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Abstract

In the last decade it has become evident that information-theoretic quanti-
ties, which quantify a quantum entanglement encoded in a quantum state,
are extremely useful to analyze a state of mane-body systems. Celebrated ex-
amples are the entanglement entropy and the Shannon entropy, which extract
universal information of the underlying field theory of the system. Further-
more, a significant concept, the entanglement spectrum, has been proposed
recently. It contains more complete information than the entanglement en-
tropy. They have achieved a considerable success in characterizing exotic
quantum phases that are beyond conventional descriptions.

Inspired by these developments, we propose a new state, which we name
a Rényified state, as follows: for a given quantum state |Ψ⟩ =

∑
i ψi|i⟩ and

the basis states |i⟩, the Rényified state is defined by raising the wave-function
coefficients ψi to the power of n (and normalized). The Shannon entropy can
be obtained from the Rényified state. Moreover, the latter contains more
information than the former.

We study the Rényified state starting from a Tomonaga-Luttinger liquids
(TLL), which is an important universality class of one-dimensional quantum
systems. A TLL is characterized by a TLL parameter K, and described by
the free boson field theory with a central charge c = 1 in the conformal
field theory (CFT) context. We will show, using numerical calculations,
that the Rényified state behaves as a TLL described by a modified TLL
parameter K̃ = K/n for small n. For larger n, the Rényified state behaves
in a different way: the longitudinal correlation has long-range order while
the transverse one remains algebraic. Based on the numerical results, we
apply a replica field theory formulation to an analysis of the Rényified state.
It suggests that the Rényified state is also a TLL described by a modified
TLL parameter K̃ = K/n, when n < 4K. The field theoretical analysis
indicates that the TLL description breaks down at n = 4K, which is related
to a phase transition in the Rényi-Shannon entropy. Beyond the transition,
n > 4K, it suggests that the Rényified state is no longer a TLL since the
longitudinal correlation has long-range order while the transverse one remains
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algebraic. This exceptional behavior is unlikely to be realized in the ground
state of a Hamiltonian with only short-range interactions. This indicates
that the Rényified state beyond the transition belongs to a new class of exotic
quantum phase. We explain an origin of the exotic behavior by constructing a
particular conformal invariant boundary state of a two-component massless
free boson. The relationship between the Rényified state and the Rényi-
Shannon entropy is also elucidated in boundary CFT formalism.
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4.3.4 Phase diagram of the Rényified state . . . . . . . . . . 59

4.4 Boundary CFT formalism to the Rényi-Shannon entropy . . . 60
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Chapter 1

Introduction

1.1 Background

A great variety of phenomena can be found in our world. Such a diversity
is caused by an enormity of matters and a complexity of their interactions.
Physics has been successful in explaining various discrete phenomena in a
simple and a unified way. We believe the universality, and its belief leads us
to reach a better understanding of the complicated and cumbersome world.
Condensed matter is an ideal playground to discover and investigate the
diversity and the universality since it consists of an enormous amount of
electrons which interact with each other. It is a profound challenge of con-
densed matter physics to classify all of phases and/or to categorize transitions
between different phases of many-body systems.

An important concept for the classification of the matter is symmetry
breaking. The traditional guiding principle is that introducing a local order
parameter which characterizes a system and discriminates different phases.
The phase transition is interpreted by the spontaneous symmetry breaking
of the order parameter. This was developed by Landau and Ginzburg, and
grew in sophistication with the advent of the renormalization group theory of
Wilson, which gave a unified understanding of the critical phenomena. This
scheme has been a great deal of success to understand a variety of phenomena
such as crystallization, magnetization, and superconductivity.

It should be noted that the symmetry breaking is not complete to classify
phases of matter. An important class of states is the Tomonaga-Luttinger
liquids (TLL), which is a gapless universality class in one-dimensional quan-
tum systems. No symmetry is spontaneously broken in TLL; yet it represents
a distinct phase of matter. In terms of the conformal field theory (CFT), the
TLL is described by a 1+1 dimensional massless free boson field theory with
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CHAPTER 1. INTRODUCTION

a central charge c = 1. This state is generally realized in various situations,
such as one-dimensional correlated electron systems, quantum spin chains,
carbon nano-tubes and microfabricated systems.

Furthermore, recently, it has been recognized that there are a variety
of quantum phases that are beyond the Landau-Ginzburg-Wilson paradigm.
They are generally called topological phases. Instead of a spontaneous sym-
metry breaking or a local order parameter, they are characterized by topo-
logical features, e.g., the presence of protected edge states and/or a ground
state degeneracy which depends on the topology of the system. These type
of states, such as quantum Hall states and topological insulators, have been
also experimentally realized. An interesting fact is that a TLL emerges as
an edge state of quantum Hall states and/or topological insulators. The dif-
ficulty of studying the non-symmetry breaking phases is that it cannot be
distinguished from a trivial phase by local order parameters. Discriminating
such a non-trivial phase is a challenging task in modern condensed matter
physics.

In the last decade it has become evident that information-theoretic quan-
tity leads to further insight into statistical mechanics and quantum filed the-
ory. Methods developed in information-theoretic theory context is highly
useful to analyze a state of many-body systems. However, how to quantify
universal information of a quantum state is a vast area of research in its own.
A multitude of different measures have been proposed [52]. We do not give
an exhaustive review of quantum measures, rather introduce some successful
and relevant measures in this thesis.

1.1.1 Entanglement measures

Entanglement entropy

One of the most prominent measures in physics is the entanglement entropy,
which quantifies an entanglement between sub-systems of a whole system.
For a ground state |Ψ⟩, the von-Neumann entanglement entropy is defined
as SE = −TrAρA ln ρA, where the reduced density matrix ρA = TrĀ|Ψ⟩⟨Ψ|
describes the entanglement between a subsystem A and the rest of the system
Ā. For one-dimensional quantum systems, celebrated works by Calabrese and
Cardy revealed that universal information of the underlying conformal field
theory of the system can be read off from its scaling behavior [8, 9, 10, 14].
It has been calculated in many systems including the quantum spin chains
which belong to the Ising and the TLL universality class [15]. The entangle-
ment entropy is also useful beyond the one-dimension. For two-dimensional
quantum systems, the entanglement entropy obeys an area law in gapped
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1.1 Background

phases with a subleading universal term, which is called the topological en-
tanglement entropy, indicating the topological order [12, 13]. It has been cal-
culated in many systems including fractional quantum Hall systems [24, 25]
and quantum spin liquids [26, 27, 28, 29, 30, 31].

Rényi-entanglement entropy

Calculating a full reduced density matrix ρA for a generic interacting Hamil-
tonian is an astounding challenge. We can avoid the difficulty by taking a
different route. This approach is the “replica trick” [8, 10], where we first
calculate an alternative quantity, the Rényi-entanglement entropy. It is de-
fined as S

(n)
E = 1

1−n
ln(TrAρ

n
A). Although calculating TrAρ

n
A for a generic

n in a quantum field theory is still a daunting task, it is hopeful to calcu-
late it for positive integer n: the calculation of TrAρ

n
A is then replaced by

a computation of the partition function on a corresponding Riemann sur-
face, where n replicas are connected in a non-trivial way. The analytical
continuation reduces the Rényi-entanglement entropy to the entanglement
entropy as limn→1 S

(n)
E = − limn→1

∂
∂n
TrAρ

n
A = SE. The replica formula-

tion has developed not only in analytical methods, also in numerical meth-
ods [18, 19, 20, 21, 22].

Entanglement spectrum

As a generalization of the entanglement entropy, a new idea has been pro-
posed by Li and Haldane [36]. They introduced an entanglement Hamiltonian
HE from the reduced density matrix as

ρA = TrĀ|Ψ⟩⟨Ψ| ≡ exp(−HE). (1.1)

The entanglement entropy can be interpreted as the thermodynamic entropy
of a system described by the “Hamiltonian” HE at an inverse “tempera-
ture” β = 1. They conjectured universal information is embedded in its
low-energy spectrum and more complete information can be read off than
the entanglement entropy. Actually, in two-dimensional topological states,
such as quantum Hall systems [39, 49, 41], topological insulators [43, 42]
and symmetry-protected topological phases [44, 45], its spectrum, which is
called the entanglement spectrum, has been found to show gapless structures
corresponding to the low-energy edge states.

However, there is a rather general problem in this approach, as pointed
out in Ref. [50]. We define the canonical ensemble of the entanglement Hamil-
tonian as

ρ̃A ≡ exp(−βEHE), (1.2)
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CHAPTER 1. INTRODUCTION

where βE is an inverse temperature for the entanglement Hamiltonian. By
definition Eq. (1.1) and Eq. (1.2), physical observables OA in a sub-system A
of the ground state |Ψ⟩ is identical to the thermodynamic expectation value
of the canonical ensemble ρ̃A at the inverse temperature βE = 1, which is
described by the identity Tr(ρAOA) = Tr(e−HEOA). On the other hand, the
low-energy spectrum of HE probes the information in the limit βE → ∞. In
general, phases of the entanglement Hamiltonian HE in these two different
temperatures need not be identical. We can expect phase transitions of HE

by varying the entanglement inverse temperature βE. This indicates that the
low-energy spectrum of HE does not necessarily reflect the state |Ψ⟩. Even
though the low-energy spectrum of HE changes, it does not always reflect
actual phase transitions of |Ψ⟩. This situation is depicted in Fig. 1.1.

It has been also considered that tuning the temperature and investigating
the thermodynamics of HE [46, 47, 48, 49, 51]. These studies teach us a
lesson about the entanglement spectrum: Although universal information of
a ground state can be read off from the entanglement spectrum, we have to
keep in mind that its low-energy spectrum can exhibit a different universal

βE

δ

βE = 1

βE ≫ 1

!"#$%&'

!"#$%&(

δcδ
E

c

Figure 1.1: Schematic picture of phase diagram of the entanglement Hamil-
tonian HE. δ is an external parameter of a parent Hamiltonian of the ground
state |Ψ⟩. δc denotes a physical phase transition point of the state |Ψ⟩. The
low-energy spectrum of HE shows a pseudo-phase transition at δEc .
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1.1 Background

behavior reflecting the phase structure with entanglement temperature. It is
indispensable to investigate the properties of the canonical ensemble Eq. (1.2)
in the context of entanglement study.

1.1.2 Shannon measures

(Rényi-)Shannon entropy

Following the great success of the entanglement entropy and the entan-
glement spectrum, various other information-theoretic quantities have been
proposed [52]. As we have seen, the entanglement entropy and the entan-
glement spectrum are not complete measure, and considerable attention is
required. Multifaceted approach from different standpoints is indispensable
in the present situation.

Another hopeful measure is the Shannon entropy, which quantifies a com-
plexity or localization of a wave function in a given configuration (Hilbert)
space. For a ground state |Ψ⟩ =

∑
i ψi|i⟩, the Shannon entropy is defined

as SS = −
∑

i |ψi|2 ln |ψi|2. The Rényi-Shannon entropy can also be de-

fined as S
(n)
S = 1

1−n
ln(
∑

i |ψi|2n) in analogy with the Rényi-entanglement
entropy. As taking the limit n → 1, it is identical to the Shannon en-
tropy. For a many-body system where the Hilbert space expands exponen-
tially with the number N of the particles, a volume law S(n) = a(n)N +
b(n) + o(1) is naturally expected for the Rényi-Shannon entropy, where a(n)

is a non-universal constant and b(n) is a subleading contribution. Although
the Rényi-Shannon entropy is obviously basis dependent, recent studies have
revealed that the universal properties can be extracted from the subleading
term [54, 55, 56, 57, 58, 59, 60, 61, 62].

As an explicit example, we show an application to one-dimensional critical
systems. For one dimensional quantum systems, universal information of the
underlying conformal field theory of the system can be read off from its
scaling behavior [54, 55, 56, 57, 58, 61, 62]. In particular, for a TLL system
with periodic boundary condition, the subleading term of the Rényi-Shannon
entropy is given as [54, 56]

b(n) = −1

2

(
lnK +

lnn

n− 1

)
for n < nc = p2K (1.3)

b(n) =
1

1− n

(n
2
lnK + ln 2

)
for n > nc, (1.4)

where p is the multiplicity of |imax⟩, which is the most probable state, and
K is a TLL parameter, which characterizes a TLL phase. It is particularly
worth noting that the behavior of the subleading term for n < nc is different
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CHAPTER 1. INTRODUCTION

from the one above nc. This means that the Rényi-Shannon entropy shows a
phase transition, thus it is non-analytic around nc. It is required considerable
attention as taking limit n→ 1.

It works not only for a one-dimension, but also for several two-dimensional
quantum systems. The universal contribution, which is related to symmetry
breaking, is contained in the subleading term of the Shannon entropy. The
Rényi-Shannon entropy in two-dimensional quantum systems is numerically
calculated with the help of powerful quantum Monte Carlo simulations [59,
60].

Shannon Hamiltonian

We have seen that the entanglement spectrum includes more complete infor-
mation than the entanglement entropy. It is natural to generalize this picture
to the Shannon entropy. For a quantum state |Ψ⟩ =

∑
i ψi|i⟩, if the weights

of the basis states {pi = |ψi|2} are interpreted as classical Boltzmann weights,
we can associate a classical “Hamiltonian” HS(i) to each configuration i as

pi = |ψi|2 ≡ exp(−HS(i)). (1.5)

We call it the Shannon Hamiltonian. The Shannon entropy can be regarded
as the thermodynamic entropy of a system described by the Shannon Hamil-
tonian HS at the inverse “temperature” β = 1. Furthermore, we introduce
the canonical ensemble of the Shannon Hamiltonian as

p̃i ≡ exp(−βSHS(i)), (1.6)

where βS is an inverse temperature for the Shannon Hamiltonian. In analogy
with the entanglement spectrum, it is expected that universal information
of the ground state |Ψ⟩ can be accessed from the spectrum of the Shannon
Hamiltonian HS. Furthermore, the investigation of the canonical ensemble
of the Shannon Hamiltonian is essential to extract veritable information of
the ground state |Ψ⟩. The investigation of the Shannon Hamiltonian will
hopefully lead us to reach a better understanding of the state |Ψ⟩. However,
in the present circumstances, the study of the Shannon Hamiltonian is limited
compared with the entanglement spectrum [61]. There is a pressing need to
fill in a hole.

