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Abstract

In a general quantum measurement, some amount of information on the mea-
sured observable corresponding to a system’s positive-operator valued measure
(POVM) is lost due to inevitable state change of the measurement. However,
there is a special class of quantum measurements in which the information about
the measured observable is conserved. Quantum non-demolition measurement
and photon-counting measurement on a single-mode field are examples of quan-
tum measurements in which the information about system’s photon number con-
serves. Ban discussed the information flows in quantum measurement processes
based on the Shannon entropy (M. Ban, Int. Jour. Theor. Phys.37, 2491 (1998)).
He quantified the obtained information as the mutual information between the
measurement outcome and the measured observable, and established a condition
for a Shannon entropy conservation which states that the mutual information is
equal to the average decrease in the system’s Shannon entropy of the measured ob-
servable. However, since the Shannon entropy for a continuous variable cannot be
interpreted as an information content, there exist several continuous quantum mea-
surements that do not satisfy the Shannon entropy conservation. Furthermore the
physical meaning of the condition for the Shannon entropy conservation derived
by Ban is not clear. In this thesis, we consider the information flow quantitatively
by using the relative entropy and establish the condition for the relative-entropy
conservation.

First, we quantify the information carried by the measurement outcome in
terms of the relative entropy between the probability measures of two candidate
states and establish a sufficient condition for the relative-entropy conservation law
which states that the relative entropy of the measurement outcome is equal to a
decrease in the relative entropy of the measured observable in the system. The
statistical meaning of the condition is clarified by considering a successive joint
measurement process of the measurement process followed by a sharp measure-
ment of the observable. In this joint measurement process, the condition can be
interpreted as the existence of a sufficient statistic whose probability distribution
coincides with that of the measured observable. The condition for the relative-
entropy conservation law is less restrictive than that for the Shannon entropy con-
servation and we compare these conditions in the case in which both the measure-
ment outcome and the measured observable are discrete.

Second we apply the general theory on the relative-entropy conservation law
to typical optical continuous measurements, namely photon-counting, quantum-
counting, homodyne measurement, and heterodyne measurement. We show that



the Shannon entropy conservation does not hold except for the case of the photon-
counting measurement, while the relative-entropy conservation does hold for all
of these measurements. The breakdown of the Shannon entropy conservation is
shown to be due to the non-unit Jacobian of the sufficient statistic and the strong
dependence of the continuous Shannon entropy on the reference measure.

Finally, we consider a problem of whether or not there exists a relative-entropy-
conserving POVM of the system for a given measurement process. Assuming that
the sample space of the measurement process is a standard Borel space, we con-
struct a relative-entropy-conserving POVM of the system. Physically, the con-
structed POVM corresponds to an infinite successive joint measurements of the
given measurement process.
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Chapter 1

Introduction

The inevitable back-action on the system in a quantum measurement process is
one of the key concepts in quantum theory and much has been discussed about
the relation between the obtained information and the measurement back-action.
Though a quantum measurement has a back-action on the system, some of the
measurement process is used to measure a system’s observableX corresponding
to a system’s positive-operator valued measure (POVM) and known to bring us
an information aboutX by a sequence of the measurements. Examples of such
measurements include a quantum non-demolition (QND) measurement [1, 2, 3, 4]
and a photon-counting measurement [5, 6, 7].

The QND measurement is a measurement in which there is not a measurement
back-action on a measured observable corresponding to a system’s projection-
valued measure (PVM)X. Note that this does not imply that there is no measure-
ment back-action on the system since an observable conjugate toX is actually
disturbed. By performing the same QND measurement on the system many times,
we can obtain the information aboutX as much as we can. On the other hand, the
photon-counting measurement is a destructive measurement such that the number
of photons in the system decreases in a counting event. Still we can obtain the
information about the photon numbern̂ by performing the measurement continu-
ously.

What is common in these measurement processes is a conservation of the in-
formation about the measured observable, in the above examples the projection-
valued measure of the photon number operator. Ban [8, 9, 10] considered the
information conservation of the measured POVMX in a quantum measurement
processY described by a completely positive (CP) instrument quantitatively by
using the Shannon entropy and mutual information. In Ref. [9, 10], he showed that
under some conditions on the measurement process the Shannon entropy conser-
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vation law

I(X : Y ) = Hρ̂(X)− E[Hρ̂y(X)] (1.1)

holds. Here theI(X : Y ) is the mutual information between a system’s POVM
X and the measurement outcomeY , Hρ̂(X) is the Shannon entropy ofX for
the pre-measurement stateρ̂, E[·] denotes the ensemble average over the mea-
surement outcomey andHρ̂y(X) is the Shannon entropy ofX for a given post-
measurement statêρy when the measurement outcome isy. The left-hand side of
Eq. (1.1) is the amount of the obtained information about X from the measure-
ment outcomeY and the right-hand side is the decrease in the Shannon entropy of
X by the measurement back-action. It can be shown that both QND and photon-
counting measurements satisfy the established condition and the Shannon entropy
conservation (1.1) in these measurements.

The Shannon entropy for continuous variableX is defined by

H(X) =

∫
ΩX

µ0(dx)p
X(x) ln pX(x), (1.2)

whereΩX is the sample space ofX, µ0 is a measure onΩX andpX(x) is the
probability density ofX with respect toµ0. The continuous Shannon entropy (1.2)
depends strongly on the reference measureµ0 and is known to change its value by
a one-to-one transformation of the stochastic variable. Due to this fact we cannot
interpret the continuous Shannon entropy (1.2) as an information content. Such a
difficulty in some measurement processes with continuous outcome suggests that
the left-hand side of Eq. (1.1) does not correspond to a decrease in the system’s
information. Furthermore, the physical meaning of the condition for the Shannon
entropy conservation is not so clear.

Another important information content is the relative entropy [11], or the
Kullback-Leibler divergence, defined by

D(pX ||qX) =
∫
ΩX

µ0(dx)p
X(x) ln

(
pX(x)

qX(x)

)
, (1.3)

wherepX and qX are probability density functions with respect to a reference
measureµ0. The relative entropy is shown to be positive and the expression (1.3)
does not depend on the choice of the reference measureµ0. Statistically the rel-
ative entropy is regarded as the amount of information obtained from the mea-
surement outcomex about which of the probability measuresp andq is actually
prepared. The relative entropy is also known to characterize the sufficiency of
a system’s stochastic variableT (x) on the parameter estimation problem. Here
in the parameter estimation problem we consider a set of probability measures
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{pXθ }θ∈Θ parametrized byθ and estimate from the measurement outcomex which
θ is actually chosen. The sufficiency of a stochastic variableT (x) is defined by
the condition that the conditional probabilitypθ(x|T (x) = t) does not depend on
θ for any t. This implies that it is sufficient to knowT (x) to obtain the informa-
tion aboutθ. The sufficiency is characterized by the conservation of the relative
entropies betweenX andT (x).

In this thesis we address the problem of the information conservation in quan-
tum measurements from the different standpoint, that is, the relative entropy.
In our approach, the obtained information is quantified as the relative entropy
D(pYρ̂ ||pYσ̂ ), wherepYρ̂ is the probability measure of the measurement outcome
when the state is prepared in̂ρ andσ is another candidate state. By assuming
some conditions on the measurement processY and a system observableX, we
will establish the following relative-entropy conservation law

D(pYρ̂ ||pYσ̂ ) = D(pXρ̂ ||pXσ̂ )− E[D(pXρ̂y ||p
X
σ̂y
)], (1.4)

wherepXρ̂ is the probability distribution ofX for a stateρ̂. The condition for
the relative-entropy conservation law we found is well understood if we consider
a joint successive measurement process in whichY is first measured and then a
sharp measurement onX is done. Then the relative-entropy conservation law (1.4)
is shown to be equivalent to

D(p̃XY
ρ̂ ||p̃XY

σ̂ ) = D(pXρ̂ ||pXσ̂ ), (1.5)

wherep̃XY
ρ̂ is the probability distribution of the joint measurement process for a

pre-measurement statêρ. In this joint measurement process, the condition for the
relative entropy conservation (1.4) or (1.5) can be interpreted as a condition that
there exists a sufficient statistic̃x(x; y) such that the probability distribution of
x̃(x; y) coincides with that ofX for the pre-measurement state. This condition is
logically less restrictive than the condition for the Shannon entropy conservation,
i.e. the relative-entropy conservation law applies to a wider class of quantum mea-
surements. In examples of homodyne and heterodyne measurements in which the
system’s observableX is continuous, it is shown that the relative-entropy conser-
vation law holds, while the Shannon entropy conservation does not. This is due to
the difficulties in the definition of the Shannon entropy of a continuous variable.
We also show that for a given measurement processY , a system’s observableX
corresponding to the infinite joint measurement ofY satisfies the relative-entropy
conservation.

This thesis is organized as follows. In Chapter 2 we review quantum measure-
ment theory with continuous sample space. In Chapter 3, we review the classical
entropic information contents especially for the continuous case. In Chapter 4, we
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review the Shannon entropy conservation by Ban. In Chapter 5 we prove the rela-
tive entropy conservation law for a measurement of system’s observable described
by a general positive operator-valued measure (Theorem 5.1.1) and projection-
valued measure (Theorem 5.2.1). For the case in whichY is a pure discrete mea-
surement, it is shown that the relative-entropy conservation and the condition for
Theorem 5.2.1 is logically equivalent. Furthermore, the condition for the Shannon
entropy conservation is compared with that for the relative entropy whenX and
Y are discrete andX is projection-valued. In Chapter 6, we apply the general
discussion about the relative-entropy conservation law to optical destructive mea-
surements, namely photon counting, quantum counting, homodyne measurement,
and heterodyne measurement. In these examples except the photon-counting mea-
surement, we show the Shannon entropy conservation law does not hold due to
the difficulties in the Shannon entropy for continuous variable, while the relative
entropy conservation law does hold. In Chapter 7 we construct a relative-entropy-
conserving observableX for a given measurement processY . In Chapter 8, we
summarize this thesis.

The results in Chapter 5 and Chapter 6 are based on Ref. [12] collaborating
with M. Ueda.
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Chapter 2

Review on Quantum Measurements

In this chapter we will review general theory of quantum measurements which is
needed in the main part of this thesis.

2.1 Positive Operator-valued Measure

A positive operator-valued measure (POVM) describes the statistics of the mea-
surement outcome of a quantum measurement. To treat quantum measurements
with continuous and discrete sample spaces on a equal footing, we introduce
POVM on a generalσ-algebra [13].

Definition 2.1.1 (σ-algebra)
LetΩ be a set. Aσ-algebraB onΩ is a family of subsets ofΩ such that

1. Ω ∈ B;

2. if A ∈ B thenΩ \ A ∈ B, whereX \ Y := {x ∈ X;x ̸∈ Y } is the
difference set;

3. for a countable sequence of sets{An}∞n=1 ⊂ B,
∪∞

n=1An ∈ B.

A pair (Ω,B) is said to be ameasurable space, or asample space, iff B is a
σ-algebra onΩ.

Definition 2.1.2 (positive operator-valued measure)
LetH be a Hilber space,L(H) be the set of bouded operators onH, Ω be a set
andB be aσ-algebra onΩ. A mappingÊ : B → L(H) is called as apositive
operator-valued measure(POVM ) iff

1. Ê(A) ≥ 0 for all A ∈ B
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2. Ê(∅) = 0;

3. Ê(Ω) = Î;

4. Ê(
∪∞

n=1An) =
∑∞

n=1 Ê(An) (in the weak sense) for any disjoint{An} ⊂
B, where a generalized sequenceÂα in L(H) converges weakly tôA ∈
L(H) iff ⟨ψ| Âα |ϕ⟩ → ⟨ψ| Â |ϕ⟩ for all |ψ⟩ , |ϕ⟩ ∈ H.

For the POVMÊ, Ω is said to be a sample space ofÊ and the measurable space
(Ω,B) is said to be an outcome space ofÊ.We also refer the triadE = (Ê,Ω,B)
as the POVM or the observable onH.

Let Ê : B → L(H) be a POVM on a sample space(Ω,B) andρ̂ be a density
operator onH, i.e. a positive operator with unit trace. Then the mapping

Pρ̂ : B ∋ A 7→ tr[ρ̂Ê(A)] ∈ [0, 1]

is a probability measure on a measurable space(Ω,B). Pρ̂(A) can be interpreted
as the probability for the event that the measurement outcomeω is in A. Each
elementA of B is assumed to be an event such that the probability forA can be
defined.

Next we show some examples of the POVM.

Example 1
LetΩ be a countable set and̂E be a POVM on(Ω, 2Ω), where2Ω is the power set
of Ω. Then for anyA ∈ 2Ω

Ê(A) =
∑
ω∈A

Êω, (2.1)

whereÊω := Ê({ω}). From Ê(Ω) = Î, the set of positive operators{Êω}ω∈Ω
satisfies the following completeness condition:∑

ω∈Ω

Êω = Î . (2.2)

On the other hand, if a set of positive operators{Êω}ω∈Ω satisfies the complete-
ness condition (2.2), a POVM on a sample space(Ω, 2Ω) can be defined by Eq. (2.1).
For this reason, the set of operators{Êω}ω∈Ω is identified with the POVM itself.
This kind of POVM is called discrete.

Example 2
A POVM Ê on a sample space(Ω,B) is a projection valued measure(PVM )
iff Ê(A) is a projection operator for anyA ∈ B. For a PVMÊ, we can show that

Ê(A)Ê(B) = Ê(A ∩B) (2.3)
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for anyA,B ∈ B. To prove Eq. (2.3), we first note that ifX,Y ∈ B andX ⊂ Y,
then

Ê(X) ≤ Ê(X) + Ê(Y \X) = Ê(Y ). (2.4)

SinceÊ(X) andÊ(Y ) are projection operators, Eq. (2.4) implies

Ê(Y )Ê(X) = Ê(X). (2.5)

Therefore we obtain

Ê(A) + Ê(A ∩B) = Ê(A)Ê(A ∪B) + Ê(A)Ê(A ∩B)

= Ê(A)
(
Ê(A) + Ê(B)

)
= Ê(A) + Ê(A)Ê(B),

and thus Eq. (2.3) is proved.
If {|i⟩}i∈I is a complete orthonormal basis of the Hilbert spaceH, then{|i⟩ ⟨i|}i∈I

is a discrete PVM onH.
Another important example is the spectral decompositionÊ of a position op-

eratorx̂ of a one-dimensional particle. In this case, the Hilber spaceH is given by
L2(R) which is the set of all the square-integrable complex measurable functions
onR. The sample space for̂E is given by(R,B(R)), whereB(R), called as the
Borelσ-algebra ofR, is the smallestσ-algebra which contains the family of open
sets. The PVMÊ is then given by

Ê(A)ψ(x) := 1A(x)ψ(x)

for all A ∈ B(R), ψ ∈ H, andx ∈ R, where

1A(x) =

{
1 if x ∈ A;
0 if x ̸∈ A

is the indicator function. By using the Dirac ket|x⟩ such that

⟨x|x′⟩ = δ(x− x′),
∫
R
dx |x⟩ ⟨x| = Î , (2.6)

the PVMÊ can be written as

Ê(A) =

∫
A

dx |x⟩ ⟨x| .
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Example 3 (POVM density)
Let (Ê,ΩY ,BY ) be a POVM onH. For many cases we can take a positive mea-
sureµ0 on a measurable space(ΩY ,BY ) and a positive operator-valued fuction
ÊY

y (y ∈ ΩY ) such that the POVM̂E can be written as

Ê(A) =

∫
A

µ0(dy)Ê
Y
y (2.7)

for anyA ∈ BY . Ê
Y
y is said to be a POVM density with respect to a reference

measureµ0. We will encounter many examples of the POVM density in the fol-
lowing chapters.

