)

(3.20)

Here, we consider the physical meaning of the entropy production. If the initial
probability distribution p(z;) and the finial distribution p(xy) are given by the equi-
librium distributions, the probability distributions are given by the inertial energy
U(xzk, k) and the free energy F(k):

P(21) 1= peq(71) (3.21)
i=exp[B(F(1) — U(z1,1))], (3.22)
p(xN) = peq(xN) (323)

= exp[B(F(N) - Ulan, N))), (3.24)
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where 3 denotes the inverse temperature of the heat bath. The entropy change in
the bath from time kK = 1 to k = N is rewritten by the heat absorption in the small
system @ such as

N-1

—BQ =) Asf. (3.25)

k=1

Here, the inertial energy U(xg, k) and @ are stochastic variables of the path X. From
the first law of thermodynamics, a stochastic work performed by the small system W
is defined as

W= —Q — [U(z1,1) — Ulan, N)]. (3.26)

Thus, the entropy production can be rewritten by the work W and the free energy
difference AF := F(N) — F(1), if the initial and final states are in equilibrium:

o:=p(W — AF). (3.27)

3.1.3 Relative Entropy and the Second Law of Thermodynamics

If the dynamics is given by the Markov chain, we generally derive the second law of
thermodynamics, i.e., the ensemble average of the entropy production is nonnegative.
The second law of thermodynamics is related to the nonnegativity of the relative
entropy. First, we define the stochastic relative entropy dkr,(p(z)||q(z)) as

dicr,(p(@)lg(x)) = np(a) — nq(a). (3.28)

Its ensemble average gives the relative entropy and is nonnegative,

(dxL(p(@)llq(x)))p = Dxi(p(2)l|q(x)) (3.29)
> 0. (3.30

If the dynamics is given by the Markov chain Eq. (3.16), the entropy production is
given by the stochastic relative entropy

o = dk1(p(X)||ps(X)), (3.31)
pp(X) =p@n)pp(eN-1lzN) - pa(T1|22), (3.32)
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where the backward path probability pp(X) satisfies the nonnegativity pg(X) > 0
and the normalization

Y opp(X)= ) [ZPB(JJHM)] pe(as|z2) - pe(zN-1lzN)p(zN)

T2y...y TN X

= Z pB(gU3|m2) . -pB(IN—1|1UN)p(xN)

=> plzn)
—1. (3.33)

From the nonnegativity of the relative entropy Eq. (3.30), we have the nonnegativity
of the ensemble average of the entropy production:

(o) >0, (3.34)

which is well known as the second law of thermodynamics [72, 74]. From the property
of the relative entropy, we derive the fact that the equality holds if and only if the
reversibility of the path is achieved, i.e., pg(X) = p(X). If the initial and final states
are in equilibrium, we have another expression of the second law Eq. (3.34) from Eq.
(3.27),

(W) > AF, (3.35)

which means that the free energy difference gives a lower bound of the work.

3.1.4 Stochastic Relative Entropy and Integral Fluctuation Theorem

We here derive the nonequlibrium identity called the integral fluctuation theorem [70]
or the Jarzynski equality [80] using the definition of the stochastic relative entropy.
We have the following identity of the stochastic relative entropy,

(exp[—dkw(p(2)||g(x))])p = (a(x)/p(2))p
=> q(x)
~1. (3.36)

In the case of a Markov chain, the entropy production is a stochastic relativity entropy,
and we have the identity

(exp[—0o]) =1, (3.37)

which is called the integral fluctuation theorem. This integral fluctuation theorem
is a generalization of the second law of thermodynamics, because the second law of
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thermodynamics can be derived from Eq. (3.37):

exp(0) = (exp(—0)) (3.38)
> exp(—(0)), (3.39)
(o) >0, (3.40)

where we used Jensen’s inequality Eq. (2.17) for a convex function exp|[f(x)].
If we assume that initial and final states are in equilibrium, the integral fluctuation
theorem can be rewritten as

exp(~BAF) = (exp(~BW)). (3.41)

This expression is well known as the Jarzynski equality [80]. This equality gives an
exact expression of the free energy in terms of the work distribution, i.e., AF =

— 67" In(exp(—LW)).

3.2 Steady State Thermodynamics and Feedback Cooling

The integral fluctuation theorem is an identity of the stochastic relative entropy
dk(p(x)||q(x)), and the identity can be generalized by selecting the probability dis-
tribution ¢(z) in a stochastic relative entropy dkr,(p(x)||¢(z)). One influential appli-
cation of the identity is the generalization of the second law for a steady state, which
is called the steady-state thermodynamics [86, 90, 113, 114, 115, 157, 158, 159]. An-
other application is a cooling process controlled by a velocity-dependent force, called
the entropy pumping or feedback cooling [116, 117, 118, 119, 120, 121]. In this section,
we introduce these identities in terms of the stochastic relative entropy.

3.2.1 Housekeeping Heat and Excess Heat

If a system is driven by a time-independent force, the system will reach a nonequilib-
rium steady state. The steady state thermodynamics is a phenomenological attempt
to construct thermodynamics for a nonequilibrium steady state, which has been intro-
duced by Oono and Paniconi [113]. For a simple Langevin model, the generalizations
of the heat dissipation for a steady state (i.e., the housekeeping heat, and the excess
heat) are well-defined [86]. We show that the generalizations of the heat dissipation
are related to the relative entropy.
Let us consider the following one-dimensional Langevin model:

Vi) = fox(@, M) — 0,U (2, A(1)) + E7(1),
(@) =0,
(€7 (0)e" (1)) = 2987 0(t = 1), (3.42)

where fox is an external nonconservative force and A(f) is the control parameter. To
generalize thermodynamics for a steady state, the nonequilibrium potential ¢(x, \) is
defined as

d(x, A) = —Inpgs(x; N), (3.43)
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where pgs(x; A) is the steady-state distribution for a fixed value of the control pa-
rameter A\. The mean local velocity of the nonequilibrium steady state is defined
as

Vs (2, A) = fox (2, A) — 0,U(z,\) + 8710, 0(2.)). (3.44)
The housekeeping heat Qi is defined as
Quk == /dtj:(t) o yuss(z(t), A(t)), (3.45)

which is regarded as the steady heat dissipation. The conventional heat absorption
Q is defined as

Q= / dti(t) o [fox(@, \) — 05U (2, V)], (3.46)

and we can break down the dissipative heat —() into the housekeeping heat and the
rest called the excess heat dissipation:

_Q = Qhk + Qex; (347)
Qex = —31 /dtg’c 0 Oy p(z.\) (3.48)
=-—71A¢ - /th o Oho(x.\)], (3.49)

where A¢ = f dté is the nonequilibrium potential change, and we used the chain
rule of the Stratonovich integral ¢ := A o x¢(z.\) + & 0 D dp(x.\).

3.2.2 Stochastic Relative Entropy and Hatano-Sasa Identity

In this section, we show the relationship between the steady-state thermodynamics
and the stochastic relative entropy. From the nonnegativity of the relative entropy,
we have generalizations of the second law of thermodynamics for a steady-state. In
the steady-state thermodynamics, we have two equalities and their corresponding
inequalities:

B{Qnx) > 0, (3.50)
(exp(—fQnk)) = 1, (3.51)
and
<A¢> 2 _B<Qex>7 (352)
<exp(—A¢ - ﬁQex» =1L 353)

Equation (3.53) is well known as the Hatano-Sasa equality [86].
We consider the path X = {z1,...,zny}, where xp := x(kdt) and Ay := A(kdt)
denote the state of X and the control paremeter at time t = kdt, respectively, with
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an infinitesimal time interval dt. We assume that the initial distribution is in a steady
state pgs(1). The path integral of the Langevin dynamics Eq. (3.42) is given by

p(X) = pss(@1)p(22|21) - - - P(TN|TN-1), (3.54)

(YTrt1 — YTk — frot Tk, )\kz)dt>2
4vB—1dt ’

p(rrs1|zr) = Npexp | — (3.55)
where fiot (2, ) 1= fex(z, A) — 0,U(z, ) denotes the total force.

First, we derive Egs. (3.50) and (3.51) from the stochastic relative entropy. Here,
we consider an imaginary dynamics with the force fiot — 2yvss, which is called the
dual dynamics, where the sign of the steady mean local velocity vgs is the opposite of
the sign of the original one. The dual dynamics is related to the house keeping heat
and the excess heat dissipation, because the steady mean local velocity v is a cause
of the house keeping heat. As shown below, the house keeping heat is given by the
stochastic relative entropy between probability distributions of the original dynamics
and of the dual dynamics.

The forward path probability of the dual dynamics pp(X) is given by

pp(X) = pss(w1)pp(22|21) - pp(TN|TN-1), (3.56)

(Vg1 — YTk — frot (T, e )dE + 2yvss 2k, Mg )dt)?
4vp—1dt

pD(l‘k+1\S€kz) =N, exXp | —
(3.57)

Up to the order o(1), the stochastic relative entropy dkr,(p(X)||pp(X)) is calculated
as

e (p(X) [pp(X)) = 330 a7 sl A 2 el dea) g 5
k
= BQnk- (3.59)

From the identity Eq. (3.36) and the nonnegativity of the relative entropy (i.e.,
Dy, (p(X)||pp(X)) > 0 ), we can derive the equality and inequality of the housekeep-
ing heat Eqgs. (3.50) and (3.51).

Next, we derive Egs. (3.52) and (3.53) from the stochastic relative entropy. The
backward path probability of the dual dynamics ppp(X) is given by

pBD(X) = pss(en)pBD (TN-1|ZN) - - DBD(21|T2), (3.60)

peD(Tk|TK41) (3.61)

B (Y — YTht1 — Frot(Th1, M)At + 2905 (X1, Ag1 )dt)?
= N, exp - 1di (3.62)

(Ver — Y&kt + frot(@ra1, Mer1)dt + 2071 0p (w41, )\k+1)dt)2
=N, exp |— )
d~v(B—1dt
(3.63)
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Up to the order o(1), the stochastic relative entropy dkr,(p(X)||psp (X)) is calculated
as

1 — Tk 0z0(xg, A\i) + Oz O(Tp1, A1)
dt 2

= A6 + AQex. (3.65)

From the identity Eq. (3.36) and the nonnegativity of the relative entropy (i.e.,
Dk, (p(X)||lpep(X)) > 0), we have Eqgs. (3.52) and (3.53).

(3.64)

di (p(X)|lppp (X)) = Ap — Y dt =+
k

3.2.3 Stochastic Relative Entropy and Feedback Cooling

As a technique of the opto-mechanics, the feedback cooling (or cold damping) has
been developed to reduce the fluctuation of a mechanical degree of freedom [117,
118, 119, 120, 121]. For example, to measure the spontaneous velocity of a Brownian
particle, 1.5 mK cooling of a Brownian particle optically trapped in the vacuum has
been achieved experimentally [120]. As a molecular refrigerator, the feedback control
with the velocity-dependent force has been discussed from a thermodynamic point of
view[116]. Here, we discuss the nonequilibrium identity about the feedback cooling
derived by K. H. Kim and H. Qian [116] in terms of the stochastic relative entropy.
We consider the following underdamped Langevin equation:

mi(t) = —yi(t) — 0, U(x(t)) + fr (2(t)) + £%(1),
(EP()EX () = 29kpT™o(t — t'),
(€7 (t)) = 0, (3.66)

where m is the mass of the particle, fg,(Z(¢)) means a velocity-dependent feedback
force, which generally depends on the spontaneous velocity #(t). With an infinitesimal
time interval dt, we discretize the dynamical variables x; = x(kdt) and &) = &(kdt).
We consider the trajectories of the position and the velocity from time £ = 1 to
k = N, denoted as X = {z1,...,xn} and X = {#1,...,Zn}, respectively. The path
probability p(X, X) is given by

p(X, X) =p(x1,d1)p(x2, d2|z1,21) - p(an, En|oN—1, En_1), (3.67)
. . t — -~ ry
P(Tht1, Tyt |Th, Ti) =N exp [_%aﬁcftot(xk»xk) I(Tht1 — xp — Trdt)
(@1 — in) + Y (@hpr — 21) — foon(@x, E1,)dt])?

4’yk‘Bdet ’
(3.68)

X exp [—

where Ty, := (741 +2k)/2, @k := (Tpp1 +38)dt/2, fror(z,3) = —0,U(x) + fa (&) and
N exp|—dt; fror/(2m)] is the normalization prefactor, i.e., the Jacobian determinant.
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The backward path probability for a feedback cooling pg(X, X) is defined as

(X, X) =p(ey, in)pe(TN_1, EN_1|ZN, EN) - - pp (@1, E1]20, 2),
(3.69)
. . t — ry ry
pB(Tk, Tk|Trt1, Try1) =N exp [%&kftot(zkaxk) (Tpt1 — xp — Trdt)

[m(ins1 — ) + (@ — To1) — frot (Tn, 2x)dt]
dvkpgT*dt ’
(3.70)

X exp [—

where the sign of the velocity in the feedback force fiot(zx41, %) does not change in
this backward process.

Up to the order o(1), the stochastic relative entropy dkr,(p(X,X)||ps(X, X)) is
calculated as

dxL(p(X, X)|lps(X, X))
=As, ‘f’ﬁZdth—l —xp m(Tpr1 — 3k) + frot(T, 1)
k

dt 2

-y %@i Frot (g, T (3.71)
k

= As, + / dti(t) o (E5(t) — yi(t)) —m™! / dtds fin, ((t)) (3.72)

= 0 — Aspu, (3.73)

where the entropy change in a bath is defined as Aspan 1= 8 [ dtd(t) o (€% () —ya(t)),
the entropy production is defined as o := As,; + AsSpatn, and the entropy pumping
Aspy is defined as Asp, = m™! [ dtd; fa(2(t)). The entropy pumping Asp, can
be negative the velocity-dependent force, if the velocity-dependent feedback force fg,
exists.

From the identity Eq. (3.36) and the nonnegativity of the relative entropy (i.e.,
Dxr(p(X, X)||ps(X, X)) > 0), we have the identity and the generalization of the
second law:

(exp(—o + Aspy)) =1, (3.74)
() > (Aspy). (3.75

If the velocity-dependent feedback force fg, exists, a lower bound of (o) can be neg-
ative. Thus, the inequality (3.75) indicates that the ensemble average of the entropy
production can be negative if the feedback control exists. This discussion of feedback
cooling is closely related to the problem of Maxwell’s demon, but this discussion of
feedback cooling completely depends on the Langevin equation (3.66). In the next
section, we give a general discussion of Maxwell’s demon and the entropy production
under a feedback control in a different and informational way.






Chapter 4

Information Thermodynamics under

Feedback Control

Recently, the stochastic thermodynamics of information processing by “Maxwell’s
demon” has been intensively developed, leading to unified theory of thermodynamics
and information [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66]. Historically, the connection between
thermodynamics and information in a small system was first discussed in the thought
experiment of Maxwell’s demon in the 19th century [67, 69, 110, 111, 112, 68], where
Maxwell’s demon is regarded as a feedback controller. With a feedback control in
a small system, the second law of thermodynamics seems to be violated, i.e., the
entropy production can be negative. In this chapter, we introduce the formalism of
information thermodynamics for a small system under feedback control.

4.1 Feedback Control and Entropy Production

Here, we discuss thermodynamics under a feedback control with a single measurement.
Let xj be a state of a small system X and m; be a memory state. At time k = 1,
a measurement of the initial state x; is performed and its outcome is preserved in a
memory state m;. The measurement is given by the conditional probability p(mq|z1)
and the dynamics of a small system depends on the memory state m, because of the
effect of the feedback control. The time evolution of the system X from time k =1
to N =1 is given by the following path-probability:

p(xalzy, my)p(es|ee, my) - - plen|zy_1,m1). (4.1)
Thus, the joint probability p(z1,...,xzx,m1) is given by

p(x1,.. ., 2N, m1) = p(x1)p(malzr)p(ze|xr, mi) - - plan|rn-1,m1). (4.2)

In this protocol, we consider the detailed fluctuation theorem under a feedback control.
When the system X is changed from xj to xx41, the memory state m; play a role of

39
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an external parameter. Thus, the detailed fluctuation theorem is modified as

P(xkzﬂ |90k= my)
pB(Tr|Tryr,m1)’

Asfyy, = In (4.3)
where pp is the probability of the backward process. The detailed fluctuation theo-
rem is the consequence of the detailed balance property, so that the backward prob-
ability is defined as pp(xk|ris1,m1) = p(atg,—x,ﬂxzﬂ,—:L',;rl,mf',—ml_), where
= {7, 2} (m1 = {m],m{}), i (m]) denotes an even function of the mo-
mentum, and z; (m; ) denotes an odd function of the momentum. The entropy
production for a feedback control is defined as

N-1
o:=Inp(z1) —lnp(ry) + Z Ast o (4.4)
k=1
(1) T Pk foem)
—In P\ H P\ Tk41|Tk, M1 ‘ (4.5)
p(zN) he1 pB (k| TKt1,m1)

We stress that this entropy production is not a stochastic relative entropy, so that its
ensemble average can be negative.

4.1.1 Stochastic Relative Entropy and Sagawa-Ueda Relation

We next consider the generalization of the second law for a feedback control. In the
case of a feedback control, the entropy production is not a stochastic relative entropy.

Let the stochastic mutual information between X and Y bei(X : V) :=Ilnp(X,Y)—
i(X). Its ensemble average gives the mutual information I(X,Y") = (i(X : Y)). Here,
we show that the sum of the entropy production and the stochastic mutual information
difference can be rewritten by the stochastic relative entropy such as

p(z1)p(mi|z)p(z2|z, my) - plen|en—_1,m1)
p(ﬁN)p(mﬂmN)pB(«TN—ﬂxN, m1) e 'PB(CL‘1|9027 ml)

o+i(xy:mq) —i(xy :my) :=1In

=dgL(p(z1,...,xn,m1)||lp(21,. .., 2N, M1)). (4.6)
pe(T1,...,xNn,m1) == p(en)p(mi|zn)pe(N_1|zN,m1) - - - pB(T1|T2, M1).
(4.7)

The backward path probability pp satisfies the normalization of the probability:

Z pB(ZIf1,--~,90N,m1) = Z p(IN)p(mﬂxN)

T1,,TN,M1 TN ,M1

= 1. (4.8)

From the identity Eq. (3.36) and the nonnegativity of the relative entropy (i.e.,
Dxy(p(z1,...,xn,m1)||pB(21,...,2Nn,m1)) > 0), we have the identity and the gen-
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eralization of the second law:

(exp(—0 + Ai)) = 1, (4.9)
Ai=i(xy :mq) —i(xy : my), (4.10)
(o) > Al (4.11)
Al :=I(zy :mq) — I(z1 : mq), (4.12)

which are known as the Sagawa-Ueda relations [25, 43]. The mutual information
difference AI gives the bound of the ensemble average of the entropy production (o).
In general, the mutual information difference can be negative. The equality (o) = AT
holds if and only if the reversibility with a memory state, i.e., p(z1,...,2nx,m1) =
p(z1,...,xNn,m1), is achieved.

