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Abstract

In a general quantum measurement, some amount of information on the mea-
sured observable corresponding to a system’s positive-operator valued measure
(POVM) is lost due to inevitable state change of the measurement. However,
there is a special class of quantum measurements in which the information about
the measured observable is conserved. Quantum non-demolition measurement
and photon-counting measurement on a single-mode field are examples of quan-
tum measurements in which the information about system’s photon number con-
serves. Ban discussed the information flows in quantum measurement processes
based on the Shannon entropy (M. Ban, Int. Jour. Theor. Y2491 (1998)).

He gquantified the obtained information as the mutual information between the
measurement outcome and the measured observable, and established a condition
for a Shannon entropy conservation which states that the mutual information is
equal to the average decrease in the system’s Shannon entropy of the measured ob-
servable. However, since the Shannon entropy for a continuous variable cannot be
interpreted as an information content, there exist several continuous quantum mea-
surements that do not satisfy the Shannon entropy conservation. Furthermore the
physical meaning of the condition for the Shannon entropy conservation derived
by Ban is not clear. In this thesis, we consider the information flow quantitatively

by using the relative entropy and establish the condition for the relative-entropy
conservation.

First, we quantify the information carried by the measurement outcome in
terms of the relative entropy between the probability measures of two candidate
states and establish a sufficient condition for the relative-entropy conservation law
which states that the relative entropy of the measurement outcome is equal to a
decrease in the relative entropy of the measured observable in the system. The
statistical meaning of the condition is clarified by considering a successive joint
measurement process of the measurement process followed by a sharp measure-
ment of the observable. In this joint measurement process, the condition can be
interpreted as the existence of a sufficient statistic whose probability distribution
coincides with that of the measured observable. The condition for the relative-
entropy conservation law is less restrictive than that for the Shannon entropy con-
servation and we compare these conditions in the case in which both the measure-
ment outcome and the measured observable are discrete.

Second we apply the general theory on the relative-entropy conservation law
to typical optical continuous measurements, namely photon-counting, quantum-
counting, homodyne measurement, and heterodyne measurement. We show that



the Shannon entropy conservation does not hold except for the case of the photon-
counting measurement, while the relative-entropy conservation does hold for all
of these measurements. The breakdown of the Shannon entropy conservation is
shown to be due to the non-unit Jacobian of the sufficient statistic and the strong
dependence of the continuous Shannon entropy on the reference measure.

Finally, we consider a problem of whether or not there exists a relative-entropy-
conserving POVM of the system for a given measurement process. Assuming that
the sample space of the measurement process is a standard Borel space, we con-
struct a relative-entropy-conserving POVM of the system. Physically, the con-
structed POVM corresponds to an infinite successive joint measurements of the
given measurement process.
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Chapter 1

Introduction

The inevitable back-action on the system in a quantum measurement process is
one of the key concepts in quantum theory and much has been discussed about
the relation between the obtained information and the measurement back-action.
Though a quantum measurement has a back-action on the system, some of the
measurement process is used to measure a system’s obseYvabteesponding

to a system’s positive-operator valued measure (POVM) and known to bring us
an information aboufX by a sequence of the measurements. Examples of such
measurements include a quantum non-demolition (QND) measurement [1, 2, 3, 4]
and a photon-counting measurement [5, 6, 7].

The QND measurement is a measurement in which there is not a measurement
back-action on a measured observable corresponding to a system’s projection-
valued measure (PVMYX. Note that this does not imply that there is no measure-
ment back-action on the system since an observable conjugafeigaactually
disturbed. By performing the same QND measurement on the system many times,
we can obtain the information abodtas much as we can. On the other hand, the
photon-counting measurement is a destructive measurement such that the number
of photons in the system decreases in a counting event. Still we can obtain the
information about the photon numbgiby performing the measurement continu-
ously.

What is common in these measurement processes is a conservation of the in-
formation about the measured observable, in the above examples the projection-
valued measure of the photon number operator. Ban [8, 9, 10] considered the
information conservation of the measured POWIn a quantum measurement
processY” described by a completely positive (CP) instrument quantitatively by
using the Shannon entropy and mutual information. In Ref. [9, 10], he showed that
under some conditions on the measurement process the Shannon entropy conser-



vation law
(X 1Y) = Hy(X) — E[H,,(X)] (1.1)

holds. Here thd (X : Y') is the mutual information between a system’s POVM
X and the measurement outcor¥ie H,(X) is the Shannon entropy of for
the pre-measurement staie £|-| denotes the ensemble average over the mea-
surement outcomg and I, (X)) is the Shannon entropy of for a given post-
measurement stafg when the measurement outcomeishe left-hand side of
Eq. (1.1) is the amount of the obtained information about X from the measure-
ment outcom&” and the right-hand side is the decrease in the Shannon entropy of
X by the measurement back-action. It can be shown that both QND and photon-
counting measurements satisfy the established condition and the Shannon entropy
conservation (1.1) in these measurements.

The Shannon entropy for continuous varialdlas defined by

H(X) = / po(de)p™ () lnp¥ (2), (12)

whereQx is the sample space of, 1 is a measure of2x andp*(x) is the
probability density ofX’ with respect tq.y. The continuous Shannon entropy (1.2)
depends strongly on the reference meagygrand is known to change its value by
a one-to-one transformation of the stochastic variable. Due to this fact we cannot
interpret the continuous Shannon entropy (1.2) as an information content. Such a
difficulty in some measurement processes with continuous outcome suggests that
the left-hand side of Eq. (1.1) does not correspond to a decrease in the system’s
information. Furthermore, the physical meaning of the condition for the Shannon
entropy conservation is not so clear.

Another important information content is the relative entropy [11], or the
Kullback-Leibler divergence, defined by

DGie) = [

Qx

poldeyr @) (L) (1.3)

wherepX and ¢X are probability density functions with respect to a reference
measure.,. The relative entropy is shown to be positive and the expression (1.3)
does not depend on the choice of the reference meagurstatistically the rel-

ative entropy is regarded as the amount of information obtained from the mea-
surement outcome about which of the probability measurggndq is actually
prepared. The relative entropy is also known to characterize the sufficiency of
a system’s stochastic variabdl§x) on the parameter estimation problem. Here

in the parameter estimation problem we consider a set of probability measures
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{py }oco parametrized by and estimate from the measurement outcaménich

6 is actually chosen. The sufficiency of a stochastic varidlile) is defined by

the condition that the conditional probability(x|7'(z) = ¢) does not depend on

¢ for anyt. This implies that it is sufficient to knoW(z) to obtain the informa-
tion aboutd. The sufficiency is characterized by the conservation of the relative
entropies betweeX and7'(z).

In this thesis we address the problem of the information conservation in quan-
tum measurements from the different standpoint, that is, the relative entropy.
In our approach, the obtained information is quantified as the relative entropy
D(py||pY), wherep? is the probability measure of the measurement outcome
when the state is prepared jnand o is another candidate state. By assuming
some conditions on the measurement prodéssd a system observahlé, we
will establish the following relative-entropy conservation law

D(p}|lpy) = D(py|Ip¥) — E[D(p) 1p3 )], (1.4)

Wherepg( is the probability distribution ofX for a statep. The condition for

the relative-entropy conservation law we found is well understood if we consider
a joint successive measurement process in whidh first measured and then a
sharp measurement ohis done. Then the relative-entropy conservation law (1.4)
is shown to be equivalent to

D(p; " |lIpz ") = Dy llp ). (1.5)

Whereﬁg” is the probability distribution of the joint measurement process for a
pre-measurement state In this joint measurement process, the condition for the
relative entropy conservation (1.4) or (1.5) can be interpreted as a condition that
there exists a sufficient statistiz; y) such that the probability distribution of
Z(z;y) coincides with that ofX for the pre-measurement state. This condition is
logically less restrictive than the condition for the Shannon entropy conservation,
i.e. the relative-entropy conservation law applies to a wider class of quantum mea-
surements. In examples of homodyne and heterodyne measurements in which the
system’s observabl& is continuous, it is shown that the relative-entropy conser-
vation law holds, while the Shannon entropy conservation does not. This is due to
the difficulties in the definition of the Shannon entropy of a continuous variable.
We also show that for a given measurement pro¢gss system’s observablg
corresponding to the infinite joint measurementoatisfies the relative-entropy
conservation.

This thesis is organized as follows. In Chapter 2 we review quantum measure-
ment theory with continuous sample space. In Chapter 3, we review the classical
entropic information contents especially for the continuous case. In Chapter 4, we



review the Shannon entropy conservation by Ban. In Chapter 5 we prove the rela-
tive entropy conservation law for a measurement of system'’s observable described
by a general positive operator-valued measure (Theorem 5.1.1) and projection-
valued measure (Theorem 5.2.1). For the case in whHicha pure discrete mea-
surement, it is shown that the relative-entropy conservation and the condition for
Theorem 5.2.1 is logically equivalent. Furthermore, the condition for the Shannon
entropy conservation is compared with that for the relative entropy whemd
Y are discrete an is projection-valued. In Chapter 6, we apply the general
discussion about the relative-entropy conservation law to optical destructive mea-
surements, namely photon counting, quantum counting, homodyne measurement,
and heterodyne measurement. In these examples except the photon-counting mea-
surement, we show the Shannon entropy conservation law does not hold due to
the difficulties in the Shannon entropy for continuous variable, while the relative
entropy conservation law does hold. In Chapter 7 we construct a relative-entropy-
conserving observabl& for a given measurement process In Chapter 8, we
summarize this thesis.

The results in Chapter 5 and Chapter 6 are based on Ref. [12] collaborating
with M. Ueda.



Chapter 2

Review on Quantum Measurements

In this chapter we will review general theory of quantum measurements which is
needed in the main part of this thesis.

2.1 Positive Operator-valued Measure

A positive operator-valued measure (POVM) describes the statistics of the mea-
surement outcome of a quantum measurement. To treat quantum measurements
with continuous and discrete sample spaces on a equal footing, we introduce
POVM on a generaf-algebra [13].

Definition 2.1.1 (-algebra)
Let (2 be a set. Ar-algebraZ on () is a family of subsets df2 such that

1. Qe %

2.if A € ZthenQ\ A € B, whereX \Y = {z € X;z ¢ Y} isthe
difference set;

3. for a countable sequence of s¢t$,}>°, € 4, U~ A, € B.

A pair (2, %) is said to be aneasurable spaceor asample spaceiff % is a
o-algebra or).

Definition 2.1.2 (positive operator-valued measure)
Let H be a Hilber spacef () be the set of bouded operators Hn €2 be a set

and % be ac-algebra orf). A mappingE : & — L(H) is called as gositive
operator-valued measure(POVM) iff

1. E(A) >0forall A c¢ &



A

2. E(0)=0;
3. B(Q) =1,

4. B(UZ, A, =322 E(A,) (in the weak sense) for any disjoifitl, } C
2%, where a generalized §equené§ in L(H) converges weakly tol
L(H) iff (Y] Aa|@) = (4] Alg) forall [) , [¢) € H.

For the POVME, Q is said to be a sample spacelofand the measurable space
(92, #) is said to be an outcome spacelafWe also refer the triall = (£, 2, %)
as the POVM or the observable &h

Let £ : B — L(H) be a POVM on a sample spa(®, %) and/ be a density
operator or#{, i.e. a positive operator with unit trace. Then the mapping

P,: B3 A tr[pE(A)] € [0,1]

is a probability measure on a measurable sp&ces). P;(A) can be interpreted
as the probability for the event that the measurement outconsein A. Each
elementA of 4 is assumed to be an event such that the probabilitylfoan be
defined.

Next we show some examples of the POVM.

Example 1
Let 2 be a countable set aridbe a POVM on((2, 22), where2? is the power set
of Q. Then for anyA € 2%
E(A) =) E,, (2.1)
weA
whereE, := E({w}). FromE(Q) = I, the set of positive operatofs,, }..co
satisfies the following completeness condition:

S BT 22)

On the other hand, if a set of positive operat{)&}weg satisfies the complete-
ness condition (2.2), a POVM on a sample spdze*?) can be defined by Eq. (2.1).
For this reason, the set of operatdis,, }..cq is identified with the POVM itself.
This kind of POVM is called discrete.

Example 2
A POVM E on a sample spadg, %) is aprojection valued measure(PVM)

iff £(A) is a projection operator for any € . For a PVME, we can show that

A

E(A)E(B) = E(ANB) (2.3)

(o¢]



forany A, B € 4. To prove Eq. (2.3), we first note that¥,Y € ZandX C Y,
then
E(X)<EX)+E(Y\X)=E({). (2.4)

SinceE(X) andE(Y') are projection operators, Eq. (2.4) implies

E(Y)E(X) = E(X). (2.5)

and thus Eq. (2.3) is proved.

