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Abstract

The most remarkable point of the topological insulator is a metallic

spin-polarized boundary state. An existence of such a state in the bulk

energy gap gives a clue to distinguish the peculiar matter from an ordi-

nary insulator. Particularly, interestingly, the edge state is described by

massless Dirac equation, and a large Fermi velocity is given to electrons

of the edge state. Furthermore, the edge state of the topological insula-

tor is theoretically promised to be robust. Because of those properties,

the topological insulator is highly expected to be a good material for

the spintronics devices with high performance.

In case of three-dimensional (3D) topological insulator, the edge state

is appeared at surface, so-called Dirac surface state. After discovery of

3D topological insulator materials, many theoretical and experimental

approaches applied for understanding such a Dirac surface state. Con-

sequently, the electronic property of the peculiar surface state has been

clarified gradually in a last few years. In spite of those efforts, a dynam-

ics of the novel surface state electrons, such as the elastic and inelastic

scattering, has not been studied in detail, contrary to the electronic

structures. In the present study, the dynamics originated in elastic and

inelastic scattering of a 3D topological insulator is investigated. Scan-

ning tunneling microscopy (STM) and spectroscopy (STS), as well as

time- and angle-resolved photoelectron spectroscopy (TrARPES) exper-

iments have been performed to understand the dynamics. The present

thesis mainly consists two parts.

In the first part, electron backscattering in the Dirac surface state

of Bi1.5Sb0.5Te1.7Se1.3 is clarified with STM/S and TrARPES. Fourier

transformed differential conductance images suggest a critical scatter-

ing vector length. The comparison with the diameter of constant energy

contour of band dispersion measured by TrARPES shows the critical

vector length is limited to only 75 % of the diameter. The maximum



scattering angle is calculated to be 100◦ and this indicates that not only

the 180◦ backscattering, but also a rather wide range scattering angle

of 100◦-180◦ are well prohibited due to the spin mismatch. It means

the electron backscattering is suppressed with the angle dependence.

The second part of the present thesis focuses on non-equilibrium state

of bulk-insulating topological insulator. A decay process of photoex-

cited electrons in Bi1.5Sb0.5Te1.7Se1.3 is clarified from directly observed

transient characteristic by TrARPES. The energy dependent transient

curves measured on both Dirac surface state and bulk conduction band

results a long lifetime of the topological surface state’s own and even

longer lifetime of the bulk conduction band. The transient photoelec-

tron intensity measured in various sample with different Fermi level

shows such a long lifetime is kept in the topological insulator by keep-

ing the bulk-insulating electronic structure. According to the present

study, electron scattering process of a bulk-insulating topological insu-

lator was understood experimentally.
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Chapter 1

Introduction

1.1 Preface of the present study

Condensed matter physics has been studied in order to understand many funda-

mental properties of materials. In particular, with development of scanning tun-

neling microscope and photoelectron spectroscopy, powerful technique with surface

sensitivity, has given a lot of advantage to make clear many electronic structures

in the solid surface. On the other hand, the carrier dynamics on the surface is

focused as much as the electronic structures. Because the carrier dynamics takes

the important roles to understand the physical properties such as surface electric

conductivity and electron transport. An advancement of pump-and-probe method

affects many researchers to focus the surface dynamics. Accordingly, it is started

to clarify the electron dynamics of various kind of materials.

A recent discovery of topological insulators [1, 2], has provided a lot of inter-

esting subjects related to its spin-polarized Dirac metallic surface state between

the insulating bulk energy gap. In order to understand such a novel state of new

material, many theoretical and experimental approaches has been applied. As a

consequence, the electronic properties of many candidates for the topological insu-

lators have been revealing decently. However, in spite of such efforts, many parts of

the dynamics based on the peculiar electronic states are still veiled with insufficient

understanding.
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1. INTRODUCTION

1.2 Purpose of the present study

It will be described in Chapter 2 for the detail about the properties of topological

insulators, an intrinsic topological insulator shows two representative properties.

The first is the perfectly spin-polarized two-dimensional Dirac surface state. Due

to the discriminative feature, helical spin structure appears in the constant energy

contour. The second is the existence of two-dimensional metallic surface state

at the Fermi level between the insulating bulk energy gap. Such new features

are expected to show a new electron dynamics that these two peculiar electronic

properties are focused in the present study. The eventual purpose of the present

study is to understand the dynamics based on these two interesting electronic

properties. In particular, 1) quantitative understanding about the suppression of

electron backscattering as function of the scattering angle within spin-polarized

topological surface state, expected to be protected from the backscattering, and 2)

clarifying the electron scattering process, including the inelastic scattering of non-

equilibrium state by photoexcitation “bulk-insulating” topological insulator are set

to the detailed goals. Especially, these various approaches can give us advantages

to understand the dynamics of two-dimensional surface electron in an intrinsic

three-dimensional topological insulator. To clarify such dynamics of the particular

surface state will suggest a new prospect for the fundamental physics, as well as

the applications based on the topological insulators.

1.3 Outline

In the next chapter, Chapter 2, the theoretical and the experimental backgrounds

from the birth of the topological insulators to previous studies just before the

start of the present study will be described. In Chapter 3, the main experimental

techniques, scanning tunneling microscopy and spectroscopy, and time- and angle-

resolved photoelectron spectroscopy will be introduced. As well as, the principle of

both experimental techniques will be explained. Chapter 4 is devoted to the elastic

electron scattering of peculiar spin-polarized surface state in the intrinsic topolog-

ical insulator of bismuth based chalcogenide, showing angle dependent scattering

and the strong suppression of the backscattering. The directly observed carrier

2



1.3 Outline

dynamics in the intrinsic topological insulator with time- and angle-resolved pho-

toelectron spectroscopy will be described in Chapter 5. Ultrafast carrier dynamics

based on the inelastic scattering process is revealed from the obtained transient

characteristic. Finally, the present study is summarized in Chapter 6.

3



1. INTRODUCTION

4



Chapter 2

Backgrounds

2.1 Introduction to quantum spin Hall insulators

2.1.1 Quantum Hall state and Chern invariant

An insulating state is one of the most basic state with separated energy gap

between the occupied valence bands and the empty conduction band. Thus such a

material is electrically inert because a finite energy is essential to move an electron.

In this state electrons are considered as being bound in localized orbitals as shown

in Fig. 2.1(a). The discovery of the integer quantum Hall effect by von Klitzing in

1980 [3] changes a view of this property. In the quantum Hall state [3, 4] with per-

pendicular magnetic field, if the magnetic field is strong enough, the quantization

of electrons’ circular orbit leads to an energy gap as Landau levels. However, the

cyclotron motions cannot be completed at the edge, which allows charge to flow in

one-dimensional edge states characterized by the quantized Hall conductivity.

σxy = Ne
2
/h (2.1)

where N is known as the integer filling factor of Landau level. Because both edge

states are very-well isolated, they could go around an impurity without any scat-

tering to the opposite direction.

Because of the energy gap, the ordinary insulating state and the quantum Hall

state appear similar. Interestingly, the difference between two was explained by

Thouless, Kohmoto, Nightingale, and den Nijs (TKNN) with a matter of topology

5
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Figure 2.1: (a) Ordinary insulating state and (b) quantum Hall state in a strong

magnetic field. Both of band diagrams are depict in (c) and (d), respectively. (a), (c)

Electrons are bound in localized orbitals and have an energy gap opening between

the filled valence band and the empty conduction band. (b), (d) The qunatum Hall

states in a strong magnetic field also have a bulk energy gap as insulators, however

allows conduction in the edge state along the boundary. (e) The upper and lower

edge states are robust that go around an impurity without any scattering. Figures

are reproduced from [5, 6].
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2.1 Introduction to quantum spin Hall insulators

[7, 8]. They suggested the expression for the Hall conductance σxy in a periodic

system and found a topological invariant n ∈ Z (Z denotes the integers), so called

Chern invariant.

The Chern invariant can be understood by Berry phase associated with Bloch

functions |um(k)�. According to TKNN formula, if l Landau levels are filled, quan-

tized Hall conductivity can be expressed as

σxy =
e
2

�

l�

m=1

nm (2.2)

where

nm =
1

2π

�
d
2k[∇×A(k)] (2.3)

with

Am = i�um|∇k|um� (2.4)

In Eq. (2.3), the term of∇k×A(k) can be expressed as a integral of Berry curvature

Bm, similar to a treatment of the vector potential in electromagnetism. They

showed that N in Eq. (2.1) is identical to the total Chern number n =
�

l

m=1 nm

and the Chern number n, topological invariant, is the total Berry curvatures in the

momentum space. Hence it is insensitive to the detail of sample, that this nature

explains the precise quantization of the Hall conductance σxy and its robustness.

Such a situation is very similar to Gauss-Bonnet theorem [9]. According to Gauss-

Bonnet theorem, the final result classified by the only genus, which counts the

number of holes in the object. Analogously, it becomes possible to distinguish the

ordinary insulating state (n = 0) from the quantum Hall state (n �= 0) with a

topological invariant.

2.1.2 Quantum spin Hall state Z2 topological invariant

After the quantum Hall state was discovered, Haldane proposed a simple example

of an integer quantum Hall state in a band theory [10] provided by honeycomb

lattice as a model of two-dimensional graphite, later discovered by Novoselov and

Geim, so called graphene [11]. According to the Haldane model, electrons are

driven to form a conducting edge state by the periodic magnetic flux, even though

the total flux is zero.

7
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Spin up and spin down

Quantum spin Hall state(a) (b) (c)

Quantum spin Hall state

E
n

e
rg

y

Conduction band

Valence band

Gap

Momentum

Impurity

Figure 2.2: (a) A schematic of the quantum spin Hall state at zero magnetic field

and (b) the band diagram. In spite of a bulk energy gap, the quantum spin Hall state

allows conduction in “spin-filtered” edge states. (c) Both scattering into the opposite

edge and anti-chiral edge are forbidden, which can allow the perfect transmission.

Adapted from [5, 6].

Unlike Haldane model, in which lattice system with spinless electrons was used,

Kane and Mele generalized Haldane model to a graphene lattice of spin 1/2 elec-

trons with strong spin-orbit coupling [12]. The strong spin-orbit coupling was

suggested to replace the periodic magnetic flux, regarded in the Haldane model,

and leads to a new novel state, so called quantum spin Hall state. In contrast to the

quantum Hall state, where time-reversal symmetry is violated, the quantum spin

Hall state has a small bulk energy gap, and gapless spin filtered edge states on the

boundary with time-reversal invariant as shown in Fig. 2.2(a). This phenomenon

is explained simply by the spin-orbit coupling term of Hamiltonian, which can be

given as (E × p) · σ [13]. Assuming a two-dimensional plane, the Hamiltonian is

written as

HSOC ∝ (Expy − Eypx)σz = Beffσz (2.5)

Thus, electrons with opposite spin can affect each other as effective magnetic field

Beff perpendicular to the two-dimensional plane. Consequently, the system has

opposite chiral edge states characterized by quantized conductance with fractional

multiples of e2/h, which depend on the spin. Similarly to the quantum Hall state,

upper and lower edge states are robust from the scattering between the two, because

of the bulk insulating property. Furthermore, in the quantum spin Hall state, time-

reversal symmetry inhibit a backscattering to the opposite direction of chiral edge

state. Consequently, it is expected to be a candidate for the perfect transmission

with spin-polarized currents as shown in Fig. 2.2(c) [14].
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(a)

Conduction band

Valence band

E

E
F

kΛ
a

Λ
b

(b)

Conduction band

Valence band

E

E
F

kΛ
a

Λ
b

Figure 2.3: Energy dispersion between the center Λa (k = 0) and a boundary Λb

(k = π) of Brillouin zone. The number of edge states crossing the Fermi level is (a)

even (Z2 = 0) and (b) odd (Z2 = 1). Reproduced from [15].

