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Abstract

This thesis is dedicated to the theoretical studies on molecular motors, which are fascinating
well-designed protein nanomachines that work in various biological systems. Recent progresses
in experimental techniques have led to the measurement of precise physical properties of molec-
ular motors, such as the heat dissipation of rotary motors and the cooperative dynamics of linear
cytoplasmic motors. In parallel, there has been considerable advance in the understanding of
stochastic thermodynamics, where the behavior of thermodynamic machines in the fluctuating
world is the main target of study. In light of these developments, both in experiments and the-
ory, we are now in position to elucidate the fundamental design principles hidden behind the
molecular motors.

Two phenomenological models are discussed in this thesis. First is the model for F1-ATPase
(or F1), which is a rotary motor with outstanding properties in its thermodynamic efficiency. We
focus on the recent experimental result on the heat dissipative feature of F1, which showed that
the dissipation inside the motor is close to zero, irrespective of the velocity of rotation. We arrive
at a model with totally asymmetric rules in the rotational angular dependence on the chemical
reaction, and find significant consistency with this model to other experimental data such as the
characteristic torque-velocity curve of F1. Through the model, we give predictions on the physics
of the reverse rotation of F1, where ATP synthetic reactions occur.

Secondly, we consider a model for cytoplasmic molecular motors, which are proteins that
transport cargoes along pseudo-one-dimensional rails called cytoskeletons. Experiments have
clarified the large dependence of the transport velocity on the number of tied molecular motors
such as myosins and dyneins. In our model, we take into account the typical two states of molecu-
lar motor heads, the highly diffusive state and the strongly bound state, and consider the stochastic
switching between them through a force-sensor controlled rule. The scheme allows diffusive and
bidirectional elements to produce unidirectional transport through collective interaction. We an-
alyze how the sensitivity of the force-sensor affects the cooperativity of the motors, defined by
the ratio between the value of velocity with two molecules and infinitely many molecules. We
discuss on the possibility to classify the various cytoplasmic motors through the phase diagram
obtained in our simple model.
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Chapter 1

General introduction

1.1 Molecular motors and thermodynamics

No matter how special we feel about ourselves as living beings, or fascinating other creatures
make us aware of the depth of mother nature, we cannot deny, at this stage of science, that living
systems are composed of purely physical matter. It is therefore so natural to study the physical
property of biological systems, just like how we investigated the night sky so well to know the
age of the universe, or dug deep into the microscopic high-energy region so much to fulfill the
dream of atomism.

Among many of the interesting progresses in the quantitative understanding of biophysics,
studies on molecular motors have a special position characterized by the highly quantitative re-
sults provided by the fascinating and truly innovative experiments. The relatively simple goal
in the field of single molecule biology was to take the spatio-temporal resolution of the micro-
scopes to its limits: to the level where nanometer steps are distinguishable in the timescale of
sub-milliseconds.

What is truly fascinating about researches on molecular motors is not only that profound new
techniques were required in these experiments, but also the fact that such pure engines that are
so small can actually exist, and can function as thermodynamic machines to some extent in our
understanding. Thus the conceptual interest arises: comparing such small stochastic systems
with macroscopic thermodynamic systems will inevitably reveal the the basic features of bio-
molecules.

The experimental studies on bio-molecular motors have thus brought new questions to the
field of statistical physics [1, 2, 3]. Since the leading actors that drive transport in the scale
of bio-molecules are thermal diffusion and stochastic chemical reactions, it is expected that the
thermodynamical properties underlying in such systems differ from that in macroscopic motors.

For example, how the second law of thermodynamics is obeyed in such fluctuating world
has caught much attention over the past twenty years. It has been discussed [4, 5] that the ir-
reversible entropy production is itself a stochastic quantity which may turn negative in single
outcomes, although in the ensemble average the macroscopic law of inequality recovers. Further
studies have shown that appropriate feedback protocols indeed allow small systems to utilize the

3



4 CHAPTER 1. GENERAL INTRODUCTION

thermal fluctuation [6], while paying the cost in a macroscopic external system [7] or through
other small systems dynamics [8]. Historically, one of the most important literature in the con-
text of Maxwell’s demon [9] was in fact written with a large motivation toward understanding
the specialty of living systems; can we define intelligence through thermodynamic inequalities?
The field of stochastic thermodynamics has thus reached the point where abstract theories are
answering practical and long standing questions in statistical physics.

Given the progress in the theoretical understanding of stochastic thermodynamics, we now
desire to come back to the study on molecular motors; interest is on how real bio-molecules are
actually benefiting or suffering from the large stochasticity [10]. Modern experimental and the-
oretical studies have so far unveiled the interesting features of bio-micromachines, for example
the ratchet mechanism [11] including the potential switching scheme [12], large collective be-
havior [13, 14], and seemingly high efficiency in terms of thermodynamic properties [15, 16].
These phenomenological studies are aimed at elucidating the fundamental and possibly universal
properties of molecular motors; seemingly different and complicated structures of motor protein
families may well be understood through simple models that focus on specific aspects of the
motors.

In this thesis, we present the current understanding on molecular motors, with focus on the
thermodynamic and cooperative features. Through the phenomenological models inspired by
specific experimental data, we aim to describe the possible design principles hidden in molecular
motors in a quantitative manner. The aim of this thesis is to demonstrate how our understanding
of molecular motors have reached to the stage where the quantitative understandings are now
allowing us to imagine and discuss the fundamental physics governing in the world of nanoma-
chines.

1.2 Organization of the thesis

In the following, we shall start by describing the basis of stochastic thermodynamics. Most
part of Chapter 2 is meant to play the role as a theoretical minimum required to understand the
modeling of molecular motors and their interpretations. The principle aim here is to introduce
heat in terms of the stochastic Markov dynamics, and to describe in what ways it can be indirectly
measured and how those measured quantities are related to the thermodynamic laws. The other
parts are aimed at describing the fundamental questions in statistical physics that are related to
the experimental measurements of thermodynamic quantities in small thermodynamic systems.

Based on these introductory parts, we consider the theoretical model for the rotary motor
F1-ATPase (or F1) in Chapter 3, as the first main topic in this thesis. F1 is one of the most well
studied molecular machines due to its obviously important role in the thermodynamics of cellular
processes; it is responsible for generating over 90% of the ATP consumed in the eukaryotic cells.
F1 has the remarkable feature that the rotary angle of theγ shaft is a single variable that almost
dominates the full chemical reaction of of ATP synthesis and hydrolysis. Recentin vitro exper-
iments for F1 in the ATP hydrolytic regime (i.e., the F1 motor) have found that the dissipation
inside the motor is close to zero, irrespective of the velocity of rotation. Using the framework of
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stochastic thermodynamics, we arrive at the conclusion that these experimental results should be
explained by an asymmetric design principle in the angular dependent chemical reaction rates.
We present and discuss the significant consistency of our model to other experimental data in-
cluding the torque response of F1 .

In Chapter 4, we move our focus to linear motors, which are molecular motors that function
typically in cytoplasms in order to transport the cargos on rails such as cytoskeletons. Motivated
by the recent systematic experiments that quantified the extent of cooperativity in molecular
motors, we consider a simple model which allows bidirectional elements to produce unidirec-
tional motion though collective interactions. The attempt here is to unite the previously proposed
different perspectives in independent motor protein experiments, and to give a conceptual under-
standing on the origin of cooperativity in linear motors.

Introduction to the specific molecular motors of interest are given in detail in the correspond-
ing chapters; in both presented models, we aim to clarify the relation of our phenomenology to
past and future experiments. In the final concluding remarks chapter, we aim to position our
thesis in the general prospective of biological physics.





Chapter 2

Stochastic thermodynamics
-Phenomenological description of molecular motors-

Here we review on the basic concepts of stochastic thermodynamics, which is a theoretical
framework that links general stochastic phenomena to thermodynamics. We first explain the
physical background of Markov processes, including the overdamped Langevin equation and
jump processes concerning chemical reactions. We then introduce the energetics of Brownian
motion, and note on the general principles of thermodynamics in Markov processes. Based on
these setups, we describe the motion of molecular motors by the combination of Brownian motion
and chemical reaction-induced switching. We note on various theoretical tools that are useful
in quantifying the heat dissipation and elucidating the model parameters in such systems, with
special focus on the fluctuation response relation studied in nonequilibrium systems. Remarks on
the treatment of stochastic differential equations is also given.

7



8 CHAPTER 2. STOCHASTIC THERMODYNAMICS

2.1 Mesoscopic description and stochastic dynamics

2.1.1 Brownian motion: overdamped Langevin system

Consider a bead (submicron particle) suspended in water with uniform room temperature.
The motion of such particle is known to be well described by the Brownian motion, which is
written as a stochastic differential equation:

˙⃗x =
√

2Dξ⃗(t). (2-1-1)

Here, x⃗ = (x1, x2, x3) is the position of the particle in three dimensions, ˙ represents the time-
derivative,D is the diffusion coefficient, and⃗ξ(t) = (ξ1(t), ξ2(t), ξ3(t)) is the Gaussian white noise
vector with unit variance:

⟨ξi(t)ξ j(t
′)⟩ = δi jδ(t − t′). (2-1-2)

We used⟨·⟩ to describe the ensemble average.δi j (i, j = 1,2,3) andδ(·) are Kronecker’s delta
and Dirac’s delta function, respectively. It is known that the value ofD obeys the Stokes-Einstein
law:1

D =
kBT
Γ
=

kBT
6πηa

. (2-1-3)

We introduced the viscous friction coefficientΓ, the Boltzmann constantkB(= 1.38×10−23m2kg · s−2K−1),
the temperatureT (≃ 300K) and the viscosityη (= 0.890mPa·sec for 298K water) of the sub-
stance. The relationΓ = 6πηa is derived for the case of a spherical particle2 with the diameter of
the suspended particlea.

Equation (2-1-1) is an example of Markov process [18]. Markov process is a special type
of stochastic process where the probability in the future does not depend on the past dynamics
(see definition in Sect. 2.3). Now, if we interpret Eq. (2-1-1) as the equation of motion, what
is nontrivial is that such closed and memory-independent equation of motion well describes the
dynamics of the position variable of the bead,x⃗.

In a closed system which includes all the water molecules and a single bead, it is expected that
there is a deterministic equation of motion3 which takes into account all the degrees of freedom
including the position and velocity of water molecules. Therefore, even if we focus on the motion
of the single bead, the dynamics should depend on the combination of all the forces that affect
the bead, which is the interaction with the huge number of water molecules.

In short, the reason for the closed form of Eq. (2-1-1) is that the other degrees of freedom in
the total equation of motion are very fast compared to the observation time-scale of our interest.
This assumption allows the detail of the degrees of freedom of the water molecules to be packed

1Sinceη,a,T, andD can be obtained independently in experiments, Eq. (2-1-3) can be used to measurekB [17].
2A useful formula to remember isD =0.25/(diameter of particle inµm) [µm2/sec].
3We only consider classical systems in this thesis. Therefore, the origin of fluctuation is all assumed as thermal,

and not quantum.
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into a system we call the thermal reservoir, and its interaction with the bead to be effectively
included in the equation of motion through the thermal force. Such elimination of variables from
the original equation of motion to obtain phenomenological descriptions, is referred to as the
reduction of dynamics [19].

Although there is no mathematically rigorous way to derive Eq. (2-1-1) from the full classi-
cal equation of motion4, there are several cases where the singular perturbation method allows
explicit understanding of the phenomenological descriptions, with the separation of time-scale
playing a role as the small parameter. In fact, there exists an intermediate layer of description in
the case of Brownian motion:

˙⃗x = v⃗, M ˙⃗v = −Γv⃗+
√

2ΓkBTξ⃗(t). (2-1-4)

Here we have introduced the velocity of particlev⃗ an additional variable, and the mass of the
particle M. Equation (2-1-4) is called the underdamped Langevin equation, whereas Eq. (2-
1-1) is called the overdamped Langevin equation. Equation (2-1-4) has a clear interpretation
as an equation of motion; the right hand side of the second equation corresponds to the force
that the bead feels. The origin of such force is obviously the interaction with the surrounding
molecules, therefore it is called the thermal force. Note that the thermal force already includes the
phenomenological description usingΓ and the fluctuation term with simple statistical property,
ξ(t). The reduction of dynamics from Eq. (2-1-4) to Eq. (2-1-1) is justified when the fastest time-
scale in the motion ofx (typically the frame rate of camera used to observe the position of the
particle), is much larger thanM/Γ, which is the time-scale for the velocity of the particle to relax
to equilibrium.

In practical regimes of the bio-molecular experiments, we need not to be concerned with
the underdamped description, Eq. (2-1-4)5. This is because the protein molecules including
molecular motors, and even the utilized probe particles that are typically much larger than the
bio-molecules, have small mass relative to the accessible time-scale× Γ.

2.1.2 Chemical reactions

Another key ingredient in the dynamics of bio-molecules is the stochastic chemical reaction.
In terms of chemical potential, the cell is in a largely nonequilibrium situation: ions such as
Na+, K+ and Ca2+ are abundant and highly nonuniform among the different compartments made
with lipid membranes. Such nonequilibrium situation plays important roles in the macroscopic
character of cells such as in the formation of action potentials and determining the direction of
motility.

4The Mori projection operator scheme [20, 21] gives phenomenological understandings to this problem. The
Zwanzig model [22] describes a concrete example of the underdamped Langevin equation obtained from the the
Newtonian dynamics of a particle interacting with many small particles. In both cases, however, the Markov ap-
proximation plays a key role in deriving the white Gaussian noise. There are other cases like the billiard model [23]
which are rigorous in the context of dynamical systems, but do not correspond exactly to the physical situation we
have in mind.

5It was only recently that experiment first captured the dynamics of the underdamped variable,v [24].
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The chemically nonequilibrium situation is cascaded into various forms of nonequilibrium,
for instance through active pumping of ions, motions of molecular motors, and cell proliferation.
The origin of all such free energy transduction is the metabolic system, where the free energy of
the external source is packed into the forms of high energy molecules such as adenosine triphos-
phates (or ATP).

The high free energy-involving reaction of ATP hydrolysis reads

ATP+ H2O⇌ ADP+ Pi. (2-1-5)

Here we also wrote the reverse reaction, where ADP (adenosine diphosphate) and Pi (phosphoric
acid) bonds to form ATP. The reaction from left to right is referred to as the hydrolysis reaction,
where as the opposite is called the synthetic reaction. It is known that the reaction (2-1-5) is
largely biased to the right; in the usual situation, the ATP is unstable and prefers to be hydrolyzed.
The extent of the bias is quantified by the free energy difference accompanying the hydrolysis
reaction:

∆µ = ∆µ0 + kBT log
[ATP][H2O]
[ADP][Pi]

. (2-1-6)

The second term in the right hand side of Eq. (2-1-6) is the concentration dependent term6, which
is derived for the case of low concentration of ATP, ADP, and Pi in the solution of H2O. The
value of the standard free energy∆µ0 ∼ 11 kBT, varies in literature, although the error is around
1 kBT.7

It is critical that the large free energy accompanying the hydrolysis reaction (2-1-5) is timely
released and coupled to useful motion or pumping in the physiological context. To this end, the
natural hydrolysis rate needs to be sufficiently low compared with the time scale of biochemical
reactions. Indeed, the nonenzymatic reaction for (2-1-5) has a time scale of> 105 sec [25].
Therefore, it is safe to assume that the concentrations in Eq. (2-1-6) are kept constant during
single molecular-level experiment; the bulk concentration does not change so much over the time
scale of experiment.

The remarkable fact in biological systems is that the hydrolysis rate jumps to a much higher
value in the presence of catalytic enzymes or motor proteins. Under this situation, it makes sense
to ask what statistical laws rule the reaction of (2-1-5). We expect that the hydrolysis reaction
rate, which we denote asR+ and the synthetic reaction rate, denoted asR−, should satisfy the
condition

R+

R−
= exp

[
∆µ

kBT

]
. (2-1-7)

In fact, such relation should hold irrespective of the existence of enzyme; if the value ofR+ is very
low in a certain pathway of reaction, the value ofR− corresponding to the reverse of this pathway

6This term is sometimes written askBT log([ATP]/[ADP][Pi]), which means that [ATP], [ADP], and [Pi] are
treated as non-dimensional quantities, [ATP]= NATP/NH2O etc., withN representing the number of molecules of the
substance.

7The value is obtained for the case of 1 mM excess Mg2+, 25◦C, and pH 6.5. See for instance, the supplementary
material for [16].
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should also be very low. We cannot, however, compare two reactions of different pathways, for
instance one escorted by an enzyme and its reverse reaction without the enzyme.

The natural assumption behind Eq. (2-1-7) is that the process of stochastic reactions are writ-
ten as a Markov jump dynamics, which is again a stochastic and memory-independent process.
The reason for this assumption can be understood in the same way as the Brownian motion de-
scription; the water surrounding the ATP, ADP, and Pi is so abundant and fast that it acts as
a thermal reservoir, and the detailed dynamics of them is effectively included in the statistical
properties ofR+ andR−.

One way to look at Eq. (2-1-7) is that the distribution of the state of the water molecules
including ATP, ADP, and Pi, is given by the grand canonical ensemble. In this picture, we assume
a subsystem being attached to an external reservoir with fixed temperatur and concentration of
ATP, ADP, and Pi (that determines∆µ), which is essentially satisfied in our setup of interest
since the time scale of natural reaction is so slow compared with the enzymatic reaction. Then,
Eq. (2-1-7) corresponds to the detailed balance between two states, where there areM molecules
of ATP andM − 1 molecules of ATP in the subsystem, for instance. Thus, the nonequilibrium
large bias characterized by Eq. (2-1-7) when focusing on a single molecule dynamics, is nothing
but the equilibrium dynamics from the point of view of the subsystem. Such way of considering
the nonequilibrium local dynamics as a part of the larger equilibrium dynamics is the heart of the
fluctuation theorem, which we will introduce in Sect. 2.3.

2.2 Stochastic energetics: defining heat in Brownian motion

Let us consider again the overdamped Brownian dynamics. We remark that all the discussions
given here can be extended to the case of underdamped dynamics (see for example, [2]).

We consider the one-dimensional dynamics of a molecule that is subjected to a general force:

Γẋ = Fλ(t)(x) +
√

2ΓkBTξ(t). (2-2-1)

We introduced the position dependent forceF(x), which may be decomposed into a position
independent driving force and an effective potential force:

Fλ(t)(x) = fλ(t) −
∂Uλ(t)
∂x
. (2-2-2)

Here and throughout, the we considerξ(t) to be the white-Gaussian noise with unit variance,
⟨ξ(t)ξ(s)⟩ = δ(t − s).

A typical situation which corresponds to Eq. (2-2-1) is a Brownian particle being trapped in
some effective potentialUλ(t)(x) made by an applied optical tweezer or the conformation of the
probed protein molecule. The driving forcefλ(t) that brings the motion of the macromolecule into
nonequilibrium may be applied externally or through chemical reactions in the phenomenolog-
ical description. We have introducedλ(t), which is a deterministic or stochastic parameter that
controls the value off and the functional form ofU(x). Changing ofλ corresponds for instance
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to moving the center of the optical tweezer or switching the chemical states of the protein that
traps the probe bead.

In [26], Sekimoto introduced the following definition of heat (hereafter referred to as Langevin
heat):

Q := −
∫ τ

0
dt

(
−Γẋ(t) +

√
2ΓkBTξ(t)

)
◦ ẋ(t). (2-2-3)

We denoted the Stratonovich integral8 as◦ and set a time intervalt ∈ [0, τ]. The physical meaning
of Eq. (2-2-3) is that it is quantifying the energy transferred from the bead to the water: the ( )
part is the thermal force, so the quantity inside the integral is the instantaneous work per time that
is done by the thermal force to the bead.9

Let us consider the case wheref = 0. By defining the potential energy difference between
the time intervalτ as∆U := Uλ(τ)(x(τ)) − Uλ(0)(x(0)), we may write

∆U =

∫ τ

0
dt

(
∂Uλ(t)(x(t))

∂λ
λ̇(t) +

∂Uλ(t)(x(t))

∂x
◦ ẋ(t)

)
(2-2-4)

=

∫ τ

0
dt
∂Uλ(t)(x(t))

∂λ
λ̇(t) +

∫ τ

0
dt

(
−Γẋ(t) +

√
2ΓkBTξ(t)

)
◦ ẋ(t) (2-2-5)

= W− Q. (2-2-6)

We here definedW as the first term in Eq. (2-2-5), which is the energy shift caused by the change
of the parameterλ. For example, ifλ represents the center position and the stiffness of the
optical tweezer which is controlled from an external system,W quantifies the work that is put
in by this external system. Another example is whenλ represents a certain chemical state of
the motor protein, and the discrete switching of this parameter is induced by some stochastic
chemical reaction such as nucleotide binding. In both cases, Eq. (2-2-6) describes the energy
conservation of this Langevin system, which is why it is referred to as the First Law of stochastic
thermodynamics. Notice that since∆U, W, andQ depend on the trajectory ofx(t), they are all
stochastic quantities even when the time-course of the parameterλ(t) is predetermined. The claim
of Eq. (2-2-6) is that the First Law is obeyed precisely for each single trajectory.

Let us next consider a dynamics with fixedλ under the periodic boundary condition,x ∈ [0, L]
with U(x = 0) = U(x = L) [or simply, U(x) = U(x − L)]. We call such case the tilted periodic
potential setup:

Γẋ = f − ∂U(x)
∂x

+
√

2ΓkBTξ(t). (2-2-7)

Under this setup, we have a steady-state velocityvst, which may be analytically obtained as [27]

vst = DL
1− exp[− f L/kBT]∫ L

0
dx

∫ L

0
dyexp{[U(x+ y) − U(x) − f y]/kBT}

. (2-2-8)

8Note on the different interpretations of integrals is given in Sect. 2.4. The reason why we take the Stratonovich
interpretation in Eq. (2-2-3) is because it satisfies the ordinary chain rules, as utilized in Eq. (2-2-4). Another
important point is that only by adopting the definition Eq. (2-2-3) can we arrive at a quantity consistent with the
logratio of the transition probability. The latter point will be confirmed in Sect. 2.3.

9We have adopted the opposite sign convention forQ from [2].
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Noticing that Eq. (2-2-3) is rewritten as

Q =
∫ τ

0
dt

(
f −
∂Uλ(t)(x)

∂x

)
◦ ẋ(t) = f

∫ τ

0
dtẋ(t) − ∆U. (2-2-9)

The steady heat dissipation rate may be obtained as

⟨Q̇⟩st = lim
τ→∞

⟨Q⟩
τ
= f vst. (2-2-10)

Since the steady-state velocity and the driving force have the same sign [Eq. (2-2-8)], we imme-
diately find

⟨Q̇⟩st ≥ 0, (2-2-11)

which implies that a positive energy flux should be observed from the external driver to the
thermal reservoir under this setup. This is related to the Second Law of thermodynamics, which
will be discussed under a more general setup in Section 2.3.2. Here we note that, is in contrast
to the First Law [Eq. (2-2-6)] which is satisfied for every single trial, there is a small but finite
probability that the inequality for the single outcomes ofQ can be violated,Q < 0.