1.2 Motivations

We have briefly reviewed several information-theoretic quantities as promis-
ing tools to detect non-trivial phases. We have seen that the entanglement
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1.2 Motivations

Hamiltonian HE and the Shannon Hamiltonian HS contain more complete
information than the entanglement entropy and the Shannon entropy, respec-
tively. It is crucial to investigate the canonical ensemble of these Hamiltonian.

In this thesis, we attempt to develop a new direction of study, motivated
by the Shannon measures. To augment the understanding of the canonical
ensemble of the Shannon Hamiltonian Eq. (1.6), we introduce a new state,
which we call a Rényified state,

|Ψ(n)⟩ ≡ 1√
Z(n)

∑
i

ψn
i |i⟩, (1.7)

where
Z(n) =

∑
i

|ψi|2n =
∑
i

e−nHS(i) (1.8)

is the normalization factor. This definition means that the quantum expec-
tation value of a physical observable in the Rényified state corresponds to
the thermodynamic expectation value under the Shannon Hamiltonian HS at
the inverse temperature βS = n since ⟨Ψ(n)|Âdiag.|Ψ(n)⟩ = 1

Z(n)

∑
i |ψi|2nAii =

1
Z(n)

∑
i
1
Z̃
e−nH̃iAii. Thus studying the Rényified state includes that of the

Shannon Hamiltonian. Actually, the partition function Z(n) has been studied
in Refs. [54, 80, 56, 62]. However, the correlation functions in the Rényified
state have not been explicitly considered. There are more in the Rényified
state than in the classical Shannon Hamiltonian since “non-diagonal physical
quantities” with respect to the selected basis, such as Sx correlation func-
tion in Sz basis, cannot be interpreted as thermodynamic expectation values
under the Shannon Hamiltonian HS. Thus, the study of Rényified states
and phase transitions among them could provide us a deeper understanding
of the original quantum state. As a first step, we would like to answer the
question: What are the properties of the new quantum state with the change
of n ?

Let us advance the naive consideration about the Rényified state. For
an original ground state |Ψ⟩ =

∑
i ψi|i⟩, there are the largest amplitudes

which correspond to the most probable states {|imax⟩} in the distribution
of amplitudes of the coefficients {|ψi|2}. By raising the coefficients to the
power of n, the most probable states are emphasized if n > 1. On the other
hand, for n < 1, they are depressed and the difference among the amplitudes
are decreased. Thus we can expect that the Rényified state is in the ordered
phase corresponding to the most probable states {|imax⟩} in the limit n→ ∞
while it should be disordered (all amplitudes are identical) as taking the limit
n → 0. This indicates that there should be phase transition(s) as changing
the Rényi index n. It is interesting to see how the Rényified state changes
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Figure 1.2: Conceptual diagram of an issue in this thesis. The entanglement
Hamiltonian contains more information than the (Rényi-)entanglement en-
tropy. The Shannon Hamiltonian includes more information than the (Rényi-
)Shannon entropy. We define the Rényified state beyond the Shannon Hamil-
tonian. Investigating the Rényified state is the main issue in this thesis.

with the change of n. In addition, its behavior should depend on the initial
ground state |Ψ⟩. Thus the introduction of the Rényified state presents a
following question: How is the phase diagram of the Rényified state with the
change of n and the initial state ? We can expect a rich phase diagram in
the Rényified state as presented in Fig. 1.3.

Although the manipulation of the “Rényification” is simple, its effect is
quite non-trivial since this manipulation acts on a state, not on a Hamilto-
nian. Even if we start from a ground state |Ψ⟩ of a Hamiltonian which has
short-range interactions, we expect that the Rényified state |Ψ(n)⟩ has a non-
trivial parent Hamiltonian which has long-range interactions in general. This
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Figure 1.3: Schematic picture of phase diagram of the Rényified state
Eq. (1.7). δ is an external parameter of a parent Hamiltonian of the initial
state |Ψ⟩ (n = 1). δc denotes a physical phase transition point of the initial
state |Ψ⟩. Rich phase diagram can be expected by replica manipulation.

makes us feel that investigating the Rényified state is a daunting challenge in
microscopic point of view. However, this problem seems to be handled from
a different perspective.

Let us consider an one-dimensional quantum system with periodic bound-
ary condition. We adopt the 1 + 1 dimensional point of view by introducing
a transfer matrix T = e−H , which connects configurations on neighboring
“rings” in imaginary time direction. In terms of the transfer matrix T , a
square of a ground state coefficient is expressed as

|ψi|2 = |⟨i|Ψ⟩|2 = lim
β→∞

⟨A|T β|i⟩⟨i|T β|B⟩
⟨A|T 2β|B⟩

, (1.9)

where |Ψ⟩ is a ground state of H, and |A⟩ and |B⟩ are some states which are
not orthogonal to the ground state. Thus the numerator and the denominator
in Eq. (1.9) are interpreted as partition functions on a cylinder, which extends
in imaginary time direction, with or without restriction of configurations at a
specific imaginary time (say τ = 0). From this perspective, |ψi|2n this can be
identified with n replicas of the infinite cylinder (in τ direction). All replicas
are bound at τ = 0, which means that degrees of freedom on each replica
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CHAPTER 1. INTRODUCTION

has a same configuration at τ = 0. Thus the investigation of the Rényified
state can be mapped to a problem in a replicated system with a constraint.
As we will discuss details in chapter 4, the problem is further mapped to a
boundary problem, where the boundary is normal to the imaginary time axis,
by “folding trick”. We note that the boundary is along the imaginary time
axis in many condensed-matter applications of the boundary problem, such
as an electronic transport through an impurity and Kondo problem. Thus
this is, along with the quantum quench, one of exceptional cases in which a
boundary perpendicular to the imaginary time axis is relevant.

Although the introduction of the Rényified state, i.e. the replica manipu-
lation is a non-trivial operation, it can be a series of “physical” manipulations
under a certain rule as we have stated above. Thus we expect that the replica
manipulation can produce a new class of states which cannot be obtained by a
simple manipulation of a Hamiltonian. Actually, we will see that this indeed
happens later.

In this thesis, we address above questions in the case where |Ψ⟩ belongs
to the TLL universality class. Since the present study is, to the best of our
knowledge, the first step to investigate the Rényified states, we need a “re-
liable base” for the study. One-dimensional physics is well understood than
higher-dimensional physics with plentiful tools: field theoretical approach,
numerical methods and exact solutions. CFT is a very powerful tool to clas-
sify one-dimensional critical phenomena. Bosonization deals with a discrete
one-dimensional problem as a continuous effective field theory in a unified
manner. It gives us a simple viewpoint why many one-dimensional critical
systems show a universal behavior described by a free boson filed theory.
It is nothing but a TLL, which is described by a c = 1 CFT. CFT also
well describes a TLL with boundary. The boundary CFT formalism leads a
systematic and a precise analysis to boundary problems.

Actually, the TLL is not only tractable but also interesting for the inves-
tigation of a Rényified state. Let us consider the S = 1/2 XXZ spin chain
defined as

H =
∑
i

[
J
(
Sx
i S

x
i+1 + Sy

i S
y
i+1

)
+∆Sz

i S
z
i+1

]
. (1.10)

It is known that the ground state of the model is a gapless TLL state for
−1 < ∆ ≤ 1 in the convention |J | = 1. For ∆ ≤ −1 (1 < ∆), the system
has a gap and the ground state is a ferromagnetic (antiferromagnetic) state.
The TLL parameter K, which characterizes a TLL phase, is related to the
anisotropy as K−1 = 2

(
1− 1

π
arccos(∆)

)
. This model is reduced to the

spinless fermion chain after the Jordan-Wigner transformation as we will see
in the Section 2. In particular, since the anisotropic term ∆Sz

i S
z
i+1 in the

XXZ model takes a role as an interaction term in a fermion model, the XXZ
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1.2 Motivations

model at ∆ = 0 corresponds to the free fermionic chain. The solution is
immediate since it is described as the Slater determinant. We express the
ground state in the fermion language as

|Ψ(∆ = 0)⟩ =
∑
{xj}

ψ{xj}|{xj}⟩, (1.11)

where {xj} = (x1, x2, · · · , xN) denotes positions of the sites where fermions
are located and N is the number of fermions. To translate it into the spin
language, it is enough to replace {xj} with positions of the sites where down
spins are. The coefficients in Eq. (1.11) are written as [54]

ψ{xj} =
1√
LN

∏
j<k

2i sin
[π
L
(xk − xj)

]
. (1.12)

This is a TLL ground state and its TLL parameter is K = 1.
Next let us consider another model, the Haldane-Shastry model defined

as [92, 93]

H =
∑
j<k

S⃗j · S⃗k

x̃2j,k
, (1.13)

where x̃j,k =
L
π
sin
[
π
L
(xk − xj)

]
is the cord distance of the circle (see Fig. 1.4).

This model can be regarded as the descendant of the Heisenberg model (S =
1/2 XXZ model at ∆ = 1) with the long-range interactions. The universality
class is the TLL, which has the TLL parameter K = 1/2. The ground state
is derived exactly as [92, 93]

|Ψ⟩HS = C
∑
{xj}

∏
j<k

sin2
[π
L
(xk − xj)

]
|{xj}⟩, (1.14)

where C is a normalization factor.
Comparing Eq. (1.11) with Eq. (1.14), a hidden structure of a TLL can be

read off. First, they share similarity with the sine form of the ground-state
coefficients in the position-basis {xj}. Second, the TLL parameter decreases
by half by raising the ground-state coefficients to the power of two. Based
on these facts, let us introduce a new quantum state as

|Ψ(n)(∆ = 0)⟩ = 1√
Z(n)(∆ = 0)

∑
{xj}

∏
j<k

sinn
[π
L
(xk − xj)

]
|{xj}⟩, (1.15)

where Z(n)(∆ = 0) =
∑

{xj}
∏

j<k sin
2n
[
π
L
(xk − xj)

]
is a normalization fac-

tor. This is nothing but the Rényified state defined as Eq. (1.7) for the

11



CHAPTER 1. INTRODUCTION

S = 1/2 XXZ spin chain at ∆ = 0. We can conjecture that this state be-
longs to the TLL universality class, which has a TLL parameter K(n) = 1/n,
if we respect the fact that the distribution of the ground-state coefficients
determine the feature of the ground state.

θ

xj

xk
L

π

sin
[

π

L
(xk − xj)

]

Figure 1.4: The distance of the two charges on a one-dimensional lattice of
the size L with periodic boundary condition. The cord distance is given as
L
π
sin
[
π
L
(xk − xj)

]
since the angle is given by θ = 2π

L
(xk − xj),

Furthermore, let us consider a diagonal quantity Â({xj}) in the position-
basis of the Rényified state as a density-density correlation. It is given by

⟨Ψ(n)(∆ = 0)|Â({xj})|Ψ(n)(∆ = 0)⟩ = 1

Z(n)

∑
{xi}

∏
j<k

sin2n
[π
L
(xk − xj)

]
A({xi}).(1.16)

As we have seen in the previous section, the quantity Eq. (1.16) can be
interpreted as a thermal expectation value in the Boltzmann weight e−βSHS

by defining a corresponding classical Hamiltonian as

HS({xj}) = −
∑
j<k

log
[
sin
{π
L
(xk − xj)

}]
, (1.17)

and associating the parameter in the Rényified state and the inverse tem-
perature as 2n = βS. This is known as the Dyson-Gaudin gas model, where
charges on a 1D lattice interact via a 2D Coulomb potential [54, 95]. Thus
the physics in the Rényified state defined as Eq. (1.15) is governed by the
Hamiltonian Eq. (1.17). Changing the index n corresponds to tuning tem-
perature of the system. The phase diagram has been studied in Ref. [95]:

12



1.2 Motivations

for a rational filling f = N/L = 1/2, 1/3, · · · , a transition point is derived
as nc = 1/f 2. At a high temperature, the system is critical and a charge-
charge correlation decays algebraically. As the temperature is decreased, the
system becomes a crystal and the correlation has a long-range order. If we
consider the ground state of the original XXZ model, the total magnetiza-
tion ⟨

∑
i S

z
i ⟩ is zero and this corresponds to a half-filling case f = 1/2 in the

fermionic model. Thus we expect that the transition point is nc = 4. For
n > nc = 4, the long-range order of the longitudinal correlation should be
seen in the quantum state defined as Eq. (1.15). We note that the classical
mapping only works for diagonal quantities. For non-diagonal quantities, as
the transverse correlation, we cannot say anything by this analysis.

Based on the consideration stated above, we conjecture a “phase diagram”
of the Rényified state |Ψ(n)(∆ = 0)⟩ as presented in Fig. 1.5. For n < nc =
4, we speculate that the state is a TLL and its TLL parameter changes
continuously. On the other hand, for n > nc, we conjecture the state is an
antiferromagnetic state which is a counterpart of the charge ordered state in
the fermion language. The phase diagram in Fig. 1.5 reminds us of the one
for the S = 1/2 XXZ spin chain: a TLL phase broadens for −1 < ∆ ≤ 1
and an antiferromagnetic phase does for ∆ > 1. It is necessary to examine
whether the phase diagram of the Rényified state for the S = 1/2 XXZ spin
chain at ∆ = 0 in Fig. 1.5 is correct or not. In addition, it is interesting to
address a question whether or not the Rényified state starting from a TLL
ground state at a general ∆ has a similar structure.

Antiferro

1
n

K = 1

2

K = 1/2

4

TLL

(original state)

Figure 1.5: A conjecture of a phase diagram of the quantum state |Ψ(n)(∆ =
0)⟩ defined as Eq. (1.15). At n = 1 and n = 2, the state is known as the
TLL state exactly.
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CHAPTER 1. INTRODUCTION

1.3 Objectives

We have introduced the Rényified state defined as Eq. (1.7), through the
consideration of the Shannon Hamiltonian. The Shannon entropy and the
Shannon Hamiltonian have received less attention than the entanglement
entropy and the entanglement spectrum although recent works have shown
their distinct properties. We also have raised a question about the properties
of the Rényified state and its phase diagram starting from a TLL.

The objectives of this thesis are as follows.

• Investigating physical properties and making a phase diagram of the
Rényified state starting from a TLL ground state.