In 2005, a new number of Z2 topological invariant was proposed by Kane and

Mele to distinguish the quantum spin Hall phase from an ordinary insulating state

[16]. This novel Z2 invariant, analogous to classification of the quantum Hall phase

by Chern invariant, is defined for time-reversal invariant Hamiltonians. Z2 can

have only 0 or 1, which indicates even (Fig. 2.3(a)) or odd (Fig. 2.3(b)) number of

times that one-dimensional edge state crosses the Fermi level between two Kramers

degenerate points k = 0 and k = π, which are time-reversal invariant momenta,

respectively.

Assuming a two-dimensional system with periodic boundary conditions along

both directions, the two-dimensional Brillouin zone would have four time-reversal

invariant moment. In this situation, Z2 invariant ν can be described as

(−1)ν =
4�

a=1

Pf[w(Λa)]�
det[w(Λa)]

(2.6)

where a unitary matrix wij(k) = �ui(k)|Θ|uj(k)�, and the Pfaffian Pf[w(Λa)] can

be defined as

Pf[w(Λa)]
2 = det[w(Λa)] (2.7)

where det[w(Λa)] is a determinant of w(Λa), because w(Λa) is antisymmetric.

Therefore, it can be possible to classify “trvial” (ν = 0) and “non-trivial” (ν = 1)

state by Z2 topological invariant [17].

9
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Figure 2.4: (a) A band inversion transition at the critical thickness (dc = 6.3

nm) in the quantum well structure of HgTe between CdTe. (b) Experimental four-

ternminal resistance as a function of the gate voltage with zero magnetic field. III

and IV (d > dc)quantized conductance while I (d < dc) shows insulating behavior.

Reproduced from [19].

2.1.3 Quantum spin Hall insulator

In 2006, Bernevig, Hughes and Zhang proposed a two-dimensional quantum well

system of CdTe/HgTe/CdTe heterostructure as a new candidate of quantum spin

Hall insulator [18]. They predicted that the electronic structure would be changed

from a “normal” to an “inverted” at a certain thickness of quantum well. Soon

after, in 2007, this prediction was verified experimentally by König et al.[19].

The energy gap size that was obtained by k · p calculation [20] is shown in Fig.

2.4(a) for the quantum well structure as shown in an inset of Fig. 2.4(a) as a

function of a quantum well width d. The value of gap size changes from positive

to negative at the critical thickness d = 6.3 nm, which represents a band inversion

transition in the same system. Fig. 2.4(b) shows the resistance measurements

for several different samples as a function of a gate voltage. Sample III and IV

(dc < d = 7.3 nm), the “inverted” regime, show a quantized conductance 2e2/h

associated with both top and bottom edge, while an insulating property is observed

in Sample I (dc > d = 5.5 nm). This quantized conductance proves the existence of

the edge states due to the quantum spin Hall effect in CdTe/HgTe/CdTe quantum

well system.

After the prediction of CdTe/HgTe/CdTe quantum well structure, similar two-

dimensional system, AlSb/InAs/GaSb/AlSb quantum well, was predicted [21] and

10



2.2 Three-dimensional topological insulators

experimentally confirmed [22, 23], which shows quantum spin Hall effect. In ad-

dition, other materials, Bi bilayer [24] and Na2IrO3 [25], are also regarded as can-

didates of quantum spin Hall insulators. Particularly, the topological nature of Bi

bilayer was addressed first by photoemission study [26], then, the probability for

the existence of the edge states was proved by scanning tunneling spectroscopy [27]

and conductance measurement [28].

2.2 Three-dimensional topological insulators

2.2.1 Z2 invariant in three-dimensional topological insula-

tors

After the theoretical studies of quantum spin Hall state with the Z2 topological

invariant, as written in Sec. 2.1.3, the Z2 invariant was generalized into three-

dimensional topological insulators [15, 29, 30, 31]. According to those, three-

dimensional time-reversal symmetric electronic structures are described by four

Z2 invariants ν0; (ν1ν2ν3), rather than a single Z2 invariant. Considering a three-

dimensional Brillouin zone of cubic system as depict in Fig. 2.5, one can notice

eight time-reversal invariant momenta exist. The four Z2 invariants ν0, ν1, ν2, ν3
are described as

(−1)ν0 =
�

nj=0,π

δn1,n2,n3 (2.8)

(−1)νi =
�

nj �=i=0,π;ni=π

δn1,n2,n3 (i = 1, 2, 3) (2.9)

where δn1,n2,n3 is defined as

δn1,n2,n3 =
Pf[w(Λn1,n2,n3)]�
det[w(Λn1,n2,n3)]

= ±1 (2.10)

for each time-reversal invariant momentum point. Eqs. (2.8) and (2.9) show the

invariant ν0 is the only product of eight δ, unique to a three-dimensional system,

and is robust in the presence of disorder. Analogous to the two-dimensional case, a

topological phase (ν0 = 1) can be distinguished from an ordinary three-dimensional

insulating state (ν0 = 0). A matter with the three-dimensional topological phase is

11
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Figure 2.5: Eight time-reversal invariant momenta in a three-dimensional Brillouin

zone (a cubic case), and its projection to two-dimensional plane

called as “Topological insulator”, which possesses spin-polarized surface states, in-

stead of the spin-filtered one-dimensional edge states in the two-dimensional quan-

tum spin Hall insulators.

Assuming a two-dimensional projection of three-dimensional Brillouin zone as

shown in Fig. 2.5, the number of times surface bands to cross Fermi level be-

tween arbitrary time-reversal invariant momenta Λ̄i and Λ̄j depends on the surface

fermion parities π(Λ̄a)π(Λ̄b) = ±1, respectively, where π(Λ̄a) = δ(ka1)δ(ka2). Thus,

there are separated two surface Brillouin zone regions, in which time-reversal in-

variant momenta with +1 or −1, by the Fermi surface boundary. Generally, each

region contains odd (even) number of time-reversal invariant momenta when ν0 = 1

(ν0 = 0) as shown in Figs. 2.6(b) and 2.6(a) [15]. By Kramers’ theorem, a pair

of spin-polarized bands should be degenerate at Λ̄i (i = a, b, c, d) due to the time-

reversal symmetry. Considering degenerated surface bands at Λ̄a, when ν0 = 1,

each spin-polarized surface band degenerates with different spin-polarized band at

Λ̄b, while the same pair degenerate at Λ̄b as Λ̄a for ν0 = 0. Fig. 2.6(c) and 2.6(d)

describe this “parter switching” well. The distinction between ν0 = 0 and ν0 = 1

is quite similar to the two-dimensional one, which can be easily understood by
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Figure 2.6: Surface Brillouin zone for (a) ν0 = 0 and (b) ν0 = 1. White and grey

region indicate two separated region by Fermi surface boundary. (c), (d) Surface

band dispersions along kx direction, corresponding to (a) and (b), respectively. A

pair of spin-polarized surface bands degenerate at Λ̄b with (c) same band and (d)

different spin-polarized band. Adapted from [15].
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Material δΓ δ(T) δ(L) δ(X) ν0

Bi -1 -1 -1 -1 0

Sb -1 -1 +1 -1 1

Bi1−xSbx -1 -1 +1 -1 1

Table 2.1: Topological number of Bi, Sb, and Bi1−xSbx. Four time-reversal invari-

ant momenta (Γ̄, 3×M̄) are projected from eight time-reversal invariant moment (Γ,

T, 3×L, 3×X) as shown in Fig. 2.7(a). Adapted from [30].

comparing Fig. 2.6 with Fig. 2.3. Later, δ(ki) is simplified as

δ(ki) =
N�

m=1

ξ2m(ki) (2.11)

in the inversion symmetric system, where ξ2m(ki) is the parity eigenvalues (+1 or

−1) of the occupied bulk states and N is the number of degenerate states below

Fermi level. With this formula, several real materials were predicted as “three-

dimensional topological insulators” [30].

2.2.2 Bi1−xSbx alloy

The topological phase was predicted in real materials, including, Bi1−xSbx alloy

as well as α-Sn and strained HgTe [15]. Among those materials, semiconduct-

ing (or semi-metallic) Bi1−xSbx alloy was experimentally identified as the three-

dimensional topological insulator at the first [32], strained HgTe was also confirmed

later [33]. Unlike bismuth, Bi1−xSbx alloy (0.07 < x < 0.22) shows ν0 = 1 of Z2

topological number as arranged in Table 2.1 with bulk parity invariants. It has

bulk energy gap, including band inversion of La and Ls at x = 0.04, in the Sb

concentration range of 0.07 to 0.22 as shown in the energy diagram of each state

(Fig. 2.7(b)) [34]. Thus this material was expected to have a quantum spin Hall

state in three-dimension. As a matter of fact, an odd number of surface bands were

observed with angle-resolved photoelectron spectroscopy between the bulk energy

gap in Bi0.9Sb0.1 [32]. This is one of the key propertie of topological phase, at EF

between both time-reversal invariant momenta Γ̄ and M̄ points.
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Figure 2.7: (a) The bulk Brillouin zone and its projection to the surface Brillouin

zone of Bi1−xSbx crystal. (b) Energy diagram for each state of Bi1−xSbx as a func-

tion of x. The grey filled area shows the region, where is considered to be topological

insulator. (c) A schematic of spin-polarized surface states dispersion, which shows

“partner switching”. (d) Spin-integrated photoelectron intensity image along Γ̄− M̄

direction. Surface bands cross the Fermi level five times. (e) Spin-resolved momen-

tum distribution presented from the yellow dotted line in (d), EB = 25 meV. Figures

are adapted from [32, 34, 35].
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Soon after, helically spin-polarized surface states were observed in Bi1−xSbx di-

rectly using spin- and angle-resolved photoelectron spectroscopy [35] as shown in

Fig. 2.7(e). Though the spin-polarization of the fourth and fifth surface bands were

not clarified, this is the first experimental evidence to be “non-trivial” topological

phase due to the quantum spin Hall effect in three-dimensional matter. Later,

the spin-polarization was completely accomplished [36] with high efficient spin-

polarimeter using very low energy electron diffraction [37]. As mentioned in Sec.

2.1.2, these helical spin-polarized surface states are expected to be robust, so that

backscattering into anti-chiral state might be prohibited due to the time-reversal

symmetry. A scanning tunneling spectroscopy study showed an experimental evi-

dence of this protection [38], of which the detail will be described in Sec. 4.1.1.

In spite of these properties as three-dimensional quantum spin Hall state, the

small energy gap (only up to 30 meV) and complicated surface states motivated

researchers to search for ideal topological insulators, which have a larger bulk energy

gap with simple surface states.

2.2.3 Chalcogen compounds

It was simultaneous with the prediction of Bi1−xSbx alloy that Bi2Te3, known as

thermoeletric materials [39], was also suggested for a candidate of three-dimensional

topological insulator [30]. This prediction verified using theoretical calculation

based on first principles by Zhang et al. [40]. The theoretical works demonstrated

not only for Bi2Te3 (Fig. 2.9(d)), as well as several chalconen based compounds

such as Bi2Se3 (Fig. 2.9(a)), Sb2Te3 and Sb2Se3. And the results revealed topo-

logical properties with only a single linearly dispersed surface band crossing the

Fermi level at Γ point, so-called Dirac cone, in those materials only except Sb2Se3,

in which no band inversion between the highest occupied band and the lowest

unoccupied band was reported as shown in Table 2.2. In particular, the calcu-

lated electronic structure of Bi2Se3 predicted relatively a large bulk energy gap of

EG = 300 meV, which can be regarded as a new generation of three-dimensional

topological materials.

Such a series of chalcogen compounds crystallize in tetradymite structure as

shown in Fig. 2.8(b). This type of crystal structure can be classified into the

rhombohedral structure with the space group R3̄m. The crystal has a layered
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2.2 Three-dimensional topological insulators

Material OB UB Γ

Sb2Se3 + − + − + − + − + − + − − − + +

Sb2Te3 + − + − + + − + − + − − − + − −
Bi2Se3 + − + − + − + − + − + − − + − −
Bi2Te3 + − + − + − + + − + − − − + − −

Table 2.2: The parity of each band, fourteen occupied bands (OB) and the lowest

unoccupied band (UB), at the Γ point for Sb2Se3, Sb2Te3, Bi2Se3, Bi2Te3. Adapted

from [40].

structure, which consists of covalently bonded five atomic layer (e.g. Se1-Bi-Se2-

Bi-Se1), so-called “quintuple layer”. These layers are stacked in -C-A-B-C-A-B-C-

and weakly interacting with van der Waals force contrary to the strong bonding

within the quintuple layer. Thus, those materials can be easily cleaved between

quintuple layers that the top layer of surface consist of outer chalcogen atoms (X1).