If the initial state p(z1) and the final state with a memory state p(zy|my) are in
equilibrium:

p('xl) = peq(xl)y (413)
= exp[B(F(1) — U(1,21))], (4.14)
p(xN|m1) :peq(xN|m1)a (415)
= exp[B(F(N,my) — U(N, axlmi))], (4.16)
the Sagawa-Ueda relation is rewritten by the free energy and the work such as
{exp[=B(W(m1) — AF(m1)) —i(xy 2 ma)]) = (4.17)

]
AW (m1)) — (AF(m1))) = ( L), (4.18)

where the work W(m) is defined as W(mi) = B71> Ask . — (U(l,21) —
U(N,xzn|m1)), and the free energy difference is given by AF(my) := F(N,mq)—F(1).
The mutual information between the initial state 1 and the memory state m; gives
the bound of the apparent second law violation.

4.1.2 Maxwell's Demon Interpretation of Sagawa-Ueda Relation

The Sagawa-Ueda relation describes trade off between information and thermody-
namic entropy. One of the essential applications of the Sagawa-Ueda relation is the
problem of Maxwell’s demon, which performs a feedback control to reduce the entropy
of the system.

Here, we introduce the Szilard engine, which is a minimal model of the Maxwell’s
demon discussed by Leo Szilard in 1929 [69], and an application of the Sagawa-Ueda
relation to the Szilard engine model. The Szilard engine is given by the following five
steps (see also Figure 4.1).

(1) At first, a single particle gas exists in a box with a volume V. The box is attached
to the heat bath with a temperature T'= 1/(kp(3), and the probability of the position
of the particle is uniformly distributed. (ii) Next, the partition is added to divide the
box to two equal parts. x; denotes the state of the position of the particle at this step
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0 T (i1)
r1 =1L r1 =R
> —> ) .
Measurement
\ p(malz1)
\ 4 (i)
(iv)

) <« o
Feedback

Fig. 4.1 The schematic of the Szilard’s engine. Maxwell’s demon measure a
state of the position of a single particle x1, and performs feedback control using
the measurement outcome m;. In a cycle, Maxwell’s demon can extract the work
from the heat bath attached to the box. That fact is the apparent violation of
the second law of thermodynamics.

(ii), and 7 = L (z; = R) means that the particle is in the left-hand (right-hand) side
of the box. The probability p(z) is given by

plrr=1) = 5, (4.19)

p(z1 =R) = (4.20)
(iii) Maxwell’s demon performs a measurement of the position of the particle. In gen-
eral, the measurement outcome denoted as m; does not coincide with the realization
of the position of the particle because of the measurement error. Here, we consider
that a measurement error like the binary symmetric channel such as

p(m1 = Llxy = L) =p(my = Rlz; = R)=1—ce, (4.21)
p(ml = R|371 = L) = p(m1 = L‘%l = R) = e. (4.22)

(iv) Depending on the measurement outcome mq, Maxwell’s demon quasi-statically
move the partition to expand the volume of a single particle gas. The work can be
extracted by this movement. (v) Finally, Maxwell’s demon reduce the partition and
wait for a long time to equilibrate the system,

In a cycle (i)-(v), we can extract the work at the step (iv). Nevertheless, the
free energy change from (i) to (v) is zero. The entropy production in this cycle
becomes negative. This apparent violation of the second law of thermodynamics has
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been discussed by many researchers for a long time [67], although Leo Szilard had
mentioned the relationship between thermodynamic entropy and information crucially
and proactively in his original paper [69]. Here, we discuss this problem of Maxwell’s
demon from the viewpoint of the Sagawa-Ueda relation. The Sagawa-Ueda relation
gives a clear explanation of this Maxwell’s demon problem in terms of the stochastic

thermodynamics.
The extracted work Wey(m) := —W(m) at the step (iv) can be calculated using
the conventional thermodynamics. Let the position of the partition be A = [0, 1],

where A = 0 denotes the left edge of the box, A = 1/2 denotes the position at a step
(ii), and A = 1 denotes the right edge of the box. The finial position of the partition
depends on the memory state m;. The finial positions of the partition with memory
states m; = L and m; = R denotes \;, and Ap, correspondingly. The final volume
of the single particle gas depends on both the initial position of the particle and the
final position of the partition such as

Vin(z1 = L,my = L) =V, (4.23)
Vin(x1 =R,my =L) =V (1 - A1), (4.24)
Van(z1 = L,m; = R) =V AR, (4.25)
Vin(z1 = R,my = R) = V(1 — AR). (4.26)

In a quasi-static process, the pressure of a single particle gas is maximized in any
expansion of the volume, and is given by 1/(8V’) with the volume of a single particle
gas V’. The ensemble average of the extracted work is calculated as

Viin (x1,m1) 1
(Wext(ma)) < Z p(xl,ml)/v/z dvlﬁV’ (4.27)
— g [g In(27k) + S In2(1 — Ag) + SIn(l—As) + Sk 111(2/\4
(4.28)
<B 'In2+elne+ (1 —e)ln(l —e)]. (4.29)

The equality holds if Arp = e, and A, = 1 — e are satisfied.

The free energy difference from the step (i) to the step (v) is zero, i.e., (AF(my)) =
0. The mutual information between the initial state z; and the memory state is the
same as the mutual information of the binary symmetric channel Eq. (2.40):

I(x1:mq) =In2+elne+ (1 —e)ln(l —e). (4.30)

Thus Eq. (4.29) becomes an example of the Sagawa-Ueda relation: S((W(my)) —
(AF(my)) > —1(x1 : my).
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4.2 Comparison between Sagawa-Ueda Relation and the

Second Law

Here, we compare the Sagawa-Ueda relation with the second law of thermodynamics.
If we consider the total system as a system X and a memory system M, the Sagawa-
Ueda relation can be considered as the second law of thermodynamics for the total
system X and M.

4.2.1 Total Entropy Production and Sagawa-Ueda Relation

Let us consider the Markovian dynamics of a system X and a memory system M,

p(X, M) = p(z1,m1)p(x2, ma|z1,m1) - plen, my|zN, my), (4.31)
where (X, M) = {(x1,m1), -, (zn,mn)} denotes a trajectory of the total system
X and M. The entropy production of the total system ox s is defined as

90 ,m $ , M Tk, M
oxar i=In EELTL) +Zl koL k1 [Tk ) (4.32)
p(zNn, my) PB(Tk, Mk ki1, Mg41)

The entropy production oxjs is a stochastic relative entropy

oxum = drr(p(X, M)|lps(X, M)), (4.33)
N-1

p(X, M) :=p(zy,mn) || ps@r mrlze, ms), (4.34)
k=1

so that its ensemble average is nonnegative,

<O‘XM> 2 0, (435)

which is the second law of thermodynamics for the total system. We assume that the
memory state M does not change in the dynamics such as

p(mgr1|Trrr, me, Tr) = d(my — myy1). (4.36)
The backward process is also assumed as
PB(mk:, $k|mk+1, SCk+1) = 5(mk - mk+1)PB (iUk!karl, mk+1)> (4-37)

where pp(zk|Tr41, mr41) denotes the backward transition probability under the con-
dition of the memory state myy;. In case that memory state does not change, the
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second law of thermodynamics for the total system can be rewritten as

(ox00) = 3 p(X,M) [1 +Zl Pkl ) ] (433)

o p(xn,mnN) PB(Tk|Tht1, Mi41)
Z p(ma|z1)p(@2|z1, m1)p(z2|z1,me = m1) - - - plan|zN—1, MmN =M1
(4.39)

!Ek+1|$k,mk = ’m1) T ln p(xl,ml)p(xN)
PB xk’xk—i-l;mk—l—l ml) p(xN,mN = ml)p($1)
(4.40)
= (X ml) [O’X + ’i(:l]‘l : ml) — i(l‘]\] : ml)] (441)
X , M1

= (ox)+I(xy:mq) —I(xy :mq) > 0. (4.42)

where p(X,m1) = p(1)p(malz1)p(@alws,ms) - p(aw|zy_1,ms) and the entropy
production of the system X is defined as

p(Tkt1|Tr, mEp = mq)

pB $k|$k+1,mk+1 m1)‘

(4.43)

Thus, the second law of thermodynamics for the total system Eq. (4.35) repro-
duces the Sagawa-Ueda relation Eq. (4.42). This fact implies that Maxwell’s de-
mon problem does not indicate the violation of the second law of thermodynam-
ics. To consider the dynamics of the system X and the memory M, the bound of
the entropy changes in heat bathes should not be the Shannon entropy change of
the system ASx := (In[p(z1)/p(zn)]), but be the total Shannon entropy change
ASx = (In[p(z1, m1)/p(zn,m1)]). The difference between ASx s and ASx, gives
the mutual information difference

I(xy :mq) — I(xy : my) = ASxp — ASx. (4.44)






Chapter 5

Bayesian Networks and Causal
Networks

We next introduce the theory of a probabilistic directed acyclic graphical model well
known as Bayesian networks or causal networks [102, 103, 104]. In this thesis, we
construct an information thermodynamic theory on the Bayesian networks. Bayesian
network itself has a long history as early as 1963 [99]. Bayesian network had been
developed in 1980s [102, 100] in the context of causal modeling. By using the network,
we can automatically apply Bayes’ theorem to complex problems where random vari-
ables interact with each other. In recent years, Bayesian network has been intensively
studied as a technique of the machine learning and pattern recognition [101]. The
Bayesian network is applicable in a wide range of fields, for example, computational
biology, document classification, image processing, risk analysis, financial marketing
and information retrieval.

5.1 Bayesian networks

We here introduce the mathematical definition of Bayesian networks.

5.1.1 Directed Acyclic Graph

The Bayesian network is given by a directed acyclic graph. First we show the definition
of a directed acyclic graph. Let G = (V, &) be a directed graph, where V denotes a
finite set of nodes (vertices) and £ C V x V denotes a set of edges (arcs). An element
of £ is given by an ordered pair of nodes, which have a direction associated with it.
For example, we show a directed graph V = {a1,a2,a3} and € = {(a1,a2), (a1,a3)}
in Fig, 5.1. If (aj,a;) € €, we write a; — a;» and say that a; is a child of a; and a;
is a parent of a;.

A directed graph is acyclic if there is no directed path a; — --- — a; with a; = a;.
For example, a directed graph V = {a1,a2,a3} and & = {(a1,a2), (az,as3), (as,a1)}
is not acyclic, because there is a directed path a; — as — a3 — a;. Because of
the acyclicity, we have the ordering such that a; cannot be a parent of a; with
j > j'. This ordering is called the topological ordering (or topological sorting). The
topological ordering of a directed acyclic graph is not necessarily unique. For instance,
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@ Q - Node
o ) Ee

Fig. 5.1 An example of a directed graph.

in the case of a directed acyclic graph V = {a1,az2,a3} and € = {(a1,a2), (a1,a3)}
(Fig. 5.1), we have two topological orderings ai, as, a3z and a1, as, as.

5.1.2 Bayesian networks

Effect (Child)
plajlaj_1,...,a1) = plaj|aj,ajr, ajm)

\‘ pa(a;) = {a;, ajr, ajm}

i>q,5>3"7>7"
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Fig. 5.2 A schematic of Bayesian network. The edge represents the causal re-
lationship between random variables (i.e., nodes). The transition probability
p(ajlaj,a;m,a;m) is given by the topology (edges) of the network.

We next define the Bayesian networks as a directed acyclic graph G = (V,€) (see
also Fig. 5.2). A set of nodes V = {ay,...,an, } represents a set of random variables,
where a1, ..., an, is a topological ordering. From the chain rule in probability theory
Eq. (2.13), we have

p(V) = p(a1)p(az|ai)p(as|az, a1) ... plany, lany, -1, - - -, a1). (5.1)

On Bayesian networks, an edge a; — a; represents a statistical dependence between
a; and aj. Let a set of parents of a; be pa(a;). We have pa(a;) C an(a;), where
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an(a;) = {a1,...,a;_1} is called ancestors of a;. Statistical dependence between
variables are given by the local Markov property:

plajlan(a;)) = p(ajlpala;)). (5.2)

The local Markov property indicates that a; and its ancestors an(a;) are conditionally
independent given events of its parents pa(a;), because from Eq. (5.2) we have the
following conditional independence,

p(a;,an(a;)[pa(a;)) = p(a;j|pa(a;))p(an(a;)|pala;)), (5:3)

where we used p(aj,an(a;)|pa(a;))/p(an(a;)|pa(a;)) = p(a;|lan(a;)). From the local
Markov property Eq. (5.2), we have a chain rule for Bayesian networks:

Ny

p(V) = [ [ p(a;lpala;)), (5.4)

Jj=1

where we used p(ai|pa(a1)) = p(a1|0) = p(a1). [0 denotes an empty set.] From this
chain rule Eq. (5.4), we also have p(an(a;t1)) = Hg,zl p(aj|pala;r)).

We also add that p(aj|pa(a;),V’) = p(a;|pa(a;)) for any set V' C [an(a;) \ pa(a;)],
where \ denotes the relative complement of two sets:

p(a;, pa(a;),V’)
p(pa(a;), V')
 2an(agei)\{ag pa(a,), v} P(a0(5+41))
- Zan(aﬂl)\{})a(aa‘)vv’}p(an(ajJrl))
[p(a; |Pa(aj))][Zan(aj+1)\{aj,pa(aj),w} Hj:f_:l1 p(aj |pa(a;))]
2=, Plaj|pala; DI an(a; )\ fpatay) v} [T, plaj Ipa(a;))]
= p(a;|pa(a;)). (5.5)

plajlpa(a;), V') =

5.2 Causal Networks

Here, we introduce how the Bayesian network represents the causal relationship.

5.2.1 Causal Networks

Bayesian networks are often used to represent the causality [103]. In general, edges
on Bayesian networks need not represent the causal relationship. For example, we
consider a Bayesian network V = {a1,as2,a3} and € = {(a1,a2), (az,as3)} (or equiva-
lently a; — a2 — ag). In the context of causality, we consider a; — a;s as the causal
relationship from a; to a;,. However, a mathematical definition of this causal network
is given by p(a1, as,a3) = p(ai)p(az]ai)p(as|az). Using the fundamental rule, we also
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get
plar, az, as) = plar)plazlar plas|as) (5.6)
- ) o
— bl faa)p(as) M) (58)
_ plas)plazlas)p(arlas). (59)

Therefore, a causal network a; — as — a3 reproduces exactly the same chain rule
for a Bayesian network ag — a2 — a;. To discuss causal relationships using Bayesian
networks, we explicitly add the causality between nodes.

J. Pearl [103] defined the causal Bayesian networks. In his definition of causal
Bayesian networks, a probability of V under the condition of a constant a; = a
(a € aj) is given by

Probg;—a(V) = H p(aj|pala;))la;=a; (5.10)
J'#5

which is known as the truncated factorization product. This definition indicates that
the relationships should be causal.

In a physical situation, the causal network can be obtained if the topological or-
dering is taken as the time ordering. When the index j is in the time ordering, the
transition probability of the past variable p(a; |pa(a;/)) does not depend on the re-
alization of the future variable a; = a with j* < j, and Eq. (5.10) is satisfied. To
discuss the causality of the physical model using Bayesian networks, we might not
need to care about the precise definition of causal networks, but need to make sure
that the topological ordering should be the time ordering and that the conditional
probability p(a; |pa(a;/)) should be a transition probability of a physical model. Clas-
sical physical stochastic dynamics can be represented by causal networks in general,
because physical dynamics holds the causality. We next introduce how to use causal
networks for several physical situations.

5.2.2 Examples of Causal Networks

We show several examples of causal networks for physical situations.

5.2.2.1 Example 1: Markov chain
We consider the Markov chain {zgx|k = 1,..., N}, where index k denotes the time.
The the Markov chain is defined as

p(xk|rk—1,...,21) = p(¥k|EK—1). (5.11)
Therefore, a causal network of the Markov chain is given by V = {x1,...,zn5} and
E = {(z1,22), (w2,23),...,(xNn—-1,2n)}. We have pa(ry) = xx—1 with & > 2 and

pa(z1) = 0 (see also Fig. 5.3).
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Example 1 Example 2

&

Fig. 5.3 Examples of causal networks. Example 1: Markov chain. Example 2:
Feedback control with a single measurement.

5.2.2.2 Example 2: Feedback control with a single measurement

We next consider a system under feedback control with a single measurement. Let xy
be a state of a system X at time k (k=1,...,N). At time k = 1, a measurement of
the state 1, which is initially distributed with a probability p(x;), is performed, and
its outcome is preserved in a memory state m;. The measurement generally includes
the error and is given by the conditional probability p(mi|z1). The outcome m; is
used for the feedback control. The joint probability p(z1,...,xx,m1) is given by

p($1> .. ,ZCN,ml) = p($1)p(m1\901)p($2!$17ml)P(l‘3|$2,ml) - 'p(-TN|£UN—1,m1)-
(5.12)
Thus, a causal network of the feedback control is given by V = {x1,m1,2z2,...,zn}
and &€ = {(z1,22), (x2,23),...,(xN-1,2ZN), (T1,m1), (M1, 22),...,(Mm1,2N)}. We

have pa(zx) = {mi,zp_1} with k > 2, pa(z;) = 0 and pa(m;) = x; (see also Fig.
5.3).

5.2.2.3 Example 3: Repeated feedback control with multiple measurements

Here, we consider another version of feedback control. Let x; be a state of a system
X at time k (k=1,..., N), and my be a memory state corresponding to xx. At time
k, a state xj is measured by the memory state m; with the conditional probability
p(mg|xr). The outcome my can be used for the feedback control after time k+1. The
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Example 3 Example 4

ae
R

Fig. 5.4 Examples of causal networks. Example 3: Repeated feedback control
with multiple measurements. Example 4: Coupled Langevin equations.

time evolution of the system X from time £k =1 to N = 1 is given by the following
path-probability:

p(xa|xr, mi)p(zs|ze, mi,me) - p(an|TN—1,m1,...,MN_1). (5.13)

Therefore, a causal network of the repeated feedback control with multiple
measurement is given by V = {xy,mi,xo,ma,...,xn,my} and pa(zy) =
{my,...,mg_1,25—1} with & > 2, pa(z;) = 0 and pa(mg) = zj (see also Fig.
5.4).
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5.2.2.4 Example 4. Coupled Langevin equations
The method of causal networks is applicable even for the stochastic differential equa-
tions. We consider the following coupled Langevin equations:

2(t) = fo(2(1),y(1) + £ (1),
y(t) = fy(2(t), y(t)) + £7(1),
(€7 (®)) =0,
(€¥(t)) = 0,
(€7 (€7 () = 2T"6(t — 1),
(€(1)g(t) = 21vo(t — 1),
(1) (t)) =0, (5.14)

where z(t) (y(t)) denotes the state of system x (y) at time ¢, f, (f,) is any force
function of x(t) and y(t), £*(t) (£Y(t)) is a white Gaussian noise with zero mean and a
variance 27% (27Y). Noises £%(t) and £Y(t) are independent such that (% (¢)¢Y(¢')) =
0, where (---) denotes the ensemble average.