If {|7) };cs is @ complete orthonormal basis of the Hilbert spacénen{|i) (i| }ies
is a discrete PVM ori.

Another important example is the spectral decompositiosf a position op-
eratorz of a one-dimensional particle. In this case, the Hilber spacegiven by
L*(R) which is the set of all the square-integrable complex measurable functions
onR. The sample space fdt is given by(R, Z(R)), whereZ(R), called as the
Borel o-algebra ofR, is the smallest-algebra which contains the family of open
sets. The PVME is then given by

forall A € Z(R), ¢y € H,andz € R, where

() 1if x € A,
€Tr) =
4 Oif o ¢ A

is the indicator function. By using the Dirac Ket such that
(ala'y = 8w~ ), [ dala) ol = 1, (26)
R
the PVME can be written as

B(A) = /Adx 2) (o]



Example 3 (POVM density)

Let (E, Qy, By) be a POVM onH. For many cases we can take a positive mea-
sureyy on a measurable spa¢®y, %y ) and a positive operator-valued fuction
EY (y € Qy) such that the POVME can be written as

B(A) = [ o)} @7)

forany A € %y. E;” is said to be a POVM density with respect to a reference
measure.,. We will encounter many examples of the POVM density in the fol-
lowing chapters.

2.2 Completely Positive (CP) Instruments and Mea-
surement Models

In the quantum measurement, the state change due to the measurement back-
action is essential. To describe the measurement back-action, we need a math-
ematical framework which can derive both the measurement outcome and the
state change. Such a description is given by a completely positive instrument
discussed in this section. We can also consider a more detailed description of the
measurement which includes an interaction involved in the measurement and a
pointer observable of the probe system. The relation of these descriptions are also
discussed in this section.

2.2.1 CP maps and Kraus representations

Definition 2.2.1 (completely positive super-operator)

Let& : L(H) — L (K) be alinear map. (A linear map which acts on a space of
operators is often called as a superoperatéris positive iff £(A) > 0 for any
positive A € L(H). £ is completely positive(CP) iff £ ® Z, is positive for all

n > 1, whereZ, is the identity superoperator of(C") and the tensor product

£ ® F of superoperator§ and F is defined by ® F(A® B) := £(A) ® F(B)

for all A andB in the domains of and.F, respectively.

The complete positivity states that the state change is positive if another ancilla
systemC" is present. It is known that there exists a positive but not completely
positive superoperator [14].

One important property of the CP map is that it has a Kraus representation
shown in the following theorem due to Kraus [15]:

10



Theorem 2.2.2

Let 7 and K be separable, i.e. countable dimesional, Hilbert spacesfand
L(H) — L(K) be a CP map. Then there exists a countable set of bounded linear
operators\; : H — K (i = 1,2, - - -) such that

E(p) =) MpMy}, (2.8)

for anyp € L£(H). Furthermore if boti{ andC are finite dimensional, then the
number of operatorMi can be taken to be finite.

The representation & in Eq. (2.8) is said to be a Kraus representatiod of
and the operatal/; is said to be a Kraus operator.

For a given CP mapg, there is a arbitrariness in the choice of the Kraus repre-
sentation in Eq. (2.8). In the context of the measurement model, this corresponds
to the choice of the measured observable of the probe system with discrete out-
comes.

2.2.2 CP instruments

Now we introduce a CP instrument:

Definition 2.2.3 (CP instrument)
Let (2, #) be a sample spac#, be a Hilber space. A mapping

# < T(H) 3 (A,p) — Ta(p) € T(H),
where7T (H) is the set of trace class operators#nis called aCP instrument iff

1. forany A € %, a mapping7 (H) > p — Za(p) € T(H) is CP and
trace-decreasing superoperator;

2. for any state, tr[Zo(p)] = 1;

3. if pis astate and A, }>2, C A is disjoint, then
tr [IU;L.;A” (ﬁ)é} =Y [IAn(ﬁ)B}
n=1

for any operato3 € £L(H).

A CP instrumentZ.(-) on a sample spadg, %) determines the statistics of
the measurement outcome by
Py(A) = tr[Za(p)] = tr[pE(A)],

11



where E(A) := Z(I) and the adjoin€' of a superoperatof is defined by
tr[pET(A)] := tr[€(p)A] for anyp € T(H) and anyA € L£(H). From Def. 2.2.3
E(-) is the POVM in Def. 2.1.2. Furthermore, for a pre-measurement iaiel
an eventd € 4 such thatP;(A) # 0, the post-measurement stgte when the
outcomew is in A is given by

. Za(p)

PA Pﬁ(A)' (2.9)
Especiallyp, = Zo(p) is the non-selective post-measurement state in which all
the information of the measurement outcome is discarded. The non-selective state
change is described by the CP ni&ag-) which is trace-preserving (TP). We re-
mark that for a given POVME there exist many CP instruments whose POVM'’s
give the samel. The difference between these CP instruments corresponds to
non-equivalent measurement back-actions.

Next we show some examples of CP instruments.

Example 4 (discrete CP instrument)

Let © be a countable set affd(-) be a CP instrument on a sample sp&ee2®?).

A CP instrument on a discrete sample space is said to be discrete. We adopt a
notationZ, := Zy., and the measurement process is completely determined by a

set of CP map$Z, }.cq by
T4 = ZIM

wEA

forany A ¢ 2%, A
If for eachw € ) there exists a bounded operafdy, such that

T.,(p) = MupM,
the measurement is said to be pure. In this case, if the pre-measurement state is a
pure state, the post-measurement state is also pure.

Example 5

Let Z.(-) be a CP instrument on a sample spé&e, %y ) andp, be a measure

on (Qy, By ). As in the case of the POVM density, for some cases we can take a
density of the CP instrume#t, for eachw € 2 such that

T.(5) = / 1o ()€, ()

for any setA € %, and any state. In this case, the POVME(A4) = Z1,(])

has the density of POVM given b, = &/(1). p., == &.(p)/ tr[E,(p)] can be

interpreted as the post-measurement state when the measurement outcome is
In the theorem of the relative entropy conservation relation, we assume the

existence of such reference measugand the density of CP instrumefi.

12



2.2.3 Indirect measurement model

In this subsection we consider a measurement model which describes the probe
system and its interaction with the system together with the measurement outcome
and the state change. Formally the indirect measurement model is defined as
follows.

Definition 2.2.4 R
Let H be a Hilbert space, arifl= (£, 2, #) be a POVM orH{. Suppose that

1. K is a Hilbert space called a probe system;

2. ¢ is a state orkC;

3. U is a unitary operator on a composite systany k;
4. F = (F,Q, %) isaPOVM onk.

A quadruple(K, 7, U, F) is called an indirect measurement model, or a measure-
ment model, ot iff

tr[pE(A)] = tx[U(p @ 6)UTF(A)]
for any statep and A € £.

An indirect measurement modg(, 7, U, F) of a POVME = (E, 0, #) de-
termines the CP instrument 66 by

TY'(p) = tex[U(p @ 6)U' (I ® F(A))]

for any statey and A € %, wheretry is the partial trace over the probe Hilbert
spacelC.

Ozawa [16] has shown that for an arbitrary instrunief) there exists a mea-
surement modeM = (K, &, U, F) such thatZ = ZM. In this measurement
model M, o can be taken to be a pure state dhde a PVM onkC. However,
this measurement modgaH is constructed in an abstract manner based solely on
the mathmatical structure of the instrumént) and it is hard to relate the con-
structedM to any real measurement apparatus. Therefore it is still an interasting
guestion whether or not we can implement a quantum measurement correspond-
ing to a given CP instrument in a realistic situation to which, for example, the
probe systenC and the interaction HamiltoniaH; are restricted.

13



Chapter 3

Classical Entropies

In this chapter we review the properties of information contents needed for the
main part of this thesis. We especially investigate the case in which the stochastic
variable is continuous. It is pointed out that the Shannon entropy has an arbi-
trariness in the choice of a reference measure, wheres the relative entropy and the
mutual information do not. In the last section, we discuss about the sufficiency of
a statistical variable and its relation to the relative entropy.

3.1 Shannon entropy

We first introduce the Shannon entropy [17, 18].

Definition 3.1.1 (discrete Shannon entropy)
Let Qx be a discrete sample space andz) (x € Q) be a probability orf)y.
The Shannon entrop¥{ (p) is defined by

Z p~(x) Inp™(z) (3.1)

LUEQX

In this thesis, the natural logarithm is adopted in the definitions of entropic in-
formation contents and these entropies are expressed in nats. Theltebmif
exists in Eq. (3.1), is understood to be 0 which is obtained fiiam , .o pInp.

The Shannon entropy is interpreted as the randomness of the vaXialfler
the general reference of the classical information theory, we refer the reader to
Ref. [19].

Let us now consider the generalization of the Shannon entropy to a continuous
stochastic variabl&'. For simplicity, we assume that the sample spac¥ ad the
real line (R, Z(R)), where#(R) is the Borelo-algebra ofR defined in Exam-
ple 2, and the probability measure &fcan be written ag* (z)dz, wherepX (z)

14



is a continuous positive function amld is the Lebesgue measure. We divide the
sample spac® by intervalsi,,(0) = (dn,d(n + 1)], whereé > 0 andn is an in-
teger. From the continuity of the density functipf(x), there exists:,, € I,,(0)

for eachn such that

pX(xn)(S = / p (x)dx,
I1.(6)

which can be interpreted as the probabilityd) of the event thafX is in I,,(J).
As the discretized version of the continuakiswe introduce a stochastic variable

X5 = a2, if X € I,(5).

Then the Shannon entropy faf; is given by
H(p*) == pu(6) Inp,(9)

=— Z 5p™~ (2,) Inp™ () — Ind. (3.2)
In the limit § — +0, the first term in EQ. (3.2) converges to a finite value

—/Rdxpx(x) Inp* (z) (3.3)

and the second term In ¢ diverges toco. Thus the simple generalization of the
discrete Shannon entropy can be divided to a finite part converging to Eq. (3.2)
and the divergent part. As the generalization of Eq. (3.2), we define the following
Shannon entropy for continuous observable:

Definition 3.1.2 (differential entropy)

Let (Qx, Bx, PX) be a probability space of a stochastic variaklend, be a
measure o) x, Zx ). Suppose thaP* has a density functioffi(x) with respect
to jug, i.e. PX(dx) = p* (x)po(dx). The differential entropy of¢ with respect to
1o IS defined by

W) i= = [ paldo) (2) lnp¥ (o), (3.4)
Qx
The differential entropy in Eq. (3.4) is not necessarily positive and strongly
depends on the choice of the reference meaggrEurthermore, the value of the

differential entropy changes by the trasformation of the variable as the following
discussion shows. To be specific, let us again consider the case Whera

15



stochastic variable on the real line and the probability density @ p~ (z). We
define another stochastic variableby

Y = y(X),

wherey(z) is a differentiable one-to-one mapping frdito R. Then the proba-
bility distribution of Y and the differential entropy for are given by

P e =) ()

and

h(p¥) = — /R dyp” (y) Inp* (y)

_ _/Rdpr(x) In [px(:v> (di—f))_ll

= h(p®) + /Rdxpx(x) In (dz—f)> , (3.5)

respectively. The differential entropy faf does not coincide with that oX in
Eqg. (3.3) unless the last term in Eqg. (3.5) vanishes.
Furthermore a difference between differential entropies for two probability
densitiesp® and¢® also changes its value by the transformations y(z). In
fact, by using Eq. (3.5), we have

= h(p™) — h(¢™) + /R depX (z)In (dz—f)> - /R dzq® (z)In (dfl—f)) :

which does not in general coincide wiklip™) — h(q*).

Due to this fact, it is hard to interpret the differential entropy as an information
content ofX since the transformation fro to Y is just the change of the label
and we neither lose nor obtain any information by this transformation.

3.2 Relative entropy and mutual information

In this section we introduce the relative entropy and show its relation with the
mutual information. The relative entropy was first introduced by Kullback and
Leibler [11] for general probability measures.
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Definition 3.2.1 (relative entropy)

Let PX andQ* be probability measures on a sample spdege, By ). Suppose
that PX and QX have the density functions® (x) and¢*(x) with respect to a
reference measun on (Qx, Zx). Then the relative entropy, or the Kullback-
Leibler divergence, ofX andQ¥ is defined by

D)%) = [

Qx

X
P (z)
dz)p”X (z) In ( ) : (3.6)
We also writeD(P¥||Q*) as a functionD(p*||¢™) of the two density functions
pX andgX if the reference measure is clear from the context.