2.2 Completely Positive (CP) Instruments and Mea-
surement Models

In the quantum measurement, the state change due to the measurement back-
action is essential. To describe the measurement back-action, we need a math-
ematical framework which can derive both the measurement outcome and the
state change. Such a description is given by a completely positive instrument
discussed in this section. We can also consider a more detailed description of the
measurement which includes an interaction involved in the measurement and a
pointer observable of the probe system. The relation of these descriptions are also
discussed in this section.

2.2.1 CP maps and Kraus representations
Definition 2.2.1 (completely positive super-operator)
Let E : L(H) → L (K) be a linear map. (A linear map which acts on a space of
operators is often called as a superoperator).E is positive iff E(A) ≥ 0 for any
positiveA ∈ L(H). E is completely positive(CP) iff E ⊗ In is positive for all
n ≥ 1, whereIn is the identity superoperator onL(Cn) and the tensor product
E ⊗ F of superoperatorsE andF is defined byE ⊗ F(Â⊗ B̂) := E(Â)⊗F(B̂)
for all Â andB̂ in the domains ofE andF , respectively.

The complete positivity states that the state change is positive if another ancilla
systemCn is present. It is known that there exists a positive but not completely
positive superoperator [14].

One important property of the CP map is that it has a Kraus representation
shown in the following theorem due to Kraus [15]:
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Theorem 2.2.2
Let H andK be separable, i.e. countable dimesional, Hilbert spaces andE :
L(H)→ L(K) be a CP map. Then there exists a countable set of bounded linear
operatorsM̂i : H → K (i = 1, 2, · · · ) such that

E(ρ̂) =
∑
i

M̂iρ̂M̂
†
i , (2.8)

for any ρ̂ ∈ L(H). Furthermore if bothH andK are finite dimensional, then the
number of operatorŝMi can be taken to be finite.

The representation ofE in Eq. (2.8) is said to be a Kraus representation ofE
and the operator̂Mi is said to be a Kraus operator.

For a given CP mapE , there is a arbitrariness in the choice of the Kraus repre-
sentation in Eq. (2.8). In the context of the measurement model, this corresponds
to the choice of the measured observable of the probe system with discrete out-
comes.

2.2.2 CP instruments

Now we introduce a CP instrument:

Definition 2.2.3 (CP instrument)
Let (Ω,B) be a sample space,H be a Hilber space. A mapping

B × T (H) ∋ (A, ρ̂) 7−→ IA(ρ̂) ∈ T (H),

whereT (H) is the set of trace class operators onH, is called aCP instrument iff

1. for anyA ∈ B, a mappingT (H) ∋ ρ̂ 7−→ IA(ρ̂) ∈ T (H) is CP and
trace-decreasing superoperator;

2. for any statêρ, tr[IΩ(ρ̂)] = 1;

3. if ρ̂ is a state and{An}∞n=1 ⊂ B is disjoint, then

tr
[
I∪∞

n=1 An(ρ̂)B̂
]
=

∞∑
n=1

tr
[
IAn(ρ̂)B̂

]
for any operator̂B ∈ L(H).

A CP instrumentI·(·) on a sample space(Ω,B) determines the statistics of
the measurement outcome by

Pρ̂(A) = tr[IA(ρ̂)] = tr[ρ̂Ê(A)],
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where Ê(A) := I†A(Î) and the adjointE† of a superoperatorE is defined by
tr[ρ̂E†(Â)] := tr[E(ρ̂)Â] for any ρ̂ ∈ T (H) and anyÂ ∈ L(H). From Def. 2.2.3
Ê(·) is the POVM in Def. 2.1.2. Furthermore, for a pre-measurement stateρ̂ and
an eventA ∈ B such thatPρ̂(A) ̸= 0, the post-measurement stateρ̂A when the
outcomeω is inA is given by

ρ̂A =
IA(ρ̂)
Pρ̂(A)

. (2.9)

Especiallyρ̂Ω = IΩ(ρ̂) is the non-selective post-measurement state in which all
the information of the measurement outcome is discarded. The non-selective state
change is described by the CP mapIΩ(·) which is trace-preserving (TP). We re-
mark that for a given POVM̂E there exist many CP instruments whose POVM’s
give the sameÊ. The difference between these CP instruments corresponds to
non-equivalent measurement back-actions.

Next we show some examples of CP instruments.

Example 4 (discrete CP instrument)
Let Ω be a countable set andI·(·) be a CP instrument on a sample space(Ω, 2Ω).
A CP instrument on a discrete sample space is said to be discrete. We adopt a
notationIω := I{ω} and the measurement process is completely determined by a
set of CP maps{Iω}ω∈Ω by

IA =
∑
ω∈A

Iω

for anyA ∈ 2Ω.
If for eachω ∈ Ω there exists a bounded operatorM̂ω such that

Iω(ρ̂) = M̂ωρ̂M̂
†
ω,

the measurement is said to be pure. In this case, if the pre-measurement state is a
pure state, the post-measurement state is also pure.

Example 5
Let I·(·) be a CP instrument on a sample space(ΩY ,BY ) andµ0 be a measure
on (ΩY ,BY ). As in the case of the POVM density, for some cases we can take a
density of the CP instrumentEω for eachω ∈ Ω such that

IA(ρ̂) =
∫
A

µ0(dω)Eω(ρ̂)

for any setA ∈ BY and any statêρ. In this case, the POVM̂E(A) = I†A(Î)
has the density of POVM given bŷEω = E†ω(Î). ρ̂ω := Eω(ρ̂)/ tr[Eω(ρ̂)] can be
interpreted as the post-measurement state when the measurement outcome isω.

In the theorem of the relative entropy conservation relation, we assume the
existence of such reference measureµ0 and the density of CP instrumentEω.
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2.2.3 Indirect measurement model

In this subsection we consider a measurement model which describes the probe
system and its interaction with the system together with the measurement outcome
and the state change. Formally the indirect measurement model is defined as
follows.

Definition 2.2.4
LetH be a Hilbert space, andE = (Ê,Ω,B) be a POVM onH. Suppose that

1. K is a Hilbert space called a probe system;

2. σ̂ is a state onK;

3. Û is a unitary operator on a composite systemH⊗K;

4. F = (F̂ ,Ω,B) is a POVM onK.

A quadruple⟨K, σ̂, Û , F⟩ is called an indirect measurement model, or a measure-
ment model, ofE iff

tr[ρ̂Ê(A)] = tr[Û(ρ̂⊗ σ̂)Û †F̂ (A)]

for any statêρ andA ∈ B.

An indirect measurement model⟨K, σ̂, Û , F⟩ of a POVME = (Ê,Ω,B) de-
termines the CP instrument onH by

IMA (ρ̂) = trK[Û(ρ̂⊗ σ̂)Û †(Î ⊗ F̂ (A))]

for any statêρ andA ∈ B, wheretrK is the partial trace over the probe Hilbert
spaceK.

Ozawa [16] has shown that for an arbitrary instrumentI·(·) there exists a mea-
surement modelM = ⟨K, σ̂, Û , F⟩ such thatI = IM. In this measurement
modelM, σ can be taken to be a pure state andF be a PVM onK. However,
this measurement modelM is constructed in an abstract manner based solely on
the mathmatical structure of the instrumentI·(·) and it is hard to relate the con-
structedM to any real measurement apparatus. Therefore it is still an interasting
question whether or not we can implement a quantum measurement correspond-
ing to a given CP instrument in a realistic situation to which, for example, the
probe systemK and the interaction Hamiltonian̂HI are restricted.
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Chapter 3

Classical Entropies

In this chapter we review the properties of information contents needed for the
main part of this thesis. We especially investigate the case in which the stochastic
variable is continuous. It is pointed out that the Shannon entropy has an arbi-
trariness in the choice of a reference measure, wheres the relative entropy and the
mutual information do not. In the last section, we discuss about the sufficiency of
a statistical variable and its relation to the relative entropy.

3.1 Shannon entropy

We first introduce the Shannon entropy [17, 18].

Definition 3.1.1 (discrete Shannon entropy)
Let ΩX be a discrete sample space andpX(x) (x ∈ ΩX) be a probability onΩX .
The Shannon entropyH(p) is defined by

H(pX) := −
∑
x∈ΩX

pX(x) ln pX(x) (3.1)

In this thesis, the natural logarithm is adopted in the definitions of entropic in-
formation contents and these entropies are expressed in nats. The term0 ln 0, if
exists in Eq. (3.1), is understood to be 0 which is obtained fromlimp→+0 p ln p.

The Shannon entropy is interpreted as the randomness of the variableX. For
the general reference of the classical information theory, we refer the reader to
Ref. [19].

Let us now consider the generalization of the Shannon entropy to a continuous
stochastic variableX. For simplicity, we assume that the sample space ofX is the
real line(R,B(R)), whereB(R) is the Borelσ-algebra ofR defined in Exam-
ple 2, and the probability measure ofX can be written aspX(x)dx, wherepX(x)

14



is a continuous positive function anddx is the Lebesgue measure. We divide the
sample spaceR by intervalsIn(δ) = (δn, δ(n + 1)], whereδ > 0 andn is an in-
teger. From the continuity of the density functionpX(x), there existsxn ∈ In(δ)
for eachn such that

pX(xn)δ =

∫
In(δ)

pX(x)dx,

which can be interpreted as the probabilitypn(δ) of the event thatX is in In(δ).
As the discretized version of the continuousX, we introduce a stochastic variable

Xδ = xn if X ∈ In(δ).

Then the Shannon entropy forXδ is given by

H(pXδ) = −
∑
n

pn(δ) ln pn(δ)

= −
∑
n

δpX(xn) ln p
X(xn)− ln δ. (3.2)

In the limit δ → +0, the first term in Eq. (3.2) converges to a finite value

−
∫
R
dxpX(x) ln pX(x) (3.3)

and the second term− ln δ diverges to∞. Thus the simple generalization of the
discrete Shannon entropy can be divided to a finite part converging to Eq. (3.2)
and the divergent part. As the generalization of Eq. (3.2), we define the following
Shannon entropy for continuous observable:

Definition 3.1.2 (differential entropy)
Let (ΩX ,BX , P

X) be a probability space of a stochastic variableX andµ0 be a
measure on(ΩX ,BX). Suppose thatPX has a density functionf(x) with respect
to µ0, i.e. PX(dx) = pX(x)µ0(dx). The differential entropy ofX with respect to
µ0 is defined by

h(pX) := −
∫
ΩX

µ0(dx)p
X(x) ln pX(x). (3.4)

The differential entropy in Eq. (3.4) is not necessarily positive and strongly
depends on the choice of the reference measureµ0. Furthermore, the value of the
differential entropy changes by the trasformation of the variable as the following
discussion shows. To be specific, let us again consider the case whenX is a
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stochastic variable on the real line and the probability density ofX is pX(x). We
define another stochastic variableY by

Y = y(X),

wherey(x) is a differentiable one-to-one mapping fromR to R. Then the proba-
bility distribution ofY and the differential entropy forY are given by

pY (y(x)) = pX(x)

(
dy(x)

dx

)−1

and

h(pY ) = −
∫
R
dypY (y) ln pY (y)

= −
∫
R
dxpX(x) ln

[
pX(x)

(
dy(x)

dx

)−1
]

= h(pX) +

∫
R
dxpX(x) ln

(
dy(x)

dx

)
, (3.5)

respectively. The differential entropy forY does not coincide with that ofX in
Eq. (3.3) unless the last term in Eq. (3.5) vanishes.

Furthermore a difference between differential entropies for two probability
densitiespX andqX also changes its value by the transformationx → y(x). In
fact, by using Eq. (3.5), we have

h(pY )− h(qY )

= h(pX)− h(qX) +
∫
R
dxpX(x) ln

(
dy(x)

dx

)
−
∫
R
dxqX(x) ln

(
dy(x)

dx

)
,

which does not in general coincide withh(pX)− h(qX).
Due to this fact, it is hard to interpret the differential entropy as an information

content ofX since the transformation fromX to Y is just the change of the label
and we neither lose nor obtain any information by this transformation.

3.2 Relative entropy and mutual information

In this section we introduce the relative entropy and show its relation with the
mutual information. The relative entropy was first introduced by Kullback and
Leibler [11] for general probability measures.
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Definition 3.2.1 (relative entropy)
Let PX andQX be probability measures on a sample space(ΩX ,BX). Suppose
thatPX andQX have the density functionspX(x) andqX(x) with respect to a
reference measureµ0 on (ΩX ,BX). Then the relative entropy, or the Kullback-
Leibler divergence, ofPX andQX is defined by

D(PX ||QX) :=

∫
ΩX

µ0(dx)p
X(x) ln

(
pX(x)

qX(x)

)
. (3.6)

We also writeD(PX ||QX) as a functionD(pX ||qX) of the two density functions
pX andqX if the reference measure is clear from the context.

We remark that we can takePX +QX as the reference measureµ0 with respct
to which the density functions ofPX andQX exist. We also remark that the
definition of the relative entropy in Eq. (3.6) does not depend on the choice of
the reference measureµ0. To see the independence, letν0 be another reference
measure andp′X(x), q′X(x) be the density functions ofPX andQX with respect
to ν0, respectively. Then we have

PX(dx) = pX(x)µ0(dx) = p′X(x)ν0(dx) (3.7)

QX(dx) = qX(x)µ0(dx) = q′X(x)ν0(dx)

and therefore

pX(x)

qX(x)
=
p′X(x)

q′X(x)
. (3.8)

From Eqs. (3.7) and (3.8) the right-hand side of Eq. (3.6) can be written as∫
ΩX

ν0(dx)p
′X(x) ln

(
p′X(x)

q′X(x)

)
,

which shows that the relative entropy in Eq. (3.6) is independent of the choice of
the reference measure.

Next, we will show some basic properties of the relative entropy.

Proposition 3.2.2 (information inequality)
Let pX andqX be probability density functions on a measure space(ΩX ,BX , µ0).
Then,

D(pX ||qX) ≥ 0, (3.9)

with the equality if and only ifpX(x) = qX(x) for almost allx with respect toµ0.
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Proof. LetA be a suppor ofpX , i.e.A = {x ∈ ΩX ; p
X(x) ̸= 0}. Then we have

−D(pX ||qX) =
∫
A

µ0(dx)p
X(x) ln

qX(x)

pX(x)

≤ ln

∫
A

µ0(dx)p
X(x)

qX(x)

pX(x)
(3.10)

= ln

∫
A

qX(x)

≤ ln 1 = 0.

In the inequality (3.10), we have used the Jensen’s inequality [20]

EP [f(X)] ≤ f (EP [X]) , (3.11)

wheref is a concave function,X is a stochastic variable andEP (·) is the ensemble
average over the measureP. The equality holds iff the equality in (3.10) holds,
which occurs iffpX(x) = qX(x) for almost allx.

Let us next consider the two stochastic variablesX andY , the sample spaces
of which are(ΩX ,BX) and(ΩY ,BY ), respectively. LetpXY (x, y) andqXY (x, y)
be the joint probability density functions ofX andY with respect to a product
measureµ0(dx)ν0(dy). The marginal distribution functions and the conditional
distribution functions are defined as

pX(x) =

∫
ΩY

ν0(dy)p
XY (x, y),

pY (y) =

∫
ΩX

µ0(dx)p
XY (x, y),

pY |X(y|x) = pXY (x, y)

pX(x)
.

qX , qY andqY |X are defined in a similar manner. Then we have the following
chain rule for the relative entropy:

Proposition 3.2.3 (chain rule for the relative entropy)

D(pXY ||qXY ) = D(pX ||qX) + EpX [D(pY |X(·|x)||qY |X(·|x))] (3.12)
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Proof.