The stochastic differential equations (5.14) are mathematically defined as the fol-
lowing discretizations:

Topar = Tt + [o(@e, ye)dt + V2T*d By,

Yerat = Yo + fy(we, y)dt + V2TVdBy, (5.15)
where we define z; := x(t), Typqr := z(t + dt), yr := y(t) and yrrqr = y(t + dt)
t+dt

with an infinitesimal time interval dt. dB; := [, dtE®(t)/V2T* = Birar — By
(dB; = fdt dt§¥(t)/v2TY = By, 4 — B}) is given by a Wiener process B; (B}),

= Jt
distributed as the normal distribution:

1 (dBy)?
p(dB;) = Jondi exp [—W} . (5.16)

Substituting Eq. (5.15) to Eq. (5.16), we have the Jacobian transformation of condi-
tional probabilities:

x —zy — folxe, yp)dt)?

p(xt+dt|xt7yt) = Na: exp |:—( ttde tZlij:jt( ¢ yt) ) ‘| N (517)
—yp — fo(xe,yp)dt)?

P(Ytratlze, ye) = Ny exp [— Yt yt4Tf§t( t:91)dt) } ; (5.18)

where N, = (47T%dt)~'/2? [N, := (4nT¥dt)~'/?] indicates the normalization pref-
actor. The coupled dynamics from time t to t 4 dt is given by the conditional
probabilities Eq. (5.18). The distribution of (x4, y:) is generally correlated [i.e.,
p(ze,y¢) = p(xe)p(ye|ze) # p(xe)p(ye)]. Thus, the joint probability of the coupled
Langevin dynamics p(x¢, ¢, Trrde, Yrrae) 1S given by

P(Tt, Yt, Terars Yerdr) = D(@e)P(Ye|2e)D(Tesae| Te, Yo )P(Yepat|Te, e )- (5.19)
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A causal network which represents the Langevin dynamics Eq. (5.19) is given
by V = {@4,y, Tevat, Yerar ), pa(re) = 0, pa(y:) = ¢, pa(@irar) = {ve,y:} and
pa(Yirar) = {xe, y: } (see also Fig. 5.4).

Example 5

S
DSRD

& ©
@
= @
2 @

Fig. 5.5 Examples of causal networks. Example 5: Coupled dynamics with a
time delay. Example 6: Complex dynamics.

5.2.2.5 Example 5: Coupled dynamics with a time delay
We note that the delayed dynamics can also be represented by a Bayesian network.
Here we consider the coupled dynamics with a time delay such that

p(yt—Ara Tty Yt $t+dt) = p(yt—An Tt, yt)]?(xt—kdtlxt» Yt—Ar) yt)- (5-20)

In this dynamics, the time evolution from x; to x;44; does not depend on y;, but de-
pends on y;_a,, where A7 denotes the time delay. From the chain rule in probability
theory, we have

p(yt—AT7 Tt, yt) = p(yt—AT)p(It|yt—Ar)p(yt|$t7 yt—AT)- (5-21)

Thus, the time evolution of the coupled dynamics with a time delay is given by
a causal network V = {y1—Ar, Tt Yt, Tetdt, Ye+ar b, Pa(ye—ar) = 0, pa(zt) = yi-ar,

pa(y:) = {ze,ye—art, Pa(@irar) = {@e, yi—ar} and pa(yirar) = {x¢, 3} (see also
Fig. 5.5).
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5.2.2.6 Example 6: Complex dynamics

We note that causal networks can generally represent the complex dynam-
ics in multiple fluctuating systems. The causal network in Fig. 5.5 describes
an example of complex three-body interactions. The causal network is given
by V = {y1,21,21,%2, 22,92, %3, 23}, pa(y1) = 0, pa(z1) = y1, pa(z1) = i,
pa(zz) = {z1,21}, pa(ze) = {z1,21}, pa(y2) = {y1, 22,22}, pa(z3) = {z2,92} and
pa(zs) = {z2,x2}, where =i (yk, zr) denotes the state of the system X (Y, Z) in the
time ordering k. We note that time of the state zj is not same as one of y,. We
assume that the time ordering of states is given by the topological ordering of the
causal network yy,x1, 21, T2, 22, Y2, T3, 23. The joint probability p(V) is given by

p(V) =p(y1)p(z1|y1)p(21|y1)p(z2|71, 21)
X p(ze|x1, 21)p(y2|z2, 22, y1)p(T3| T2, Y2 )p(23| 22, 22), (5.22)

which describes the path probability of this complex dynamics in multiple fluctuating
systems.






Chapter 6

Information Thermodynamics on
Causal Networks

We here construct the general theory of the relationship between information and
stochastic thermodynamics [50]. Characterizing complex nonequilibrium dynamics
by causal networks, we derive the generalized second law of thermodynamics with
information flow. This chapter is the refinement of our result [Ito S., & Sagawa T.,
Phys. Rev. Lett. 111, 180503 (2013)] [50].

6.1 Entropy on Causal Networks

6.1.1 Entropy Production on Causal Networks

First of all, we clarify how to introduce the entropy production on causal networks.
Let V = {ai,...,an,} be a set of nodes of causal network, where aj, represents a
random variable. We here introduce a set of the random variables, which represents
the time evolution of the target system X = {z1,...,zn}. xx denotes the state of the
target system X at time k. X is a subset of V, i.e.;, X C V. We assume the following
properties of xj such that

T € pa(zg) (K =k), (6.1)
vw-1 ¢ pa(ai) (K # k), (6.2)

with k£ > 2. The former assumption indicates that the time evolution of the target
system X is characterized by the sequence of edges 1 — x5 — -+ — . The latter
assumption corresponds to the Markov property of the physical dynamics. We stress
that the latter assumption does not prohibit the non-Markovian dynamics of V' at all.
Next, we define the other system as

C:{Cl,...,CN/}Z:V\X. (63)

Because ¢; is an element of V, we can rewrite ¢; as ¢; = a;. We can introduce the
time ordering of ¢; from the topological ordering of V. We assume that I’ < [ with
j' < jif ¢ =a; and ¢y = aj. This assumption indicates that ci,...,cns is ordered
as the time ordering.
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The probability of p(V) is given by the chain rule of the Bayesian networks Eq.
(5.4) such that

p(V) =p(X,C) (6.4)
= [ p(axlpatar)) [ plalpate)). (6.5)
k=1 =1

The conditional probabilities ch\;l p(zr|pa(zy)) represent the path-probability of the

target system X, and the conditional probabilities H;L p(eilpalc;)) represent the path
probability of the other systems C.

p(xk+1|pa(xk)) Ip($k+1|-’ﬁk73k+1)

Time evolution

Other systems
(e.g., Memory)

Fig. 6.1 A schematic of X and Biy1 on causal networks. Bjy1 represents a set
of random variables which can affects the time evolution in X from time k to
k4 1.

We introduce a set of random variables Byy1 := pa(zg4+1) \ {zr}, which affect the
time evolution of the target system X from state xj to xx41 at time k (see also
Fig. 6.1). Biy1 is a subset of the variables in the other system, i.e., Byy; C C. By
definition of By, the transition probability in X at time k is rewritten as

(w1 lpa(rri1)) = p(@ri1|Tr, Ber1), (6.6)

which indicates that, in the time evolution from state xj to xx+1, Brt1 plays a role of
a set of external parameters (e.g., a memory in a feedback system). Thus, the entropy
change in heat baths at time k is given by

p(Try1|Tr, Brg)
pe(zK|Tkpt1, Bry1)’

Ast o =1In (6.7)
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which is a modification of the detailed fluctuation theorem [e.g., Eq.(4.3)]. pp de-
scribes the probability of the backward process. The definition of the backward prob-
ability is given by pp(zg|zk+1, Br+1) = p(zy, —x;\xzﬂ, —Tp 1 B,’:H, —B,_. ), where
z; (B, ;) denotes an even function of the momentum, and z;; (B, ;) denotes an
odd function of the momentum. The entropy production ¢ in the target system X
from time kK =1 to k = N is defined as

N-—1
o :=Inp(x1) — Inp(an)+ Y Asf, (6.8)
k=1
pe1) Y1 p(@rar|en, Bri)
— h'l 1 +1 9 +1 ' 69
p(ﬂﬁN) kljl pB($k|$k+1,Bk+1) ( )

6.1.2 Examples of Entropy Production on Causal Networks

We here show that the definition of the entropy production o is well-defined in three
examples (i.e., the Markov chain, the feedback control with a single measurement,
and the coupled Langevin equations).

Example 2

Example 1 Example 3

X -XC

Fig. 6.2 Examples of X and C on causal networks. Example 1: Markov chain.
Example 2: Feedback control with a single measurement. Example 3: Coupled
Langevin equations.

X |C
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Example 1: Markov chain
The causal network corresponding to the Markov chain is given by V = {z1,...,zn},
pa(ry) = xx—1 with & > 2, and pa(z;) = 0 (see also Fig. 6.2). We set X =
{z1,...,zn} and C = 0, so that we have Br11 = pa(zgy1) \ {zx} = 0. Thus, the
entropy production on causal networks Eq.(6.9) gives the entropy production for the
Markov chain Eq. (3.20):

(6.10)

Example 2: Feedback control with a single measurement

The causal network corresponding to the system under feedback control with the
single measurement is given by V = {z1,m1,z2,..., 2N}, pa(xg) = {m1,xx_1} with
k > 2, pa(x1) = 0, and pa(my) = 21 (see also Fig. 6.2). Weset X = {x1,...,zn} and
C = {c1 := mq}, so that we have By, = pa(zi+1) \ {zx} = {m1} with £ > 2. Thus,
the entropy production on causal networks Eq.(6.9) gives the entropy production for
a feedback control Eq. (4.5):

1 Pl lre,mi)
o= DAk 11Tk ) 1 (6.11)

i PB(Tk|Trs1,ma)

Example 3: Coupled Langevin equations
Here we discuss the following coupled Langevin equations

#(t) = fo(2(1),y(1) + £ (1),
y(t) = fy(a(t), y(t)) + £ (1),
(€ (@) =0,
(€¥(t)) = 0,
(€7 ()" (t) =2T76(t — '),
(€(1)g (1) = 21v6(t — 1),
(€7 (1€" () =0, (6.12)

where z; (y;) is a dynamical variable of the system X (Y). The corresponding
Bayesian Network is given by V = {x¢, s, Trrar, Yerar ), palze) = 0, paly:) = z,

pa(xirar) = {xe,ye} and pa(yirar) = {xt, y:} (see also Fig. 6.2). The entropy pro-
duction on causal networks Eq.(6.9) gives

p(wt) p($t+dt|xta yt) (6 13)
p(-Tt—i—dt) PB ($t|$t+dt; yt)

oc=1In

where we set X = {x1 1= zy,22 := Tryar}, C = {1 := ys,¢2 := Yeyar}, and Bs = y;.
For the coupled Langevin dynamics, we can explicitly calculate the entropy change
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in heat baths Asf=!. The conditional probability p(z;ia4|z:,y:) is given by

. (Tipar — ¢ — fm(l’t>yt)dt)2
plasalar ) =N exp | et 5 S e
and the backward probability pg(zii4t|Ts, y¢) is defined as
Ty — X — fz(x Ly )dt)?
P (wrlesar ) == N oxp [—( SRR } , (6.15)

where we assume that x; and y; are even functions of the momentum. Up to the
order o(dt), the entropy change in heat baths Asf=1 is calculated as

k=1 . P(Titat| e, Y1)
Aspan == In pB(Tt|Titat, yt) (619
_ fo (e, yt) +T£x(xt+dt’ yt) (Ttrar — xt) (6.17)
_ fo(@e,ye) + J;fl@ﬁdt’ Yterdr) (Terar — x¢) (6.18)
_ (€@ —;«:it)) od(t) . (6.19)

Here, (£%(t) — @(t)) o ©(t) is Sekimoto’s definition of the heat flow in the system X
for the Langevin equations [72]. We add that, up to the order o(dt), AsF=l can be
rewritten as

= xT T ) + x X 9
Aslég&l _ f ( t yt) h;gf t+dt det)(fl?tert —l‘t) (6.20)
P(SCtert ’xb yt)

=In , 6.21
PB(Zt|Titat, Yerdt) ( )
where the backward probability is defined as
- — Jx 5 dt 2
PB(Tt|Tetdt, Yevar) = Ny exp | — (@0 = Trvae = JolTrvar, Yerar) ) (6.22)

AT*dt

This fact indicates that it does not matter whether we select the condition of the back-
ward probability y; or y:44; if we discretize the dynamical variables with infinitesimal
time interval dt.

6.1.3 Transfer Entropy on Causal Networks

We here discuss the transfer entropy on causal networks. On causal networks, we have
two time series X = {x1,...,2ny} and C = {¢1,...,cn/}. The transfer entropy is a
measure of the causal dependence in the dynamics. Thus the most natural choice of
the transfer entropy from X to C depends on the set of parents pa(¢;) in the transition

probability p(¢;|pa(c)).
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The set of parents pa(c;) generally includes both elements of X and C. We define
the intersection of two sets X (C) and pa(c;) as pax(¢;) := X Npa(q) (pac(c) =
C Npa(c)), where N denotes the symbol of intersection. The set of parents pa(c;) is
rewritten as pa(c;) = {pax (i), pac(c)}, so that the transition probability p(¢;|pa(c;))
is calculated as

p(alpa(a)) = plalpax(a), pac(c)) (6.23)
= p(elpax(c),c—1,--.,c1), (6.24)

where we used the property of the Bayesian network Eq. (5.5). In the transition
probability p(c;|pa(c;)), the set pay (¢;) indicates the causal dependence of the target
system X in the dynamics from {¢;_1,...,¢1} to ¢. By comparing the transition
probability in C and that under the condition pay(c;), we introduce the transfer
entropy from X to C at [ such as

Il = (Inp(cpax (i), ci-1,...,c1) —Inplee_1, ..., c1)) (6.25)
= (Inp(¢lpalc)) — Inp(clei—1, ..., c1)). (6.26)

This transfer entropy can be rewritten as the conditional mutual information

I, = I(c; : pax(c)lei1, ..., c1). (6.27)

From the nonnegativity of the mutual information, we have I, > 0 with equality if
and only if p(¢;|pax (1), ci—1,...,¢1) = plc|ci—1, - .., ¢1) [or equivalently pay (¢;) = 0].
We also define the stochastic transfer entropy il as

iir = Inp(¢|pale)) — Inp(ele—1,...,c1). (6.28)

The sum of the transfer entropy >, I L is a quantity similar to the directed information
IP1 Eq. (2.35).

6.1.4 Initial and Final Correlations on Causal Networks

We here define two types of mutual information which represent the initial and final
correlations between the target system X and the outside world C.

First, we define the initial correlation on causal networks. The initial state x
is initially correlated to its parents pa(xi), because the state of xy is given by the
transition probability p(zi|pa(x1)). pa(zy) is the set of variables in outside world,
i.e., pa(z1) C C. A natural quantification of the initial correlation between X and C
is the mutual information between x; and its parents:

Lini := I(x7 : pa(xq)). (6.29)

From the nonnegaivitiy of the mutual information, we have I;,; > 0 with the equality
satisfied if and only if p(z1|pa(x1)) = p(x1) [or equivalently pa(zy) = 0.

Next, we define the final correlation on causal networks. The dynamics in the
target system X generally depends on the ancestors of the final state zy, an(zy).
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We introduce the set C' := an(zn)NC, which is the history of the outside world C that
can affect the finial state x. Thus, a natural quantification of the finial correlation
between X and C is given by the mutual information between zy and C’:

It = I(zy : C'). (6.30)

We also define the stochastic initial correlation and the stochastic final correlation as

Gini := i(z1 : pa(z1)) (6.31)
—1In % (6.32)
ifin := 1(zn : C) (6.33)
. plan,C)
=In pE—— (6.34)

respectively.

6.2 Generalized Second Law on Causal Networks

We now state the main result of this thesis. In the foregoing setup, we have the
generalized second law for subsystem X in the presence of the other system C.

6.2.1 Relative Entropy and Generalized Second Law

Here, we define the key informational quantity © characterized by the topology of the
causal network:

O = ifn — fini — Y i, (6.35)

llciec’

This quantity © indicates the total stochastic information flow from the target system
X to the outside world C’ in the dynamics from z; to xy, where ig, and i;,; mean
the boundary terms. Its ensemble average (©) gives the total information flow given
by the mutual information and the transfer entropy.

We show that the difference between the entropy production and the informational
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quantity o — © can be rewritten as the stochastic relative entropy

c—0—=1In ]\i—f D $k+1|$k78k+1))] I p(zn,C") i p(z1|pa(zy))

iy PB(@klThyr; B p(xn)p(C) p(1)

N Z 1 Plalpale))

lc eC’ Cl|Cl 1,...,01)

I Hk 1p(xk|Pa(mk))Hz|clec pla |Pa(cl))]

| LS pe(@lziss, Burn)p(zn, C7)
=In _ (V) ]

_Hiv:_ll pB (k| Tkt1, Brs1)p(zn, C) Hz|cl¢c/ plalpa(a))
=dxr(p(V)llp(V)), (6.36)

where we define the backward path probability pg (V) as

N—1
= H pB(zk|TKs1, Bes1)p(zn,C H p(ci|paler)) (6.37)
k=1 llergc!

The backward path probability satisfies the normalization of the probability such as

N-1
> psWV) = > ] pa(@klzrsr, Brsr)plan,C')
v X.C' k=1
= 3 plaw.C) (6.38)
:EN,C'
1 (6.39)

The definition of this backward path probability pg (V) indicates that the conditional
probability in the target system X is given by the backward path probabil-
ity (i.e, Hg:_ll pB(zk|Tkt1,Br+1)) and the conditional probability in the other
systems C is given by the probability distribution of the forward process (i.e,
p(@N,C") 1}, ¢c Plcarlpalcr))). It implies that we consider the backward path only
for the target system X under the condition of stochastic variables C, where the
distribution of C is given by the distribution of a forward process p(V).

From the identity Eq. (3.36) and the nonnegativity of the stochastic relative entropy
Dx1,(p(V)|lps(V)) > 0, we have the generalizations of the integral fluctuation theorem
and the second law of thermodynamics,

(exp(—o + 0)) =1, (6.40)
(0) > Itn — Ii — > I, (6.41)

l|Cl¢CI
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Fig. 6.3 Schematic of the generalized second law on causal networks. We con-
sider two fluctuating subsystems X and C. The entropy production of X is
generally bounded by the informational quantity (©) which includes the initial
correlation [in; between X and C, the final correlation Is, between them, and the
transfer entropy Iy from X to C’ during the dynamics. We can automatically
calculate the informational quantity (©) using the graphical representation by
causal networks.

The equality in Eq. (6.41) holds if and only if a kind of reversibility p(V) = pg(V)
holds. Application of the generalized second law to specific problems is straightfor-
ward by using the expression of the causal networks (see also Fig. 6.3). We next show
several applications to stochastic models.

6.2.2 Examples of Generalized Second Law on Causal Networks

We here illustrate that the generalized integral fluctuation theorem Eq. (6.40) and
the generalized second law Eq.(6.41) can reproduce known nonequilibrium relations
in a unified way, and moreover can lead to novel results.

Example 1: Markov chain

We consider the causal network corresponding to the Markov chain: V :=
{z1,...,2n}, pa(zy) = {xx—1} with & > 2, and pa(z1) = 0 (see also Fig. 6.4).
We here set X = {z1,...,2y} and C = (). We have ig, = 0, ijn; = 0 and i}, = 0.
From the generalized integral fluctuation theorem Eq. (6.40) and the generalized
second law Eq.(6.41), we reproduce the conventional integral fluctuation theorem

Egs. (3.37) and (3.40):
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Example 1 Example 2

A
@ CI
X - X

Fig. 6.4 Examples of the generalized second law on causal networks. Example
1: Markov chain. Example 2: Feedback control with a single measurement.