Some remarks should be made. Firstly, the Langevin heat defined by Eq. (2-2-3) does not
necessarily correspond to the actual energy flux between the particle and the surrounding en-
vironment. This is because the effective potential described byU(x) does not always have an
energetic interpretation. For example, the phenomenological description by Eq. (2-2-1) can be
satisfied for the case where a Brownian particle is trapped by an entropic spring. In such case, the
force is the entropic force, so there is no energy flow accompanying the motion of the probe in the
trap, in contrary to the case where the trap is a real energetic potential. In this sense, the potential
U(x) should be considered as the effective potential, that governs the dynamics as Eq. (2-2-1),
but may have unknown physical origin.

Secondly, under the typical experimental setup, it is very difficult to determine the form of
U(x) from first principles.10 This is why in most experimental studies, the functional form ofU(x)
is determined by the motion of the probe itself. In the case of fixedλ and f = 0, which is referred
to as equilibrium dynamics, the simplest way to estimateU(x) is to measure the equilibrium
probability density function of the position of the particle:

Peq(x) =
1
Z

exp

[
−U(x)

kBT

]
. (2-2-12)

Here,Z is the partition function (see Sect. 2.4 for the general discussion on the Fokker-Planck
equation, which describes the time evolution of the probability density function). It is typical
to estimate the spring constantk of an applied tweezer by fitting a Gaussian [assumingU(x) =
kx2/2] to the density function, and usek to estimate the force applied to a bio-molecule by
measuring the displacement of the probe from the center of the tweezer.

10The non-linear potential force exerted by an optical tweezer has been theoretically studied for instance in [28].
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In the case where there is finitef with fixed λ, it is also generally possible to reconstruct
the potentialU(x) and the value off by measuring the steady-state probability density function,
Pst(x), together with the steady-state velocity,vst [29]. If we may for instance estimate the form
of Uλ(x) and the value off for variousλ, then we may calculate the thermodynamic quantities
that appear in Eq. (2-2-6) under the determined protocol or the stochastic switching ofλ.

Even using these methods, there are certain cases that the estimate of the form ofU(x) is
challenging. The typical example is the case of molecular motors, as will be described in Sect. 2.5
and 2.6.

2.3 Markov process and the Second Law

We here remark on the stochastic thermodynamics of Markov processes. We will find that the
empirically defined Langevin heat in the previous section can be understood as a special case of
heat defined in general Markov processes. The principle behind this relation is the local detailed
balance, which is sometimes referred to as the (detailed) fluctuation theorem.

2.3.1 Entropy production in general Markov dynamics

Let us first introduce the Markov process. The stochastic variablex may be discrete or include
many variables, nevertheless we treat it as a continuous variable with a single variable notation.
The definition of Markov process is that the conditional probabilities satisfy

P(xtn|xt0, xt1, ..., xtn−1) = P(xtn|xtn−1), (2-3-1)

for any set of successive times,t0 < t1... < tn. This means that the probability of the event
in the future (tn) and the past (t0, t1, ..., tn−2) are independent under the condition of the present
(tn−1) state. For simplicity, let us consider a discrete time dynamics with an infinitesimal time
increment∆t, and denote the time pointstn := n∆t by n in this section (and also in Sect. 2.4). To
avoid confusion in the notation, let us also write the right hand side of Eq. (2-3-1), which is the
transition probability, asW(xn|xn−1).

The time evolution of the probability density functionPn∆t(x) follows the Chapman-Kolmogorov
equation,

Pn+1(x) =
∫

dx′Pn(x
′)Wλ(n)(x|x′). (2-3-2)

We assume that the transition probability it is controlled by the time-dependent external parameter
λ(t). The integral byx′ in Eq. (2-3-2) is taken over the whole phase space ofx. Note that∫

dxWλ(t)(x|x′) = 1.
Let xN = (x0, x1, ..., xN) be the stochastic path taken byx during theN time steps starting

from t = 0. From the Markov property [Eq. (2-3-1)], the path probabilityPλ(xN) is obtained by
Pλ(xN) = P0(x0)Wλ(xN|x0), where we defined the path transition probability as

Wλ(xN|x0) :=
N−1∏
n=0

Wλ(n)(xn+1|xn). (2-3-3)
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We also define the reverse trajectory ofxN asx†N, wherex†N = (x̄N, x̄N−1, ..., x̄0), with x̄i being the
time reversal ofxi (i.e., if x represents velocity or momentum, ¯x = −x).

Now, we define the heat entropy production (entropy production of the thermal bath) corre-
sponding to theN step trajectory as [30, 31, 32],

σ(xN) := log
Wλ(xN|x0)

Wλ†(x
†
N|x̄N)

. (2-3-4)

Here,Wλ† is the transition probability assigned to the time-reversed protocol,

Wλ†(x
†
N|x̄N) :=

N−1∏
n=0

Wλ̄(N−n)(x̄n|x̄n+1), (2-3-5)

which is defined usinḡλ(t), the time reversal ofλ(t) [for example if the control is by the magnetic
field, λ̄(t) corresponds toλ(t) with reversed coordinates]. The relation Eq. (2-3-4) is referred to
as the local detailed balance, or the detailed fluctuation theorem [32].

The assumption behind the definition Eq. (2-3-4) is that the stochastic property in the system
of interest is a consequence of thermal fluctuation. In other words, our system of interest is open,
and therefore the dynamics ofx is coupled to a large degree of freedom which act as the thermal
reservoir, as in the case of the Brownian motion description discussed in Sect. 2.1.1. The meaning
of Eq. (2-3-4) is that each stochastic step in the variablex is accompanied by an energy transfer
from the system of interest to the thermal reservoir. The law of the transition probabilities in the
system of interest is thus restricted by the equilibrium dynamics in the thermal reservoir, which
is the usual detailed balance.

The simplest example which explains Eq. (2-3-4) is the case of chemical reaction. Consider
that the state of the chemical substance ATP is of interest. Let us take this opportunity to note
that in the case of chemical reactions, the stochastic process should be considered in continuous
time and discrete states. Such dynamics is called the Markov jump process. The relation between
the transition probabilities, denoted asW, and the jump rates, denoted asR, is simplyW = R∆t if
we take a sufficiently small∆t. Thus, for the single switching event, ATP→ ADP + Pi, the right
hand side of Eq. (2-3-4) is simply equal toR+/R−. The entropy production of the thermal bath in
this reaction is∆µ/kBT [33, 34] which means that Eq. (2-1-7) was an example of Eq. (2-3-4).

Another example is the overdamped Langevin system described by Eq. (2-2-1). Let us take a
small time increment and discretize the dynamics to obtain the transition probability:

Wλ(n)(x
′|x) ∝ exp

{
− 1

4ΓkBT∆t
[
Γ(x′ − x) − Fλ(n)(x)∆t

]2
}
. (2-3-6)

The original Langevin dynamics may be considered as the limitN → ∞ (∆t → 0) with fixed
N∆t = τ for this discretized dynamics. Noticing that ¯x = x since we are only considering
overdamped dynamics, and

xn+1 − xn

∆t
[Fλ(n)(xn) + Fλ(n+1)(xn+1)]

∆t→0−−−−→ ẋ ◦ Fλ(t)(x), (2-3-7)
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we obtain

log
Wλ(xN|x0)

Wλ†(x
†
N|xN)

∆t→0−−−−→ 1
kBT

∫ τ

0
dtẋ ◦ Fλ(t)(x) =

Q
kBT
. (2-3-8)

The right hand side of Eq. (2-3-8) is the Langevin heat [Eq. (2-2-3)] divided by the temperature
of the heat reservoir, which can be interpreted as the entropy production (in the unit ofkB) of the
heat bath during the time intervalτ.

2.3.2 Second Law

To further discuss the Second Law of thermodynamics under the setup of Markov process, we
need to introduce the entropy increment of the system of interest during the time interval. This is
achieved by adopting the Shannon entropy as the entropy of the system:

S(t) := −
∫

dxPt(x) logPt(x). (2-3-9)

By defining the stochastic Shannon entropy difference assigned to the pathxN as11

s(xN) := log
P0(x0)
PN(xN)

, (2-3-10)

we have⟨s(xN)⟩λ,N = S(τ) − S(0). Here the bracket⟨·⟩λ,N denotes the average
∫

dxNPλ(xN)·,
wheredxN :=

∏N
i=0 dxi. One reason to take the Shannon entropy as the entropy of the system is

that it becomes equivalent to the thermodynamic entropy if the density is in equilibrium,Pt(x) =
Peq(x). Although the physical meaning of Eq. (2-3-9) is not clear for general nonequilibrium
density, it is useful in proving various relations which we discuss as follows.

Considering that the thermal reservoir and the system of interest compose the total closed
system, we expect thatΣ(xN) defined as

Σ(xN) := s(xN) + σ(xN), (2-3-11)

is positive, from the analogy of macroscopic thermodynamics. In fact, we can prove

⟨Σ(xN)⟩λ,N =
∫

dxNPλ(xN) log
Pλ(xN)

PN∆t(xN)Wλ†(x
†
N|x̄N)

≥ 0, (2-3-12)

where the inequality comes from the positivity of the Kullback-Leibler divergence12. Although
Eq. (2-3-12) holds for the general initial conditionP0(x) and for any time point in the Markov

11The denominator inside the log of the right hand side of Eq. (2-3-10) must be taken asPN∆t(xN) instead of
PN∆t(x̄N) in order to makes(xN) an additive quantity in time. In contrast, we must takeWλ† (x

†
N|x̄N) instead of∏N−1

n=0 Wλ(N−n)(xn|xn+1) in the definition Eq. (2-3-4), for the consistency with the Hamiltonian dynamics.
12Since

∫
dxNPN∆t(xN)Wλ† (x

†
N|x̄N) = 1, the denominator inside the log in Eq. (2-3-12) is a probability density.

Note that for the general case where ¯x , x, this density has no sensible meaning; it is different to the reverse path
probability. This subtle issue plays a critical role in the problem of whether the irreversible entropy production
increases or decreases upon the reduction of dynamics [35], since it is related to the condition in the proof of the
monotonicity of Kullback-Leibler divergence [36].
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process, in the case for a steady-nonequilibrium dynamics after a sufficiently long time (N → ∞
with fixed∆t, thusτ→ ∞), we have

⟨Σ(xN)⟩λ,N
N∆t

≥ 0
N→∞−−−−→ ⟨σ(xN)⟩λ,N

N∆t
≥ 0, (2-3-13)

since the contribution from the Shannon entropy production does not diverge in time. This in-
equality (2-3-13) is the generalization of the positivity of the heat flux shown in Eq. (2-2-11).

Let us remark that Eq. (2-3-12) can also be derived by another general relation⟨
e−Σ(xN)

⟩
λ,N
= 1, (2-3-14)

which is referred to as the integral fluctuation theorem [5, 37].

2.4 Stochastic differential equations

Here we briefly note on the treatment of stochastic differential equations. Different interpre-
tations of the integral in the Langevin description is linked to the Fokker-Planck equation. We
also mention the calculation of the irreversible entropy production.

2.4.1 Fokker-Planck equation

Consider the overdamped Langevin dynamics,

Γẋ = F(x) +
√

2ΓkBTξ(t). (2-4-1)

Let us first assume thatΓ andT both do not depend onx. The discretized version of the dynamics
can be written as

Γ(xn+1 − xn) = F(xn)∆t +
√

2ΓkBT∆tBn, (2-4-2)

wheret is now replaced byn∆t. The termBn is a stochastic variable that takes random values
with the probability density

P(Bn) =
1
√

2π
e−Bn

2/2. (2-4-3)

From Eq. (2-4-3), we obtain the transition probabilities of the Langevin dynamics, such as in
Eqs. (2-3-6, 2-6-8). Assuming that eachBn is chosen independently for each time pointn with
respect to the density Eq. (2-4-3), we have

⟨BnBn′⟩ =

∫ ∞
−∞ dBP(B)B2 = 1 (n = n′)∫ ∞
−∞ dBP(B)B×

∫ ∞
−∞ dB′P(B′)B′ = 0 (n , n′)

(2-4-4)
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Here,⟨·⟩ denotes the ensemble average. Now, by setting

ξ(t) := lim
∆t→0

Bn/
√
∆t, (2-4-5)

we have

⟨ξ(t)ξ(s)⟩ = lim
∆t→0

⟨BnBn′

∆t

⟩
=

lim∆t→0 1/∆t (t = s)

0 (t , s)
, (2-4-6)

which can be written as

⟨ξ(t)ξ(s)⟩ = δ(t − s). (2-4-7)

Let us introduce a simple derivation of the Fokker-Planck equation using this discretized
dynamics. For some functiong(x), consider the Taylor expansion

g(xn+1) − g(xn) = (xn+1 − xn)
dg(x)

dx

∣∣∣∣∣
x=xn

+
1
2

(xn+1 − xn)
2 d2g(x)

dx2

∣∣∣∣∣∣
x=xn

+ ... (2-4-8)

The ensemble average of the left hand side of Eq. (2-4-8) is, using the density functionsPn(x)
andPn+1(x),

⟨g(xn+1) − g(xn)⟩ =
∫ ∞

−∞
dx[Pn+1(x) − Pn(x)]g(x) = ∆t

∫ ∞

−∞
dxg(x)

∂Pt(x)
∂t

+O(∆t2). (2-4-9)

The ensemble average of the right hand side⟨
(xt+∆t − xt)

dg(x)
dx

∣∣∣∣∣
x=xt

+
1
2

(xt+∆t − xt)
2 d2g(x)

dx2

∣∣∣∣∣∣
x=xt

+ ...

⟩
, (2-4-10)

can be rewritten as⟨
F(xn)
Γ
∆t

dg(x)
dx

∣∣∣∣∣
x=xn

+
kBT∆t
Γ

d2g(x)
dx2

∣∣∣∣∣∣
x=xn

+O(∆t2)

⟩
, (2-4-11)

by using Eq. (2-4-2) and

⟨Bnh(xn)⟩ = 0 (2-4-12)

⟨Bn
2h(xn)⟩ = ⟨h(xn)⟩, (2-4-13)

which holds for arbitrary functionsh(x). The term (2-4-11) further be rewritten as

∆t
∫ ∞

−∞
dxPt(x)

[
F(x)
Γ

dg(x)
dx
+

kBT
Γ

d2g(x)
dx2

]
+O(∆t2) (2-4-14)

= ∆t
∫ ∞

−∞
dxg(x)

{
1
Γ

∂

∂x
[−F(x)Pt(x)] +

T
Γ

∂2

∂x2
Pt(x)

}
+O(∆t2), (2-4-15)
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Comparing (2-4-9) with (2-4-15), we obtain

∂Pt(x)
∂t

= −1
Γ

∂

∂x
[F(x)Pt(x)] +

kBT
Γ

∂2

∂x2
Pt(x). (2-4-16)

which is the Fokker-Planck equation.
The time evolution equation (2-4-16) can also be written using the currentJt(x):

∂Pt(x)
∂t

= − ∂
∂x

{
F(x)
Γ

Pt(x) − kBT
Γ

∂

∂x
Pt(x)

}
(2-4-17)

= − ∂
∂x

Jt(x). (2-4-18)

SinceJt(x) = 0 is a sufficient condition for the left hand side of Eq. (2-4-18) to be zero, we
have the equilibrium density described in Eq. (2-2-12), ifF(x) = −U′(x). In general, under the
presence of nonequilibrium driving force,F(x) = f − U′(x), it is impossible to obtain a density
which satisfiesJt(x) = 0. Nevertheless, the steady-state density can be obtained as the solution
to Jt(x) = Jst =const.

2.4.2 Case of position dependent temperature/friction

Let us next consider the case where the temperature is not uniform in space:

Γẋ = F(x) +
√

2ΓkBT(x) • ξ(t). (2-4-19)

Such case where the noise term depends on the value of the stochastic variable is called a dynam-
ics with multiplicative noise. Given Eq. (2-4-19), we have multiple ways to define the discrete
version of the dynamics corresponding to different interpretations of the multiple denoted as•:

Γ(xn+1 − xn) = F(xn)∆t +
√

2ΓkBT(x̃n)∆tB(t), (2-4-20)

wherex̃n is defined using a parameter 0≤ p ≤ 1:

x̃n = pxn + (1− p)xn+1. (2-4-21)

Interpreting• as p = 1 in Eq. (2-4-20) is called the Itô interpretation (typically written as·),
where asp = 1/2 (written as◦) andp = 0 are called the Stratonovich and anti-Itô interpretations,
respectively [38].

In contrast to the usual differential equation where the dependence of the dynamics on such
p becomes negligible for sufficiently small∆t, the stochastic differential equation described by
Eq. (2-4-20) has strong dependence onp, irrespective of the smallness of∆t. To see this, we start
from √

T(x̃n) =
√

T(xn)

[
1+

1
2

(x̃n − xn)
1

T(x)
dT(x)

dx

∣∣∣∣∣
x=xn

+O(∆t3/2)

]
. (2-4-22)
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Noticing that

x̃n − xn = (1− p)(xn+1 − xn) = (1− p)

√
2kBT(xn)
Γ

∆tB(t) +O(∆t), (2-4-23)

we arrive at

Γ(xn+1 − xn) = F(xn)∆t +
√

2ΓkBT(xn)∆tBn + (1− p)Bn
2kB

dT(x)
dx

∣∣∣∣∣
x=xn

∆t +O(∆t2). (2-4-24)

The third term in Eq. (2-4-24) is the non-negligible contribution fromp and the inhomogeneity
of the temperature. Recalling Eq. (2-4-13), we substituteBn

2 in the third term with 113. Thus, we
obtain the Langevin equation for generalp with an Itô interpretation in the multiplicative noise:

Γẋ = (1− p)kBT′(x) + F(x) +
√

2ΓkBT(x) · ξ(t). (2-4-25)

Starting from Eq. (2-4-25), we can follow the path that we obtained Eq. (2-4-16) to show

∂Pt(x)
∂t

= −1
Γ

∂

∂x
{[

F(x) + (1− p)kBT′(x)
]
Pt(x)

}
+
∂2

∂x2

[
kBT(x)
Γ

Pt(x)

]
. (2-4-26)

For an equilibrium density to exist, it should satisfy

d
dx

Peq(x) =
F(x) − pkBT′(x)

kBT(x)
Peq(x), (2-4-27)

which means that ifx is subjected to some boundary condition like 0≤ x ≤ L, we can define

V(x) = −
∫ x

0
dx

F(x′)
kBT(x′)

, (2-4-28)

and thenPeq(x) ∝ exp[−V(x)]/T(x)p is the solution. Notice that this density different to the
usual canonical density for anyp, even in the case ofF(x) = −U′(x). This means that the
inhomogeneous temperature is an intrinsically nonequilibrium setup.

A similar discussion follows for the case where the friction coefficient Γ depends on the
position

xt+∆t − xt = −
k
Γ(xt)

xt∆t +

√
2kBT∆t
Γ(x̃t)

B(t), (2-4-29)

by usingx̃ in Eq. (2-4-21) again. We arrive at

∂Pt(x)
∂t

= − ∂
∂x

{[
F(x)
Γ(x)

+ (1− p)

(
1
Γ(x)

)′
kBT

]
Pt(x)

}
+
∂2

∂x2

[
kBT
Γ(x)

Pt(x)

]
, (2-4-30)

13Since Bn
2 is a stochastic quantity, it fluctuates around its average value, 1. It is reasonable to neglect this

fluctuation, since it will only contribute to a term proportional to∆t, which is order
√
∆t smaller than the second

term in the right hand side of Eq. (2-4-24).
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where we wrotedΓ(x)−1/dx as (1/Γ(x))′. In contrast to the case of inhomogeneous temperature,
an equilibrium density can be obtained forF(x) = −U′(x) in this case:

Peq(x) ∝ [Γ(x)]p exp

[
−U(x)

kBT

]
. (2-4-31)

For the case ofp = 0, we recover the canonical distribution, Eq. (2-2-12).

2.4.3 Physical interpretation

Although we consideredp as a general parameter up to here, the value ofp is actually deter-
mined in the physical system if we start from the underdamped Langevin equation

ẋ = v, Mv̇ = −Γ(x)v+ F(x) +
√

2Γ(x)kBT(x)ξ(t), (2-4-32)

and consider the elimination of the velocity variablev. The key here is that there is no issue in the
interpretation of the multiple in Eq. (2-4-32), since the fluctuation term appears in the differential
equation ofv and not in that ofx. The overdamped Langevin equation is obtained as

ẋ = F(x) +
Γ′(x)
Γ′(x)

kBT +
√

2Γ(x)kBT(x) · ξ(t), (2-4-33)

which means that we should take the Itô interpretation in Eq. (2-4-19) and the anti-Itô interpreta-
tion in Eq. (2-4-29).

Equation (2-4-33) is obtained for the case where the position dependence ofT andΓ are static.
In other words, this is the case where the time it takes forΓ andT to change its value according
to the motion ofx is faster than the time-scale of the velocity variable,M/Γ. It is natural that in
such situations, the position dependent friction coefficient alone cannot derive the system out of
equilibrium, as proved by substitutingp = 0 in Eq. (2-4-31). As will be discussed in Chapter 4,
the situation changes when the time-scale of the change inΓ is slower thanM/Γ, which allows
nonequilibrium phenomena to arise.

2.4.4 Positivity of irreversible entropy production

Let us come back to Eq. (2-4-1) and prove the positivity of the irreversible entropy production
rate: ⟨

Σ̇(t)
⟩

t
= Ṡ(t) +

⟨Q̇⟩t
kBT

≥ 0. (2-4-34)

where we denoted the ensemble average at a transient timet as⟨⟩t Although the inequality (2-4-
34) is included in the general scheme, Eq. (2-3-12), we note here for convenience [see Eq. (2-6-
21)] and the sake of completeness.

From Eq. (2-4-18), the time derivative of the Shannon entropy is simply obtained as,

Ṡ(t) = −
∫

dx
∂Pt(x)
∂t

logPt(x) = −
∫

dx
Jt(x)P′t(x)

Pt(x)
. (2-4-35)



22 CHAPTER 2. STOCHASTIC THERMODYNAMICS

Next, the average of the Langevin heat becomes

⟨Q̇⟩t = ⟨ẋ ◦ F(x)⟩t =
⟨

F(x)2

Γ
+

√
2kBT
Γ
ξ(t) ◦ F(x)

⟩
t

. (2-4-36)

The second term in the bracket in the right hand side has the Stratonovich integral, thus by using
Eqs. (2-4-12) and (2-4-13), it should be rewritten as

⟨ξ(t) ◦ F(x)⟩t =
⟨

Bn√
∆t

F
( xn+1 + xn

2

)⟩
t

=

⟨
Bn√
∆t

[
F (xn) +

xn+1 − xn

2
F′(xn) +O(∆t)

]⟩
t

=

⟨
Bn√
∆t

F (xn) +

√
kBT∆t

2Γ
BnF′(xn) +O(∆t)

⟩
t

=

√
kBT
Γ
⟨F′(xn)⟩t, (2-4-37)

where we used= in the sense of equality obtained at∆t → 0 in the first and last lines. Hence, we
arrive at the simple formula [39]:⟨

Σ̇(t)
⟩

t
=

∫
dx

[
Pt(x)

F(x)2

ΓkBT
+

1
Γ

Pt(x)F′(x) +
Jt(x)P′t(x)

Pt(x)

]
=

Γ

kBT

∫
dx

Jt(x)2

Pt(x)
≥ 0. (2-4-38)

2.5 Phenomenological model of molecular motors

Here we consider a specific type of stochastic process, a chemically-induced single-molecule
transport. The model we introduce is a mixture of Brownian motion and discrete stochastic
switching.