Fig. 2.8(a) shows a three-dimensional Brillouin zone for those materials with

space group R3̄m. The four time-reversal invariant points are Γ, L, F , and Z, which

are remarked in the figure. The two-dimensional Brillouin zone of the projected

(111) surface is drawn as the blue hexagon with high symmetry points of Γ̄, K̄ and

M̄.

After the prediction of several materials for the second generation topological in-

sulators, the topological surface states, or Dirac cone, were experimentally observed

for Bi2Se3 [41, 43, 44], Bi2Te3 [42, 44], as well as Sb2Te3 [45] with ARPES. The

spin-polarized surface states of binary bismuth chalcogenide were observed directly

with spin-and angle-resolved photoelectron spectroscopy [46, 47], as well as in very

similar materials Bi2Te2Se and Bi2Se2Te [48]. In particular, Bi2Se3 is considered as

an ideal topological insulator from the following reasons. First, Bi2Se3 has the only

a single Dirac cone-like surface state, which means basically no scattering channels

exist because of the time-reversal symmetry. Second, it is stoichiometric, hence, in

principle, high homogeniety is allowed rather than alloy material such as Bi1−xSbx.

Finally, Bi2Se3 has a large bulk energy gap of ∼ 0.3 eV, already mentioned above.

Despite of the topological phase feature, those result unfortunately showed that

not only the single surface band, but also the bulk conduction band crosses the
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Figure 2.8: (a) Three-dimensional Brillouin zone (black) of Bi2X3 (X = Se, Te)

and a projection to two-dimensional Brillouin zone (blue) (b) Crystal structure of

same materials. A red square indicates an unit layer of X1-Bi-X2-Bi-X1, so called

quintuple layer. Adapted from [40].
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(∼ 0.3 eV) than Bi2Te3 (∼ 0.1 eV), however, both have surface state between the
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results also show Dirac cone shaped surface states clearly. Figures are adapted from

[40, 41, 42].
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Fermi level in Bi2Se3 and Bi2Te3 as shown in Fig. 2.9, due to electron doping

effect originating from chalcogen site vacancies in the as-grown samples. Thus, it

is very difficult to grow an intrinsic bulk-insulating crystal. The transport property

has a same problem that the surface originated property is hardly observed [49].

In contrast to the Bi2Se3 with Se vacancies, the surface transport property was

firstly observed in Bi2Te3, however, the surface contribution to the transport is still

very low, which did not exceed ∼ 0.3 % [50]. Furthermore, a scanning tunneling

spectroscopy study for Bi2Se3 found the scattering between the surface state and

bulk continuum band [51], also supported by theoretical study [52], which can

disturb the perfect transmission in this material.

Nevertheless, those materials based on the chalcogen compound, especially Bi2Se3,

are more suitable for the detailed study than the first discovered Bi1−xSbx alloy

and the further electronic property was studied. Moreover, new candidates for the

topological insulators were explored among the chalcogen coumpound. As a result,

several new materials, such as TlBiSe2 [53, 54, 55], PbBi2Te4 [56, 57] and GeBi2Te4
[58, 59], were regarded as new topological materials from the experimental results

of band structure.
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Chapter 3

Experimental techniques

3.1 Scanning tunneling microscopy

Since the scanning tunneling microscope (STM) was invented by Gerd Binnig

and Heinrich Rohrer in 1981[60, 61], it became one of the most powerful techniques

in the surface science field. Using an atomically sharpened metal tip, surface topo-

graphic and electronic structures can be observed in the real space with very high

spatial resolution[62, 63]. Due to this reason, nowadays, STM is widely used in

nanoscopic surface science and plays a key role in many related field.

3.1.1 Tunneling effect

The most important variable in STM is the tunneling current, generated by

electron tunneling effect. The tunneling current flows at a finite applied voltages

when the tip - surface distance reaches to about 1 nm. Although electrons are not

allowed to overcome a potential barrier with the energy higher than themselves

in classical mechanics, quantum mechanics describes that there is a finite value of

the wave functions of electrons decaying exponentially into the potential barrier.

Therefore, the wave function still has a finite value even beyond the barrier, which

means electrons could penetrate the barrier.

Assuming one-dimensional system with potential barrier with V0, depict as Fig.

3.1, the Schrödinger equation gives a simple description of the tunneling probability
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Figure 3.1: Schematic of the electron tunneling through a one-dimensional potential

barrier

of electron.

Eψ(x) =






− �2
2m

d2ψ(x)
d2x

(x < 0)

− �2
2m

d2ψ(x)
d2x

+ V0ψ(x) (0 < x < a)

− �2
2m

d2ψ(x)
d2x

(x > a)

(3.1)

where ψ(x) denotes wave function of electron. General solutions of above equations

are

ψ(x) =






Ae
ikx +Be

−ikx (x < 0)

Fe
−k�x +Ge

k�x (0 < x < a)

Ce
ikx (x > a)

(3.2)

where

k =

√
2mE

� (3.3)

k
� =

�
2m(V0 − E)

� (3.4)

According to the boundary conditions of wave functions and their derivatives at

x = 0 and x = a, the transmission probability can be obtained as

T =

�
1 +

4k2
k
�2

(k2 + k�2)2
sinh2

k
�
a

�−1

(3.5)

In the geometry of STM, e−k�a � 1, Eq. 3.5 can be approximated to

T � 16k2
k
�2

(k2 + k�2)2
e
−2k�a (3.6)
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3.1 Scanning tunneling microscopy

As described in Eq. 3.6, the transmission probability depends on the barrier width,

thus T decays rapidly when the width of the barrier increases.

3.1.2 Tunneling current

Even though above description about the tunneling effect might be rough, it does

represent the key point of STM. Considering an atomically sharp, ideally, with a

single atom at its apex, conducting tip is placed a nanometer far from the sample

surface, a tunneling current arises with applied electric potential between the tip

and the sample. The current is proportional to the transmission coefficient, thus, it

strongly depends on the distance of tip - sample. For a metallic sample, k� will be

about 1 Å
−1

that only a few angstrom change of the distance can make a significant

response on tunneling current. When the tip scans along the sample surface even

the sub-angstrom changes of surface topography provide a considerable change in

the current. Usually an experiment is performed with a constant current mode, the

change of the current is compensated immediately by controlling the tip height.

Therefore, one can observe the sample topography as a reflection of the tip position

even with atomic resolution.

The simple model of the tunneling effect with the one-dimensional system is

useful to describe the basic phenomenon related to STM. However, this model is

insufficient to explain the STM experiments. One need a more accurate theory, and

such a precise treatment of tunneling was performed by Bardeen [64]. Assuming a

potential V is applied between two electrodes, the tunneling current between two

electrodes can be given as

I =
2πe

�
�

µν

f(Eµ)[1− f(Eν + eV ))]|Mµν |2δ(Eµ − Eν − eV ) (3.7)

where f(E) is the Fermi distribution function and µ, ν are the states of those

electrodes. Thus an electron from the state µ with energy Eµ can tunnel to the other

state ν, with a probability given by the transmission efficiency |Mµν |2. Bardeen

has shown the tunneling matrix element Mµν as

Mµν =
�2
2m

�
(ψ∗

µ
∇ψν + ψ∗

ν∇ψµ)dS (3.8)

where ψµ and ψν are the wave functions of the corresponding states without tun-

neling. In the STM, which indicate the states of the tip and the sample. For a
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Sample
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R

Figure 3.2: A schematic of the STM geometry between the tip and the sample.

The tip apex is supposed as locally spherical with a radius R.

further evaluation of Mµν , hereafter, a fixed electrode geometry is essential that

one can consider the geometry as depict in Fig. 3.2. This was first applied for STM

by Tersoff and Hermann [65]. According to their model, the tunneling current can

be calculated under the limit of small voltage and low temperature as

I ∝ ρµ(EF )ρν(r, EF )V φ4
e
2R

√
2mφ/� (3.9)

for a locally spherical tip with a radius R. In the case of STM, ρµ(EF ) is the tip

density of states at Fermi level, ρν(r, EF ) is the local density of state of the sample

at the center of tip position, and φ is the work function. ρν can be written as

ρν(r, E) = ρν(E)T (E, V, r) (3.10)

with the transmission coefficient T (E, V, r0), which depends on the properties of

the tunneling barrier.

With the larger bias voltage, the current described in Eq. (3.3) should be con-

sidered over all of contributing states and be integrated, thus the current I can be

written as

I ∝ V

�
eV

o

ρµ(EF − eV + E)ρν(EF + E)T (E, V, r)dE (3.11)

where E is the tunneling electron energy relative to EF . From Eq. (3.11), one

can notice that the tunneling current represents the sample local density of states
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3.1 Scanning tunneling microscopy

rather than the structural properties. In other word, the tip density of state can

also affect to the tunneling current significantly. Thus, materials with a flat density

of state near the EF , such as tungsten, generally used for the tip.

3.1.3 Scanning tunneling spectroscopy and dI/dV map

The tunneling current depends on not only the topography of the sample surface,

but also the local density of state as described above. This property allows to

measure the electronic states of the sample with STM. According to the Tersoff-

Hamann model, the tunneling current is understood as the integration of local

density of state for all contributing bias voltage. Thus, the first derivative of the

current indicates local density of state, which can be calculated as

dI

dV
∝ d

dV

�
eV

0

ρt(EF + E − eV )ρs(EF + E)T (E, V, r)dE

= ρt(EF )ρs(EF + eV )T (eV, V, r)

+

�
eV

0

d

dV
ρt(EF + E − eV )ρs(EF + E)T (E, V, r)dE

+

�
eV

0

ρt(EF + E − eV )ρs(EF + E)
d

dV
T (E, V, r)dE (3.12)

where ρµ and ρν are substituted by ρt and ρs from Eq. (3.11), respectively. Gener-

ally, ρt(E) and T(E, V, r) have no significant change near the Fermi level compared

to ρs(E). Therefore, one can ignore the last two terms in Eq. (3.12), and the local

density of state is given by the first derivative of the tunneling current.

dI

dV
∝ ρs(EF + eV ) (3.13)

Normally, in the STM experiment, the lock-in amplifier is used to provide peri-

odic modulation for getting differential conductance (dI/dV ). If the bias voltage

is fixed during the scanning with modulations, one can observe the spatial distri-

bution of the local density of states, so called dI/dV image of same bias. Thus,

STM is widely used not only to observe the topological features of the surface, but

also to clarify the local electronic properties of the materials.
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Figure 3.3: (a) A schematic drawn electron scattering at an impurity. The ini-

tial state ki is scattered to the final states kf . (b) Constant current topography of

Cu(111) surface. The bias voltage (VB) is −5 mV and T = 150 K. Complex pattern

of circular standing waves due to point defects. (c) Two-dimensional Fourier trans-

formed image of (b). (d) Surface Brillouin zone of Cu(111) with Fermi contour of

surface state. Adapted from [68].

3.1.4 Electron standing wave and quasiparticle interference

The differential conductance image allows to focus the localized surface electronic

states. Using this technique, the electron standing waves were observed with STM

on the clean surface of Cu(111) [66] and Au(111) [67]. On the clean surface of both

single crystals, electrons behavior as two-dimensional free electron gas. Thereby, an

impurity or a crystal defect can cause the electron scattering, also at the step edge.

Due to the wave-particle duality, electrons can interfere with the scattered one.

The interferences appear as the spatial modulations on the surface, the electron

standing waves.