• Developing an understanding of the (Rényi-)Shannon entropy and Shan-
non Hamiltonian through an investigation of the Rényified state.

1.4 Outline

The thesis is organized as follows. Two chapters 2 and 3 are review parts
of this thesis. Chapter 4 is the main part of this thesis. In chapter 5, we
summarize the thesis.

In chapter 2, we review the TLL and the Bosonization technique in one-
dimensional systems. We will see the S = 1/2 XXZ spin chain can be
described by a free boson field theory by bosonization. In chapter 3, we
briefly review the Boundary CFT. Chapter 4 consists of a numerical section,
two analytical sections, a section about exact solutions and the last section
which makes a connection between the Rényified state and Shannon entropy.
In the first section, we present numerics for spin correlations in the Rényified
state starting from a TLL in the S = 1/2 XXZ spin chain. Numerical
results indicate a possibility that the Rényified state can be regarded as a
TLL with a different TLL parameter. They also suggest an existence of
transition and a strange behavior of the spin correlations for large n: the
longitudinal correlation has long-range order but the transverse correlation
decays algebraically. In the second section, we formulate the problem by
replica field theory. This can explain why the Rényified state is described
by a TLL with a modified TLL parameter K/n. A transition mechanism
will also be revealed by adding perturbations. In the section 3, we map the
problem to the boundary CFT by folding trick. An explicit construction of
a conformal invariant boundary state can explain the tricky behavior of the
transverse correlation function after the transition. In the last section, we
mention a relationship between the Rényified state and the Rényi-Shannon
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1.4 Outline

entropy. Boundary CFT approach give a reinterpretation of the behavior of
the Rényi-Shannon entropy. In the last chapter, we summarize the thesis.
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Chapter 2

Tomonaga-Luttinger liquid and
bosonization

In this chapter, we present an important class of states in one-dimensional
quantum systems, which is called the Tomonaga-Luttinger liquids (TLL).
In the context of the conformal field theory (CFT), TLL are described by
the free boson field theory, with the central charge c = 1. The Luttinger
parameter K characterizes a TLL and controls the power-law exponents of
the many physical quantities, including spin-spin correlations. We review the
low-energy properties of gapless one-dimensional quantum systems, which are
generally described in terms of the free boson field theory by bosonization.
As a concrete example, we will bosonize the S = 1/2 XXZ spin chain and
derive the sine-Gordon model, which is the free boson field theory with a
vertex operator as a perturbation.

2.1 Bosonization of one-dimensional quantum

systems

In this section, we introduce a bosonization technique to simply describe
the low-energy physical properties of a TLL. Although there are a lot of
nice reviews which describe the bosonization technique precisely and in de-
tail [2, 4, 70], we briefly review it here to be self-contained. We choose
the “phenomenological” bosonization to give a physical interpretation of the
bosonization following Ref. [3], originally proposed by Haldane [5].

We start with a general one-dimensional systems. A density operator is
given as

ρ(x) =
∑
i

δ(x− xi), (2.1)
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where xi is a position operator of the i-th particle of the system. Then we
introduce a labeling field operator ϕl(x), which is continuous function of the
position and takes the value ϕl(xi) = 2πi. We can define the field uniquely
thanks to the one-dimensional property. The introduction of the labeling
field leads the density operator to a tractable form as

ρ(x) =
∑
i

∂xϕl(x)δ(ϕl(x)− 2πi)

=
∂xϕl(x)

2π

∑
n∈Z

einϕl(x) (2.2)

by using the Poisson summation formula. Let us introduce a field ϕ relative
to the perfect crystal position as

ϕl(x) = 2πρ0x−
ϕ

R
, (2.3)

where ρ0 is an average density and R is a constant. As we will explain later,
R is interpreted as a periodicity of the filed ϕ. In terms of the relative field
ϕ, the density is expressed as

ρ(x) =

(
ρ0 −

1

2πR
∂xϕ(x)

)∑
n

ein(2πρ0x−
ϕ(x)
R ). (2.4)

This is a useful expression of the density operator since we can easily see its
low-energy property by only taking small n of its expansion.

We furthermore introduce a single-particle creation operator as

ψ†(x) = eiRθ(x)ρ1/2(x), (2.5)

where θ is a phase operator. It should satisfy the commutation (anticommu-
tation) relation for bosons (fermions) as[

ψ(x), ψ†(x′)
]
= δ(x− x′). (2.6)

This is satisfied if the bosonic fields ϕ and θ satisfy the commutation relation[
ϕ(x),

1

2π
∂x′θ(x′)

]
= iδ(x− x′). (2.7)

Thus the field ϕ and θ have a canonical commutation relation. This implies
that θ is a dual field of ϕ.

A Hamiltonian of the system should contain an interaction term
∫
dxρ2(x)

and a kinetic term
∫
dx(∂xψ

†(x))(∂xψ(x)). Due to the form of the operators
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2.1 Bosonization of one-dimensional quantum systems

Eq. (2.4) and Eq. (2.5), the leading contributions except for constant terms
are (∂xϕ(x))

2 and (∂xθ(x))
2. This symmetry consideration allows us to drop

the cross term. Thus a general Hamiltonian to describe the low-energy prop-
erties of a massless one-dimensional system would be given as

H =
1

4π

∫
dx

[
g (∂xϕ)

2 +
1

g
(∂xθ)

2

]
, (2.8)

where g is determined by a microscopic model, and the spin velocity is set
to be 1. The path integral formulation leads to the action

S =
g

4π

∫
dxdτ (∂µϕ)

2 , (2.9)

by integrating out the field θ. This is nothing but the free boson field theory.
Actually, a TLL is describes by the compactified free boson field theory,
where the bosonic fields ϕ and θ are compactified as

ϕ ∼ ϕ+ 2πR (2.10)

θ ∼ θ + 2π
1

R
. (2.11)

The physics of a TLL is governed by a TLL parameter,

K =
(
2gR2

)−1
. (2.12)

Although g and R affects properties of the TLL only through K and hence
one of them is redundant, we keep both g and R as parameters in this thesis
to compare with other literatures.

Under the compactification Eq. (2.10) and Eq. (2.11), operators which
are consistent with their periodicity are only allowed. Thus we expect that
operators only have the form as eipϕ/R and eiqRθ where p, q ∈ Z. These are
called vertex operators. Long-distance properties of the correlation functions
of the vertex operators are given as⟨

eip
ϕ(0)
R e−ip

ϕ(r)
R

⟩
∝ e

p2

R2 (− 1
g
ln r) = r

− 2p2

2gR2 = r−2p2K (2.13)⟨
eiqRθ(0)e−iqRθ(r)

⟩
∝ eq

2R2(−g ln r) = r−q2 2gR2

2 = r−
q2

2K , (2.14)

where we have used Eq. (2.12). These certainly show the power-law decays
for the masless theory.
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2.2 Bosonic Representation of the S = 1/2

XXZ spin chain

As a concrete example, we consider the bosonization of the S = 1/2 XXZ
spin chain defined as

HXXZ =
∑
i

[
J(Sx

i S
x
i+1 + Sy

i S
y
i+1) + ∆Sz

i S
z
i+1

]
, (2.15)

following Ref. [3]. In what follows, we assume the Hamiltonian of the form
Eq. (2.15) with negative J . By the transformation Sx

i → (−1)iSx
i , S

y
i →

(−1)iSy
i and Sz

i → Sz
i , the parameters change as J → −J .

By performing the Jordan-Wigner transformation

S+
i = c†ie

iπ
∑i−1

j=−∞ c†jcj (2.16)

S−
i = e−iπ

∑i−1
j=−∞ c†jcjci (2.17)

Sz
i = c†ici −

1

2
, (2.18)

the spin Hamiltonian Eq. (2.15) can be mapped to the fermion model as

HXXZ =
∑
i

[
J

2

(
c†ici+1 + h.c.

)
+∆

(
c†ici −

1

2

)(
c†i+1ci+1 −

1

2

)]
. (2.19)

Thus the S = 1/2 XXZ spin chain is equivalent to a spinless fermion chain
with a nearest neighbor interaction. In particular, the system is reduced to
the free fermion model for ∆ = 0. In this case, the Hamiltonian is described
as Eq. (2.8) by bosonization. The interaction part will modify the effective
field theory.

We bosonize the interaction part for half-filling case, ρ0 = 1/2. In the
continuum limit, a lattice constant a→ 0, the interaction part in given as

Hint. ∝
∫
dx

(
− 1

2πR
∂xϕ(x+ a) +

1

2πα
ei(

π
a
(x+a)−ϕ(x+a)

R ) + h.c.

)
×
(
− 1

2πR
∂xϕ(x) +

1

2πα
ei(

π
a
x−ϕ(x)

R ) + h.c.

)
(2.20)

to the second-lowest order of the expansion of the density operator Eq. (2.4).
α is a cutoff as the lattice constant. A simple calculation gives

Hint. ∝
∫
dx

[
2

(2πR2)2
(∂xϕ(x))

2 − λ cos

(
2ϕ(x)

R

)]
. (2.21)
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Thus the effective Hamiltonian of the S = 1/2 XXZ chain Eq. (2.15) in the
masses phase is given by

HXXZ =
1

4π

∫
dx

[{
g (∂xϕ)

2 +
1

g
(∂xθ)

2

}
− λ cos

(
2ϕ

R

)]
, (2.22)

where the constant λ has been determined exactly [85, 87]. We note that the
prefactor g in Eq. (2.22) is modified from the original one in Eq. (2.8). The
Hamiltonian Eq. (2.22) is known as the sine-Gordon model, which has been
studied strenuously [88, 89]. This is the free boson field theory perturbed by
a cosine potential. The scaling dimension of the cosine potential is

dλ =
4

2gR2
= 4K, (2.23)

where K is the TLL parameter defined as Eq. (2.12). The TLL parameter
K is related to the anisotropy and evaluated analytically from Bethe ansatz
as [90, 91]

K−1 = 2

(
1− 1

π
arccos∆

)
, (2.24)

in the convention |J | = 1. We have a TLL phase if the most leading per-
turbation cos(2ϕ/R) becomes irrelevant, dλ ≥ 2. This indicates that the
ground state of the XXZ model is a gapless TLL state for −1 < ∆ ≤ 1.
For 1 < ∆, the perturbations becomes relevant and the bosonic field ϕ is
locked at the minima of the cosine potential. This corresponds to a gapped
antiferromagnetic phase. For ∆ ≤ −1, the ground state is in a ferromagnetic
phase.

We furthermore represent the spin operators in a bosonic fields language
for the half-filling case (ρ0 = 1/2). The spin operator Sz is just the density
as Eq. (2.18), thus it is described as

Sz(x) ∼ − 1

2πR
∂xϕ+ a1(−1)x cos

(
ϕ

R

)
(2.25)

to the second-lowest order of the expansion of the density operator Eq. (2.4).
a1 is a non-universal constant, which depends on a microscopic model. The
S± operator is more complicated because they contain the string as Eq. (2.16)
and Eq. (2.17). Despite its complexity, it can be handled in the continuum
limit since the string summation is reduced to the integral of the space-
derivative. Finally the S± operator is given as [3]

S±(x) ∼ e±iRθ

[
b1 + b2(−1)x cos

(
ϕ

R

)]
, (2.26)
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in the convention J is negative. b1 and b2 are non-universal coefficients.
The bosonic representation Eq. (2.25) and Eq. (2.26) gives behaviors of

spin correlation functions as follows:

⟨Sz(0)Sz(r)⟩ = − K

2π2

1

r2
+ C1(−1)r

1

r2K
, (2.27)

⟨Sx(0)Sx(r)⟩ = C2
1

r1/2K
+ C3(−1)r

1

r2K+1/2K
, (2.28)

where C1, C2 and C3 are non-universal coefficients. We note that here the
prefactor J is defined to be negative in the Hamiltonian Eq. (2.15). For
J > 0, the uniform part and the staggered part of the S± operator Eq. (2.26)
are exchanged, thus the uniform part and the staggered part of the transverse
correlation Eq. (2.28) will also be exchanged.
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Chapter 3

Boundary CFT of the free
boson field theory

In this chapter, we briefly review the boundary CFT formulation of the multi-
component free boson field theory. The study of boundary CFT was greatly
made progress by Cardy [63, 64], and in the context of the string theory [65,
66, 67]. It has also been energetically investigated in the context of the con-
densed matter physics, such as quantum impurity problem [4, 69, 70, 72],
defect line [76, 75] and junctions of quantum wires [77, 78, 79]. Further-
more, recent hot topic is the application of the boundary CFT formalism to
the study of the entanglement entropy [80] and/or the entanglement spec-
trum [37, 38]. Here, we summarize relevant formulae in the boundary CFT
of the multi-component free boson field theory mainly following Ref. [80].

3.1 Boundary condition in CFT

Boundary problems are common in condensed matter physics. An example
is a transport problem of one-dimensional electron gas through a point-like
barrier. This is a set up of the celebrated work of Kane and Fisher [69, 70].
This type of problems has following features. At first, there are extended
gapless quantum degrees of freedom in a bulk. Second, these interact with a
localized degrees of freedom, such as an impurity at a point. Generally, these
problems can be formulated as a critical bulk filed theory with a boundary.
In 1 + 1 dimensions, a bulk critical field theory is often described by a CFT.
Thus the induced boundary condition is conformal invariant since the bulk is
conformal invariant. In other words, conformal transformations should map
a boundary onto itself and keep the boundary condition.

Let us consider a CFT on a complex upper half-plane. In this set up,
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the boundary is regarded as a real axis. The conformal invariance of the
boundary implies that there is no flow of energy across the boundary. This
gives a condition to energy-momentum tensor as [1]

T (z) = T̄ (z̄) for z ∈ R, (3.1)

where T (z) (T̄ (z̄)) is the holomorphic (anti-holomorphic) component of the
energy-momentum tensor on a plane. They are related to infinitesimal local
conformal transformations z → z′ + ϵ(z) and z̄ → z̄′ + ϵ̄(z̄) as

T (z) =
∞∑

n=−∞

Lnz
−n−2, T̄ (z̄) =

∞∑
n=−∞

L̄nz̄
−n−2, (3.2)

where Ln and L̄n(z̄) are Virasoro generators of infinitesimal local conformal
transformations ϵ(z) =

∑∞
n=−∞ ϵnz

n+1 and ϵ̄(z̄) =
∑∞

n=−∞ ϵ̄nz̄
n+1[1].