2.5.1 Setup

We are interested in the transport driven by molecular motors. Although the motion of molec-
ular motors was first observed as a sliding and continuous motion [1], we now know that the dis-
crete chemical reaction steps are responsible for the fundamental dynamics, as will be described
in the following chapters for various motors. Since the center of mass of the motors are under-
going the usual overdamped Brownian motion, we need to combine this stochastic motion in the
continuous space with the discrete space (chemical reaction) in order to discuss the physics. Here
we introduce a general framework that includes such dynamics.

We start from the overdamped dynamics, Eq. (2-2-1), but consider that the parameterλ takes
discrete values,λ = m = 0,±1,±2, .... The dynamics ofλ is given by the Markov jump process.
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The Markov jump process is described by the switching rates, which generally depend on the
position of the particle,x. We further assume that the stochastic switching occurs only between
nearest neighbors. Therefore, it is sufficient to define the switching rate functionsR+m(x) and
R−m(x), which represent the switchingsm→ m+ 1 andm→ m− 1, respectively.

Each states described by the variablem has its corresponding potential energy,Um(x). The
Langevin dynamics reads

Γẋ = fext− U′m(x) +
√

2ΓkBTξ(t). (2-5-1)

where we wroteU′m(x) := ∂Um(x)/∂x. We have in mind the case where the external forcefext is
externally applied to the probe of interest, through an optical tweezer with feedback or electric
field [16]. The total stochastic process, concerning bothx andm could be written by

∂Pt(x,m)
∂t

=
∂

∂x

{[
U′m(x) − fext

]
Pt(x,m) +

kBT
Γ

∂

∂x
Pt(x,m)

}
+R+m−1(x)Pt(x,m− 1)+ R−m+1(x)Pt(x,m+ 1)− [R+m(x) + R−m(x)]Pt(x,m) (2-5-2)

The first line in the right hand side of Eq. (2-5-2) corresponds to the usual Fokker-Planck dynam-
ics (see Sect. 2.4), and the second line corresponds to the switching ofm.t

We assume that there is a steady-state in this stochastic dynamics, meaning that if a periodic
boundary condition set in bothx andm, the density functionPt(x,m) will converge toPst(x,m)
after a sufficiently long time.

2.5.2 Energetics of model

The average of the energy difference between the time intervalτ after the system has fallen
into a steady-state is

⟨∆U⟩st =

⟨
Um(τ)(x(τ)) − Um(0)(x(0))− fext

∫ τ

0
dtẋ(t)

⟩
st

(2-5-3)

= − fextvstτ (2-5-4)

Here, the steady-state average denoted by⟨⟩st is the average taken over (x,m) with the density
Pst(x,m) and the transition probability. The steady-state average velocity isvst := ⟨ẋ(s)⟩st. Equa-
tion (2-5-4) can also be decomposed as

⟨∆U⟩st = τ

∫
dx

∑
m

Λm(x) [Um+1(x) − Um(x)] −
⟨∫ τ

0
dt[ fext− U′m(t)(x(t))] ◦ ẋ(t)

⟩
st

(2-5-5)

= ⟨W⟩st− ⟨Q⟩st. (2-5-6)

The two terms in the right hand side of Eq. (2-5-5) have distinct physical meanings from the
point of view of the system’s energy exchange with the thermal bath. The first term corresponds
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to W in Eq. (2-2-6); it is the energy shift that accompanies the switching ofm, defined using the
steady-state switching position density

Λm(x) := Pst(x,m)R+m(x) − Pst(x,m+ 1)R−m+1(x). (2-5-7)

The the second term of the right hand side of Eq. (2-5-5) is the energy that flows through the
one-dimensional Brownian motion (Langevin heat).

Whether or not to callW in Eq. (2-5-5) as work or heat depends on the physical mechanism
behind the switching ofm. If we consider an external macroscopic system that drivesm deter-
ministically, it is natural to call the energy required to switch the potentialsUm(x) as work. If on
the other hand, there is no external system that drives the motion in this system apart from the
thermal bath, we must assume

R+m(x)
R−m+1(x)

= exp

[
Um(x) − Um+1(x)

kBT

]
, (2-5-8)

which is the detailed balance condition. This implies that the switching of potentials is itself a
stochastic thermodynamic phenomena. Settingfext = 0 together with the condition Eq. (2-5-8),
we have an equilibrium dynamics with no current,vst = 0 and⟨W⟩st = Qst = 0.

In the case of molecular motors, the switching ofm is indeed a stochastic process which
follow a similar detailed balance condition, but with an external supply of chemical free energy.
Such situation may be realized by combining the detailed balance Eq. (2-5-8) with the bias in the
chemical reaction:

R+m(x)
R−m+1(x)

= exp

[
Um(x) − Um+1(x) + ∆µm→m+1

kBT

]
(2-5-9)

Here,∆µm→m+1 is the free energy difference caused in the chemical reaction that accompanies
the switchingm→ m+ 1, which makes the additional bias, exp[∆µm→m+1/kBT]. If for instance
∆µm→m+1 is positive for allm, and the minimal positionx of the potentialsUm(x) is an increasing
function of m, then the nonequilibrium unidirectional chemical reaction will drive motion inx
(i.e.,⟨ẋ⟩st), even whenfext = 0 or evenfext < 0. Note that the full stochastic dynamics which takes
in to account the transition ofx andm is consistent with the picture of stochastic thermodynamics
[Eq. (2-3-4)] if we take into account the contribution of∆µm→m+1 in the heat entropy production.
This case, which is of most interest in this thesis, will be explained in detail for the model of
F1-ATPase in Sect. 3.4.

Another type of dynamics we can consider is the switching of the value of diffusion constant,
more specificallyΓ. The reason for unidirectional motion under such setup is less trivial com-
pared with the potential switching scheme, although it can be understood as a nonequilibrium
phenomenon through the knowledge on stochastic differential equations presented in Sect. 2.4.
This will be the main topic when considering the model for cytoplasmic motors in Chapter 4.

2.6 Nonequilibrium fluctuation response relations

Here we briefly review the nonequilibrium fluctuation response relations (FRR) in the nonequi-
librium models. Although one of the main motivation of this research topic was to quantify heat
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m=1 2

3

4

…

Fig 2.1: Example of the Brownian motion model with chemically-induced potential switching. Each
integerm has its corresponding potential. Such model appear in the model of F1-ATPase, discussed in the
next chapter.

dissipation in molecular motors [40], there has been considerable progress in the pure-theoretical
side. This is one of the research fields where the practical problems of biophysics motivated the
investigation of fundamental problems in statistical physics.

2.6.1 Quantifying heat through the violation of FRR

Even if we assumed the phenomenological model for molecular motors as described in the
previous section, we do not know the potential formUm(x), the applied external forcef , or
the switching rate functions,R±m(x). Then, the question we address is follows: is it possible to
quantify the steady-state heat flow⟨Q̇⟩st through experimental observation, under the constraint
that we do not know the detail of the model parameters?

In this direction, a remarkable idea was presented by Harada and Sasa in 2005 [41]. The
authors focused on the fluctuation dissipation relation, which is a macroscopic relation that is
accessible in experiment, and proposed a way to utilize the violation of this relation to quantify
the heat dissipation. Here we present a simple proof of their theorem, based on the discussions
in [42, 43].

Consider the velocity autocorrelation function, and the velocity response function:

C(t) := ⟨[ ẋ(s) − vst][ ẋ(t + s) − vst]⟩st (2-6-1)

R(t) :=
δ⟨ẋ(s+ t)⟩ϵ
δϵ(s)

. (2-6-2)
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Their Fourier transforms are defined as

C̃(ω) :=
∫ ∞

−∞
dteiωtC(t) (2-6-3)

R̃′(ω) := Re

[∫ ∞

−∞
dteiωtR(t)

]
=

∫ ∞

−∞
dteiωt R(t) + R(−t)

2
. (2-6-4)

The average denoted by⟨⟩ϵ in Eq. (2-6-2) is also a steady-state average, but for a modified dy-
namics with a small time-dependent perturbative forceϵ(t):

Γẋ = fext+ ϵ(t) − U′m(x) +
√

2ΓkBTξ(t). (2-6-5)

Note thatC(t),R(t), andvst do not depend on the reference timesbecause of the time-translational
invariance of the steady-state ensemble. We may consider the natural extension of the following
results to the case of transient ensembles, nevertheless we stick to the steady-state case since it is
most accessible

It is natural to compare the fluctuation and response defined as Eqs. (2-6-1) and (2-6-2), since
ϵ(t) is the conjugate force of the flow⟨ẋ⟩. By preparing an equilibrium dynamics with the detailed
balance condition Eq. (2-5-8) andfext = 0, we may prove

R(t) =

C(t)/kBT t ≥ 0

0 t < 0
, (2-6-6)

which is equivalent to

C̃(ω) = 2kBTR̃′(ω). (2-6-7)

Eqs. (2-6-6, 2-6-7) are the fluctuation response relations.
As we have done in Eq. (2-3-6), it is convenient to consider the time-discretized dynamics

of the stochastic process. The stochastic variables (x,m) follows the path (xN,mN), whereN is
a sufficiently large integer. Let us replaces andt by n′∆t andn∆t, respectively (n+ n′ < N, 0 ≤
n,n′). The transition probability for a single time step (∆t) should be written as

Wϵ
n(x′,m′|x,m) =



Wϵ
n,m(x′|x) ∝ exp

−
[
Γ(x′ − x) − (

fext+ ϵn − U′m(x)
)
∆t

]2

4ΓkBT∆t

 (if m= m′)

R+m(x)∆t (if x′ = x & m′ = m+ 1)

R−m(x)∆t (if x′ = x & m′ = m− 1)

0 (else)

(2-6-8)

where the explicit time-dependence throughn is due to the perturbative forceϵn = ϵ(t). The
normalization factor for the first line in Eq. (2-6-8) is determined so as to satisfy the condition∫

dx′
∑

m′ W
ϵ
n(x′,m′|x,m) = 1.
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The right hand side of Eq. (2-6-2) is now written as

δ⟨ẋ(s+ t)⟩ϵ
δϵ(s)

=
d

dϵn′

∫
dxN

∑
mN

Pϵ(xN,mN)
xn+n′+1 − xn+n′

∆t
(2-6-9)

= lim
ϵn′→0

1
ϵn′

∫
dxN

∑
mN

Pϵ=0(xN,mN)

[
Pϵ(xN,mN)

Pϵ=0(xN,mN)
− 1

]
xn+n′+1 − xn+n′

∆t
,(2-6-10)

with the path probability defined as

Pϵ(xN,mN) := Pst(x0,m0)
N−1∏
n=0

Wϵ
n(xn+1,mn+1|xn,mn). (2-6-11)

We here use= in the sense of equality obtained in the limit∆t → 0 without remark. Since
the perturbative force does not affect the transition probability ofm, the ratio between the path
probabilities is

Pϵ(xN,mN)
Pϵ=0(xN,mN)

≃ exp

N−1∏
n=0

ϵn
2ΓkBT

[
Γ

xn+1 − xn

∆t
− fext+ U′mn

(xn)
] , (2-6-12)

up to the smallest order inϵ. Therefore,

R(t) =
∫

dxN

∑
mN

Pϵ=0(xN,mN)
1

2ΓkBT

[
Γ

xn′+1 − xn′

∆t
− fext+ U′mn′

(xn′)
] xn+n′+1 − xn+n′

∆t
.(2-6-13)

Noticing that

1
2π

∫ ∞

−∞
dωC̃(ω) = lim

t→0

C(t) +C(−t)
2

(2-6-14)

1
2π

∫ ∞

−∞
dωR̃′(ω) = lim

t→0

R(t) + R(−t)
2

, (2-6-15)

we now arrive at

Q̇st = Γv
2
st+
Γ

2π

∫ ∞

−∞
dω

[
C̃(ω) − 2kBTR̃′(ω)

]
. (2-6-16)

The theorem Eq. (2-6-16) has a clear interpretation that the two quantities which value the
extent of nonequilibrium, the steady heat dissipation and the violation of the fluctuation response
relation, are linked in the most simplest manner.

For a tilted periodic potential model [Eq. (2-2-7)], i.e., when there is no switching inm,
we can easily prove from Eq. (2-2-8) thatQ̇st ≥ Γv2

st, with the equality obtained for the case
whereU′(x) = 0. Therefore, the integral term in Eq. (2-6-16) appears as a consequence of the
inhomogeneity in space of the force experienced by the probe.14

14This led to the definition of Stokes efficiency [44]. In the existence of the switching variablem, however, the
inequalityQ̇st ≥ Γv2

st does not hold in general; it is even possible forQ̇st to become negative. Such situation does not
contradict with the Second Law, since the total irreversible entropy production, which includes the dissipation from
the dynamics ofm, is always positive [Eq. (2-3-12)]. Such compensation of entropy production from a sub-system
for another is deeply related to the problem of Maxwell’s demon [45, 7, 8], which is beyond the scope of this thesis.
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The integrals taken in Eq. (2-6-14) diverges to infinity if taken separately. Firstly,C(t →
0) = ⟨ẋ2⟩ ≃ 2Dδ(t → 0). Second, since the left hand side of Eq. (2-6-16) is finite in ordinary
situations, this divergence means that the integral in Eq. (2-6-15) will also diverge. Note that in
the high frequency regime, the correlation and response functions should converge:

C̃(ω),2kBTR̃′(ω)
ω→∞−−−−→ 2kBT

Γ
, (2-6-17)

since for a very small time-scale, the fluctuation term dominates in the Langevin dynamics, and
the effective dynamics is dominated by the free Brownian motion, Eq. (2-1-1).

Apart from its physical meaning, what is most significant about Eq. (2-6-16) is that the quanti-
ties in the right hand side can be measured by macroscopic experiments, in the sense that the long
time average can be effectively taken without the knowledge of the functional forms ofUm(x) or
the values offext. In fact, we need not to assume anything about the discrete variablem in the
data analysis; the relation (2-6-16) does not depend on the type of dynamics introduced through
λ, as far as there exists a steady-state in the total stochastic dynamics. Thus, Eq. (2-6-16) was
utilized in exploring the heat dissipative feature of the molecular motor F1-ATPase, which will
be discussed as a main topic in Chapter 3.

2.6.2 FRR, model estimate, and entropy-frenesy correspondence

Since the fluctuation response relation is one of the most fundamental equations in statistical
physics, considerable efforts have been devoted to the research on its extension to nonequilib-
rium situations. For example, Speck and Seifert argued that there is a natural extension of the
fluctuation response relation for the nonequilibrium steady-state setup [46]. In the case of tilted
periodic potential setup [Eq. (2-2-7)], they obtained

R(t) =

Clc(t)/kBT t ≥ 0

0 t < 0
, (2-6-18)

where the new correlation function is defined as

Clc(t) = ⟨[ ẋ(s) − v(x(s))][ ẋ(t + s) − v(x(t + s))]⟩st . (2-6-19)

The quantity denoted byv(x) is the local velocity:

v(x) =
vst

LPst(x)
. (2-6-20)

whereJst is the steady-state flow [see Eq. (2-4-18)] andL is the length of the periodically bound
region.

The reason for the simple relation Eq. (2-6-19) comes from the equality

Q̇st = Γ⟨v(x)2⟩st, (2-6-21)
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which can be generalized for the non-steady-state case as Eq. (2-4-38). We can directly use
Eq. (2-6-21) to quantify the heat dissipation; all we need to measure is the steady-state velocity
vst and the precise steady-state densityPst(x).

Apart from the general difficulty to measure the precise form ofPst(x), especially at the points
where 1/Pst(x) gives large contribution in the ensemble, there is a practical reason why we cannot
use Eq. (2-6-21) to estimate the heat dissipation for the case of the stochastic switching model
introduced in Sect. 2.5. In experiment, the typically observed variable is the position of the
Brownian particle,x, and thus the information onm is not, in general, accessible. This means
that we can only measure the steady-state density

Pst(x) :=
∑

m

Pst(x,m). (2-6-22)

However, in order to quantify the steady heat dissipation in this setup, we also need to observe
the variablem since the local velocity requi

Q̇st = Γ⟨v(x,m)2⟩st = Γ

⟨
v2

st

L2Pst(x,m)2

⟩
st

. (2-6-23)

Indeed, it has been confirmed in experiment for the rotary molecular motor F1-ATPase, (S.
Toyabe, private communication, 2012) that Eq. (2-6-18) does not hold if one definesv(x) using
the naive steady-state density, Eq. (2-6-22). This means that the dynamics of F1-ATPase cannot
be modeled by a tilted-periodic potential setup, and the chemical degree of freedom,m, needs to
be taken into account explicitly.

Another branch of theories were studied by Baiesi, Wynants, and Maes [47, 48, 49]. They
focused on the quantity named frenesy. Before we explain their works, let us note on the interest-
ing aspect behind the structure of Eqs. (2-6-16) and (2-6-18). Under the setup of tilted periodic
potentialF(x) = f − dU(x)/dx, we may prove two equalities:

Γ

2π

∫ ∞

−∞
dω

[
C̃(ω) − 2kBT

Γ

]
+ Γv2

st = 4kBT⟨λ(x)⟩st, (2-6-24)

Γ

2π

∫ ∞

−∞
dω

[
2kBTR̃′(ω) − 2kBT

Γ

]
= − (kBT)2

Γ

⟨(
P′st(x)
Pst(x)

)2⟩
st

. (2-6-25)

We introduced the frenesy as

λ(x) :=
F(x)2

8ΓkBT
+

1
4Γ

dF(x)
dx
, (2-6-26)

which has the dimension of time−1. Note that because of Eq. (2-6-17), it is consistent that the
right hand sides of Eqs. (2-6-24) and (2-6-25) are both finite.

The frenesy [Eq. (2-6-26)] has a physical meaning as the escape rate from sitex. To see
this, we consider the Langevin equation in continuous time and discretized space to consider
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the corresponding Markov jump process. Assuming that the positionsx, x′ are placed on lattice
points, we define the jump rate from sitex to sitex′ as

R(x→ x′) = w(x′ − x) exp

{
U(x) − U(x′) + f (x′ − x)

2kBT

}
. (2-6-27)

To obtain the Langevin description from Eq. (2-6-27) through the Kramers-Moyal expansion [18],
we require

∑
r rw(r) = 0,

∑
r r2w(r) = 2kBT/γ, and that the higher order moments are negligible.

Now, the escape rate is defined and calculated as∑
x′,x

R(x→ x′) ≃
∑
r,0

w(r)

[
1+
βr
2

[U′(x) − f ] − βr
2

4
U′′(x) +

β2r2

8
[U′(x) − f ]2

]
(2-6-28)

≃
∑
r,0

w(r) +
1
4γ

[
F′(x) +

F(x)2

2kBT

]
. (2-6-29)

We find that thex-dependent part of the escape rate is obtained as Eq. (2-6-26).
It has been claimed that frenesy plays important roles in Markov dynamics without detailed

balance (=nonequilibrium). For example, it has been found to appear in the variational formula
of the cumulant-generating functions [50], extension of the minimum entropy principle [51],
and large deviation functions [52]. What we find interesting is that these relations, formulated
in Markov jump dynamics, have the counterpart formulae that can be re-derived for the case
of Langevin equations, with all the frenesy terms exchanged to the irreversible entropy produc-
tion [50, 53].

The structure behind such exchange of frenesy and irreversible entropy production is a con-
sequence of the formula satisfied in the Langevin dynamics:⟨

Σ̇(t)
⟩

t
− kBT⟨λ(x)⟩t =

(kBT)2

Γ

⟨(
P′t(x)
Pt(x)

)2⟩
t

, (2-6-30)

which may be proved easily from Eq. (2-4-38). This relation indicates that under a fixed density
function, the irreversible entropy production and frenesy are essentially equivalent in Langevin
systems.

Given the equality (2-6-30), it is now interesting to interpret it as the generalized fluctuation
response relation. This is obtained by simply substituting Eqs. (2-6-24) and (2-6-25) into Eq. (2-
6-30); remarkably, we recover the Harada-Sasa equality, Eq. (2-6-16).

What Eq. (2-6-25) is claiming is that the response function at timet = 0 does not include any
information about the nonequilibrium feature of the dynamics. Thus, the Harada-Sasa equality
can be understood as simply quantifying the heat dissipation by⟨Q̇⟩st ∼ Γ⟨ẋ2⟩st but by sub-
tracting the convergent term and the contributions from the spacial inhomogeneity through the
corresponding response function term.

2.7 Objectivity in the definition of heat

Up to here, we have discussed the theoretical ideas which allow us to quantify heat dissipation
in small stochastic systems. The basic idea is that we do not need to directly measure the energy
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transfer in such systems in order to obtain the thermodynamic quantities; they can be estimated
through the observation of the motion of the probe beads, possibly with some applied perturba-
tions. Nevertheless, since the actual calorimetric heat is inaccessible in such small systems, there
is a general concern that the presented framework of stochastic thermodynamics is missing some
level of heat dissipation that we are not aware of. Here we make a couple of remarks related to
this problem.

For instance, the free energy that dissipates in chemical reactions [Eq. (2-1-6)], and the po-
tentialU(x) in the Langevin description (cf. Sect. 2.2), may include non-energetic components.
For the chemical reaction, the free energy change is composed of an energetic part∆µ0 and the
concentration dependent part [cf. Eq. (2-1-6)], where the latter obviously has no interpretation
as energy transfer or heat dissipation. The force obtained throughU(x) in the Langevin model
does not distinguish between potential force and entropic force, since in most cases it is only the
effective force that is introduced to match the dynamics with the experimental observation.

These issues are the natural consequence of our phenomenological model description. When
we introduced the modes as Markov processes, the physics behind the hidden degrees of freedom
were only taken into account through the transition probabilities. Since there are infinitely many
physical systems that produce mathematically equivalent Markov processes, it is, in general,
impossible to estimate the thermodynamic quantities through just the observation of the stochastic
dynamics.