Moreover, energy dispersion of spin degenerate system even in the momentum

space can be provided by the observed electron standing waves. Assuming the

elastic scattering, electrons can be scattered into the constant energy contour of

dispersion with opposite momentum −k. The length of the scattering vector q is

equal to q = | − k − k| = 2k accordingly to the scattering vector q as following

equation.

q = kf − ki (3.14)

Thus, Fourier transformed periodicity of the standing waves correspond to 2k in
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3.2 Photoelectron spectroscopy

the momentum space, that the energy dispersion can be clarified. This is well

appeared in Figs. 3.3(b) and 3.3(c). Electron standing waves on the clean surface

of Cu(111) are found in the Fig. 3.3(b), and Fig. 3.3(c) shows the corresponding

Fourier transformed image. The circular constant energy contour corresponds to

the Shokley state of the Cu as described in Fig. 3.3(d) with surface Brillouin zone.

The operating system of the STM with high stability at very low temperature, this

technique is used to understand electronic structure of various solid material, such

as high-Tc superconductors [69].

3.2 Photoelectron spectroscopy

Photoelectron spectroscopy is experimental technique extensively used in order

to study electronic structures of solid materials. The basic principle of photoelec-

tron spectroscopy is photoelectric effect, which had been first observed by Heinrich

Hertz, and had explained by Albert Einstein with introducing the quantum nature

of light, now so-called photons.

3.2.1 Photoemission process

In the process of photoelectric effect, electrons, given enough energy over the

work function φ, could be emitted with kinetic energy Ek. From the energy con-

servation law, the kinetic energy of emitted electrons can be written as

Ek = hν − φ− EB (3.15)

where hν is energy of photons, and EB is binding energy of electrons in the mate-

rials. For the interpretation of the photoemission experiment, a three-step model

is useful. The basis of this model is shown in Fig. 3.4.

(1) Photoexcitation of the electrons

In the first step, locally the photon is absorbed and an electron is excited. As-

suming a small perturbation by photoemission as H �, the transition probability w

per unit time between an initial state ψi and a final state ψf is calculated as

w ∝ |�ψf |H �|ψi�|2δ(Ef − Ei − hν) (3.16)
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Figure 3.4: Three step model for photoemission process. (i) Photoexcitation of

electrons (ii) Travel through the bulk to the surface (iii) Penetration through the

surface and detection. Adapted from [70].
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by Fermi’s Golden Rule. Here, Hamiltonian of perturbation H
� can be written as

H
� =

e

2mc
(A · p+ p ·A) +

e
2

2mc2
|A|2 (3.17)

where A is the vector potential of electromagnetic field and p is the momentum

operator of electrons. Neglecting the term of higher degree |A|2, H � can be ap-

proximated as

H
� =

e

mc
A · p (3.18)

because ∇ · A becomes 0 in the solid. Thus, the transition probability w can be

written as

w ∝ |�ψf |A · p|ψi�|2δ(Ef − Ei − hν) (3.19)

In PES, energy range of photons is from several eV to several keV that its

wavelength is enough large to neglect the spatial change of A. Thus, finally, w can

be described as

w ∝ |A0�ψf |p|ψi�|2δ(Ef − Ei − hν) (3.20)

(2) Travel to the surface

In the second step, the photoexcited electron travels to the surface. During

this process, electrons lose energy due to electron-electron and electron-phonon

interactions and give rise to secondary electrons as shown in Fig. 3.4. This inelastic

scattering process can be estimated by using electron mean free path λ(Ef ). The

probability of traveling to the sample surface without inelastic scattering D(Ef ,ω)

can be written as

D(Ef ,ω) ∼ α(ω)λ(Efin) (3.21)

in the wavelength of vacuum ultra-violet (VUV) region, because of α,λ � 1, where

α(ω) is the extinction coefficient of light absorption. As shown in Fig. 3.5, elec-

tron mean free path has an universal behavior among various materials. From this

figure, we can also notice PES is very surface sensitive.

(3) Penetration through the surface
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Figure 3.5: The universal curve, showing inelastic mean free path of photoelectron.

Adapted from [71].

In the final step, the electrons penetrate through the surface and escape from

the surface into the vacuum. This process is usually described by electrons over-

coming a potential barrier, called inner potential (V0), at the surface. Assuming

the momentum in solid k, following relations should be brought into existence to

escape from the surface to vacuum.

V0 <
|�k⊥|2

2m
(3.22)

Thus, the probability of electron escape T (Ef ,k) is can be defined as T (Ef ,k) = 1

when

|k⊥| >
�
2mV0/� (3.23)

with Ef > φ, or 0. Therefore, the number of photoelectrons by photon injection

can be written as

N(Ek, hν) ∝��
d
3k{|A0�ψf |p|ψi�|2D(Ef ,ω)T (Ef ,k)}δ(Ef − Ei − hν)δ(Ek − (Ef − φ))

(3.24)
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Figure 3.6: (a) A schematic of ARPES measurement (b) Relation of momentum

during the electron escape. A perpendicular component would not be conserved,

in contrast to a parallel component is conserved even after escape from the sample

surface.

There is also one-step model, which treats the whole process described above (three-

step model) as one step. However it can be shown that both models give the same

results in analyzing the photoemission spectra[70].

3.2.2 Angle-resolved photoelectron spectroscopy

Angle-resolved photoemission spectroscopy (ARPES) is a type of photoelectron

spectroscopy to study the electronic structure of solid matter. Since ARPES is the

only experimental technique to determine the electron band structure directly, it

is one of the most important methods to study energy dispersion of the valence

band of materials. In ARPES, parallel component wave vector (K�) to the surface is

conserved during the photoemission to the vacuum as electron energy as mentioned

above. Thus, two-dimensional band dispersion between energy and wave vector can

be determined as following relation.

K� =

�
2mEk

�2 sin θ = k� (3.25)
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Where k is wave vector before electron transmission to the surface, and m is the

mass of an free electron. So, we can obtain the 2D band dispersion by rotating

the emission angle (θ). Meanwhile, wave vector component, perpendicular to the

surface, is not conserved, because of the potential barrier between solid and vacuum.

Therefore, K⊥ can be described as followed.

K⊥ =

�
2m

�2 (Ek + V0) (3.26)

Here, if one uses synchrotron radiation, it is possible to inject the variable energy

of photons. Thus, we can obtain E-K⊥ dispersion, and also determine the value of

inner potential (V0) for each material. Fig. 3.6 shows schematic drawing of ARPES

measurement and the relation of wave vector in photoemission process from the

solid to the vacuum as mentioned above.

3.2.3 Time- and angle-resolved photoelectron spectroscopy

φ

θ

∆t

(a) (b)

0

E
F

E
vac

t

Figure 3.7: (a) A schematic of TrARPES measurement (b) A simple energy diagram

of time-resolved photoelectron spectroscopy. A red wave indicates a pump pulse and

a blue wave indicates a probe pulse in both figures.

An ultrafast pump-and-probe method of ARPES with pulsed laser source lets us

possible to observe time dependent electronic structures [72]. One pulse (pump)

raises dynamics in the matter and the other pulse probes the non-equilibrium
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electronic state as snapshots. The difference of the optical path length between

the pump and probe pulses causes the different arrival time, so-called delay time.

Thus, one can observe the recovery from the impact, by varying the optical path

as described in Fig. 3.7(b). This is a basic principle of time-resolved photoelectron

spectroscopy. If the information of angle is added as shown in Fig. 3.7(a), one can

get snapshots of non-equilibrated energy-momentum distribution with time- and

angle-resolved photoelectron spectroscopy (TrARPES). In order to vary the delay

time, the optical path of pump pulse is controlled usually.

Fig. 3.8 shows an example of the practical experimental set up for TrARPES

with a hemispherical analyzer [73, 74], which was used for the present study. A

laser pulse from Ti:sapphire photon source is split into two different pulses of pump

and probe. Black ticks indicate mirrors that both optical paths of pump and probe

are controlled. Especially, the optical path of pump pulse includes a movable delay

stage, that one can vary the delay time between two pulses.
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Figure 3.8: A schematic of the TrARPES system with a hemispherical analyzer.

The photon source is Ti:sapphire laser. The optical path of pump pulse includes a

movable delay stage. Black ticks are mirrors to reflect laser.
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Chapter 4

Angle dependent suppression of

electron backscattering in the

topological insulator

4.1 Introduction

4.1.1 Electron backscattering in the topological insulator

Three-dimensional topological insulators are accompanied by metallic surface

states due to a Z2 topology of the bulk wave function as mentioned in Chapter

2. Such a peculiar topological surface state is spin-polarized with helical texture,

which is expected to lead to a suppression of electron scattering due to mismatch of

spin between the eigenstates before and after the scattering. Especially, the perfect

backscattering of 180◦ is expected to be absent, because of the time-reversal sym-

metry. A scanning tunneling microscopy and spectroscopy study of Bi1−xSbx alloy

demonstrated this interesting expectation experimentally first [38]. The protected

backscattering was proven by the measurement of quasi-particle interference due

to the electron scattering. Quasi-particle interference pattern, appeared in Fourier

transformed differential conductance image of Fig. 4.1(a), was compared with two

different intensity patterns, the joint density of states (JDOS)

JDOS(q) =

�
I(k)I(k+ q)d2k (4.1)
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ARPES

FT-STS

Spin-filtered

Figure 4.1: (a) dI/dV image at VB = 0 mV and Fourier transformed amplitude

image (inset) of Bi0.92Sb0.08. (b) Calculated intensity of the inner product from

the ARPES measurement of Bi0.91Sb0.09 [35] without spin (top) and spin filtered one

(bottom). Fourier transformed dI/dV image at the same energy shown in the middle.

All images are cut along Γ̄-M̄ direction. (c) A schematic of prohibited backscattering

channels, which depend on spin chirality. Adapted from [38].

and spin-dependent scattering probability (SSP)

SSP(q) =

�
I(k)T (q,k)I(k+ q)d2k (4.2)

as shown in Fig. 4.1(b), where I(k) is ARPES intensity proportional to the surface

states’ density of states and T (q,k) = |�σ(k)|σ(k+ q)�|. Namely, JDOS and SSP

are computed value from the Fermi surface observed by ARPES [35] with and

without a backscattering of k to −k, because spin directions are opposite at k

and −k. In the Fourier transformed dI/dV image, one can realize the intensity

corresponding to scattering channels as drawn in Fig. 4.1(c) suppressed that it

means backscattering is inhibited in Bi1−xSbx. However, strong interference is

still observed due to multiple surface band, some of which have the same spin

orientation.

Similarly, the quasi-particle interference measured in Bi2Se3 [75], as well as in

impurity doped Bi2Te3 [76, 77, 78, 79] and Bi2Se3 [79], which have only a single

Dirac-cone surface state. As a result, no interference was detected at energies away

from unless the Dirac cone is significantly warped [42, 80], owing to the cubic spin-

orbit coupling term proportional to k
3σz [81]. The quasi-particle interference in

the warped Dirac cone is also predicted by theoretical study [82].
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In these previous experiments, the suppression due to the helical spin texture of

the topological surface state was only elucidated qualitatively, because no interfer-

ence was observed for circular constant-energy contours of surface state in Bi2Se3
and Bi2Te3. In other words, it is still not understood what extent the backscatter-

ing is suppressed as a function of scattering angle within the same surface band,

of which constant-energy contour is not warped. Even such information is crucial

to understand the transport in the topological surface state, no material allows to

observe interference in an unwarped Dirac cone.

4.1.2 3D topological insulator Bi2−xSbxTe3−ySey

Bi2Te2Se has been paid attention due to high surface contribution to the trans-

port [83], about 20 times larger than Bi2Te3 [50]. Bi2−xSbxTe3−ySey is the first

topological insulator material, which has similar surface dominant transport with

nonmetallic bulk single crystal [84]. Fig. 4.2 shows structural and electronic prop-

erties of Bi2−xSbxTe3−ySey at several combinations of (x, y). Hereafter, all compo-

sitions of Bi2−xSbxTe3−ySey with rhombohedral structure will be discussed, marked

with white circle in Fig. 4.2(a). In case of x = 0, y = 1, Bi2Te2Se, it naturally

crystallize in a chalcogen-ordered structure as with quintuple layer of Te-Bi-Se-Bi-

Te as a unit layer, where X1 = Te and X2 = Se in Fig. 2.8(b). This is identical

with other chalcogen based materials as already mentioned above. When x and y

increase, Bi and outer Te layers will be mixing layers of Bi/Sb and Te/Se. The

most remarkable feature of the series of this material is tunable Fermi level. The

Fermi energy EF of the crystal can be controlled by changing the composition along

particular combinations of x and y in the bulk band gap [85]. This is similar to

(Bi, Sb)2Se3 [86], but the position depends on x and y. Fig. 4.2(c)-(f) show the

in-plane band dispersions in a series of Bi2−xSbxTe3−ySey for four different x, y

compositions, x = 0, 0.25, 0.5 and 1.0 where y = 1, 1.15, 1.3 and 2.0. Such a tuning

of the topological surface carrier properties permits us Dirac cone engineering, for

example, p-n junction of the topological surface state.