Physically realizable boundary conditions in CFT are not only conformal
invariant but also stable in a renormalization group (RG) sense. As the
CFT classifies bulk field theories, conformally invariant boundary conditions
are also classified in the boundary CFT. Let us consider a RG theory of
boundary conditions. In the low-energy limit, generically the most stable
boundary condition among those permitted by the symmetries of the system
will be realized among several kinds of boundary fixed points. Thus the first
important problem is to enumerate all possible conformal invariant boundary
fixed points for a given critical bulk CFT. We note that this is a classification
of the boundary condition in a particular bulk universality class. If the
bulk universality is different, the corresponding boundary universality class
is changed as in Fig. 3.1.

3.2 Conformal invariant boundary state

In 1+1 dimensions, many applications of the boundary CFT can be classified
into two groups. First one is a case where a boundary is along the imaginary
time axis. This includes the electronic transport through an impurity in a
quantum wire and Kondo problem. If we consider a half-infinite system,
the system can be described as a 1 + 1 dimensional field theory on a half-
infinite plane by path-integral representation. In this case, a time-evolution
Hamiltonian depends on the boundary condition.

Another type of boundary problems is that where a boundary is normal
to the imaginary time axis. A quantum quench is included in this class of
problems [81, 82, 83]. In a quench, an initial state |Ψ0⟩ is prepared as the
ground state of a Hamiltonian H0 + λH ′. At t = 0, the parameter of the
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Figure 3.1: Schematic picture of RG flow of a boundary condition. In low-
energy theory, a boundary condition renormalizes to a fixed point boundary
condition. If the bulk universality is different, the stable fixed boundary
condition can be different.

Hamiltonian is quenched as λ → 0 and the system evolves unitarily accord-
ing to the dynamics given by the hamiltonian H0. By regarding the initial
state as a boundary state, a calculation of physical quantities such as the re-
turn amplitude ⟨Ψ0|e−iHt|Ψ0⟩ can be mapped to a boundary problem. This
situation is different from the previous examples since the boundary is now
perpendicular to the imaginary time axis. Here information of the boundary
is embedded in a boundary state and time-evolution Hamiltonian is inde-
pendent of the boundary condition. Of course, a boundary state considering
above should be conformal invariant. The conformal invariance gives a con-
dition to a boundary state |B⟩ as(

T (z)− T̄ (z̄)
)
|B⟩ = 0, (3.3)

at the boundary. Mathematically, these two situations are equivalent under
the rotation of the Euclidean space-time. In fact, the equivalence is frequently
used in the boundary CFT, as we will see later.

We have considered the boundary problems on the half-infinite plane. We
can also consider a boundary theory on a cylinder geometry, which is relevant
with a topic of this thesis. We prepare a half-infinite cylinder of the size L
in space (x) direction and half-infinite in τ -direction. There are a boundary
at imaginary time, say τ = 0. This boundary can be regarded as boundary
state since this set up is similar to the right case in Fig. 3.2.

As we have seen, physically realizable boundary conditions are invariant
under conformal transformations. On a cylinder, this gives a condition to a
boundary state |B⟩ as(

Tcyl.(τ = 0)− T̄cyl.(τ = 0)
)
|B⟩ = 0, (3.4)
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τ

x

B

|B〉

HB H

τ

x

Figure 3.2: Two different set up of boundary problems. In the left panel, a
boundary is parallel to the imaginary time axis. In this case, a time-evolution
Hamiltonian depends on the boundary condition. On the other hand, a
boundary is normal to the imaginary time axis in the right panel. In this
situation, a boundary can be viewed as a boundary state. Information of the
boundary is embedded in a boundary state and time-evolution Hamiltonian
is independent of the boundary condition.

where τ = 0 denotes the position of the boundary. Tcyl.(T̄cyl.) is the holo-
morphic (anti-holomorphic) component of the energy-momentum tensor on
the cylinder. The mode expansion of the energy-momentum tensor is given
as [1]

Tcyl. =

(
2π

L

)2
(

∞∑
m=−∞

Lme
−i 2π

L
m(x+τ) − c

24

)
(3.5)

T̄cyl. =

(
2π

L

)2
(

∞∑
m=−∞

L̄me
−i 2π

L
m(x−τ) − c

24

)
(3.6)

In terms of Virasoro generators, the boundary condition Eq. (3.4) becomes(
Lm − L̄−m

)
|B⟩ = 0, (3.7)

for any integer m. The solution is derived by Ishibashi, and it is known as
the Ishibashi state [73].

We have seen two different pictures of boundary problems, where bound-
ary is along or normal to the τ direction. In case of cylinder geometry,
these situations are connected by performing modular transformation, which
exchanges the roles of space and imaginary time directions. This connec-
tion gives an additional requirement, Cardy’s consistency condition [64], on

26



3.3 Cardy’s consistency condition

boundary states. In fact, the Ishibashi state, the solution of Eq. (3.7), itself
is not physically realizable since it does not satisfy Cardy’s condition. In
general, we should take a linear combination of the Ishibashi states to satisfy
the condition. We will derive this condition in next section.

3.3 Cardy’s consistency condition

We again consider a boundary theory on a cylinder of the size L× β, where
L is the circumference in space direction and β is the height in τ -direction.
There are two boundaries at different imaginary times, say τ = 0 and β.
These two boundaries can be regarded as boundary states as a left panel in
Fig. 3.3.

For a given pair of boundary conditions, the partition function is given
by

ZAB = ⟨A|e−βH |B⟩, (3.8)

where |A⟩ (|B⟩) is the boundary state at τ = 0 (τ = β) and H is a Hamil-
tonian with periodic boundary condition in the space direction. This is ex-
pressed as a function of q = e2πiγ = e−2πβ/L where γ = iβ/L. This scheme is
called the closed string channel in the string theory terminology.

We can express the partition function on a cylinder in another scheme,
in which the time flows around the cylinder by performing modular trans-
formation, which exchanges the roles of space and time. Now the system is
periodic in the time direction and has the edges in the space direction with
boundary conditions A and B. This scheme is called the open string channel.
In this picture, the Hamiltonian depends on the boundary conditions at both
ends and its spectrum depends on the boundary conditions. This is to be
compared with the scheme in the closed string channel, in which the bound-
ary conditions are embedded in the boundary states and the Hamiltonian is
independent of the boundary conditions. We show the schematic picture of
these two channels in Fig. 3.3

In the open string channel, the partition function is expressed as a func-
tion of q̃ = e−2πi/γ = e−2πL/β:

ZAB = Tr
(
e−LHAB

)
=
∑
h̃

nh̃
ABχh̃(q̃), (3.9)

where HAB is the Hamiltonian with boundary conditions A and B at both
edges and χh̃(q̃) is the Virasoro character of the representation h̃ [1]. The

coefficients nh̃
AB correspond to the number of primary fields with a conformal
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τ

x τ

x

A A

B B

Figure 3.3: Illustration of the closed string channel (left panel) and the open
string channel (right panel). In the closed string channel, the time flows along
the cylinder and the Hamiltonian is independent of the boundary conditions
A and B. In the open string channel, the time flows around the cylinder and
the Hamiltonian depends on the boundary conditions.

weight h̃, and they should be non-negative integers [64]. Furthermore, it is
usually required that

n0
AA = 1, (3.10)

since h̃ = 0 corresponds to the conformal weight of the identity operator.
However, this shall not apply if there are a multiple vacua. While the Vira-
soro character itself is independent of the boundary conditions, the multiplic-
ities nh̃

AB depend on the boundary conditions. From the partition function in
the open string channel Eq. (3.9), we can read off boundary operators which
are allowed in boundary conditions A and B.

3.3.1 Cardy’s consistency condition

Cardy’s condition is a consistency condition of the partition function between
the closed string and open string channel. In the closed string channel, by
expanding boundary states in Ishibashi states {|h⟩⟩}, the partition function
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Eq. (3.8) is given as

ZAB(q) =
∑
h

⟨A|h⟩⟩⟨⟨h|B⟩χh(q), (3.11)

where χh(q) is the Virasoro character of the representation h [1]. In the open
string channel, the partition function is given by Eq. (3.9). Performing the
modular S transformation to Eq. (3.9), we will obtain the partition function
in the closed string representation:

ZAB =
∑
h̃

nh̃
AB

∑
h

Sh
h̃
χh(q), (3.12)

where Sh
h̃
is a transformation matrix defined as∑

h

Sh
h̃
χh(q) = χh̃(q̃). (3.13)

The partition functions Eq. (3.11) and Eq. (3.12) should be identical, thus

⟨A|h⟩⟩⟨⟨h|B⟩ =
∑
h̃

nh̃
ABS

h
h̃
. (3.14)

This is nothing but the Cardy’s consistency condition.

3.4 Boundary states of the multi-component

free boson

In this section, we will construct conformal invariant boundary states of
the multi-component free bosons, which is relevant with this thesis. A La-
grangian density of the N -dimensional bosonic field theory is given as

L =
g

4π
(∂µϕ⃗)

2. (3.15)

This is the multi-component version of Eq. (2.9). ϕ⃗ is the N -dimensional
bosonic field and it is compactified as

ϕ⃗ ∼ ϕ⃗+ 2πR⃗, (3.16)

where R⃗ is a vector in the compactification lattice Λ. When the periodic
boundary condition is imposed in the space direction, the bosonic fields is
given by the mode expansion as

ϕ⃗(t, x) = ϕ⃗(0) +
2π

L

[
R⃗x+ P⃗ t

]
+

1√
2g

∞∑
n=1

1√
n

{
a⃗Lne

−i 2π
L
nx+

+ a⃗Rn e
i 2π
L
nx−

+ h.c.
}
,(3.17)
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where L is the length of the system in the space direction and x± ≡ x±t. P⃗ is
the conjugate momentum of ϕ⃗(0). Since the bosonic field ϕ⃗ is compactified as
Eq. (3.16), the eigenvalues of P⃗ is quantized as P⃗ = K⃗/g, where K⃗ belongs
to the lattice Λ∗, which is the dual of Λ. a⃗Ln (⃗a

L†
n ) is the left-moving anni-

hilation (creation) operators. a⃗Rn and a⃗R†
n are the right-moving annihilation

and creation operators, respectively. Chiral operators obey the commutation
relations

[aLm,j, a
L†
n,k] = [aRm,j, a

R†
n,k] = δmnδjk, (3.18)

and all other commutators vanish.
The bosonic field ϕ⃗ can be decomposed into left-moving and right-moving

components as
ϕ⃗ = ϕ⃗L(x+) + ϕ⃗R(x−). (3.19)

We can define the dual boson field as

θ⃗ = g(ϕ⃗L − ϕ⃗R), (3.20)

and its mode expansion is given as

θ⃗(t, x) = θ⃗(0) +
2π

L

[
K⃗x+ gR⃗t

]
+

√
g

2

∞∑
n=1

1√
n

{
a⃗Lne

−i 2π
L
nx+ − a⃗Rn e

i 2π
L
nx−

+ h.c.
}
,(3.21)

This implies that gR⃗ is the conjugate momentum of θ⃗(0) and the dual field θ⃗
obeys compactification

θ⃗ ∼ θ⃗ + 2πK⃗, (3.22)

where K⃗ ∈ Λ∗. The mode expansion of bosonic fields Eq. (3.17) and Eq. (3.21)
gives the Hamiltonian for the multi-component free boson as

H =
2π

L

[
1

2

(
gR⃗2 +

1

g
K⃗2

)
+

∞∑
n=1

n
(
a⃗L†n · a⃗Ln + a⃗R†

n · a⃗Rn
)
− c

12

]
, (3.23)

where c is the central charge of the system.
To construct conformally invariant boundary states of the multi-component

free boson, we represent the Virasoro generators in terms of oscillation modes.
Since the chiral component of the energy ‒ momentum tensor is expressed
as T (x+) = g : ∂+ϕ⃗ ∂+ϕ⃗ :, the Virasoro generators for the multicomponent
boson field are given as [80]

Lm =
1√
2g

∑
l

: α⃗L
m−lα⃗

L
l :, (3.24)

L̄m =
1√
2g

∑
l

: α⃗R
m−lα⃗

R
l :, (3.25)
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where

α⃗L
m =


−i

√
na⃗Lm (m > 0)

1√
2

(√
gR⃗ + 1√

g
K⃗
)

(m = 0)

i
√
−ma⃗L†−m (m < 0)

, (3.26)

and

α⃗R
m =


−i

√
ma⃗Rm (m > 0)

1√
2

(
−√

gR⃗ + 1√
g
K⃗
)

(m = 0)

i
√
−ma⃗R†

−m (m < 0)

, (3.27)

by using the mode expansion Eq. (3.17).
Although the general solution of the conformal invariant boundary state

Eq. (3.7) for the multicomponent free boson is not known, a sufficient con-
dition would be given as (

α⃗L
m −Rα⃗R

−m

)
|B⟩ = 0, (3.28)

where R is an N × N orthogonal matrix for all integer m. For m ̸= 0, this
condition leads the boundary state to the form as

exp

[
−

∞∑
n=1

a⃗L†n Ra⃗R†
n

]
|vac⟩, (3.29)

where |vac⟩ is an oscillator vacuum. Since the Hamiltonian for the multi-
component free boson is given as Eq. (3.23), the vacua for oscillator modes

are characterized by the zero mode quantum numbers as |(R⃗, K⃗)⟩. Thus the
solution which satisfies Eq. (3.28) for arbitrary integer m is denoted by

|(R⃗, K⃗)⟩⟩ = exp

[
−

∞∑
n=1

a⃗L†n Ra⃗R†
n

]
|(R⃗, K⃗)⟩. (3.30)

This is nothing but the free boson version of the Ishibashi state [73]. Fur-
thermore, the boundary condition Eq. (3.28) for m = 0,(

√
gR⃗ +

1
√
g
K⃗

)
= R

(
−√

gR⃗ +
1
√
g
K⃗

)
, (3.31)

imposes a restriction to a combination of the winding numbers (R⃗, K⃗). The

linear combination of |(R⃗, K⃗)⟩⟩ which satisfies the condition Eq. (3.31) and
the Cardy’s consistency condition will be realized for conformal invariant
boundary states of the multi-component free boson.
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3.4.1 Dirichlet boundary state

As an explicit example, we construct a boundary state in a simple case. The
simplest choice of the orthogonal matrix is R = I, where I is the identity
operator. The solution of Eq. (3.31) for this choice is given by R⃗ = 0. Since

R⃗ represents the winding number of the bosonic field ϕ⃗, R⃗ = 0 indicates that
ϕ⃗ is fixed at the boundary. Thus this can be interpreted as the Dirichlet
boundary condition (for ϕ⃗ field). The Dirichlet boundary state is given as

|D(ϕ⃗(0))⟩ = gD
∑
K⃗∈Λ∗

eiϕ⃗
(0)·K⃗ |(⃗0, K⃗)⟩⟩, (3.32)

where Λ∗ is the dual compactification lattice and ϕ⃗(0) is the boundary value
of the field ϕ⃗ [80]. The Dirichlet boundary state is a continuous family of

boundary states, which are parameterized by the boundary value ϕ⃗(0). The
prefactor gD is called “g-factor” and determined by the Cardy’s consistency
condition Eq. (3.14). If Λ is a hyper cubic lattice with a lattice constant R,
gD is given as [80]

gD =
(
2gR2

)−N
4 = K

N
4 , (3.33)

where N is the number of components of bosons and K is the TLL parameter
Eq. (2.12).