Example 2: Feedback control with a single measurement

We consider the causal network corresponding to the system under feedback control
with a single measurement : V := {x1,my, z2,..., 2N}, pa(xg) = {xg_1,m1} with k >
2, pa(my) = {x1}, and pa(z1) = 0 (see also Fig. 6.4). We here set X = {x1,...,xn}
and C = {m1}. We have ig, = i(zx : m1), 4in; = 0 and il, = i(xy : my). From the
generalized integral fluctuation theorem Eq. (6.40) and the generalized second law
Eq.(6.41), we reproduce Sagawa-Ueda relations Eqgs. (4.9) and (4.11):

(exp[—o +i(xn : mq) —i(x1 : mq)]) =1, (6.44)
(o) > I(zny :mqy) — I(z1 : my). (6.45

Example 3: Repeated feedback control with multiple measurement

We consider the causal network corresponding to the system under feedback con-
trol with multiple measurements : V = {x1,my,x2,ma,...,xn,mn}, pa(zg) =
{zk_1,mk_1,...,m1} with k& > 2, pa(m;) = {z;}, and pa(z1) = 0 (see also Fig.
6.5). We here set X = {z1,...,2n}, C={mq,...,mn}, and C' = {mq,...,my_1}.
We have ig, = i(zy @ {m1,...,mnx_1}), i = 0 and i, = i(a; : mylmy_q,...,mq).
From the generalized integral fluctuation theorem Eq. (6.40) and the generalized
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Example 3

Example 4

TN

=

Fig. 6.5 Examples of the generalized second law on causal networks. Example
3: Repeated feedback control with multiple measurements. Example 4: Coupled
Langevin equations.

second law Eq.(6.41), we have the following relations:

< exp

On the other hand, Horowitz and Vaikuntanathan [27] have derived the information
thermodynamic equality in the case of the repeated feedback control such as

N-1
<exp [—ﬁWd — Z iz my|lmy_q,... ,ml)] > =1, (6.48)

=1

N-1
—o+i(zy : {my,...,mn_1}) — Z i(xy :ml|ml_1,...,m1)]> =1, (6.46)

=1
N-1
(o) > I(xy : {m1,...,mn_1}) — Z I(zy :my|lmy—q,...,mq1). (6.47)
=1

where [ is the inverse temperature of the heat bath, and Wy is the dissipated work
defined as Wy := i\f:—ll As{jath—}—lnpeq(xl) —Inpeq(zn|ma,...,mny_1) [Peq indicates
the equilibrium distribution]. If the initial and final states of the system X are in
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thermal equilibrium, SW, is equivalent to o — I, such that

N-1

OWy = Z As}gath + Inpeq(1) — M peq(zn|ma,....,my_1) (6.49)
k=1
N—1
= Z Ast oo+ Inpeq(r1) — Inpeq(zn) Fi(zy : {m1,...,my_1})  (6.50)
k=1
=0 — ifin, (6.51)
where we use a thermal equilibrium condition, i.e., i(zy : {mq,...,mn_1}) =
Inpeq(xn) — N peq(zn|mi,...,my_1). Thus our general results Egs. (6.40) and

(6.41) can reproduce the known result for the system under feedback control with
multiple measurements.

Example 4: Coupled Langevin equations

We consider the causal network corresponding to the coupled Langevin equations Eq.
(6.12): V := {x4, Y1, Titde, Ye+dr ), PAUTh+dt) = {Te, Yt }, PA(Yerar) = {Te, Ye}, palze) =
0, and pa(y;) = {z+} (see also Fig. 6.5). We here set X = {x1 := xy, 22 1= Ttpar},
and C' = C = {c1 := yt,C2 := Yeat}- We have ig, = i(Terar  {Yt, Yeadt})s tini = 0,

it = i(z¢ 1 yp), 15 = (x4 : Ysrae|ye). The informational quantity © is calculated as

O = i(@eqar : {Yer Yerar)) — 1(Te : Yerarlye) —i(ze 2 ye) (6.52)
= i(Teyar  {Ye Yerary) — 8(xe  {Yer Yerar ) (6.53)
= i(Tppdr * Yegdr) — U Te 2 Ye) 1 @Topar : YelYigar) — 1(Te  Yepar|ye)- (6.54)

From the generalized integral fluctuation theorem Eq. (6.40) and the generalized
second law Eq.(6.41), we have the following relations:

(exp [—0 + i(Tttar : {Yt, Yerar}) — (@t {Ye, Year})]) = 1, (6.55)
(0) > I(Tegar - 1Y, Yegary) — L(@e - {ye Yegar}), (6.56)

or equivalently,

(exp [=0 +i(Ttyar : Yevar) — 1(xe 2 Ye) + i (Tepar : YelYerar) — 1@ Yerarlye)]) = 1,

(6.57)
(0) = I(@erar s Yerar) = Lo 2 ye) + L (@eqae - Yelyerar) — 1@ 2 Yerarlye)-
(6.58)
Equation (6.19) gives the entropy production o as
1% (t)dt
g=—1 ,}2 +Inp(xt) — Inp(zirar) (6.59)
7(t) i= (&(t) = £5(1)) 0 (1) (6.60)
The generalized second law Eq.(6.41) can be rewritten as
1% (t))dt
—M + dSm|y(t) > I(wevar : Yelyerar) — 1(@e 2 yevaelye), (6.61)

T:I?
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where dSy, (t) := (Inp(z¢|y:) — In p(w¢4a¢|ys+ae)) is the Shannon entropy difference of
the system X under the condition of the system Y. The equality holds if and only if
the local reversibility

p(xt+dt|xta yt>p(yt+dt|xt» yt>p(xta yt)
=PB (iUt |90t+dta yt+dt)P(yt |$t+dt, yt+dt)p(90t+dt7 yt+dt) (6-62)

holds.

In a stationary state, we have p((zt1ar : Yi+at) = p(zr : y¢), and the Shannon
entropy vanishes, i.e., dS;,(t) = 0. Even in a stationary state, the transfer entropy
from X to Y, I(x¢ : Yetat|lye), and the term I(ziyar : Ye|Yrrar) still remain. We
here call I(xiyaqr : yt|yrrar) the “backward transfer entropy”, which indicates the
conditional mutual information under the condition of the future variables. From
the nonnegativity of the conditional mutual information, the transfer entropy I(z; :
Yi+dt|yt) gives an upper bound of the stationary entropy reduction in the target system
X and the backward transfer entropy I(x¢+at : Ye|yt+at) gives a lower bound of the
stationary dissipation in the target system X. Thus, for the coupled dynamics, the
information flow defined as the transfer entropy and backward transfer entropy from
the target system to the outside world, gives a bound of the stationary heat flow
(5*(t)) in the target system.

Example 5

Example 6

Iﬁn

CI : C’

Fig. 6.6 Examples of the generalized second law on causal networks. Example
5: Coupled dynamics with a time delay. Example 6: Complex dynamics.
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Example 5: Coupled dynamics with a time delay
We here consider the causal network given in Fig. 6.6: V := {ys—Ar, Tt, Yt, Terdt, Yerdt |

Pa($k+dt) = {xtayt—AT}v pa(yt—l—dt) = {»’L’t,yt}a pa(xt) = {yt—AT}7 Pa(yt) =
{yi—ar 2} and pa(yi_nr) = 0. We set X = {x1 := x4,29 = @yrq}, and

C =C ={a = y-ar,c2 = Yt,63 = Yeyary. We have i = (2 @ ye—ar),
in = (Terar 0 AY-an Yo Yera})s i = 0, ip = (@ yilyr-ar), and
i2. = i(x¢ : Yerat|Vs, ye—ar). In this case, the informational quantity © is cal-
culated as

O = i($t+dt : {yt—AT7yt7yt+dt}) - i($t : yt—AT) - i(xt : yt|yt—AT) - i(xt : yt+dt!yt,yt_m)

(6.63)
= i(2iqar : {Ye—nr Yt Yerar}) — 02 {Y—ar, Yt, Yerdt })- (6.64)

From the generalized integral fluctuation theorem Eq. (6.40) and the generalized
second law Eq.(6.41), we have the following relations:

(exp [—0 + i(@tyar  {Ye—ar Ve, Yerar}) — (@ {Ye—ar, Ve, Yerae})]) =1,  (6.65)

(o) >1(xigar - {yt—ar, Y- Yetar}) — Lz {yi—ar, Yo, Ye+ar}) (6.66)
:I($t+dt : {yt,yt+dt}) - I(CUt : {ytayt—i—dt})
+ I($t+dt : yt—AT|ytvyt+dt) - I(l’t : yt—AT|yta yt+dt)- (6-67)

The crucial difference between this model and the coupled Langevin equations [Ex-
ample 4], is the dependence of the time delayed variable y;—a,. In the case of the time
delayed dynamics, the mutual information difference I(ziyar : {Yt—ar, Yt, Yt+dar}) —
I(xe © {Yt—Ar,Yt, Ytrar}), which gives a bound of the entropy production, includes
the variable y;_a,. Equation (6.67) gives the effect of the time delay for the en-
tropy production in X as the difference of the backward transfer entropy I(x¢4qs :

yt—AT‘yta yt—l—dt) - I(ﬂit : yt—AT’ybyt-i-dt)-

Example 6: Complex dynamics

We here consider the causal network corresponding to complex dynamics given in
Fig. 6.6: V := {y1, 71, 21,72, 22, Y2, 23, 23}, pa(y1) = 0, pa(z1) = y1, pa(z1) = yi,
pa(ra) = {71, 21}, pa(z2) = {71,21}, pa(y2) = {y1,22,22}, pa(x3) = {z2,y2} and
pa(zs) = {z2,22}. We set X = {x1,29,23}, C = {c1 := y1,C2 := 21,¢3 := 23,C4 :=
ya2,¢5 = z3}, and C' = {y1,21,292,y2}. We have iy = i(x1 : y1), ian = i(x3 :
{y1,21, 20, 42}); iy = 0, g, = 0, i3, = i(x1 = 22ly1, 21), and iy, = i(w2 : Y2|y1, 21, 22).
From the generalized integral fluctuation theorem Eq. (6.40) and the generalized
second law Eq.(6.41), we have the following relations:

(exp(—o + ©)) = 1, (6.68)
O =i(x3 : {y1,21,22,y2}) —i(z1 1 y1) — i(x1 @ 22|y1,21) — i(T2 2 Y2ly1, 21, 22), (6.69)

(o) >I(x3 : {y1,21,22,y2}) — L(x1 1) — L(x1 @ 22|ly1, 21) — (22 = y2ly1, 21, 22).
(6.70)
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6.2.3 Coupled Chemical Reaction Model with Time-Delayed Feedback Loop

We here discuss an application of our general result to coupled chemical reaction
systems with a time-delayed feedback loop. The model is characterized by a feedback
loop between two systems: output system O and memory system M. We assume that
each of O and M has a binary state described by 0 or 1. The model is driven by the
following master equation:

RN =~ (0P () + iy (O (1), (6.71)
o (1) = (0l (1) + w5 (0p (). (6.72)

where pil (t) (py) is the probability of the state 0 (1) with X = O, M at time ¢. The
normalization of the probability is satisfied, i.e., pg () + piX(t) = 1. The transition
rate of a chemical reaction w ., (i’,j’ = 0,1) is given by

,L'/7j/
1
X X (X X
wi/’j/ = T_X eXp[—ﬁ (‘Di/j/ — F’i’ (t))], (673)
where 7% is a time constant of the system X, 8% is the inverse temperature of a heat

bath coupled to the system X, F:X(t) is the effective free energy of the state i’ at time
t, and Df,(j, is the barrier of X between states i’ and j’ that satisfies Df,(j, = D])-fi,.
This transition rate is well-established in chemical reaction models [72].

Here we consider the feedback loop between O and X (see also Fig. 6.7). We
introduce the random variables (01,02, m1, m2), where o7 is the state of O at time ¢,
0o is the state of O at time ¢t + At, m; is the state of M at time t — At’, and mo is the
state of M at time t + At — At’ with At > At’. The feedback loop between O and
X is described by the dependence of ox and my in the effective free energy F f (t).
From time ¢ to ¢t + At, the effective free energy FHO (t) depends on m; and mqy, where
mq-dependence indicates the effect of a time-delayed feedback control. Fi,o (my,m2)
denotes the effective free energy of the state i’ in O under the condition of (mq,ms).
From time t — At’ to t + At — At/, the effective free energy F/(t) depends on 1.
FM(x1) denotes the effective free energy of the state i’ in M under the condition of
x1. The joint probability distribution of this model is given by

p(ma, 01, ma, 02) = p(ma, 01)p(mzl|o1, m1)p(oz2]o1, m1, ms). (6.74)

The chain rule p(mq,01) = p(mq)p(o1|mq)gives the causal network corresponding
to this model as V = {my,01,m2,02}, pa(oz) = {01, m1,ma}, pa(mz) = {01, m1},
pa(o1) = {m1}, and pa(m;) = 0 (see also Fig. 6.8).

Information thermodynamics in the memory system M
We next treat the output system O as the target system X. If we set M = {x; :=
mi,z2 :=ma}, C = {c1 := 01,co := 02}, and C' = {01}, the entropy change As] ., in
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t+ At
02
t+ At — At
output O memory M meo
M
) &
time-delayed = M
— ‘ 0
-+ . *
time-delayed N
mai
output O memory M

Fig. 6.7 Schematic of the coupled chemical reaction model with a time-delayed
feedback loop. The previous states of O and M determine the effective free energy
landscapes F© or F™. A blue directed arrow indicates the effect of time-delayed
feedback loop. This time-delayed effect is introduced by mi-dependence of F©.

Fig. 6.8 The causal network corresponding to the coupled chemical reaction
model with a time-delayed feedback loop.

a heat bath attached to the system M is given by

p(m2|m17 01)
pB(ml‘mQ; 01) ’

Asp e, = In (6.75)

where we used By = pa(ms)\{m1} = {01}, and the backward probability is defined as
pp(my =i'lme = j5',01) := p(ma = '|m1 = j',01). From time t — At’ to t + At — At/,
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the master equation of the system M can be rewritten as

S (0) =~ Lo (01) + w0l (1) + wlh(on), (6.76)
Wity (or) = 37 expl-6 (DY, — FM (o0))], (6.77)

and we get the solution of Eq. (6.76) as

pdl(t+ At — At) = pé\{eq(ol) + (pd(t — At — pé\?eq(ol)) exp[—w™ (01)At], (6.78)
pM(t+ At — AY) =1 —p) (t + At — At), (6.79)
where w™(01) := w{’ (01) + wi(01), and pf% (01) is an equilibrium distribution of
the state 0 in M under the condition of 0 defined as

exp(—BY Fy (01)]
exp[—BMF (o1)] + exp[—BM F{M (01)]
Substituting pd?(t) = 0,1 into the solutions of Eqgs. (6.78) and (6.79), we have the
conditional probability p(ms|my,01):

Pheq(01) = (6.80)

p(ma =0lmy =0,01) = pé?eq(ol) +(1- pé\?eq(ol)) exp[—w™ (01)At], (6.81)
p(ma =0lmy =1,01) = pgffeq(ol) — pgffeq(ol) exp[—w™ (01)At], (6.82)
p(mg = 1imy =4',01) =1 —p(oz =0]oy =7i',01). (6.83)

From Egs. (6.81), (6.82) and (6.83), we have

p(mg |m1, 01)

Asi,, =In 6.84
bath pB(mi|mz,o1) ( )
O (m1 = mg)

= ¢ In[1 —pdL (01)] —Inpgh (1) (m1=0,my=1) (6.85)
In pg'eq(01) = In[1 — po’,(01)]  (m1 = 1,m2 = 0)
= —pMAFM, (6.86)
where AFM is the effective free energy difference defined as AFM = FM (01) —

F9 (01). The entropy change in a heat bath gives the effective free energy difference
in the memory system M.

On the causal network corresponding to this model, we have ig, = i(mso : 01),
imi = 0, and il, = i(my : 01) (see also Fig. 6.9). Informational quantity © is
calculated as

e = z(mg : 01) — z(m1 . 01) (687
=Inp(mq) — Inp(mz) + Inp(me,01) — Inp(mq, o1). (6.88)
From the generalized second law Eq.(6.41), we have the following relation

(o) > I(mg :01) —I(my : 01), (6.89)
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Fig. 6.9 The generalized second law in M on the causal network corresponding
to the coupled chemical reaction model with a time-delayed feedback loop.

or equivalently
—(BMAFM) > (Inp(ma, 01)) — (Inp(my,01)). (6.90)

This result is equivalent to the Sagawa-Ueda relation, which is valid for a system
under the feedback control. A bound of the effective free energy difference (AFM) is
given by the two-body Shannon entropy difference.

Information thermodynamics in the output system O

We next treat the output system O as the target system X. If we set X = {x; :=
01,72 := 02} and C = C’ = {c¢1 := my, c2 := ma}, the entropy change Asi ., in a heat
bath attached to the system O is given by

p(02|017 may, m2)

pB(01‘027m17m2),

Asi e, = In (6.91)
where we used By = pa(z2)\{z1} = {m1, m2}, and the backward probability is defined
as pg(o1 = i'|og = j',m1,ms) := p(o2 = '|oy = j',m1, m2). To obtain the analytical
expression of As{ .., we here calculate the conditional probability p(os|o1,m1,m2).
From time ¢ to t + At, the master equation of the system O can be rewritten as

d
2P pS () = —[w1(m1, ma) + wo(my, m2)|pf (t) + w(m1, ma),  (6.92)
1
w?’j,(ml,mg) =5 exp[—ﬁO(DiO,j/ — F2(my1,my))], (6.93)

and we get the solution of Eq. (6.92) as

P (t+ At) = pgloq(m1,ma) + (5 (£) = DG eq (M1, m2)) exp[=w® (m1, m2) At], (6.94)
pO(t+ At) =1 —p§ (t + At), (6.95)
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where w©(my, ms) = wgl(ml,mg) + w1070<m1,m2), and pOO’eq(ml, mg) is an equilib-

rium distribution of the state 0 in O under the condition of (mj,ms) defined as
exp[—BOF (m1, m)|

exp[—BOF (m1, m2)] + exp[—BOFL (m1, ms)]

p(()),eq(mlvm2) = (696)

Substituting p§ (t) = 0,1 into the solutions of Eqgs. (6.94) and (6.95), we have the
conditional probability p(os]o1, m1,ms):

p(02 = 0oy = 0,m1,m2) = p§eq(m1,m2) + (1 — p§ o (m1,m2)) exp [~w® (mq, ma) At]
(6.97)

p(02 = 0‘01 =1,m, mz) = p((J),eq(mlv m2) - p()o,eq(m17m2) exp [_wo(m17m2)At]
(6.98)
(6.99)

p(oa = 1|oy =1',m1,ma) =1 — p(oz = 0oy =1i',my, m2).
From Egs. (6.97), (6.98) and (6.99), we have

p(oz|o1,m1,m2)

As? . =1In
bath pB(01|027m17m2)

(6.100)

0 (01 = 02)

=< In[l —p§. (m1,m2)] —Inpf . (m1,m2) (01 =0,02=1) (6.101)
lnp()o,eq(mlv m2) - 11’1[1 - p(?,eq(mla mQ)] (01 =1,00 = )

= —p9AF°, (6.102)

where AF© is the effective free energy difference defined as AF© := FZ(my, ms) —
F2(my,ms). The entropy change in a heat bath gives the effective free energy differ-

ence in the output system O.
/
I |C

Lini @
X

Fig. 6.10 The generalized second law in O on the causal network corresponding
to the coupled chemical reaction model with a time-delayed feedback loop.