We remark that we can takeX + QX as the reference measurgwith respct
to which the density functions aP* and QX exist. We also remark that the
definition of the relative entropy in Eq. (3.6) does not depend on the choice of
the reference measurg. To see the independence, lgtbe another reference
measure ang ¥ (z), ¢* () be the density functions dP* and@* with respect
to vy, respectively. Then we have

P*(dx) = p* (z)po(dz) = p* (z)n(dz) (3.7)
Q™ (dx) = ¢ (x)po(dx) = ¢ (x)vo(dx)
and therefore
pX(z)  p™(x)

K@) @) (3.8)

From Egs. (3.7) and (3.8) the right-hand side of Eq. (3.6) can be written as

/Q ol @) <Z;{Eg ) ,

which shows that the relative entropy in Eq. (3.6) is independent of the choice of
the reference measure.
Next, we will show some basic properties of the relative entropy.

Proposition 3.2.2 (information inequality)
Letp* andg™ be probability density functions on a measure sgébe, B, (o).
Then,

D(p™lg™) >0, (3.9)

with the equality if and only i () = ¢ (x) for almost allz with respect tqu,.
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Proof. Let A be a suppor of, i.e. A = {x € Qx;p*(z) # 0}. Then we have

—ﬂMWﬂ—Ammwwmﬁ

Smﬂm@mﬂﬂq (3.10)

e

<Inl=0.
In the inequality (3.10), we have used the Jensen’s inequality [20]

Ep[f(X)] < [ (Ep[X]), (3.11)

wheref is a concave functionX is a stochastic variable arft} (-) is the ensemble
average over the measufe The equality holds iff the equality in (3.10) holds,
which occurs iffpX (z) = ¢* (x) for almost allz. O

Let us next consider the two stochastic variableandY’, the sample spaces
of which are(Qx, Zx) and(Qy, By ), respectively. Lep™Y (x,y) andg™Y (z,y)
be the joint probability density functions of andY with respect to a product
measureu,(dz)vy(dy). The marginal distribution functions and the conditional
distribution functions are defined as

HMZLMMW”@W

p"(y) = /Q 1o (dz)p™Y (z,y),

P (z,y)
pX(z) -

¢, ¢¥ and¢¥X are defined in a similar manner. Then we have the following
chain rule for the relative entropy:

P (ylz) =

Proposition 3.2.3 (chain rule for the relative entropy)

D™ 1) = D™ lla*) + Epx [D(" (|2)llg" ™ ()] (3.12)
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Proof.

D ) - [

QxXQy

e |X xr
/Q ) pio(dx)vo(dy)p™Y (z,y) In (ngmiszg“w;)

— /Q ) po(dz)p™ (z) In (Zﬁg;)

+Aﬂmmwwmwm”@wm(§§%%)

= D lg¥) + Ex D@ (o)la" ¥ ()]

po(da)vo(dy)p™ ™ (2, y) In (qu—

]

Equation (3.12) indicates that the joint information’¢fandY” is divided into the
information of X and that ofY” conditioned onX. The conditioning byX is due
to the statistical correlation betweéhandY . Such correlation can be quantified
by the following mutual information.

Definition 3.2.4 (mutual information)
Let X, Y, pX¥ be the same as in the Proposition 3.2.3. Then the mutual informa-
tion of X andY with respect to the joint probability distributign*¥ is defined

by
P (2,y) ) _

pX(z)p¥ (y)
(3.13)

1Y) = D ) = [ ey )

QxXQy

We note that the mutual information in Eq. (3.13) is independent of the choice of
the reference measurgg andy, since it is defined through the relative entropy.
From Proposition 3.2.2, we immediately obtain the following proposition:

Proposition 3.2.5

I(X:Y)>0 (3.14)

with the equality iff X andY are statistically independent.
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3.3 Sufficient statistics and the relative entropy

Definition 3.3.1

Let (Qx, Bx) and(Qdy, By) be sample spaces afid: Q2x — 2y be a measur-
able map, i.e.T7'(A) € %Bx for any A € %y. A set of probability measures
P = {po}oco ON (Qx, Bx) is called a statistical model o2y, Bx). For each
pe € P, we can define a probability measugd ! on (Qy, By ) by

poT~(A) = po(T~(A))

for eachA € %,. Then,T is said to besufficient for a statistical modep iff
for eachA € %, there exists a functiop(E|y) on (Qy, #y) such that for any
Po € P

po(Ely) = p(Ely) peT '-ae.y (3.15)

wherepy(E|y) is the conditional probability measure @fwhenT'(x) = y. Here
a condition depending onholdsy-almost everyy, p-a.e.y in short, when the set
of y which does not satisfy the condition igianull set.

The condition (3.15) means that the information about the probability m@del
completely determined by (z).

Let . and v be finite measures on a sample sp&ee#). v is said to be
absolutely continuous with respect o denoted ag < u, iff forany A € £
such tha.(A) = 0, v(A) = 0. From the Radon-Nikodym theorem [13]if< u
then there exists a nonnegative measurable fungtisunch that

y(4) = / F () ()

forall A € %. The functionf is unique up tq:-a.e. in the sense thatgfis another
p-integrable function such that A) = [, gdu for eachd € Zthenf(w) = g(w)

for yu-a.e.w € Q. The functionf is called Radon-Nikodym derivative and denoted
asdv/dpu.

A probability modelP = {py}sco ON a sample spacélx, Ax) is said to
be dominated iff there exists a finite measuren (2x, Zx) such that for any
po € P, pg < A. The last statement is shortly denotedrass .

The following theorem is due to Halmos and Savage [21].

Theorem 3.3.2
Let 7" be a measurable map froffx, #x) onto (£2y, By ) and letP = {py}oco
be a probability model o)y, Zx) dominated by a finite measupe Then the
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necessary and sufficient condition thfabe sufficient forP is that, for eachyy €
P, fo := dpg/d) can be factorized as

fo(x) = go(T(x))t(x)  po-a.e.x, (3.16)

whereg, is a measurable positive function 0y, ¢ is a measurable positive func-
tion on(ly, gy - t is A-integrable, and = 0 A-a.e. on an arbitrary,-null set.

Kullback and Leibler [11] showed that the sufficiencylottan be character-
ized by the conservation of the relative entropy as shown by the following theo-
rem.

Theorem 3.3.3
Let T be statistic from(Q2x, Bx) to (Qy, By), andP = {ps}eceo < A be a
dominated statistical model. Then

D(po|lpe) > D(peT"|lpeT") (3.17)

for eachpy, pp € P. The equality in (3.17) holds for eagh,py € P iff T is
sufficient forP.

The above concepts of the statistical model and the sufficient statistic can be
applied to the quantum measurement as follows. For given PQYM #x, EX)
on a Hilber spacé{ and a set of quantum staté4 c S(H), whereS(H) := {p €
L(H);p > 0,trp = 1} is the state space OH, a set{Pff(},;eM is a statistical
model on(Qx, #x), where P;* (A) = tr[pEX (A)]. If the Hilbert spaceH is
separable, we can show tr{d?ﬁx}ﬁeM is dominated by a probability measure and
Thereom 3.3.2 and Theorem 3.3.3 are applicable in this measurement theoretical
setup.

Proposition 3.3.4 A
Let H be a separable Hilbert space and(ek, Zx, £X) be a POVM onl(H).
Then there exists a quantum stagec S(#) such tha{ PX} jes() < P5 .

The proof is given in Appendix A.
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Chapter 4

Shannon Entropy Conservation Law
IN Quantum Measurement

In this chapter, we review the Shannon entropy conservation law in quantum mea-
surement shown by Ban [8, 9, 10]. Under some conditions on a quantum measure-
ment, Ban showed [9, 10] the Shannon entropy conservation law which states that
a decrease in the Shannon entropy of a system’s observable is equal to the mutual
information established between the observable and the measurement outcome.
Here, based basically on Ref. [10], we reconstruct Ban’s discussion. As an exam-
ple of the conservation law, we consider a quantum non-demolition measurement.

4.1 Shannon entropy conservation for POVM

Let us consider an observabteon a Hilbert spac#{ and a quantum measurement
Y. X is assumed to be represented by a dené*[;ﬁlof a POVM on a sample
space((y, Zx ) with respect to a reference measugéiz) (cf. Example 3). The
probability density ofX when the system is prepared in a state

pY (x) = tr[pEX].

The quantum measuremelitcorresponds to a densig) (-) of a CP instrument

on a sample spadgly, %y ) with respect to a reference measurédy) (cf. Ex-
ample 5). The densities of the POVM and the probability for the measurement
outcome are given by

t
Ey =&7'(1),
pp (y) = trlpEy ],
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and the post-measurement state for a given measurement oujasme
&y (p)
Py ()

~

Py =

To consider a relation betweexi andY we assume that the density of the
POVM for Y can be written as

EY = [ (ol EY, @)

wherep(y|x) is a conditional probability function such that it is positive and sat-
isfies the normalization condition

/Q po(dy)p(ylz) = 1.

By taking the quantum expectation of Eq. (4.1) with respect to a gtate obtain

P (y) = / vol(dr)p(yle)pY (). .2)

The condition (4.1), or equivalently (4.2), implies that the measurement outcome
of Y is the coarse-graining of that &f. From Eq. (4.2), we can define the mutual
information betweerX andY by

(y)py ()

= U X X ylx
_ /Q ) /ﬂ aldg)plole) ( y>> 4.3)

which is the information obtained from the measurement outcomeatfout the
distribution of X .

To establish the Shannon entropy conservation law, we further impose the
following two conditions on the measurement:

) = [ wldn) [ aldn)plolon (o) (“‘”)pp ”))

1. There exists a functiof(z; y) such that for any andy
—i— A - A
EV(EY) = p(yla(@;9)) 7 1y (4.4)

2. For anyy and any smooth functiof'(x),

/Q volde)p(y|i(; 9) F(F(as y)) = / w(dD)p(yl)F(z).  (4.5)
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Based on the assumptions (4.1), (4.4) and (4.5), we evaluate the Shannon entropy
of X for the post-measurement state. The probability distribution functioX of
for the post-measurement stgigis evaluated to be
pX(z) = M
& P} (y)
tr[p€) (EX))
P} (y)
_ plE(z;y)py (#(x;y))
P} (y)
where we used the condition (4.4) to derive Eq. (4.6). From Eq. (4.6), the Shannon
entropy ofX for the post-measurement staigeis given by

B = - / vo(da)p (2) In p ()

__/ Vo(dx)p(ylf(fﬂ;y))pff(f(af;y))
Qx

: (4.6)

1, Pl y)py (E(z;y))
) (y) ) (y)
p(ylo)p; (x)  plyle)p; ()
= — vo(dx P In L
/QX olde) ) (y) ) (y)
where we used the condition (4.5) in deriving the last equality. By taking the en-

semble average of Eq. (4.7) over the measurement outgothe average Shan-
non entropy for the post-measurement state is given by

E,[h(pX)] = / po(dy)pY ()h(p)

Qy

: 4.7)

p(yle)pX (x)
P} (y)

_ / ) / w(d)plole) () n

—— [ wola) [ midonlen0mEED < [ (e o) @)

= —I;(X 1Y)+ h(p)),
whereE;[-] denotes the ensemble average over the measurement oujdornee
given pre-measurement stgtel herefore we obtain the Shannon entropy conser-
vation law
I(X :Y) = h(py) — Ex[h(p),)]. (4.8)

The left-hand side of Eqg. (4.8) is the amount of the information aboobtained
from Y, while the right-hand side is the decrease in the Shannon entrofily of
The above discussion is summarized as the following theorem.
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Theorem 4.1.1

Let X be an observable on a Hilber spakerepresented by a densi@f of a
POVM on a sample spadé€lx, #x ) with respect to a reference measugeand

Y be a quantum measurement process-owhich is represented by a density
&, of a CP instrument on a sample spd€s , %y) with respect to a reference
measure.y. Suppose thakX andY satisfy the conditions (4.1), (4.4) and (4.5).
Then the Shannon entropy conservation law (4.8) holds.