Such possibilities of different physical origins of the given dynamics may be narrowed down
if we were able explicitly take into account the hidden degrees of freedom. Thus, the general
problem can be formulated as follows: is there a proper way to quantify heat dissipation in
an effective model-independent manner? For example, in the case of an entropic spring, the
Langevin heat (coarse-grained scale) is non-zero, whereas the heat dissipation quantified at the
scale where we could see the degrees of freedom in the spring (fine-grained scale) is zero, which
is the case that we failed to quantify heat dissipation in an objective manner.

There is a fairly general work around to this problem; when we consider the irreversible en-
tropy production, i.e., if we add the entropy of the system to the heat entropy production, the
objectivity with respect to the change of the level of descriptions, is recovered. This is because,
for the example case of an entropic spring, the entropy of the spring will contribute to the ir-
reversible entropy production at the level of fine-grained scale [54], which will account for the
Langevin heat dissipation observed in the coarse-grained scale.

Thus, if we are interested in the irreversible entropy production, or the steady-state heat dis-
sipation⟨Q̇⟩st which is essentially equivalent to the irreversible entropy production [cf., Eq. (2-3-
13)], we do not need to worry about the physical interpretation of heat or its objectivity. Even if
the potentials were not purely mechanical, and there is doubt in calling the estimated Langevin
heat as heat dissipation, at least what we are measuring through the application of stochastic
thermodynamics it is the most important quantity related to the Second Law.

There are, however, cases that even the irreversible entropy production takes different values
depending on the scale of description. In the works presented in [35, 55], we proposed the concept
of hidden entropy production, which is the difference in the irreversible entropy production that
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appears in the coarse-graining procedure of nonequilibrium dynamics15. Under the existence of
such hidden entropy production, there seems to be no general way to experimentally estimate the
“correct” dissipative feature, apart from considering the excess part of entropy production [55].
Thus, it is left for future studies to consider a more general framework to resolve the existence of
of hidden entropy production, or at least prove a non-existence theorem under specific setups of
bio-molecular experiments.

15This is the main topic of Dr. Yohei Nakayama’s thesis (in Japanese, 2015).



Chapter 3

Rotary motors
-Asymmetric switching rule in F1-ATPase-

In this chapter, we describe the current theoretical understanding on the motion and thermo-
dynamics of the molecular motor F1-ATPase (or F1). After giving a brief historical overview, we
discuss the correspondence of the dynamics of F1 motor to the model description explained in the
previous chapter. Then we will focus on the recent experimental finding that the dissipative heat
inside the F1 motor is very small, irrespective of the velocity of rotation and energy transport.
We claim that the totally asymmetric allosteric model (TASAM), where ATP binding to F1 is
assumed to have low dependence on the angle of the rotating shaft, produces significantly consis-
tent results with the experimental data. The key features of the model is understood through the
time scales appearing in the singular perturbation analysis. We explain how the proposed model
gives predictions on the heat dissipative feature in the ATP synthetic rotation of F1.

33
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3.1 Introduction

The detailed chemistry and energetics of F1-ATPase (or F1) has attracted special attention due
to its outstanding role in the endpoint of the metabolic network. In eukaryotic cells, the FoF1

complex in the inner membrane of the mitocondrion is responsible for the generation of more
than 90% of the ATP consumed in the cell. Since ATP is the most fundamental currency of
energy in biological systems, the thermodynamic feature of F1 in terms of efficiency and speed is
of critical matter to the whole cellular process.

The brief mechanism of ATP generation (reformation) in the mitochondrion is described as
as follows [56, 57]. The electron transport chain functions as a consequence of the metabolic
reactions, and generates a large proton gradient across the inner plasma membrane of mitochon-
dria. The Fo complex, which is embedded in the membrane, sits as a pathway for the protons
to flow through the membrane (Fig. 3.1, left). Upon this transport of protons, the Fo component
generates torque on theγ subunit, which is the elongated shaft-like protein that links the Fo and
F1 complexes. The F1 complex holds three nucleotide binding sites (called catalytic sites in some
context) corresponding to the three pairs ofα andβ subunits aligned in a circle (Fig. 3.1). The
unidirectional rotation of the shaft induced by Fo stimulates the F1 complex to induce the other-
wise unfavorable chemical reaction ADP+ Pi→ ATP in these binding sites. In such manner, the
chemical free energy corresponding to the proton gradient across the membrane is first translated
into a mechanical potential that induces the rotary motion of the shaft, and then converted into
the chemical free energy of ATP.

The uniqueness of F1 lies in its feature of reversibility. In 1997, Kinosita and Yoshida’s group
reported that the F1 not only works as an ATP synthesizer, but can also act as an ATP consuming
rotor [58]. In their experiment, the minimal components of F1, theα, β, andγ subunits, were
placed on a coated bead to observe the dynamics of theγ shaft, through a probe filament attached
to the end of it (Fig. 3.1, right). Strikingly, the live fluorescent images showed the unidirectional
rotation of F1 (anti-clockwise, viewed from above), with clear evidence of 120◦ stepwise mo-
tion [59]. The observed steps were immediately related to the three-fold symmetric structure of
F1, which had been known from the biochemical [60] and crystal structure analyses [61].

Rotational motion of the F1 motor is roughly explained as follows: theαβ subunits change
their conformations following the events of the binding of ATP, the hydrolysis reaction ATP→
ADP+Pi, and the release of Pi and ADP. These chemical-reaction coupled conformation changes
induce theγ subunit to rotate 120◦ per single ATP input and ADP+ Pi output. The fact that the
120◦ step corresponds to the hydrolysis of a single ATP was confirmed through various setups of
experiment [62, 63]. Thus, the F1motor is not only the smallest known rotary motor, but it is also
a tightly-coupled efficiency-maximized motor (see Sect. 3.3.1).

The key in the rotational motion of F1 is in the strong correspondence between the chemical
states of the nucleotide binding sites inαβ and the rotational position of theγ shaft. Observation
of motion using smaller probes [64] showed that the 120◦ step is actually composed of substeps
with 80◦ and 40◦ of rotation. The two-step motion was related to the chemical reaction steps in
the ATP hydrolysis reaction [65] (see Fig. 3.8). These observations led to the so-calledγ shaft
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Fig 3.1: (Left) The FoF1 complex embedded in the plasma membrane of the mitocondria. The large
chemical potential corresponding to the proton concentration gradient across the membrane is converted
to the free energy of ATP, through the rotation of theγ shaft forced by the Fo. (Right) Minimal component
of F1 placed on a bead or a cover slip, upside down from the left figure. F1 functions as a motor in such
situation; it consumes the free energy of ATP hydrolysis to rotate theγ shaft unidirectionally, as was
observed through the fluorescent image of the probe filament (red). Notice that the direction of rotation
with respect theαβ subunits is opposite in the two cases.

dominator model [66].1 Indeed, external torque applied to theγ shaft in the clockwise direction
induced thein vitro synthesis of ATP by F1 [68, 62]. This means that the angular position of the
γ shaft with respect to theαβ subunits is a single variable that is sufficient to control the whole
chemical process involved in the reaction, ATP⇋ ADP + Pi.

From the experimental point of view, a rotary molecular motor has its definite advantage over
linear motors in the sense of statistical analyses. The motion of the same single molecule can be
traced for a long time for a rotary motor, whereas linear motors will detach from the rail during
the observation, especially upon application of external force for instance by optical tweezers. In
[12], for example, the state specific forms of the effective potential of F1 was calculated from the
high-resolution trajectory data of a single-molecule. Such work is taking advantage of the fact
that the probe particle gets trapped by the same effective potential over and over again during the
rotational motion. From the data obtained in these manners, it is becoming possible to compare
the detail of the phenomenological models to the actual physical aspects of F1 with high precision.

Speaking of theoretical modeling, numerical calculations on the modeled motion of F1 have
been conducted from right after the initial observations of thein vitro rotation. In [69], Wang and
Oster introduced a chemical switching-induced Brownian model, which is a rather complicated
model that takes into account the many possibilities of the different nucleotide states in all three
ATP binding sites. The mechanism of motion in such model, no matter how complex, is the
directional bias induced by the chemical reactions as described in Sect. 2.5.1, which is referred
to as the chemical ratchet [11, 27, 70]. A model considering the ATP synthetic rotation of F1

1There is however, an interesting report [67] that theγ shaft is not required for the ATP hydrolysis reaction, and
theαβ subunits move in a similar manner as it rotates theγ shaft, even without theγ shaft. Nevertheless, the rate of
“rotation” in such setup was found to be significantly lower than the usual setup with theγ shaft.
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induced by Fo was also proposed in [71].

3.2 Aim of research

Given that the basic features behind the motion of F1 have been elucidated, the next goal is
to understand and describe the design principle of this reversible motor as precisely as possible.
Indeed, data obtained by experiments have gone further beyond the simple toy modeling. At the
time of the proposal of the initial models [69], the detailed properties such as the chemical reac-
tions considering substeps [64, 65], rotational velocity modulation with respect to the external
torque [63], or the precise shape of the effective potential [12] were all unknown.

Although the heat dissipative feature in the rotational motion was first estimated by assuming
linear relation for the dissipation [15], it was not until recently [16] that the nonlinear component
and its precise dependence on physical parameters was quantified. The striking result reported
in [16] was that, in the absence of external load, the chemical energy consumption of F1 is made
almost 100% through the rotational motion, irrespective of the value of the velocity of rotation
∆µ . As we shall explain, the heat measured in this experiment was the Langevin heat, which
corresponds to the heat dissipation through the Brownian motion of the bead (Qext in Fig. 3.2).
The outcome in experiment is that the internal dissipation (Qint in Fig. 3.2), which is the energy
transfer between the motor and the thermal bath (water) during the chemical reaction occurring
in theαβ subunits, is very close to zero.

β

γ

α
∆µ

ADP+Pi

ATP

Qint

Qext

Fig 3.2: Summary of the energy income and outflow of F1 in the ATP hydrolysis rotation in the absence
of external load. Free energy of the chemical fuel∆µ is dissipated through the rotary motion of theγ shaft
(Qext), or through theαβ complex where the reactions take place (Qint).

This highly suggestive result provokes us to consider the hidden rules that govern molecular
motors. In fact, the established theories in stochastic thermodynamics, for instance the fluctuation
theorem [4, 5, 30] and the Second Law (Sect. 2.3), can only explain the positivity of the total
irreversible entropy production, which in this case, is the trivial∆µ ≥ 0. This means that in the
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general theory of Markov processes, there are no restrictions which rule the individual values of
Qext andQint.

Motivated by this situation, we here reconsider the features of F1 at the level of the phe-
nomenological model, where only the rotary degree of freedom of theγ shaft and the nucleotide
state of theαβ subunits are taken into account. We focus on the interesting fact that the chemical
reactions, which are the main source of the rotational motion, are itself controlled by the rotary
position of theγ shaft [72, 73]. Such correlation between the apparently far apart domain in pro-
tein complexes is a feature known as allosterism [74]. The amount of internal/external dissipation
in a model may be manipulated by setting various types ofγ angular dependence of the chemical
reactions. Specifically, we introduce the totally asymmetric allosteric model (TASAM, Fig. 3.3)
in order to explain the internal dissipation-free nature of F1.

The key assumption in our model is that the ATP binding to the motor, which is the limiting
slow process, is allowed with equal probability over theγ shaft angle. The motor thus passively
waits and lets the ATP to bind freely, and decides whether or not to release this ATP depending on
the angle of theγ shaft. As we shall see (Fig. 3.9), numerical results in our model show remark-
able consistency with experiment in terms of the heat dissipative feature. We identify the crucial
role of two time scales in the TASAM, which explains the universal mechanism in the model to
produce the internal dissipation-free feature. Moreover, we analyze the nucleotide concentration
dependence on the torque-velocity relation (Fig. 3.14), and find that a certain asymmetric pattern
observed in experiment is also reproduced by the TASAM.

ADP

ATP

β

α

A
D

P ATP

β

Forward reaction: 
low γ-shaft angular dependence

Backward reaction: 
high angular dependence

γ

Fig 3.3: Schematic of the totally asymmetric allosteric model. When the motor is waiting for the ATP to
bind (left), the binding site is free from the control by theγ shaft rotary angle. Conversely, once the ATP
is bound to the motor and the ADP release has proceeded (right), the affinity of the binding sites to the
nucleotides strictly depends on theγ shaft angle.
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3.3 Phenomenological model description of F1

3.3.1 Chemical coupling model and high efficiency

Let us first consider the coarse-grained description of the motion of F1, where we only focus
on the discrete steps of 120◦. We model the switching of the discrete variablem by a Markov
process with the transition probabilitiesR+∆t andR−∆t (transition ratesR+ andR−), correspond-
ing to the motion in the forward and backward directions, respectively (see Fig. 3.4). Here,
m = 0,±1,±2, ... may be thought of as the angular position of theγ shaft in the units of 120◦,
or the number of ATP consumed through the rotary motion. Note that the transition probabilities
are assumed to be independent ofmbecause of the translational symmetry of F1 in the rotational
direction. Considering that the forward (backward) step is coupled to the hydrolysis (synthesis)
of ATP, the ratio between the transition rates should satisfy

R+

R−
= exp

[
∆µ − FL

kBT

]
. (3-3-1)

Here,F is the externally applied torque (corresponding to− fext in Sect. 2-5-1) andL is the size
of the step, which is 120◦ in the case of F1. Equation (3-3-1) can be viewed as the local detailed
balance of this simple system [cf., Eq. (2-3-4)], where the log of the right hand side corresponds
to the dissipation per step in the+ direction, sinceFL is the work done by the motor against the
external torque.

ATP
ADP+Pi

ｍ ｍ+1 ｍ+2ｍ-2 ｍ-1 ......

ATP

ADP

+Pi

L

F ⇒

Fig 3.4: Coarse-grained stochastic model of the dynamics of F1. Each step inm corresponds to the 120◦

steps of theγ subunit, which is accompanied by the hydrolysis of ATP (m→ m+ 1) or the synthesis of
(m→ m− 1).

For Eq. (3-3-1) to be satisfied, there are several conditions to be met from the point of view of
real bio-molecules. Firstly, the degree of freedom in the dynamics must be effectively captured
by the single variable,m. Since F1 is a complex molecule with many degrees of freedom in
principle, it is nontrivial that applying torque on the probe bead will ideally affect the dynamics
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following such simple local detail balance law. Secondly, it must be that each stepping motion
is accompanied by the chemical reaction of exactly one molecule of ATP. For instance, when
torque is applied to the backward direction (i.e.,F > 0), it is possible that the motor may make
a backward step without synthesizing an ATP, which may be thought of as a slip2. In such case,
the bias by the chemical potential will be smaller than exp[∆µ/kBT], which will lead to a smaller
stall torque than the ideal value,

Fstall =
∆µ

L
. (3-3-2)

Although the experiments verifying the in vitro ATP synthesis [62] provided indirect evidence
that these two conditions were satisfied for F1, it came to a surprise when Eq. (3-3-1) was verified
quantitatively using the rotary electric field [63]. Indeed, the stall torque only depended on the
value of∆µ following Eq. (3-3-2), and not on the absolute values of [ATP], [ADP], and [Pi] under
the condition that [ATP][H2O]/[ADP][Pi] was fixed [cf., Eq. (2-1-6)].

Such outstanding feature of F1, that the transition of the switching is perfectly coupled to
the chemical reaction of ATP, is referred to as the tight-coupling. This remarkable character
indicates that the thermodynamic efficiency is maximized for such chemical coupling dependent
motor; when stall force is applied, the motor conducts work against the load with 100% efficiency
with the rotational speed 0 Hz, corresponding to the quasi-static operation of a thermodynamic
system.

3.3.2 Brownian motion

Knowing that the property of the stepwise motion of F1 is well-characterized by the ideal
transition rates satisfying Eq. (3-3-1), we next focus on the Brownian motion of the probe bead,
with the motivation to consider the significance of the experimental results presented in [16].

The overdamped Brownian motion of the probe is characterized by the mechanical (yet ef-
fective) potentialsUm(x), which trap the rotational degree of freedomx of the probe attached to
the tip of theγ subunit. Each potential is created by the interaction between theγ subunit and
theαβ subunits [12, 76], and the joint between theγ subunit and the probe bead [77]. Due to the
translational symmetry of the motor (Fig. 3.2), the potentials are assumed to be translationally
identicalUm(x) = U0(x−mL).

Although the detailed version of the model should take into account the substeps (Fig. 3.8),
the hydrolysis dwell potentials can be effectively included inUm(x), since the substeps corre-
sponding to the hydrolysis/synthesis reaction+ releasing/binding of Pi is fast [64]. Thus, our
model with the effective potentialsUm(x) has the ATP binding followed by ADP release as the
rate-limiting step (Fig. 3.6). By assuming that the ATP binding dwell and the hydrolysis dwell
potentials are harmonic with the same spring constantsk, which has been observed in experi-

2In the case of conventional kinesin, which will be described in the next chapter, the motor was found to hydrolyze
ATP even in the event of backward stepping [75].
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Fig 3.5: Estimate of the effective potential,U0(x) (red line). Two data of the effective potential obtained in
experiment [12] (green asterisks and pinc crosses) are plotted. The functional form obtained in Eq. (3-3-3)
was used to fit Data 1, where we obtainedk = 0.0061 deg−2 and∆̃µ = 5.2kBT.

ment [72], the form ofU0(x) is estimated as an effective potential,

U0(x) = kBT

{
1
2

kx2 − log
[
e−klx + ẽ∆µ/kBT+kl2/2

]}
. (3-3-3)

Here,l = 40◦ is the angle of the substep, and∆̃µ is the free energy difference between the ATP
hydrolysis dwell state and the binding dwell state. By fitting the data in [12] as shown in Fig. 3.5,
we obtainedk = 0.0061 deg−2 and ∆̃µ = 5.2kBT, which are in good agreement with previous
independent observations [64, 72, 77]. Derivation ofU0(x) is given in the next subsection.

The angular position of the probe bead,x, undergoes an overdamped Brownian motion inside
each effective potential:

Γẋ = − ∂
∂x

Um(x) − F +
√

2ΓkBTξt, (3-3-4)

whereξt is the Gaussian white noise with unit variance,F is the applied external torque as intro-
duced in Eq. (3-3-1),Γ is the friction coefficient determined by the size of the probe bead, andT
is the temperature of the water (i.e., the heat bath).

The potentials are switched according to chemical-reaction induced Poissonian transitions
(Fig. 3.7). The switching between the effective potentials are governed by the switching rates
denoted byR+m(x) andR−m(x), for the forward direction (m→ m+ 1) corresponding to the ATP
binding+ ADP release reaction, and the backward (m→ m− 1) direction corresponding to the



3.3. PHENOMENOLOGICAL MODEL DESCRIPTION OF F1 41

U  (x)0

U   (x)-1
U (x)h

U (x)b

U (x)+Δμh
～

x0°-120° -40°

ATP binding
+ ADP release

ADP binding
+ ATP release

Pi release
+ ATP hydrolysis

ATP synthesis
+ Pi binding

80° substep 120° step40° substep

x0°-120° -40°

ATP binding
+ ADP release

ADP binding
+ ATP release

Fast 40° substep 

Fig 3.6: Left: Mechanical potentials and chemical reactions corresponding to the substeps. Right: In the
limit of the fast 40◦ substep, the two potentials,Uh(x) andUb(x), corresponding to the ATP hydrolysis
dwell and the ATP binding dwell, respectively, will be merged into one effective potential,U0(x). When
Uh(x) andUb(x) are assumed to be harmonic with the same spring constant (as observed in [72]),U0(x) is
given by Eq. (3-3-3) (see also Fig. 3.5).

ADP binding+ ATP release, respectively. The switching rate functions depend on the angular po-
sition x, which reflect the allosteric mechanism. We assumeR±m(x) = R±0(x−mL). The switching
rate functions satisfy the local detailed balance condition (Fig. 3.7)

R+m(x)
R−m+1(x)

= exp

{
1

kBT
[
Um(x) − Um+1(x) + ∆µ

]}
. (3-3-5)

Note that we have incorporated the tight coupling condition explained in the previous section,
thus the stall torque for this model isFstall = ∆µ/L.

The schematic of the two-dimensional process (concerningx andm) is described in Fig. 3.8.
Let us here note on the requirement to introduce our potential switching model. Although it
has been clarified that the discrete position of the gamma subunit (0◦,80◦,120◦...) is coupled
strongly to the nucleotide state and conformation of the alpha-beta subunits [59, 76, 64], what is
happening in between these discrete angles is a question with yet no concrete answer. In fact, it
has been clarified in [72, 73] that the chemical reactions do not necessarily occur precisely at a
certain angle of theγ shaft, meaning that the timing of chemical reaction is indeed a stochastic
phenomena with respect to the angular position. Furthermore, it was shown in [12] that there exist
separate potentials corresponding to the discrete positions with a certain extent of overlap. This
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Fig 3.7: Potential switching model and schematic of the heat dissipation for the hydrolysis-driven rotation
of F1 in the absence of applied external torque (F = 0). The black circle represents the angular position
of the probe bead attached to theγ subunit. The kinetics ofx is described by an overdamped Brownian
motion inside each potential. Potentials are switched according to the angular position dependent rates
R±m(x).

is consistent with the fact that the relation introduced in Eq. (2-6-18) was not satisfied in the F1

dynamics (S. Toyabe, private communication, 2012), meaning that the model with all the effective
potentials merged together (tilted periodic potential setup) fails to describe this molecular motor.
Taking these facts together, it is required to adopt our model depicted in Fig. 3.7 to reproduce the
experimentally observed kinetics and energetics of the F1 motor.

3.3.3 Derivation of effective potential

The effective potentialU0(x) is obtained as follows. We first consider that there are two
potentials (Fig. 3.6),Uh(x) andUb(x), corresponding to the ATP hydrolysis dwell (centered at
x = −l = −40◦) and the ATP binding dwell (x = 0). To neglect the slow switching (80◦ step),
we assume that the probe is contained in either of the potential for the time scale of interest. We
assume that the potential energy is large compared with the thermal energy,Uh(0),Ub(−l) ≫ kBT,
which is the case observed in experiment [72]. LetPh(x) andPb(x) be the probability density
functions of findingx inside each potentials, and the switching rates fromh to b andb to h defined
asX fh(x̃) andX fb(x̃), respectively. Here,X is the inverse of the typical time-scale involved in the
ATP hydrolysis and the Pi releasing reaction. The local detailed balance should be satisfied by
fh(x̃) and fb(x̃):

fh(x)
fb(x)

= exp

{
1

kBT
[Uh(x) − Ub(x) + ∆̃µ]

}
. (3-3-6)
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Fig 3.8: Schematic illustration of the 120◦ step of the F1 motor. The vertical axis corresponds to the
chemical reactions that take place in theαβ subunits: the ATP binding+ ADP release step (left) and the
ATP hydrolysis+ Pi release step (right). The horizontal axis corresponds to the Brownian motion of theγ

shaft, which follows Eq. (3-3-4). One cycle in the figure corresponds to an anticlockwise rotation of 120◦

with one ATP input and a pair of ADP and Pi output. In the transition from the right top to the left top, the
figure should be rotated 120◦ in the clockwise direction.