3.4.2 Neumann boundary state

The next simplest choice of the orthogonal matrix is R = −I. This gives the
solution of Eq. (3.31) as K⃗ = 0. This indicates that the dual field θ⃗ is fixed

at the boundary since K⃗ represents the winding number of θ⃗. By duality, the
filed ϕ⃗ can be fluctuated at the boundary. Thus this can be interpreted the
Neumann boundary condition (for ϕ⃗ field). The Neumann boundary state is
given as

|N(θ⃗(0))⟩ = gN
∑
R⃗∈Λ

eiθ⃗
(0)·R⃗|(R⃗, 0⃗)⟩⟩, (3.34)

where Λ is the compactification lattice and θ⃗(0) is the boundary value of the
field θ⃗ [80]. This is again a continuous family of boundary states parame-

terized by θ⃗(0). The g-factor gN is determined by the Cardy’s consistency
condition Eq. (3.14). If Λ is a hyper cubic lattice with a lattice constant R,
gN is given as [80]

gN =

(
gR2

2

)N
4

= (4K)−
N
4 , (3.35)

32



3.5 Boundary Entropy and g-theorem

where N is the number of component of bosons and K is the TLL parameter
Eq. (2.12).

3.5 Boundary Entropy and g-theorem

We have derived the prefactors of the boundary states, the g-factors, by
using Cardy’s consistency condition. Actually, the g-factor represents the
“ground-state degeneracy” and its logarithm is interpreted as the “boundary
entropy” of the particular boundary condition [68].

This is understood by considering a partition function for a given pair of
boundary conditions Eq. (3.8). In the closed string channel, taking a limit
β → ∞ gives that

ZAB = ⟨A|e−βH |B⟩ −−−→
β→∞

e−βE0⟨A|Ψ⟩⟨Ψ|B⟩ (3.36)

where |Ψ⟩ is the ground state of the Hamiltonian H and E0 is the ground-
state energy. Thus ln⟨A|Ψ⟩ = ln gA is interpreted as the entropy due to the
boundary condition A (likewise for B). Actually, g always decreases under
renormalization from a less stable to a more stable boundary critical point in
the same bulk universality class. This is known as the g-theorem [68]. The
g-theorem tells us which conformal invariant boundary state is realized in
low-energy limit among all conformally invariant boundary states.

Now we apply the g-theorem under an assumption that there are only
two conformally invariant boundary sates; the Dirichlet and the Neumann
boundary state. What we have to do is comparing their g-factors in a given
TLL parameter K. Eq. (3.33) and Eq. (3.35) leads to the following results.

gD < gN for K <
1

2
(3.37)

gD > gN for K >
1

2
(3.38)

This indicates that the Dirichlet boundary condition is realized for K < 1/2
and the Neumann boundary condition is realized for K > 1/2. At K = 1/2,
it is known that there are continuous family of “fixed line” boundary condi-
tions [67]. We show in Fig. 3.4 that the renormalization group flow of the
conformal invariant boundary condition. Actually, for the one-component
free boson field theory, this is a complete picture of the renormalization of
the boundary condition. This is related to the famous Kane-Fisher prob-
lem [69, 70], which is that a transport of a one-dimensional single-channel
interacting electron through a single barrier. They found that electrons with
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K
1/2

D

N

Figure 3.4: Renormalization group flow of the conformal invariant boundary
condition of the one-component free boson field theory. D and N denote
the Dirichlet and Neumann boundary condition, respectively. K is the TLL
parameter of the bulk. The dotted line represent the continuous family of
“fixed line” boundary conditions

repulsive interactions are completely reflected by the barrier and electrons
with attractive interactions perfectly transmit at zero temperature, while
non-interacting electrons are partially transmitted and reflected depending
on the strength of the barrier. Since the repulsive (attractive) interaction
regime is K < 1/2 (K > 1/2), the complete reflection (transmission) of elec-
trons are interpreted as the Dirichlet (Neumann) boundary condition in the
bosonization context. More than one-component, there are other non-trivial
conformal invariant boundary conditions and the renormalization diagram is
more complicated [77, 78, 79].
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Chapter 4

Replica manipulation of the
TLL ground states of the XXZ
spin chain

In this chapter, we investigate properties of the Rényified state, which is
defined as Eq. (1.7), for the TLL ground state of the S = 1/2 XXZ spin chain.
This is the main part of this thesis. To begin with, we show numerical results
for spin correlations. The numerics indicates two interesting features of the
Rényified state. First, the Rényified state behaves as a TLL with a different
TLL parameter. Second, it shows a “transition” as the Rényi index n is
increased. After the transition, a strange behavior of the correlations is seen:
long-range order of the longitudinal correlation with a power-law decay of the
transverse correlation. To understand this peculiar behavior, we formulate
the problem by replica field theory. This will explain why the Rényified state
is described by a TLL with the modified TLL parameterK/n. A transition at
large n will also be explained in terms of perturbations. Finally, we map the
problem to the boundary CFT by a folding trick. An explicit construction
of a conformal invariant boundary state can explain the peculiar behavior
of the transverse correlation function in the Rényified state. The boundary
construction will also explain the behavior of the Rényi-Shannon entropy.

4.1 Numerics

We first show the numerical results on spin correlations in the Rényified state.
We start from the TLL ground state of the S = 1/2 XXZ chain, which is
defined as Eq. (2.15), for J = −1 and −1 < ∆ ≤ 1. A TLL ground state of
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the model of the size L is expressed as

|Ψ⟩ =
∑
{si}

ψ{si}|{si}⟩, (4.1)

where {si} denotes the value of Sz of a S = 1/2 spin at each cite. Namely,
we choose Sz-basis for the expansion.

The numerical procedure is as follows. First, we obtain a TLL ground
state with exact diagonalization for a parameter set (∆, L). Now we have a
set of the coefficients {si}. Next, we make a Rényified state

|Ψ(n)⟩ = 1√
Z(n)

∑
{si}

ψn
{si}|{si}⟩,

which is defined as Eq. (1.7), by raising all the wave-function coefficients
{ψ{si}} to the power of n. Z(n) is a normalization factor defined as Eq. (1.8).
Then we measure physical quantities in the Rényified state with changing
the parameter n. This is quite simple and straightforward process once we
can diagonalize the original Hamiltonian and obtain the set of the coefficients
{ψ{si}}. We also note that we define J is negative in the Hamiltonian defined
as Eq. (2.15). With this convention for the xy part of the interactions, the
ground state can be chosen to have real positive coefficients {ψ{si}} with the
Perron-Frobenius theorem.

4.1.1 Longitudinal correlation

For the XXZ model, the exponents of the algebraic decay of the longitudi-
nal spin correlation (in Sz basis) are related to the TLL parameter K as
Eq. (2.27). We reproduce it below as Eq. (4.2).

⟨Sz(0)Sz(r)⟩ = − K

2π2

1

r2
+ C1(−1)r

1

r2K
(4.2)

We use Lanczos diagonalization of finite systems up to 32 sites and the re-
sults for |⟨Sz(0)Sz(r)⟩| of the Rényified state are displayed in Fig. 4.1 for
∆ = −0.5, 0 and 0.5 (K = 3/2, 1 and 3/4). In the small n region, the
ferromagnetic/uniform term and the antiferromagnetic/staggered term in
Eq. (4.2) are comparable. Thus the absolute value of the correlations os-
cillates. For larger n, one of the terms becomes dominant and the data show
a smooth power-law decay. In both cases, it is obvious that the correlation
exponent changes with n. We can also see that the correlation seems to be
long-ranged for large n.
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Figure 4.1: Absolute values of longitudinal correlation functions in the
Rényified state for ∆ = −0.5, 0 and 0.5 (K = 3/2, 1 and 3/4) based on
Lanczos diagonalization of finite systems (L = 32). The data are plotted
in the cord distance d(r) = (L/π) sin(πr/L), which is the standard way to
make the power law apparent in conformally invariant systems.
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In order to see how the longitudinal correlation behaves clearly, we sep-
arate the staggered part from the uniform part of the correlation. We take
the staggered part from a difference of the correlation as ⟨Sz(0)Sz(r)⟩stag ≡
(−Gz(r − 1) + 2Gz(r)−Gz(r + 1)) /4 where Gz(r) ≡ ⟨Sz(0)Sz(r)⟩. The
uniform part is defined as ⟨Sz(0)Sz(r)⟩unif ≡ Gz(r)− ⟨Sz(0)Sz(r)⟩stag. Since
the correlation is expected to behave as Gz(r) = ad(r)−α + b(−1)rd(r)−β,
where d(r) = (L/π) sin(πr/L) is the chord-distance across a periodic chain
of length L, ⟨Sz(0)Sz(r)⟩unif and ⟨Sz(0)Sz(r)⟩stag are given as

⟨Sz(0)Sz(r)⟩unif = ad(r)−α +O(r−α−2) +O(r−β−2), (4.3)

⟨Sz(0)Sz(r)⟩stag = b(−1)rd(r)−β +O(r−α−2) +O(r−β−2). (4.4)

We show the uniform part and the staggered part of the longitudinal cor-
relations in Fig. 4.2. In the insets, we also show the absolute value of each
part in the logarithmic scale. We can immediately see that the antiferro-
magnetic long-range order is developed when n is increased. For large n, the
staggered part is dominant thus it is difficult to evaluate the uniform part
quantitatively since the error O(−β−2) is comparable to the term ad(r)−α in
Eq. (4.3).

We estimate the exponents from ⟨Sz(0)Sz(r)⟩ with the fitting, ad(r)−α +
b(−1)rd(r)−β, where a, α, b, and β are free parameters. In Fig. 4.3, we show
the exponents of the uniform (upper panel) and the staggered (lower panel)
part of the longitudinal correlations in the Rényified state for ∆ = −0.5, 0
and 0.5 (K = 3/2, 1 and 3/4). For low enough n, the exponents of the uniform
part appears to be close to 2, and that of the staggered part is consistent
with 2K/n. For larger n the data points of the uniform exponent are not
shown since the fit quality is inferior. This is the case when the staggered
part becomes dominant compared with a rapidly decaying uniform part. For
the staggered part in lager n region, the exponents deviate from the curve
2K/n and seem to converge 0.

Comparing these results with Eq. (4.2), we conjecture that the Rényified
state has a modified TLL parameter K̃ = K/n for low enough n. A change
of the behavior is observed in lager n region: the longitudinal correlation
becomes long-range ordered. We also refer to a relevant previous study. In
Ref. [56], this value K̃ has been obtained from the “Gaussian trick”, although
this had not been checked on the correlation functions.
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Figure 4.2: Uniform part and staggered part of the longitudinal correlations
in the Rényified state for ∆ = −0.5, 0 and 0.5 (K = 3/2, 1 and 3/4). The
data are plotted in the cord distance d(r) = (L/π) sin(πr/L). In the insets,
we show the absolute value of each part in the logarithmic scale.
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Figure 4.3: n dependence of the exponent of the uniform (upper panel)
and the staggered (lower panel) part of the longitudinal correlation in the
Rényified state for ∆ = −0.5, 0 and 0.5 (K = 3/2, 1 and 3/4). Exponents
are extracted with the fitting, ad(r)−α + b(−1)rd(r)−β. Dotted lines: field
theoretical predictions obtained in the following sections.
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4.1.2 Transverse correlation

The transverses spin correlation (in Sz basis) for the XXZ model is described
as Eq. (2.28). We reproduce it below as Eq. (4.5).

⟨Sx(0)Sx(r)⟩ = C2
1

r1/2K
+ C3(−1)r

1

r2K+1/2K
(4.5)

We note that here the prefactor J is defined to be negative in the Hamiltonian
Eq. (2.15). For J > 0, the uniform part and the staggered part of the
transverse correlation Eq. (4.5) will be exchanged.

We show the numerical results of the transverse correlations for the
Rényified state in Fig. 4.4 by Lanczos diagonalization of finite systems up
to 32 sites. It is easily seen that the correlation exponents change with
n. However, contrary to the longitudinal correlation, the transverse correla-
tion remains algebraic, even at large n. This result contrasts with the naive
scenario where the Rényified state for large n would be in a gapped anti-
ferromagnetic phase, analog to that of the ground state of XXZ chain for
∆ > 1.