4.2 Shannon entropy conservation for PVM

The important class of system’s observables is that of PVM’s. In this section we
consider the case when the system’s observabis a PVM. For simplicity, the
PVM is assumed to be of the forfa) (x| dz, wherexz € R and|x) is the Dirac

ket which satisfies the complete orthonormal condition (2.6). We note that the
following discussion is also applicable to a discrete PYAW(x| with a discrete
complete orthonormal condition

(z]2') = 65,0, Z |z) (x| = I, (4.9)

by the following formal correspondences given by

/dw~--<—>z--- (4.10)

and

§(x — ') +— Opar. (4.11)

For the PVM|z) (x| and a quantum measurement described by a defjsiof
a CP instrument with respect to a reference meaggirere assume the following
two conditions corresponding to (4.1) and (4.4):

1. The density of the POVM for the measurement outcome o&n be written
as

By = [ dplyla)z) (ol (4.12)
2. There exists a functiofi(x; y) such that for any
&) (|2) () = plyla(asy)) |2(e;p)) (F(wsp) . (413)
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Note thatp(y|x) satisfies the normalization condition

/Q noldy)plylz) = 1, (4.14)

because of the completeness condition

~

/ po(dy)E) =1 (4.15)

and the uniqueness of the spectral decomposition with respect e|. By inte-
grating Eqg. (4.13) with respect tqg we obtain

BY = /d:cp< (@5 y)) |23 9) (F (')
/dx/dxéx—xx Y)pylz) |z) (2]
- [ ( [awta e y>>) plyle) o) (o] (4.16)

By comparing Eqg. (4.16) with Eq. (4.12), we have

/dm’5(:r: —Z(25y)) =1 (4.17)

for anyz andy such thap(y|x) # 0. Then, for anyy and a smooth functiof'(z)

/dx’p(yli’(w’;y))F(i“(w/;y)) = /dx’/d$5($—i’(x’;y))p(y!i(x’;y))F(fi‘(w’;y))

= [ae ([ wote st ) ol P
_ / dep(y|z) F(z), (4.18)

where we used Eq. (4.17) in deriving the last equality. Equation (4.18) implies that
the condition (4.5) forX andY is satisfied and therefore, from Theorem 4.1.1,
we obtain the Shannon entropy conservation law (4.8). To summarize, we obtain
the following theorem.

Theorem 4.2.1

Let X be a PVM of the formjz) (x| dz on the real line with a complete orthonor-
mal condition or a discrete rank-1 PVM) (x| with a discrete complete orthonor-
mal condition and let” be a quantum measurement process corresponding to a
density of the CP instrumemyy on a sample spacély , %y ) with respect to a
reference measuyg (dy). Suppose thak’ andY” satisfy the conditions (4.12) and
(4.13). Then the Shannon entropy conservation law (4.8) holds.

26



As an example of the Shannon entropy conservation law, we consider a quan-
tum non-demolition measurement [1, 2, 3, 4].

Example 6 (quantum non-demolition measurement)

Let X be a PVM|z) (x| which is either discrete or continuous as in Theorem 4.2.1
andY be a quantum measurement corresponding to a CP instrufjignt =
&) ()mo(dy) on a sample spadély, Ay). Y is called quantum non-demolition
(QND) measurement oX iff for any p

p,)s((x) = p%%y(ﬁ)(x% (4.19)

wherezgy(ﬁ) iIs the non-selective post-measurement state. The QND condi-
tion (4.19) states that the probability distribution &f is not disturbed by the
measurement back-action Bf Since Eq. (4.19) can be written as

. oy
trlpla) (xl] = tx[pZq, () (=])],
the QND condition is also expressed as
13, (o) () = |a) (o (4.20)

Shimizu and Fujita [4] pointed out that the QND condition adopted in some lit-
erature, e.g. in Ref. [1], is too strong and they proposed less restrictive QND
conditions. Our QND condition (4.19) corresponds to a ‘moderate condition’ in
Ref. [4].

To be definite, we consider the continuoXisvhile the following discussion is
still valid for discreteX by the formal correspondence stated in the first paragraph
of this section. If we WI’itG.E';/T in the operator-sum form as

e'(A z NI ANy,
EqQ. (4.20) becomes

| o () S8 ) ol e = 1) o (4.21)

By taking the expectation value of Eq. (4.21) with respect to an eigenstate
with =’ # x, we obtain

/uodyZI x| My |2') [ =0,
Q
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which implies that
(x| My |2y = 0 (4.22)

for anyx andz’ # x. ThusMyk is diagonalized in thér) basis. From the com-
pleteness condition (4.15)/,x, £ (|z) (z|) and £ can be written as

My = 37 0\ /ply, fa) o) (e

&X' (12) (al) = plyl) |) (o], 4.23)

B = [ dntylo) o) G, (@29
where

p(yle) = ply, klz) (4.25)

k

and p(y|x) satisfies the normalization condition (4.14). Equations (4.23) and
(4.24) ensure the conditions (4.12) and (4.13) for Theorem 4.2.1 with

T(r;y) == (4.26)

and we obtain the Shannon entropy conservation law (4.8).

Examples of destructive measurements that satisfy the Shannon entropy conser-
vation law include a photon counting model and a quantum counting model, both
of which will be discussed in Chap. 6 where we also consider the relative entropy
conservation law derived in the next chapter.
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Chapter 5

Relative Entropy Conservation Law
IN Quantum Measurement

In this chapter, we establish a sufficient condition for the relative entropy con-
servation law for a quantum measurement process which states that the relative
entropy of the measurement outcome between two candidate states is equal to a
decrease in the relative entropy of a system’s observable. Furthermore, for the case
in which the measurement is pure and the observable is a discrete PVM, we show
that the sufficient condition amounts to the relative entropy conservation for ar-
bitrary candidate states, i.e. the condition is a necessary and sufficient condition.
We also compare our condition with that for the Shannon entropy conservation
in Chap. 4 and it is found that our condition is less restrictive. To demonstrate
the generality of our condition, we consider a destructive sharp measurement of
an observable in which the relative entropy conservation law holds, whereas the
Shannon entropy conservation law does not.

5.1 Relative entropy conservation for POVM

In this section, we prove the relative entropy conservation law under some con-
ditions on the measurement process. As in the previous chapter, we consider an
observableX on a Hilbert spac&{ and a quantum measureméntorresponding
to a density of POVMEZ on a sample spadély, Zx) with respect to a refer-
ence measurg, and a density of a CP instrumeffjf on a sample spadé€ly, Ay)
with respect to a reference measure

Here, as the information content of the measurement outcome, we consider
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the relative entropy of the measurement outcomg given by

Y Y % p}/(y)
DI = [ alan)p ) (222 ). (5.1
Qy s (y)
where and g are candidate states. Considering the relative entropy as an in-
formation content corresponds to an experimental situation in which the pre-
measurement state is preparegiand the observer knows a priori that the pre-
measurement state is eithewor 5. From the measurement outcomethe ob-
server infers which the true pre-measurement state is. Although it seems that this
formalism is applicable only to the hypothesis testing problem with just two can-
didate quantum states, it is more general sine@ds can be arbitrary states. In
this sense, the relative entropy (5.1) is regarded as the amount of the information
about how we can distinguish possible quantum states if we consider arlgitrary
ando.
To establish the relative entropy conservation law, we impose the following
conditions onX andY'.

1. The condition (4.1) holds, i.e. the measurement outcomeisfthe coarse-

graining of X;
2. There exist functions(z;y) andq(x; y) > 0 such that
-'- A A
EV(EY) = qla;y) EX vy (5.2)

for anyx andy;

3. For anyy and any smooth functiof'(z),

| mldean PG = [ wdoploF@.  63)

QX Q)(

Based on these assumptions, let us show the relative entropy conservation law.

The probability distribution function oX for the post-measurement staigis

given by

X (1) = q(z; y)py (2(x; y))
Py Py (v)

where we used Eq. (5.2). Then, the relative entropy é6r the post-measurement

stateg, andg, is given by

S q(z;y)py (T(z;y)) N Py (y)py (Z(;
)= [, e 1( WY Gl

(5.4)

D p)f
v, Py (y)

o P} (v) (s p(ylz)pX (x) N Py
=—1 (P};/(y))+/§zx o(dz) | f
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where we used the condition (5.3) in deriving the last equality. Thus the ensemble
average over the measurement outcgngeevaluated to be

E[D( 10 )] = / so(dy)pY () D [1pX)

D)+ [ i) [ polas)plylolpa)in (;8)

= —D(p} |Ipy) + D Ipy ).

Therefore we obtain the relative-entropy conservation law

D(py |Ipy) = D(p1Ipy) — E;[D(p) |Ips, )]- (5.6)

The left-hand side of this equation is the information concerning which state is
actually prepared. The right-hand side represents a decrease in the relative entropy
of X with respect to the candidate states. We thus obtain the following theorem,
which is the main result of this thesis.

Theorem 5.1.1 (relative-entropy conservation law)

Let X be an observable on a Hilbert spalerepresented by a densi@f of a
POVM on a sample spacel x, #x ) with respect to a reference measugandY”

be a quantum measurement proces%{omhich is represented by a densﬁy of

a CP instrument on a sample spa&fg-, %y ) with respect to a reference measure
o Suppose thak andY satisfy the conditions (4.1), (5.2) and (5.3). Then the
relative-entropy conservation law (5.6) holds.

The conditions for Theorem 5.1.1ugeakerthan that for Theorem 4.1.1 since
q(z; y) in the condition (5.2) does not in general coincide with|z(z; v)). While
this difference might appear to be a minor modification of the condition at this
stage, it will be shown that our relative-entropy conservation law is applicable to
a much wider range of quantum measurements in the next chapter.

To further understand the meaning of the conditions (5.2) and (5.3), let us
consider a joint measurement process in which measureméntoperformed
and thenX is performed on the post-measurement process. We remark that since
the concept of a quantum state is equivalent to all the probability distributions for
the possible measurements, considering the state change Huméasurement
is equivalent to considering the probability distributions of joint measurements
following Y. By taking a quantum expectation of Eq. (5.2) with respegi, tave
obtain

5y (2, y) = q(z;9)p5 (E(2;y)), (5.7)
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where R -

By " (xyy) = tely () By ] = tr[pg) (E7)].
is the joint probability density function df followed by X. Equation (5.7) im-
plies that, from Theorem 3.3.2, the stochastic variaile y) is a sufficient statis-
tics of the joint measurement processoffollowed by X. Let us denote the
probability distribution function ofi(x; y) with respect to the reference measure
vo asp; (z X(z). From the definition oﬁX( ) and the condition (5.3), for any function
F(z) we have

/Q vo(da)p; (x) F () :/Q VO(d‘T)/Q Ho(dy)py (2, y) F(¥(x;9))
_ / io(dy) / vo(da)p(y|2)pX () F(z)
_ / voldo)pX (2) F (z),

which implies that the probability distribution of(z; y) is equivalent to that of
the single measurement &f. Thus the condition (5.3) ensures

Py (z) = p) (). (5.8)
From Egs. (5.7) and (5.8), we have

DEXY(15EY) = DO |IpY) = DY), (5.9)

where in deriving the first equality, we used the relative entropy conservation for
the sufficient statistic in Theorem 3.3.3. Equation (5.9) indicates that the informa-
tion obtained in the joint measurementYffollowed by X is equivalent to that

of the single measurement of. By using the chain rule (3.12) of the relative
entropy, the left-hand side of Eqg. (5.9) can be written as

DEX155Y) = DY IpY) + E; D@ ™ Cly)|155" (|y)]

= D(p; |lpy) + E;[D(p;, 1p3)], (5.10)
where
~X\Y pffy(x,y) — X (r
(z]y) = p},/(y)_ —p,sy( )

is the conditional probability density of subject to a given measurement out-
comey. Note that we did not assume the conditions (4.1), (5.2) and (5.3) in de-
riving Eq. (5.10). From Eq. (5.10), the relative-entropy conservation law (5.6) is
equivalent to Eq. (5.9), and in this sense Eq. (5.9) is another expression of the
relative-entropy conservation law.
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5.2 Relative-entropy conservation for PVM

In this section, we consider the case in which the system’s obser¥aisia PVM
{EX} such that

EXE) =6,0E), Y EX=1I forthediscrete case; (5.11)

zEQx

EXEY = 6§(x — ') EX, /d:rEj( — ] forthe continuous case.  (5.12)
R

For definiteness we again only consider continu@um this section, but the
discussion is also valid for discrefeé due to the formal correspondences (4.10)
and (4.11).