D(pXY ||qXY ) =

∫
ΩX×ΩY

µ0(dx)ν0(dy)p
XY (x, y) ln

(
pXY (x, y)

qXY (x, y)

)
=

∫
ΩX×ΩY

µ0(dx)ν0(dy)p
XY (x, y) ln

(
pX(x)pY |X(y|x)
qX(x)qY |X(y|x)

)
=

∫
ΩX

µ0(dx)p
X(x) ln

(
pX(x)

qX(x)

)
+

∫
ΩX×ΩY

µ0(dx)ν0(dy)p
XY (x, y) ln

(
pY |X(y|x)
qY |X(y|x)

)
= D(pX ||qX) + EpX [D(pY |X(·|x)||qY |X(·|x))].

Equation (3.12) indicates that the joint information ofX andY is divided into the
information ofX and that ofY conditioned onX. The conditioning byX is due
to the statistical correlation betweenX andY . Such correlation can be quantified
by the following mutual information.

Definition 3.2.4 (mutual information)
LetX, Y , pXY be the same as in the Proposition 3.2.3. Then the mutual informa-
tion of X andY with respect to the joint probability distributionpXY is defined
by

I(X : Y ) := D(pXY ||pXpY ) =
∫
ΩX×ΩY

µ0(dx)ν0(dy)p
XY (x, y) ln

(
pXY (x, y)

pX(x)pY (y)

)
.

(3.13)

We note that the mutual information in Eq. (3.13) is independent of the choice of
the reference measuresµ0 andν0 since it is defined through the relative entropy.
From Proposition 3.2.2, we immediately obtain the following proposition:

Proposition 3.2.5

I(X : Y ) ≥ 0 (3.14)

with the equality iffX andY are statistically independent.
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3.3 Sufficient statistics and the relative entropy

Definition 3.3.1
Let (ΩX ,BX) and(ΩY ,BY ) be sample spaces andT : ΩX → ΩY be a measur-
able map, i.e.T−1(A) ∈ BX for anyA ∈ BY . A set of probability measures
P = {pθ}θ∈Θ on (ΩX ,BX) is called a statistical model on(ΩX ,BX). For each
pθ ∈ P, we can define a probability measurepθT−1 on (ΩY ,BY ) by

pθT
−1(A) := pθ(T

−1(A))

for eachA ∈ BY . Then,T is said to besufficient for a statistical modelP iff
for eachA ∈ BX , there exists a functionp(E|y) on (ΩY ,BY ) such that for any
pθ ∈ P

pθ(E|y) = p(E|y) pθT
−1-a.e.y (3.15)

wherepθ(E|y) is the conditional probability measure ofpθ whenT (x) = y. Here
a condition depending ony holdsµ-almost everyy, µ-a.e.y in short, when the set
of y which does not satisfy the condition is aµ-null set.

The condition (3.15) means that the information about the probability modelP is
completely determined byT (x).

Let µ and ν be finite measures on a sample space(Ω,B). ν is said to be
absolutely continuous with respect toµ, denoted asν ≪ µ, iff for any A ∈ B
such thatµ(A) = 0, ν(A) = 0. From the Radon-Nikodym theorem [13], ifν ≪ µ
then there exists a nonnegative measurable functionf such that

ν(A) =

∫
A

f(ω)µ(dω)

for allA ∈ B. The functionf is unique up toµ-a.e. in the sense that ifg is another
µ-integrable function such thatν(A) =

∫
A
gdµ for eachA ∈ B thenf(ω) = g(ω)

for µ-a.e.ω ∈ Ω. The functionf is called Radon-Nikodym derivative and denoted
asdν/dµ.

A probability modelP = {pθ}θ∈Θ on a sample space(ΩX ,BX) is said to
be dominated iff there exists a finite measureλ on (ΩX ,BX) such that for any
pθ ∈ P, pθ ≪ λ. The last statement is shortly denoted asP ≪ λ.

The following theorem is due to Halmos and Savage [21].

Theorem 3.3.2
Let T be a measurable map from(ΩX ,BX) onto(ΩY ,BY ) and letP = {pθ}θ∈Θ
be a probability model on(ΩX ,BX) dominated by a finite measureλ. Then the
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necessary and sufficient condition thatT be sufficient forP is that, for eachpθ ∈
P, fθ := dpθ/dλ can be factorized as

fθ(x) = gθ(T (x))t(x) pθ-a.e.x, (3.16)

wheregθ is a measurable positive function onΩY , t is a measurable positive func-
tion onΩX , gθ · t is λ-integrable, andt = 0 λ-a.e. on an arbitrarypθ-null set.

Kullback and Leibler [11] showed that the sufficiency ofT can be character-
ized by the conservation of the relative entropy as shown by the following theo-
rem.

Theorem 3.3.3
Let T be statistic from(ΩX ,BX) to (ΩY ,BY ), andP = {pθ}θ∈Θ ≪ λ be a
dominated statistical model. Then

D(pθ||pθ′) ≥ D(pθT
−1||pθ′T−1) (3.17)

for eachpθ, pθ′ ∈ P . The equality in (3.17) holds for eachpθ, pθ′ ∈ P iff T is
sufficient forP .

The above concepts of the statistical model and the sufficient statistic can be
applied to the quantum measurement as follows. For given POVM(ΩX ,BX , Ê

X)
on a Hilber spaceH and a set of quantum statesM⊂ S(H), whereS(H) := {ρ̂ ∈
L(H); ρ̂ ≥ 0, tr ρ̂ = 1} is the state space onH, a set{PX

ρ̂ }ρ̂∈M is a statistical

model on(ΩX ,BX), wherePX
ρ̂ (A) := tr[ρ̂ÊX(A)]. If the Hilbert spaceH is

separable, we can show that{PX
ρ̂ }ρ̂∈M is dominated by a probability measure and

Thereom 3.3.2 and Theorem 3.3.3 are applicable in this measurement theoretical
setup.

Proposition 3.3.4
LetH be a separable Hilbert space and let(ΩX ,BX , Ê

X) be a POVM onL(H).
Then there exists a quantum stateρ̂0 ∈ S(H) such that{PX

ρ̂ }ρ̂∈S(H) ≪ PX
ρ̂0
.

The proof is given in Appendix A.
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Chapter 4

Shannon Entropy Conservation Law
in Quantum Measurement

In this chapter, we review the Shannon entropy conservation law in quantum mea-
surement shown by Ban [8, 9, 10]. Under some conditions on a quantum measure-
ment, Ban showed [9, 10] the Shannon entropy conservation law which states that
a decrease in the Shannon entropy of a system’s observable is equal to the mutual
information established between the observable and the measurement outcome.
Here, based basically on Ref. [10], we reconstruct Ban’s discussion. As an exam-
ple of the conservation law, we consider a quantum non-demolition measurement.

4.1 Shannon entropy conservation for POVM

Let us consider an observableX on a Hilbert spaceH and a quantum measurement
Y. X is assumed to be represented by a densityÊX

x of a POVM on a sample
space(ΩX ,BX) with respect to a reference measureν0(dx) (cf. Example 3). The
probability density ofX when the system is prepared in a stateρ̂ is

pXρ̂ (x) = tr[ρ̂ÊX
x ].

The quantum measurementY corresponds to a densityEYy (·) of a CP instrument
on a sample space(ΩY ,BY ) with respect to a reference measureµ0(dy) (cf. Ex-
ample 5). The densities of the POVM and the probability for the measurement
outcome are given by

ÊY
y = EYy

†
(Î),

pYρ̂ (y) = tr[ρ̂ÊY
y ],
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and the post-measurement state for a given measurement outcomey is

ρ̂y =
EYy (ρ̂)
pYρ̂ (y)

.

To consider a relation betweenX andY we assume that the density of the
POVM for Y can be written as

ÊY
y =

∫
ΩX

ν0(dx)p(y|x)ÊX
x , (4.1)

wherep(y|x) is a conditional probability function such that it is positive and sat-
isfies the normalization condition∫

ΩY

µ0(dy)p(y|x) = 1.

By taking the quantum expectation of Eq. (4.1) with respect to a stateρ̂, we obtain

pYρ̂ (y) =

∫
ΩX

ν0(dx)p(y|x)pXρ̂ (x). (4.2)

The condition (4.1), or equivalently (4.2), implies that the measurement outcome
of Y is the coarse-graining of that ofX. From Eq. (4.2), we can define the mutual
information betweenX andY by

Iρ̂(X : Y ) =

∫
ΩX

ν0(dx)

∫
ΩY

µ0(dy)p(y|x)pXρ̂ (x) ln

(
p(y|x)pXρ̂ (x)
pYρ̂ (y)p

X
ρ̂ (x)

)

=

∫
ΩX

ν0(dx)

∫
ΩY

µ0(dy)p(y|x)pXρ̂ (x) ln

(
p(y|x)
pYρ̂ (y)

)
, (4.3)

which is the information obtained from the measurement outcome ofY about the
distribution ofX.

To establish the Shannon entropy conservation law, we further impose the
following two conditions on the measurement:

1. There exists a functioñx(x; y) such that for anyx andy

EYy
†
(ÊX

x ) = p(y|x̃(x; y))ÊX
x̃(x;y); (4.4)

2. For anyy and any smooth functionF (x),∫
ΩX

ν0(dx)p(y|x̃(x; y))F (x̃(x; y)) =
∫
ΩX

ν0(dx)p(y|x)F (x). (4.5)
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Based on the assumptions (4.1), (4.4) and (4.5), we evaluate the Shannon entropy
of X for the post-measurement state. The probability distribution function ofX
for the post-measurement stateρ̂y is evaluated to be

pXρ̂y(x) =
tr[EYy (ρ̂)ÊX

x ]

pYρ̂ (y)

=
tr[ρ̂EYy

†
(ÊX

x )]

pYρ̂ (y)

=
p(y|x̃(x; y))pXρ̂ (x̃(x; y))

pYρ̂ (y)
, (4.6)

where we used the condition (4.4) to derive Eq. (4.6). From Eq. (4.6), the Shannon
entropy ofX for the post-measurement stateρ̂y is given by

h(pXρ̂y) = −
∫
ΩX

ν0(dx)p
X
ρ̂y(x) ln p

X
ρ̂y(x)

= −
∫
ΩX

ν0(dx)
p(y|x̃(x; y))pXρ̂ (x̃(x; y))

pYρ̂ (y)
ln
p(y|x̃(x; y))pXρ̂ (x̃(x; y))

pYρ̂ (y)

= −
∫
ΩX

ν0(dx)
p(y|x)pXρ̂ (x)

pYρ̂ (y)
ln
p(y|x)pXρ̂ (x)

pYρ̂ (y)
, (4.7)

where we used the condition (4.5) in deriving the last equality. By taking the en-
semble average of Eq. (4.7) over the measurement outcomey, the average Shan-
non entropy for the post-measurement state is given by

Eρ̂[h(p
X
ρ̂y)] =

∫
ΩY

µ0(dy)p
Y
ρ̂ (y)h(p

X
ρ̂y)

= −
∫
ΩY

µ0(dy)

∫
ΩX

ν0(dx)p(y|x)pXρ̂ (x) ln
p(y|x)pXρ̂ (x)

pYρ̂ (y)

= −
∫
ΩY

µ0(dy)

∫
ΩX

ν0(dx)p(y|x)pXρ̂ (x) ln
p(y|x)
pYρ̂ (y)

−
∫
ΩX

ν0(dx)p
X
ρ̂ (x) ln p

X
ρ̂ (x)

= −Iρ̂(X : Y ) + h(pXρ̂ ),

whereEρ̂[·] denotes the ensemble average over the measurement outcomey for a
given pre-measurement stateρ̂. Therefore we obtain the Shannon entropy conser-
vation law

Iρ̂(X : Y ) = h(pXρ̂ )− Eρ̂[h(p
X
ρ̂y)]. (4.8)

The left-hand side of Eq. (4.8) is the amount of the information aboutX obtained
from Y , while the right-hand side is the decrease in the Shannon entropy ofX.
The above discussion is summarized as the following theorem.
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Theorem 4.1.1
Let X be an observable on a Hilber spaceH represented by a densitŷEX

x of a
POVM on a sample space(ΩX ,BX) with respect to a reference measureν0 and
Y be a quantum measurement process onH which is represented by a density
EYy of a CP instrument on a sample space(ΩY ,BY ) with respect to a reference
measureµ0. Suppose thatX andY satisfy the conditions (4.1), (4.4) and (4.5).
Then the Shannon entropy conservation law (4.8) holds.

4.2 Shannon entropy conservation for PVM

The important class of system’s observables is that of PVM’s. In this section we
consider the case when the system’s observableX is a PVM. For simplicity, the
PVM is assumed to be of the form|x⟩ ⟨x| dx, wherex ∈ R and|x⟩ is the Dirac
ket which satisfies the complete orthonormal condition (2.6). We note that the
following discussion is also applicable to a discrete PVM|x⟩ ⟨x| with a discrete
complete orthonormal condition

⟨x|x′⟩ = δx,x′ ,
∑
x

|x⟩ ⟨x| = Î , (4.9)

by the following formal correspondences given by∫
dx · · · ←→

∑
x

· · · (4.10)

and

δ(x− x′)←→ δx,x′ . (4.11)

For the PVM|x⟩ ⟨x| and a quantum measurement described by a densityEYy of
a CP instrument with respect to a reference measureµ0, we assume the following
two conditions corresponding to (4.1) and (4.4):

1. The density of the POVM for the measurement outcome ofY can be written
as

ÊY
y =

∫
dxp(y|x) |x⟩ ⟨x| ; (4.12)

2. There exists a functioñx(x; y) such that for anyy

EYy
†
(|x⟩ ⟨x|) = p(y|x̃(x; y)) |x̃(x; y)⟩ ⟨x̃(x; y)| . (4.13)
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Note thatp(y|x) satisfies the normalization condition∫
ΩY

µ0(dy)p(y|x) = 1, (4.14)

because of the completeness condition∫
µ0(dy)Ê

Y
y = Î (4.15)

and the uniqueness of the spectral decomposition with respect to|x⟩ ⟨x|. By inte-
grating Eq. (4.13) with respect tox, we obtain

ÊY
y =

∫
dx′p(y|x̃(x′; y)) |x̃(x′; y)⟩ ⟨x̃(x′; y)|

=

∫
dx′
∫
dxδ(x− x̃(x′; y))p(y|x) |x⟩ ⟨x|

=

∫
dx

(∫
dx′δ(x− x̃(x′; y))

)
p(y|x) |x⟩ ⟨x| . (4.16)

By comparing Eq. (4.16) with Eq. (4.12), we have∫
dx′δ(x− x̃(x′; y)) = 1 (4.17)

for anyx andy such thatp(y|x) ̸= 0. Then, for anyy and a smooth functionF (x)∫
dx′p(y|x̃(x′; y))F (x̃(x′; y)) =

∫
dx′
∫
dxδ(x− x̃(x′; y))p(y|x̃(x′; y))F (x̃(x′; y))

=

∫
dx

(∫
dx′δ(x− x̃(x′; y))

)
p(y|x)F (x)

=

∫
dxp(y|x)F (x), (4.18)

where we used Eq. (4.17) in deriving the last equality. Equation (4.18) implies that
the condition (4.5) forX andY is satisfied and therefore, from Theorem 4.1.1,
we obtain the Shannon entropy conservation law (4.8). To summarize, we obtain
the following theorem.