The Fokker-Planck equations corresponding to the overdamped Langevin equations with the
potentialsUh(x) andUb(x) read

∂

∂t
Pt̃

i(x) =
kBT
Γ

∂

∂x

[
dUi

dx
Pt̃

i(x) +
∂

∂x
Pt̃

i(x)

]
+ X fj(x)Pt̃

j(x) − X fi(x)Pt̃
i(x), (3-3-7)

wherei and j , i are h or b. By introducing̃t = Xt, x̃ = x/lv, andŨi(x) = Ui(x)/kBT, we obtain
the normalized equation:

∂

∂t̃
Pt̃

i(x̃) = ϵ
∂

∂x̃

dŨi(x̃)
dx̃

Pt̃
i(x̃) +

∂

∂x̃
Pt̃

i(x̃)

 + f j(x̃)Pt̃
j(x̃) − fi(x̃)Pt̃

i(x̃). (3-3-8)

Here we introduced

ϵ :=
kBT
ΓXl2v

=
1
τvX
. (3-3-9)



44 CHAPTER 3. ROTARY MOTORS

As we shall see, the typical length scalelv should be chosen as that ofE(x) := [Uh(x) − Ub(x) +
∆̃µ]/kBT. The important time scale in this analysis isτv:

τv :=
Γl2v
kBT
. (3-3-10)

Assuming fast reaction (X → ∞) corresponds to takingϵ as the small parameter. The following
derivation of the effective dynamics in the limitϵ → 0 is given through a method called singular
perturbation.

Let us calculatePt
i(x) in the form,Pt

i(x) = P(0)
i (x) + ϵP(1)

i (x) +O(ϵ2). We obtain from the 0-th
order equations in Eq. (3-3-8):

P(0)
i (x) = Qt(x)P∗i (x), (3-3-11)

where we defined

P∗h(x) :=
1

1+ exp[E(x)]
(3-3-12)

P∗b(x) :=
1

1+ exp[−E(x)]
= 1− P∗h(x). (3-3-13)

It is required to adopt the length scale ofE(x) as lv in Eq. (3-3-8), since this is the length scale
which characterizesP∗h,b(x).

The solvability condition for the 1st order equations in Eq. (3-3-8), which is obtained by
taking the sum overi in both hand sides, determines the dynamics ofQt(x):

∂

∂t
Qt(x) =

1
Γ

∂

∂x

∑
i=h,b

P∗i (x)
dUi(x)

dx
Qt(x) + kBT

∂

∂x
Qt(x)

 , (3-3-14)

which is equivalent to the one-dimensional overdamped Langevin equation with the effective
force

−dU0(x)
dx

= −
∑
i=h,b

P∗i (x)
dUi(x)

dx
, (3-3-15)

where the effective potential is obtained by

U0(x) :=
∫ x

c
dx′

∑
i=h,b

P∗i (x
′)

dUi(x′)
dx′

, (3-3-16)

with an arbitrary fixed constantc. The schematic explaining the effective potential is given in
Fig. 3.6

Assuming that the two potentialsUb(x) andUh(x) are harmonic with the same spring con-
stants,Ub(x) = Uh(x+ l) = kx2/2× kBT [72], we have

U0(x) =
∫ x

c
dx′

 kx

1+ exp[−klx− ∆̃µ/kBT − kl2/2]
+

k(x− l)

1+ exp[klx+ ∆̃µ/kBT + kl2/2]

(3-3-17)
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which may be calculated as Eq. (3-3-3) by neglecting the constant.
We find, from the obtained parameters through fitting (Fig. 3.5), that the value ofτv is of

order< 1 msec in the case of the given diffusion constant of the probe in the experiment. This is
consistent with the fast substep (ATP hydrolysis step) characterized byX, which is known to be
difficult to observe with the frame rate lower than 1000 Hz.3

3.3.4 Steady-state and parameters in numerical analyses

In the following sections, we will show numerical results obtained for the steady-state of the
described model, Eq. (3-3-4), under the various conditions. In practice, we utilize the transla-
tional symmetry to merge the different states corresponding to differentm’s into one (m= 0), and
consider the steady-state condition:

∂

∂x

{[
U′0(x) + F

]
Pst(x) +

kBT
Γ

∂

∂x
Pst(x)

}
+R+0(x+ L)Pst(x+ L) + R−0(x− L)Pst(x− L) − [R+0(x) + R−0(x)]Pst(x) = 0.(3-3-18)

Here we denoted the steady-state density asPst(x) ∝ Pst(x,m = 0) and used the translational
symmetryPst(x,m) = Pst(x−mL) andR±m(x) = R±0(x−mL). We set the normalization condition
as

∫ ∞
−∞ dxPst(x) = 1 for later convenience. By discretizing in space and taking the system size

sufficiently larger thanL, Eq. (3-3-18) may be solved as a problem of linear algebra.
For the parameters in the numerical analysis, we used the diffusion constantkBT/γL2 = 3.3

sec−1 which was noted in [12]. The chemical free energy∆µ was set as 18.3kBT in Figs. 3.9,
3.14, 28kBT in Fig. 3.10 and 16.5kBT in Fig. 3.12, corresponding to the different experiments
([16], [79], and [12]).

3.4 Measured heat in the model of F1
In the stochastic dynamics of our model described by Eq. (3-3-4), there are two paths for

the motor to exchange energy with the surrounding water (Fig. 3.2). One is through the change
of rotational position, which corresponds to the external dissipation, since this energy flows out
from theγ shaft. The other is through the change of mechanical potential, which is the internal
dissipation corresponding to the energy used to change the conformation ofαβ.

Corresponding to the framework introduced in Sect. 2.5, we may characterize these quantities
by introducing

Λ(x) = Pst(x)R+0(x) − Pst(x− L)R−0(x− L), (3-4-1)
3Recently, however, it was claimed that the substep is observable even for such relatively large probe, depending

on the quality of the motor [78]. If the effective potential picture should be modified and the substep should be
explicitly taken into account in the model, it may cause additional internal dissipation, although in experiment it is
not observed. It shall be interesting to measure the dissipative feature of F1 in the presence of large concentration
of ATPγS, which makes the rate limiting step to be the ATP hydrolysis step instead of the ATP binding. Such
experiment will enable us to access to the information offh(x) and fb(x) (which in fact, has been estimated though a
different method in [72]).
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which is the steady-state switching rate that characterizes the switching position. The first term
in the right-hand side corresponds to the probability density of the position at which the forward
switching (m→ m+1) occurs, and the second term corresponds to that of the backward switching
(m+ 1→ m). By integratingΛx, we obtain the net transport rate from potential 0 to 1,

v :=
1
3

∫ ∞

−∞
dxΛ(x), (3-4-2)

which is equivalent to the steady-state rotational velocity.4 The factor three is due to the three
steps of 120◦ corresponding to one rotation.

The heat dissipationsQint and Qext in the model are defined as the steady-state average of
the internal and external heat dissipation per 120◦ step, respectively (Fig. 3.7).Qint, the energy
dissipation accompanying the switching ofm, is calculated by

Qint :=
1

3vst

∫
dxΛ(x)

[
U0(x) − U1(x) + ∆µ

]
. (3-4-3)

Notice that the termU0(x) − U1(x) + ∆µ corresponds to the total energy shift (=heat exchange
with the thermal bath and chemical bath) upon the potential switchingm = 0 → 1 at position
x, which appears inside the exponential in the local detailed balance equation (3-3-5), .Qext, the
dissipation through the spatial motion ofx, is the difference between the total dissipation and the
internal one:

Qext := |∆µ − FL| − Qint. (3-4-4)

Here,FL is the work performed by the motor against the external torque per forward step, and
therefore|∆µ − FL| corresponds to the total dissipation per step [cf., Eq. (3-3-1)]. We take the
absolute value since the average stepping direction changes its sign atFL = ∆µ.

In terms of Sect. 2.5.1, we may writeQint = ∆µ− ⟨Ẇ⟩st/3vst andQext = ⟨Q̇⟩st/3vst. Therefore,
it is possible to quantifyQext by measuring the extent of the violation of the fluctuation response
relation, as explained in Sect. 2.6. Results from the experiment conducted by Toyabe et al.
[16] for the F1 motor is shown as cross-points in Figs. 3.9 and 3.10. Remarkably, the external
dissipation was very close to∆µ in the absence of external torque for all the conditions of∆µ and
rotational velocity (controlled by changing [ATP] and [ADP] with fixed∆µ). This means that
Qint is very small, irrespective of the velocity of the rotational motion (horizontal axis in figures).
We shall explain what this means from the standpoint of model analysis in the following sections.

3.5 Fast chemical reaction

First, we consider the case where [ATP] and [ADP] are set high under a fixed ratio [ATP][H2O]/
[ADP][Pi]. We show in the model that the steady-state rotation ratevst converges to a finite max-
imum velocityvmax, and the external dissipationQext converges to∆µ.

4We abbreviate the steady-state velocityvst asv in this chapter.
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Fig 3.9: Steady-state rotational velocityv versus the external heat dissipation per stepQext in the case of
∆µ = 18.3kBT. The red line is the case of the TASAM (q = 0), and the other lines correspond to various
q , 0 models introduced by Eq. 3-6-1. Experimental data were obtained from [16] (errorbars: standard
error of mean). The black circle indicates the high ATP concentration limit.

To see this, let us writeR±n(x) = W f±n (x). Here,W is the rate characterizing the chemical
reaction, andf ±n (x) are dimension-less functions which do not explicitly depend on [ATP], [ADP],
or [Pi] but only depend on the ratio [ATP][H2O]/[ADP][Pi] through∆µ. Note that the nucleotide
concentration condition set by [ATP] and [ADP] may be described using the two parameters,W
and∆µ.

Under a fixed∆µ, the high [ATP] and [ADP] situation is represented by largeW. In our model
which consists of potentialsUm(x) and switching ratesR±m(x), the high ATP concentration limit
can be treated in a similar method used to obtain the effective potentials in Sect. 3.3.3.

We consider the limitWτv ≫ 1, whereτv is defined by Eq. (3-3-10).lv used in the definition
of τv is the length scale of [Um(x) − Um+1(x) + ∆µ]/kBT. The dynamics in the limit is described
by

Γẋ = F(x) +
√

2ΓkBTξt. (3-5-1)

The effective forceF(x) is given by

F(x) = −
∞∑

m=−∞
P∗m(x)

dUm(x)
dx

, (3-5-2)
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Fig 3.10: Steady-state rotational velocityv versus the external heat dissipation per stepQext in the non-
harmonic potential model [using Eq. (3-3-3) forU0(x)] and the harmonic potential model, in the case of
∆µ = 28kBT. The experimental result was obtained from [16] (error bar: standard error of mean). In this
large∆µ setup, the intersection point becomesxc < 0 in the non-harmonic and harmonic potentials, which
is beyond our analytical understanding presented in the Appendix. Nevertheless, the numerical result for
q = 0 shows consistent value with the experiment.

with P∗m(x) defined similarly to the previous case as

P∗m(x) :=
exp{−[Um(x) − n∆µ]/kBT}∑∞

m=−∞ exp{−[Um(x) −m∆µ]/kBT} . (3-5-3)

The force in Eq. (3-5-2) corresponds to a tilted periodic potential, where the energy difference
per 120◦ step is∆µ (Fig. 3.11, bottom). Since this energy difference is dissipated through the
rotational motion of the probe, we immediately find

Qext = −
∫ 120◦

0
F(x)dx= ∆µ. (3-5-4)

This result indicates that whenW is sufficiently large, the dynamics becomes independent of
the form of f ±m(x), and the switching of mechanical potentials becomes too fast to be observed
as distinct steps. Then,vmax, which is the steady-state velocity forW → ∞ under fixed∆µ,
is equivalent to the steady-state velocity for the one-dimensional tilted periodic potential setup
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Fig 3.11: Effective potential in the high ATP concentration limit. Since the switching dynamics is fast, the
independent potentials become invisible, and the dynamics follows the tilted periodic potential description,
irrespective of the form ofR±m(x). In this limit, the external dissipationQext becomes equal to∆µ.

concerning the forceF(x)5. Velocity saturation at high ATP concentration (see also Fig. 3.20 for
the harmonic potential model) is a well-known property in molecular motors, which has been
phenomenologically understood through the Michaelis-Menten curve [1].

What is happening in this limit is that the potential switching dynamics becomes too fast that
the switching governed byR+m(x) andR−m(x) puts the dynamics ofm in equilibrium, under the
condition of fixedx. This means that the energy dissipation accounting for theαβ conformation
change is balanced and becomes zero,Qint = 0, which is consistent with Eq. (3-5-4), as presented
in the right end of Fig. 3.9 in both experiment and numerical analysis with various switching rate
functions.

We note that the time scaleτv = Γl2v/kBT which should be compared withW−1 to discuss
whether the chemical reactions are fast enough for such limit, is in fact much smaller than the

5In order to use Eq. (2-2-8), we decompose the effective force asF(x) = −∆µ/L − U′eff(x) using a periodic
potentialUeff(x)
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time scale of equilibration inside the potentialsUm(x), which we denote asτp. This difference in
the time scale is critical in the internal dissipation-free feature of TASAM, as will be discussed
in Sect. 3.6.2.

3.6 Asymmetric model

The torque-free experiment [16] shows that even when [ATP] is low enough andv < vmax, the
external dissipationQext is still close to∆µ (Fig. 3.9, crosses). Although we have shown that the
feature whereQext ∼ ∆µ is achieved for any switching rate function whenv ∼ vmax, the external
dissipation has a strong dependence on the functional form off ±m(x) in the low velocity regime,
since the value ofQint (and consequently,Qext) is determined by the typical positionx at which
the switching occurs (Fig. 3.7 top). The experimental observation is striking, since the individual
functional forms of f ±m(x) are arbitrary as long as the detailed balance condition Eq. 3-3-5 is
satisfied; there is no general reason forQext to become close to∆µ in the low velocity regime.

3.6.1 Introducing asymmetry through switching rate functions

To see the significance of the experimental result for lower velocities, and introduce the totally
asymmetric model, we parameterize the switching rate functions by introducing a parameterq
(0 ≤ q ≤ 1):

f +m(x) = exp

{
q

kBT
[
Um(x) − Um+1(x) + ∆µ

]}
,

f −m+1(x) = exp

{
q− 1
kBT

[
Um(x) − Um+1(x) + ∆µ

]}
.

(3-6-1)

This q determines the asymmetry in thex-dependence of the forward and backward switching
rates, while respecting the detailed balance condition, Eq. (3-3-5). The totally asymmetric al-
losteric model (TASAM) is the case where the switching rate in the forward direction (ATP
binding rate) has no dependence on theγ angle, and therefore, corresponds toq = 0. The case of
q = 1 corresponds to another type of totally asymmetric model that is opposite to the TASAM,
where the ATP binding event is strictly controlled by theγ angle, whereas the reverse reaction
(ADP binding) is instead independent of the angle. In this manner,q describes the asymmetry in
the extent of coordination between the angle ofγ subunit and the ATP binding site.

Fig. 3.9 shows the numerically obtained relation betweenv and Qext for variousq’s. The
TASAM produces the internal dissipation-free feature (Qext ∼ ∆µ), which indeed has low de-
pendence on the rotational velocity in the broad range tested in the experiment (Fig. 3.9, red).
This feature of the model is preserved for the larger∆µ case (Fig. 3.10). Note that under a fixed
functional form ofUm(x), the maximum velocityvmax does not depend onq, which is why we
may compareQext between various models for the samev/vmax. Although all models produce
Qext = ∆µ for v = vmax (black circle), the values ofQext for the cases ofq > 0.1 deviate from
∆µ significantly at lowerv. Thus, we propose that the internal dissipation-free motor is obtained
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only by assuming low coordination (q ∼ 0) in the ATP free state and high coordination in the
ATP bound state.

3.6.2 Bare switching rate and switching position density

As seen in Eq. (3-4-3), the value ofQint is determined by the typical switching position.
We compareΛ(x) for the various models in the low velocity regime in Fig. 3.12. Although the
steady-state distribution of theγ angle [Pst(x)] has a peak at the potential minimum point in this
low velocity regime (Fig. 3.12B, black dotted line), the peak ofΛ0(x) in the q = 0 model is
positioned close to the pointx = xc whereU1(xc) − U0(xc) − ∆µ = 0, which we shall refer to as
the potential intersection point.

The mechanism which produces this behavior is that, although the ATPs most likely approach
the motor when theγ angle is around the potential minimum point, the bound ATP is almost
always kicked out instantaneously, due to the large energy difference required to switch the po-
tential at such points,Um+1(x) − Um(x) − ∆µ ≫ kBT (Fig. 3.12). The switching would inevitably
occur at positions close toxc, resulting in low energy dissipation in the potential switching (low
Qint). Λ(x) of the TASAM (Fig. 3.12) agrees with the estimated distribution presented in [12]
whereas theq = 0.5 and 1 cases (schematic shown in Fig. 3.13) have peaks clearly shifted more
toward the forward direction than the intersection point.

On theoretical grounds, the low velocity dependence ofQext could be understood through
the existence of two time scales,τv andτp. As we have seen in Sect. 3.5,τv is the small time
scale which determines the rotational velocity saturation and the single tilted potential descrip-
tion (Fig. 3.11). In contrast,τp is the time scale of the angular position to relax inside a single
potential, which is relatively large. There is a separation of order betweenτv andτp; if we sub-
stitute the effective potential with a harmonic potential,U0(x) = Kx2/2, then the separation can
be explicitly obtained asτp/τv = U(L)/kBT, which is the order of 10∼ 100 [cf. Eq. (3-9-4)].

We have numerically verified that in theq = 0 model, it isτp that determines the minimal
value of W which the model presents the internal dissipation-free feature. The large separation
between the values ofτp andτv causes the experimentally accessible region of the value ofW
(corresponding to the ATP concentration) to fit inside the inequalityτ−1

p < W ≤ τ−1
v , and the

internal dissipation-free feature is observed at all velocity conditions as a consequence. In more
practical words, our theory shows that when the actual motor adopts the TASAM ,Qext ∼ ∆µ
holds if [ATP] is as large as 0.1µM for the 0.3µm probe bead case [16, 79]. Since the velocity
saturation occurs at [ATP]> 5 µM under this condition [64], this lower bound concentration to
observeQext ∼ ∆µ is significantly small.

3.7 Asymmetry in macroscopic features

Up to here, we have claimed that the TASAM draws consistent result with the F1 in terms
of the external heat dissipation. We next consider how other features of the TASAM appear in
measurable quantities.
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Fig 3.12: Switching position distribution of the TASAM in the case of∆µ = 16.5kBT. (Top) Distribution
of the switching angular position at the slow rotation rate condition. Numerically obtained switching
position distribution in theq = 0 (red), 0.5 (pink), and 1 (light blue) models, compared for the same
rotational ratev = 2 Hz (low velocity). The vertical axis is arbitrarily scaled. Although the steady-
state distribution of theq = 0 model (black dotted line) has a peak at the minimum point ofUm(x),
the switching position density clearly has a peak around the intersection point, which is consistent with
experiment [12]. (Bottom) Mechanism behind the internal dissipation-free feature of the TASAM. The
potential switching may occur at any angle in the TASAM (brown arrows), while the backward switching
of the potential follows instantaneously if the energy required for the forward switching was too large
(blue arrows). Suppression of switching at high energy difference positions lets the switching to occur
only around the potential intersection point, leading to theQint ∼ 0 feature.



3.7. ASYMMETRY IN MACROSCOPIC FEATURES 53

ADP

ATP

ATP

ADP

ATP

ATP

q = 1

q = 0.5

Forward reaction: 
high γ-shaft angular dependence

Backward reaction: 
low angular dependence

Shared γ-shaft angular dependence 
among forward and backward reactions

γ

A
D

P

γ

A
D

P

γ γ

Fig 3.13: Schematic of theq = 0.5 andq = 1 models. In theq = 0.5 model, the coordination between
theγ shaft and the nucleotide binding sites are equally present in the forward and backward reactions. On
the other hand, theγ shaft and the nucleotide binding sites are only coordinated in the forward step in the
q = 1 model, which is completely opposite to the case ofq = 0 model (Fig. 3.3). As shown in Fig. 3.9,
3.10, 3.12, and 3.14, these models fail to reproduce the internal dissipation-free and asymmetric velocity
feature of F1.

3.7.1 Torque dependence of rotational velocity

We first consider how the rotational velocity depends on applied external torque in mod-
els with variousq (Fig. 3.14). For the sake of schematic explanation, let us consider that the
mechanical potentials are harmonic,U0(x) = K(x/L)2/2 (Fig. 3.16, top). Then, the potential
switching model would be symmetric about the change of parameters and coordinate, (F,q, x)→
(2∆µ/L − F,1− q,−x). It follows from this symmetric property that in the case ofq = 0.5 (sym-
metric model, Fig. 3.16, middle), the torque dependence of the steady-state rotational velocity,
v(F), would show an anti-symmetric curve with respect to theF = ∆µ/L line. Indeed, this prop-
erty is observed even when we assume the non-harmonic and realistic form ofU0(x), as shown
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Fig 3.14: External torque dependence of the rotational velocity in the TASAM (numerical, solid lines)
and the corresponding values obtained from experiment (lines and points, kindly provided by S. Toyabe,
[63]) in the case of∆µ = 18.3kBT. Velocity is normalized using its value atF = 0, which is shown as the
title of each lines. Thev = 0.32, 1.9, 7.1, and 12 Hz cases correspond toW = 1.7,15, 120 and 1000 sec−1

in the model, respectively, with the other parameters fixed.

in Fig. 3.15. On the contrary, in the TASAM (q = 0, Fig. 3.16, bottom), this feature is lost espe-
cially at low W, and the torque dependence of the velocity becomes sharper atF > ∆µ/L than at
F < ∆µ/L [v(0) = 0.32,1.9,7.1 Hz lines in Fig. 3.14]. Remarkably, this feature of the TASAM
matches with the experimental observation [63] (line points in Fig. 3.14).

Both in experimental and numerical data shown in Fig. 3.14, the asymmetry seems to become
explosively large for lowW for the TASAM. In fact, we may calculate the extent of asymmetry in
the limit W ≪ τ−1

p by assuming harmonic potential. The switching position density in this limit
can be calculated by the approximation of the steady-state density as the equilibrium density

Pst(x) ≃ Peq(x) =
1
Z

exp [−(U0(x) + Fx)/kBT] . (3-7-1)

Using Eq. (3-4-2), the external torque dependence of steady-state velocity can be obtained as

v(F) ∝ exp[−qFL/kBT]
{
1− exp

[
(FL − ∆µ)/kBT

]}
. (3-7-2)

Thus, the dependence of the asymmetry onq is very sharp, and in the case ofq = 0, the asym-
metryv(F)/v(0) amounts to exp[∆µ/kBT], which is extremely large.
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Fig 3.15: External torque dependence of the rotational velocity in theq = 0.5 (left) and 1.0 (right) models,
plotted with the experimental data [63] (kindly provided by S. Toyabe). For each numerical lines,W was
chosen and fixed in order to reproduce the values ofv(0) of the corresponding experimental data.