All of those materials have their Fermi level in the bulk energy gap as shown in

Fig. 4.2(c)-(f), and the bulk is an insulator [85]. Fig. 4.2(b) shows temperature

dependence of the resistance for a series of Bi2−xSbxTe3−ySey [87]. The resistance

increases in all composition with decreasing temperature, which indicates its bulk-
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Figure 4.2: Structural and electronic property of Bi2−xSbxTe3−ySey. (a) Structure

diagram and (b) temperature dependences of ρxx for several optimized composi-

tions of Bi2−xSbxTe3−ySey series, reproduced from [87]. (c)-(f) Band dispersions in

Bi2−xSbxTe3−ySey for four different x, y compositions, enclosed by white circles in

(a), x = 0, 0.25, 0.5 and 1.0 where y = 1, 1.15, 1.3 and 2, respectively. White arrows

and white dotted lines, drawn in (c)-(f), indicate Dirac point energy ED and the

energy of the valence band maximum. All band dispersions are adapted from [85].

(g) Crystal structure of Bi1.5Sb0.5Te1.7Se1.3, adapted from [88]. Lattice distance of

a- and c-axis are 4.24Å and 29.83Å, respectively [87].
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insulating property. In particular, Bi1.5Sb0.5Te1.7Se1.3 shows the highest resistance,

which can be considered to be a bulk insulator. As well as, its band dispersion

shows that the Dirac point is quite close to Fermi level, or just below EF , thus, it

can be a good candidate for an ideal three-dimensional topological insulator. The

Alloy property of crystal structure might allow the observable quasi-particle inter-

ference, therefore, Bi2−xSbxTe3−ySey offers a promising platform for quantitative

understanding of the suppression of backscattering in an ideal Dirac cone.

4.2 Experiment

The single crystals of Bi1.5Sb0.5Te1.7Se1.3 were grown by melting stoichiometric

of mixtures of high-purity elements in sealed quartz tubes[87] and the quality of

single crystal was confirmed by x-ray diffraction. It will be shown later, clearly

atomic resolved topography of the surface with STM and very sharp spectra with

TrARPES measurement are also verifying the quality of the crystal. Experiments

using STM and TrARPES were performed in two separated ultrahigh vacuum

(UHV) systems.

Figs. 4.3(a) and 4.3(b) show the pictures of sample set up for each STM and

TrARPES experiment, respectively. In both experiments, clean surface was pre-

pared by cleaving with scotch tape as shown in Fig. 4.3. After cleaving the crystal

in UHV with the pressure below 2× 10−8 Pa at room temperature, the sample was

transferred in situ in UHV either to the cooled stage in the STM chamber or to

the TrARPES chamber.

The STM topography and tunneling spectra were taken at 5 K using a cryogenic

STM with and electrochemically etched tungsten tip. The tip apex and its metallic

density of states were checked by scanning a clean platinum surface. Topographic

images were obtained using a constant current mode. For the study of quasi-particle

interference, dI/dV spectroscopy was performed using a standard lock-in technique

with a bias voltage modulation of 5 and(or) 10 mV at 496 Hz. The dI/dV curve

was measured at every point of a 256× 256 grid on the surface. The obtained data

were plotted as function of position to make a dI/dV map. The constant energy

dI/dV maps were Fourier transformed, and the peaks due to the surface lattice

were used for the calibration of the wave vector space. The Fourier transformed

patterns were symmetrized with respect to the sixfold symmetry, on the basis of
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Figure 4.3: Pictures of the set up for sample cleaving in (a) the STM system and

(b) the TrARPES system. Adapted from [73].

the C3v symmetry of the cleaved surface.

For the TrARPES experiments, 1.5 eV (pump) and 5.9 eV (probe) pulsed photons

from an amplified Ti:sapphire laser system with repetition rate of 250 kHz [73,

74] were used. The spot diameters were ∼ 0.4 and ∼ 0.2 mm for the 1.5 and

5.9 eV photons, respectively. Those diameters were estimated by the pin hole

represented in Fig. 4.3(b). The pulse width was 170 ps for the pump and 250

ps for the probe, which was calculated from the total time resolution. A graphite

shown in Fig. 4.3(b) was used to calibrate the total time resolution, and the detail

will be described in Sec. 5.2. The time delay between the pump and the probe

pulses was optimized to clarify the unoccupied TSS band in the bulk band gap

[89]. Photoelectrons from the cleaved surface cooled at 5 K were detected by a

hemispherical analyzer. The energy resolution of the photoelectrons was 15 meV

and the pump power was fixed to 70 mW.

4.3 Results and discussions

4.3.1 Topography and tunneling spectrum

Fig. 4.4(a) shows a STM topography of cleaved Bi1.5Sb0.5Te1.7Se1.3 surface for

a wide range. An atomically resolved topography is shown in Fig. 4.4(b). Atoms

of the top Te/Se layer are visible as precise protrusions and the density of surface

point defects is less than 3 %. In this magnified image, surface atoms are recognized
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Figure 4.4: (a) Topography of cleaved Bi1.5Sb0.5Te1.7Se1.3 with 45 × 45 nm2. (b)

An atomically resolved STM image of Bi1.5Sb0.5Te1.7Se1.3. VB and tunneling current

were set to -0.4 V and 20 pA for (a), and -0.6 V and 100 pA for (b) (c) A typical

tunneling spectrum of Bi1.5Sb0.5Te1.7Se1.3. The tunneling current was set to 200 pA

at VB = 0.5 V. Each arrow with blue, black, and green is corresponding to top of

valence band, Dirac point, and bottom of conduction band, respectively. Adapted

from [88].

with a distribution of the apparent height. The local density of states fluctuates

because of the inhomogeneous distributions of Te and Se, as well as those of Bi and

Sb in the crystal as shown in Fig. 4.2(g). Thus, the observed distribution of the

height is attributed to the electronic effect due to the alloying in the Te/Se and

Bi/Sb layers.

A typical point tunneling spectrum is shown in Fig. 4.4(c). The energy of Dirac

point (ED) can be defined as the minimum in dI/dV [79] where is indicated by

black arrow. The differential conductance rapidly increases below ED compared to

that above ED. This is because the top of the bulk valence band, which can be

recognized as a shoulder in the dI/dV curve in Fig. 4.4(c), is located just below

ED (blue arrow). The bottom of the bulk conduction band is also visible (green

arrow), corresponding to the TrARPES result, which will be shown in Fig. 4.8(b),
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Figure 4.5: (a) Spatial variation of local Dirac point and (b) line profile of the

energy variation along the black dotted arrow on (a). (c) The blue (red) curve shows

the average of all dI/dV curves with ED between -70 meV and -50 meV (20 meV

and 40 meV) averaged over all points exhibiting given energy of Dirac point in (a)

and inset shows zoomed in one of gray area. Adapted from [88].

even it is not very clear.

The energy of ED, obtained from the minimum of dI/dV curves varies over the

surface as shown in Fig. 4.5(a). Blue (red) areas depict in the image correspond

to the n-type (p-type) region where ED is below (above) the Fermi level. This

is due to spatial fluctuation of the element composition. The line profile of ED

distribution map along black dotted arrow is shown in Fig. 4.5(b). Interestingly,

each n-type and p-type area has a spatial extent of the order of 10 nm that indicates

such a local p-n junction. ED is distributed within tens of meV energy range and

the average location of ED is 10 ± 15 meV below Fermi level. The dI/dV curves

averaged over all points with ED in energy range of every 20 meV is plotted in Fig.

4.5(c).

4.3.2 dI/dV images and quasiparticle interferences

Figs. 4.6(a)-(d) show differential conductance maps of the cleaved sample surface

for several selected values of VB, which correspond to the energy in the bulk band
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Figure 4.6: Differential conductance images of the cleaved Bi1.5Sb0.5Te1.7Se1.3 sur-

face for (a) 60 mV, (b) 100 mV, (c) 200 mV, and (d) 280 mV. (e)-(h) Corresponding

Fourier transformed amplitude images. (i)-(l) Cross-sections of Fourier transformed

amplitude for the images (e)-(h) along both Γ̄-K̄ (red) and Γ̄-M̄ (blue) directions. The

black arrows drawn in (i)-(l) indicate the critical scattering vector length. Adapted

from [88].
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gap. Standing waves due to the quasi-particle interference are observed as spatial

modulation in the dI/dV maps. dI/dV maps are Fourier transformed to analyze

the interferences. Figs. 4.6(e)-(h) are Fourier transformed amplitude images, cor-

responding to Figs. 4.6(a)-(d). The reciprocal space was calibrated with the peaks

due to the surface lattice and Fourier transformed patterns were symmetrized with

respect to the sixfold symmetry, on the basis of the C3v symmetry of the cleaved

crystal surface. The cross-sections of the Fourier transformed images at each VB

are plotted in Figs. 4.6(i)-(l) along two high-symmetry directions, Γ̄-K̄ (red) and

Γ̄-M̄ (blue). As shown in Figs. 4.6(i)-(l), one can realize a steep decrease of the

scattering amplitude with increasing length of scattering vector q. Such a steep

decrease in the scattering amplitude was observed in the VB range of 60 - 300 mV,

which corresponds to the energy range in the bulk band gap. These cross-section

data indicate that the electron scattering within topological surface states rapidly

vanishes at a certain critical value of the length of scattering vector. Hence, it is

defined as a critical scattering vector length and denoted qcx and qcy for Γ̄-K̄ and

Γ̄-M̄ directions, respectively.

In the Fourier transformed images, weak six-fold flower-shaped patterns were

recognized in the areas outside of the critical scattering vectors. These are explained

as follows. The height of the STM tip from the surface is not constant during the

measurements of the dI/dV image over the surface, and is determined locally by

the integrated local density of states between EF and the energy corresponding to

the bias voltage for fixing the tip position [90]. In this experiment, the tip was fixed

using VB = 500 mV. The integrated local density of state includes information on

the bulk electronic states with the six-fold symmetry. Even this can affect the

Fourier transformed dI/dV images, the artifact does not affect the assignment of

the energy dependent round-shaped critical scattering vector, because the shape of

the weak artifact pattern is almost independent of the bias voltage.

In order to understand the energy dependence of the critical scattering vectors

qcx and qcy, the cross-sections of the Fourier transformed amplitude are arranged

as a function of the sample bias voltage. This is shown in Fig. 4.7(a). qcx and

qcy are marked by red diamond and blue square on the image, respectively, and

one can easily notice obvious increase of critical scattering length with increasing

VB. These symbols are replotted in Fig. 4.7(b). A black dotted line depict in Fig.

4.7(b) shows a linear fitting curve with ED = 10 mV, estimated from Fig. 4.5
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Figure 4.7: (a) Line profiles in the Fourier transformed amplitude intensity as a

function of sample bias. The intensity of amplitude plotted along Γ̄-K̄ (left) and

Γ̄-M̄ (right) directions, respectively. (b) The critical scattering vector lengths qcx

(red diamond) and qcy (blue square) for Γ̄-K̄ and Γ̄-M̄ directions, overwrote in (a).

A black dotted line shows linear fitting curve with ED = 10 mV. Adapted from [88].
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above. This result means the critical scattering vector length is dispersing linearly

as a function of VB. Moreover, both qcx and qcy have almost the same value at all

VB below VB = 280 mV, so that one can analogize Bi1.5Sb0.5Te1.7Se1.3 has single

conical band without warping effect.