On the causal network corresponding to this model, we have ig, = i(0g : {m1,m2}),
iini = (01 : my), it, = 0 and 2, = i(01 : ma|m1) (see also Fig. 6.10). Informational
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quantity © is calculated as

@ = i(OQ : {ml,mg}) — i(Ol : ml) — i(Ol : m2|m1) (6103)
=0y : {m1,ma}) —i(01 : {m1,m2}) (6.104)
=Inp(o1) — Inp(o2) + Inp(o2, m1, ms) — Inp(o1, my, ma) (6.105)

From the generalized second law Eq.(6.41), we have the following relation
— (B AF©) > (Inp(0oz, m1,ms2)) — (Inplor, m1,ms)). (6.106)

The right hand side of Eq. (6.106) is the change in the three-body Shannon entropy,
not in the two-body Shannon entropy. This three-body Shannon entropy includes
the states of different times m; and mso. This is a crucial difference between the
conventional thermodynamics and our general result. Our general result is applicable
to non-Markovian dynamics such as the time-delayed feedback loop, where the con-
ventional second law is not valid. In our general result, the Shannon entropy includes
the state of different times plays a important role of the generalized second law for
non-Markovian dynamics.

Here we numerically illustrate the validity of Eq. (6.106) in Fig. 6.11. In this
model, the equilibrium distribution is numerically calculated as pg eq(ml =0,mg =
0) = 0.332, pfoq(mi = 0,my = 1) = 0.310, p§oo(m1 = 1,mz = 0) = 0.289, and
PGoq(mi = 1,my = 0) = 0.278. We note that the value of (¢) — (©) in Fig. 6.11
is close to 0 when the initial states are close to the equilibrium distribution of the
output system, which is similar to the probability pgeq(ml,mz).
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Fig. 6.11 Numerical illustration of the nonnegativity of (o) — (@) =
—(B°AF®) + (Inp(o1,m1,m2)) — (Inp(o2,m1,m2)). We here assume that o
and m; are independent, i.e., p(o1,m1) = p(o1)p(m1). We set the parameters
as follows: At = 0.5, 39 = 9 = 0.01, 7 = 7™ = 0.001, DS, = D} = 100,
F'(x1 = 0) = F§'(x1 = 1) = 100, F{*(x1 = 0) = 10, FM(x; = 1) = 30
, FP(m1 = 0,ma = 0) = F@(m1 = 1,mz = 0) = F{(m1 = 0,ma = 1) =
FE(mi1 =1,ma = 1) =100, FP(m1 = 0,m2 = 0) = 30, FC(m1 = 1,mz =0) =
10, F2(m1 = 0,m2 = 1) = 20, and FC(m1 =1,ma2 = 1) = 5.
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Chapter 7

Application to Biochemical Signal
Transduction

In Chapter 6, we showed that our general theory of information thermodynamics on
causal networks is applicable to a broad class of nonequilibrium dynamics, such as a
feedback controlled system, coupled Brownian particles and a chemical model with
time-delayed feedback control. In this Chapter, we discuss an application of our gen-
eral result to a biochemical signal transduction, and show that information thermody-
namic inequality reveals the fundamental limit of the robustness of signal transduction
against environmental fluctuations [59]. Our information-thermodynamic approach is
applicable to biochemical communication inside cells, where there is not any explicit
channel coding in contrast to the case of artificial communication, i.e., the noisy-
channel coding theorem. This chapter is the refinement of our paper submitted [Ito
S., & Sagawa T., arXiv: 1406. 5810]. [59]

7.1 Biochemical Signal Transduction

A biochemical signal transduction in living cells is vital to maintain life itself, where
the information transmission in a highly noisy environment plays a significant role [4,
5]. For example, the ligand activates the receptor on the cell surface, and the lig-
and binding triggers the biochemical reaction inside the cell to create the response.
Here we discuss the sensory adaptation, which is achieved by a biochemical signal
transduction with a negative feedback loop [160].

7.1.1 Sensory Adaptation

Sensory adaptation is an example of the biochemical signal transduction which re-
sponds to the stimulus change (e.g., a bacterial chemotaxis, an osmotic sensing in
yeast, an olfactory sensing in mammalian neurons, and a light sensing in mammalian
neurons) [161]. To become suited to the stimulus change, a negative feedback loop
plays a crucial role. For example, a bacterial chemotaxis is a simple model organism
for sensory adaptation [162], where the concentration of the kinase activity does not
depend on the current concentration of the ligand, but depends on the change of the
ligand density. Kinase activity activates a flagellar motor to move bacteria toward a
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direction of the higher ligand density. To detect the change of the ligand density, the
current concentration of the ligand is stored in the memory degree of freedom, and a
negative feedback is achieved between the memory and the kinase activity. Thus, the
various types of adaptive signal transductions characterizes three components, i.e.,
the ligand input [, the kinase activity a and the memory m [see also Figure 7.1].

>

Kinase activity (], Memory 1M

<«

Ligand input [

Fig. 7.1 The main components of sensory adaptation are the ligand input [, the
kinase activity a and the memory m. The negative feedback loop is in a and m.

We here show the case of E. coli (Escherichia coli) bacterial chemotaxis in Figure
7.2. The methylation level of the receptor play a role of the memory degree of the
freedom m, and restrict the ligand signal [ towards the kinase activity a.

Chemotaxis
o

Methylation level m

B

Flagellar motor

: Negative feedback loop

Fig. 7.2 Schematic of the E. coli bacterial chemotaxis.

7.1.2  Mutual Information in Biochemical Signal Transduction

Biochemical signaling networks can be highly noisy [163, 164]. To understand the
information transmission in noisy environment, the mutual information is a natu-
ral measure of information transmission. To address the question how information
is transmitted correctly in the presence of noisy biological environment, the mutual
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information in biochemical signaling networks has been studied theoretically and ex-
perimentally. Since the transfer entropy is the conditional mutual information under
the condition of the past value, it gives the channel capacity in an artificial com-
munication channel with a feedback loop [see also Figure 7.3]. However, as there
is no channel coding inside living cells, the role of the transfer entropy in biological
communication is still unclear.

Achievable information rate

(Accuracy of information transmission against noise) R

_> Input at -> Encoder Decoder—’t)utput M 4dt

t — — |

my

-y Channel capacity

|
C Z R 1 (O = Supp(at|mt)](at : mt+dt’mt)

Fig. 7.3 The noisy channel coding theorem in a feedback loop. The transfer
entropy I(as : met+a¢|me) is related to the achievable information rate R in case
of a feedback loop.

7.2 Information Thermodynamics in Biochemical Signal

Transduction

We here apply our general theory of information thermodynamics for the biochemical
signal transduction. To discuss the information-thermodynamic effect in biochemical
signal transduction, we analyze the coupled Langevin model of sensory adaptation.

7.2.1 Coupled Langevin Model of Sensory Adaptation

Let a; be the kinase activity at time ¢, m; be the memory degree of freedom (e.g.,
the methylation level of the receptor in E. coli bacterial chemotaxis) at time ¢, and I;
be the ligand signal at time ¢. The model of adaptive signal transduction is given by
the following coupled Langevin equations [165, 6, 161]:

1

at = _T_a[at — ag(my, l)] + &, (7.1)

: 1 m
my = —T—mat + ft (72)
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where a; is the stationary value of the kinase activity under the instantaneous values of
the memory m; and the ligand signal I; at time ¢t. £ (x = a,m) is the white Gaussian
noise at time ¢ with (¢7) = 0 and (€765 ) = 2070, 6(t—1t'). T describes the intensity
of the environmental noise at time ¢, which is not necessarily thermal inside cells. The
time constants satisfy 77" > 7% > 0, which implies that the relaxation of a to a; is
much faster than that of m.

In the case of E. coli chemotaxis, the stationary value of the kinase activity a;(my, l;)
is given by the Monod-Wyman-Changeux allosteric model, which describes the effects
of the receptor cooperativity on kinase activity. The Monod-Wyman-Changeux al-
losteric model [4] is given by the equilibrium distribution of the receptor such as

exp[—AF (my, ;)]
1+ exp[—AF (my, ;)]

(7.3)

ag(my, ly) =

where AF' is the free energy difference between the active and inactive state of the
receptor. The free energy difference AF(my,l;) is given by

1+1/K;

AF(my,l;) = NF,,(m — Nln——*“>1
et i =ma) = NI R

(7.4)
where N is the number of coupled receptor dimers, F), is a linear constant of free
energy of the methylation level, m is the methylation value in zero ligand binding,
K7 is the dissociation constant corresponding to the inactive state of the receptor,
and K 4 is the dissociation constant corresponding to the active state of the receptor.
In the case of E. coli chemotaxis, the dissociation constants satisfy K4 > K;. When
the stimulus variation of the ligand is within the most sensitive regime of the sensory
system (i.e., K4 > l; > K ), we can approximate a; as

(zt(mt, lt) = O, MMt — O!llt (75)

by linearizing it around the steady-state value. Because the ligand signal I; only ap-
pears in the stochastic differential equation of a;, the noise intensity 7T} characterizes
the ligand fluctuations.

Here we explain the mechanism of sensory adaptation using the coupled Langevin
model Egs. (7.1) and (7.2) [see also Figure 7.4]. Suppose that the system is initially in
a stationary state with a; = a;(m¢,0) = 0 at time ¢t < 0, and [; suddenly changes from
0 to 1 at time ¢ = 0 as a step function. Then, a; rapidly equilibrates to a;(ms, 1) so
that the difference a; —a; becomes small. Next, m; gradually changes to a;(m¢, 1) =0
so that a; returns to 0, where a; — a; remains small.

7.2.2 Information Thermodynamics and Robustness of Adaptation

We now consider the generalized second law of information thermodynamics for cou-
pled Langevin equations Egs. (7.1) and (7.2), which can be obtained from Eq. (6.61):

a|m Ja
dIf* — dIB" 4+ 8™ > Fadt, (7.6)
t
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t = tf\ng

S~
~
|

p—t

t~T

¢ time

Fig. 7.4 Typical dynamics of adaptation with the ensemble average. Suppose
that [, changes as a step function (red solid line). Then, a; suddenly responds
(green solid line), followed by the gradual response of m; (blue solid line). The
adaptation is achieved by the relaxation of a; to a; (orange dashed line). The
methylation level m; gradually changes to a:(m¢, 1) = 0 (blue dashed line).

where dIf is the transfer entropy defined as dIf* := I(a; : myyqi|my), dIP' is the
transfer entropy defined as dIP™ = I(azyar : melmirar), dSy ™ is the conditional
Shannon entropy change defined as delm = (Inp(at|my)) — (Inp(ass-at|meyar)), and
Jit is defined as J{* := (a o [§} — a¢]). In the case of the coupled Brownian particles,
J{* corresponds to the heat absorption in a. Since the environmental noise is not
necessarily thermal in the present situation, J{* is not exactly the same as the heat

absorption. To clarify the role of the transfer entropy dIf*, we consider the weaker
bound of J as

J(l alm
Fadt < dIi" —dIP + dS, | (7.7)

t

< dIf +dsim, (7.8)

where we used the nonnegativity of the conditional mutual information dIB®™ > 0.

In a stationary state, the conditional Shannon entropy change vanishes (i.e., dS} ‘m),
and thus the transfer entropy gives the upper bound of J in a stationary state, i.e.,
aIfr > (Jidt) /T8

Here we discuss the biophysical meaning of the quantity J{*. The quantity J{* can
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be rewritten by the violation of the fluctuation-dissipation theorem as

Ji = (& — ] o) (7.9)
=2 o= adogt) = Lt - a)] (7.10)
— Tia [Tta ~ Tl_a<(“t - at)z)} : (7.11)

where we used the relation of the Stratonovich integral (g(a:,my,ly) o &) =
T7(0a,9(ar, my,ly)) for any function g. This quantity represents the difference
between the intensity of the ligand noise 7} and the mean square error of the degree
of the signal transduction ((a; — @;)?). Thus, the quantity J@ characterizes the
robustness of adaptation against environmental noise. The larger J; is, the more
robust the signal transduction is against the environmental noise.

4

o Feedback

cr
- @ | Measurement

Methylation level
m
o

o
Ligand [

2

Receptor : .
P Kinase activity (l Flagellar motor

o
: Negative feedback loop

Fig. 7.5 Maxwell’s demon in E. coli chemotaxis. From the viewpoint of ther-
modynamics, the methylation level m plays a similar role to the memory of
Maxwell’s demon, which reduces the effect of the environmental noise on the
kinase activity.

To clarify the central idea of our study, we focus on the case of stationary state.
If there was no feedback between a and m, information thermodynamics Eq. (7.8)
would reduce to

((ar — a)?) > 717, (7.12)

which, as naturally expected, implies that the fluctuation of the signal transduction
is bounded by the intensity of the environmental noise. In contrast, in the presence
of a feedback loop, information thermodynamics Eq. (7.8) indicates that {(a; — a;)?)
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can be smaller than 79T, owing to the transfer entropy dI;* in the feedback loop,

d Itr
((ag — @)?) > 7T} [1 - dé 7“1 : (7.13)
This is analogous to the central feature of Maxwell’s demon, which implies that infor-
mation transfer in the feedback loop reduces the effect of the environmental noise on
the target system (see also Figure 7.5). This inequality reveals the role of the trans-
fer entropy in biochemical signal transduction; the transfer entropy characterizes the
lower bound of the accuracy of the signal transduction in the biochemical network.

We add that Yuhai Tu had discussed Maxwell’s demon in a biological switch in a
different context in 2007 [166].

7.2.3 Information Thermodynamics and Conventional Thermordynamics

Conventional thermodynamics Information thermodynamics

information flo

dL"

dsem sy

| [ ] ||
| [ | | @
| | [ | | |
| [ ] |
HEER EEEEEERER HEN HEER
a m™m
Tt Tt
Heat flow Heat flow Heat flow
a a
—J —J" —J

Fig. 7.6 Information thermodynamics and conventional thermodynamics. The
second law of information thermodynamics characterizes the entropy change in
a subsystem in terms of the information flow between the subsystem and the
outside world (i.e., dIf* + dSM™ > dIf* — dIPY™ + dS&'™ > —Jgdt/T). In
contrast, the conventional second law of thermodynamics states that the entropy
change in a subsystem is compensated for by the entropy change in the outside
world (i.e., —J{"dt/T{" +dS§™ > Jidt/Tf).

We next compare the conventional thermodynamics with information thermody-
namics. The conventional second law for total systems a and m is given by

Ji Ji"
am > .
AS{™ 2 g dt + o dt, (7.14)

where dS§™ is the total Shannon entropy difference defined as dS§™ := (Inp(as, my))—
(Inp(at+ae, merar)), which also vanishes in a stationary state, and J;™ is the heat
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absorption in m defined as J™ := (m o [€™ — 1)) = —(a?)/(7™)%. In Figure 7.6,
we show the comparison between the conventional thermodynamics and information
thermodynamics. In a stationary state, the conventional second law implies that the
dissipation in m should compensate for that in a, i.e., —J/T{" > J2 /T

We here show numerical comparison between our information thermodynamics and
the conventional thermodynamics. We have two upper bounds of the robustness J,
which are given by information thermodynamics and the conventional thermodynam-
ics. Let Zinfo .= gt + de'm be the upper bound of Jdt/ T}, which is given by the
information thermodynamic inequality Eq. (7.8). Let =PV := —Jmdt/T/" + dS¢™ be
the upper bound of J2dt/T}, which is straightforwardly obtained from the conven-
tional second law of thermodynamics Eq. (7.14). Figure 7.7 shows Jadt/Tg, =infe
and Z5 in six different types of dynamics of adaptation, where the ligand signal and
noise are given by step functions (Figure 7.7a), sinusoidal functions (Figure 7.7b),
linear functions (Figure 7.7¢), exponential decays (Figure 7.7d), square waves (Figure
7.7¢) and triangle waves (Figure 7.7f). These results confirm that Z™° gives a tight
bound of J?, implying that the transfer entropy characterizes the robustness well.
Remarkably, information thermodynamic bound = gives a tighter bound of J¢
than the conventional thermodynamic bound Z$¥ such that =P > =infe > jage /¢
for every non-stationary dynamics shown in Figure 7.7. This fact indicates that the
signal transduction of E. coli chemotaxis is highly dissipative as a thermodynamic

engine, but efficient as an information transmission device.

7.2.4 Analytical Calculations

In the case of E. coli chemotaxis, we have a; = au,,m; — oyl; and the coupled Langevin
equations Eqs. (7.1) and (7.2) become linear. In this situation, if the initial distribu-
tion is Gaussian, we can analytically obtain the transfer entropy up to the order of
dt, and compare the information-thermodynamic bound Z™° with the conventional
thermodynamic bound Z5% analytically.

We here generally derive an analytical expression of the transfer entropy for the

coupled linear Langevin system:
. 17 1
gt =Y plal + f g,
J
. 27 1
iy = Zﬂt]xi +fP+€,
J

(&1&)) = 2Ti6,;0(t — ')
(&) =0, (7.15)

where i,j = 1,2, f{ and ,uij are time-dependent constants, T} is the time-dependent
variance of the white Gaussian noise £/, and (...) denotes the ensemble average. The
model of the E. coli bacterial chemotaxis is given by Eqs. (6.61) with a; = a,,me—ayl;.
To compare the notations of Egs. (8.16), we set {x}, 22} = {as,mi}, utt = —1/79,
:u%2 = O5m/7—a, ftl = _allt/Taa M?l = _1/7_m, M%z = 07 ftQ = 07 Tyt1 = Ttaa and
T? = T/™. The transfer entropy from the target system x! to the other system z? at



curves) and conventional thermodynamic bound Z°% (blue curves) of the robust-
ness Ji'dt/T¢ (red curves). The initial condition is the stationary state with
a: = amm: — aily, fixed ligand signal «;l;, and noise intensity T = 0.005.
We numerically confirmed that =5 > =Zhfe > Jidt /Ty holds for the six tran-
sition processes. These results imply that, for the signal transduction model,
the information-thermodynamic bound is always tighter than the conventional
thermodynamic bound. The parameters are chosen as 7* = 0.02, 7™ = 0.2,
Qm, 2.7, and T{" 0.005, to be consistent with the real parameters of
E. coli bacterial chemotaxis [165, 161, 6]. a, Step function: «l; 0.01
and T = 0.5 for ¢ > 0. b, Sinusoidal function: oyl; 0.01sin(400t) and
T = 0.5]sin(400t)| + 0.005 for ¢ > 0. c, Linear function: «;ly = 10t and
T{ = 100t 4 0.005 for ¢t > 0. d, Exponential decay: a;L; = 0.01[1 — exp(—200t)]
and Ty = 0.5[1 — exp(—200¢)] + 0.005 for ¢ > 0. e, Square wave: al; =
0.01[1+ [sin(200¢) |] and T3* = 0.05[1 + |sin(200¢) |] +0.005 for ¢t > 0, where |... |
denotes the floor function. f, Triangle wave: a;l; = 0.01|2(100¢ — |100t 4+ 0.5])|
and T = 0.5|2(100¢t — | 100t + 0.5])| + 0.005 for ¢ > 0.
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time ¢ is defined as dIf* := (Inplz}, 4 |xf, 27]) — (Inplxf, 4 |27]).