Then we separate the staggered part from the uniform part of the trans-
verse correlation. We take the staggered part from a difference of the cor-
relation as ⟨Sx(0)Sx(r)⟩stag ≡ (−Gx(r − 1) + 2Gx(r)−Gx(r + 1)) /4 where
Gx(r) ≡ ⟨Sx(0)Sx(r)⟩. The uniform part is defined as ⟨Sx(0)Sx(r)⟩unif ≡
Gx(r) − ⟨Sx(0)Sx(r)⟩stag. Since the correlation is expected to behave as
Gx(r) = ad(r)−α + b(−1)rd(r)−β, the uniform part and the staggered part of
the correlation are given as

⟨Sx(0)Sx(r)⟩unif = ad(r)−α +O(r−α−2) +O(r−β−2), (4.6)

⟨Sx(0)Sx(r)⟩stag = b(−1)rd(r)−β +O(r−α−2) +O(r−β−2). (4.7)

We show the uniform part and the staggered part of the transverse corre-
lations in Fig. 4.5. We also show the absolute value of each part in the
logarithmic scale in the insets. We can see that the transverse correlations
decay algebraically even for larger n. We can also see that the uniform part
is dominant thus it is difficult to evaluate the staggered part quantitatively
since the error O(−α−2) is rather significant for the term b(−1)rd(r)−β in
Eq. (4.7).

In Fig. 4.6, we show the exponents of the uniform (upper panel) and the
staggered (lower panel) part of the transverse correlations in the Rényified
state. They are extracted using the fitting, ad(r)−α +b(−1)rd(r)−β, as done
above for the longitudinal correlations. We can see that the exponents of the
uniform part obey the prediction n/2K, which is guided by dotted curves.
The behavior of the staggered part is more tricky: its exponent is compatible
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Figure 4.4: Transverse correlation functions in the Rényified state for ∆ =
−0.5, 0 and 0.5 (K = 3/2, 1 and 3/4) based on Lanczos diagonalization of
finite systems (L = 32). The data are plotted in the cord distance d(r) =
(L/π) sin(πr/L), which is the standard way to make the power law apparent
in conformally invariant systems.
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Figure 4.5: Uniform part and staggered part of the transverse correlations
in the Rényified state for ∆ = −0.5, 0 and 0.5 (K = 3/2, 1 and 3/4). The
data are plotted in the cord distance d(r) = (L/π) sin(πr/L). In the insets,
we show the absolute value of each part in the logarithmic scale.
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with n/2K + 2K/n in small n region, but deviates from it in large n region
(we plot its exponents with the theoretical lines which are derived in the
following sections). We note that finite-size effects are significant to see its
behavior clearly in the numerical calculations.
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Figure 4.6: n dependence of the exponent of the uniform (upper panel)
and the staggered (lower panel) part of the transverse correlation in the
Rényified state for ∆ = −0.5, 0 and 0.5 (K = 3/2, 1 and 3/4). Exponents
are extracted with the fitting, ad(r)−α + b(−1)rd(r)−β. Dotted lines: field
theoretical predictions obtained in the following sections.

By comparing with Eq. (4.5), the numerical results indicate that the
Rényified state has the modified TLL parameter K̃ = K/n for low enough
n. For larger n, the TLL-like behavior is found in the uniform part while the
staggered exponents are no longer that of Eq. (4.5).
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We summarize an observation of the longitudinal and transverse correla-
tion function in numerics as follows.

• In the small n region, the Rényified state appears to be a TLL with
modified TLL parameter K̃ = K/n.

• For larger n, it appears to be in a different universality class, which is
somewhat unusual: the longitudinal correlation has long-range order
while the transverse one decays algebraically.

The numerical results suggest that an existence of a phase transition in the
Rényified state at a certain n. To explain this more quantitatively, we will
formulate the problem by replica field theory in the following section.
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4.2 Replica field theory formulation

In the previous section, we have seen that the numerical results have indicated
that the Rényified ground state behaves as a TLL with a renormalized TLL
parameter for low enough n. On the other hand, for large enough n, it
appears to be in a different universality class. In this section, we derive this
result by using free-field description of TLL with a replica formulation. The
formulation reveals that the behavior of the Rényified ground state could be
described by its “center of mass” field with modified TLL parameter. This
also leads us to boundary field theory formulation.

4.2.1 Longitudinal correlation

Let us start to discuss the longitudinal correlation function ⟨Sz(0)Sz(r)⟩ in
the Rényified state. We start from a TLL ground state |Ψ⟩ =

∑
i ψi|i⟩ (in Sz-

basis) in a system of the size L in space direction with a periodic boundary
condition. Since we are dealing with the diagonal operators with respect
to the basis states |i⟩, the longitudinal correlation in the Rényified state
Eq. (1.7) is given as

⟨Ψ(n)|Sz(0)Sz(r)|Ψ(n)⟩ = 1

Z(n)

∑
i

ψ2n
i ⟨i|Sz(0)Sz(r)|i⟩. (4.8)

For future use, we adopt the 1 + 1 dimensional point of view by intro-
ducing a transfer matrix T = e−H, which connects spin configurations on
neighboring “rings” in τ direction. Now we suppose that H is a Hamiltonian
which has a TLL ground state. In terms of the transfer matrix T , a square
of a ground state coefficient is expressed as

|ψi|2 = |⟨i|Ψ⟩|2 = lim
β→∞

⟨A|T β|i⟩⟨i|T β|B⟩
⟨A|T 2β|B⟩

, (4.9)

where |A⟩ and |B⟩ are boundary states which are not orthogonal to the
ground state. We denote the numerator and the denominator in the right-
hand side of Eq. (4.9) as Zi = ⟨A|T β|i⟩⟨i|T β|B⟩ and Z = ⟨A|T 2β|B⟩, respec-
tively. Zi and Z are interpreted as partition functions on a cylinder with and
without restriction of configurations at a specific imaginary time (say τ = 0)
corresponding to an actual system, as depicted in Fig. 4.7. In the continuum
limit, a spin configuration |i⟩ in Sz-basis is a configuration of a bosonic field
ϕ. Since we are dealing with a TLL ground state, the partition functions are
described as

Zi =

∫
Dϕ
∣∣∣∣
ϕ(τ=0)=ϕi

e−S(ϕ), Z =

∫
Dϕ e−S(ϕ), (4.10)
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τ

x

β

β

Figure 4.7: 1 + 1 dimensional point of view of a square of a ground state
coefficient |ψi|2. A red ring represents a one-dimensional quantum system
with a periodic boundary condition in space direction. For the numerator of
Eq. (4.9), Zi = ⟨A|T β|i⟩⟨i|T β|B⟩, a configuration of the system (red ring) is
fixed at a particular configuration |i⟩.

where S(ϕ) is the free bosonic filed action defined as Eq. (2.9).

Now we express |ψi|2n by field theoretical description. For integer n, this
can be identified with n replicas of TLL systems on the infinite cylinder (in
τ direction). All replicas are bound at τ = 0 as depicted in Fig. 4.8. This
means that the bosonic field ϕ on each replica has the configuration at τ = 0
corresponding to |i⟩. Hereafter, we represent ϕ(r) as ϕ(r, τ = 0). Let us
denote the bosonic field on each replica as ϕα. All the replicas having the
same configuration which implies that

ϕ1 = ϕ2 = · · · = ϕn (4.11)

at τ = 0. We introduce the new fields as

Φα =
n∑

j=1

uαj ϕj (4.12)

with

u0j =
1√
n
, (4.13)
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Figure 4.8: Replica picture of the Rényified state. For all replicas, periodic
boundary condition is imposed in the x direction and they are glued at the
line τ = 0. By changing the basis from ϕ⃗ to Φ⃗, the problem is effectively
described by the single-component free boson field theory with the modified
TLL parameter, K/n.

and

n−1∑
j=1

uαj u
α′

j = δα,α′ (4.14)

n−1∑
α=0

uαj u
α
j′ = δj,j′ . (4.15)

Thus the fields {Φα} are defined so that they are mutually orthogonal. This
orthogonality leads to the “relative coordinate fields” Φα ̸=0 are fixed as
Φα ̸=0 = 0 at τ = 0. In the definition Eq. (4.12) and Eq. (4.13), the “center
of mass” field Φ0 does not vanish at τ = 0. Thus, the problem is reduced to
the field theory of the free boson Φ0 on the infinite cylinder.

The staggered part of the longitudinal spin operator Sz of a TLL is given
by cos(ϕ/R), as in Eq. (2.25). In the replica field theory for the Rényified
state, thanks to the boundary condition Eq. (4.11), we can measure the
longitudinal correlation function on any replica. This should give us the
same result for any ϕi since all the fields have the same configuration. Let
us take the first replica cos(ϕ1/R). We can express the original replica field
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ϕ1 as a linear combination of the new fields as

ϕ1 =
1√
n
Φ0 +

n−1∑
α=1

uα1Φα. (4.16)

The relative coordinate fields Φα̸=0 are subject to the condition Φα = 0 at
the line τ = 0. Thus all the terms except for the center of mass field Φ0 do
not have any contributions in the calculation of the longitudinal correlation
functions.

Thus the staggered part of the longitudinal correlation function is given
by the correlation function of the center of mass filed as⟨

cos

(
Φ0(0)√
nR

)
cos

(
Φ0(r)√
nR

)⟩
. (4.17)

Since the scaling dimension of cos(Φ0/
√
nR) is 1/2ngR2 = K/n, (the stag-

gered part of) the correlation function is given by

⟨Ψ(n)|Sz(0)Sz(r)|Ψ(n)⟩stag. ∼
1

r2K/n
. (4.18)

By comparing this with Eq. (2.27), we see that the TLL parameter in the
Rényified state is modified as K → K/n. The exponent of the uniform part
of the longitudinal correlation would not be affected by n. This explains the
behavior of the longitudinal correlation in the numerics for enough small n.

4.2.2 Transverse correlation

Now let us consider the transverse correlation function ⟨Sx(0)Sx(r)⟩ in the
Rényified state Eq. (1.7):

⟨Ψ(n)|Sx(0)Sx(r)|Ψ(n)⟩ = 1

Z(n)

∑
i,j

ψn
i ψ

n
j ⟨i|Sx(0)Sx(r)|j⟩. (4.19)

Although we may still introduce replica fields, we need a different construc-
tion from longitudinal one since the Sx operator is not diagonal to the basis
states. Let us suppose that the replica fields ϕ1, · · · , ϕn are defined on the
half-infinite cylinder τ < 0. They are all fixed to a configuration at τ = −0
corresponding to |i⟩. This implies that

ϕ1 = ϕ2 = · · · = ϕn, (4.20)

at τ = −0. We can then regard the other replica fields ϕn+1, · · · , ϕ2n as
defined on the half-infinite cylinder τ > 0. Again they obey

ϕn+1 = ϕn+2 = · · · = ϕ2n, (4.21)
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at τ = +0 corresponding to a configuration |j⟩. Then the new fields can
be defined for τ < 0 (τ > 0 ) by the linear combination of ϕ1, · · · , ϕn

(ϕn+1, · · · , ϕ2n) as Eq.(4.12)- (4.15). The relative coordinate fields are sub-
ject to be zero at τ = 0. Each center of mass field, however, remains free at
τ = 0. Because of the fact that |i⟩ and |j⟩ are almost identical, we require
each center of mass fields to be “continuous” at τ = 0. Actually, they should
be connected at τ = 0 to have a finite contribution in Eq. (4.19).

Thus we find that the problem is again effectively described by the single-
component free boson field theory, Φ0, defined on the infinite cylinder. Mea-
surements of the correlation functions are done at the intersection τ = 0.
Since S± operator induces a spin-flip on the basis state |i⟩, which affects all
the replicas at the same time, we suppose that the measured spin raising
(lowering) operator S+ (S−) is a product of S+ (S−) on all the n replicas.
Since the S± operator of the single-component TLL is given as Eq. (2.26),
the uniform part of S± operator in the Rényified state would be given by

S± ∼ e±iR
∑

α θα = e±i
√
nRΘ0 , (4.22)

where Θ0 is the center of mass field for the dual field θ defined as Eq. (4.12).
Thus the uniform part of the transverse correlation function is given by the
correlation function⟨

cos
(√

nRΘ0(0)
)
cos
(√

nRΘ0(r)
)⟩
. (4.23)

Since the scaling dimension of cos (
√
nRΘ0) is ngR

2/2 = n/2K, (the uniform
part of) the transverse correlation is given by

⟨Ψ(n)|Sx(0)Sx(r)|Ψ(n)⟩unif. ∼
1

rn/2K
. (4.24)

We again see that the TLL parameter in the Rényified state is modified as
K → K/n by comparing this with Eq. (2.28). The staggered part of the
transverse correlation would be given by⟨

cos
(√

nRΘ0(0)
)
cos
(√

nRΘ0(r)
)
cos

(
Φ0(0)√
nR

)
cos

(
Φ0(r)√
nR

)⟩
. (4.25)

by applying the result in the previous subsection. This indicates the exponent
of the staggered part is n/2K +2K/n. This is consistent with the numerical
results for small n in the previous section.

We have investigated the correlations of the Rényified state based on the
replica field formulation. This explains the behavior of the correlations in
numerics for small n. So far, we have neglected an effect of perturbations
which should be taken into account in a lattice system. In the next section,
we consider the effect and see a “transition” of the Rényified state.
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4.2.3 Effect of relevant perturbations

The replica formulation introduced above indicates that the system can be
effectively described by a single-component free boson field Φ0 and its dual
Θ0 defined on the infinite cylinder. The effective compactification radius of
Φ0 is

R̃ =
√
nR, (4.26)

and that of Θ0 is 1/R̃. We can analyze possible perturbations in this for-
mulation. Returning to the original n-replica picture, the correlations in the
bulk on each replica are unaffected by the number of replicas because replicas
are independent of each other in the bulk. Close to the line τ = 0, however,
the fluctuations of the scalar fields are no longer that of single sheet if n ̸= 1.
Thus the correlation at τ = 0 will depend on the number of replicas. This
implies that the perturbations are renormalized to zero at long distance in
the bulk while it can remain at the line τ = 0.

In general, we should expect all the perturbations which are allowed by
the symmetry. Since all the vertex operators involving Θ0 would be forbidden
by the U(1) symmetry (rotation about z axis), the only possible perturbations
are those of Φ0. Due to the compactification Φ0 ∼ Φ0+2π

√
nR, the possible

vertex operators are given as e±imΦ0/
√
nR, where m is an integer. The most

relevant perturbation would be e±iΦ0/
√
nR, which is presumably forbidden by

the lattice translation symmetry. Thus the leading boundary perturbation
allowed by the symmetries should be e±2iΦ0/

√
nR. Its scaling dimension is

given as 2/ngR2 = 4K/n. Since the perturbation is expected only on the
line τ = 0, it is relevant if the scaling dimension is less than 1. Thus the
leading perturbation is relevant if

n > nc = 4K. (4.27)

We refer to a relevant previous study. In Ref. [94], the longitudinal corre-
lations for ∆ = 0 at n = 2 and 3 were computed numerically. However,
the slow algebraic decay of the staggered part was incorrectly interpreted as
long-range order, and the transition point was incorrectly located at ñc = 2K
presumably because of some confusion between the bulk and boundary tran-
sitions.