To establish the relative-entropy conservation law, we assume the following
condition corresponding to (5.2): there exists functiéfs; y) andq(z;y) such
that for anyx andy

EXNEX) = gl EX (5.13)

zy)
From Theorem 5.1.1, it is sufficient to show the conditions (4.12) and (5.3) to

prove the relative-entropy conservation law (5.6). By integrating Eq. (5.13) with
respect tor, we obtain

EY = / dz'q(2';y) B ury)
- /dﬂf </ dz'd(x — f(x’;y))q(w’;y)> EY
— [ dup(ylo X (5.14)
where
plyle) = [ da's(e — (' 9))ala's o) (5.15)
Note that the conditional probability(y|x) in Eq. (5.14) is unique because of
the linear independence &, and thatp(y|z) satisfies the normalization con-

dition (4.14) from the completeness condition ﬁ@j. Then, for anyy and any
function F'(x), we have

[ @ nraei = [ [ aste - st ) Fo
~ [dutylo)F(a),
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where we used Eq. (5.15) in deriving the last equality. Thus, the condition (5.3)
is satisfied, and therefore the relative-entropy conservation law (5.6) holds. To
summarize, we have obtained the following theorem.

Theorem 5.2.1 (relative-entropy conservation law for PVM)

Let X be a discrete or continuous PVM of the forBy* that satisfies condi-
tion (5.11) or (5.12) and let” be a quantum measurement process corresponding
to a density of the CP instrumeﬁ; on a sample spagé€ly, %y ) with respect to

a reference measugg(dy). Suppose thak” andY” satisfy the condition (5.13).
Then there exists a unique conditional probability functioim =) with a normal-
ization condition (4.14) such that Eq. (5.14) holds. Furthermore, the relative-
entropy conservation law (5.6) or (5.9) holds.

5.3 Equivalence between the relative-entropy con-
servation and the established condition

In this section, we consider the case in whikhis a discrete PVM{EX},cq.
with the discrete complete orthonormal conditions (5.11) and (5.12)vaigda
discrete measurement on a sample spage 2v) described by a set of CP maps
{£ }yea, With the completeness condition

Seriiy=1. (5.16)

In this case, we can show the equivalence between the established condition (5.13)
in Theorem 5.2.1 and the relative-entropy conservation law (5.6).

Theorem 5.3.1

Let X be a discrete PVM EX},cq . with a discrete complete orthonormal condi-
tion (4.9) and letr” be a quantum measurement corresponding to a CP instrument
on a discrete sample spa®,, 2) described by a set of CP maps* },cq,

with the completeness condition (5.16). Then the following two conditions are
equivalent:

(i) The condition (5.13) holds for al andy.

(i) The relative-entropy conservation law (5.6) or (5.9) holds for arbitrary states
pando.

To show the theorem, we need the following lemma.
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Lemma 5.3.2
Let { EX},cq, be a PVM with a discrete complete orthonormal condition (5.11)

and let{ £} ..q, be a discrete POVM. Suppose that
D(p; |lps ) = D(pj |Ip7) (5.17)

holds for any states ands, wherepy (z) = tr[pEX] andpZ(z) = tr[pEZ]. Then
for eachz € Q) there exist a scalay(z) > 0 andz(z) € Q2x such that

EZ = q(2) B}, (5.18)

z

Proof of Lemma 5.3.2Let U, be an arbitrary operator such thaiU, = U, U} =
EX,i.e. U, is an arbitrary unitary operator on a closed subsgaté{. Define a
CP and trace-preserving mapby

) = ) U.pUL

TEQ X

SinceEAny = EA'mﬁx/U;,UI/ = ExExlﬁml = 5&8,&0’01”’ we haVEpg((x) = p‘)]__((ﬁ) (,I)
for any statep. Therefore, from the assumption (5.17) we have

D(pZ|lp% ;) = D) |lpx ) = 0,
and hence we obtain
p?(z) = pf’-(ﬁ)(z)

for anyp and anyz € 4, which is in the Heisenberg picture represented as

E? = Fi(EZ)= > UIE?U, (5.19)

4
reNx

By takingU, asEX, we have

07 = " EYEZEY. (5.20)

zex

From Egs. (5.19) and (5.20), an operan‘EZEX on EX# commutes with
an arbitrary unitary/, on £X7{, and thereforesX EZ EX is proportional to the
prOJectlonEj( Thus we can rewrite Eq. (5.20) as

EZ =) k(za)E},

TEQx
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where s (z|x) is a nonnegative scalar that satisfies the normalization condition
> .cq, f(zlr) = 1. Letus define a POVM ;.7 } (. .)cax <0, DY

E}7 = w(2]) B,

whose marginal POVMs are given B and EZ, respectively. Since the proba-
bility distribution for EXZ is given by

py 7 (e, 2) = w[pE?] = k(z|x)p) (), (5.21)

X is a sufficient statistic for a statistical modgl)”(z, z)} ses(). Thus, from
Theorem 3.3.3 and the assumption (5.17), we have

D(py?||py?) = D(p)|IpY) = D(p7|IpZ),

and again from Theorem 3.3.3, is a sufficient statistic fofp) “(x, 2)} ses)-
Therefore there is a nonnegative scal@r|z) such that

Py A (x, 2) = r(a|2)pf (2),
or equivalently in the Heisenberg picture
k(z|a)EX = r(x]2)E?. (5.22)

To prove (5.18), we have only to consider the caséf)f# 0. For suchz € Qy,
there existsr € Qx such thatx(z|z)EX # 0. Thus, from Eq. (5.22) we have
EZ = 5G9 BX and the condition (5.18) holds. O

z r(z|z) —x

Proof of Theorem 5.3.1(i) = (ii) is evident from Theorem 5.2.1. Conversely, (i)
readily follows from (ii) and Lemma 5.3.2 by identifying? with £ '(£). O

5.4 Comparison with the Shannon entropy conser-
vation

In this section, we consider the relation between the conditions for the relative-
entropy conservation law and that for the Shannon entropy conservation law when
the system’s observabl& is a PVM. As we have remarked just below Theo-
rem 5.1.1, our condition (5.13) for Theorem 5.2.1 is less restrictive than the con-
dition (4.13) for Theorem 4.2.1. Thus we consider rephrasing the condition (4.13)
under the assumption of the condition (5.13). We divide the discussion into two
parts corresponding to discrete and continu&uandY’.
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5.4.1 Discrete case

Here we consider the case wh&nis a discrete PVM and the sample spacé’of

is also discrete. We do not assuii¢o be pure. Then, under the condition (5.13)
we can show that the condition (4.4) required by Ban is equivalent to a condition
that if a pre-measurement state is an eigenstat€,ahen the conditional post-
measurement state for given measurement outgoisialso an eigenstate of as

the following theorem shows.

Theorem 5.4.1

Let X be a PVM{|z) (z|}.cq, With a discrete complete orthonormal condi-
tion (4.9) andY” be a quantum measurement described by a CP instrubignt

on a discrete sample spa@@y, 2°v) and let us defin€) := Iy , fory € Qy.
Suppose thak andY satisfy the condition (5.13) for Theorem 5.2.1. Then the
following four conditions are equivalent:

1. The condition (4.13) holds, i.e(z;y) = p(y|z(z;y)).

2. For anyz andy such thap(y|x) # 0,

Z 6:2,5?(2?’;1/) == 1 (523)

.Z‘/EQX
3. For anyz andy such thatp(y|x) # 0, there exists a unique’ such that
x = z(z'y).

4. The conditional post-measurement state is an eigenstake ibfthe pre-
measurement state is an eigenstate. Namely, forrazgd vy, there exist
functionsz(z;y) andr(x;y) > 0 such that

&y (|2) (@) = r(z;y) |2 (2;9)) (z(23 )] (5.24)

Here, we take the convention that for anyndy such thayy(x;y) = 0, Z(z; y)
is defined to be) which is a symbol out of the sample sef. We also define
p(y|0) := 0 for anyy € Qy.

Proof. First, we remark that from Theorem 5.2.1, there exists a unique conditional
probability p(y|z) such that

EY =& =" plylz) o) (x]. (5.25)

zex
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By taking the summation of Eq. (5.13) with respect:tave also have

~

EY = 3" gy |aay) (@ y)]

' eQx

= (Z 5) o) |35 ) (B y)]
'eQx \z€x

= (Z %(may)q(x’;y)) |z) (x| (5.26)
r€Qx \2'eQx

Since Eg. (5.26) coincides with Eq. (5.25), we obtain

p(ylz) = Z Ou,i(2ra (2 ). (5.27)

' EQx

1 = 2: From the conditiory(z;y) = p(y|Z(z;y)) and Eq. (5.27), we have

plr) = Y SuiwiplE(z;y))

' eQx

- Z 5z,i(a}’;y)p(y|x)a

' EQx

and therefore, Eq. (5.23) holds for anyndy such thap(y|z) # 0.
2 = 3 is evident from the definition of the Kronecker delta.
3 = 4: From Eq. (5.25) we have

plyle) =t [|2) (a1 €7 (D] = tr [€] (1) (2] (5.28)

For the case of(y|z) = 0, from Eqg. (5.28) and the positivity of the superopera-
tor &), we havef) (|z) (z|) = 0 and the condition (5.24) holds. Let us assume

p(y|z) # 0. From the complete positivity of the superoperaz@/rT and Theo-
rem 2.2.2, there exists a set of bounded opera[tﬂffﬁﬁ}k such that

el(A Z NI AN, (5.29)

for any bounded operatot. From Egs. (5.13) and (5.29), we have

Z Tel) (] My, = a3 y) |2 (25 9)) (@ (@3 y)]
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and thus we obtain
M, |2) = alz;y, k) [2(25y)) (5.30)

wherea(z; y, k) is a complex scalar such that

Z la(x;y, k)| = q(x;y). (5.32)

From Eqgs. (5.29) and (5.30), we have
gYT |ZE” ZE | Z i |JZ k

Therefore
(x |5Y(|$ ) {(x]) |2y = tr [5 ) (z]) |2 (:U'H
= tr [|x x|<‘,’yT ) <x'|)}

(Z 7?/, ‘T 'Y, k)) 5I,£(x’/;y)5:c,i(m/;y)a (533)

k

where we used Eq. (5.32) in deriving the last equality. From the condition 3, we
can define a functiom(z; y) such thate = Z(2';y) impliesz’ = z(x;y) for any
x andy with p(y|x) # 0. Thus Eqg. (5.33) becomes

(x /|5Y(|x ) (x]) |2") = <Z| a(z’;y, k > o &) O F(am)
- Q($ 7y)ém/,i(x;y)éz”,i(x;y)a (534)
where we used Eq. (5.31) in deriving the last equality. Equation (5.34) implies
&y () (z]) = a(@(z:9);9) [2(z;9)) (@(59)]

and the condition (5.24) holds.
4 = 1 : From the condition (5.24) and Eq. (5.2p}y|z) becomes

pyle) = tefj) (x| € (D)]
= tr[€) (Ja) (x])]
=r(z;y). (5.35)
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Theng(z;y) is given by

- - t
alw:y) = e |5z )) (@3 9) €] (Jo) (o)

= tr [£) (|2(z;9)) (#(z;y)]) |2) (=[]

= p<y’5:(x7 y))5$,i(:i(z;y);y)7 (536)
where we used the condition (5.13) in deriving the first equality and the last equal-
ity follows from the Egs. (5.24) and (5.35). Thereforeqy(f;y) # 0, EQ. (5.36)
impliesq(x; y) = p(y|Z(x; y)) and the condition (4.13) holds. {fz; y) = 0, then
p(ylz(z;y)) = p(y|0) = 0 = ¢q(z;y), and thus the condition (4.13) also holds in
this case. [

As an example that does not satisfy Ban’s condition (4.13) but does satisfy the
relative-entropy conservation law, we will consider a destructive measurement of
X as follows.

Example 7 (destructive sharp measurement ok)

Let X be a PVM{|z) (z|}.cq, With a discrete complete orthonormal condi-
tion (4.9) and letY” be a quantum measurement corresponding to a CP instru-
mentZY (-) on the same discrete sample spéeg, 2°¥). Define&, := I}, for

y € Qx as usual. Suppose that the CP instrunf@’nts given by

EY(0) = (| ply) by, (5.37)

wherep, is an arbitrary state. Note that the superoperator (5.37) is CP because it
has a Kraus representation

Wlolw) by = 3 (VeI l6u) 1) 5 (VrI) ) (0]}, (5.38)

where

py = E(kly) [dyr) (Dyrl

k

is the spectral decomposition gf. From Eq. (5.37), we have

£1(A) = tr[p, Al ly) (],
(|2 (xl) = (2] py 1) y) (] (5.39)
and
EY =1y) (y|. (5.40)



Thus, from Eq. (5.39), the condition (5.13) is satisfied with

q(z;y) = ([ py |2)
I(z;y) = y.