4.3.3 Band structure

For the quantitative understanding of the observed critical scattering vector

length, information regarding the topological surface state is essential. How-

ever, most of topological surface state in Bi1.5Sb0.5Te1.7Se1.3 exist above EF , thus,

such information is unavailable with the ordinary ARPES [85]. The advantage

of TrARPES can leads to it possible to measure band dispersion even above EF

with a high resolution. Inverse photoelectron spectroscopy[70, 91, 92], even with

angle-resolvable [93, 94], also allows to observe unoccupied electronic structures,

however, the energy resolution is very low (∼several hundreds of meV), that to

detect topological surface state is quite difficult, because size of bulk band gap is

only ∼300 meV.

Figs. 4.8(a) and 4.8(b) show photoelectron intensity images measured with

TrARPES on a cleaved Bi1.5Sb0.5Te1.7Se1.3 surface along the Γ̄-K̄ direction, the

measurement range is indicated with yellow thick in the inset of Fig. 4.8(a), before

(t = −0.8 ps) and after (t = +1.1 ps) 1.5 eV pump photons, respectively. While

the only occupied states are visible without pump photons, the band dispersion

of the topological surface state was observed obviously up to 0.25 eV above EF ,

also including the bulk conduction band at the center of the surface Brillouin zone,

after band filling with pump photons. ED is located at E = 0.15 eV below EF in

the TrARPES data shown in Fig. 4.8, and lower than that estimated from spec-

tra shown in Figs. 4.5(a) and 4.5(b). This is caused by the electron doping from

adsorbates of residual gas, such as hydrogen, in UHV chamber during TrARPES

measurements at low temperature [95], which cannot be happened during STM

measurement due to the radiation shield of cryostat. In spite of the energy shift of

EF , the velocity of TSS band remains the same, thus, it does not affect the further

discussion.

The momentum distribution curves (MDCs) in the same energy range of Figs.

4.8(a) and 4.8(b) are represented in Figs. 4.8(c) and 4.8(d), respectively, where
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Figure 4.8: Photoelectron intensity images of Bi1.5Sb0.5Te1.7Se1.3 along Γ̄-K̄ direc-

tion observed (a) before (-0.8 ps) and (b) after (+1.1 ps) filling the empty states with

the 1.5 eV pump photons, respectively. (c) and (d) show momentum distribution

curves in same energy range of (a) and (b). The black curves are spectra at EF , and

the energy separation between two adjacent curves is 20 meV. (e) The peak points

are plotted from all MDCs of (b). The inset of (a) shows the surface Brillouin zone

of Bi1.5Sb0.5Te1.7Se1.3 and the yellow thick line indicates the measurement range.

Adapted from [88].
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black curves correspond to spectra at EF . The peak positions of all momentum

distribution curves taken from Fig. 4.9(b) are plotted in Fig. 4.9(e), obtained by

analyzing the MDCs with Lorentzian function. The velocity of the surface band

can be estimated as 4.9×105 m/s for E−ED > 80 meV, and decreases to 3.5×105

at E − ED = 30 meV as previous reports on Bi2Se3 [54, 96].

4.3.4 Electron scattering process

In order to clarify the elastic scattering process in the topological surface state

of Bi1.5Sb0.5Te1.7Se1.3, the critical scattering vector lengths were analyzed quanti-

tatively. Compared qcx and qcy with the diameter of the cross-section of the single

topological surface state observed by TrARPES are shown in Fig. 4.9(a). Fig.

4.9(a) is reproduced from Figs. 4.7(b) and 4.8(e) with vertical axis to be energy

relative to ED. The critical scattering vector lengths are only about 75 % of the

corresponding diameter of the topological surface state at the energy between 90

an 310 meV above ED. If the scattering is permitted for the scattering angle up to

180◦, namely, no restriction for backscattering, either the only perfect backscatter-

ing is prohibited, qc should have equal value with the diameter of the topological

surface state. For instance, in the spin degenerate system, such as high-TC su-

perconductors, the scattering vectors equal to the diameter of the constant energy

contour observed by ARPES [97, 98] In order to understand this 75 % of scattering

vector length between the two states, the scattering angle of each energy point was

calculated as represented in Fig. 4. 9(b). A black dotted line indicates a linear

fitting curve, which has the only constant variable corresponding to the angle. The

averaged scattering angle is 98 ± 1◦. Hence limited qc to 75 % of the diameter of

the topological surface state means the maximum of the allowed scattering angle

to be 100◦.

This situation is schematically well described in Figs. 4.9(c)-(e). Fig. 4.9(c)

is a schematic drawn of the shape of the upper Dirac cone with the available

scattering vectors at representative energies. Figs. 4.9(d) and 4.9(e) are cross-

sections of circular and warped topological surface state with energy dependence,

respectively. Those graphics represent the maximum scattering angle does not

change with energy, which can be also recognized from Fig. 4.9(b). Particularly,

this result indicates that not only the 180◦ backscattering but also a rather wide
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Figure 4.9: (a) Comparison between the critical scattering vector (red diamond for

qcx and blue square for qcy) and diameter of constant energy contour of the topolog-

ical surface state taken from TrARPES (purple filled circle) result. (b) Scattering

angle at each energy from ED calculated from (a). (c) A schematic picture of the

energy dependent shape of the upper Dirac cone with the available scattering vec-

tors at representative energies. (d), (e) Schematic pictures for circular and warped

TSS, respectively, to indicate the critical scattering vector lengths being 75 % of the

diameter of TSS corresponds to the maximum angle of 100◦. Adapted from [88].
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range of backscattering angle of 100◦ − 180◦ are effectively suppressed due to the

spin mismatch between the initial and final states in the topological surface state.

The spin mismatch mechanism for the present helical spin system introduces an

angle dependent factor to the scattering probability. This factor is given as 1+cos θ

[99] that the probability decreases rapidly with increasing θ, where θ > 90◦, and

completely vanishes at θ = 180◦. This explains the strong suppression of scatterings

for a relatively wide range of the scattering angle, at least qualitatively.

4.4 Conclusion

The angle dependent scattering process was clarified using the results of STM

and STS, as well as TrARPES experiments. Quasi-particle interferences due to the

elastic scattering of electrons were observed using STM and STS. The amplitude of

the scattering vector were suddenly decreased at a certain scattering vector length.

Beyond such a critical scattering vector lengths, the elastic scattering of electrons

in the topological surface state is much suppressed. Those critical scattering vector

lengths were compared with the diameter 2k of the topological surface band for

the electronic empty states obtained from TrARPES. We found that the critical

scattering vector lengths are only 75 % of 2k, and conclude that the protection from

backscattering in the topological surface state occurs not only for 180◦ but also for

a rather wide angle range of 100◦ − 180◦. If the scatterings are fully allowed, the

maximum scattering vector length should be equal to 2k in the circular constant

energy contour. Such a wide angle range for the prohibition of backscattering is

revealed to be independent of the energy until the Dirac cone becomes warped.

Above the energy of 300 meV from the Dirac point, where the Dirac cone warping

appears, hexagonal patterns in the Fourier transformed images come from the

warped Dirac cone. It might be similar to Fig. 4.9(d), however, in this range the

critical scattering vector was not precisely observed. When VB is larger than 300

meV, the bottom of the bulk conduction band is located there. Because of the

spin degenerate bulk state, surface - bulk scattering becomes dominant at those

energies. In case of negative VB, the scattering within the bulk states leads the

strong amplitude in the Fourier transformed dI/dV . This implies the scatterings

within the topological surface state are overwhelmed by the bulk scattering events

with the same scattering vectors, hence, the former are hardly visible.
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4.4 Conclusion

A quantitative analysis of elastic backscattering of spin-polarized electrons in

the bulk-insulating topological insulator allows to understand the robust protection

from the backscattering in the same system. This new understanding can be good

news for applications, simultaneously, suggest another challenge to the theoretical

understanding of the transport in the topological Dirac states.
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Chapter 5

Photoexcited carrier dynamics of

Dirac fermion in the intrinsic

topological insulator

5.1 Introduction

5.1.1 Carrier dynamics in solid surface

The development of the pulsed laser source and an ultrafast pump-and-probe

method led the time-resolved photoelectron spectroscopy technique, which made it

possible to observed ultrafast time-dependent electronic structures directly. Thereby,

the electron dynamics of the various solid surface systems has revealed with this

epochal technique [72]. Using this technique, the detailed mechanisms of electron

scattering, such as electron-electron scattering or electron-phonon scattering, and

electron-hole recombination at the surface have been studied. Moreover, recent

development of the time-resolved photoelectron spectroscopy system has enabled

us to observe electron dynamics with high energy resolution.

5.1.2 Dynamics of the excessive hole doped topological in-

sulator

The topological surface state is promised to be robust due to the suppression

of the backscattering. Because of this peculiar property, the optically excited
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Figure 5.1: (a) Photoelectron intensity image of excessively hole-doped Bi2Se3

observed by TrARPES. (b) Transient photoemission intensities integrated within

the each window drawn in (a). The red curve is taken from bulk conduction band.

Adapted from [89].

electron dynamics in the three-dimensional topological insulator has become an

interesting subject. In particular, a “bulk-insulating” topological insulator shows

a well-controlled two-dimensional metallic surface state between the intrinsic insu-

lating bulk energy gap, a new class, even if the spin-polarization of the topological

surface state are not concerned.

Meanwhile, a time- and angle-resolved photoelectron spectroscopy experiment

was performed in one of the three-dimensional topological insulator Bi2Se3 [89].

The transient characteristic of the p-type Bi2Se3, which is excessively hole-doped,

were observed as shown in Fig. 5.1. The transient photoelectron intensity curves

from the energy resolved surface state and bulk conduction band are shown in Fig.

5.1(b). Surprisingly, the transient curves from the surface state with the energies

below the bulk conduction bottom don’t show any energy dependence and the latter

part of them seem to be dominated by that of the conduction band bottom. From

this result, a continuos supplying of electrons from the bulk conduction band to

the topological surface state is suggested, however, detailed scattering process and

the own decay parameter of the surface state are still veiled. Moreover, the bulk
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valence band of this materials exists at the Fermi level because of the heavy doping,

so that the electron dynamics is concerned to be affected by the bulk metallic

electron dynamics. Thus, in order to clarify the original dynamics of the topological

surface electrons in a bulk-insulating topological insulator, we have studied the

electron dynamics in the intrinsic bulk-insulating sample Bi1.5Sb0.5Te1.7Se1.3 with

TrARPES.

5.2 Experiment

TrARPES system as drawn in Fig. 3.8 with a hemispherical analyzer was used

for the experiment as described in Sec. 4.2. In this experiment, both pump and

probe are linearly polarized. In order to understand ultrafast dynamics, the cali-

bration of the delay time point of t = 0 (t0) should be very important. In other

words, both pump and probe photons illuminate the surface simultaneously. In the

present experiment, a single crystal of graphite was used for the standard sample

to calibrate t0 and the total time resolution. The electronic structure of graphite

is well-known, and the preparation of its clean surface is quite simple. Thus it is

suitable for the calibration. Fig. 5.2 shows the normalized photoelectron intensity

observed at each delay stage position. The photoelectrons were observed between

3.0 and 3.1 eV of kinetic energy, where are 1.4 to 1.5 eV above Fermi edge, because

1.5 eV pulse was used for the pump. The intensity curve is fitted by Gaussian,

and the value of the delay stage position at t0 is estimated as 26467. The full

width at half maximum (FWHM) of the Gaussian is calculated as 21.844, which

corresponds to the converted total time resolution ∼ 290 fs. The pulse width of

the pump is 170 fs, hence, the pulse width of the probe is estimated to be ∼ 250 fs.

Moreover, the flux of the probe pulse was controlled not to occur the space-charge

effect [100, 101]. A bunch of photoelectrons generated by the intense probing pulse

repel each other due to the Coulomb interaction, that distorts the energy and an-

gular distribution of the photoelectrons. Thus, this space-charge effect should be

minimized to measure the fine structures correctly.

The clean surface of the sample was prepared by the cleaving with scotch tape as

Fig. 4.3(b) in the UHV system, of which the base pressure was below 2× 108 Pa.