When n > nc, the boson field Φ0 would be pinned to the minima of the
potential. In this case, the longitudinal correlation function would have a
long-range order. On the other hand, numerical results indicate that the
transverse correlation function decays algebraically. Although this behavior
seems to be quite unusual, we can understand it as follows.

If the Rényified system were described by a standard TLL, the long-range
order in the longitudinal spin component implies a gapped (say, Néel) phase,
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in which the transverse correlation functions are short-ranged. However, the
present problem is mapped to a boundary problem by the “folding trick”, as
we will see in the following section. In a conformal field theory with pertur-
bations at the boundary, the boundary condition can be renormalized from
a conformally invariant one to another conformally invariant one. However,
boundary perturbations never opens a mass gap in the bulk. Thus, even
if the boundary perturbation becomes relevant, it does not imply that the
transverse correlation function falls off exponentially. In fact, it can be shown
that the transverse correlation function still decays with the power-law by
constructing conformal invariant boundary states explicitly. To make the
discussion precise, we need to analyze the problem in terms of boundary
conformal field theory.
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4.3 Boudnary CFT Formalism

In the previous section, we have derived the Rényified state shows TLL be-
havior with the modified TLL parameter by replica field formulation. By
taking into account perturbations, boundary phase transition occurs and the
Rényified state is no longer a TLL state. The question is what the Rényified
state is after the transition and how its physical quantities behave. In this
section, we formulate the problem in boundary conformal field theory lan-
guage by folding trick. It will make easier to treat with the subtle boundary
condition more rigorously. It explains the tricky behavior of the correlation
functions, that is, diagonal correlation shows long-range order while trans-
verse correlation shows power-law decay.

4.3.1 Folding trick

By using replica formulation, we can effectively describe the Rényified system
by a single-component free boson field on the infinite cylinder with pertur-
bations at τ = 0. The bosonic field Φ0 has effective compactification radius
R̃ =

√
nR derived as Eq. (4.26). Dual field Θ0 has effective compactification

radius 1/R̃. For a precise formulation, we first introduce a finite size system
of the size L× β, then take a limit β → ∞.

Let us start from the effective center of mass field theory Φ0, which cor-
responds to the right situation in Fig. 4.8. Now we fold the system at τ = 0.
Folding reduces the torus to a doubled cylinder of the size L × β/2 with
boundaries at both ends in the τ -direction (see Fig. 4.9). Thus the problem
is mapped to two-component free boson field theory on the cylinder with
boundaries at τ = 0 and τ = β/2. Since the system is the cylinder which
extends in the time direction, the boundary conditions at τ = 0 and τ = β/2
can be regarded as the initial state and final state, respectively. These are
nothing but boundary states, and lead us a systematic study of boundary
conditions.

We define the new fields after the folding as

Φ
(1)
0 (τ) = Φ0(τ) (4.28)

Φ
(2)
0 (τ) = Φ0(−τ) (4.29)

for ∀τ ≥ 0 and likewise for Θ(1),(2). The bosonic fields Φ⃗0 = (Φ
(1)
0 ,Φ

(2)
0 )T and

Θ⃗0 = (Θ
(1)
0 ,Θ

(2)
0 )T obey the campactification

Φ⃗0 = Φ⃗0 + 2πR⃗ (4.30)

Θ⃗0 = Θ⃗0 + 2πK⃗ (4.31)
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τ

x

Figure 4.9: Folding of the system of the circumference L in the x direction
and the length β in the τ direction. Periodic boundary condition is imposed
in both directions. Folding reduces the system to the doubled cylinder of the
size L× β/2 with boundaries at both ends in the τ -direction.

where R⃗ = (N1R̃, N2R̃)
T and K⃗ = (M1/R̃,M2/R̃)

T withN1, N2,M1,M2 ∈ Z.
Since the original fields Φ0 and Θ0 are smooth at τ = 0 before the folding,
they have a constraint

Φ
(1)
0 (τ = 0) = Φ

(2)
0 (τ = 0) (4.32)

Θ
(1)
0 (τ = 0) = Θ

(2)
0 (τ = 0). (4.33)

Furthermore, let us introduce the new basis ⃗̃Φ ≡ (Φ̃0, Φ̃1)
T by

Φ̃0 =
1√
2

(
Φ

(1)
0 + Φ

(2)
0

)
(4.34)

Φ̃1 =
1√
2

(
Φ

(1)
0 − Φ

(2)
0

)
(4.35)

and likewise for ⃗̃Θ ≡ (Θ̃0, Θ̃1)
T . Due to the boundary condition Eq. (4.32)

and Eq. (4.33), Φ̃0 and Θ̃0 obey the Neumann boundary condition and Φ̃1 and
Θ̃1 obey the Dirichlet boundary condition at τ = 0. Due to the basis trans-
formation, the new fields cannot have the winding numbers independently.

In fact, the new fields ⃗̃Φ = (Φ̃0, Φ̃1)
T obey the compactification as

⃗̃R =
R̃√
2

(
n0

n1

)
(4.36)
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where

n0 ≡ n1 mod 2. (4.37)

Likewise, the compactification for ⃗̃Θ = (Θ̃0, Θ̃1)
T is given as

⃗̃K =
1√
2R̃

(
m0

m1

)
(4.38)

where

m0 ≡ m1 mod 2. (4.39)

We have to keep in mind these “glueing condition” when we construct their
boundary states.

4.3.2 Boundary state before the transition

In the absence of any boundary perturbation, the system before folding is
just a one-component free boson field theory without any defect. After the
folding, this corresponds to a particular boundary condition, in which the
Neumann boundary condition on Φ̃0 and Θ̃0 and the Dirichlet boundary con-
dition on Φ̃1 and Θ̃1 [80]. Following the construction formalism of boundary
states for free bosons introduced in the Chapter 3, the corresponding bound-
ary state is given as

|P ⟩ = gP
∑

n0,m0∈even

|(n0, n1 = 0,m0,m1 = 0)⟩⟩, (4.40)

where |( ⃗̃R, ⃗̃K)⟩⟩ ≡ |(n0, n1,m0,m1)⟩⟩ is the bosonic Ishibashi state defined as
Eq. (3.30) [73], which is characterized by the winding numbers of the bosonic
fields defined as Eq. (4.36) and Eq. (4.38). The restriction on the sum comes
from the gluing conditions Eq. (4.37) and Eq. (4.39). The g-factor gp is
determined from the Cardy’s consistency condition.

By using the Hamiltonian Eq. (3.23), an amplitude between two |P ⟩’s is
given as

ZPP = ⟨P |e−
β
2
H |P ⟩

= g2p

(
1

η(q)

)2 ∑
n0,m0∈even

q
1
2
· 1
2

[
g
(

R̃√
2
n0

)2
+ 1

g

(
m0√
2R̃

)2
]

= g2p

(
1

η(q)

)2 ∑
ñ0,m̃0∈Z

q
1
2

(
gR̃2ñ2

0+
1

gR̃2 m̃
2
0

)
, (4.41)
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where q = e2πiγ = e−2πβ/L where γ = iβ/L. η(q) is the Dedekind eta function
defined as

η(q) = q1/24
∞∏
n=1

(1− qn). (4.42)

The modular S transformation, γ → −1/γ, exchanges the roles of space
and imaginary time. Then the system is periodic in the τ -direction and has
the edges in the space direction with boundary conditions. In this picture,
the Hamiltonian depends on the boundary conditions at both ends. By
performing the modular transformation to Eq. (4.41), we obtain

ZPP = g2p

(
1

η(q̃)

)2 ∑
ñ0,m̃0∈Z

q̃
1
2

(
1

gR̃2 ñ
2
0+gR̃2m̃2

0

)
, (4.43)

where q̃ = e−2πi/γ = e−2πL/β. The scaling dimensions of the boundary oper-
ators for P boundary condition can be read off from the partition function
Eq. (4.43). The smallest scaling dimensions except for the identity operator
are 1/2gR̃2 and gR̃2/2. This implies that the corresponding boundary opera-
tors are exp(iΦ̃0/

√
2R̃) and exp(±iR̃Θ̃0/

√
2) since the scaling dimensions of

the boundary operators are doubled from the bulk operators. Actually, these
are the staggered part of Sz operator and the uniform part of S± operator,
respectively. Thus the correlation functions give the power-law decay with
the exponent 1/gR̃2 = 2K/n for the staggered part of the Sz correlation
and gR̃2 = n/2K for the uniform part of the Sx correlation. This is exactly
expected in the picture before the folding.

For the uniform part in the longitudinal correlation, the term ∂xΦ0, which
gives the exponent 2, obviously does not depend on n. In comparison, the
staggered part of the transverse correlation is given by the product of oper-
ators exp(iΦ̃0/

√
2R̃) exp(iR̃Θ̃0/

√
2), thus we see the power-law decay with

the exponent 2K/n+ n/2K.
We note that Cardy’s consistency condition gives

gp = 1. (4.44)

The logarithm of the g-factor represents the “boundary entropy” [68]. Equa-
tion (4.44) means that there is no boundary entropy for P boundary condi-
tion. This is again expected since there was no defect before the folding.

4.3.3 Boundary state after the transition

Now, let us introduce the relevant perturbation at the boundary. As
discussed in the previous section, the leading boundary perturbation allowed
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by symmetry would be cos(2Φ̃0/
√
2R̃). When this boundary perturbation

becomes relevant, it is expected that the cosine potential grows to infinity
in the low energy limit, and the problem will be described by the Dirichlet
boundary condition on Φ̃0 at τ = 0. The Dirichlet boundary state with the

boundary value ⃗̃Φ = (Φ̃0, Φ̃1)
T = ⃗̃Φ(0) is given as

|D(⃗̃Φ(0))⟩ = gD
∑

m0≡m1mod 2

ei
⃗̃Φ(0)· ⃗̃K |(n0 = 0, n1 = 0,m0,m1)⟩⟩, (4.45)

where ⃗̃K is defined as Eq. (4.38), and |( ⃗̃R, ⃗̃K)⟩⟩ ≡ |(n0, n1,m0,m1)⟩⟩ is the
bosonic Ishibashi state defined as Eq. (3.30) [73], which is characterized by
the winding numbers of the bosonic fields. Since the cosine potential
cos(2Φ̃0/

√
2R̃) has minima at Φ̃0 = Φ̃(0) +mπ

√
2R̃, where m ∈ Z, there are

two boundary values ⃗̃Φ0 = ⃗̃Φ(0) and ⃗̃Φ(0) + π
√
2R̃(1, 0)T modulo the com-

pactification. The superposition of the Dirichlet boundary states |D(⃗̃Φ(0))⟩
and |D(⃗̃Φ(0) + π

√
2R̃(1, 0)T )⟩ would be realized in the Rényified state. It is

simply expressed as

|D̄(⃗̃Φ(0))⟩ = gD̄
∑

m0,m1∈even

ei
⃗̃Φ(0)· ⃗̃K |(n0 = 0, n1 = 0,m0,m1)⟩⟩. (4.46)

Although the expression is similar to Eq. (4.45), it differs in the summation
over m0 and m1. Here both m0 and m1 are restricted to even integers.
Namely the sum is taken only on the “half” of the set of winding numbers.

A care must be taken in the normalization of such Dirichlet boundary
states. In the present case, there are two boundary values (modulo the
compactification), which imply the existence of two vacua. This indicates
that there are two identity boundary operators. Thus it is required that the
multiplicity of the identity operator for the D̄ boundary condition is n0

D̄D̄
= 2

in the diagonal partition function Eq. (3.9) in the open string channel.
The amplitude between two |D̄⟩’s is given as

ZD̄D̄ = ⟨D̄|e−
β
2
H |D̄⟩

= g2D̄

(
1

η(q)

)2 ∑
m0,m1∈even

q
1
2
· 1
2

[
1
g

(
m0√
2R̃

)2
+ 1

g

(
m1√
2R

)2
]

= g2D̄

(
1

η(q)

)2 ∑
m̃0,m̃1∈Z

q
1
2
· 1
gR̃2 (m̃2

0+m̃2
1). (4.47)

The modular transformation gives that

ZD̄D̄ = g2D̄ · gR̃2

(
1

η(q̃)

)2 ∑
m̃0,m̃1∈Z

q̃
gR̃2

2 (m̃2
0+m̃2

1). (4.48)
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The scaling dimensions of the boundary operators for D̄ boundary condition
can be read off from the partition function Eq. (4.48). Since it obviously
does not contain n0 and n1, there is no spectrum which corresponds to the
Sz operator, exp(iΦ̃0/

√
2R̃). Thus the longitudinal correlation decays ex-

ponentially. In comparison, there is a spectrum which corresponds to the
S± operator, exp(±iR̃Θ̃0/

√
2) in the partition function Eq. (4.48). Actually,

the scaling dimension of the uniform part of S± operator, ±gR̃2/2, consists
with the smallest scaling dimension of the boundary operators except for the
identity operators. This gives the power-law decay of the uniform part of the
transverse correlation with the exponent gR̃2 = n/2K.

For the uniform part of the longitudinal correlation, the term ∂xΦ̃0 has

no contribution in the longitudinal correlation since ⃗̃Φ is fixed at the bound-
ary. For the staggered part of the transverse correlation, the situation is more
subtle. It is given by the product of operators exp(iR̃Θ̃0/

√
2) exp(iΦ̃0/

√
2R̃).