Here, we analytically calculate the transfer entropy for the case that the joint

probability p[zi,z?] is a Gaussian distribution:

1 1
1.2 e
T, 7] = ————ex _E —T,GY Tl |, 7.16
plog, ] (21)/det 3, p — o Ttrt T ( )
where £ is the covariant matrix ¥ = (zixl) — (2i) (), and & = x — (x]).

The inverse matrix G, := X; ' satisfies > G?Z{l = 6y and G¥ = GJ'. The joint
distribution p[x?] is given by the Gaussian probability:

1 1

pla?] = e oxp |5 (52 a2 (7.17)

We consider the path-integral expression of the Langevin equation (8.16). The
conditional probability p[x7, |z, x7] is given by

dt [ x? d
p[xt—i-dt‘xtaxt] NeXp _4T2 thdt Zﬂ/t xt - (718)
¢
i dt 2
=Nexp |—— (Ff — pi'zy)"| (7.19)
| 4T;
where N is the normalization constant with [ dz? +dtp[:1;t 2 alrt,af] = 1. For the

simplicity of notation, we set F? = (a7, , —x7)/dt — pi (xf) — pi*ai — fZ. From Egs.
(8.17) and (8.19), we have the joint distribution p[xirdt,xt] as

2 2]

plat aat] = [ dalplat,alel aflplel ot

N
\/471’ det X4 (%(ufl)Q + GT%I)

_dt
4T2

G
4 (4(#2 (ui')? + T)

From Eqgs. (8.18), (8.19), and (8.20), we obtain the analytical expression of the

1
X exp (F2)? — 5(;32 (z3)? + (7.20)
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transfer entropy dIf* up to the order of dt:

dIf :=(Inpla?, glof, x{] + Inpla]] — nplaf, 4, 7))
dt 1 1 1,
- 4T2 <(F2 21$1) > o 5 In [277—21%2] B 5(21%2) 1<($%)2>

1 dt 519 G
+ iln [47rdet Et <@(Mt ) + Tt

dt 1 < (Giat — gt a) 2>

: _G%2 3_3? %) - 11
g ) g =

=%§“< P %(uﬂfzt“ ~+ —(4 GIZde i
- % [ 2G11T2 2} T 2G11T2 G12<F2 i) - % + O(dt?)
Ly FFe et - (gt o

_ 4}3) : deztft dt + O(dr?)

:% In (1 + %) + O(dt?), (7.21)

where we define dP; := (u2!)?(det X;)dt/(X%2), and Ny := 2T2. In this calculation,
we used G = GJ, BV = 27" QIS 4 GRY2 = §;;, (F?)?)dt? = 2T2dt + O(dt?),
(Fpal) = pd'S1, (FR23) = g 12, and GI = (S72)/(det 3,)

In the model of the E. coli bacterial chemotaxis, we have N; = 277" and

ap, — L _Lad) = (@)?)mi) — (me)’] — Uarmy) — (a){mo)]” |

= t
(7m)? (mg) — (mu)?
1—(pf™)?
= ——=—Vat 7.22
(Tm)2 t ) ( )
where Vj® := (z7) — (24)? indicates the variance of x; = a; or x; = my, and
P& = [(agmy) — (ag) (my)]/(V,2V;™)1/2 is the correlation coefficient of a; and m,. The

correlation coefficient pf™ satisfies —1 < pf™ < 1, because of the Cauchy-Schwartz
inequality. We note that, if the joint probability p(a:, m;) is Gaussian, the factor
1 — (p¥™)? can be rewritten by the mutual information I#™ as

L (p™)? = exp|-21™) (7.23)

where I is defined as If™ := [ daidmyplar, m¢] Infplar, m¢]/[pla]p[me]]]. This fact
implies that, if the target system a; and the other system m; are strongly correlated
(i.e., I#™ — 0), no information flow exists (i.e., dIf* — 0).
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From the analytical expression of the transfer entropy Eq. (7.21), we can analyt-
ically compare the conventional thermodynamic bound (i.e., ZPF = —Jmdt/T™ +
dSe™ > Jadt/T{) with the information-thermodynamic bound (i.e., Z*° = drtr +
delm > Jidt/Ty) for the model of E. coli chemotaxis [Eqs. (7.1) and (7.2) with

a; = amy — fli] in a stationary state, where both of the Shannon entropy and the

conditional Shannon changes vanish, i.e., dS} ™ — 0 and dSy™ = 0. Thus, the
conventional thermodynamic bound is given by the heat emission from m such that
=L = —Jmdt/T/™, and the information thermodynamic bound is given by the infor-
mation flow such that =" = ¢If*. The information thermodynamic bound is given
by Z = (1—(p¢™)?)[(a?) — (as)?]dt/[2(7™)?T™]. The conventional thermodynamic
bound is given by ZP¥ = (a?)dt/[(7™)*T/"]. From —1 < p¢™ < 1 and {a;)? > 0, we
have the inequality =% > = This implies that the information-thermodynamic
bound Z!* is tighter than the conventional bound ZP% for the model of E. coli

bacterial chemotaxis:

=5l > givie > jaqe /T (7.24)

7.3 Information Thermodynamics and Noisy-Channel Coding

Theorem

We discuss the similarity and the difference between our result and Shannon’s noisy
channel coding theorem.

7.3.1 Analogical Similarity

The noisy channel coding theorem states that the upper bound of archivable infor-
mation rate R is given by the channel capacity C. The channel capacity C is defined
as the supremum value of mutual information between input and output with a finite
input power. The mutual information can be replaced by the transfer entropy dIf*
in the presence of a feedback loop. R describes how long bit sequence is needed for
a channel coding, to realize errorless communication through a noisy channel. where
errorless means the coincidence between the input and output messages. On the other
hand, information thermodynamics states that the robustness of the biochemical sig-
nal transduction J¢ is bounded by the transfer entropy dIf*. Therefore both of J2 and
R characterize the robust information transmission against noise and are bounded by
the transfer entropy dIf*. In this sense, there exists an analogy between the second
law of thermodynamics with information and the noisy channel coding theorem, in
spite of the fact that they are very different in general (see also Fig. 7.8).

7.3.2 Difference and Biochemical Relevance

In general, the archivable rate R is different from the robustness J{. In the case
of biochemical signal transduction, information thermodynamic approach is more
relevant, because there is not any explicit channel coding inside cells. Moreover,
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Robustness of signal transduction against noise Jta
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(Accuracy of information transmission against noise) R
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Fig. 7.8 Analogy and difference between our approach and Shannon’s noisy
channel coding theorem. a, Information thermodynamics for biochemical signal
transduction. The robustness J{* is bounded by the information flow dIf* in
stationary states, which is a consequence of the second law of information ther-
modynamics. b, Information theory for artificial communication. The archivable
information rate R, given by the redundancy of the channel coding, is bounded
by the channel capacity C' = max dI;*, which is a consequence of the Shannon’s
second theorem. If the noise is Gaussian as is the case for E. coli chemotaxis,
both of the transfer entropy and the channel capacity are given by the power-to-
noise ratio C' = dI{* = (2)~*In(1 + dP;/N;), under the condition that the initial

distribution is Gaussian.
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while J? is an experimentally measurable quantity [72, 74], R cannot be properly
defined without any artificial channel coding [2]. Therefore, J{* is an intrinsic quantity
to characterize the accuracy of the information transduction inside cells without any
artificial channel coding process. From the information thermodynamic point of view,
we can discuss the efficiency of information without any assumption of the channel
coding inside cells. We can also discuss the thermodynamic efficiency as a heat engine
in parallel.



Chapter 8

Information Thermodynamics as
Stochastic Thermodynamics for Small
Subsystem

In this chapter, we first focus on information thermodynamics for a multi-dimensional
Markov process. We will show that information thermodynamics can be considered as
the stochastic thermodynamics for small subsystems. From a thermodynamic point
of view, the backward transfer entropy plays an important role as the conventional
transfer entropy. We next generalize information thermodynamics on causal networks
using the backward transfer entropy. Our generalization gives a tighter lower bound
of the entropy production in a subsystem.

8.1 Information Thermodynamics for Small Subsystem

In Chapter 6, we have given the general formalism of information thermodynamics for
two-dimensional Langevin system. We here focus on the case of a multi-dimensional
Markov process.

8.1.1 Information thermodynamics for a multi-dimensional Markov process

We consider a situation that dynamics of multi-dimensional system {X1,..., X™s)}
is Markovian, where ngys is a number of small fluctuating systems. Let the path of a
small subsystem X* be X" = {z}|k =0,1,..., N}, and the path of the other system
be X' ={x;'lk=1,...., N} ={a¥lv=1,...i — Li+1,...,nge,k =1,..., N},
where k denotes time. We assume that the path probability p(X?¢, X ~%) is given by

2

p(X', X7") = p(ag,ar” H (@hplwh 2, )p(@ppy ok, 2,") (8.1)
k=1
N—1 Nsys
) S i nq s
=p@}, o) ] T p@iaalot 2™, (8.2)

k=1 v=1

93
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Lini

Fig. 8.1 A causal network corresponding to Eq. (8.4).

From the path probability Eq. (8.2), we calculate the joint probability
Pl apl g ok, ) with 1 <k < N — 1 as

p(zh, 2l o), ') = > p(X%, X7 (8.3)
{X4,X 71\ {z) ,w;il RN
= p(ag, z; p(ey ok, oy plagt Jog, z ). (8.4)

We next consider a causal network for Eq. (8.4) (see Fig. 8.1). This causal network
shows a single time step of the Markovian dynamics from time k to time k+ 1. By the
discussion in Chapter 6, the entropy production for a small subsystem X* is bounded
by the information quantity ©, which is given by the graph Fig. 8.1 as

2
© = ifn — Gini — iy, (8.5)
=1
iini = i(z1 @ pa(r1))
= i(z}, : my "), (8.6)
i, = i(c1 s pay (1))
—0, (8.7)
iy = i(ca s pax(co)ler)
— (e ). (8.8)
i = (2% : C')
= i(2hpr {21 200 )), (8.9)

where we set X = {z1 =2}, 22 =2}, ,},C=C = {c1 = x;"',c2 = 73}, }, pa(a}) =

:L‘I;i, an(wlzi) =, and an(a;];irl) — xz
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Let o® be the entropy production for the single time step o® = Inp(zt) —
In p(:z;}g L)+ As]’;ath, where As]';ath is the entropy change in heat baths from time £ to
k + 1 by the system X*. We then have the inequality (o*) > (0) for each k such as

S(x2+1) - S(l’%) + <Asl];ath> > I(:E% : {w?,ivﬁl}) - [(51724-1 : {w;l,wﬁrl}), (8.10)

or equivalently
S(m2+1\w£il) - S(IH@“E ) <A8bath> > IBtr Ilzr, (8.11)

where If" := I(z} : @;,|@;") is the transfer entropy from a small subsystem X’ to
the outside worlds X % at time k and IP™ := I(z]_, : w,;ﬂaz;il) is the backward
transfer entropy from a small subsystem X’ to the outside worlds X ~¢ at time k.
We note that the difference IP% — I'* gives the net information flow in the dynamics
at time k. To sum up Eq. (8.11) with £ = 1,...,N — 1, we have the information
thermodynamic inequality for subsystem X° as

N-1
(@7 = I Z Iir (8.12)
k=1
N-1
> - I (8.13)
k=1
(8.14)
where oI~ := k o Asbath lnp(x}\,|az]7) + Inp(z|x; ") gives the conditional en-

tropy production in a small subsystem X*.
tr

The sums of the transfer entropy Zi\];ll Iy

é}\/ 11 IB*™ play crucial roles in stochastic thermodynamics for a small subsystem.

The condltlonal entropy production in a small subsystem can be negative, and its
lower bound is given by the sum of transfer entropy [i.e., (¢?7%) > — ZN '] 7). This

and of the backward transfer entropy

fact implies that the sum of the transfer entropy chv:_ll I" gives the thermodynamic
benefit in a sma,ll subsystem X°. On the other hand, the sum of backward trans-
fer entropy S p ;" 1Pt
backward transfer entropy >, can be considered as the inevitable dissipation
in a small subsystem, because Eq (8.14), which includes the backward transfer en-
tropy, gives a tighter bound of the conditional production compared to the inequality
< i|— ’L> > ZN 1 Itr

We add the continuous case of Eq. (8.14). Let z'(t) be the state of a small
subsystem X at continuous time ¢, and £ *(t) be the states of the outside worlds
X ~% at continuos time t. In the continuous limit of Eq. (8.14), we have

o T dIBtr T dItr
ity > [ g _/ dt 1
o = /t_O dt t=0 dt (8.15)

gives the thermodynamic loss in a small subsystem X*. The
N— 1 IBtr

where 0/l 7% := Aspain — Inp(z?(7)|274(7)) + Inp(x*(0)|2=*(0)) is the conditional en-
tropy productlon in a small subsystem with entropy change in heat baths Asp.tn by
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a small subsystem X' from time ¢t = 0 to t = 7, dIP*™/dt is the backward transfer
entropy flow defined as dIP® /dt := I(z(t + dt) : * =% (t)|x~(t + dt))/dt, and dI* /dt
is the transfer entropy flow defined as dIf*/dt := I(x(t) : ©~*(t + dt)|z~"(t))/dt with
an infinitesimal time interval dt.

8.1.2 Transfer Entropy for Multi-Dimensional Linear Langevin System

We here show an analytical expression of the transfer entropy for a multi-dimensional
linear Langevin system, which gives a lower bound of the conditional entropy pro-
duction in a small subsystem X°, i.e., (o/l=") > — [T dt[dI}*/dt]. We calculate the
transfer entropy from one ofngys pieces of variables to the other ngy,s —1 pieces of vari-
ables; this calculation is a generalization of Sec. 7.2.4. We here consider the following
nsys-dimensional linear Langevin equation:

B =Y pfal+ fi+ €,
J

(€i€l)) = 2T76,;0(t — t')

(&) =0, (8.16)
where 7,7 = 1,..., ngys. fi and uij are time-dependent constants at time t. T} is
the time-dependent variance of the white Gaussian noise &. x; ' = {a¥|v # i} is

the variables of the other systems X ~%. The transfer entropy from the target system
X" to the other systems X" at time ¢ is given by dIf* := (Inp(x_ ', |z}, z; ")) —
(1np(m;fdt|w;i)>. The covariance matrix is defined as X7 = (ziz]) — (zi)(z]). We
assume that the joint probability p(zy, ;") is a Gaussian distribution of the form

i i 1
p<xt7wt Z) = Nsys

e
(2m) 2 /det X

1 .

Xp —Z§:E;§G?f§ : (8.17)
]

where ZJ := 27 — (). The inverse matrix G, := X; ' satisfies > GIxIt = §; and

Gij = Gii, where ¢;; is Kronecker’s delta. The joint distribution p(x; ) is given by
the Gaussian probability,

p(er?) = [ deiplai,a)

]_ ]_ o~ e -/
=——— exp [— Y S0 Gl | (8.18)
il 5!

(2m) 2 V/det 3,

where i’, ' (# i) denote the indexes of the other systems. ii/j " is the covariance

-/

. X X ~ il il v . -/ ~ il o~ 17 ..
matrix which satisfies 3,7 = (z} @] ) — (z} )(z1 ), >, G}’ SIY = 5, and G =

(det ;) /(det ).
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We consider the path-integral expression of the Langevin equation (8.16). The
conditional probability p(z, |z}, ;") is given by

dt

(R = plignz | 8.19
4th ( t 2 t) ( )

Py glay, z ") = Nexp [ -

j/

where N is the prefactor, and we set th = ,uj/iif; + §f ". To obtain the analyt-
ical expression of the transfer entropy, we calculate the joint probability distribu-
tion p(x, s,z "). From Eqs. (8.17) and (8.19), we have the joint distribution

p(mt_—idt’ x, ") as
p(a:t_—idt’ mt_z)

— / deip(ari ot xp(at, )

N / . d'[; -/ VSR 1 . YY)
_ ditexp | =Y —(F! —u/'z9)2 -y ~#G'7
(2) ¥ /et S, t €Xp ;4th (£ w ) 22 t O Ty

,L'/j/

N dt -/ 2 1 T
— — exp | — E —(F} )" — E —z, Gy’ T
(2m) 2 /det Xy o AT Y 2

o Y 2
ij' 73’ _ pi FY
x = (o -t
—— exp - . (8.20)
M) G%Z %) G7t,1
(Ej’ 2o (i )P+ 7) 4 <Ea‘/ PAGNA T)

From Egs. (8.18), (8.19) and (8.20), we obtain the analytical expression of the

X
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transfer entropy dIf* up to the order of dt as
dry ':<lnp<wt_—ﬁdt|wt) +Inp(z; ) — lnp(w;zdt’ z, "))

'/ 2 ~ ) o~ ] . .
=InN — Z 4T] < Ay Zwé) ) — %ln [(27T)"Sys_1(det Et)} _ Z ~(7 G

1 n dt -/ ]_ —7:’ 1:/ i
—InN + B In[(27)"<(det %¢)] + Z H«Fg )?) + Z; 5(5% Gy’ i)

J’ t

g 2
ij' ~3' i "F}
» <{z, (6 -t )] >

2 tivg | Gii
4 (z]., ()2 4 T)

dt i ,uj dt s 0;rir
Z GZ’LT] _Z4T] (M 2 t+z 2T FJ >_Z 2

J’ g’ t i’

1 1 dt s
i b [ s
J

. Sirir — f R 3 G m 22 1= Iy
i’ 5! ; j

: 26T

j'i 7'iN2
py dt g’ =i (Mt )dt 2
— A,G Fy zy ) — ~——— 4+ O(dt
sy ) =3 + O

i Tigt 0 7'y2 g4
z W + Y 2w - 3 B o
i/j/ j/

21" 2GIHTY AGHT)
2det®
:Z( PP de — 2L dt + O(dt?)
» 4th det Et
J
ln 1+ Z L | +o(dt?), (8.21)

where we define dPtj/ = [(u{/i)Q det X;dt]/(det it) and Nj/ = 2th/, In this calcula—
tion, we used G¥ = (det 3;)/(det X), D it GUIsIl = 5, — Gl (FI'E) =
158 and ((F{)2)dt? = 2T9' dt + O(dt?).

8.1.3 Relative Entropy and Integral Fluctuation Theorem for Small Subsys-
tem

We show the integrated fluctuation theorems for a small subsystem which gives Eq. (
8.14). Due to the detailed fluctuation theorem, AsF ., is given by the ratio of the
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forward path probability and backward path probability such as

p(x;c—i—l |ac}€, w?)

pB(x};\xfﬁl, wl;jq)’

Asf ., = In (8.22)

where pp is the backward path probability. Here we assume that the time interval
between k and k + 1 is infinitsimal. The conditional entropy production is given as

. 0 N—1 . . .
=i — In p(xiler’) p(xhq |z, ")

p(aley') o5 pB(@g |7k, ®ly)

(8.23)

Let i{ be the stochastic transfer entropy defined as i{" := i(a} : @, |®; "), and "

be the stochastic backward transfer entropy defined as ip"" := i(z}_, : x|z, +1).