Theorem 4.2.1
LetX be a PVM of the form|x⟩ ⟨x| dx on the real line with a complete orthonor-
mal condition or a discrete rank-1 PVM|x⟩ ⟨x| with a discrete complete orthonor-
mal condition and letY be a quantum measurement process corresponding to a
density of the CP instrumentEYy on a sample space(ΩY ,BY ) with respect to a
reference measureµ0(dy). Suppose thatX andY satisfy the conditions (4.12) and
(4.13). Then the Shannon entropy conservation law (4.8) holds.

26



As an example of the Shannon entropy conservation law, we consider a quan-
tum non-demolition measurement [1, 2, 3, 4].

Example 6 (quantum non-demolition measurement)
LetX be a PVM|x⟩ ⟨x|which is either discrete or continuous as in Theorem 4.2.1
andY be a quantum measurement corresponding to a CP instrumentIYdy(·) =
EYy (·)µ0(dy) on a sample space(ΩY ,BY ). Y is called quantum non-demolition
(QND) measurement ofX iff for any ρ̂

pXρ̂ (x) = pXIY
ΩY

(ρ̂)(x), (4.19)

whereIYΩY
(ρ̂) is the non-selective post-measurement state. The QND condi-

tion (4.19) states that the probability distribution ofX is not disturbed by the
measurement back-action ofY. Since Eq. (4.19) can be written as

tr[ρ̂ |x⟩ ⟨x|] = tr[ρ̂IYΩY

†
(|x⟩ ⟨x|)],

the QND condition is also expressed as

IYΩY

†
(|x⟩ ⟨x|) = |x⟩ ⟨x| . (4.20)

Shimizu and Fujita [4] pointed out that the QND condition adopted in some lit-
erature, e.g. in Ref. [1], is too strong and they proposed less restrictive QND
conditions. Our QND condition (4.19) corresponds to a ‘moderate condition’ in
Ref. [4].

To be definite, we consider the continuousX while the following discussion is
still valid for discreteX by the formal correspondence stated in the first paragraph
of this section. If we writeEYy

† in the operator-sum form as

EYy
†
(Â) =

∑
k

M̂ †
ykÂM̂yk,

Eq. (4.20) becomes∫
ΩY

µ0(dy)
∑
k

M̂ †
yk |x⟩ ⟨x| M̂yk = |x⟩ ⟨x| . (4.21)

By taking the expectation value of Eq. (4.21) with respect to an eigenstate|x′⟩
with x′ ̸= x, we obtain∫

ΩY

µ0(dy)
∑
k

| ⟨x| M̂yk |x′⟩ |2 = 0,
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which implies that

⟨x| M̂yk |x′⟩ = 0 (4.22)

for anyx andx′ ̸= x. ThusM̂yk is diagonalized in the|x⟩ basis. From the com-
pleteness condition (4.15),̂Myk, EYy

†
(|x⟩ ⟨x|) andÊY

y can be written as

M̂yk =
∑
x

eiθ(x;y,k)
√
p(y, k|x) |x⟩ ⟨x| ,

EYy
†
(|x⟩ ⟨x|) = p(y|x) |x⟩ ⟨x| , (4.23)

ÊY
y =

∫
dxp(y|x) |x⟩ ⟨x| , (4.24)

where

p(y|x) =
∑
k

p(y, k|x) (4.25)

and p(y|x) satisfies the normalization condition (4.14). Equations (4.23) and
(4.24) ensure the conditions (4.12) and (4.13) for Theorem 4.2.1 with

x̃(x; y) = x (4.26)

and we obtain the Shannon entropy conservation law (4.8).

Examples of destructive measurements that satisfy the Shannon entropy conser-
vation law include a photon counting model and a quantum counting model, both
of which will be discussed in Chap. 6 where we also consider the relative entropy
conservation law derived in the next chapter.
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Chapter 5

Relative Entropy Conservation Law
in Quantum Measurement

In this chapter, we establish a sufficient condition for the relative entropy con-
servation law for a quantum measurement process which states that the relative
entropy of the measurement outcome between two candidate states is equal to a
decrease in the relative entropy of a system’s observable. Furthermore, for the case
in which the measurement is pure and the observable is a discrete PVM, we show
that the sufficient condition amounts to the relative entropy conservation for ar-
bitrary candidate states, i.e. the condition is a necessary and sufficient condition.
We also compare our condition with that for the Shannon entropy conservation
in Chap. 4 and it is found that our condition is less restrictive. To demonstrate
the generality of our condition, we consider a destructive sharp measurement of
an observable in which the relative entropy conservation law holds, whereas the
Shannon entropy conservation law does not.

5.1 Relative entropy conservation for POVM

In this section, we prove the relative entropy conservation law under some con-
ditions on the measurement process. As in the previous chapter, we consider an
observableX on a Hilbert spaceH and a quantum measurementY corresponding
to a density of POVMÊX

x on a sample space(ΩX ,BX) with respect to a refer-
ence measureν0 and a density of a CP instrumentEYy on a sample space(ΩY ,BY )
with respect to a reference measureµ0.

Here, as the information content of the measurement outcome, we consider
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the relative entropy of the measurement outcome ofY given by

D(pYρ̂ ||pYσ̂ ) =
∫
ΩY

µ0(dy)p
Y
ρ̂ (y) ln

(
pYρ̂ (y)

pYσ̂ (y)

)
, (5.1)

where ρ̂ and σ̂ are candidate states. Considering the relative entropy as an in-
formation content corresponds to an experimental situation in which the pre-
measurement state is prepared inρ̂ and the observer knows a priori that the pre-
measurement state is eitherρ̂ or σ̂. From the measurement outcomey, the ob-
server infers which the true pre-measurement state is. Although it seems that this
formalism is applicable only to the hypothesis testing problem with just two can-
didate quantum states, it is more general sinceρ̂ andσ̂ can be arbitrary states. In
this sense, the relative entropy (5.1) is regarded as the amount of the information
about how we can distinguish possible quantum states if we consider arbitraryρ̂
andσ̂.

To establish the relative entropy conservation law, we impose the following
conditions onX andY .

1. The condition (4.1) holds, i.e. the measurement outcome ofY is the coarse-
graining ofX;

2. There exist functions̃x(x; y) andq(x; y) ≥ 0 such that

EYy
†
(ÊX

x ) = q(x; y)ÊX
x̃(x;y) (5.2)

for anyx andy;

3. For anyy and any smooth functionF (x),∫
ΩX

ν0(dx)q(x; y)F (x̃(x; y)) =

∫
ΩX

ν0(dx)p(y|x)F (x). (5.3)

Based on these assumptions, let us show the relative entropy conservation law.
The probability distribution function ofX for the post-measurement stateρ̂y is
given by

pXρ̂y(x) =
q(x; y)pXρ̂ (x̃(x; y))

pYρ̂ (y)
, (5.4)

where we used Eq. (5.2). Then, the relative entropy ofX for the post-measurement
stateŝρy andσ̂y is given by

D(pXρ̂y ||p
X
σ̂y
) =

∫
ΩX

ν0(dx)
q(x; y)pXρ̂ (x̃(x; y))

pYρ̂ (y)
ln

(
pYσ̂ (y)p

X
ρ̂ (x̃(x; y))

pYρ̂ (y)p
X
σ̂ (x̃(x; y))

)

= − ln

(
pYρ̂ (y)

pYσ̂ (y)

)
+

∫
ΩX

ν0(dx)
p(y|x)pXρ̂ (x)

pYρ̂ (y)
ln

(
pXρ̂ (x)

pXσ̂ (x)

)
, (5.5)
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where we used the condition (5.3) in deriving the last equality. Thus the ensemble
average over the measurement outcomey is evaluated to be

Eρ̂[D(pXρ̂y ||p
X
σ̂y
)] =

∫
ΩX

µ0(dy)p
Y
ρ̂ (y)D(pXρ̂y ||p

X
σ̂y
)

= −D(pYρ̂ ||pYσ̂ ) +
∫
ΩX

ν0(dx)

∫
ΩY

µ0(dy)p(y|x)pXρ̂ (x) ln

(
pXρ̂ (x)

pXσ̂ (x)

)
= −D(pYρ̂ ||pYσ̂ ) +D(pXρ̂ ||pXσ̂ ).

Therefore we obtain the relative-entropy conservation law

D(pYρ̂ ||pYσ̂ ) = D(pXρ̂ ||pXσ̂ )− Eρ̂[D(pXρ̂y ||p
X
σ̂y
)]. (5.6)

The left-hand side of this equation is the information concerning which state is
actually prepared. The right-hand side represents a decrease in the relative entropy
of X with respect to the candidate states. We thus obtain the following theorem,
which is the main result of this thesis.

Theorem 5.1.1 (relative-entropy conservation law)
Let X be an observable on a Hilbert spaceH represented by a densitŷEX

x of a
POVM on a sample space(ΩX ,BX) with respect to a reference measureν0 andY
be a quantum measurement process onH which is represented by a densityEYy of
a CP instrument on a sample space(ΩY ,BY ) with respect to a reference measure
µ0. Suppose thatX andY satisfy the conditions (4.1), (5.2) and (5.3). Then the
relative-entropy conservation law (5.6) holds.

The conditions for Theorem 5.1.1 isweakerthan that for Theorem 4.1.1 since
q(x; y) in the condition (5.2) does not in general coincide withp(y|x̃(x; y)). While
this difference might appear to be a minor modification of the condition at this
stage, it will be shown that our relative-entropy conservation law is applicable to
a much wider range of quantum measurements in the next chapter.

To further understand the meaning of the conditions (5.2) and (5.3), let us
consider a joint measurement process in which measurement ofY is performed
and thenX is performed on the post-measurement process. We remark that since
the concept of a quantum state is equivalent to all the probability distributions for
the possible measurements, considering the state change due toY measurement
is equivalent to considering the probability distributions of joint measurements
following Y. By taking a quantum expectation of Eq. (5.2) with respect toρ̂, we
obtain

p̃XY
ρ̂ (x, y) = q(x; y)pXρ̂ (x̃(x; y)), (5.7)
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where
p̃XY
ρ̂ (x, y) = tr[EYy (ρ̂)ÊX

x ] = tr[ρ̂EYy
†
(ÊX

x )].

is the joint probability density function ofY followed byX. Equation (5.7) im-
plies that, from Theorem 3.3.2, the stochastic variablex̃(x; y) is a sufficient statis-
tics of the joint measurement process ofY followed byX. Let us denote the
probability distribution function of̃x(x; y) with respect to the reference measure
ν0 aspX̃ρ̂ (x). From the definition ofpX̃ρ̂ (x) and the condition (5.3), for any function
F (x) we have∫

ΩX

ν0(dx)p
X̃
ρ̂ (x)F (x) =

∫
ΩX

ν0(dx)

∫
ΩY

µ0(dy)p̃
XY
ρ̂ (x, y)F (x̃(x; y))

=

∫
ΩY

µ0(dy)

∫
ΩX

ν0(dx)p(y|x)pXρ̂ (x)F (x)

=

∫
ΩX

ν0(dx)p
X
ρ̂ (x)F (x),

which implies that the probability distribution of̃x(x; y) is equivalent to that of
the single measurement ofX. Thus the condition (5.3) ensures

pX̃ρ̂ (x) = pXρ̂ (x). (5.8)

From Eqs. (5.7) and (5.8), we have

D(p̃XY
ρ̂ ||p̃XY

σ̂ ) = D(pX̃ρ̂ ||pX̃σ̂ ) = D(pXρ̂ ||pXσ̂ ), (5.9)

where in deriving the first equality, we used the relative entropy conservation for
the sufficient statistic in Theorem 3.3.3. Equation (5.9) indicates that the informa-
tion obtained in the joint measurement ofY followed byX is equivalent to that
of the single measurement ofX. By using the chain rule (3.12) of the relative
entropy, the left-hand side of Eq. (5.9) can be written as

D(p̃XY
ρ̂ ||p̃XY

σ̂ ) = D(pYρ̂ ||pYσ̂ ) + Eρ̂[D(p̃
X|Y
ρ̂ (·|y)||p̃X|Y

σ̂ (·|y))]
= D(pYρ̂ ||pYσ̂ ) + Eρ̂[D(pXρ̂y ||p

X
σ̂y
)], (5.10)

where

p̃
X|Y
ρ̂ (x|y) =

p̃XY
ρ̂ (x, y)

pYρ̂ (y)
= pXρ̂y(x)

is the conditional probability density ofX subject to a given measurement out-
comey. Note that we did not assume the conditions (4.1), (5.2) and (5.3) in de-
riving Eq. (5.10). From Eq. (5.10), the relative-entropy conservation law (5.6) is
equivalent to Eq. (5.9), and in this sense Eq. (5.9) is another expression of the
relative-entropy conservation law.
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5.2 Relative-entropy conservation for PVM

In this section, we consider the case in which the system’s observableX is a PVM
{ÊX

x } such that

ÊX
x Ê

X
x′ = δx,x′ÊX

x ,
∑
x∈ΩX

ÊX
x = Î for the discrete case; (5.11)

ÊX
x Ê

X
x′ = δ(x− x′)ÊX

x ,

∫
R
dxÊX

x = Î for the continuous case. (5.12)

For definiteness we again only consider continuousX in this section, but the
discussion is also valid for discreteX due to the formal correspondences (4.10)
and (4.11).

To establish the relative-entropy conservation law, we assume the following
condition corresponding to (5.2): there exists functionsx̃(x; y) andq(x; y) such
that for anyx andy

EYy
†
(ÊX

x ) = q(x; y)ÊX
x̃(x;y). (5.13)

From Theorem 5.1.1, it is sufficient to show the conditions (4.12) and (5.3) to
prove the relative-entropy conservation law (5.6). By integrating Eq. (5.13) with
respect tox, we obtain

ÊY
y =

∫
dx′q(x′; y)ÊX

x̃(x′;y)

=

∫
dx

(∫
dx′δ(x− x̃(x′; y))q(x′; y)

)
ÊX

x

=

∫
dxp(y|x)ÊX

x , (5.14)

where

p(y|x) =
∫
dx′δ(x− x̃(x′; y))q(x′; y). (5.15)

Note that the conditional probabilityp(y|x) in Eq. (5.14) is unique because of
the linear independence of̂EX

x and thatp(y|x) satisfies the normalization con-
dition (4.14) from the completeness condition forÊY

y . Then, for anyy and any
functionF (x), we have∫

dx′q(x′; y)F (x̃(x′; y)) =

∫
dx

(∫
dx′δ(x− x̃(x′; y))q(x′; y)

)
F (x)

=

∫
dxp(y|x)F (x),
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where we used Eq. (5.15) in deriving the last equality. Thus, the condition (5.3)
is satisfied, and therefore the relative-entropy conservation law (5.6) holds. To
summarize, we have obtained the following theorem.

Theorem 5.2.1 (relative-entropy conservation law for PVM)
Let X be a discrete or continuous PVM of the form̂EX

x that satisfies condi-
tion (5.11) or (5.12) and letY be a quantum measurement process corresponding
to a density of the CP instrumentEYy on a sample space(ΩY ,BY ) with respect to
a reference measureµ0(dy). Suppose thatX andY satisfy the condition (5.13).
Then there exists a unique conditional probability functionp(y|x) with a normal-
ization condition (4.14) such that Eq. (5.14) holds. Furthermore, the relative-
entropy conservation law (5.6) or (5.9) holds.