3.7.2 Alternative model: intersection switching

For comparison with the TASAM, let us consider the intersection switching model. Instead
of the form we introduced in Eq. 3-6-1, we here define the switching rate functions to have a
sharp peak at the position of the potential intersection point. In such model, the peak position
of Λ(x), which is confined around the intersection point, would be independent ofW, and the
velocity independent feature ofQint ∼ 0 would be trivially obtained. We set

f +0 (x) = exp

{
− (x− xc)2

2σ2
+

q
kBT

[
U0(x) − U1(x) + ∆µ

]}
,

f −1 (x) = exp

{
− (x− xc)2

2σ2
+

q− 1
kBT

[
U0(x) − U1(x) + ∆µ

]}
.

(3-7-3)

Here,xc is the intersection point between the two potentials introduced in Sect. 3.6.2, andσ is a
parameter which controls the typical width of the window of the angle at which the switching is
allowed.

If σ is sufficiently small, this model would become internal dissipation-free for a wide range
of W, which seems to be consistent with the experimental data on the external dissipation. This
is because the switching of the mechanical potential only occurs at angles satisfyingUm+1(x) −
Um(x) − ∆µ ∼ 0 in this model. However, ifσ is too small, the torque dependence of the velocity
becomes anti-symmetric with respect to theF = ∆µ/L line for all q even at smallW (Fig. 3.17,
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F =2∆µ/L - f
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∆ µ − fL ∆ µ − fL 
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internal dissipation-free

Fast, 
finite internal dissipation

ATP

ADP+Pi ATP
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Asymmetric model (TASAM)

F = f < ∆µ/L F =2∆µ/L - f

Fig 3.16: Property of the potential switching model under application of external force. (Top) Schematic
of the torqueF dependence of the potential switching model. When the mechanical potential is harmonic,
the model becomes symmetrical about the change (F, q, x) → (2∆µ/L − F, 1 − q,−x). (Middle) ATP
hydrolysis and synthetic rotation in a model withq = 0.5. The absolute velocity and the balance between
the internal/external dissipations become equivalent in the two cases,F = f and 2∆µ/L − f . (Bottom)
TASAM, especially at the low nucleotide concentration condition. In contrast to the symmetric model
(middle), the absolute velocity and the value of internal dissipation are different in theF = f and 2∆µ/L− f
cases.
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left), which is inconsistent with the experimental observations. Whenσ is sufficiently large
(Fig. 3.17, right), the torque-velocity curve would depend onq, which shows that adoptingq ≃ 0
is critical even in the intersection switching model to reproduce the feature of F1.
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Fig 3.17: External torque dependence of the rotational velocity for the intersection switching model [see
Eq. (3-7-3)]. Whenσ is small and the switching is only allowed in a narrow range around the potential
intersection point (left), the torque-velocity curve becomes anti-symmetric with respect to theFL = ∆µ
line. Whenσ is set larger (right), theq-dependence appears. For each numerical lines,W was chosen and
fixed in order to reproduce the values ofv(0) = 0.32Hz.

3.7.3 Heat dissipation in the ATP synthetic rotation

We predict that similar difference between the torque-free and torque-applied cases would be
observed in the internal dissipation, if the TASAM is adopted in the F1 motor. In fact, Fig. 3.18
shows that the internal dissipation-free nature of the TASAM is lost, especially when large torque
F > ∆µ/L is applied in the model. The low torque dependence ofQint at high nucleotide con-
centration has recently been measured and reported [79], which is consistent with the case of
v(0) = 12 Hz in Fig. 3.18. The validity of our model can be checked by further measuringQint

in the low nucleotide concentration condition, which are thev(0) = 0.32, 1.9 and 7.1 Hz cases in
Fig. 3.18.

The character of the torque dependence of TASAM could be understood through the property
of the potential switching model discussed above. The dynamics of the TASAM at the presence
of large applied torque, for instanceF = 2∆µ/L, becomes equivalent to that of theq = 1 model
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Fig 3.18: (B) External torque dependence of the internal dissipationQint in the TASAM. At low nucleotide
conditions (smallW), Qint significantly deviates from zero at the presence of large torque.

with F = 0 with opposite velocity. As we have seen, the internal dissipation is large in theq = 1
case, which explains why we observe large internal dissipation in the presence of torque in the
TASAM at low W. In this sense, adopting the TASAM in the forward step mechanism (ATP
hydrolysis) is equivalent to adopting theq = 1 model in the backward step (ATP synthesis, see
Fig. 3.9). The absolute velocity at low nucleotide condition becomes faster atF = 2∆µ/L than at
F = 0 in the TASAM (Fig. 3.14), which is suggestive since the F1 is forced to rotate in the ATP
hydrolysis direction in biological conditions. It shall be interesting to quantify how asymmetric
the thermodynamic quantities and force-velocity relations are in other molecular motors.

3.8 Comparing with other experiments

One way to verify our model is to directly measure the switching rate functions in the F1

experiments. Recently, two groups have reported the angular position dependence of chemical
reaction rates in the F1 motor. Iko et al. [80] indirectly estimated the angular dependence of the
ATP binding rate, which we refer to askATP

on (x). This was done by comparing the forced rotation
speed dependence of the ATP consumption rate with model simulations. Watanabe et al. [72]
tweezed the magnetic probe bead at a defined angle with respect to the ATP binding dwell, and
measured the probability of the forward and backward stepping as a function of the angle and
the tweezing time, from whichkATP

on (x) and alsokATP
off (x) was estimated. Adachi et al. [73] used

nucleotides with fluorescent dyes to directly observe the binding events during the forced rotation
of the probe bead. This also led to the estimation of the various rates includingkATP

on (x).
To compare our proposal with these experiments, let us consider again the harmonic potential

model,U0(x) = K(x/L)2/2, with K = 50kBT. This value ofK was determined to match the
steady-state velocity of the model with experiment (see Appendix). Note that in this model, the



3.9. REMARKS AND CONCLUSION 59

angular position dependence of the forward switching rate has a simple form,

R+m(x) ∝ exp

[
qKLx
kBT

]
, (3-8-1)

By assuming that thekATP
on (x) measured in the above reports correspond to the forward switching

rate in our model,R+m(x), we obtainq = 0.07∼ 0.12 for [80], [72], and [73], respectively. These
values are consistent with our model, suggesting thatq should be close to zero in order to explain
the internal dissipation-free and asymmetric velocity features of the F1 motor.

We predict that if the direct measurement ofR−m(x) is possible, one should find a large depen-
dence on the angle, since 0∼ q < 1− q ∼ 1. Note thatR−m(x) corresponds to the combination of
the ADP binding and ATP release reaction, thus it is different fromkATP

off (x) obtained for example
in [72] and [73]. In [73], there is data presented forkADP

on (x) which does not seem to have the
expected large dependence onx, although it is difficult to give conclusion since the experiment is
conducted in the ultra-low nucleotide condition.

3.9 Remarks and conclusion

In summary, we showed in this chapter that the Brownian motion+ switching scheme intro-
duced to model F1 is internal dissipation-free, but only when the chemical fuel concentration is
high enough for the motor to reach maximum velocity. The TASAM was introduced in order to
explain the internal dissipation-less feature of F1 at the small velocity condition. We showed the
consistency of the model with the experimentally observed feature in rotational velocity and the
angular dependent chemical reactions, and further discussed on the possibility of large internal
dissipation in the ATP synthetic rotation to be observed in future experiments.

Our stochastic model is based on confirmed properties of F1, such as the discrete steps [76,
64], mechanical potentials [12], and large stall force [63] with all the real parameters. However,
we did not refer to the microscopic interactions, for example, at the amino acid residue level,
which is typically required in molecular dynamic simulations. Nevertheless, the key feature of
the F1 energetics and dynamics seem to be well reproduced by the simple one-dimensional de-
scription. The existence of such consistent description encourages us to consider the fundamental
design principle behind molecular machines, since at this coarse-grained scale, comparison be-
tween different bio-motors and blueprints of artificial nanomotors is possible.

The significant picture we obtained through the analysis of F1 is the relationship between the
heat dissipative feature and the asymmetric switching rule of the motor. From the viewpoint of
optimization, we are at this point uncertain about whether the internal dissipation-free feature or
the characteristic torque-velocity curve is more important in the design principle of F1. In one
end, the motor might be desiring to minimize the internal dissipation in the motor rotation even
in the situation of low chemical fuel concentration (lowW), which makes us imagine that F1 was
build as a motor and not an ATP generator in its primitive age of evolution. In the other end,
we may regard the asymmetric torque response curve at low ATP concentration as an important
message, and consider the larger response to ATP generating direction of torque to be the ultimate
goal that F1 has achieved for its function as an efficient ATP generator.
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Such ambiguous thoughts on the origin of the design principle of F1 may be tested to some
extent by looking at different molecular motors. For instance, the V-ATPase, which is another
membrane embedded protein complex which resembles the F-ATPase with respect to its com-
ponents and structures, is known to be functioning as an ion pump in cells. In particular, the
V1-ATPase (or V1) is the rotor part of the complex, which is an ATP catalyst. It shall be of great
interest to investigate the heat dissipative feature and the asymmetric torque-response curve for
V1, and compare it with F1; depending on which direction of asymmetry appears, if any, we may
be able to assign the design principle of F1 to its feature as the motor or the generator.
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Appendix: Analysis of the harmonic potential model

We consider in this appendix the simplified harmonic potential case,Um(x) = K(x−mL)2/2,
whereL = 120◦. Although this simplified case is still not solvable, we can obtain analytical
understandings to some extent.

In Fig. 3.19, we show the numerical results ofQext in this model. Under the condition that the
diffusion coefficientD = kBT/Γ asD/L2 = 3.3sec−1 [12], and the chemical potential as∆µ/kBT =
19 [16, 63], the value ofK was determined asKL2/kBT = 50 by setting the maximum average
velocity to fit with that obtained in experiment. The characteristic feature ofq dependence is
similar to the case of Fig. 3.9, where the potential estimated through experiment was used in the
calculation.
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Fig 3.19: Rotational velocityv versus the external heat dissipation per stepQext in the harmonic potential
model. Parameters are given in the text. The experimental results were obtained from [16] (error bar:
standard error of mean).

Let us first consider the largeW limit (high ATP concentration). The length scale of potentials
Um(x) = K(x − mL)2/2 and that ofUm(x) − Um±1(x) = ∓KLx are

√
kBT/K and kBT/(KL),

respectively. Since the potential energy is sufficiently largeKL2/kBT ≫ 1, the smallest length
scale in this model is

lv =
kBT
KL
. (3-9-1)

This length defines the time scale [cf. Eq. (3-3-10)]

τv =
ΓkBT
(KL)2

, (3-9-2)
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which determines the typicalW (ATP concentration) that allows the effective force description of
the model, and consequently the velocity saturation. Let us also define

τp :=
Γ

K
, (3-9-3)

which corresponds to the time scale of equilibration inside a single potential. Notice that

τp

τv
=

KL2

kBT
≫ 1, (3-9-4)

Significance of the time scaleτv is numerically verified through seeing how the velocity
dependence ofW in the model changes according to the spring constantK. In Fig. 3.20, we show
the results for the case whereK and∆µ are parameterized byd (= −1,0,1,2,3, 4,5) as

KL2/kBT = 50× 2d (3-9-5)

∆µ/kBT = 19× 2d. (3-9-6)

Clearly, the value ofW at which the velocity saturates is scaled byτv (∝ K−2) and not byτp
(∝ K−1), whend is sufficiently large.
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Fig 3.20: W dependence of velocity for the harmonic potential model withq = 0 (numerical). Different
colors correspond to differentd’s, which changes the set of spring constantK and hydrolysis free energy
∆µ in the model according to Eqs. (3-9-5) and (3-9-6). Results from models with differentd are plotted by
scalingW by τ−1

v . Inset shows same data without scalingW.

To understand the limitW → 0 of the model, we focus on the switching dynamics between
potentialsU0(x) and U1(x) − ∆µ, since the dynamics between two neighboring potentials are
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equivalent in steady-state. Our aim is to estimate the probability density of the position where
the switching fromU0(x) to U1(x) − ∆µ takes place:

λ(x) :=
Λ(x)
W
= Pst(x) f +0 (x) − Pst(x− L) f −1 (x). (3-9-7)

Pss
0 (x) andPss

1 (x) are the steady-state densities ofx under the condition thatn is 0 and 1, respec-
tively. The first term in the right-hand side of Eq. (3-9-7) corresponds to the probability density
of the switching atx, whereas the second part is that of the switch back (1→0). WhenΛ(x) is
obtained, the internal heat dissipation may be calculated as

Qint =
1
Z

∫
dxλ(x)

[
U0(x) − U1(x) + ∆µ

]
, (3-9-8)

whereZ =
∫

dxλ0(x) is the normalization factor.
For W ≪ τ−1

p , the steady-state probability density ofx is close to the equilibrium density
inside each potential

Pst(x) ≃ Peq(x) ∝ exp

[
−U0(x)

kBT

]
. (3-9-9)

Although this assumption is valid in estimating the first term in the right-hand side of Eq. (3-9-7),
it fails to capture the feature of the second term atW > 0, since the small but finite switching
makesPst(x) deviate fromPeq(x) at around the peak point ofPst(x) f +0 (x), where f −1 (x) may take
a significantly large value.

We focus on the model withq < xc/L, where

xc :=
KL2/2− ∆µ

kBT KL
≃ 14◦ (3-9-10)

is the intersection point between the two potentials,U0(xc) − U1(xc) + ∆µ = 0. In this region of
q, Peq

0 (x) f +0 (x) has a peak atx < xc. In order to phenemenologically take into account the effect
of switch back, we consider the conditional probability that after the switching occurs atx, the
potential stays asU1(x) − ∆µ and is not switched back toU0(x):

D0(x) :=
exp[−τv/τleq(x)] + exp[E0(x)]

1+ exp[E0(x)]
. (3-9-11)

We have introduced the local equilibrium time scale

τleq(x) :=
1

R+0(x) + R−1(x)
=

1
W[ f +0 (x) + f −1 (x)]

, (3-9-12)

which is the typical time required for equilibration betweenU0(x) and U1(x) − ∆µ at a fixed
positionx. UsingD0(x), we assume that the switching position probability density is given by

λ̃(x) := Peq(x) f +0 (x)D0(x). (3-9-13)
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Fig 3.21: Numerically obtainedQext (red) and the theoretical̃Q (green) obtained from Eq. 3-9-15 in the
q = 0 model. Starting fromQ̃(0) at the limitW→ 0, Qext drops sharply in a manner∝ − logW at low but
finite W. Qext stops dropping atW ∼ τ−1

p , and converges to∆µ at W > τ−1
v . Inset shows same data with

linear-scaleW.

This is justified since the main contribution from thePss
1 (x) f −1 (x) term in Eq. 3-9-7 is the switch

back which occurs right after the switch 0→1, and the probability that the probe spontaneously
climbs the potentialU1(x) in the backward direction for the switch back to occur is negligibly
small.

As shown in Fig. 3.21, the external heat dissipation theoretically obtained as

Q̃(W) := ∆µ − 1
Z

∫
dxλ̃(x)

[
U0(x) − U1(x) + ∆µ

]
(3-9-14)

=
1
2

KL2 − KL
Z

∫
dxλ̃(x)x, (3-9-15)

captures the feature ofQext at smallW. Note that in the limitW→ 0, we find

Qext = Q̃(0) = (1/2− q)KL2, (3-9-16)

since in this limit the switching position probability density becomesPeq(x) f +0 (x) ∝ exp[−K(x−
qL)2/2kBT], a Gaussian distribution with peak atx = qL. For finiteW, the value ofQint deviates
drastically fromQ̃(0) in a manner∝ − logW, which is observed as a sharp drop whenW or
v is linear scaled (Fig. 3.21 inset, Fig. 3.19). Physically, this corresponds to the fact that very
little ADP concentration is sufficient to prevent switching to occur at energetically unfavorable
positions [U1(x) − U0(x) − ∆µ ≫ kBT].
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Fig 3.22: Deviation of Qext from the theoretically obtained̃Q(W) from Eq. 3-9-15. Different colors
correspond tod = −1, 0, 1, 2, 3, 4, 5 in the model parameterized by Eqs. 3-9-5) and 3-9-6. Inset shows
same data without scaling.

λ0(x) ≃ λ̃0(x) is valid whenW ≪ τ−1
p , and should fail whenW > τ−1

p since Eq. 3-9-9 used
to evaluate the first term of Eq. 3-9-7 is violated in this region. TheQext therefore deviates from
the sharp theoretical curve at aroundW ∼ τ−1

p (Fig. 3.22). As shown in Fig. 3.21, the value of
Q̃(W) is sufficiently close to∆µ whenW ∼ τ−1

p , which could be understood as follows. Assuming
D(x) ≃ exp[−τv/τleq(x)], the peak positionx = xc − δ of Λ0(x) at W = τ−1

p satisfies

KL(xc − qL)
kBT

=
KLδ
kBT

− qexp

[
−qKLδ

kBT

]
+ (1− q) exp

[
(1− q)KLδ

kBT

]
. (3-9-17)

Using theδ obtained in Eq. 3-9-17,̃Q(W = τ−1
p ) is estimated as≃ ∆µ + KLδ. At large A :=

KL2/kBT andB := ∆µ/kBT = O(A), the value ofδ satisfying Eq. 3-9-17 scales asAδ/L ∝ logA.
Therefore,Q̃(W = τp)/∆µ = 1+O(logA/A), which means that̃Q(W = τp) ≃ ∆µ is satisfied with
a small error term underA≫ 1.

To sum up, in the potential switching model with the switching rates Eq. (3-6-1) andq < xc/L,
Qext becomes sufficiently close to∆µ atW ∼ τ−1

p , when the conditionKL2,∆µ ≫ kBT is satisfied.
Sinceτp = τvKL2/kBT, there exists a time scale separationτp ≫ τv, hence atW ∼ τ−1

p the
velocity is still smaller than the maximum velocity,v < vmax. This means that ifKL2/kBT = 50,
which is the case where the maximum velocity is close to the real F1, the model shows the
Qext ∼ ∆µ behavior even when [ATP] is as low as 1/50 of the velocity saturating concentration.
PersistentQext ∼ ∆µ for the broad range ofW > τ−1

p allows the low dependence ofQext on v,
which explains the internal dissipation-free feature of F1 observed in experiment. For the case
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of models withq > xc/L, it is confirmed that there exists a significant difference betweenQext

and∆µ for W = τ−1
p , even whend is as large as 5 in the parameterization given by Eqs. 3-9-5

and 3-9-6. It is left for future studies to theoretically understand theq > xc/L models (including
q = 0.5 and 1, Fig. 3.13).



Chapter 4

Linear motors
-Cooperativity of cytoplasmic motors-

In this chapter, we discuss the model for linear molecular motors, which are motor proteins
that typically function in the cytoplasm of eukaryotic cells. Our focus here is on the cooper-
ativity of the molecular motors; unlike the F1-ATPase, linear motors usually work in dimers
or in multiple molecules sharing the same cargo. After reviewing the facts on the previously
obtained experimental results on myosin, kinesin, and dynein proteins, we give a simple phe-
nomenological understanding of the design principle in the single molecule of these motors. We
then propose a scheme that allows diffusive and bidirectional elements to produce unidirectional
transport through collective interaction. The key idea is that the force-sensor is coupled to the
diffusive mode through the chemical state of each motor molecule. Further analysis considering
the degree of freedom of the cargo is given.

67
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4.1 Cytoplasmic motors

Linear motors are protein molecules that work typically in the cytoplasm of the cells with
the roles for instance in cargo transport and cell division [1, 81]. These motor proteins function
along pseudo-one-dimensional rails of microtubules or actin filaments, called cytoskeletons, in a
unidirectional manner with the aid of the nonequilibrium free energy source, ATP. Intense studies
on the mechanical properties of cytoplasmic motors have aroused interest from physicists as well
as biologists. Not only that these motors touch so many aspects of cell- and developmental
biology, it also provides rigorous examples to elucidate the design principles required in making
such super-nanomachines.

Although cytoplasmic transport had been observed in plants from early as the 18th century,
specific research on molecular motors are said to have originated by the studies on the acto-
myosin (refering to actin+myosin) complex [82]. Acto-myosin is the main player in the muscle
contraction dynamics [83, 84, 85]; myosin motors are themselves ATP hydrolyzing enzymes,
which, in relative motion to the actin filament, extract force to make displacement at the single
head levels. Myosin involved in muscle contraction, which is now classified as myosin II (or
conventional myosin), forms a bundle to interact with the actin filament, and the dynamics of
many single heads adds up to the contraction in the macro scale.

It was discovered later that there exist individual myosin motors that function as dimers, called
processive myosins1. These myosins, for example myosin V [86] and myosin VI [87], have the
capability to move along the actin filament without forming a bundle, and can transport cargoes
even by a single molecule [88] in a robust and unidirectional manner. Although the functional
roles and even the direction of transport is different among the myosins [89], the basic mechanism
that govern the motion seems to be surprisingly preserved among the species.

Conventional kinesin, or kinesin-1, is similar to myosin V or VI in the sense that it is a
processive motor which transports unidirectionally the cargos. It was originally found as the
motor responsible for the fast axonal transport in the giant neuron of squid [90, 91]. The stage
that kinesin acts on is the microtubule, which is a cytoskeleton with higher stiffness than actin
filaments. Like myosin, there exists a super family of kinesins, with some moving in different
directions [92] and some even functioning in monomers [93].

Single molecular level experiments [94, 95] have uncovered the high efficiency of these uni-
directional motors [96]. Similarly to the F1-ATPase, these cytoplasmic motors undergo step-
wise motion with the step sizes corresponding to the length scale embedded in the cytoskeleton
(Fig. 4.1), for example, 8 nm for conventional kinesin and 32 nm for myosin V. The stepwise
motions were found to be the consequence of the hand-over-hand dynamics [97, 98] of these
dimerized molecular motors; identical molecules are tied together through a linker, thus forming
a dimer, which become the feet for the molecules to literally walk along the rails.

Recently, there is large attention devoted to another complex cytoplasmic motor, called dynein [99].
In comparison to the large family of kinesin and myosin, there is only one gene that encodes
dynein (cytoplamic dynein 1), although it is responsible for most of the transport to the minus

1“Processive” is a technical term that refers to the ability of the molecular motor to attach to the rail (cytoskeleton)
for a certain amount of time in a functional manner, typically showing unidirectional motion.
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end of the microtubule in the cell. Dynein has a long history of research after its first discov-
ery [100]. Nevertheless, it was not until recently that purified complexes of cytoplasmic dynein
could be obtained to explore its biochemical properties, including the structure of motor domains
and linkers [101].