From Egs. (8.2) and (8.22), we have

0_i|—i o Z -Btr + Z (824)

r . . N—-1 . . . . . o o =
—1n p(xi|z”) P(Tgyq |z, 2y ") p(wkill%wﬁ) p(mkllxk—i—l)
_p(xﬁﬂw;ﬁ) k=1 pB(aylel i) Pl leg’)  pley e, opyy)
(8.25)
—In p(z], Z) H p(%ﬂ‘ﬂwwk Z) p(wkj&'x}c?wkl) (8.26)
p(xN7mN) el pB(xy|Thr i) p(@ |20, 21 )
= dxr.(p(X*, X 7)|lpp(X", X 7)), (8.27)
N—
p(X", X™") = mN733N H mk|x}€+1,azlzj_1)p(m:|xz+l,:B,:_ZH), (8.28)

where we used the Bayes rule p(@; |, @} )p(x; ") = p(x;, ‘| )p(ey ). pe(X', X7
satisfies the normalization of the probability such as

Z pB<Xi, X—i)

Xi Xt
N—-1
= > pay,ay) [ pe@ilely zil )o@y |2, 2ily)  (8.29)
(X1, X~ )\ {a}, 27"} k=2
- 8.30)
= > pal,zy) (8.31)
{zi, 2"}

=1. (8.32)
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From the nonnegativity of the stochastic relative entropy, we have Eq. (8.14):

N-1
o'l E:ﬁ“+§:f (8.33)
k=1 k=1

with equality if and only if p(X? X %) = pp(X*, X *). The property p(X¢ X %) =
pp(X*% X ) means that the local reversibility of a small subsystem X? under the
condition of the outside worlds X ~*. From the identity Eq. (3.36), we can also prove
the integrated fluctuation theorems corresponding to Eq. (8.14) as

N-1 N-1
<exp [—U”_Z + gt — itr] > = 1. (8.34)
k=1 k=1

We also show the integrated fluctuation theorem for a small subsystem which gives
the weaker inequality (ofl=%) > — STVt gil=i 4 STt can be rewritten by
the stochastic relative entropy as

- N—-1

oil=i Z it (8.35)
k=

| Pt T p@halel el pledl @) (536
($N|wN> b1 pB(xk|xk+17wk+1) p(w,;iﬂw,;’)

= dir(p(X", X7l (X7, X 7)), (8.37)

N-1
pp(X, X)) = playleyper’) 1] pelailei i,z )p(@d, ey ), (8:38)

where pg (X*, X ) satisfies the normalization of the probability as

N—
Y pp(XLXT) =) p H Ty |m ) (8.39)
Xi, X1 X—i k=1
= 1. (8.40)

From the nonnegativity of the relative entropy and the identity Eq. (3.36), we have

(o170 > — }:FH (8.41)

>:1. (8.42)
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8.1.4 Stochastic Energetics for Small Subsystem

From the energetic point of view, we can consider Eq. (8.15) as a relationship between
work and free energy for a small subsystem X under the condition of other systems
X . We here consider the particular case in which the temperature of each heat
bath is uniform 7% = 2/ and the initial state and final state are set in equilibrium.
The probability distribution in initial and final state is given by

peq(a:i, x ") = Z texp[-B(Hs(z") + He(x™") + Hy(z*, 27%))], (8.43)

where Hg(z") is the Hamiltonian of the target system X*, Hg(x~?) is the Hamiltonian
of the other systems X ~*, Hy(x',£~") is the interaction Hamiltonian between them,
and Z is the partition function:

Z = /da:idxi exp[—B(Hs(z") + Hp(x™") + Hy (2", £~"))]. (8.44)

The conditional probability in initial and final state peq(z‘|z~") is given by

Peq(a'|2™") = peq(mi)/[/ d;peq(z', ")) (8.45)
= [Z%(x™")] " exp[—BHog (2" |2 ~")], (8.46)

where we define the effective Hamiltonian in the system i as Heg(z'|z™") :=
Hs(x') + Hr(z%,2™%). Z'(x™") is the partition function for the system X' with
fixed X" Zj(x_;) = [dz;exp[—Heq(z;|x_;)]. Let effective free-energy be
AFg(x™%) == =7 In Z%(x~ (7)) + S~ In Z*(x~%(0)). We define the effective work
s Wer(i]21) 1= X, Aok, + Hent(0(7)]2 (7)) — Henr(w(0) 2(0).

Then Egs. (8.14) can be replaced by

) —1 —1 T dIPtr ’ djfr
B(Weg(a'|2™)) — (AFug(x™))) > [ dt — [ dt (8.47)
0 dt 0 dt
T dItr
> dt—t—. A4
- /0 dt (8.48)

If the other systems X ~¢ are completely separated from the subsystem X¢, we have
Hi(z',x™") = 0, [ dt[dIP*"/dt] = 0 and [ dt[dI*/dt] = 0. The definitions of
the free energy and the work become the conventional ones which do not depend
on the outside worlds X . Thus we can reproduce the conventional second law of
thermodynamics, i.e., S((W) — AF) > 0 from Eqgs. (8.47).

8.2 Further Generalizations

We here discuss other expressions of information thermodynamic inequality, which
are consistent with Eq. (8.14). We also show a generalization of information thermo-
dynamics on causal networks, and importance of the backward transfer entropy.
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8.2.1 Generalization for Fokker-Planck Equation

We here consider the following Langevin equation:

() = Fi@ (0, ..oam (0) + €,
(€0 (¢)) = 2T53;6(t — 1),

(€' (t)) =0, (8.49)
with ¢ = 1,...,ngys, and the Fokker-Planck equation corresponding to the Langevin
equation (8.49):

Op(a',x ™l t) = = > 0,5 (a2, 1), (8.50)
37 @ ) =L (), 27 ()pat T ) — T 0,p(at, 2 ), (8.51)
where &% := {z!,... 27 2Tt ... 2"} denotes the dynamical variables of the

other systems X ~¢. The mean local velocity for a small subsystem X* is defined as

/i —1 R -]IZ (xiﬂm_ivt)
v (zt T t) = S a) (8.52)
= iz (t),x7(t)) — T"0p Inp(z*, 7, t). (8.53)

This mean local velocity gives the ensemble average of #* under the condition of
(z°, 2" t) [74]. We here introduce a key quantity $* (2%, 7%, t) defined as

& (2h, 2t (8.54)
_ @ (@ et

T Ti (8.55)
= %fi(t)fi(wia x ™" t) — &' (£)0,s Inp(a’, 7 1) (8.56)
= 0" — ' (1)0pei(a’ @), (8.57)

where " is the entropy production defined as

ot i %:&i(t) Filat m 1) — & (8)0, Inp(a, 1), (8.58)

and i(z® : £7%;t) is the stochastic mutual information defined as

p(at,z™" )
plx=i t)p(ai,t)

i(z':x27%¢t) ==1In (8.59)
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We here show that the ensemble average of a key quantity $ (¢, %, t) is nonneg-
ative,

Tz
[ (xi’“?_i’t)]2> (8.61)

- /dxid;c—i [ (' e o) (8.62)
0

> 0, (8.63)

<sw (:ci,a:—i,t)> - <55i(t)”$i (x.i"”_i’t)> (8.60)

with equality if and only if jxi (x*, 27 t) = 0. Thus we have an information thermo-
dynamic inequality

(0') > (& (£)0,si(x : @ 751)). (8.64)

The inequality equivalent to Eq. (8.64) have been derived in several papers [129, 57,
56, 58]. This information thermodynamic inequality Eq. (8.64) corresponds to Eq.
(8.10) in the infinitesimal time-interval limit:

S(m}'ﬁl) — S(x}) + <A8ﬁath> > I(x}, : {w?a wz?il}) - I(ac}'ﬁl : {w?7 wl;zrl}) (8.65)

Using the Fokker-Planck expression Eq. (8.63), we here discuss a relationship
between the conventional second law and information thermodynamic inequality. The
sum of the ensemble averages of key quantities gives

S e ) = Y R O e 0) - Gllnplela ) (3.60)

7 7

where we used [d/dt|Inp(z®, x4 t) = Y, & ()0, Inp(a’, 27", t). Thus, the sum of

the ensemble averages of key quantities is equal to the ensemble average of the total
entropy production. The second law of thermodynamics is given by

Z(é"”i (z',27",t)) >0, (8.67)

with equality if and only if j*" (z°, 2%, ) = 0 for all i. The second law of thermody-

namics always gives a weaker bound of the entropy production (axi) compared to the
information thermodynamics, i.e.,

(0" > (@1 ()ei(a - x054)) (8.68)

> (@ ()0pii(x’ Tl t)) = Y (57 (a7, 27 1)), (8.69)
J#i
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Tini

Fig. 8.2 A causal network corresponding to Eq. (8.70).

where Eq. (8.68) and Eq. (8.69) correspond to information thermodynamics and the
conventional thermodynamics, respectively.

We stress that the term (i%(t)0,:4(x? : £7%¢)) includes the contributions of both
the transfer entropy and the backward transfer entropy in Eq. (8.10). If we did not
consider the backward transfer entropy (e.g, Chapter 7), the bound of the entropy
production (0®') given by the transfer entropy would not be always tighter than the
bound given by the second law of thermodynamics.

8.2.2 Backward Transfer Entropy and Final Correlation

We here discuss the importance of the backward transfer entropy in the study of
information thermodynamics on causal networks. We first consider the following
dynamics

N—
p(X', X7 = p(at, a7 H (@i |7l 2y, p(eply |2h, ). (8.70)

We can consider a causal network for Eq. (8.70) (see Fig. 8.2). This causal network
shows multi-time steps of the Markovian dynamics from time 1 to time N. By the
discussion in Chapter 6, the entropy production for a small subsystem X"* is bounded
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by the information quantity ©, which is given by the graph Fig. 8.2 as

N
© = ifn — Gini — Y iy, (8.71)

=i(xl a]"), (8.72)

=0, (8.73)
it =i(c; s pay(e)|e) [2<1< N]
=i(zj_y oy |, =), (8.74)
in = i(2® : C')
=i(zly {zy, 2}, (8.75)
where we set X = {z1 = 2%,...;2ny = 24}, C =C = {c1 = :Cfi,...,cN _ w;]i},

pa(z}) = x]", pay(z]") = 0, and pay(x;’) = x}_, with 2 <1 < N. Thus, the
information thermodynamic inequality Eq. (6.41) gives

(o) 2(©) (8.76)
N

=I(zy :{zy .27} — @) cay’) = > I(w)y x ey, et) (8.77)
=2

=I(zly 1 xy') — I(z} : z]")

N N
+ ZI(JC}V cxy et wy) — ZI(J@}_I cay ey, 2. (8.78)
1=2 =

On the other hand, the causal network for the single time step [see Figure 8.1)] gives
another information thermodynamic inequality which corresponds to Eq. (8.14):

N N
(o) 2L(wly s @y’) = Loy cay )+ ) I(ag e ley ') = Y iy 2y )
1=2 1=2

(8.79)
=I(ay c2y') — (a2
+ZI(9@} cxy et ZI zi_y oz et 2, (8.80)
= 1=2
where we used p(x; '[aj_y, ") = p(a; 'ei_y 2"y, 27") and p(a fof, ) =

pl@ o) @, wy).
Here we have the following conditional Markov property:

p(aly,x), x|t 2y

= plar e ey p(ale @ ey p(y e a ey, (881)
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Then we have I(xy : @, |zi,z;",...,25') = 0 and the following data processing
inequality:

Iy e e ey < I(x)cx ey e y) + Iy sz o2 2y

(8.82)

=I(z} x|z ). (8.83)

Thus the difference between two information bounds is nonnegative, and we have

N N

(o) > Iy s ay) = Iy ') + ) Iy ’) =Y Iy 2y e )
=2 =2
(8.84)
> I(zY - {zcj_vl, o) I ] — Z[(ﬁ—l : wl_l a:l__il, ooz,
=2
(8.85)

This calculation indicates that the sum of information thermodynamic inequalities for
the single time step [e.g., Eq. (8.80)] gives a tighter bound of the entropy production
rather than the multi-time steps (e.g., Eq. (8.78)). This fact suggests a possibility of
further generalization of information thermodynamics on causal networks using the
backward transfer entropy instead of the final correlation Ig,.

8.2.3 Further Generalization: Information Thermodynamics on Causal Net-
works Including Backward Transfer Entropy

We here consider the replacement of the final correlation I, by the backward transfer
entropy in the study of information thermodynamics on causal networks in Chapter 6.
Let N” be the number of elements of C’ [i.e., C' = {c1,...,cnr }]. The final correlation
is calculated as

Iﬁn = I(.Z’N : C/) (886)
N1

ZI(CL'N :CN//)+ I(CL’N ZCl|Cl+1,...,CN//). (887)

=

We here define the set of children of ¢;, ch(¢;) := {ax|c; € pa(ar)}. Let chx(¢) be
the intersection of X and ch(¢;), i.e., chx(¢) := ch(¢;) N X. Here we define the set
D; as

—_

l

Dl = U Chx(cl/>. (888)
'=1

Because D; is the subset of X [i.e., D; C X], we can uniquely define

Zsup(Cl) == Xk, (8.89)
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which satisfies & > &’ for all z;» € D;. In the case of D; = 0, zgup(c;) is given by
Zsup(c1) := 0. The variable x4, (c;) denotes the latest state of X, where the history
of the other systems {cy,...,¢} can affect as a child.

Here we have the following conditional Markov properties:

p(Cl, zsup(cl)a I'N’Cl+1, cee aCN”)
= plalei, -« senm)p(sup(e)ler, citt, -« o en)p(e N[ Tsup(r), Cias - -5 o),
(8.90)
and
p(CN”> xsup(CN”)y 'TN)
= plen)p(zsup(en)|(en))p(z N [Tsup (en)). (8.91)
Then we have I(c; : on|Tsup(cr), Ci41,-- - en7) =0, I(enr : TN|Tsup(cn)) = 0 and
the following data processing inequalities:
I(mN : Cl|cl+1; ce . 7CN//) S I(xsup(cl) : Cl‘cl—l—l, e 7CN“),
I(%N : CN//) S I(l‘sup(CN//) : CN//). (892)
We define the backward transfer entropy on causal network as
I = I(@sup(cr) : crlcipty -y enm), (8.93)
Iéyt/rl = I(msup(CN”) : CN//), (894)

with 1 <1 < N”—1. From the data processing inequalities (8.92), the finial correlation
Iy is smaller than the sum of the backward transfer entropy Ik, ,

N//
Iin <3 I (8.95)
=1

with equality if zqup(c;) = xn for all [

We here show that new informational quantity Zl]\il Ih. — L — Zl]\il Il gives a
lower bound of the ensemble average of the entropy production (o). Let ik, be the
stochastic backward transfer entropy on causal network defined as

Z'lBtr = i(-rsup(cl) : Cl|cl+1> cee 7CN“); (896)
th/; 1= i(Tsup(cnrr) T CN7), (8.97)

with 1 < [ < N” — 1. We define an informational quantity ©’ corresponding to
N// 1
21:1 IIZBtr — Iini — Zl:l Itlr as

N// N//

0 = by — fini — Y ihy (8.98)
=1 =1
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We show that the difference between the entropy production and the informational
quantity o — O’ can also be rewritten as the stochastic relative entropy:

oc—0

N—
H $k+1|xk78k+1) 4 Plalpat@n)) - plen|zsup(c)

ﬂck |$kz+1, Bk+1) p($1) p(CN/')

Z Cl|90sup €1),Cl41y- -+, CN") i Z In p(ci|pala))

plalasa, ... enn) plalci—1,...,c1)

=1

N

H (zlpa(zx)) ] plalpa(a)

l|Cl€C'

N-1 N
—In [H pB(Tk|Trt1, Bey1)p(zn) Hp(Cl\SCsup(Cl), Clt1s- - CNYY)
k=1 =1
(p(V)

—der( (8.99)
where p(ci|Tsup (1), Ci1s - - N7 |1 yi = P(Cl]@sup(cr)), and we define the new back-
ward path probability p’z(V) as
Pp(V)

N-1 N

= | [ pe(@rleesr, Bre)p(an) [ plelzsp (), ciprs - oen) T plev|paler)).
k=1 =1 Ve, gc’
(8.100)

We here define the set C'(xy) as C'(zx) := {c € C'|zsup(c1) = zx}. We have C'(x) N
Bii1 = (. Thus the backward path probability satisfies the normalization of the
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probability as

> (V) (8.101)
=

N-1
=> [H pB(@klziin, Ber)p(an) [ plalzap(a) g, enn) (8.102)

X,0 Lk=1 cec’

— Z [1:[ pB(Tk|Trs1, Bry1)p(on)

X, {C'\C'(z1)} Lk=1

X 11 plei|Tsup(ct), oty - - - Enmr) (8.103)
{c1€C c1gC!(z1)}

= Z [1:[ PB (k| Trt1, Bry1)p(zn)

{X\z1}{C\C" (z1)} Lk=2

x [T  rplalzswpla) csr,- . enn) (8.104)
{CLEC/,CZ ¢C’({E1)}

- Z p(zN) H p(alzsup(cr), Cig1, - - enr)

zn,{c €l (zn)} {caeC’(zn)}

=Y plan) (8.105)
TN

=1. (8.106)

This new backward path probability p’z(V) indicates that we consider the backward
path probability only for the target system X (i.e., pg(zk|zk+1,Br+1)) under the
condition of other system C (i.e., [ ccr(zp)y P(Ct]@sup(cr), Cig1, ..., enn)) “for each
time step k”, where the probability distribution of C is given by the distribution of
the forward process p(V). This new backward path probability pz(V) is given by
multiplication of conditional probabilities for each time step k, while pg (V) in Chap.
6 (i.e., Eq.(6.37)) is given by the backward path probability for a whole time evolution
from x; to xxn.

From the identity Eq. (3.36) and the nonnegativity of the stochastic relative entropy
Dk (p(WV)||p5(V)) > 0, we have the generalizations of the integral fluctuation theorem
and the second law of thermodynamics,

(exp[—0 +O']) =1, (8.107)
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Fig. 8.3 Example of the backward transfer entropy on causal network corre-
sponding to Eq. (8.70).

N N
(0) > Ty — I — I}, (8.108)
=1 =1
N
> I — Timi — »_ Iy, (8.109)
=1

where we used Eq. (8.95).

8.2.4 Examples of Generalized Second Law Including Backward Transfer
Entropy

Finally, we apply this generalization Eq. (8.108) to the causal networks corresponding
to multi-time steps of the Markovian dynamics Eq. (8.70), and the complex dynamics
in multiple fluctuating systems discussed in Chapter 6 previously. The backward
transfer entropy gives tighter bounds of the entropy production for these two causal
networks.