5.3 Equivalence between the relative-entropy con-
servation and the established condition

In this section, we consider the case in whichX is a discrete PVM{ÊX
x }x∈ΩX

with the discrete complete orthonormal conditions (5.11) and (5.12) andY is a
discrete measurement on a sample space(ΩY , 2

ΩY ) described by a set of CP maps
{EXy }y∈ΩY

with the completeness condition∑
y∈ΩY

EYy
†
(Î) = Î . (5.16)

In this case, we can show the equivalence between the established condition (5.13)
in Theorem 5.2.1 and the relative-entropy conservation law (5.6).

Theorem 5.3.1
LetX be a discrete PVM{ÊX

x }x∈ΩX
with a discrete complete orthonormal condi-

tion (4.9) and letY be a quantum measurement corresponding to a CP instrument
on a discrete sample space(ΩY , 2

ΩY ) described by a set of CP maps{EXy }y∈ΩY

with the completeness condition (5.16). Then the following two conditions are
equivalent:

(i) The condition (5.13) holds for allx andy.

(ii) The relative-entropy conservation law (5.6) or (5.9) holds for arbitrary states
ρ̂ andσ̂.

To show the theorem, we need the following lemma.
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Lemma 5.3.2
Let {ÊX}x∈ΩX

be a PVM with a discrete complete orthonormal condition (5.11)
and let{ÊZ

z }z∈ΩZ
be a discrete POVM. Suppose that

D(pXρ̂ ||pXσ̂ ) = D(pZρ̂ ||pZσ̂ ) (5.17)

holds for any stateŝρ andσ̂, wherepXρ̂ (x) = tr[ρ̂ÊX
x ] andpZρ̂ (z) = tr[ρ̂ÊZ

z ]. Then
for eachz ∈ ΩZ there exist a scalarq(z) ≥ 0 andx̃(z) ∈ ΩX such that

ÊZ
z = q(z)ÊX

x̃(z). (5.18)

Proof of Lemma 5.3.2.Let Ûx be an arbitrary operator such thatÛ †
xÛx = ÛxÛ

†
x =

ÊX
x , i.e. Ûx is an arbitrary unitary operator on a closed subspaceÊX

x H. Define a
CP and trace-preserving mapF by

F(ρ̂) :=
∑
x∈ΩX

Ûxρ̂Û
†
x.

SinceÊxÛx′ = ÊxÛx′Û †
x′Ûx′ = ÊxÊx′Ûx′ = δx,x′Ûx′ , we havepXρ̂ (x) = pXF(ρ̂)(x)

for any statêρ. Therefore, from the assumption (5.17) we have

D(pZρ̂ ||pZF(ρ̂)) = D(pXρ̂ ||pXF(ρ̂)) = 0,

and hence we obtain

pZρ̂ (z) = pZF(ρ̂)(z)

for any ρ̂ and anyz ∈ ΩZ , which is in the Heisenberg picture represented as

ÊZ
z = F †(ÊZ

z ) =
∑
x∈ΩX

Û †
xÊ

Z
z Ûx. (5.19)

By takingÛx asÊX
x , we have

ÊZ
z =

∑
x∈ΩX

ÊX
x Ê

Z
z Ê

X
x . (5.20)

From Eqs. (5.19) and (5.20), an operatorÊX
x Ê

Z
z Ê

X
x on ÊX

x H commutes with
an arbitrary unitarŷUx on ÊX

x H, and thereforêEX
x Ê

Z
z Ê

X
x is proportional to the

projectionÊX
x . Thus we can rewrite Eq. (5.20) as

ÊZ
z =

∑
x∈ΩX

κ(z|x)ÊX
x ,
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whereκ(z|x) is a nonnegative scalar that satisfies the normalization condition∑
z∈ΩZ

κ(z|x) = 1. Let us define a POVM{ÊXZ
xz }(x,z)∈ΩX×ΩZ

by

ÊXZ
xz := κ(z|x)ÊX

x ,

whose marginal POVMs are given bŷEX
x andÊZ

z , respectively. Since the proba-
bility distribution for ÊXZ

xz is given by

pXZ
ρ̂ (x, z) := tr[ρ̂ÊXZ

xz ] = κ(z|x)pXρ̂ (x), (5.21)

X is a sufficient statistic for a statistical model{pXZ
ρ̂ (x, z)}ρ̂∈S(H). Thus, from

Theorem 3.3.3 and the assumption (5.17), we have

D(pXZ
ρ̂ ||pXZ

σ̂ ) = D(pXρ̂ ||pXσ̂ ) = D(pZρ̂ ||pZσ̂ ),

and again from Theorem 3.3.3,Z is a sufficient statistic for{pXZ
ρ̂ (x, z)}ρ̂∈S(H).

Therefore there is a nonnegative scalarr(x|z) such that

pXZ
ρ̂ (x, z) = r(x|z)pZρ̂ (z),

or equivalently in the Heisenberg picture

κ(z|x)ÊX
x = r(x|z)ÊZ

z . (5.22)

To prove (5.18), we have only to consider the case ofÊZ
z ̸= 0. For suchz ∈ ΩZ ,

there existsx ∈ ΩX such thatκ(z|x)ÊX
x ̸= 0. Thus, from Eq. (5.22) we have

ÊZ
z = κ(z|x)

r(x|z) Ê
X
x and the condition (5.18) holds.

Proof of Theorem 5.3.1.(i) ⇒ (ii) is evident from Theorem 5.2.1. Conversely, (i)
readily follows from (ii) and Lemma 5.3.2 by identifyinĝEZ

z with EYy
†
(ÊX

x ).

5.4 Comparison with the Shannon entropy conser-
vation

In this section, we consider the relation between the conditions for the relative-
entropy conservation law and that for the Shannon entropy conservation law when
the system’s observableX is a PVM. As we have remarked just below Theo-
rem 5.1.1, our condition (5.13) for Theorem 5.2.1 is less restrictive than the con-
dition (4.13) for Theorem 4.2.1. Thus we consider rephrasing the condition (4.13)
under the assumption of the condition (5.13). We divide the discussion into two
parts corresponding to discrete and continuousX andY .
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5.4.1 Discrete case

Here we consider the case whenX is a discrete PVM and the sample space ofY
is also discrete. We do not assumeY to be pure. Then, under the condition (5.13)
we can show that the condition (4.4) required by Ban is equivalent to a condition
that if a pre-measurement state is an eigenstate ofX, then the conditional post-
measurement state for given measurement outcomey is also an eigenstate ofX as
the following theorem shows.

Theorem 5.4.1
Let X be a PVM{|x⟩ ⟨x|}x∈ΩX

with a discrete complete orthonormal condi-
tion (4.9) andY be a quantum measurement described by a CP instrumentIY· (·)
on a discrete sample space(ΩY , 2

ΩY ) and let us defineEYy := IY{y} for y ∈ ΩY .
Suppose thatX andY satisfy the condition (5.13) for Theorem 5.2.1. Then the
following four conditions are equivalent:

1. The condition (4.13) holds, i.e.q(x; y) = p(y|x̃(x; y)).

2. For anyx andy such thatp(y|x) ̸= 0,∑
x′∈ΩX

δx,x̃(x′;y) = 1. (5.23)

3. For anyx andy such thatp(y|x) ̸= 0, there exists a uniquex′ such that
x = x̃(x′; y).

4. The conditional post-measurement state is an eigenstate ofX if the pre-
measurement state is an eigenstate. Namely, for anyx andy, there exist
functionsx̄(x; y) andr(x; y) ≥ 0 such that

EYy (|x⟩ ⟨x|) = r(x; y) |x̄(x; y)⟩ ⟨x̄(x; y)| . (5.24)

Here, we take the convention that for anyx andy such thatq(x; y) = 0, x̃(x; y)
is defined to be∅ which is a symbol out of the sample setΩX . We also define
p(y|∅) := 0 for anyy ∈ ΩY .

Proof. First, we remark that from Theorem 5.2.1, there exists a unique conditional
probabilityp(y|x) such that

ÊY
y = EYy

†
(Î) =

∑
x∈ΩX

p(y|x) |x⟩ ⟨x| . (5.25)
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By taking the summation of Eq. (5.13) with respect tox, we also have

ÊY
y =

∑
x′∈ΩX

q(x′; y) |x̃(x′; y)⟩ ⟨x̃(x′; y)|

=
∑

x′∈ΩX

(∑
x∈ΩX

δx,x̃(x′;y)

)
q(x′; y) |x̃(x′; y)⟩ ⟨x̃(x′; y)|

=
∑
x∈ΩX

( ∑
x′∈ΩX

δx,x̃(x′;y)q(x
′; y)

)
|x⟩ ⟨x| . (5.26)

Since Eq. (5.26) coincides with Eq. (5.25), we obtain

p(y|x) =
∑

x′∈ΩX

δx,x̃(x′;y)q(x
′; y). (5.27)

1⇒ 2: From the conditionq(x; y) = p(y|x̃(x; y)) and Eq. (5.27), we have

p(y|x) =
∑

x′∈ΩX

δx,x̃(x′;y)p(y|x̃(x; y))

=
∑

x′∈ΩX

δx,x̃(x′;y)p(y|x),

and therefore, Eq. (5.23) holds for anyx andy such thatp(y|x) ̸= 0.
2⇒ 3 is evident from the definition of the Kronecker delta.
3⇒ 4: From Eq. (5.25) we have

p(y|x) = tr
[
|x⟩ ⟨x| EYy

†
(Î)
]
= tr

[
EYy (|x⟩ ⟨x|)

]
. (5.28)

For the case ofp(y|x) = 0, from Eq. (5.28) and the positivity of the superopera-
tor EYy , we haveEYy (|x⟩ ⟨x|) = 0 and the condition (5.24) holds. Let us assume

p(y|x) ̸= 0. From the complete positivity of the superoperatorEYy
† and Theo-

rem 2.2.2, there exists a set of bounded operators{M̂yk}k such that

EYy
†
(Â) =

∑
k

M̂ †
ykÂM̂yk (5.29)

for any bounded operator̂A. From Eqs. (5.13) and (5.29), we have∑
k

M̂ †
yk |x⟩ ⟨x| M̂yk = q(x; y) |x̃(x; y)⟩ ⟨x̃(x; y)| ,
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and thus we obtain

M̂ †
yk |x⟩ = a(x; y, k) |x̃(x; y)⟩ , (5.30)

wherea(x; y, k) is a complex scalar such that∑
k

|a(x; y, k)|2 = q(x; y). (5.31)

From Eqs. (5.29) and (5.30), we have

EYy
†
(|x′′⟩ ⟨x′|) =

∑
k

M̂ †
yk |x

′′⟩ ⟨x′| M̂yk

=

(∑
k

a(x′′; y, k)a∗(x′; y, k)

)
|x̃(x′′; y)⟩ ⟨x̃(x′; y)| . (5.32)

Therefore

⟨x′| EYy (|x⟩ ⟨x|) |x′′⟩ = tr
[
EYy (|x⟩ ⟨x|) |x′′⟩ ⟨x′|

]
= tr

[
|x⟩ ⟨x| EYy

†
(|x′′⟩ ⟨x′|)

]
=

(∑
k

a(x′′; y, k)a∗(x′; y, k)

)
δx,x̃(x′′;y)δx,x̃(x′;y), (5.33)

where we used Eq. (5.32) in deriving the last equality. From the condition 3, we
can define a function̄x(x; y) such thatx = x̃(x′; y) impliesx′ = x̄(x; y) for any
x andy with p(y|x) ̸= 0. Thus Eq. (5.33) becomes

⟨x′| EYy (|x⟩ ⟨x|) |x′′⟩ =

(∑
k

|a(x′; y, k)|2
)
δx′,x̄(x;y)δx′′,x̄(x;y)

= q(x′; y)δx′,x̄(x;y)δx′′,x̄(x;y), (5.34)

where we used Eq. (5.31) in deriving the last equality. Equation (5.34) implies

EYy (|x⟩ ⟨x|) = q(x̄(x; y); y) |x̄(x; y)⟩ ⟨x̄(x; y)| ,

and the condition (5.24) holds.
4⇒ 1 : From the condition (5.24) and Eq. (5.25),p(y|x) becomes

p(y|x) = tr[|x⟩ ⟨x| EYy
†
(Î)]

= tr[EYy (|x⟩ ⟨x|)]
= r(x; y). (5.35)
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Thenq(x; y) is given by

q(x; y) = tr
[
|x̃(x; y)⟩ ⟨x̃(x; y)| EYy

†
(|x⟩ ⟨x|)

]
= tr

[
EYy (|x̃(x; y)⟩ ⟨x̃(x; y)|) |x⟩ ⟨x|

]
= p(y|x̃(x; y))δx,x̄(x̃(x;y);y), (5.36)

where we used the condition (5.13) in deriving the first equality and the last equal-
ity follows from the Eqs. (5.24) and (5.35). Therefore, ifq(x; y) ̸= 0, Eq. (5.36)
impliesq(x; y) = p(y|x̃(x; y)) and the condition (4.13) holds. Ifq(x; y) = 0, then
p(y|x̃(x; y)) = p(y|∅) = 0 = q(x; y), and thus the condition (4.13) also holds in
this case.

As an example that does not satisfy Ban’s condition (4.13) but does satisfy the
relative-entropy conservation law, we will consider a destructive measurement of
X as follows.

Example 7 (destructive sharp measurement ofX)
Let X be a PVM{|x⟩ ⟨x|}x∈ΩX

with a discrete complete orthonormal condi-
tion (4.9) and letY be a quantum measurement corresponding to a CP instru-
mentIY· (·) on the same discrete sample space(ΩX , 2

ΩX ). DefineEYy := IY{y} for
y ∈ ΩX as usual. Suppose that the CP instrumentEYy is given by

EYy (ρ̂) = ⟨y| ρ̂ |y⟩ ρ̂y, (5.37)

whereρ̂y is an arbitrary state. Note that the superoperator (5.37) is CP because it
has a Kraus representation

⟨y| ρ̂ |y⟩ ρ̂y =
∑
k

(√
κ(k|y) |ϕyk⟩ ⟨y|

)
ρ̂
(√

κ(k|y) |y⟩ ⟨ϕyk|
)
, (5.38)

where

ρ̂y =
∑
k

κ(k|y) |ϕyk⟩ ⟨ϕyk|

is the spectral decomposition ofρ̂y. From Eq. (5.37), we have

EYy
†
(Â) = tr[ρ̂yÂ] |y⟩ ⟨y| ,

EYy
†
(|x⟩ ⟨x|) = ⟨x| ρ̂y |x⟩ |y⟩ ⟨y| (5.39)

and

ÊY
y = |y⟩ ⟨y| . (5.40)
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Thus, from Eq. (5.39), the condition (5.13) is satisfied with

q(x; y) = ⟨x| ρ̂y |x⟩ ,
x̃(x; y) = y.