The observed dynamics of single molecule cytoplasmic dyneins has proved to be unique.
Dyneins, also dimerized molecular motors, produced uncoordinated stepping (yeast,[102, 103])
or diffusive motion (human,[104]) on the microtubule (Fig. 4.3, left). It was reported that the
unidirectional motion of human cytoplasmic dyneins can be recovered [105, 106] however with
the requirement of subcomplexes such as dynactins attached to the molecule.

ATP
ADP+Pi

+-

Fig 4.1: Conventional kinesin as an example of dimerized molecular motor with discrete step size. The
step size is 8 nm, corresponding to the minimal components of microtubules (the pair ofαβ tubulin) which
form a lattice-like structure in the one-dimensional direction. The microtubule has polarity, thus kinesin
knows which way it should step to (plus end, right in figure). A single molecule of ATP is consumed in
one forward step of kinesin, resembling the stepwise dynamics of F1. The major difference, however, is
in the reversibility of the dynamics; there is no evidence that kinesin synthesizes ATP when the probe is
pulled backward with respect to the direction of motion, and instead it may be even hydrolysing ATP upon
the backstep [75].

4.1.1 Mechanism of motion

We describe in Fig. 4.2 the simplified schematic of the relation between the chemical states
and the dynamics in conventional kinesin and myosin V. The key in the design principle in these
molecules is how they incorporate the directionality; the motor heads of these dimers should
know whether or not they are in the front or in the back, and proceed their chemical reactions
with the rates controlled by these notions. Since in these motors the heads are separated and
only linked through protein chains, it is unnatural to assume that one molecule knows the precise
chemical state of the other molecule. In contrast, it should be possible for the molecule to sense
the force from the other, through the conformational change of its own caused by the interaction
of the molecules through the pushing or pulling by the linker.

Indeed, such force-sensor mechanism has been elucidated in single head experiments for
myosin and kinesin [110]. In [111], for example, it was shown that the single headed myosin
molecules have a preference of direction in the binding dynamics; it has a larger time scale
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Fig 4.2: Simplified schematics of the stepwise motion of molecular motors [107, 108]. T: ATP, D: ADP,
andϕ: no nucleotides (apo). Although some states described as D in the figure should be substituted by
ADP+Pi, we omitted Pi for the sake of simplicity. (Left) Hand-over-hand motion of conventional kinesin.
The tightly bound state and the weakly bound state (released state) in the single motor head correspond
to “T or ϕ” and “D”, respectively. (Right) Hand-over-hand motion of Myosin V. The step size is 32 nm
corresponding to half of the pitch size in the actin rail. The tightly bound state and the weakly bound
(released state) correspond to “D” and “T orϕ”, respectively. The mechanism is very similar for the case
of myosin VI [109], only with the polarity switched to the opposite direction.

to be stuck on the actin rail when it is pulled backward with respect to the directional motion,
compared with when pulled forward. The strongly bound state of myosin to the actin corresponds
to the chemical state with ADP or ADP+Pi bound to the motor head. Thus, the experimental
result indicates that the switching of the state in myosin from the tightly bound to the detached
(corresponding to the nucleotide free state), is less likely to occur when the head is in the back,
rather than when in the front (Fig. 4.2, right).

Such preference of direction embedded in the chemical reaction rate has also been found in
single monomer dynein experiments [104, 112]. In the case of dynein, although large hetero-
geneity has been observed in the feature of motion and stall force among the molecular species, it
seems common that there are also two states of conformation, named in some context, pre-power-
stroke and post-power-stroke [113]. The two states, corresponding to the ATP binding state and
the ADP or apo (nucleotide null) state (Fig. 4.4), presumably have different interaction with the
microtubule according to the recent data [104].

Experimental techniques have further allowed systematic analyses on the effect of coordina-
tion in the motor protein dynamics. Since the force-sensing mechanism is relying on the proper
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Cargo (DNA origami)

Single dimer dynein:
 bidirectional, 
 diffusive motion

Coupled dyneins:
 unidirectional motion

Team of dyneins:
 larger velocity

Microtubule

+ -

Fig 4.3: Schematic of the experimental results on human cytoplasmic dynein. Single dimers of full-length
dynein were observed to undergo bidirectional diffusive motion. When two or more of the dimer dynein
molecules where tied together by double strand DNA (middle) or through an artificial cargo made of DNA
origami (right), unidirectional motion appeared.

interaction between the molecular motor heads, it is natural to consider that the artificial ma-
nipulation of motors will lead to perturbations in their functions. In [107], the linker of kinesin
heads, which is a region of protein chain called neck-linkers, were controlled by adding extra
residues. Although some properties such as speed and ATP hydrolysis rate where changed, the
motors were able to perform unidirectional motion, suggesting that the information transmitted
through the linker does not rely on the specific conformation of the linkers.

In [104], Torisawa et al. reported that the motion of human cytoplasmic dynein changes from
bidirectional and diffusive (Fig. 4.3, left) to unidirectional (Fig. 4.3, middle, right) only by putting
multiple molecules in interaction through cargo. The simple scheme presented here motivates us
to consider the fundamental mechanism behind unidirectional motion of cytoplasmic motors.

Another key feature apart from the head-head interaction of these motors is the multiple
states of diffusive motion. The highly diffusive motion, as observed even in dimeric cytoplasmic
dyneins, may be a general physical feature for molecules weakly interacting with the micro-
tubule [114], since similar motion has been observed for the monomer kinesin (KIF1A) [93],
myosin on microtubules [115] and even in the case of electro-statically bound silica bead [116].
Such weak confinement in one-dimension is considered to be caused by the negatively charged
flexible tails of the microtubules, which attract the positively charged protein molecules and ef-
fectivly trap them inside a certain length scale around the microtubule.

The other state of diffusivity is the tightly bound state. As depicted in the cases of myosin
and kinesin (Fig. 4.2), the single motor heads attach strongly to the rail in some nucleotide state,
which is in contrast to the highly diffusive state that is essentially liberated from the rail or at least
in low interaction with it. The two diffusive modes can thus be assigned to two chemical states
of the motors. Large diffusion constant appears for the chemical (nucleotide) state which induces
weaker binding to the rail, where as smaller (or effectively zero) diffusive constant corresponds
to the nucleotide state corresond to the tightly bound state.

The switching between these different states themselves may play crucial roles other than
the powerstroke mechanism. In the powerstroke picture, for instance the lever arm model of the
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myosin, it is assumed that typical high free energy consuming reactions have one-to-one corre-
spondence with the force generating step. On the contrary, if the switching of the interaction
with the rail is operated under a well-designed rule, for example the biased switching, merely the
thermal force is sufficient to explain the motion of the motors. There is discussion on whether
the direct force generation (powerstroke) or the biased switching is important in molecular mo-
tors [111, 117]; it is possible that the balance between them vary between the motor species.

+ -
T T

D D

Hydrolysis
(+ Pi release)

ADP release
+ ATP binding

Fig 4.4: Possible mechanism behind the asymmetric interaction between the dynein motor and the micro-
tubule. When dynein is free of load, or is pulled toward the minus end direction, it is likely to stay in the
ATP state (with the mark “T”), which is thought to have weak interaction with the microtubule (left top).
On the other hand, when dynein is pulled backward (toward the plus end direction), it is likely to transition
into the ADP (or apo) state (with the mark “D”), that has stronger interaction with the rail (right bottom).
Switching between the states should be accompanied by the chemical reaction steps, for which one cycle
of transition amounts to a single molecule ATP hydrolysis.

4.2 Aim of study

In light of the development in the understanding of the design principles behind the motion
of cytoplasmic motors, we here aim to propose a simple mechanism that allows the emergence of
unidirectional motion through the collective interaction of individually bidirectional molecules.

We introduce a simple solvable Langevin model of a multi-headed motor, which we call a
chemically-driven inchworm. The main concept of this model is that the motion of molecules
themselves do not have polarity, but the rule of switching between the two diffusive modes on the
rail is breaking the symmetry. Through the analysis of this model, especially from the formula of
the steady-state velocity, we clarify the role of nonequilibrium chemical free energy input. The
nonequilibrium-ness of the model appears in the interpretation of the multiple in the Langevin
description.

Similar schematics of motor protein motion has been discussed with long history ([83, 110,
118, 111], to name a few). The aim in our model, however, is to elucidate the key parameters
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that control the extent of cooperativity. To this end, we focus on the force-sensitivity, which
is a non-dimensional parameter in the model that measures at what value of potential energy
(corresponding to force) the switching rule changes. We find that for the case where the force-
sensitivity is high, the motor prefers to be in lower number rather than in large number, when
considering the velocity of transport.

To confirm our picture obtained in the simplified model, we extend the model to the case
where multiple motors carry the same cargo. We discuss how the force-sensitivity of motor
proteins may be reflected in the single dimer molecules, with remarks on the classification of
cytoplasmic motors.

4.3 Chemically-driven inchworm

4.3.1 Setup for dimer model

We first consider the dynamics of two Brownian particles that are tied together with a spring.
We have in mind the experiment where two cytoplasmic dynein dimers were linked through a
double-strand DNA [104].

We assume that the single particles have two states of diffusive motion, a highly diffusive
state with diffusion constantD and a less diffusive state with diffusion constantd. In the case
of human cytoplasmic dynein, for example [104], it is possible to estimateD ∼ 5× 104nm2/sec
andd < 8×102nm2/ sec by fitting a double-Gaussian function to the distribution of displacement
under fixed time frame. The existence of two states of diffusive modes, with the less diffusive
state possibly corresponding to case where the particle is tightly bound to the rail (d ≪ D), is
supposed to model the broad situation of molecular motors, as depicted in Figs. 4.2 and 4.4.

The diffisive modes of the molecules stochastically switch between the two diffusive states,
with a switching rule depending on the force applied to the single molecules [114, 115]. This is
taken into account in the model by allowing stochastic switching between the two diffusive state,
in a force-dependent manner.

Highly diffusive state

D= γ
kBT

Γ

Tightly bound state

d =
kBT

Fig 4.5: Model of the two diffusive modes of the molecular motors. The highly diffusive state corresponds
to the chemical state where the rail and the motor protein interact weakly. The tightly bound state cor-
responds to the state where stronger interaction exists. We introduce the difference between these two
states by simply assigning different diffusion coefficients,D andd. The estimated value ofD andd for
cytoplasmic dynein is 5× 104 nm2/sec and< 8× 102 nm2/sec, respectively [104].
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K/2

⇒
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Fig 4.6: Schematic of the chemically-driven inchworm model. The two motor molecules are tied together
with a spring. The stochastic switching between the highly diffusive state and the less diffusive state is con-
trolled by a force-sensor; when the potential energy amounts to some value determined by the introduced
length scaleL, then there is higher probability for the head to switch to a low diffusive state.

The two diffusive molecules are attached to a spring with spring constantK/2. Settingx and
y as the position of the first and second particles, we have the equation of motion:

γX ẋ = −K
2

(x− y) +
√

2γXkBTξX(t) (4-3-1)

γY ẏ = −K
2

(y− x) +
√

2γYkBTξY(t). (4-3-2)

Here,ξX(t) andξY(t) are independent Gaussian white noises with unit variance. Corresponding
to the two diffusive modes, the friction variablesγX andγY can take the values ofγ := kBT/d and
Γ := kBT/D. The stochastic dynamics that rule the transition of the variablesγX andγY is the
Markov jump process. Denoting the rate of the first particle to switch its friction constant fromγ
to Γ asRX(γ → Γ|x, y), for example, the rates are defined as the function of the interval between
x andy:

RX(γ → Γ|x, y) =

q (x− y > L)

S (x− y ≤ L)
(4-3-3)

RX(Γ→ γ|x, y) =

Q (x− y > L)

s (x− y ≤ L)
(4-3-4)

RY(γ,Γ→ Γ, γ|x, y) = (same as above withx↔ y) (4-3-5)

Settingγ > Γ (D < d) andQ/q,S/s> 1, these transition rates imply that the leading particle tends
to switch to the less diffusive mode (with diffusion constantd) when |x − y| > L, but otherwise
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both molecules prefer to stay in the highly diffusive mode (D). Schematic of the switching rates
is described in Fig. 4.6.

4.3.2 Derivation of steady-state velocity

To confirm that the simple model shows unidirectional motion, let us consider the Master
equation corresponding to Eqs. (4-3-1) and (4-3-2), and solve for the case where the chemical re-
actions are fast compared with the Brownian motion. This assumption is valid when the chemical
reactions are sufficiently fast; in experiment, this corresponds to is the case where diffusion rather
than the reaction is the limiting factor, which is when the velocity has saturated as the function of
ATP concentration.

The time evolution of the probability density functionPt(x, y, γX , γY) follows

∂

∂t
Pt(x, y, γX , γY) =

[
∂

∂x
K

2γX
(x− y) +

∂

∂y
K

2γY
(y− x) +

∂2

∂x2

kBT
γX
+
∂2

∂y2

kBT
γY

]
Pt(x, y, γX , γY)

+RX(γ̄X → γX |x, y)Pt(x, y, γ̄X , γY) + RY(γ̄Y → γY |x, y)Pt(x, y, γX , γ̃Y)

− [
RX(γX → γ̄X |x, y) + RY(γY → γ̄Y |x, y)

]
Pt(x, y, γX , γY). (4-3-6)

which is the Fokker-Planck equation. We introduced the notation ¯γX , γ̄Y, which flips the value of
the friction constant:

γ̄X,Y :=

γ (if γX,Y = Γ)

Γ (if γX,Y = γ).
(4-3-7)

The first line in the right hand side of Eq. (4-3-6) corresponds to the ordinary Orenstein-Urlenbeck
process with the instantaneous friction constantsγXandγY. The second and third lines correspond
to the Markov jump switching of the friction constants.

Let us introduce the time scale of the chemical reactions,W−1, and the non-dimensional
functions, f (γx,y→ γ̄x,y|x, y), to normalize the stochastic jump rates:

RX,Y(γX,Y → γ̄X,Y |x, y) =W fX,Y(γX,Y → γ̄X,Y |x, y). (4-3-8)

By considering the case whereW is sufficiently large [see similar analysis conducted in Sect. 3.3.3],
the probability density function may be written as a product of a time-dependent density ofx, y
and the time-independent conditional probability ofγX , γY:

P(x, y, γX , γy) = Pt(x, y)Peq(γX , γY |x, y) (4-3-9)

Here,Peq(γx, γy|x, y) is the solution to the equations

fX(γ̄X → γX |x, y)Peq(γ̄X , γY |x, y) − fX(γX → γ̄X |x, y)Peq(γX , γY |x, y) = 0 (4-3-10)

fY(γ̄Y → γY |x, y)Peq(γX , γ̄Y |x, y) − fY(γY → γ̄Y |x, y)Peq(γX , γY |x, y) = 0. (4-3-11)

Note that we fix̃q := q/Q, s̃ := s/S, andθ := (S + s)/(Q + q) while takingQ,q,S, s → ∞
corresponding toW→ ∞.



76 CHAPTER 4. LINEAR MOTORS

Substituting Eq. (4-3-9) into Eq. (4-3-6) and taking the summation overγX,Y = γ,Γ, we have

∂

∂t
Pt(x, y) =

[
∂

∂x
K(x− y)
2̃γX(x, y)

+
∂

∂y
K(y− x)
2̃γY(x, y)

+
∂2

∂x2

kBT
γ̃X(x, y)

+
∂2

∂y2

kBT
γ̃Y(x, y)

]
Pt(x, y), (4-3-12)

with

γ̃X,Y(x, y) :=

 ∑
γX ,γY=γ,Γ

Peq(γX , γY |x, y)
γX,Y


−1

. (4-3-13)

The Langevin equation corresponding to Eq. (4-3-12) is written as

ẋ = −K(x− y)
2̃γX(x, y)

+

√
2kBT
γ̃X(x, y)

· ξX(t) (4-3-14)

ẏ = −K(y− x)
2̃γY(x, y)

+

√
2kBT
γ̃Y(x, y)

· ξY(t), (4-3-15)

where· is a multiple that should be interpreted in the Itô sense.
We introduceξ = (x + y)/2 andη = (x − y)/2. Since the jump rate functions (4-3-3-4-3-5)

only depend onη, we are able to define

γ̃(η) := γ̃X(x, y) = γ̃Y(y, x) =

kBT/d̃ (η > L/2)

kBT/D̃ (η ≤ L/2)
, (4-3-16)

with the effective diffusion constants

D̃ :=
S D+ sd

S + s
, d̃ :=

qD+ Qd
q+ Q

. (4-3-17)

From Eqs. (4-3-14) and (4-3-15) we have

η̇ = −Kη
2

[
1
γ̃(η)

+
1
γ̃(−η)

]
+

√
kBT

2̃γ(η)
+

kBT
2̃γ(−η) · ξ

′(t). (4-3-18)

The dynamics described by Eq. (4-3-18) produces no current inη, therefore it is in equilibrium.
However, since the multiple in the fluctuation term is interpreted in the Itô sense, the steady-state
density deviates from the canonical density. By using Eq. (2-4-31) withp = 1, the steady-state
average density ofη is obtained as

Pss(η) ∝
[

1
γ̃(η)

+
1
γ̃(−η)

]−1

exp

[
−Kη2

kBT

]
. (4-3-19)
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Using Eq. (4-3-19), the steady-state average velocity,V2, can now be obtained:

V2 := ⟨ξ̇⟩ss =

∫ ∞

−∞
dηPss(η)

{
−Kη

2

[
1
γ̃(η)

− 1
γ̃(−η)

]}
(4-3-20)

= −
K

2

∫ ∞

−∞
dη
γ̃(η)−1 − γ̃(−η)−1

γ̃(η)−1 + γ̃(−η)−1
ηexp

[
−Kη2

kBT

]
∫ ∞

−∞
dη[γ̃(η)−1 + γ̃(−η)−1]−1 exp

[
−Kη2

kBT

] (4-3-21)

= D̃

√
K
πkBT

1− ϵ
1+ ϵ + 2(1− ϵ)Φ

(√
E
)e−E/2. (4-3-22)

Here we defined the parameter corresponding to the inverse of the sensitivity of force:

E :=
KL2

2kBT
, (4-3-23)

andϵ := d̃/D̃. We also introduced the function

Φ(a) :=
1
√

2π

∫ a

−∞
dxe−x2/2. (4-3-24)

We immediately see from Eq. (4-3-22) that the steady-state velocity is positive whenϵ < 1,
which is a satisfied condition as long asd < D and QS/qs > 1. The velocity becomes zero
if QS/qs = 1, irrespective of the values ofd,D, which is consistent with the picture that the
nonequilibrium cycle depicted in Fig. 4.6 is critical in the motion of the motor. In the words of
free energy, one cycle in the clockwise direction presented in Fig. 4.6 should amount to a single
ATP hydrolysis reaction. Since we assume that upon stochastic switching there is no change in
the mechanical (effective) potential profile as in the case of the model for F1, we have the simple
constraint in the stochastic switching rules,

QS
qs
= exp

[
∆µ

kBT

]
. (4-3-25)

Thus,QS/qs> 1 corresponds to the assumption,∆µ ≥ 0.
Schematically, the finite steady-state velocity of the two-particle model may be understood

as follows. When the two molecules are near each other or feel low tension (Fig. 4.6, left), the
two molecules will most likely be in the highly diffusive state, and there is no net transport in
the center of mass. However, once the two molecules come apart due to the Brownian motion,
the molecule in the front will feel force toward the backward direction, and will likely transition
into a tightly bound state, following the rule depicted in the right side of Fig. 4.6. Since in such
case there is strong tension between the molecules, the particle in the back, which is likely to be
staying in the highly diffusive state, will have larger chance to be pulled forward (Fig. 4.6, right).
Thus, the introduced rule on switching lets the center of mass of the molecules to be transported
forward on average.
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From the more fundamental side, the Itô integral in Eq. (4-3-18) plays the essential role for the
model to show nonequilibrium transport. The situation should be compared with the Brownian
inchworm model introduced in [119, 120], where the particles with coordinate-dependent friction
needed to be shaken by active (, thermal) noise in order to produce unidirectional motion. The
difference between the models come from the origin of inhomogeneous friction in the models. If
the particles passively have the property of inhomogeneous friction, for instance it develops larger
friction when pulled backward owing to its non-uniform interaction with the surface, the model
is essentially in equilibrium, and the anti-Itô interpretation arises as a natural consequence [cf.,
Sect. 2.4.3]. On the contrary, what we found in our model is that the Itô interpretation arises when
the cause of position dependent friction is due to fast and nonequilibrium chemical reactions.

Remark should be made on our assumption that the typical rate of the chemical reaction,W,
is very large. Although it is difficult to obtain the precise value ofW in experiment, it should be
sensible to estimate from the maximum velocity of F1-ATPase rotation and kinesin locomotion,
which is more than 100 per second. Thus,W can be taken to be the order of 1000 sec−1, consid-
ering that the approaching rate of nucleotides do not vary so much in different motor species.

How largeW should be in the model determined from the smallest length scale in the system,
which in this case, is the length scale inherited inPeq(·), which is zero. In reality, there should
be some small length scale that characterizes the position dependence of the switching rates,ls,
and we should takeW ≫ kBT/γl2s. Therefore, what we calculated was the case whereW ≫
kBT/γl2s ≫ K/γ. As we shall see, the length scalels naturally arises in the case where we
explicitly consider the motion of cargo (cf., Sect. 4.4).

4.3.3 Extension to multi-molecules

The natural extension of the previous inchworm model toN > 2 molecules may be given as
follows. Denoting the position of thei-th particle (motor head) asxi, and the Gaussian white
noises with unit variances asξi(t), the overdamped Langevin equation reads

γi ẋi = −K (xi − x̄) +
√

2γikBTξi(t), (4-3-26)

We have introduced the frictionsγi, which stochastically switch between two values,γ andΓ =
kBT/D, similarly to the previous model. We assume that the switching rates are independent for
each particle, but depend on the relative position of the motor seen from the average position,
x̄ :=

∑
i xi/N:

Ri(γ → Γ|xi , x̄) =

q (xi − x̄ > L/2)

S (xi − x̄ ≤ L/2)
(4-3-27)

Ri(Γ→ γ|xi , x̄) =

Q (xi − x̄ > L/2)

s (xi − x̄ ≤ L/2)
. (4-3-28)
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Fig 4.7: Numerical results for the chemically-driven inchworm model, Eq. (4-3-29).ϵ := d̃/D̃ was fixed
at 0.02, as estimated from experiments on dynein . Three cases ofE := KL2/2kBT were tested: results
for E = 1.3, 0.4, and 0.1 are plotted in red, green, and blue, respectively. the solid and dotted lines
corresponding to the same colors are the analytically obtained values ofV∞/V2 in the same parameter
setups.

It is easily confirmed that theN = 2 case is equivalent to the model in Sect. 4.3.1. Again, by
assuming the fast chemical reaction limit, we arrive at

ẋi = −
K
γ̃(ηi)

(xi − x̄) +

√
2kBT
γ̃(ηi)

· ξi(t), (4-3-29)

whereηi := xi − x̄, and the effective potential̃γ(ηi) is equivalent to the step function obtained in
Eq. (4-3-16). Here, the integral in the fluctuation term is again interpreted in the Itô sense.