Since ⃗̃Φ is fixed at the boundary again, the operator exp(iΦ̃0/
√
2R̃) would

contribute just as a constant. Thus we might expect the power-law decay
with the exponent n/2K. However, the boundary value is actually given

by the superposition of the two values, ⃗̃Φ(0) and ⃗̃Φ(0) + π
√
2R̃(1, 0)T , for D̄

boundary condition. This leads exp(iR̃Θ̃0/
√
2) exp(iΦ̃0/

√
2R̃) has no con-

tribution due to the cancellation. Thus we might expect the next-leading
operator would contribute to the transverse correlation. We conjecture this
is the operator exp(iR̃Θ̃0/

√
2)∂xΘ̃0, although this term does not appear in

the bosonic representation of the Sx operator in general. Actually, the term
∂xΘ̃0 in the Sx operator would break the canonical commutation relation for
the spin operators by combining with the term ∂xΦ̃0 in the Sz operator due to
the canonical commutation relation Eq. (2.7) for the bosonic operators. How-

ever, now ⃗̃Φ is fixed at the boundary then no contribution from ∂xΦ̃0. This
might suggest the derivative term ∂xΘ̃0 would be allowed in the expansion of
Sx operator. Since the scaling dimension of the operator exp(iR̃Θ̃0/

√
2)∂xΘ̃0

is gR̃2/2 + 1, we expect the power-law decay of the staggered part of the
transverse correlation with the exponent gR̃2 + 2 = n/2K + 2.

We have seen that the long-range behavior for the longitudinal correlation
while the power-law behavior for the transverse correlation in the Rényified
state after the transition n > nc. Although this seems strange, there is no
paradox since the present problem is mapped to a boundary field theory. In
a conformal field theory with perturbations at the boundary, the boundary
condition can be renormalized from a conformally invariant one to another
conformally invariant one. However, boundary perturbations never opens a
mass gap in the bulk. Thus, even if the boundary perturbation becomes
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relevant, it does not imply that all the correlations falls off exponentially.

We have also discussed the g-factor for the D̄ boundary state. The
Cardy’s consistency condition gives

gD̄ =

√
2/gR̃2. (4.49)

The “g-theorem” [68], which claims that g-factor always decreases under
renormalization from a less stable to a more stable fixed point, tells us that
the D̄ boundary condition realizes if gD̄ < gP . This is perfectly consistent
with the analysis in the previous section, which predicts that the boundary
perturbation becomes relevant when n > 4K.

4.3.4 Phase diagram of the Rényified state

By the field theoretical analysis above, a phase diagram of the Rényified state
has been obtained as presented in Fig. 4.10. Starting from a TLL ground
state, which has a TLL parameter K ≥ 1/2, the Rényified state is still a
TLL until n = 4K. For n > 4K, it is no longer a TLL and belongs to
an “exotic phase”, where the longitudinal correlation has long-range order
while the transverse correlation decays algebraically. In the limit n → ∞,
the Rényified state should be an antiferromagnetic state corresponding to the
most probable Néel states | ↑↓↑↓ · · · ⟩ and | ↓↑↓↑ · · · ⟩. On the other hand, in
the limit n → 0, it should be disordered since all amplitudes of coefficients
are identical. Furthermore, there is no reason to induce phase transitions for
4K < n <∞ and 0 < n < 4K.

Let us consider a situation starting from a gapped antiferromagnetic state,
for K < 1/2. It is easily expected that the Rényified state for n > 1 is an
antiferromagnetic state since the replica manipulation stresses the coefficients
which correspond to the Néel states. On the other hand, it is difficult to
speculate what the Rényified state is for n < 1. Although numerical results
suggests that a gapless-like behavior emerges in this region. it is hard to
judge whether the state is a veritable gapless state or not. In this region,
a field theoretical analysis seems to be daunting since the original state is
gapped. For the reasons stated above, we leave a question of a phase in the
region for K < 1/2 and n < 1 an open problem.
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Figure 4.10: Schematic picture of a phase diagram of the Rényified state
starting from a TLL derived by the field theoretical analysis. K is a TLL
parameter and n is a Rényi index. K = 1/2 denotes a physical phase tran-
sition point of the original ground state (n = 1) of the S = 1/2 XXZ model.
n = 4K is a transition line for the Rényified state. For n > 4K, an exotic
states, where the longitudinal correlations have long-range order while the
transverse ones remain algebraic, are realized.

4.4 Boundary CFT formalism to the Rényi-

Shannon entropy

Here we discuss the universal subleading contribution of the Rényi-Shannon
entropy

S
(n)
S =

1

1− n
ln

(∑
i

|ψi|2n
)
, (4.50)
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for one-dimensional quantum systems with c = 1 by boundary CFT formal-
ism. Although we have already shown the results above and the entropy itself
was discussed in Ref. [56], it would be useful to formulate the problem in the
boundary CFT language and verify the consistency of the present approach
with theirs.

We compute the partition function Z(n) =
∑

i |ψi|2n by replica field for-
mulation. Z(n) cay be regarded as the partition function of the n-component
free boson fields on the infinite cylinder, bound at the line τ = 0. By folding
the system at the line, the problem can be formulated in terms of the bound-
ary field theory: 2n-component free boson fields on the half-infinite cylinder
τ > 0 with a boundary.

When all the perturbations are irrelevant, for n < nc, the boundary
condition is nothing but the P boundary condition, derived in the appendix
A. Thus the universal ground state degeneracy gP is given by Eq. (A.13).
The corresponding entropy is

(O(1) term of Sn) ∼
ln gP
1− n

= −1

2

(
lnK +

lnn

n− 1

)
. (4.51)

This agrees with the result Eq. (1.3) in Ref. [56], after setting g = 1/2 to
match their convention.

When the leading boundary perturbation becomes relevant, the winding
numbers of all the fields do not change except for the center of mass fields,
Φ̃0 and Θ̃0. This implies that the boundary entropy is only affected by the
change of the center of mass fields. The boundary condition for them is P
for n < nc and D̄ for n > nc. Thus the ground state degeneracy for the D̄
boundary condition of 2n replica fields is

g
(2n)

D̄
= gP

gD̄
gp

= 2
(√

2gR
)−n

= 2K
n
2 (4.52)

where gD̄ and gp are the ground state degeneracy for D̄ and P boundary
conditions of two-component free boson fields. The corresponding entropy is

(O(1) term of Sn) ∼
ln g

(2n)

D̄

1− n
=

1

1− n

(n
2
lnK + ln 2

)
(4.53)

This again agrees with the result Eq. (1.4) in Ref. [56], after setting g = 1/2
(to match their convention) and d = 2 (the number of vacua).
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Conclusion

We proposed the new quantum state, which we named the Rényified state,
which is constructed by taking n-th power of wave-function (coefficient of the
state vector with respect to a chosen basis). We then discussed its properties
starting from a TLL ground state.

In short, we obtained the following results in this thesis.

(i) The Rényified state is still a TLL with a modified TLL parameter K/n
for small n. The field theoretical analysis suggests that the TLL de-
scription breaks down at n = nc = 4K. Above nc, the analysis indicates
that the Rényified state belongs to an exotic universality class: the lon-
gitudinal correlations show long-range order while the transverse ones
remain algebraic. A phase diagram has been obtained as presented in
Fig. 4.10.

(ii) The universal subleading term of the Rényi-Shannon entropy for a TLL
has been derived by boundary CFT approach through the investigation
of the Rényified state.

Concerning the point (i), we showed that the Rényified state is also a
TLL which described by a modified TLL parameter K/n for small n by using
numerics and analytical argument. Theoretically, this could be understood
as the property of “center of mass field” by the replica field formulation in
chapter 4. The filed theoretical analysis suggested that the TLL description
breaks down by the effect of perturbations at the “binding” of replicas. A
transition of the Rényified state was expected at n = 4K for the S = 1/2 XXZ
spin chain by the field theoretical analysis. Although we could not see the
transition clearly in the numerical calculations of the correlation functions,
the behavior of the correlations did not contradict the scenario derived by
the field theoretical analysis. We note that the numerical calculations will
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be able to be performed in larger systems (L > 32) for the S = 1/2 XXZ
spin chain at ∆ = 0 since the form of the ground state is exactly known as
Eq. (1.11) and Eq. (1.12). This will support our field theoretical analysis.
The analysis also suggested that the longitudinal correlations have long-range
order while the transverse ones remain algebraic for n > 4K. This behavior
is quite non-trivial, and such a state is unlikely to be realized as the ground
state of a Hamiltonian which has only short-range interactions. This exotic
behavior was explained by the construction of a specific conformal invariant
boundary state of a two-component free boson.

Concerning the point (ii), the relationship between the Rényified state and
the Rényi-Shannon entropy was also elucidated in this thesis. We showed that
the phase transition of the Rényified state was related to a phase transition
in the Rényi-Shannon Entropy. Furthermore, the boundary CFT formalism
gave a re-interpretation of the behavior of the Rényi-Shannon Entropy.

Let us discuss implications of our results on the original ground state. In
an original TLL ground state, all perturbations can be neglected, some are
prohibited by symmetry, others are irrelevant. We cannot distinguish them
as long as we deal with universal large-distance asymptotic behaviors of the
original state. In this thesis, we have seen that irrelevant operators hidden in
a bulk are stressed and can become relevant at a boundary in the Rényified
state. This suggests that we can enhance the effects of the allowed irrelevant
operators in given system by replica manipulation. This can be useful in
revealing the detailed nature of the given ground state.

The boundary state constructed in the replica field theory formulation,
to represent the Rényfied state, would be also interesting by itself. As we
have seen above, the replica manipulation amplifies perturbations only at a
boundary, then produces a boundary state which depends on the most rel-
evant perturbation. This indicates that exceptional boundary states will be
realized if perturbations in the theory are non-trivial. This can be interest-
ing problem when we construct the Rényified state starting from an exotic
ground state.

In this thesis, we focused on the investigation of the Rényified state start-
ing from a TLL ground state. The study in higher-dimensional systems is a
possible extension of our work. For the analysis, it is necessary to construct
a particular boundary state in higher-dimension. It is a challenging but an
attractive problem since it is related to the Rényi-Shannon entropy in higher-
dimensional systems, which has been energetically investigated recently and
found to exhibit interesting properties.
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Appendix A

Construction of P boundary
state

In this appendix, we consider the n-component free boson field theory on
the infinite cylinder with the constraint at τ = 0. By folding the system at
τ = 0, the problem is mapped to the 2n-component free boson field theory
on the half-infinite cylinder with the boundary.

By changing the basis, the compactification is tilted and it is not inde-
pendent in terms of new fields. Although we can construct the boundary
condition which satisfies the glueing condition for two-component free boson
field theory, it is bothersome to keep track the condition for a large num-
ber of fields. Avoiding the formidable task, we handle it with a geometric
formulation as we will explain below.

At the boundary, the relative coordinate fields Φα ̸=0 are fixed as Φα = 0.
On the other hand, the center of mass field Φ0 is not fixed at the line. Since
the eigenvalue of the orthogonal matrix R is 1(−1) for Dirichlet (Neumann)
boundary condition, this implies that the new fields satisfy the following
conditions:

RΦ̃0 = −Φ̃0 (A.1)

RΦ̃i = Φ̃i for i ̸= 0. (A.2)

To satisfy these condition, the matrix R is given as

R = 1− 2d⃗d⃗T (A.3)

where d⃗ = (1/
√
2n)(1, 1, · · · , 1)T . R is regarded as the reflection matrix

about the plane normal to the 2n-dimensional vector d⃗.
Then we have to find a pair of winding numbers to satisfy the condi-

tion (3.31) for the orthogonal matrix R (A.3). Since R⃗ is reflected by R, R⃗
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should be proportional to d⃗. Thus it is enough to choose R⃗ as

R⃗ = n0R
√
2nd⃗, (A.4)

where n0 ∈ Z. On the other hand, K⃗ is not affected with acting R, thus it
is perpendicular to d⃗. Thus the winding number of Θ⃗ will satisfy

K⃗ ∈ Ξ∗
P , (A.5)

where Ξ∗
P is defined as the intersection of Λ∗, which is the compactification

lattice of K⃗, and the 2n − 1 dimensional hyperplane orthogonal to d⃗. The
corresponding boundary state is given as

|P⟩ = gP
∑

R⃗=noR
√
2nd⃗,K⃗∈Ξ∗

P

|(R⃗, K⃗)⟩⟩. (A.6)

The prefactor gP is determined by the Cardy’s consistency condition. For
this purpose, we introduce the amplitude between two |P⟩’s as

ZPP = ⟨P|e−
β
2
H |P⟩

= g2P

(
1

η(q)

)2n ∑
R⃗=noR

√
2nd⃗,K⃗∈Ξ∗

P

q
1
2(

g
2
R⃗2+ 1

2g
K⃗2)

= g2P

(
1

η(q)

)2n ∑
no∈Z,K⃗∈Ξ∗

P

q
1
2

(
2ngR2

2
n2
0+

1
2g

K⃗2

)
. (A.7)

Performing the modular S transformation gives that

ZPP = g2P

(
2

2ngR2

) 1
2

(2g)
2n−1

2 v−1
0 (Ξ∗

P)

(
1

η(q̃)

)2n

×
∑

ño∈Z, ⃗̃K∈ΞP

q̃
1
2

(
2

2ngR2 ñ
2
0+2g ⃗̃K2

)
, (A.8)

where ΞP is the dual lattice of Ξ∗
P , and v0(Ξ

∗
P) is the volume of the unit cell

of the Bravais lattice Ξ∗
P . The Cardy’s consistency condition leads

g2P =

(
2

2ngR2

)− 1
2

(2g)−
2n−1

2 v0(Ξ
∗
P). (A.9)

Since the 2n − 1 dimensional lattice Ξ∗
P is the intersection of Λ∗ and the

hyperplane perpendicular to d⃗, the hypercubic lattice Λ∗ consist of the ac-
cumulation of hyperplane Ξ∗

P . The distance between the neighboring hyper-
plane Ξ∗

P is 1/
√
2nR, thus the volume of the unit cell of the compactification
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lattice Λ∗ is given as

v0(Λ
∗) =

1√
2nR

v0(Ξ
∗
P). (A.10)

On the other hand, we find

v0(Λ
∗) =

(
1

R

)2n

, (A.11)

since Λ∗ is the 2n dimensional hypercubic lattice with a lattice constant 1/R.
Eq. (A.10) and (A.11) give the volume of the unit cell of the lattice Ξ∗

P as

v0(Ξ
∗
P) =

√
2nR−2n+1. (A.12)

Comparing this with Eq. (A.9), the prefactor is obtained as

gP =
√
n
(√

2gR
)−n+1

=
√
nKn−1 (A.13)
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