Then, from Theorem 5.2.1, the relative entropy conservation law (5.6) holds. On
the other hand, the condition (4.13) is not necessarily satisfied since the post-
measurement statêρy is in general not an eigenstate ofX. To be definite, let the
dimensiond of the system’s Hilbert spaceH be finite, andρ̂y be a maximally
mixed statêI/d for all y ∈ ΩX . In this case, the decrease in the Shannon entropy
of X is evaluated to be

Hρ̂(X)−Hρ̂y(X) = Hρ̂(X)− ln d, (5.41)

while the mutual information betweenX andY is given by

Iρ̂(X : Y ) = Hρ̂(X),

which differs from Eq. (5.41) by the factor− ln d. The factor− ln d is the Shan-
non entropy for the post-measurement stateρ̂y which in general depends strongly
upon the choice of the post-measurement stateρ̂y. On the other hand, our formal-
ism focuses on the information about discriminating the pre-measurement state
and the post-measurement stateρ̂y does not have any information about the pre-
measurement state. Reflecting this fact properly, the relative entropy ofX for the
post-measurement candidate states vanishes and the relative entropy conservation
law holds withD(pXρ̂ ||pXσ̂ ) = D(pYρ̂ ||pYσ̂ ).

5.4.2 Continuous case

Next we consider a continuousX. In this case we cannot establish a simple
rephrasing of the condition (4.13) as in the discrete case. We can still show
Eq. (4.17) from the condition (4.13), which is the continuous analogue of Eq. (5.23).
However, the formal correspondences (4.10) and (4.11) do not work in this case,
for we may not conclude the condition 3 in Theorem 5.3.1 from Eq. (4.17). For
simplicity let us assume that̃x(x; y) is a differentiable one-to-one function with
respect tox for eachy. In this case, Eq. (4.17), which is a necessary condition
for (4.13), implies ∣∣∣∣∂x̃(x; y)∂x

∣∣∣∣ = 1, (5.42)

i.e. the Jacobian of the transformationx → x̃(x; y) should be unity. The con-
dition (5.42) reflects the strong dependence of the differential entropy on the ref-
erence measure, and we will see in the next chapter the examples in which the
unit-Jacobian condition (5.42) breaks down. In this sense, the condition (4.13) for
continuousX is even more restrictive than that for discreteX.
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Chapter 6

Applications to Continuous
Measurements

In this chapter, we apply the general theorems on the relative-entropy conserva-
tion obtained in Chapter 5 to four typical continuous measurements on a single
mode photon field, namely photon counting, quantum counting, homodyne mea-
surement, and heterodyne measurement. In these examples, we also examine the
Shannon entropy conservation and show that the Shannon entropy conservation
does not hold except for the photon-counting model.

6.1 Photon-counting model

In the photon-counting model [5, 6, 7], the photon number of a single-mode field
is measured in a destructive manner. The model is a measurement continuous in
time and the measurement operators of an infinitesimal time intervaldt are given
by

M̂pc
0 (dt) = Î − γ

2
n̂dt, (6.1)

M̂pc
1 (dt) =

√
γdtâ, (6.2)

whereγ > 0 is the coupling constant of the photon field with the detector,â is
the annihilation operator of the photon field, andn̂ = â†â is the photon-number
operator. Here we adopt the interaction picture in which the unitary terme−iωtn̂

for the free motion is omitted. The event corresponding to the measurement op-
erator (6.1) is called a no-count process in which no photon is detected. On the
other hand, the event corresponding to (6.2) is called a one-count process in which
a photocount is registered. The photon-counting process is known to be imple-
mented by a measurement model in which resonant two-level atoms initially pre-
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pared in the ground state interact with the photon field and the level of the atoms
after their interaction with the photon field are then measured [7].

From measurement operators (6.1) and (6.2), for a finite time interval[0, t],
it can be shown that both the state change and the statistic of the measurement
outcome are dependent on a single integerm, which is the number of photocounts
in the time interval, and the measurement operator is given by [6]

M̂pc
m (t) =

√
(1− e−γt)m

m!
e−

γtn̂
2 âm. (6.3)

From Eq. (6.3), the POVM for the measurement outcomem is evaluated to be

M̂pc
m

†(t)M̂pc
m (t) = ppc(m|n̂; t), (6.4)

where

ppc(m|n; t) =
(
n
m

)
(1− e−γt)me−γt(n−m). (6.5)

Equation (6.5) implies that the information of the measurement outcomem is
obtained by a coarse-graining of the photon-number distribution. In the infinite-
time limit, the conditional probability Eq. (6.5) reduces toδm,n, indicating that
the complete information on the photon-number distribution is obtained by the
measurement outcome of photon counting.

Let us examine the relative-entropy conservation. As the system observable
X, we take a discrete PVM|n⟩ ⟨n|, where|n⟩ is the normalized eigenstate ofn̂.
Then from Eq. (6.4), the condition (4.1) holds. From the measurement opera-
tor (6.3) we obtain

M̂ †
m(t) |n⟩ ⟨n| M̂m(t) = ppc(m|ñ(n;m); t) |ñ(n;m)⟩ ⟨ñ(n;m)| , (6.6)

where

ñ(n;m) = n+m. (6.7)

Equation (6.7) can be interpreted as the photon number for the pre-measurement
state given by the sum of the photon number of the pre-measurement state and
the number of photocounts, which is to be contrasted with the QND measurement
in which x̃(x; y) coincides withx for post-measurement state. Equation (6.6)
shows that the condition (5.13) is satisfied. Thus from Theorem 5.2.1, we have
the relative-entropy conservation law

D(ppcρ̂ (·; t)||ppcσ̂ (·; t)) = D(pNρ̂ ||pNσ̂ )− E[D(pNρ̂m||p
N
σ̂m

)],
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wherepNρ̂ := ⟨n| ρ̂ |n⟩ is the photon number distribution for a stateρ̂,

ppcρ̂ (m; t) := tr[ρ̂M̂pc
m

†(t)M̂pc
m (t)]

is the distribution for the number of the photocountsm, and ρ̂m is the post-
measurement state for the measurement outcomem.Note that in this model Ban’s
condition (4.13) is also satisfied as seen from Eq. (6.6) and the Shannon entropy
conservation law holds [8].

6.2 Quantum-counter model

The quantum counter model [22, 23] also measures the number of photons in
a destructive manner continuously in time but differs in that the present model
increases the number of photons in a one-count process whereas it decreases for
the photon counting model. The measurement operators for the no-count and one-
count processes in an infinitesimal time intervaldt are given by

M̂qc
0 (dt) = Î − γ

2
ââ†dt, (6.8)

M̂qc
1 (dt) =

√
γdtâ†, (6.9)

where we again adopt the interaction picture. The effective measurement operator
for a finite time interval[0, t] again depends only on the total number of countsm
in the time interval and given by [23]

M̂qc
m (t) =

√
(eγt − 1)m

m!
e−γtââ†/2

(
â†
)m

. (6.10)

The POVM form is evaluated to be

Êqc
m (t) := M̂qc

m
†(t)M̂qc

m (t)

=
(eγt − 1)m

m!
âme−γtââ†(â†)m

= pqc(m|n̂; t), (6.11)

where

pqc(m|n; t) =
(
n+m
m

)
(eγt − 1)me−γt(n+m+1). (6.12)

In this measurement model, two kinds of relative-entropy conservation laws can
be shown. The first one is for the photon number distribution. As in the photon
counting case, we obtain

M̂qc
m

†(t) |n⟩ ⟨n| M̂qc
m (t) = pqc(m|ñ(n;m); t) |ñ(n;m)⟩ ⟨ñ(n;m)| , (6.13)

ñ(n;m) = n−m (6.14)
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and the condition (5.13) as well as Ban’s condition (4.13) holds. Thus the relative-
entropy conservation law

D(pqcρ̂ (·; t)||pqcσ̂ (·; t)) = D(pNρ̂ ||pNσ̂ )− Eρ̂[D(pNρ̂m(t)||pNσ̂m(t))] (6.15)

holds, where

pqcρ̂ (m; t) = tr
[
ρ̂Êqc

m (t)
]
,

pNρ̂ (n) = ⟨n| ρ̂ |n⟩ ,

andρ̂m(t) is the post-measurement state for the given number of countsm.
The second conservation law is for the POVM defined by

ÊX
x dx = pX(x|n̂)dx, (6.16)

where

pX(x|n) = e−xxn

n!
(6.17)

andx ∈ [0,∞). The probability distribution function ofX is defined by

pXρ̂ (x) := tr
[
ρ̂ÊX

x

]
.

It is known [23] that the distribution of a stochastic variable
m

eγt

converges to that ofX in the limit t→∞. In other words,X represents the total
information obtained in the quantum-counter measurement. The photon number
distribution is determined by that ofX as shown in the following equation [23]:

⟨n| ρ̂ |n⟩ = dn

dxn
(expXρ̂ (x))

∣∣∣∣
x=0

.

Still we can show thatX is less informative than the photon number distribution.
From Eqs. (6.10) and (6.16), we obtain

M̂qc
m

†(t)ÊX
x M̂

qc
m (t) = q(x;m)pX(x̃(x;m)|n̂), (6.18)

where

q(x;m) = e−γtpqc(m|x̃(x;m)), (6.19)

pqc(m|x) = [(eγt − 1)x]
m

m!
exp

[
−(eγt − 1)x

]
, (6.20)

x̃(x;m) = e−γtx. (6.21)
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Herepqc(m|x) satisfies the normalization condition

∞∑
m=0

pqc(m|x) = 1.

Furthermore, for any integrable functionF (x), we have∫ ∞

0

dxq(x;m)F (x̃(x;m)) =

∫ ∞

0

d(e−γtx)pqc(m|e−γtx)F (e−γtx)

=

∫ ∞

0

dxpqc(m|x)F (x). (6.22)

The POVM form can be written as

M̂qc
m

†(t)M̂qc
m (t) =

∫ ∞

0

dxM̂qc
m

†(t)ÊX
x M̂

qc
m (t)

=

∫ ∞

0

dxq(x;m)pX(x̃(x;m)|n̂)

=

∫ ∞

0

dxpqc(m|x)pX(x|n̂), (6.23)

where we used Eqs. (6.18) and (6.22). Equations (6.18), (6.22) and (6.23) ensure
the condition for Theorem 5.1.1 and we obtain the relative-entropy conservation
law

D(pqcρ̂ (·; t)||pqcσ̂ (·; t)) = D(pXρ̂ ||pXσ̂ )− Eρ̂

[
D(pXρ̂m(t)||pXσ̂m(t))

]
. (6.24)

SinceX is equivalent to the total information involved in the measurement
outcome,D(pqcρ̂ (·; t)||pqcσ̂ (·; t)) converges toD(pXρ̂ ||pXσ̂ ) in the infinite-time limit.
Thus from Eqs. (6.15) and (6.24) we have

Eρ̂[D(pNρ̂m(t)||pNσ̂m(t))]
t→∞−−−→ D(pNρ̂ ||pNσ̂ )−D(pXρ̂ ||pXσ̂ ), (6.25)

Eρ̂

[
D(pXρ̂m(t)||pXσ̂m(t))

] t→∞−−−→ 0. (6.26)

This equations show the difference between the asymptotic behaviors of the rela-
tive entropies for the post-measurement state. The right-hand side of Eq. (6.25) is
the difference of the relative entropies forn̂ andX. From the chain rule (3.12) it
can be written as ∫ ∞

0

dxpXρ̂ (x)D(pNρ̂ (·|x)||pNσ̂ (·|x)) ≥ 0, (6.27)
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where

pNρ̂ (n|x) =
pX(x|n)pNρ̂ (n)

pXρ̂ (x)
(6.28)

is the photon-number distribution conditioned byX. Equation (6.28) vanishes if
and only if the photon number distributions ofρ̂ andσ̂ coincide. To show this, let
the left-hand side of Eq. (6.28) be0. Then from Proposition 3.2.2 we have

∀n ≥ 0, pNρ̂ (n|x) = pNσ̂ (n|x) (6.29)

for almost allx > 0. Therefore there exists at least onex > 0 which satisfies
Eq. (6.29). For suchx, from Eqs. (6.28) and (6.29) we have

∀n ≥ 0,
⟨n| ρ̂ |n⟩
pXρ̂ (x)

=
⟨n| σ̂ |n⟩
pXσ̂ (x)

. (6.30)

By taking the summation of Eq. (6.30) we havepXρ̂ (x) = pXσ̂ (x) and again from
Eq. (6.30) we obtainpNρ̂ (n) = pNσ̂ (n) for all n ≥ 0. Thus we have shown thatn̂ is
more informative thanX unlessρ̂ andσ̂ have the same photon-number distribu-
tion.

The Shannon entropy conservation for the photon number holds since Ban’s
condition (4.13) holds from Eq. (6.13). In the case ofX, however, the correspond-
ing condition (4.4) does not hold as shown in Eq. (6.18). Furthermore, the amount
of the decrease in the Shannon entropies forX is evaluated to be

h(pXρ̂ )− Eρ̂[h(p
X
ρ̂m(t))]

= h(pXρ̂ ) +
∞∑

m=0

pqcρ̂ (m)

∫ ∞

0

dxpXρ̂m(t)(x) ln p
X
ρ̂m(t)(x)

= h(pXρ̂ ) +
∞∑

m=0

∫ ∞

0

dxe−γtpqc(m|e−γtx)pXρ̂ (e
−γtx) ln

(
e−γtpqc(m|e−γtx)pXρ̂ (e

−γtx)

pqcρ̂ (m)

)
= −γt+ Iρ̂(X : qc) ̸= Iρ̂(X : qc), (6.31)

whereIρ̂(X : qc) is the mutual information between the measurement outcomem
andX. The term−γt comes from the Jacobian of the transformationx→ x̃(x;m)
as explained in Sec. 5.3.2. Note that in this caseX is not a PVM.

6.3 Homodyne measurement

In a balanced homodyne measurement [24, 25, 26], one of the quadrature ampli-
tudes of a photon field is measured in a destructive manner such that the post-
measurement state relaxes to a vacuum state|0⟩. Here the quadrature-amplitude

47



operators are defined by

X̂1 :=
â+ â†√

2
, X̂2 :=

â− â†√
2i

.

so that they satisfy the canonical commutation relation[X̂1, X̂2] = i. One way of
implementing this measurement is to mix the signal photon field with a classical
local oscillator and divide the mixed field into two output fields via a50%-50%
beam splitter and measuring the difference of the photocurrents of the two output
signals.

The measurement operator for an infinitesimal time intervaldt is given by

M̂(dξ(t); dt) = Î − γ

2
n̂dt+

√
γâ dξ(t), (6.32)

whereγ is the strength of the coupling with the detector,dξ(t) is a real stochastic
variable corresponding to the output homodyne current which satisfies the Itô rule

(dξ(t))2 = dt.

The reference measureµ0 for dξ is the Wiener measure in whichdξ(t)’s at dif-
ferent times obey a mutually independent Gaussian distribution with the first and
second moments given by

Eµ0(dξ) = 0,

Eµ0((dξ)
2) = dt,

whereEµ0(·) denotes the expectation with respect to the Winer measureµ0.
To derive the effective instrument for a finite time interval[0, t], let us consider

the case in which the initial state is a pure state|ψ0⟩. In this case the state change
is described by the following stochastic Shrödinger equation:

|ψ(t+ dt)⟩ = M̂(dξ(t); dt) |ψ(t)⟩ .

The solution is given by [25]

|ψ(t)⟩ = M̂y(t)(t) |ψ0⟩ , (6.33)

where

M̂y(t)(t) = e−
γt
2
n̂ exp

[
y(t)â− 1

2
(1− e−γt)â2

]
, (6.34)

y(t) =
√
γ

∫ t

0

e−
γs
2 dξ(s). (6.35)
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In the Wiener measure,y(t) in Eq. (6.35) is a Gaussian variable with the vanishing
first moment and the second moment

Eµ0 [y(t)
2] = γ

∫ t

0

e−γsds = 1− e−γt.