The sample is cooled down to 5 K soon after the cleaving. In the present study,

the band structure at each delay time was observed repeatedly during the delay
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Figure 5.2: Calibration of t = 0 (t0) with Graphite. Delay stage position of t0 is

26467 and time resolution of the whole TrARPES system is estimated to be ∼ 290

fs. The curve is fitted by Gaussian.

stage going and returning.

5.3 Results and discussions

5.3.1 Transient characteristic

Observed photoelectron intensity snapshots at several selected delay times, t =

−2.67,−0.2, 0,+0.2,+0.67,+1.96,+5.39,+10.95 and +19.24 ps, are displayed in

Fig. 5.3. All images were observed along Γ̄ − K̄ direction, referred to the surface

Brillouin zone as depict in the inset of Fig. 4.8(a). Fig. 5.3(a) shows the spectrum

observed at a negative delay time before the arrival of the pump photons and indi-

cates the thermally equilibrium electronic state, the ground state. In Fig. 5.3(b),

showing the result just before the pump pulse arriving, photoexcited electrons be-

came observable. The photoelectron intensity were clearly observed even up to 1

eV above the Fermi energy in Figs. 5.3(c) and 5.3(d), of which the delay times

are 0 and +0.2 ps, respectively. The electrons filled the unoccupied states, thus
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Figure 5.3: (a)-(i) Snapshots of photoelectron intensity images observed along Γ̄−K̄

at delay times of t = −2.67(a),−0.2(b), 0(c), 0.2(d), 0.67(e), 1.96(f), 5.39(g), 10.95(h),

and 19.24 ps (i), respectively. Precise photoexcitation and relaxation are visible.
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the upper Dirac cone above the Fermi level and the bulk conduction band were

observed as in those figures. The populated electrons at t0 are slowly scattered

into the states with the lower energy and the electron relaxation can be traced

in Figs. 5.3(b)-(i). Even at t = +19.24 ps of the delay time, the bottom of the

conduction band was still found, indicating this system has a pretty long lifetime.

In the Fig. 5.3(a), one can notice the photoelectron intensity even slightly above

(∼ 20 meV) the Fermi level, which was fixed using the spectrum without the

pump pulse. This is a phenomenon caused by the repetitive pump pulses. After

the sample pumped, if the system does not fully recovered to the ground state

before the next pump, the photoelectrons can be observed above the Fermi level.

Surface photo-voltage effect [102] exhibited from a semiconductor surface can be

an example relevant to this phenomenon. Generally, the lifetime of surface photo-

voltage exceeds micro seconds order, hence, if the interval time of the pump pulses

is shorter than the lifetime of the surface photo-voltage, pump-induced energy shifts

can be observed even at t < 0 [73]. The repetition rate dependent pump-induced

shift of SmB6 was attributed to the surface photo-voltage [103]. The spectra shift

shown in Fig. 5.3(a) is considered to have the same origin because a bulk-insulating

band structure is similar to a semiconductor.

In order to understand the further transient character, the observed photoelec-

tron intensity was integrated within the selected windows drawn in Fig. 5.4(a).

Fig. 5.4(a) is a snapshot of photoelectron intensity image at t = +0.2 ps, the same

as Fig. 5.3(d). We modified the image for explanations. Red and blue windows are

drawn on the topological surface state and bulk conduction band, respectively. A

green window on the energy more than 1 eV from EF indicates another bulk band.

In Fig. 5.4(a) we divided the each window into sub-windows with the energy range

of 50 meV. Then we integrated the photoelectron intensity in each sub-window.

The integrated intensity is plotted as a function of delay times, which are shown

in Figs. 5.4(b), (c) for topological surface state and Figs. 5.4(d), (e) for bulk

conduction band. The transient curves taken from different energy described in

corresponding color to the scale bar drawn above the graph. The transient curve

of the green window in Fig. 5.4(a) is shown in the inset of the Fig. 5.4(d). All

curves have their peak positions not on t = 0 due to the indirect population by

scattering from the states with higher value of energy. This is consistent with the

previous study [89, 104]. In both surface and bulk states, the intensity curves show
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Figure 5.4: (a) Photoelectron intensity image observed at delay time of t = 0.2 ps.

(b) Normalized photoelectron intensity as a function of delay time taken from the

red area in (a), which is corresponding the topological surface state. Same curves

are plotted with logarithmic scale in (c). The red scale bar shows the energy from

Fermi level of filled area in (a) and the curves with same color is taken from the

corresponding energy. The transient curves from the blue area (conduction band)

are represented in (d) and (e) same as (b) and (c). The inset of (d) shows transient

curve of green area in (a), much higher energy above more than 1 eV from Fermi

energy.
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Figure 5.5: (a) The transient curves of holes (topological surface state) plotted

similarly to Fig 5.4(c) in log scale. In contrast to the electron dynamics, the re-

laxation obviously have two components, before and after about 2 ps. (b) Energy

dependent decay times, calculated from Figs. 5.4(c) and 5.4(e), fitted by single ex-

ponential curve. Both surface (red square) and bulk (blue circle) decay times have

energy dependence and bulk conduction band has much longer lifetime. The inset

of (b) is decay time of the surface holes, which has two component, before (opened

diamond) and after (filled diamond) 2 ps. No energy dependence is found.

an energy dependence, which is precisely described in Figs. 5.4(b) and 5.4(d). In-

terestingly, the intensity of the surface and bulk electrons does not fully decay even

at ∼ 20 ps. Figs. 5.4(c), (e) show the same results in log scale and indicate the

decays with single exponential components.

The decay time τ of each curve is calculated by curve fitting with single expo-

nential. The calculated decay times of all curves in Fig. 5.4(c),(e) are shown in

Fig. 5.5(b) as a function of the energy from the Fermi level. In Fig. 5.5(b), one

can realize that the decay times of both the topological surface state and bulk con-

duction band depend on the energy, and become longer with decreasing energy. At

higher energy (> 0.2 eV from the Fermi level), the decay times of both states are

very similar, however, at lower energy than that, the bulk conduction state shows

much longer decay time than the surface state.

The time evolution of the topological surface holes was also measured. Fig. 5.5(a)

shows the energy-dependent transient curves of holes in the topological surface
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state. In contrast to the results of the electron dynamics, the transient curves

taken from several different energies show almost the same relaxation so that there

is no energy dependence. As well as, contrary to the electrons in the both surface

and bulk states, those obviously have two components in the decay process. Before

2 ps of the delay time, the intensity decays very fast, however, it decay slowly

after 2 ps. Each component of decay times are calculated from the transient curves

shown in Fig. 5.5(a) by fitting the data with single exponential curve separately

before and after 2 ps. The calculated relaxation time are shown in the inset of the

Fig. 5.5(b). Opened and filled diamond indicate two decay components of fast and

slow, respectively. The two components are independent of the binding energy.

The transient curves show that the holes are not perfectly decayed even at 10 ps

of the delay time, which corresponds to the result of electrons that the relaxation

is not finished even over the 10 ps.

5.3.2 Fermi level dependence

In order to bring out the own dynamics of the bulk-insulating topological insula-

tor, the result described in Sec. 5.3.1 was compared with several samples of different

Fermi energy. Fermi level was varied by exposing the cleaved Bi1.5Sb0.5Te1.7Se1.3 to

the residual gas in UHV system [85]. Figs. 5.6(a)-(g) show the energy shift by band

bending due to the gas adsorption during the TrARPES measurements. The data

shown in Fig. 5.6(g) was measured at 20 hours after the data in Fig. 5.6(a). Both

the surface and bulk states were shifted as a rigid band shift. After finishing the

whole experiments, the sample was annealed up to room temperature again and the

band dispersion was returned to the first. Which indicates that the adsorbed gases

desorbed and the sample surface was not destroyed during the adsorption. The

surface state is as stable as the previous study with ARPES [105]. The white dot-

ted lines in figures indicate the Dirac energy ED = 0.21, 0.25, 0.27, 0.31, 0.35, 0.36

and 0.37 eV of binding energy. One can realize that, in Figs. 5.6(e)-(g), the bulk

conduction band clearly crosses the Fermi level while Figs. 5.7(a)-(c) are bulk-

insulating. As well as, the bottom of the conduction band just touched to the

Fermi level in Fig. 5.7(d).

To understand the detail of electron dynamics in each states shown in Fig. 5.6,

the time evolution of the photoelectron intensity were analyzed. Figs. 5.7(a) and
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5.7(b) show the integrated photoelectron intensity curves of the surface and the

bulk states at 75 meV above the Fermi level, respectively. All the intensities are

integrated from the band dispersions with corresponding Dirac energy with the

energy window of 50 meV. In Fig. 5.7(a), the transient curves can be separated

to two groups. One is the group plotted with red opened circles and the other

is the group plotted with blue opened circles. The case of ED = 0.31 eV is the

boundary between the two groups. Interestingly, the former group corresponds

to the photoelectron intensity images with the conduction band above the Fermi

level. The decay time is changed very much at ED = 0.31 eV. A similar, but, a

little different tendency can be seen in Fig. 5.7(b) for the bulk band. The decay

time τ gradually decrease with the band shift from ED = 0.25 eV, and become

convergence when the bulk conduction band crosses the Fermi level. Moreover,

one can recognize that both the decay curves of the surface and bulk states have

two different components with the metallic bulk state.

The same analysis is applied to two more different energy of 50 and 100 meV

above from the EF . Figs. 5.8(a) and 5.8(b) show the calculated decay times at

50, 75 and 100 meV above the Fermi level as a function of the Dirac energy for
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the topological surface states and the bulk conduction bands, respectively. The

grey dotted line shows the difference of the energy between the Dirac point and

the bottom of the conduction band, which is equal to 0.31 eV, so that the bulk

conduction band starts to cross the Fermi level from Fig. 5.6(d) with increasing

EF−ED. In each graph, three plotted curves behave similar. In the band dispersion

with EF − ED > 0.31 eV, one can realize that the decay times converge without

the classification of bulk and surface.

5.3.3 Electron-hole recombination

As described in Sec. 5.1.1, there are several kinds of mechanisms to determine

electron dynamics [72], including both elastic and inelastic scattering. Focusing

to the photoexcited electrons as the present experiment, the inelastic scattering

can be considered to explain the electron dynamics. Because the energy of the

excited electrons are very high, so that those can return to their ground state by

the inelastic scattering, such as electron-phonon scattering. After such a scattering,

electrons near Fermi level can be recovered to the ground state by electron-hole

recombination.

The observed electron dynamics can also be explained by these scattering process.

In case as shown in Fig. 5.6(a), the bulk-insulating, the calculated decay time shows

that the electrons of the bulk conduction band have a larger τ than the electrons

of the topological surface band as described in Fig. 5.5(b). Because of the energy

gap between the bulk conduction band and the bulk valence band, the electrons

of the bulk conduction band are difficult to recombine with holes directly. Thus,

they can be scattered into the surface state, and can recombine with holes below

the Fermi level soon after the scattering. This scattering process will be described

in detail with a simple simulation in Sec. 5.3.4. On the contrary, the electrons

from the topological surface state can be scattered to both bulk and surface bands

with lower energy, and the electrons, which scattered into the surface band with

lower energy, can recombine with holes at Fermi level. In the bulk-insulating case,

as shown in Fig. 5.9(a), the only channel of the recombination between electrons

and holes in topological surface state can be possible. Thus , the decay process

of electrons in the surface state does not depend on the Fermi level, if the band

structure keeps the bulk-insulating character. This corresponds to the result of
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Figure 5.9: (a) A schematic drawn band diagram of the bulk-insulating topological

insulator and (b) n-type topological insulator with bulk conduction band at EF . In

both, electron - hole recombination channels are depict on each diagram.

bulk-insulating part shown in Fig. 5.8(a).