Then, from Theorem 5.2.1, the relative entropy conservation law (5.6) holds. On
the other hand, the condition (4.13) is not necessarily satisfied since the post-
measurement stagg, is in general not an eigenstate 8 To be definite, let the
dimensiond of the system’s Hilbert spact be finite, andp, be a maximally
mixed statef/d for all y € Q. In this case, the decrease in the Shannon entropy
of X is evaluated to be

Hy(X) — H; (X) = Hy(X) — Ind, (5.41)
while the mutual information betweeXi andY is given by
(X 1Y) = Hy(X),

which differs from Eq. (5.41) by the factor In d. The factor— In d is the Shan-

non entropy for the post-measurement sggtevhich in general depends strongly

upon the choice of the post-measurement siat®n the other hand, our formal-

ism focuses on the information about discriminating the pre-measurement state
and the post-measurement stajedoes not have any information about the pre-
measurement state. Reflecting this fact properly, the relative entrafiyfof the
post-measurement candidate states vanishes and the relative entropy conservation
law holds withD (p|[pY) = D(p} |IpY ).

5.4.2 Continuous case

Next we consider a continuouk¥. In this case we cannot establish a simple
rephrasing of the condition (4.13) as in the discrete case. We can still show
EqQ. (4.17) from the condition (4.13), which is the continuous analogue of Eqg. (5.23).
However, the formal correspondences (4.10) and (4.11) do not work in this case,
for we may not conclude the condition 3 in Theorem 5.3.1 from Eq. (4.17). For
simplicity let us assume that(x; y) is a differentiable one-to-one function with
respect tar for eachy. In this case, Eq. (4.17), which is a necessary condition
for (4.13), implies

. (5.42)

i.e. the Jacobian of the transformation— z(z;y) should be unity. The con-
dition (5.42) reflects the strong dependence of the differential entropy on the ref-
erence measure, and we will see in the next chapter the examples in which the
unit-Jacobian condition (5.42) breaks down. In this sense, the condition (4.13) for
continuousX is even more restrictive than that for discréfe

)|y
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Chapter 6

Applications to Continuous
Measurements

In this chapter, we apply the general theorems on the relative-entropy conserva-
tion obtained in Chapter 5 to four typical continuous measurements on a single
mode photon field, namely photon counting, quantum counting, homodyne mea-
surement, and heterodyne measurement. In these examples, we also examine the
Shannon entropy conservation and show that the Shannon entropy conservation
does not hold except for the photon-counting model.

6.1 Photon-counting model

In the photon-counting model [5, 6, 7], the photon number of a single-mode field
is measured in a destructive manner. The model is a measurement continuous in
time and the measurement operators of an infinitesimal time intéhaak given

by

NP(dt) = T — %ﬁdt, (6.1)
MPE(dt) = \/~dta, (6.2)

wherey > 0 is the coupling constant of the photon field with the detecias

the annihilation operator of the photon field, aind= afa is the photon-number
operator. Here we adopt the interaction picture in which the unitary tefiiy’

for the free motion is omitted. The event corresponding to the measurement op-
erator (6.1) is called a no-count process in which no photon is detected. On the
other hand, the event corresponding to (6.2) is called a one-count process in which
a photocount is registered. The photon-counting process is known to be imple-
mented by a measurement model in which resonant two-level atoms initially pre-
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pared in the ground state interact with the photon field and the level of the atoms
after their interaction with the photon field are then measured [7].

From measurement operators (6.1) and (6.2), for a finite time intérval
it can be shown that both the state change and the statistic of the measurement
outcome are dependent on a single integewhich is the number of photocounts
in the time interval, and the measurement operator is given by [6]

N 1 — —yt\m i
Ry
m.:

Q. (6.3)

From Eq. (6.3), the POVM for the measurement outcemis evaluated to be

MEST () MPE(t) = pPe(mlist), (6.4)
where
pPe(mln;t) = (:1) (1 — e ymertn—m), (6.5)

Equation (6.5) implies that the information of the measurement outcanie
obtained by a coarse-graining of the photon-number distribution. In the infinite-
time limit, the conditional probability Eq. (6.5) reducesdg,,, indicating that
the complete information on the photon-number distribution is obtained by the
measurement outcome of photon counting.

Let us examine the relative-entropy conservation. As the system observable
X, we take a discrete PV¥h) (n|, where|n) is the normalized eigenstate of
Then from Eq. (6.4), the condition (4.1) holds. From the measurement opera-
tor (6.3) we obtain

M, (8) [n) (n] Mo (t) = pP°(mlia(n; m); t) [7(n; m)) ((n; m)] (6.6)
where
n(n;m) =mn-+m. (6.7)

Equation (6.7) can be interpreted as the photon number for the pre-measurement
state given by the sum of the photon number of the pre-measurement state and
the number of photocounts, which is to be contrasted with the QND measurement
in which z(z;y) coincides withz for post-measurement state. Equation (6.6)
shows that the condition (5.13) is satisfied. Thus from Theorem 5.2.1, we have
the relative-entropy conservation law

DY (5P (58) = D(pY |IpY) — E[D(pX, |Ipy.)],
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wherep)’ := (n| p |n) is the photon number distribution for a stgte
Py (mst) = te[pMET (8) MES (1)]

is the distribution for the number of the photocounts and p,, is the post-
measurement state for the measurement outeaniote that in this model Ban’'s
condition (4.13) is also satisfied as seen from Eq. (6.6) and the Shannon entropy
conservation law holds [8].

6.2 Quantum-counter model

The quantum counter model [22, 23] also measures the number of photons in
a destructive manner continuously in time but differs in that the present model
increases the number of photons in a one-count process whereas it decreases for
the photon counting model. The measurement operators for the no-count and one-
count processes in an infinitesimal time interdalre given by

MEdt) =T - %aa*dt, (6.8)
ME(dt) = \/~dtal, (6.9)

where we again adopt the interaction picture. The effective measurement operator
for a finite time interval0, ¢ again depends only on the total number of counts
in the time interval and given by [23]

N Yt _ 1\ym . m
Mye(t) = (GTUNMW (aH™. (6.10)

The POVM form is evaluated to be
B(t) = Mt (t) M ()

(6’% — 1)m ~m _—~taat  ~tym
= " (a")
= p*(m|n;t), (6.11)
where
p%(m|n;t) = (n —;m) (e — 1)metntmtd), (6.12)

In this measurement model, two kinds of relative-entropy conservation laws can
be shown. The first one is for the photon number distribution. As in the photon
counting case, we obtain

MIH(E) [n) (n] M (t) = p*(mlfi(n;m); ) [fi(n;m)) (fi(n;m)], (6.13)
n(n;m) =n—m (6.14)
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and the condition (5.13) as well as Ban’s condition (4.13) holds. Thus the relative-
entropy conservation law

DOl (51)) = Dy |IpY) — Es[D (i, o llos )] (6.15)
holds, where
P (mit) = tr ()]
py (n) = (n|pln),

andp,,(t) is the post-measurement state for the given number of coaunts
The second conservation law is for the POVM defined by

EXdx = pX(x|n)de, (6.16)

where

—T 5N

[

P (xn) = — (6.17)

andzx € [0, 00). The probability distribution function aX is defined by
Py (x) :=tr [ﬁEﬁ} :

It is known [23] that the distribution of a stochastic variable
m

et

converges to that ok in the limit¢ — oc. In other words X represents the total
information obtained in the quantum-counter measurement. The photon number
distribution is determined by that &f as shown in the following equation [23]:
() = (D (@)
n n) = —\ep, T
P dgnC Pe =0
Still we can show thak is less informative than the photon number distribution.
From Egs. (6.10) and (6.16), we obtain

M) EX M (t) = qlas m)p™ (3 (z;m)]h), (6.18)
where
q(x;m) = e~ "'p*(m|z(z;m)), (6.19)
pemle) = LD o -], 6.20)
#(r;m) = e o, (6.21)



Herepi“(m|x) satisfies the normalization condition

> p*(mlz) = 1.
m=0

Furthermore, for any integrable functidf(z), we have
/000 dxq(z;m)F(Z(x;m)) = /OOO d(e " z)p%(mle "x)F(e )
= /OO dzxp®(m|x)F(x). (6.22)
0
The POVM form can be written as
NI () N (1) — /O " NIt () BX N (1)
— [ gt mpp* tasmla)
0
-/ " dap (i) (o), (6.23)
where we used Egs. (6.18) and (6.22). Equations (6.18), (6.22) and (6.23) ensure

the condition for Theorem 5.1.1 and we obtain the relative-entropy conservation
law

D(p(0)|Ipe (1) = D [1F) — Es [P0, 0195 0))] - (6.24)

Since X is equivalent to the total information involved in the measurement
outcome,D(p3°(+; t)||pg (- 1)) converges td(p; ||py) in the infinite-time limit.
Thus from Egs. (6.15) and (6.24) we have

Es[D(0}, o IIP5. )] == D®Y |IpY) — D |1, (6.25)
t—o0
E; [DY, Y, )] == 0. (6.26)

This equations show the difference between the asymptotic behaviors of the rela-
tive entropies for the post-measurement state. The right-hand side of Eq. (6.25) is
the difference of the relative entropies foand.X. From the chain rule (3.12) it

can be written as

/0 " depX (2) DY (1) [pY () = 0, (6.27)
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where

p* (x[n)p;’ (n)
p; (2)

is the photon-number distribution conditioned By Equation (6.28) vanishes if

and only if the photon number distributions @&nds coincide. To show this, let
the left-hand side of Eq. (6.28) e Then from Proposition 3.2.2 we have

Vn >0, p(nle) = p) (nl) (6.29)

pY (n]z) = (6.28)

for almost allz > 0. Therefore there exists at least ane> 0 which satisfies
Eq. (6.29). For such, from Egs. (6.28) and (6.29) we have

(n|pln) _ (n]d|n)
py(x)  pi(e)

By taking the summation of Eq. (6.30) we havg(z) = p (z) and again from
Eqg. (6.30) we obtaip) (n) = pX (n) for all n > 0. Thus we have shown thatis
more informative thanX unlessp ands have the same photon-number distribu-
tion.

The Shannon entropy conservation for the photon number holds since Ban’s
condition (4.13) holds from Eq. (6.13). In the caseXafhowever, the correspond-
ing condition (4.4) does not hold as shown in Eq. (6.18). Furthermore, the amount
of the decrease in the Shannon entropiesXas evaluated to be

h(py) = Eslh(p;,,))]

— b+ 3 P (m) / dap () npX, ()
m=0

Vn >0,

(6.30)

= [ _ _ e 'pt(mle " z)p] (e 'x)
— h(pg()JrZ/O dze'p%(mle " z)p) (e "x) ln( () £
m=0 p

= —yt+ I;(X : qc) # [,(X : qo), (6.31)

wherel;(X : qc) is the mutual information between the measurement outeome
andX. The term—~t comes from the Jacobian of the transformatior z(x; m)
as explained in Sec. 5.3.2. Note that in this c&sis not a PVM.

6.3 Homodyne measurement

In a balanced homodyne measurement [24, 25, 26], one of the quadrature ampli-
tudes of a photon field is measured in a destructive manner such that the post-
measurement state relaxes to a vacuum stateHere the quadrature-amplitude
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operators are defined by

=

so that they satisfy the canonical commutation rela@ﬁn XQ] = 7. One way of
implementing this measurement is to mix the signal photon field with a classical
local oscillator and divide the mixed field into two output fields viao&o-50%
beam splitter and measuring the difference of the photocurrents of the two output
signals.

The measurement operator for an infinitesimal time intedva given by

M(de(t);dt) = T — %ﬁdt +Fade(t), (6.32)

wherey is the strength of the coupling with the detecitg¢) is a real stochastic
variable corresponding to the output homodyne current which satisfie®thedt

(d(t))* = dt.

The reference measuyg for d¢ is the Wiener measure in whicfg(¢)’s at dif-
ferent times obey a mutually independent Gaussian distribution with the first and
second moments given by

o (df) =0,
Ey((d€)?) = dt,
whereE, (-) denotes the expectation with respect to the Winer measure
To derive the effective instrument for a finite time interj¢alt], let us consider

the case in which the initial state is a pure statg. In this case the state change
is described by the following stochastic 8tiimger equation:

[(t +dt)) = M(d&(t); dt) [v(1)) -
The solution is given by [25]

(1)) = My (t) [vo) , (6.33)
where
M(t) = e e [ya - s -], (63)
o) =7 [ e ¥deto) (6.35)
0
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In the Wiener measure(t) in Eq. (6.35) is a Gaussian variable with the vanishing
first moment and the second moment

¢
E, @) = 7/ e Pds=1—e "
0

Thus the reference measurgdy) for y(t) is given by

_ dy y?
poldy) = r(l—e ) ¥ {_m} ' (6.39)

As the system’s observable, we take a continuous R¥\M, (z|, where|z),
is the Dirac ket such that

(el = 8w =), Xi|z), = xla), .