Thus the reference measureµ0(dy) for y(t) is given by

µ0(dy) =
dy√

2π(1− e−γt)
exp

[
− y2

2(1− e−γt)

]
. (6.36)

As the system’s observable, we take a continuous PVM|x⟩1 1 ⟨x|, where|x⟩1
is the Dirac ket such that

1 ⟨x|x
′⟩1 = δ(x− x′), X̂1 |x⟩1 = x |x⟩1 .

Then we can show the following relations (see Appendix B for the derivation):

µ0(dy)M̂
†
y(t)M̂y(t) = dyp(y|X̂1), (6.37)

p(y|x) = 1√
2πe−γt(1− e−γt)

exp

[
−
(
y −
√
2(1− e−γt)x

)2
2e−γt(1− e−γt)

]
, (6.38)

µ0(dy)M̂
†
y(t) |x⟩1 1 ⟨x| M̂y(t) = dyq(x; y; t) |x̃(x; y; t)⟩1 1 ⟨x̃(x; y; t)| , (6.39)

q(x; y; t) = e−γt/2p(y|x̃(x; y; t)), (6.40)

x̃(x; y; t) = e−
γt
2 x+

y√
2
. (6.41)

See Appendix B for the derivation. We can see the destructive nature of the mea-
surement from Eq. (6.41). Equation (6.39) ensures the condition (5.13) and the
relative-entropy conservation law

D(pYρ̂ (·; t)||pYσ̂ (·; t)) = D(pX1
ρ̂ ||p

X1
σ̂ )− Eρ̂[D(pX1

ρ̂y
||pX1

σ̂y
)], (6.42)

wherepX1
ρ̂ (x) = 1 ⟨x| ρ̂ |x⟩1 and

pYρ̂ (y; t)dy = tr[ρ̂M̂y(t)
†M̂y(t)]µ0(dy)

is the probability measure of the measurement outcomey(t).
The condition (4.13) for Theorem 4.2.1 is not satisfied as can be seen from

Eq. (6.39). Furthermore, we have

h(pX1
ρ̂ )− Eρ̂[h(p

X1
ρ̂y
)]

= h(pX1
ρ̂ ) +

∫
dxdye−γt/2p(y|x̃(x; y))pX1

ρ̂ (x̃(x; y)) ln

(
e−γt/2p(y|x̃(x; y))pX1

ρ̂ (x̃(x; y))

pYρ̂ (y)

)
= −γt

2
+ Iρ̂(X1 : Y ) ̸= Iρ̂(X1 : Y ), (6.43)
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and the Shannon entropy conservation law does not hold. The term−γt/2 comes
from the Jacobian of the transformationx→ x̃(x; y).

6.4 Heterodyne measurement

The final example is the heterodyne measurement in which both of the quadrature
amplitudesX̂1 andX̂2 are measured simultaneously in a destructive manner as
in the homodyne measurement. This measurement is implemented by detuning
the frequency of the local oscillator in the balanced homodyne setting. The sine
and cosine components of the output signal correspond to two quadrature ampli-
tudes [26].

The measurement operator for the infinitesimal time intervaldt is given by

M̂(dζ(t); dt) = Î − γ

2
n̂dt+

√
γâdζ(t), (6.44)

wheredζ(t) is a complex stochastic variable with the complex Itô rule

(dζ(t))2 = (dζ∗(t))2 = 0, dζ(t)dζ∗(t) = dt. (6.45)

The reference measureµ0 for dζ is the complex Wiener measure in which real and
imaginary parts ofdζ(t) obey independent Wiener measures consistent with the
Itô rule (6.45).

The stochastic Schrödinger equation

|ψ(t+ dt)⟩ = M̂(dt; dζ(t)) |ψ(t)⟩ (6.46)

has the solution
|ψ̃(t)⟩ = M̂y(t)(t) |ψ0⟩ ,

where|ψ0⟩ is the initial state att = 0 and

M̂y(t)(t) = e−
γt
2
n̂ey(t)â, (6.47)

y(t) =
√
γ

∫ t

0

e−
γs
2 dζ(s). (6.48)

In the complex Wiener measure,y is a complex Gaussian variable with the van-
ishing first moment and the second moments

E0[y
2(t)] = 0, E0[|y(t)|2] = 1− e−γt.

Thus the reference measureµ0(dy) is given by

µ0(dy) =
e
− |y(t)|2

1−e−γt

π(1− e−γt)
d2y, (6.49)
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whered2y = d(Rey)d(Imy). The density of the POVM fory is given by

M̂ †
y(t)M̂y(t) = A

{
exp

[
γt− (eγt − 1)ââ† + eγt(yâ+ y∗â†)− eγt|y|2

]}
,

(6.50)

whereA is the anti-normal ordering in which annihilation operators are placed to
the left of the creation operators. By using the overcompleteness condition for the
coherent state (B.1) ∫

d2αÊQ
α = Î , (6.51)

where

ÊQ
α =

|α⟩ ⟨α|
π

, (6.52)

we have

A
{
ân(â†)m

}
=

∫
d2α

π
ân |α⟩ ⟨α| (â†)m

=

∫
d2ααn(α∗)mÊQ

α ,

and therefore, for any functionf , we have

A
{
f(â, â†)

}
=

∫
d2αf(α, α∗)ÊQ

α .

From Eqs. (6.50) and (6.49), the POVM fory(t) is given by

d2yA
{
p(y|â, â†; t)

}
= d2y

∫
d2αp(y|α, α∗; t)ÊQ

α , (6.53)

where

p(y(t)|α, α∗; t) =

exp

[
−|y(t)−(1−e−γt)α∗|2

e−γt(1−e−γt)

]
πe−γt(1− e−γt)

. (6.54)

The probability density function fory is given by

pYρ̂0(y; t) =

∫
d2αp(y(t)|α, α∗; t)Qρ̂0(α, α

∗), (6.55)

where

Qρ̂(α, α
∗) =

⟨α| ρ̂ |α⟩
π

= tr[ρ̂ÊQ
α ]
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is the Q-function [27, 28]. Sincep(y(t)|α, α∗; t)→ δ2(y−α∗) in the limit of t→
∞, pYρ̂ (y; t) reduces toQρ̂(y

∗, y) in the infinite-time limit. Thus the measurement
outcome ofy gives us the information about the Q-function [29].

To show the relative entropy conservation for the system’s POVMÊQ
α , we

confirm the conditions for Theorem 5.1.1. From Eq. (6.53) the condition (4.1) is
satisfied. From Eq. (6.47) we have

µ0(dy)M̂
†
y(t)Ê

Q
α M̂y(t) = d2y(t)q(α, α∗; y)ÊQ

α̃(α,y), (6.56)

where

α̃(α, y) = e−
γt
2 α + y∗, (6.57)

q(α, α∗; y) = e−γtp(y|α̃(α; y), α̃∗(α; y)). (6.58)

Thus the condition (5.2) is satisfied. For any smooth functionF (α, α∗), we have∫
d2αq(α, α∗; y)F (α̃(α; y), α̃∗(α; y))

=

∫
d2α̃(e

γt
2 )2q(e

γt
2 (α̃+ y∗), e

γt
2 (α̃∗ + y); y)F (α̃, α̃∗)

=

∫
d2αp(y|α, α∗; t)F (α, α∗)

and the condition (5.3) is satisfied. Thus the assumptions for Theorem 5.1.1 are
satisfied and therefore we obtain the relative-entropy conservation law

D(pYρ̂ (·; t)||pYσ̂ (·; t)) = D(Qρ̂||Qσ̂)− Eρ̂0 [D(Qρ̂y ||Qσ̂y)], (6.59)

whereρ̂y is the post-measurement state for the given measurement outcomey.
In this measurement process, the Shannon entropy conservation does not hold

again. In fact, the difference of the Shannon entropies is evaluated to be

h(Qρ̂)− Eρ̂[h(Qρ̂y)]

= h(Qρ̂) +

∫
d2α̃d2yp(y|α̃, α̃∗)Qρ̂(α̃, α̃

∗) ln

(
e−γtp(y|α̃, α̃∗)Qρ̂(α̃, α̃

∗)

pYρ̂ (y)

)
= −γt+ Iρ̂(Q : Y ) ̸= Iρ̂(Q : Y ), (6.60)

whereIρ̂(Q : Y ) is the mutual information between the measurement outcome
and the system’s observablêEQ

α . The term−γt again comes from the Jacobian of
the transformationα→ α̃(α; y).
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Chapter 7

Construction of a Conserved
Observable

In the previous chapters, the quantum measurementY and the system’s observable
X are first given independently, and then we examined the conditions for the
relative-entropy conservation. Then it is natural to ask whether or not there exists
an observable which satisfies the relative-entropy conservation law for a given
measurement process. The answer is yes, with a relatively weak condition on the
sample space of the measurement outcome. In this chapter, we construct such
a relative-entropy-conserving observable for a given instrument. The meaning
of the constructed observable corresponds to the measurement outcome of the
infinite joint measurements of the given quantum measurement.

Before going to the detailed discussion, let us describe the idea of the con-
struction in an informal manner. An observableX corresponding to a POVM
outputs a measurement outcomex for a given input statêρ. This is schematically
represented by the following diagram.

ρ̂ X// x//_____

Here dashed line represents the classical outcome. On the other hand, a quantum
measurementY corresponding to a CP instrument outputs a measurement out-
comey and the conditional post-measurement stateρ̂y for a given input statêρ as
the following diagram shows.

ρ̂ Y// ρ̂y//

y
���
�
�
�
�

LetX be an observable corresponding to the measurement outcome of the infinite
successive measurement ofY . ThenX outputs the measurement outcomex =
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(y1, y2, · · · ), whereyk is the measurement outcome ofk-th Y -measurement as
represented by the following diagram.

ρ̂ Y// ρ̂y1//

y1
���
�
�
�
� Y// ρ̂y1y2//

y2
���
�
�
�
� · · ·// (7.1)

Let us consider the joint successive measurement ofX following Y . This is rep-
resented by the following diagram.

ρ̂ Y// ρ̂y//

y
���
�
�
�
� X//

x
���
�
�
�
� (7.2)

SinceX is represented by the diagram (7.1), the diagram (7.2) is equivalent to the
following diagram.

ρ̂ Y// ρ̂y//

y
���
�
�
�
� Y// ρ̂yy1// Y// ρ̂yy1y2// · · ·//

y1
���
�
�
�
�

y2
���
�
�
�
� (7.3)

The joint measurement (7.3) is equivalent to the single measurement ofX (7.1)
with the measurement outcome(y, y1, y2, · · · ). Therefore information obtained
from these measurement processes coincide and the relative-entropy conservation
law (5.9) holds.

The above discussion assumed thatX is a well-defined POVM. However, even
in a simple case in which the sample spaceΩY of Y is finite larger than2, the
sample space ofX is the infinite product spaceΩX =

∏∞
k=1 Ωk (Ωk = ΩY ) and

ΩX has the cardinality of the continuum. ThereforeΩX is not a discrete space
and we must specify theσ-algebraBX onΩX and show thatX is a well-defined
POVM on (ΩX ,BX). The most of the following discussion is devoted to such
measure theoretic considerations.

7.1 Mathematical preliminaries

7.1.1 Standard Borel space

For the construction of the conserved observable, we assume that the sample space
of the measurement is a standard Borel space defined as follows.
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Definition 7.1.1 (standard Borel space)
1. Let (Ω1,B1) and (Ω2,B2) be measurable spaces (cf. Definition 2.1.1).

(Ω1,B1) and (Ω2,B2) are said to beBorel isomorphic iff there exists a
bijectionf : Ω1 → Ω2 which is bimeasurable, i.e. for anyA1 ∈ Ω1 and any
A2 ∈ Ω2, f−1(A2) ∈ B1 andf(A1) ∈ B2.

2. A topological spaceX is called aPolish spaceiff X is metrized by a com-
plete metricd andX is separable, i.e. there exists a countable dense subset
of X.

3. Let Ω be a topological space andOΩ be the family of open sets. We can
define aσ-algebraB(Ω) in a natural way byB(Ω) := σ(OΩ). Hereσ(A ),
called the generatedσ-algebra ofA , denotes the smallestσ-algebra which
contains a familyA of subsets ofΩ. In this sense, a topological space is
considered as a measurable space.

4. A standard Borel space(Ω,B) is a measurable space which is Borel iso-
morphic to a Polish space.

Two Borel isomorphic measurable spaces are equivalent in the sense it is a
relabelling of the measurement outcome.

A discrete space(Ω, 2Ω), whereΩ is a countable set, is a standard Borel space.
As an continuous example, the Euclidean space(Rn,B(Rn)) is a standard Borel
space. In this sense, the concept of the standard Borel space is so general as
to include the sample spaces of the measurement outcome encountered in the
physical problem.

Next we consider the products of measurable spaces. Let(Ωi,Bi) be a mea-
surable space(i = 1, 2, · · · ). Forn ≥ 1 we can define aσ-algebraB1 ×B2 ×
· · · ×Bn =

∏n
i=1 Bi on a product set

∏n
i=1Ωi by theσ-algebra generated by a

family of sets

{A1 × A2 × · · · × An;Ai ∈ Bi (i = 1, 2, · · · , n)},

an element of which is called a cylinder set. For an infinite product setΩ̃ :=∏∞
i=1Ωi, the productσ-algebra

∏∞
i=1 Bi is theσ-algebra generated by a family of

sets

∞∪
i=1

{π−1
i (A);A ∈ Bi},

whereπi :
∏∞

i=1Ωi → Ωi is the canonical projection. IfΩi = Ω andBi = B for
eachi ≥ 1, the product spaces(

∏n
i=1Ωi,

∏n
i=1 Bi) and(

∏∞
i=1Ωi,

∏∞
i=1 Bi) are

denoted by(Ωn,Bn) and(ΩN,BN), respectively.
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Let (Ωi,Bi) be a standard Borel space for anyi ≥ 1. It is known that the
product spaces(

∏n
i=1Ωi,

∏n
i=1 Bi) and (

∏∞
i=1Ωi,

∏∞
i=1 Bi) are standard Borel

spaces [30].

7.1.2 Composition of instruments

In this section we consider a composition of two instrumentsI1· (·) andI2· (·) on
sample spaces(Ω1,B1) and(Ω1,B1), respectively. The composition corresponds
to a joint measurement of1 after2. If the sample spaces are discrete, this is given
by

I12A (ρ̂) =
∑

(ω1,ω2)∈A

I1{ω1} ◦ I
2
{ω2}(ρ̂)

for eachA ⊂ 2Ω1×Ω2 and each density operatorρ̂.
The composition of two instruments can be constructed when the sample

spaces are both standard Borel spaces. The following theorem is due to Davies
and Lewis [31, 32].

Theorem 7.1.2
LetI i· (·) be a CP instrument on a standard Borel space(Ωi,Bi) for i = 1, 2. Then
there exists a unique CP instrumentI12· (·) on the product space(Ω1×Ω2,B1×B2)
such that

I12A1×A2
(ρ̂) = I1A1

◦ I2A2
(ρ̂)

for anyAi ∈ Bi (i = 1, 2) and any density operator̂ρ. The constructed instrument
I12 is denoted asI1 ∗ I2.

We remark that the original statement in [31, 32] is for positive (P) instru-
ments, the definition of which is obtained by weakening the complete positivity
to a mere positivity in the definition of the CP instrument. The above statement is
readily obtained if we note that a P instrumentI is a CP instrument iffI ⊗ In is
a P instrument for eachn ≥ 1, whereIn is the identity superoperator onL(Cn).