The numerical simulation results for two example cases in the generalN model is are given
in Fig. 4.7. Since the model can be non-dimensionalized and rewritten usingϵ and E apart
from the typical time scale,Γ/K, which only changes the velocity by multiples, we fixedϵ to
the experimental data estimated in dynein,ϵ = 0.02 and changedE in the simulations. We
observe that for largeN, the steady-state velocity converges to a finite value. It is also found that
whether the velocity increases or decreases with respect to the molecular numberN, depends on
the parameters.

Although it is challenging to solve the model with generalN, we may consider the case of
N → ∞ through the mean field theory, and especially prove the convergence of the steady-state
velocity to a finite quantity,V∞. To this end, we first write the equation of motion forηi.

η̇i = −
Kηi

γ̃(ηi)
+

√
2kBT
γ̃(ηi)

· ξi(t) +
1
N

∑
j

 Kη j

γ̃(η j)
−

√
2kBT
γ̃(η j)

· ξ j(t)

 , (4-3-30)
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Due to the central limit theorem, the fluctuation of the third and forth terms become negligible at
N→ ∞ compared with that of the second term. Therefore, we may substitute the third term with
a constant. Since⟨η̇i⟩ss= 0, this introduced constant should be equal to the steady-state velocity:

η̇i = − Kηi

γ̃(ηi)
+

√
2kBT
γ̃(ηi)

· ξi(t) − V∞ +O

(
1
√

N

)
(4-3-31)

V∞ :=
⟨ ˙̄x

⟩
ss= ⟨ẋi⟩ss=

⟨
− Kηi

γ̃(ηi)

⟩
(4-3-32)

In the limit of N → ∞, equations (4-3-32) and (4-3-31) form the self consistency equation. By
fixing the constantV∞, the steady-state density ofηi reads

Pss(ηi) =
exp

[
−Kη2

i /2kBT
]

Z′
×

e−V∞(ηi−L/2)/D̃/D̃ (ηi ≤ L/2)

e−V∞(ηi−L/2)/d̃/d̃ (ηi > L/2).
, (4-3-33)

where we used Eq. (2-4-31) again.
Notice that the distribution ofηi is independent ofη j,i in this mean field limitN → ∞. The

value of V∞ may be calculated by noticing that the average displacement of moleculei with
respect to the mean position

⟨ηi⟩ =
∫

dηPss(η)η ∝
1

D̃

∫ L/2

−∞
dηexp

[
−Kη2

i /2kBT − V∞(ηi − L/2)/D̃
]
η

+
1

d̃

∫ ∞

L/2
dηexp

[
−Kη2

i /2kBT − V∞(ηi − L/2)/d̃
]
η,

is equal to zero. The result is

V∞ = D̃

√
2K
kBT
Q

(√
E/2, ϵ

)
, (4-3-34)

whereQ(χ, ϵ) is a function obtained as the solution to

1− ϵ =
√
πQ

e(χ+Q/ϵ)2

ϵ
erfc

(
χ +
Q
ϵ

)
+ ϵe(χ+Q)2

erfc(−χ − Q)

 . (4-3-35)

Now that we have the analytical solutions to the two cases of the model,N = 2 andN → ∞,
we may consider the ratio:

V∞
V2
=
√

2π

[
1+ ϵ
1− ϵ + 2Φ

(√
E
)]

eE/2Q
(√

E/2, ϵ
)
. (4-3-36)

We plotted the values ofV∞/V2 corresponding to the cases of the parameters simulated in Fig. 4.7.
We see good correspondence with the convergence of the results obtained in the stochastic sim-
ulation for largeN. The ratio clearly captures the feature of whether the transport speeds up
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or down upon increasingN. Notice that|VN − V∞| ∼ 1/
√

N for largeN, corresponding to the
correction from the mean field theory at finiteN.

We plotted the dependence of the ratio (4-3-36) as a function ofE in Fig. 4.8, left in the case
of ϵ = 0. Note that there is no singularity in theϵ → 0 limit, since we have

V∞ = D̃

√
2K
kBT
Q∗

(√
E/2

)
, (4-3-37)

with Q∗(χ) satisfying,

Q∗ − χ +
√
πQ∗2ϵe(χ+Q∗)2

erfc(−χ − Q∗) = 0. (4-3-38)

Equation (4-3-37) was used in the plot.
From Fig. 4.8, left, we see that for lowE, there appears the case where the velocity decreases

upon increasing the number of molecules. We call such situations the uncooperative phase, since
in such region of the parameter, the molecules prefer to be in dimers rather than forming a larger
team like a bundle. The ratio (4-3-36) only depends on the parametersϵ and E; thus we can
calculate the phase diagram concerning whether or not it is larger than 1.V∞/V2 as a function of
E andϵ is shown in Fig. 4.8, right.

The concept we find from the analysis is that the cooperativity of the motor molecules can
change according to the sensitivity and the ratio of the effective diffusion constant. Significantly,
the uncooperative phase (V∞/V2 < 1) arises in the model, corresponding to lowϵ andE. Although
large number of molecules is advantageous for the effective transport in general cases, if too
much portion of the molecules are transitioned into the less diffusive state, it may interfere with
the positive direction motion of the molecules in the highly diffusive state. Such case should
be observed when the force-sensitivity is large (E is small), thus the uncooperative situation may
appear. The parameterϵ presumably controls the extent of such interference; largerϵ corresponds
to the two diffusive modes becoming close to identical, making the interfering effect smaller.

4.4 Multiple molecules with a cargo

The previous model was somewhat unrealistic in the sense of time-scale separation and the
mechanism of sensing the force through the displacement from the mean. To resolve the concern
that our phase diagram, especially the existence of the uncooperative phase, may be an artifact of
the inchworm model, we here extend the model to the case where multiple motors share a cargo.

We consider the situation depicted in Fig. 4.9. The additional degree of freedom, the position
of the cargo, is also considered to undergo the overdamped Langevin motion.

γi ẋi = −K (xi −C) +
√

2γikBTξi(t), (4-4-1)

γcĊ = −
∑

i

K(C − xi) +
√

2γckBTξc(t). (4-4-2)
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Fig 4.8: Analytical results for the steady-state velocity of the chemically-driven inchworm model. (Left)
the ratio Eq. (4-3-36) was plotted as a function ofE for fixed ϵ = 0. (Right) Phase diagram of the ratio
V∞/V2 with respect to the parametersϵ andE.

Here,Γc is the friction constant for the cargo particle. Again, we consider the frictionsγi to
stochastically switch between two values, but now the rule is changed to sense the relative posi-
tion from the cargo instead of the average position:

Ri(γ → Γ|xi ,C) =

q (xi −C > L/2)

S (xi −C ≤ L/2)
(4-4-3)

Ri(Γ→ γ|xi ,C) =

Q (xi −C > L/2)

s (xi −C ≤ L/2)
. (4-4-4)

The time evolution of the density function follows

∂

∂t
Pt(x,γ,C) =

∑
i

[
∂

∂xi

K
γi

(xi −C) +
∂2

∂x2
i

kBT
γi

]
Pt(x,γ,C)

+

∑
i

∂

∂C
K
γC

(C − xi) +
∂2

∂C2

kBT
γC

 Pt(x,γ,C)

+
∑

i

[
Ri(γ̄i → γi |xi ,C)Pt(x, γ̄i ,C) − Ri(γi → γ̄i |xi ,C)Pt(x,γ,C)

]
, (4-4-5)

where we denotedx = {x1, x2, ..., xN}, γ = {γ1, γ2, ..., γN} andγ̄i = {γ1, ..., γi−1, γ̄i , γi+1, ..., γN}.
We consider the case where the diffusive motion of cargo is fast compared with the chemical

reactions and the diffusive motion of motor heads. This corresponds to taking the parameter as
NK/γC ≫ max{W,NK/γ}, whereW is again the typical rate of the chemical reaction, andNK/γ
corresponds to the inverse of the smallest time-scale experienced by the diffusive motion of the
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Fig 4.9: (Top) A cargo is attached toN motor molecules through springs. (Bottom) Case of the model
with N = 2.

motors, as we will find later. In this limit, the second line in Eq. (4-4-5) should become zero, thus

Pt(x,γ,C) = Pt(x,γ) ×
√

NK
2πkBT

exp

[
−NK(C − x̄)2

2kBT

]
, (4-4-6)

wherex̄ :=
∑

i xi/N is again the average position. ReplacingPt by the right hand side of Eq. (4-
4-6) and taking the integral overC in both sides, we have

∂

∂t
Pt(x,γ) =

∑
i

[
∂

∂xi

K
γi

(xi − x̄) +
∂2

∂x2
i

kBT
γi

]
Pt(x,γ)

+
∑

i

[
R̃i(γ̄i → γi |xi , x̄)Pt(x, γ̄i) − R̃i(γi → γ̄i |xi , x̄)Pt(x,γ)

]
. (4-4-7)

Here, the effective switching rates̃Rwere introduced as

R̃i(γ → Γ|xi , x̄) = q+ (S − q)Φ

−√
NK
kBT

(xi − x̄− L/2)

 (4-4-8)

R̃i(Γ→ γ|xi , x̄) = Q+ (s− Q)Φ

−√
NK
kBT

(xi − x̄− L/2)

 . (4-4-9)

We have arrived at a model similar to the previous setup, yet with the switching rates changed
from a step function [Eq. (4-3-3)...] to a function with length scale,ls. Following the procedure
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QqsS

L/2 L/2

Fig 4.10: Schematic of the switching rates in the cargo model. Difference from the model depicted in
Fig. 4.6 is that the force-sensitivity is defined by taking the reference point at the position of cargo (black
dot) rather than that of the pair molecule.

of Sect. 4.3.2, we take the fast chemical reaction limit,W ≫ kBT/γl2s. Notice that here we have
a definite a typical length scale,ls =

√
kBT/NK, therefore the condition isW≫ NK/Γ. Then we

have

∂

∂t
Pt(x,γ) =

∑
i

[
∂

∂xi

K
γ̃(xi − x̄)

(xi − x̄) +
∂2

∂x2
i

kBT
γ̃(xi − x̄)

]
Pt(x,γ) (4-4-10)

Thus, we finally have the Langevin equation

ẋi = −
K(xi − x̄)
γ̃(xi − x̄)

+

√
2kBT
γ̃(xi − x̄)

· ξi(t), (4-4-11)

with again, the multiple· interpreted in the It̂o sense. The friction as a function ofηi := xi − x̄ is
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obtained as

γ̃(x) =
Q+ q+ (S + s− Q− q)Φ

(
−

√
NK
kBT (x− L/2)

)
Q/γ + q/Γ + [(S − q)/Γ + (s− Q)/γ]Φ

(
−

√
NK
kBT (ηi − L/2)

) (4-4-12)

=
1

D̃

1+ (θ − 1)Φ
(
−

√
NK
kBT (x− L/2)

)
ϵ + (θ − ϵ)Φ

(
−

√
NK
kBT (ηi − L/2)

) . (4-4-13)

Here, recall the parameterθ := (Q+ q)/(S+ s), which did not appear in the previous model after
taking the limitW→ ∞.

In comparison to the friction obtained in the previous setup, which was a stup function, the
effective friction observed in this model with the cargo has a finite length scale, corresponding
to that of the switching rates. Since we may reuse the general formula Eq. (4-3-22) by changing
the friction function from (4-3-16) to (4-4-13), we may obtain the steady-state of the caseN = 2,
which we denote asVm

2 , by performing the integral numerically.
The length scale ofγ(η) will become zero in the limitN → ∞. This means that the friction

obtained as (4-4-13) will converge to the step function (4-3-16) in the limitN → ∞. Thus, the
model with cargo will undergo the same dynamics as the case of the inchworm model, in the
large molecular number limit. We must be aware, however, that we derived the effective model
under the assumption ofNK/γC ≫ W ≫ NK/Γ. If the time-scale separation between the three
quantities is not large enough forN ∼ 2, it naturally arises thatW will become comparable with
NK/Γ for largeN.
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We show in Fig. 4.11 the ratioV∞/Vm
2 . We considered the same value forV∞ with the previ-

ous inchworm model, assuming that the proper time-scale separation condition is met. We find
that, although the parameter region for the uncooperative phase is narrower compared with the
previous inchworm model, the phase still exists ifϵ is small enough. The reason for the narrower
region of uncooperative phase is that the finite length scale inγ(η) will make the model with
N = 2 to become slower, owing to the large fluctuation experienced by the cargo, which is the
reference point for the motor to determine the switching rule (Fig. 4.9, bottom). Thus, in the
cargo model, the increase in the numberN has an additional effect to suppress the fluctuation of
the cargo.

4.5 Remarks and conclusion

In this chapter, we discussed a simple schematic of coordination between molecular motors,
through a solvable Langevin model. The main result obtained from the analysis of this model is
the dependence of the extent of cooperativity of motor proteins, which we quantify by the ratio of
the velocity atN = 2 andN→ ∞, on the parameters,ϵ andE. Although the value of the steady-
state velocity may depend highly on the functional form of the molecular interactions, we predict
that the features such as the dependence of cooperativity on such non-dimensional parameters,
may have universality to some extent.

The ratio between the effective diffusivity of two states,ϵ, may be modulated in experiments
by changing the balance of concentration in ATP, ADP, and Pi, for example. The force-sensitivity,
E, is a parameter somewhat more embedded in the design principle of molecular motors. Never-
theless, it is possible to changeE by adding linkers in the artificial setups (cf., Fig. 4.3). Experi-
ments directly corresponding to these situations are now being conducted by our collaborators.

The dependence of the cooperative feature of motors on the force-sensitivity may have cor-
respondence to the duty ratio considered in the model of muscle contraction [1]. The duty ratio
quantifies the length of time of the myosin head to be touching the actin filament, relative to the
length of time they are detached. Myosins forming filaments can function properly even if the
duty ratio is low, where as dimeric myosin must have a high duty ratio, since at least one of the
motor heads needs to be attached to the rail for the processive motion. If we interpret the duty
ratio as the ratio of molecules in the low diffusive mode, it has a monotonic dependence onE,
since higher force-sensitivity (smallE) will naturally put larger number of molecules in the less
diffusive mode.

For instance, experiments on Myosin VI have shown that the average velocity decreases by
linking more than two monomers in the same molecule [121]. There is also a study [122] that ad-
dresses the decrease of the velocity of a probe bead upon larger molecular numbers of monomeric
kinesins attached to it. These results are different to the case of cytoplasmic dyneins, where the
velocity increased as the number of molecules were increased [104, 112]. The processive myosin
and conventional kinesin inevitably have large duty ratio and lowE, which is needed to achieve
the hand-over-hand motion by guaranteeing one head to be always in the tightly On the other
hand, dyneins can cooperate in a large number of molecules, such as in the case of cilia and
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flagella beating [100], which means that the duty ratio is not necessarily high, as in the case of
muscle myosins. The uncoordinated stepping of yeast cytoplasmic dyneins [102, 123] is another
hallmark of low duty ratio, thus highE. Through these discussions, it is possible that various
types of cytoplasmic molecular motors and their cooperativity, whether they prefer functioning
as dimers or act better by forming bundles, may be explained and classified by the uncooperative
and cooperative phases predicted in the diagram [Fig. 4.8].

Although we only focused on the average velocity in our analysis, there are more questions
that should be answered through our simple model. For instance, how does the stall force and
thermodynamic efficiency depend on the number of molecules? What happens if some molecules
in the model are inactive compared to others, as in the case where passive molecules like dyn-
actin [105] or inactivated motor heads [124] enhanced the unidirectional motion? Qualitative pre-
dictions through answering such questions may motivate quantitative experiments on the effect
of cooperativity, thus leading to more detailed models for the dynamics of cytoplasmic motors.





Chapter 5

General conclusion and outlook

In this thesis, we considered the phenomenological modeling of molecular motors. We first
reviewed on the basic aspects of stochastic thermodynamics, which is a useful framework in
measuring otherwise inaccessible quantities like potential energy and heat dissipation in small
thermodynamic systems. Some theoretical ideas behind the framework, with a brief focus on the
fluctuation theorem and the generalized fluctuation response relations, were presented.

The modeling of F1-ATPase, the rotary ATP synthetic/catalytic machine, was described in
detail in Chapter 3. Motivated by the precise experimental data on the internal dissipation-free
feature of F1 in the ATP catalytic regime, we investigated the phenomenological model with
combined Brownian motion and chemical switching. We found and proposed that a model with
totally asymmetric switching rates best matches with all the known experimental data. Our pre-
dictions shall be confirmed by future experiments, for example by quantifying the heat dissipative
features and angular position dependence reactions in the ATP synthetic reactions.

We next set out to propose a simple model of cooperative transport for cytoplasmic linear
motors in Chapter 4. In contrast to the case of F1, details such as the functional form of the
effective potentials and the conformation dependent chemical reaction rates are yet to be exper-
imentally elucidated in these motors. Nevertheless, we stand at the optimistic viewpoint that
simple phenomenological models should be sufficient to explain the features of transport, if we
focus on some universal aspects like the cooperativity of single molecules. Considering the recent
quantitative experiments on human cytoplasmic dynein, we proposed a model where molecules
with bidirectional motion will team up to produce unidirectional motion. The key concept we ad-
dressed is that the sensitivity in the assumed force-sensor mechanism critically controls the extent
of cooperativity of motors, which may an important aspect of the design principle in classifying
the species and super families of these linear motors.

For future developments, it is of great interest to broaden the theoretical perspectives on
molecular motors, through testing how universal our modeling strategy works. For instance, the
asymmetry embedded in the forward and backward stepping motion of rotary motors can be a
fundamental feature that characterize the functions of rotary motors. V-ATPase, a rotary motor
protein which the motion was observed recently [125], functions as an ATP catalyst in the cell,
in contrast to the ATP generator F1. It shall be intriguing to compare the asymmetric properties

89
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in V-ATPase and F1 , to see if the predicted asymmetry of is correlated to their thermodynamic
roles in the biological context.

The qualitative correspondence of the experimental results of kinesin, myosin, and dynein
with our predictions in the force-sensor model motivates us to consider perturbation experiments
to see if the outcomes can also be predicted. Controlling the interaction between the molecular
motors and observing the cooperativity in the sense of average velocity shall elucidate the purified
feature of the motor design principles. Furthermore, our simple model sheds light on the problem
of how we may artificially design such nanomachines. Towards the true understanding of molec-
ular motors, one direction of research is to construct nanomachines, similarly to the conceptual
motivation of synthetic biology [126]. Recent development in techniques such as optogenet-
ics [127] allows us to manipulate the bio-molecular motors to function as externally controllable
mini-robots, thus opening the possibility of scanning the parameter space of the simple phase
diagram predicted in our model.

Although we attempted to build the simplest phenomenological models that can explain the
fascinating features observed in experiment, there are, of course, many facts known in specific
experiments that we did not take into account rigorously. For example, it has been reported that
F1 can catalyze ATP and even produce rotary motion in the absence of theγ shaft [67]. Although
such shaft-independent motion is observed to be much slower compared with the motor with
the shaft-dependent motion, the striking result provokes us to consider that there might be some
general rules behind the apparent shaft dominator model, which is key in the principle of tight-
coupling motors.

Some features of cytoplasmic dyneins that we cannot explain is the large heterogeneity in the
velocity of unidirectional motion of theN ≥ 2 motors case [104]. This might be caused by the
constraint of the experiment, since the microtubule is attached at the bottom surface of the glass,
and dynein motors can move three-dimensionally on this rail and bump into the bottom surface
while walking along the rail [128]. The common problems here with the rotary and linear motors
is that it is has been too appealing to model the motors in one-dimension and to forget about the
other hidden degrees of freedom, including the huge possibility of protein conformation changes.
It is thus left for future challenges to investigate how these hidden degrees of freedom are adding
up to present the apparently simple and beautiful dynamics of molecular motors.

It shall be fair to stress that the unexplainable features of molecular motors can be ques-
tioned only by addressing what is explainable through the most simplified models. Yet, the effort
of phenomenological modeling should be constantly responding to the systematic experiments
providing more and more quantitative results. Our motivation throughout the thesis was that the-
oretical studies on biophysics have come to a different stage from the fine-tuning of large number
of parameters in models, which was required in explaining the rather obscure experiments, to the
era where discussions on fundamental and abstract design principles are starting to make sense.

In the quest of biological physics, it is equally important to reuse the conceptual interests and
approaches in solving different classes of biological problems. Just as how the single molecule
imaging of motor proteins brought novel insights into the study of thermodynamics, the combina-
tion of the three-dimensional live cell imaging techniques and the ever-growing cell state profiling
methods shall cast true challenges for physicists to understand developmental and neural biology
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as nonequilibrium many-body problems. Continuing the fruitful communication between experi-
ment and theory should lead in revealing the truly non-trivial aspects of biological systems, which
will inevitably bring new ideas to theoretical physics as well.





References

[1] J Howard.Mechanics of Motor Proteins and the Cytoskeleton. Sunderland, Sinauer, 2001.

[2] K Sekimoto.Stochastic Energetics (Lecture Notes in Physics). Berlin, Springer, 2010.

[3] U Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines.Rep.
Prog. Phys., 75:126001, 2012.

[4] D J Evans, E G D Cohen, and G P Morriss. Probability of second law violations in shearing
steady states.Phys. Rev. Lett., 71:2401, 1993.

[5] C Jarzynski. Nonequilibrium equality for free energy differences. Phys. Rev. Lett.,
78:2690, 1997.

[6] S Toyabe, T Sagawa, M Ueda, E Muneyuki, and M Sano. Experimental demonstration
of information-to-energy conversion and validation of the generalized jarzynski equality.
Nat. Phys., 6:988, 2010.

[7] T Sagawa and M Ueda. Generalized jarzynski equality under nonequilibrium feedback
control. Phys. Rev. Lett., 104:090602, 2010.

[8] N Shiraishi, S Ito, K Kawaguchi, and T Sagawa. Role of measurement-feedback separation
in autonomous Maxwell’s demons.arxiv:1501.06071, 2015.

[9] L Szilard. On the decrease in entropy in a thermodynamic system by the intervention of
intelligent beings.Z. fur Phys., 53:840, 1929.

[10] R D Vale and F Oosawa. Protein motors and maxwell’s demons: does mechanochemical
transduction involve a thermal ratchet?Adv. Biophys., 26:97, 1990.

[11] F Julicher, A Ajdari, and J Prost. Modeling molecular motors.Rev. Mod. Phys., 69:1269,
1999.

[12] S Toyabe, H Ueno, and E Muneyuki. Recovery of state-specific potential of molecular
motor from single-molecule trajectory.Euro. Phys. Lett., 97:40004, 2012.

[13] V Schaller, C Weber, C Semmrich, E Frey, and A R Bausch. Polar patterns of driven
filaments.Nature, 467:73, 2010.

93



94 REFERENCES

[14] Y Sumino, K H Nagai, Y Shitaka, Dan Tanaka, K Yoshikawa, H Chaté, and K Oiwa.
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