Then we can show the following relations (see Appendix B for the derivation):

pro(dy) M () My (t) = dyp(y| X1), (6.37)
_ 1 (y = v2(1 — e )a)*
plylr) = i1 ) P | T e | (6.38)
po(dy) M (t) [z), | (x| My (t) = dyq(a;y:t) |E(z;y: 1)), (E(z5y5)],  (6.39)
q(z;yt) = e "p(yla(z; ys b)), (6.40)
(r:u: _6_%1’ i
T(z;y;t) = + ok (6.41)

See Appendix B for the derivation. We can see the destructive nature of the mea-
surement from Eq. (6.41). Equation (6.39) ensures the condition (5.13) and the
relative-entropy conservation law

D(py (s t)llpy (1)) = D03 Ip3*) — E[D(y p51)],  (6.42)
Wherepg(1 (x) =, (z|pl|x), and

Py (yit)dy = tr[pM, () M, (¢)] o (dy)

is the probability measure of the measurement outcgfhe
The condition (4.13) for Theorem 4.2.1 is not satisfied as can be seen from
Eq. (6.39). Furthermore, we have

h(py*) = Eplh(py!)]

:h(pg() /dmdye /2 p(y|z(x; y))pp (Z(z;y)) In (

e 2p(y| 7 (2; y))p;(1 (T(2;9))
Py (y)
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and the Shannon entropy conservation law does not hold. The-tefif2 comes
from the Jacobian of the transformation— z(z;y).

6.4 Heterodyne measurement

The final example is the heterodyne measurement in which both of the quadrature
amplitudesf(l and X, are measured simultaneously in a destructive manner as
in the homodyne measurement. This measurement is implemented by detuning
the frequency of the local oscillator in the balanced homodyne setting. The sine
and cosine components of the output signal correspond to two quadrature ampli-
tudes [26].

The measurement operator for the infinitesimal time intedv& given by

NI(dC(t);dt) = T — %ﬁdt + \Fad(t), (6.44)
whered((t) is a complex stochastic variable with the compléxrile

(dC(t))* = (d¢™(t)* =0, d((t)dC™(¢) = dt. (6.45)

The reference measugg for d( is the complex Wiener measure in which real and
imaginary parts ofi((¢) obey independent Wiener measures consistent with the
Itd rule (6.45).

The stochastic Schdinger equation

W (t + dt)) = M(dt; dC(t)) [(t)) (6.46)

has the solution 5 A
() = My (t) [0)

where|vy) is the initial state at = 0 and
My (t) = e~ 2 b2, (6.47)

t
y(t) = \/7/ e~ 2 d((s). (6.48)

0

In the complex Wiener measurgjs a complex Gaussian variable with the van-
ishing first moment and the second moments

Eoly* ()] =0, Eolly@®)]] =1—¢".
Thus the reference measurgdy) is given by
_ly®?

e 1—e—7t

po(dy) = e T——

d*y, (6.49)
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whered?y = d(Rey)d(Imy). The density of the POVM foy is given by

MJ(t)My(t) = {exp ht — (e — 1)&&T + e (ya + y*&T) - 67t|y|2} } ,
(6.50)

where«/ is the anti-normal ordering in which annihilation operators are placed to
the left of the creation operators. By using the overcompleteness condition for the
coherent state (B.1)

/d2a 09— ], (6.51)

where

o = 1) ol (6.52)

we have

and therefore, for any functiofy we have
o {f(a,a")} = /d2af(a,a*)EQ
From Egs. (6.50) and (6.49), the POVM fgi) is given by
Pyt {plyla,a'i0)} =y [ Paplyla.a’it)ES (6.53)

where
|y(t)—(1—e~
eXp | — e Yt (1—e=7?)

p(y(t)]e, o™ t) = et (1= o) (6.54)
The probability density function fay is given by
Phalit) = [ Paply(dla,a’Qa(aa’) (6.55)
where (ol pla)
(0% (0% ~
Qplaa’) = =L = wfpE? |



is the Q-function [27, 28]. Sincg(y(t)|a, a*;t) — §*(y — «*) in the limit of ¢ —
00, p} (y; 1) reduces t@);(y*, y) in the infinite-time limit. Thus the measurement
outcome ofy gives us the information about the Q-function [29].

To show the relative entropy conservation for the system’s PO§}$/,I we
confirm the conditions for Theorem 5.1.1. From Eq. (6.53) the condition (4.1) is
satisfied. From Eq. (6.47) we have

po(dy) M () ES M, (t) = d*y(t)q(o, 0" 9) B2, ), (6.56)

where
ala,y) = e ra+y, (6.57)
(o, 5 y) = e 'p(ylales y), & (a; ). (6.58)

Thus the condition (5.2) is satisfied. For any smooth funchion, o*), we have

/dzaq(a, ot y)F(a(osy), " (asy))

~yt

= [ @atet o @+ 9. F @ + i) Fa.a)
= /dQQp(y]a,a*;t)F(a,a*)

and the condition (5.3) is satisfied. Thus the assumptions for Theorem 5.1.1 are
satisfied and therefore we obtain the relative-entropy conservation law

D(p; (+0)lpz (1)) = D(QsllQs) — Ep[D(Q5,1Qs,)], (6.59)

wherep, is the post-measurement state for the given measurement outcome
In this measurement process, the Shannon entropy conservation does not hold
again. In fact, the difference of the Shannon entropies is evaluated to be

h@Qp) — Eplh(@p,)]
= h(Qﬁ) + /dedep(y‘&’ d*)Qﬁ<da &*) In (e_ﬁp(mé;f(*y))Qﬁ(&’ &*)>

=N+ 1(Q:Y) A L;(Q:Y), (6.60)

where;(Q : Y) is the mutual information between the measurement outcome
and the system’s observali¥’. The term—~+t again comes from the Jacobian of
the transformatiomx — a(«; y).

52



Chapter 7

Construction of a Conserved
Observable

In the previous chapters, the quantum measuremeamd the system’s observable

X are first given independently, and then we examined the conditions for the
relative-entropy conservation. Then it is natural to ask whether or not there exists
an observable which satisfies the relative-entropy conservation law for a given
measurement process. The answer is yes, with a relatively weak condition on the
sample space of the measurement outcome. In this chapter, we construct such
a relative-entropy-conserving observable for a given instrument. The meaning
of the constructed observable corresponds to the measurement outcome of the
infinite joint measurements of the given quantum measurement.

Before going to the detailed discussion, let us describe the idea of the con-
struction in an informal manner. An observable corresponding to a POVM
outputs a measurement outcom®r a given input stat@. This is schematically
represented by the following diagram.

/ X}
Here dashed line represents the classical outcome. On the other hand, a quantum
measurement” corresponding to a CP instrument outputs a measurement out-

comey and the conditional post-measurement stgtior a given input statg as
the following diagram shows.

~ ~

P Jﬂ_?_}‘ Py

|
|
|
v
Y

Let X be an observable corresponding to the measurement outcome of the infinite
successive measurementYof Then X outputs the measurement outcome=
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(y1,92, -+ ), Wherey, is the measurement outcome /oth Y-measurement as
represented by the following diagram.

p ﬁyl H‘Z’—) ﬁy1y2 - (7.1)
I |
I |
I |
\ A
W Y2
Let us consider the joint successive measurement @fllowing Y. This is rep-
resented by the following diagram.

p— i, —{X] (7.2)

| I

: 1

\ \

Yy T
SinceX is represented by the diagram (7.1), the diagram (7.2) is equivalent to the
following diagram.

p 4)@’% Py *)‘Z’H Py Pyyrys — " (7.3)

I | |
| | |
I | |
\i Y A
Y U Y2
The joint measurement (7.3) is equivalent to the single measurement(6fl)
with the measurement outconig, 1,2, - -- ). Therefore information obtained
from these measurement processes coincide and the relative-entropy conservation
law (5.9) holds.

The above discussion assumed tNas a well-defined POVM. However, even
in a simple case in which the sample sp&se of Y is finite larger thar2, the
sample space ok is the infinite product spacex = [[,—, Q (% = Qy) and
Qx has the cardinality of the continuum. Therefélg is not a discrete space
and we must specify the-algebraZy on)x and show tha¥ is a well-defined
POVM on (2x, #x). The most of the following discussion is devoted to such
measure theoretic considerations.

7.1 Mathematical preliminaries

7.1.1 Standard Borel space

For the construction of the conserved observable, we assume that the sample space
of the measurement is a standard Borel space defined as follows.
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Definition 7.1.1 (standard Borel space)

1. Let (24, %) and (2, #,) be measurable spaces (cf. Definition 2.1.1).
(Q, %) and (€2,, %) are said to bdorel isomorphic iff there exists a
bijection f : 2; — 5, which is bimeasurable, i.e. for andy € 2; and any
Ag € )y, f_l<A2) S @1 andf(Al) € %2.

2. Atopological spaceX is called aPolish spacaff X is metrized by a com-
plete metricd and X is separable, i.e. there exists a countable dense subset
of X.

3. Let 2 be a topological space antl, be the family of open sets. We can
define asr-algebraz((?) in a natural way byZ(Q)) := o(0,). Hereo (),
called the generategtalgebra ofe7, denotes the smallestalgebra which
contains a family«Z of subsets of2. In this sense, a topological space is
considered as a measurable space.

4. A standard Borel space(f2, %) is a measurable space which is Borel iso-
morphic to a Polish space.

Two Borel isomorphic measurable spaces are equivalent in the sense it is a
relabelling of the measurement outcome.

A discrete spac€, 2%), where() is a countable set, is a standard Borel space.
As an continuous example, the Euclidean sp@e #(R")) is a standard Borel
space. In this sense, the concept of the standard Borel space is so general as
to include the sample spaces of the measurement outcome encountered in the
physical problem.

Next we consider the products of measurable spaces({Let4;) be a mea-
surable spacé = 1,2,---). Forn > 1 we can define a-algebra#; x %, x

- X B, = [[;_, %; on a product sef[;_, ©; by theo-algebra generated by a

family of sets

{Al XA2 Xoeee XAn,A,L G%Z(Z: 1,2,"' ,n)},
an element of which is called a cylinder set. For an infinite producfiset

[1;2, %, the product-algebra[ [, %, is theo-algebra generated by a family of
sets

U{w;l(A);A c B},

wherer; : H;’il Q; — €, is the canonical projection. {2, = 2 and%; = £ for
each: > 1, the product spaced [, Q;, [, %) and([[.2, i, [ [, %) are
denoted by Q", ") and(QY, V), respectively.
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Let (€2;, ;) be a standard Borel space for any> 1. It is known that the
product space$[ [, . [, %) and ([[.2, i, [[;~, #:) are standard Borel
spaces [30].

7.1.2 Composition of instruments

In this section we consider a composition of two instrumérts) andZ?(-) on
sample spaces$?,, %, ) and(€);, %), respectively. The composition corresponds
to a joint measurement afafter2. If the sample spaces are discrete, this is given

by

IR(P) = > Tty 0 Ti,y ()

(w1,w2)€A

for eachA c 242 and each density operator

The composition of two instruments can be constructed when the sample
spaces are both standard Borel spaces. The following theorem is due to Davies
and Lewis [31, 32].

Theorem 7.1.2

LetZ(-) be a CP instrument on a standard Borel sgée%;) fori = 1,2. Then
there exists a unique CP instrum&nt(-) on the product spad€; x )y, B x B>
such that

11]421XA2 (ﬁ) = I}h OIEXQ (ﬁ)

foranyA; € %, (i = 1,2) and any density operatgr The constructed instrument
7'%is denoted ag! = 72

We remark that the original statement in [31, 32] is for positive (P) instru-
ments, the definition of which is obtained by weakening the complete positivity
to a mere positivity in the definition of the CP instrument. The above statement is
readily obtained if we note that a P instrumé&nis a CP instrument iff ® Z,, is
a P instrument for each > 1, whereZ, is the identity superoperator ai{C").

If we ignore the post-measurement state afteand only consider the mea-
surement outcome, we obtain the following theorem.

Theorem 7.1.3

Let £'(-) be a POVM on a standard Borel spa@® , %;) andZ%(-) be a CP
instrument on a standard Borel spafy, %,). Then there exists a unique POVM
E'2(.) on the product spadg, x Q,, %, x %) such that

t[pE(Ar x Ay)] = tr[E' (AT, ()] (7.4)
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forany A; € %; (i = 1,2) and any density operatpr We call the POVME!? as
the composed POVM of the POVM' and the CP instrumet.