If we ignore the post-measurement state afterI1 and only consider the mea-
surement outcome, we obtain the following theorem.

Theorem 7.1.3
Let Ê1(·) be a POVM on a standard Borel space(Ω1,B1) andI2· (·) be a CP
instrument on a standard Borel space(Ω2,B2). Then there exists a unique POVM
Ê12(·) on the product space(Ω1 × Ω2,B1 ×B2) such that

tr[ρ̂Ê12(A1 × A2)] = tr[Ê1(A1)I2A2
(ρ̂)] (7.4)
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for anyAi ∈ Bi (i = 1, 2) and any density operator̂ρ. We call the POVMÊ12 as
the composed POVM of the POVM̂E1 and the CP instrumentI2.

Proof. LetI1· (·) be a CP instrument on a sample space(Ω1,B1) such thatI1A
†
(Î) =

Ê1(A) for anyA ∈ B1. Such CP instrument is, for example, given byI1A(ρ̂) =
tr[Ê1(A)ρ̂]ρ̂1 for anyA ∈ B1 and any density operator̂ρ, whereρ̂1 is an arbitrary
density operator. Then the POVM̂E12(A) := (I1∗I2)†A(Î) on the product sample
space satisfies the condition (7.4). The uniqueness follows from the uniqueness of
the measuretr[ρ̂Ê12(·)] on the product space for eachρ̂.

LetI i· (·) be a CP instrument on a standard Borel space(Ωi,Bi) for 1 ≤ i ≤ n.
The composition ofn CP instruments on a product space(

∏n
i=1Ωi,

∏n
i=1 Bi) is

defined by

I1 ∗ I2 ∗ · · · ∗ In := I1 ∗ (I2 ∗ (· · · ∗ In) · · · ). (7.5)

This is a unique CP instrument on the product space such that(
I1 ∗ I2 ∗ · · · ∗ In

)∏n
i=1 Ai

= I1A1
◦ I2A2

◦ · · · ◦ InAn

for anyAi ∈ Bi (1 ≤ i ≤ n). If Ωi = Ω, Bi = B andI i = I for all 1 ≤ i ≤ n,
the composition of instruments (7.5) is denoted asI∗n.

7.2 Construction of a relative-entropy-conserving ob-
servable

For the construction of a relative-entropy-conserving POVM for a given instru-
ment, we need the following lemma [33].

Lemma 7.2.1 (quantum Kolmogorov extension theorem)
Let (Ωi,Bi) be a standard Borel space (i = 1, 2, · · · ) andÊn(·) be a POVM on a
product space(

∏n
i=1Ωi,

∏n
i=1 Bi) for eachn. Suppose that, for each1 ≤ n < m,

Ên(A) = Êm

(
A×

∏
n<i≤m

Ωi

)
(7.6)

holds for anyA ∈
∏n

i=1 Bi. Then there exists a unique POVM̂E(·) on the infinite
product space(

∏∞
i=1Ωi,

∏∞
i=1 Bi) such that

Ên(A) = Ê

(
A×

∏
n<i<∞

Ωi

)
for anyn ≥ 1 and anyA ∈

∏n
i=1 Bi.
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The condition (7.6) is calledKolmogorov consistency condition. We remark
that the classical version of Lemma 7.2.1 is called as a Kolmogorov extension
theorem well known in the measure theoretic probability theory (e.g. [20]). The
Kolmogorov extension theorem is used, for example, to construct a probability
space of an infinite coin-toss process.

Now let us construct a POVM for a given CP instrumentIY· (·) on a standard
Borel space(ΩY ,BY ). Let ÊY

n be a POVM on a product space(Ωn
Y ,B

n
Y ) such

that

ÊY
n

(
n∏

i=1

Ai

)
= (IY ∗n

)†An×···A2×A1
(Î) = IYA1

† ◦ IYA2

† · · · ◦ IYAn

†
(Î) (7.7)

for anyAi ∈ BY (i = 1, 2, · · · , n), which corresponds to the measurement out-
come of ann-composition ofIY . Then it satisfies the Kolmogorov consistency
condition (7.6) and from the quantum Kolmogorov extension theorem there exists
a unique POVMÊX on an infinite product space(ΩX ,BX) = (ΩN

Y ,B
N
Y ) such

that

ÊX(A× ΩN
Y ) = ÊY

n (A) (7.8)

for anyA ∈ Bn
Y . The POVMÊX corresponds to the measurement outcome of

the infinite composition of the given measurement processY. Note that we cannot
in general define the post-measurementstatecorresponding to the infinite com-
position of a CP instrument. An example of such a measurement is the quantum
counter measurement described in Sec. 6.2 in which the photon number of the
post-measurement state diverges in the infinite composition limit.

Next we prove the relative-entropy conservation law. Here we consider one of
the equivalent forms of the conservation law in Eq. (5.9). From Theorem 7.1.3,
there exists a POVM̂EXY on a product space(ΩX × ΩY ,BX ×BY ) such that

ÊXY (AX × AY ) = IYAY

†
(ÊX(AX)) (7.9)

for anyAX ∈ BX andAY ∈ BY . The POVMÊXY corresponds to the outcome
of the joint measurement process ofX afterY . The sample spaceΩX × ΩY is
Borel isomorphic toΩX = ΩN

Y by a mapping

ΩX × ΩY ∋ (x, y) 7→ (y, x(1), x(2), · · · ) ∈ ΩX , (7.10)
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wherex =
∏∞

i=1 x(i) and thusÊXY is identified with a POVMÊX̃(·) on(ΩX ,BX)
induced by the mapping (7.10). It follows from Eq. (7.9) that

ÊX̃

(
n∏

i=0

Ai × ΩN
Y

)
= IYA0

†
(
ÊY

n

(
n∏

i=0

Ai

))
= IYA0

† ◦ IYA1

† ◦ · · · ◦ IYAn

†
(Î)

= ÊX

(
n∏

i=0

Ai × ΩN
Y

)

for everyA0, A1, · · · , An ∈ BY (n ≥ 1). Thus from the uniqueness of̂EX we
haveÊX̃ = ÊX . Thus we have the relative-entropy conservation law

D(pXY
ρ̂ ||pXY

σ̂ ) = D(pXρ̂ ||pXσ̂ ), (7.11)

wherepXY
ρ̂ andpXρ̂ are the probability measures for a quantum stateρ̂ defined by

pXY
ρ̂ (A) = tr[ρ̂ÊXY (A)],

pXρ̂ (B) = tr[ρ̂ÊX(B)]

for eachA ∈ BX ×BY andB ∈ BX .
The above discussion is summarized as the following theorem.

Theorem 7.2.2
Let Y be a measurement process described by a CP instrumentIY on a standard
Borel space(ΩY ,BY ). Then there exists a unique system’s observableX de-
scribed by a POVMÊX on a product sample space(ΩX ,BX) = (ΩN

Y ,B
N
Y ) such

that the condition (7.8) holds. Furthermore,X andY satisfy the relative-entropy
conservation law (7.11).

We remark that the mapping (7.10) corresponds tox̃(x; y) in Chapter 5. We
also mention that in the example of the quantum-counter model in Sec. 6.2, the
POVM in Eq. (6.17) corresponds to the constructed observable (7.8).
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Chapter 8

Summary

We have studied information flow in quantum measurement processes based on
the relative entropy and identified the conditions for the relative-entropy conser-
vation law. In this chapter we summarize the results obtained in this thesis.

In Chapter 1, we described the motivation and background of this thesis. In
Chapter 2, we reviewed the quantum theory of measurement. There we have
introduced the POVM, the CP instrument and the measurement model. In the
introduction of these concepts, the sample space of the measurement outcome is
described by a general measurable space, which enables us to handle discrete and
continuous sample spaces in a consistent manner.

In Chapter 3, we have reviewed the classical information theory and intro-
duced classical entropic information contents, namely the Shannon entropy, the
mutual information and the relative entropy. We have discussed properties of
these entropies for a continuous variable and shown that the Shannon entropy
for a continuous variable cannot be interpreted as an information content and de-
pends on the choice of a reference measure of the variable, whereas the other two
entropies are independent of the reference measure. Furthermore, we have intro-
duced a concept of a sufficient statistic and seen that the sufficiency of a statistic
is characterized by a conservation of the relative entropy.

In Chapter 4, we reviewed a Shannon entropy conservation for quantum mea-
surements established by Ban [10]. For a given system’s observableX described
by a POVM and a measurement processY described by a CP instrument, we
have proved the Shannon entropy conservation by assuming some conditions on
X andY. We have discussed a special case in whichX is projection-valued and
shown that the Shannon entropy conservation can be proven under a less restrictive
condition than the general case. As an example of Shannon-entropy-conserving
measurements, we have discussed a quantum non-demolition measurement.

In Chapter 5, we have derived the condition for a quantum measurementY and
a system’s observableX such that the relative-entropy conservation law holds.
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The obtained information about which of the two candidate states is actually pre-
pared is quantified in terms of the relative entropy of the measurement outcome.
The derived relative-entropy conservation law states that the relative entropy of the
measurement outcome is equal to the decrease in the relative entropy of the mea-
sured observableX. To clarify the meaning of the established condition for the
relative entropy conservation law, we have considered the successive joint mea-
surement ofY followed byX, and derived another equivalent relative-entropy
conservation law for this joint measurement process, which states that the relative
entropy of the measurement outcome of the joint measurement coincides with the
relative entropy of the measured observableX for the initial state. The estab-
lished condition for the relative-entropy conservation law can be interpreted as
the existence of a sufficient statisticx̃(x; y) in the successive joint measurement
such that the probability distribution of̃x(x; y) coincides with that ofX for the
initial state. We have also shown that for the case in whichY is discrete and
X is a discrete PVM, the relative-entropy conservation law is equivalent to the
established condition. The established condition is less restrictive than the condi-
tion for the Shannon entropy conservation derived by Ban and we have compared
these conditions. For the case in whichX andY are both discrete, Ban’s condition
is shown to be equivalent to the condition that the post-measurement state is an
eigenstate ofX if the pre-measurement state is an eigenstate ofX. An example
in which the Shannon entropy conservation does not hold but the relative-entropy
conservation does is given by a destructive sharp measurement ofX, in which the
measurement outcome is equivalent to that of the projective measurement while
the post-measurement state is a maximally mixed state.

In Chapter 6, we have applied the general theorem for the relative-entropy con-
servation law to typical examples of optical continuous measurements, namely
photon-counting, quantum-counting, homodyne and heterodyne measurements,
and shown the relative-entropy conservation for each measurement process. We
have shown that these measurements except for the photon-counting measurement
do not satisfy the Shannon entropy conservation due to the non-unit Jacobian of
the transformationx → x̃(x; y). Among these measurements, the heterodyne
measurement is special in the sense that the probability for the measurement out-
come, Q-function, involves all the matrix elements of the system’s density matrix
as different from other examples in which the diagonal elements are only relevant
to the measurement process.

In Chapter 7, we have constructed a relative-entropy-conserving observable
for a given measurement process described by a CP instrument on a standard
Borel space. The constructed observable is an infinite composition of the given
instrument which corresponds to the measurement outcome of an infinite suc-
cessive joint measurement of the given measurement. For the quantum-counting
measurement, there are two relative-entropy-conserving observables, namely the
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photon number and the infinite composition of the measurement constructed in
Chapter 7. In this example the latter one is obtained by the coarse-graining of
the photon number. From this observation, one may wonder what is the relation
between the constructed observable and other relative-entropy-conserving observ-
ables in general. This question remains an outstanding issue.
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Appendix A

Proof of Proposition 3.3.4

In this appendix we prove Proposition 3.3.4.

Lemma A.0.3
If H is separable, thenS(H) is separable with respect to the trace norm.

Proof. SinceH is separable, there exists a countable dense subset{|ψn⟩} ⊂ H.
DefineT0 as a set of operators of the form

m∑
k=1

|ψnk
⟩ ⟨ψnk

| (m = 1, 2, · · · )

and letS0 := {ρ̂/ tr[ρ̂]; ρ̂ ∈ T0}. ThenS0 is countable and it is easy to show that
S0 is dense inS(H).

From Lemma A.0.3, there exists a dense countable subset{ρ̂n}n≥1 ⊂ S(H).
Define a statêρ0 ∈ S(H) by

ρ̂0 :=
∑
n≥1

2−nρ̂n. (A.1)

To showPX
ρ̂ ≪ PX

ρ̂0
for eachρ̂ ∈ S(H), take an arbitrary setA ∈ BX such that

PX
ρ̂0
(A) = 0. From the definition of̂ρ0 (A.1), we have

0 =
∑
n≥1

2−n tr[ρ̂nÊ
X(A)] =

∑
n≥1

2−nPX
ρ̂n(A), (A.2)

and thusPX
ρ̂n
(A) = 0 for all n ≥ 1. Since{ρ̂n}n≥1 is dense inS(H), there exists

a subsequence{ρ̂nk
}k≥1 such that||ρ̂ − ρ̂nk

||1 → 0, where||Â||1 := tr
√
Â†Â is

the trace norm. Hence we have

PX
ρ̂ (A) = tr[ρ̂ÊX(A)] = lim

k→∞
tr[ρ̂nk

ÊX(A)] = 0. (A.3)

ThusPX
ρ̂ ≪ PX

ρ̂0
holds and Proposition 3.3.4 is proved.
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Appendix B

Derivation of Eqs. (6.37) and (6.39)

We at first evaluateM̂ †
y(t) |x⟩1 1 ⟨x| M̂y(t). In the evaluation of this operator, we

use the normal ordering. The normally ordered expression: O(â, â†) : for a scalar
functionO(α, α∗) of a complex variableα is an operator in which annihilation
operators are placed to the right of creation operators. Any operatorÔ has a
unique normally ordered expression: O(â, â†) : with

O(α, α∗) = ⟨α| Ô |α⟩

where

|α⟩ = e−|α|2/2
∞∑
n=0

αn

√
n!
|n⟩ (B.1)

is a coherent state. Since the coherent state in the|x⟩1 basis can be written as

1 ⟨x|α⟩ = π−1/4 exp

[
−1

2
(x−

√
2α)2 − 1

2
(α2 + |α|2)

]
,

we have

⟨α⟩x11 ⟨x⟩α = π−1/2 exp

[
−
(
x− α + α∗

√
2

)2
]
,

which implies the following normally ordered expression

|x⟩1 1 ⟨x| = π−1/2 : exp

[
−
(
x− â+ â†√

2

)2
]
: . (B.2)

By using Eq. (B.2) and the formula

e−λn̂ |α⟩ = e−
|α|2
2

(1−e−2λ) |e−λα⟩ ,
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which is valid for realλ, the operatorM̂ †
y(t) |x⟩1 1 ⟨x| M̂y(t) in normal ordering is

evaluated to be

⟨α| M̂ †
y(t) |x⟩1 1 ⟨x| M̂y(t) |α⟩

= π−1/2 exp

[
−
(
e−

γt
2 x+

y√
2
− α + α∗
√
2

)2

+

(
e−

γt
2 x+

y√
2

)2

− x2
]
.

(B.3)

Using again Eq. (B.2) in Eq. (B.3), we obtain Eq. (6.39). By integrating Eq. (6.39)
with respect tox, we obtain

M̂y(t)
†M̂y(t) = exp

[
γt

2
+ X̂2

1 − eγt
(
X̂1 −

y√
2

)2
]
. (B.4)

By multiplying Eq. (B.4) with Eq. (6.36), we obtain Eq. (6.37).
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