In the bulk metallic case, after the pump pulse, both electrons and holes gener-

ated in the bulk conduction band. Therefore, holes remain not only in the topo-

logical surface state, but also in the bottom of the conduction band. Considering

the recombination process, holes in the bulk conduction band can affect to the

dynamics. As shown in Fig. 5.9(b), electrons in the surface state above the Fermi

level can recombine with holes in both of the surface state and the bulk conduction

band. The opposite is also possible that the electrons in conduction band above the

Fermi level can be scattered into both surface and bulk band. Reminding that the

transient curves shown in Fig. 5.7 from the bulk metallic samples seem to have two

different decay components, a few picoseconds and over 5 ps. This is also related

to the bulk conduction band. Because of the holes in the bulk conduction band,

electrons can take a lot of channels to recombine. However, the hole density in the

conduction band is quite small, that the recombination with hole in the conduction

band will finish very soon. Note that the bottom of the bulk conduction band is

lying just below the Fermi level. The gradients of the latter part in the transient

curves, actually similar to that of transient taken from the bulk-insulating sam-

ple. Which means the latter part corresponds to the electron (TSS) - hole (TSS)

recombination.
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5.3.4 Electron scattering process

As described in Sec. 5.3.1, the decay time of the bulk conduction state is much

larger than the that of surface state. In order to understand such a different decay

time between two states at low energy, transient curves are simulated with following

scattering process as shown in Fig. 5.10. Figs. 5.10(a)-(c) show the initial condition

with three steps. First, an equilibrium state (ground state) is supposed. And the

electrons are photoexcited to the high energy (B0) by the pump pulse. Finally,

those electrons distribute into the other five different states, B1, B2, S1, S2, and S3,

as non-thermal process. The electron filling of B0 as a function of the delay time t

can be described as

dB0(t)

dt
= P0(t)−

B0(t)[1− B1(t)]

b01
− B0(t)[1− B2(t)]

b02

−B0(t)[1− S1(t)]

c01
− B0(t)[1− S2(t)]

c02
− B0(t)[1− S3(t)]

c03
(5.1)

where P0(t) is a gaussian function with the FWHM of total time resolution, Bi(t) (i =

1, 2) and Sj(t) (j = 1, 2, 3) are the electron filling of each states at t. The rate

equations for each state, used to simulate the transient curves, are described as

following.

dB1(t)

dt
= P1(t) +

B0(t)[1− B1(t)]

b01
− B1(t)[1− S1(t)]

a1
+

S1(t)[1− B1(t)]

a1

−B1(t)[1− B2(t)]

b12
(5.2)

dS1(t)

dt
= Q1(t) +

B0(t)[1− S1(t)]

c01
− S1(t)[1− B1(t)]

a1
+

B1(t)[1− S1(t)]

a1

−S1(t)[1− S2(t)]

c12
(5.3)

dB2(t)

dt
= P2(t) +

B0(t)[1− B2(t)]

b02
− B2(t)[1− S2(t)]

a2
+

S2(t)[1− B2(t)]

a2

+
B1(t)[1− B2(t)]

b12
(5.4)
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Figure 5.10: (a) An initial state (ground state) before the pump. (b) Photoexcita-

tion of electrons to high energy region (B0). (c) Non-thermal distribution of electrons

from B0 to the other states. These three steps, from (a) to (c), are supposed as an

initial condition. (d) Supposed scattering channels. Each states has scattering chan-

nels of drawn arrows with rate parameters. (e) An expanded graph for a part of Fig.

5.5(b). The black dotted lines in (a)-(d) correspond to the energies represented in

(e).
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dS2(t)

dt
= Q2(t) +

B0(t)[1− S2(t)]

c02
− S2(t)[1− B2(t)]

a2
+

B2(t)[1− S2(t)]

a2

+
S1(t)[1− S2(t)]

c12
− S2(t)[1− S3(t)]

c23
(5.5)

dS3(t)

dt
= Q3(t) +

B0(t)[1− S3(t)]

c03
+

S2(t)[1− S3(t)]

c23
− S3(t)

τs
(5.6)

Where Pi(t) (i = 1, 2) and Qj(t) (j = 1, 2, 3) are the gaussian functions, similar to

P0(t) in Eq. (5.1). al (l = 1, 2) is rate parameter for the scattering between the

bulk state and the surface state with detailed balance. bmn and cmn (m = 0, 1, 2

and n = 1, 2, 3) are the rate parameters of the scatterings to the lower energy

within the bulk conduction band and the surface band, respectively. τs is a decay

time of the state S3, which represents the time for electron-hole recombination at

Fermi level in the metallic surface state.

The simulated curves from the Eqs. (5.2)-(5.6) with parameters written in Table

5.1 are shown in Fig. 5.11(b). The plotted squares and circles represent the inte-

grated photoelectron intensity as a function of delay time taken from each enclosed

area drawn in Fig. 5.11(a). Both experimental data and simulation curves show

similar behavior that the electrons of the bulk conduction band (B2) have a larger

decay time than the surface state (S2) at the energy range of area 2, even though

the decay curves of two states at higher energy (B1 and S1) are very similar. This

means that the electrons are accumulated at the bottom of bulk conduction band.

The electrons of the bulk conduction bottom have the only scattering channel to

the surface state and electron scatterings are delayed because of the low DOS of

the surface band and the long distance to the surface band in the momentum space

(a1 < a2). Note, in area 1 shown in Fig. 5.10(e), corresponding to B1 and S1, the

bulk conduction band and the surface band are close in the momentum space that

it is very easy to be scattered into each other. As a result, the supposed scattering

process model described in Fig. 5.10 reproduced the experiment results very well

and this explains the accumulation of the electrons at the bulk conduction bottom.

The most important point of this simulation is the decay time of the surface

state τs, which is independent to the decay time of the bulk state. Though the

electron scattering from the bulk conduction band, it is possible to estimate τs as

∼ 4 ps from the above equations. Considering the supposed scattering process, the
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Figure 5.11: (a) Photoelectron intensity image taken at t = 0.2 ps. (b) Transient

curves taken from the bulk states (squares) and the surface states (circles) indicated

in (a). The solid lines with same color indicate the simulation curves from the rate

equations of Eqs. (5.2)-(5.6).

a1 a2 b12 c12 c23 τs

0.7± 0.2 ps 2.7± 0.2 ps 13.1± 0.5 ps 0.9± 0.1 ps 1.2± 0.1 ps 4.1± 0.2 ps

Table 5.1: Parameters for Fig. 5.11(b) estimated from the decay curve simulation

with the rate equations of Eqs. (5.2) - (5.6).
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Figure 5.12: A schematic drawn of the band diagram with electron scattering

process of (a) bulk-insulating Bi1.5Sb0.5Te1.7Se1.3, the present study, and (b) p-type

Bi2Se3, the sample of the previous study [89].

estimated value indicates the own decay time of the metallic topological surface

state between the insulating bulk energy gap.

The electron scattering process including electron-hole recombination of the bulk-

insulating topological insulator discovered in the present study is shown in Fig.

5.12(a). This describes that the electrons of bulk conduction band have no scatter-

ing channel only except the surface state, similarly discussed in the previous study

by Sobota et al.[89]. However, the result of the previous study shows no energy

dependence of decay time between the bulk energy gap, and this is different with

the present study. In case of Bi2Se3, the following idea can describe such a different

behavior. Most of all, excessively hole doped Bi2Se3 is a bulk metallic topological

insulator that its dynamics can be different with the present study for a bulk-

insulating topological insulator. Moreover, the band calculation of Bi2Se3 [51, 52]

shows that bulk valence band along the Γ̄ − M̄ direction positioned much higher

energy than that on the Γ̄ point as schematically drawn in Fig. 5.12(b). Thus,

there is a possibility that another scattering channel between the bulk conduction

and the bulk valence band by electron - phonon coupling exist, which results in

the decrease of the electron density of the bulk conduction band. As well as, the

electrons of the surface state can be also scattered into the bulk valence band,

so that the decay time of the bulk conduction band and the surface state can be
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almost same.

5.4 Conclusion

A dynamics of photoexcited electrons in the intrinsic three-dimensional topolog-

ical insulator is clarified with TrARPES experiment. Due to the advantage of this

pump-and-probe method with high energy resolution, the photoelectron intensity

curves as a function of the delay time were taken at the various energies. The calcu-

lated decay times of the transient photoelectron intensity curves show the obvious

energy dependence. Both topological surface state and the bulk conduction band

have long lifetime beyond 10 ps near the Fermi level, in addition, even much longer

lifetime was observed in the bulk conduction band. This delayed relaxation at the

bulk conduction bottom was explained by the simulation of the simple scattering

process model. According to the scattering process, the electrons of the bulk con-

duction band near the bottom have no other scattering channels except the surface

state at the same energy. Due to the low DOS of the surface state, electrons are

accumulated at the bulk conduction bottom. Moreover, the simulation gave us

the decay parameter τs, which is the own decay time of the metallic surface state

near the Fermi level. The result of τs ∼ 4 ps is similar order with the decay time

of the surface state shown in Fig. 5.5(b) that it means the observed decay time,

different with that of bulk conduction band, is the original value of intra-band

scattering in the topological surface band. This is the most important point of the

present experiment that it is the first proof, which observed the own decay time of

the metallic surface state in the topological insulator. By comparing the transient

characteristic of bulk-insulating sample with that of bulk metallic sample, which

is due to the band shift, these scattering processes and the decay time proved to

be the own feature of the bulk-insulating topological insulator. Even though it

is difficult to discuss the electron scattering which depends on the spin-polarized

property, the result is very important that it is the first experimental result to

give the decay process of the two-dimensional metallic state between the intrinsic

insulating bulk energy gap.
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Chapter 6

Summary

To summarize, the Dirac electrons dynamics has been investigated by STM and

STS, as well as TrARPES. A combination of STS and TrARPES techniques is

very powerful not only to study the electronic structures, but also to study such

dynamics. Which leads the present work to the first experimental study about the

Dirac electrons dynamics defined from both elastic and inelastic scattering in the

ground and photoexcited state.

From the observed differential conductance images of Bi1.5Sb0.5Te1.7Se1.3 using

STM, the spatial modulations originated in a result of quasi-particle interferences

of surface electrons are found even in the energy range with circular constant en-

ergy contour of band dispersion. The amplitude of Fourier transformed differential

conductance images suggest an existence of the critical scattering vector length.

This critical scattering vector length is limited up to only 75 %, which indicates

the maximum scattering angle is 100◦. The result shows that not only the 180◦

backscattering, but also a rather wide range of the scattering angle between 100◦

and 180◦ are well prohibited due to the spin helical texture. The quantitative

analysis for Dirac surface state elastic scattering suggests the backscattering is

significantly suppressed angle dependency. This is the first understanding the scat-

tering as a function of scattering angle experimentally. There is a question still

we have, such as the sudden decrease of the scattering intensity, and in order to

understand this property, the theoretical study for the angle dependent scattering

probability considering the spin-orbit coupling is required to the future work.

The TrARPES measurement of Bi1.5Sb0.5Te1.7Se1.3 gave us the electron dynamics
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of a bulk insulating topological insulator in non-equilibrium state. The time evolu-

tion of the energy dependent photoelectron intensity, measured on both topological

surface state and bulk conduction band, reveal the lifetimes longer than 10 ps in

both states. In particular, much longer lifetime is measured on the bulk conduction

band. The simulation with the supposed scattering process reproduces the exper-

imental result of this electron accumulation at the bottom of the bulk conduction

band. According to the scattering process, the electrons at the bulk conduction

bottom have the only one scattering channel to the surface state at the same energy

and this makes the relaxation to be delayed. Even though electron filling from the

bulk conduction band, the own decay time of the surface electron near the Fermi

level was estimated from the present experimental results. This is the first exper-

imental evidence of the original surface decay parameter in a three-dimensional

topological insulator. Though it is hard to find the feature of the “spin-polarized”,

the present experiment is the first study to understand two-dimensional metallic

surface state between the insulating bulk band gap and can give advantages to

clarify the detailed dynamics of such a new state.

The TrARPES experiment gave us a lot of advancement to understand the dy-

namics of two-dimensional Dirac surface state in a bulk-insulating topological in-

sulator. This is the first step to study the dynamics of the peculiar surface state

that further experimental and theoretical studies are still necessary to find the rep-

resentative dynamics of “topological surface state”, for example, spin dependent

suppression of electron scattering as described in the first half. Such a further

study can give a lot of advantages not only to the fundamental physics, but also

to the applications based on the spin polarized surface state in a bulk-insulating

topological insulator.
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