8.2.4.1 Example 1: Mulit-time steps of the Markovian dynamics
We here consider the causal networks in Figure 8.3, which represents the multi-time
steps of the Markovian dynamics from time 1 to N. The information quantity ©’ is
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calculated as

N N
D= iy — i — Y i (8.110)
=1 =1

=iz} )", (8.111)
it, = i(c1 : pax(c1))
=0, (8.112)
it =i(c :pay(a)|a) [2<1< N
=i(zp_y ), (8.113)
thr i(xsup(cr)  allest, ..o enr) [L<I< N —1]
z(:z:lH x z|a:l+1, . ,:nj_\,i),
ZBtr i(Tsup(cN) : eN)
= i(zly s ), (8.114)
where we set X = {x; = 2},...,2x = 24}, C =C = {c1 = z]",...,ex = '},

pa(z}) = @1, pax(xy’) = 0, pax(z; ") = aj_, with 2 <1 < N, agp(2’) = iy
with 1 <1 < N —1, and :Csup(a:]}i) = a:ﬁv Thus, the information thermodynamic
inequality including the backward transfer entropy Eq. (8.108) gives the following
inequality, which is equivalent to Eq. (8.80):

(o) >(O') (8.115)

=I(zly xy') — (o) 2y

N
+Zl(x;:wl__zl|wl_z,.. ZI iy a2, (8.116)
= 1=2

8.2.4.2 Example 2: Complex dynamics

We next consider the causal networks in Figure 8.4 which represents the complex
dynamics in multiple fluctuating systems. The information quantity ©’ is calculated
as

N N
= gy — i — > ity (8.117)
=1 =1

=i(x1 1), (8.118)
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\

\ J

Fig. 8.4 Example of the backward transfer entropy on causal network of the
complex dynamics.

iy, = i(c1 : pay(c1))

=0, (8.119)
ity = i(c2 : pay(c2)ler)
=0, (8.120)
i:?r = i(c3 : pay(c3)|co, c1)
= i(22 1 21|21, 91), (8.121)
it =i(cq : pax(ca)|cs, ca,c1)
= i(ya2 : T2|y1, 21, 22), (8.122)
ige = 1(Tsup(c1) : cr]ca, c3, ¢4)
= i(z1 1 y1]21, 22, 92), (8.123)
@Btr i(Tsup(c2) : c2|cs, cq)
= i(w2 1 21|22,92), (8.124)
ZBtr i(Tsup(c3) © cslea)
= i(22 : 22[y2), (8.125)
ZBtr i(Tsup(ca) 1 ca)
= i(z3 : y2), (8.126)
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where we set X = {1, 29,23}, C = {¢1 = y1,62 = 21,63 = 22,C4 = Yo2,C5 = 23},

C'={ec1,...,ca}, pa(z1) = y1, Pax(y1) = 0, pay(z1) = 0, pay(z2) = x1, pay(y2) =
T2, Teup(Y1) = 2!, Toup(21) = 22, Teup(22) = 22, and xgup(y2) = 3. Thus, the

information thermodynamic inequality including the backward transfer entropy Eq.
(8.108) gives the following inequality:

(o) >(0") (8.127)
=I(zsup(ca) : ca) + I(x2 : 22|y2) + I(x2 : 21|22, y2) + L(21 : Y121, 22, Y2)
— (1 :y1) — I(22: z1|21,01) — I(y2 : 22|y, 21, 22). (8.128)
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Chapter 9

Further applications

In this chapter, we show several applications of information thermodynamics on causal
networks such as the steady-state thermodynamics (see also Sec. 3.2.1 and 3.2.2)
and the feedback cooling (see also Sec. 3.2.3). We first discuss an applications to
the steady-state thermodynamics for coupled Langevin equations. The definition of
the entropy production on causal network Eq. (6.9) is given by the ratio of the
forward path probability and backward path probability. To replace the definition
of the backward path probability, i.e., pg(zg|Trs1, Br+1), with the (backward) path
probability of the dual dynamics Eq. (3.57) (Eq. (3.63)) as in the steady-state
thermodynamics, we can easily show the relationship between the housekeeping heat
(excess heat) and information. We next discuss an application to the feedback cooling.
By applying our main result (6.41) to the coupled underdamped Langevin equation,
we discuss the cooling bound and the third law of thermodynamics from a view
point of information flow. Our discussion based on the information thermodynamic
inequality is different from the discussion of the paper given by K. H. Kim and H.
Qian [116] (i.e., Eq. (3.75)).

9.1 Steady State Information Thermodynamics

Here, we generalize the steady-state thermodynamics in terms of information transfer.
We consider the following two dimensional Langevin system:

£(t) = fox (@9, A1) = O:U(z,y, A(#)) + &/,
) = f&(z,y, (@) — 0, U (2,9, AM(¢)) + &/,
)
)

= 29, T% 80 O (t — 1), (9.1)

where fZ (fY) is an external nonconservative force, and A(¢) is the control parameter.

We here define the nonequilibrium potential ¢(z,y, A) as

¢(l’,y, /\) = _lnpss('xay; )‘)v (92)
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where pgs(x, y; A) is the steady-state distribution corresponding to a control parameter
A. The mean local velocity of the nonequilibrium steady state in X is defined as

Yoi (2, y, A) = fo(x,y, ) — U (z,y, A) + T*050(x,y, N). (9.3)

We consider the path x = {z1,...,zn}, where zy := z(kdt), yr := y(kdt) and
Ak := A(kdt) with an infinitesimal time interval d¢. The conditional probability of the
Langevin dynamics Eq. (3.42) is given by

(9.4)

(Yahi1 — Yok — 2 (ks yp, A )dt)?
4y T dt '

p(@pt1|zr, yr) = Ny exp [—

where [T (z,y,A) = fZ(x,y,\) — 0, U(x,y, \) denotes the total force in X. Here, we
introduce the dual dynamics in X. The conditional probability of the dual dynamics

pp(Tp+1|Tr, yx) is given by

o (Tkt1|2k, Yi)

(VeThr1 — Yok — frot (@r, Yr, Ak )t + 27,05 (21, iy Mg )dE)
=N, — . 9.5
N, exp [ I Tedl (9.5)

Up to the order o(dt), the stochastic relative entropy dki,(p(zk+1, Tk, Y&)||PD (Tk+1, Tk, Yi))
is calculated as

dKL(p(l’k:Jrl, Tk, yk) | |pD ($k+1, Tk, yk))

1 Vs (They Yy Ak) + YoV (Tht1, A

_ ﬁ(xkle _xk)V (ks Yi, Ak) 72 (Th+1, Yr+1Ak+1) (9.6)
1

= ﬁQﬁk(kdt)a (9.7)

where the housekeeping heat Qf, (¢) in X at time ¢ is defined as

Qni(t) == [2(t) o vavgs(2(t), y(1), A(t))]dt. (9-8)
From the nonnegativity of the relative entropy Dkr,(p(Zk+1, Tk, Yr)||PD(Tk+1, Tk, Yr)) >
0, we have
(Qhk(t)) = 0. (9.9)

This housekeeping heat inequality is a generalization of the information thermody-
namic inequality for two-dimensional Langevin system, because Eq. (9.9) is equivalent
to the information thermodynamic inequality Eq. (8.65) if we replace the steady state
distribution pgs(z,y, A) by the conventional probablility distribution p(z(t),y(t)).

We can also derive another generalization of the information thermodynamics for
a steady state. The backward probability of the dual dynamics ppp(xk|Tkt1,yx) is
given by
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PBD (CUk \SCk;+1, Z/k+1)

— N (Yoo (h = Tpop1) + e (Th1s Yri1s Mo 1)t + 2770, d(Thp 1, Yr1, Mor1 )dt)
— e &P Ay, T dt

(9.10)
We here define ppp (g, Trpt+1, Yk, Yk+1) as

PBD (ks Tht1, Yk, Yk+1) = PBD (Tk|Tht1, Ykt 1)D(Tht1, Yks Ykt1)- (9.11)

Up to the order o(dt), the stochastic relative entropy between p and pgp is calcu-
lated as

dxr.(P(Tk, Trg1, Yk Yet1) | [PBD (Th, T 1, Uks Yrt1))

8:r¢(xk7 Yk, )‘k) + 8m¢($k;+1, Yk+1, )‘k-i-l)
2

=Inp(zy) — Inp(xrpr) + (Th41 — 2x)
+i(zk {Yr Ye+1}) — W @rt1 : {yk, Yet1})

1 . .
=Inp(xg) —Inp(zrs1) + v(kdt) +i(zk s {yk, Ykt1}) — W(@rr1  {Uk, Ykt1})s

T
(9.12)
where QZ _(t) is the excess heat in X at time ¢ defined as
- dt .
ex(t) = =g @(t) 0 D p(x(t).y(2), A(%))- (9.13)

From the nonnegativity of the relative entropy, we have another generalization of the
steady state thermodynamics with information

Asy + %< ox(kdt)) > I(@pi1 : {yr, Y1 }) — L@k {yn, Ykt1}), (9.14)
where the Shannon entropy difference is defined as As, := (Inp(zy)) — (Inp(xkt1)),
which can be replaced by the nonequilibrium potential change if p(z) and p(xgi1)
are steady state distributions. This inequality implies that the information flow term
I(xky1 : {yk, yr+1}) — I(xk : {yk, yk+1}) is important if we consider the steady state
thermodynamics for coupled dynamics.

9.2 Feedback Cooling and Third Law of Thermodynamics

Next, we discuss the relationship between feedback cooling and information ther-
modynamics. By applying the information thermodynamic inequality (6.61) to the
coupled underdamped Langevin equation, we discuss a cooling bound of the kinetic
(effective) temperature and the information flow. This result is a generalization of
our previous discussion of feedback cooling with information [31].
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We here consider the following coupled underdamped Langevin equation, which
describes the feedback cooling:

mi(t) = —[a(t) ~ y(1)] + €°(1), (9.15)
i(0) =~ l(t) — (1) + (1), (9.16)
(€ (0) = (1) =, (917)

(€ (0E () = 2T ()6t — 1), (9.18)
e =2 D), (9.19)
D) =0, (9.20)

where y denotes the memory state of the spontaneous velocity &, 7¥ > 0 is a time
constant which corresponds to the operation time intervals of the feedback controller,
m is the mass of the particle, and ~ is the friction constant.

The heat absorption in X [72, 74] is given by

JU(E) = (@(t) o [€7(t) = va(1)]) (9:21)
= L[17 () — (i (1)), (9.22)

where we used the relation of the Startonovich integral (&(t) o £7(t)) = yT*(t)/m.
From the information thermodynamic inequality (7.8), we have

JE(t)

< Itr . IBtr o x|y D)
T < AL - TP~ ds; (9.23)

< dIir —dsy, (9.24)

where the transfer entropy is defined as dIf* := (Inp(y(t + dt)|z(t), y(t)) — Inp(y(t +
dt)|y(t))), the backward transfer entropy is defined as dIPt := (In p(y(t)|&(t+dt), y(t+

dt)) —Inp(y(t)|y(t + dt))), and the conditional Shannon entropy is given by de'y =
(Inp(z(t)|y(t)) —Inp(z(t+dt)|y(t+dt))). In a stationary state, the conditional Shan-
non entropy vanishes, i.e., dS; v — 0, and the information thermodynamic inequality
(9.24) can be rewritten as

T*(t) — Teg(t) dt

— < dI*" — qIB* 9.25

< dI, (9.26)

where Tog(t) := (ma?(t)) is the kinetic temperature and t, := m/y > 0 is the
relaxation time. This inequality gives a lower bound of the kinetic temperature Teg (t)
from a viewpoint of the transfer entropy dI}*.

We here assume that the probability distribution is a Gaussian distribution with
(z(t)) = (y(t)) = 0. From the analytical calculation in Chapter 7, we analytically
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obtained the transfer entropy dIf* as

o _ 1 1— (p;”)? (&*(1))dt
aIf = o (1+ D ) (9.27)
1 () Tl
BRI TIOR (9:28)

where (p;¥) := [(@(t)y(t))?]/[(2%(t)) (y*(t))] is a correlation coefficient which satisfies
(py¥)? < 1. Thus, the inequality (9.26) gives

(@) —Ter(t) dt _ 1 Tem(t)dt

T=(t) t, — 4ty TY(t) ’ (9:29)
T (1) LZ izgg | 1} ) < To(t). (9.30)

This inequality indicates that the kinetic temperature Ty (t) can be lower than the
temperature of the heat bath T%(¢) because of the feedback control effect. The lower
bound of the kinetic temperature cannot be zero, if the time constant 7¥ is finite. This
fact is related to the third law of thermodynamics, which states that it is impossible
for any process, no matter how idealized, to reduce the entropy of a system to its
absolute zero value in a finite number of operations. [123].

We add that another statement of the third law of thermodynamics is generally
proved from the property of the transfer entropy at the zero temperature. In the case
where the system X is in a stationary state at the absolute zero temperature, the
probability distributions of X are given by the delta functions, i.e., p(&(t)) = d(&(t))
and p(£(t)|y(t)) = 6(&(t)). The conditional Shannon entropy vanishes [i.e., dely = 0],
and the transfer entropy dIf* is calculated as

dI;" = /dy(t + dt)dy(t)di(t) {p(y(t +dt),y()|2(t))p(E(t)) In

= [+ vy [p<y<t i), y(0)](t) = 0)In

=0.
Thus, the information thermodynamic inequality (9.24) gives

JE(t)
- TE(t)

ASpath := dt >0, (9.34)
which implies that the entropy change Aspain associated with any other systems
cannot be reduced as the temperature approaches absolute zero. This is another
statement of the third law of thermodynamics [123].
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Conclusions

We have studied thermodynamics with complex information flows induced by inter-
actions between multiple fluctuating systems. The main results are in Chapters 6, 7,
8, and 9. We here summarize our results in this thesis and discuss an influence of our
study, a scope of application, our future prospects.

In Chapter 6, we have developed stochastic thermodynamics for multiple fluctuating
systems based on the causal networks. To divide nodes of the casual networks into two
parts, the target system and the other systems, we have discussed thermodynamics
for a small subsystem under the condition of the other systems [50]. We have defined
thermodynamical quantities and informational quantities using the terminologies of
the directed acyclic graph, (i.e., the set of parents and the topology ordering). One
of the main results is a novel generalization of the second law for a small subsystems
on causal networks. In this study, we have used the causal networks as the tool for
deriving the novel generalization of the second law of thermodynamics. We believe
that our formalism is well established because concepts of the causality, the transfer
entropy, and the second law of thermodynamics are closely related to each other.
We also add that this study would be important because thermodynamics is well
formulated on causal networks. It can be a future challenge to apply several technique
of the Bayesian networks, such as the machine learning and pattern recognition, to
the nonequilibrium thermodynamics.

We also believe that the technique in our study can be used for several studies
of causal networks. The informational quantity (©) may have a meaning even if we
do not discuss thermodynamics, but discuss the other fields of study on causal net-
works (e.g., the financial marketing described by causal networks). The informational
quantity (©) can be calculated in a realistic situation described by causal networks,
because (©) is the measurable quantity given by the mutual information and the
conditional mutual information.

In Chapter 7, we have discussed the biochemical signal transduction using the main
result in Chapter 6 as a simple application of our studysystems [59]. We have showed
that the transfer entropy gives the lower bound of the robustness of the biochemical
signal transduction with a feedback loop. In our discussion, we have only focused
on the simple dynamics of sensory adaptation described by the coupled Langevin
equation. From the discussion in Chapter 6, we can discuss the accuracy of any signal
transduction which has a complex structure and a time-delay effect. In general, the
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robustness of the signal transduction is bounded by the informational quantity (©),
which can be calculated from the topology of signal transduction networks. In the
case of the complex biochemical signal transduction, we can use the technique of
causal networks to treat numerous experimental data.

We have also discuss thermodynamic efficiency of information transmission in terms
of thermodynamics. Our study may answer the question how to determine the bio-
chemical parameter (e.g., time constant) in a real biological cell. In the process of
the evolution, it is not so strange that the biochemical system may obtain the effi-
cient parameter, and such a biochemical parameter may be optimized to maximize
information-thermodynamic efficiency as a total thermodynamic system.

In Chapter 8, we have discussed the further generalization of the study in Chap-
ter 6. Applying the data processing inequality, we have showed that the backward
transfer entropy, which is the novel information flow that we proposed, give a tighter
bound of the entropy production. In our generalization, the backward transfer en-
tropy can be considered as the inevitable loss of thermodynamic benefit. We believe
that the importance in the study of Chapter 8 is the proposal of the backward transfer
entropy as a loss of benefit. We believe that the backward transfer entropy can be an
important measure of causal relationship between two time series likewise the conven-
tional transfer entropy. It is interesting that the relationship between the backward
transfer entropy and several applications of the conventional transfer entropy such
as the Granger causality [106, 107], the phase-transition [128], and the time series
analysis [105, 108, 109].

In Chapter 9, we have shown the possibilities of the application of our study. Several
nonequilibrium dynamics, such as the steady-state thermodynamics and the feedback
cooling, can be discussed using our formalism of information thermodynamics. We
believe that information flow, i.e., the transfer entropy and the backward transfer
entropy, can be an important quantity in nonequilibrium statistical physics in many
situations. We believe that several nonequilibrium dynamics of multiple fluctuating
system can be discussed quantitatively characterizing the information flow. For ex-
ample, we have showed that the information thermodynamics gives the cooling bound
by information for a feedback cooling system.

We here note an influence of our research in terms of a list of citations from our two
papers [50, 59], which include the main topic of this thesis. Our research have led to
several studies of the generalized second law of thermodynamics for a subsystem in a
class of Markov process [56, 57, 58, 168] and in a class of non-Markovian process [169,
170], several studies of a relationship between thermodynamics and information in
a biochemical sensory system [60, 62, 63|, several studies of thermodynamics with
information processing [61, 167, 171, 172, 173, 174, 175, 176] and other topics of
thermodynamics [177, 178, 179].

We add a limit of application of our study. Our main result Eq. (6.41) (or Eq.
(8.108)) is the relationship between the entropy production ¢ and the informational
quantity © (or ©"). We discuss a limit of application of our study in terms of the va-
lidity of these two definitions. First, the informational quantity is based on a classical
stochastic process with causality, therefore our main result is not directly applicable
to quantum dynamics. This fact does not mean an inability of a generalization of our
study for quantum dynamics, because thermodynamics with information processing
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can be discussed for quantum dynamics in a simple setup (e.g., Ref. [167]). Second,
the definition of the entropy production o is based on the definition of the detailed
fluctuation theorem [70, 72, 74|, therefore it depends on the definition of the back-
ward path probability pg. As discussed in Chap. 9, the definition of the backward
path probability can be replaced, and the physical meaning of o can be changed,
while maintaining the information thermodynamic inequality (6.41). This fact sug-
gests that we have to take care of choice of pg in each case, to obtain a meaningful
(thermodynamic) quantity o. For example, in the case of a Langevin equation with a
colored noise, it is difficult to define the backward path probability pp and an instan-
taneous value of the entropy change in the heat baths. We add that the assumption
Eq. (6.2) is not satisfied in the case of a Langevin equation with a colored noise.

In our result, we have developed stochastic thermodynamics for a small subsys-
tem interacting with fluctuating multiple other systems, and discussed the robustness
of the biochemical signal transduction. Our theory can provide a physical basis of
nonequilibrium dynamics with information and bioinformatics as Shannon’s infor-
mation theory for artificial communication. Our study has a potential to apply to
not only several nonequilibrium dynamics, but also information dynamics on causal
networks.
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