Proof. LetZ!(-) be a CP instrument on a sample spéeg %) such tharZ}‘T(f) =

E'(A) forany A € %,. Such CP instrument is, for example, givenBy(j) =
tr[El(A) plp1 forany A € %, and any density operatgr wherep, is an arbitrary
density operator. Then the POVM?2(A) := (Z'+Z?)",(I) on the product sample
space satisfies the condition (7.4). The uniqueness follows from the uniqueness of
the measurer[pE'%(-)] on the product space for eagh O

LetZ!(-) be a CP instrument on a standard Borel sgége%;) for 1 <i < n.
The composition of. CP instruments on a product spagg;_, %, [, %) is
defined by

T TP+ IV =T % (TP (- % I")--). (7.5)
This is a unique CP instrument on the product space such that

(II*IQ**IW’) :I}hozigo...ozzn

H?:1 Ai

foranyA; € 4, (1 <i<n). Q0 =Q, %8, =%andZl’ =Zforalll <i<n,
the composition of instruments (7.5) is denoted &5s

7.2 Construction of a relative-entropy-conserving ob-
servable

For the construction of a relative-entropy-conserving POVM for a given instru-

ment, we need the following lemma [33].

Lemma 7.2.1 (quantum Kolmogorov extension theorem)
Let (2;, #;) be a standard Borel space£ 1,2,---) andE,(-) be a POVM on a
product spacé[ [, ., [[;_, %) for eachn. Suppose that, for eadh< n < m,

E.(A) = E, (A < 1] Q) (7.6)

holds for anyA € []}_, %;. Then there exists a unique POVM-) on the infinite
product spacé€[ [, Q. [[;2, %:) such that

E.(A) =F <A < 1 Q)

n<1<00

foranyn > 1and anyA € []"_, 4.
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The condition (7.6) is calleékolmogorov consistency condition We remark
that the classical version of Lemma 7.2.1 is called as a Kolmogorov extension
theorem well known in the measure theoretic probability theory (e.g. [20]). The
Kolmogorov extension theorem is used, for example, to construct a probability
space of an infinite coin-toss process.

Now let us construct a POVM for a given CP instrum&ht-) on a standard
Borel spacgQ)y, &y ). Let EY be a POVM on a product spa¢@?, ;) such
that

*n A T 1— T A~
& (HA) (T s, (1) = T} 0 T, T YD) (7.7)

forany A; € #y (i = 1,2,--- ,n), which corresponds to the measurement out-
come of ann-composition ofZY. Then it satisfies the Kolmogorov consistency
condition (7.6) and from the quantum Kolmogorov extension theorem there exists
a unique POVMEX on an infinite product spadély, Zx) = (), A)) such

that

EX(Ax O)) = EY(A) (7.8)

forany A € #}. The POVMEX corresponds to the measurement outcome of
the infinite composition of the given measurement progédéote that we cannot
in general define the post-measurems&tate corresponding to the infinite com-
position of a CP instrument. An example of such a measurement is the quantum
counter measurement described in Sec. 6.2 in which the photon number of the
post-measurement state diverges in the infinite composition limit.

Next we prove the relative-entropy conservation law. Here we consider one of
the equivalent forms of the conservation law in Eq. (5.9). From Theorem 7.1.3,
there exists a POVMEXY on a product spacd)x x Qy, Zx x %y) such that

EXY (Ax x Ay) = T (B (Ay)) (7.9)
foranyAy € By andAy € By. The POVMEXY corresponds to the outcome
of the joint measurement process XfafterY. The sample spac@y x Qy IS

Borel isomorphic td2y = Q3 by a mapping

Qx x Qy 3 (z,y) — (y,z(1),2(2),---) € Qx, (7.10)
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wherex = [, z(i) and thusZXY is identified with a POVMEX (-) on (Qy, By )
induced by the mapping (7.10). It follows from Eq. (7.9) that

B (H A; % Q§> 7yt (E}{ (HAz))
1=0 =0
IYT IYT y t/3
4y ©4a, O"'OIAn (1)
= BX (H A; % Q?B)
=0

for every Ag, Ay, -+, A, € By (n > 1). Thus from the uniqueness & we
haveX = EX. Thus we have the relative-entropy conservation law

D(py ¥ llp™) = D(v; [Ip3), (7.12)

wherep>" andp; are the probability measures for a quantum stedefined by
Py (A)

p; (B)

for eachA € Zx x #By andB € HBx.
The above discussion is summarized as the following theorem.

[PEXY (A)),
[6E~(B)]

= tr
= tr

Theorem 7.2.2

LetY be a measurement process described by a CP instrufem a standard
Borel space(Q2y, %y ). Then there exists a unique system’s observablde-
scribed by a POVMEX on a product sample spat@x, Zx) = (), #Y) such
that the condition (7.8) holds. Furthermor€é,andY satisfy the relative-entropy
conservation law (7.11).

We remark that the mapping (7.10) corresponds(ta y) in Chapter 5. We
also mention that in the example of the quantum-counter model in Sec. 6.2, the
POVM in Eqg. (6.17) corresponds to the constructed observable (7.8).
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Chapter 8

Summary

We have studied information flow in quantum measurement processes based on
the relative entropy and identified the conditions for the relative-entropy conser-
vation law. In this chapter we summarize the results obtained in this thesis.

In Chapter 1, we described the motivation and background of this thesis. In
Chapter 2, we reviewed the quantum theory of measurement. There we have
introduced the POVM, the CP instrument and the measurement model. In the
introduction of these concepts, the sample space of the measurement outcome is
described by a general measurable space, which enables us to handle discrete and
continuous sample spaces in a consistent manner.

In Chapter 3, we have reviewed the classical information theory and intro-
duced classical entropic information contents, namely the Shannon entropy, the
mutual information and the relative entropy. We have discussed properties of
these entropies for a continuous variable and shown that the Shannon entropy
for a continuous variable cannot be interpreted as an information content and de-
pends on the choice of a reference measure of the variable, whereas the other two
entropies are independent of the reference measure. Furthermore, we have intro-
duced a concept of a sufficient statistic and seen that the sufficiency of a statistic
is characterized by a conservation of the relative entropy.

In Chapter 4, we reviewed a Shannon entropy conservation for quantum mea-
surements established by Ban [10]. For a given system’s obser¥atéscribed
by a POVM and a measurement procésslescribed by a CP instrument, we
have proved the Shannon entropy conservation by assuming some conditions on
X andY. We have discussed a special case in whicks projection-valued and
shown that the Shannon entropy conservation can be proven under a less restrictive
condition than the general case. As an example of Shannon-entropy-conserving
measurements, we have discussed a quantum non-demolition measurement.

In Chapter 5, we have derived the condition for a quantum measureéfraard
a system’s observabl& such that the relative-entropy conservation law holds.
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The obtained information about which of the two candidate states is actually pre-
pared is quantified in terms of the relative entropy of the measurement outcome.
The derived relative-entropy conservation law states that the relative entropy of the
measurement outcome is equal to the decrease in the relative entropy of the mea-
sured observabl&'. To clarify the meaning of the established condition for the
relative entropy conservation law, we have considered the successive joint mea-
surement ofY” followed by X, and derived another equivalent relative-entropy
conservation law for this joint measurement process, which states that the relative
entropy of the measurement outcome of the joint measurement coincides with the
relative entropy of the measured observahildor the initial state. The estab-
lished condition for the relative-entropy conservation law can be interpreted as
the existence of a sufficient statisti¢z; y) in the successive joint measurement
such that the probability distribution af{z; y) coincides with that ofX for the

initial state. We have also shown that for the case in whicis discrete and

X is a discrete PVM, the relative-entropy conservation law is equivalent to the
established condition. The established condition is less restrictive than the condi-
tion for the Shannon entropy conservation derived by Ban and we have compared
these conditions. For the case in whiEhandY” are both discrete, Ban’s condition

is shown to be equivalent to the condition that the post-measurement state is an
eigenstate ofX if the pre-measurement state is an eigenstat& .oAn example

in which the Shannon entropy conservation does not hold but the relative-entropy
conservation does is given by a destructive sharp measurem&ntmivhich the
measurement outcome is equivalent to that of the projective measurement while
the post-measurement state is a maximally mixed state.

In Chapter 6, we have applied the general theorem for the relative-entropy con-
servation law to typical examples of optical continuous measurements, namely
photon-counting, quantum-counting, homodyne and heterodyne measurements,
and shown the relative-entropy conservation for each measurement process. We
have shown that these measurements except for the photon-counting measurement
do not satisfy the Shannon entropy conservation due to the non-unit Jacobian of
the transformationr — Z(z;y). Among these measurements, the heterodyne
measurement is special in the sense that the probability for the measurement out-
come, Q-function, involves all the matrix elements of the system’s density matrix
as different from other examples in which the diagonal elements are only relevant
to the measurement process.

In Chapter 7, we have constructed a relative-entropy-conserving observable
for a given measurement process described by a CP instrument on a standard
Borel space. The constructed observable is an infinite composition of the given
instrument which corresponds to the measurement outcome of an infinite suc-
cessive joint measurement of the given measurement. For the quantum-counting
measurement, there are two relative-entropy-conserving observables, namely the
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photon number and the infinite composition of the measurement constructed in
Chapter 7. In this example the latter one is obtained by the coarse-graining of
the photon number. From this observation, one may wonder what is the relation
between the constructed observable and other relative-entropy-conserving observ-
ables in general. This question remains an outstanding issue.
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Appendix A

Proof of Proposition 3.3.4

In this appendix we prove Proposition 3.3.4.

Lemma A.0.3
If H is separable, thef(#) is separable with respect to the trace norm.

Proof. Since?{ is separable, there exists a countable dense syibsgtl C .
Define7, as a set of operators of the form

Z’¢nk> W}nk‘ (m:1’27...)

and letSy := {p/ tr[p]; p € To}. ThenS, is countable and it is easy to show that
S is dense irS(H). O

From Lemma A.0.3, there exists a dense countable sybsé¢t->1 C S(H).
Define a stat@, € S(H) by
poi=3 27", (A1)
n>1
To showP* <« PX for eachp € S(#), take an arbitrary set € %y such that
P;(A) = 0. From the definition of, (A.1), we have

0=> 2"tx[p, EX(A)] =) 27"P;(A (A.2)

n>1 n>1
and thusP;X (A) = 0 for all n > 1. Since{p, }n>1 is dense inS(H), there exists

a subsequencl,, }r>1 such that|p — p, |1 — 0, where||A||; := tr V ATA is
the trace norm. Hence we have

PX(A) = alpE¥(A)] = lim trlj,, B¥(4)] = 0. (A3)

ThusP,éx < ng holds and Proposition 3.3.4 is proved.
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Appendix B
Derivation of Egs. (6.37) and (6.39)

We at first evaluaté\%?j(t) |z}, , (x| M,(t). In the evaluation of this operator, we
use the normal ordering. The normally ordered expressigfa, a') : for a scalar
function O(a, o) of a complex variabley is an operator in which annihilation
operators are placed to the right of creation operators. Any opetatoas a
unique normally ordered expressiof®(a, a') : with

O(a,a") = (a|Ola)
where
) = ey 2y B
= vl
is a coherent state. Since the coherent state ijuthebasis can be written as

z|a) = 7 Y4 exp {—%(m —V2a)? - %(Cf + |a]2)] ,

we have )
(a) o (z)a =72 exp [— (9: — aj/; ) ] :
which implies the following normally ordered expression
. a+at\?
2), (x] = 7% exp [— <x— 7 ) ] D (B.2)

By using Eq. (B.2) and the formula

2
_ e

eMa)y =e 2 17 e
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which is valid for real\, the operatoilZ} (t) ), , (x| M, (t) in normal ordering is
evaluated to be

(al MJ(1) |2), o] M, (1) o)
t o+ af 2 t 2
— 72 exp [— (e‘éx + % - T) + (e‘éx + %) - :1:2] .
(B.3)
Using again Eq. (B.2) in Eq. (B.3), we obtain Eqg. (6.39). By integrating Eq. (6.39)

with respect tar, we obtain

M, ()M, (t) = exp

; R ) 2
% + X2t (X1 - %) ] . (B.4)

By multiplying Eqg. (B.4) with Eq. (6.36), we obtain Eq. (6.37).

65



Acknowledgements

I would like to express my sincere gratitude to Prof. Masahito Ueda, my supervi-
sor, for his guidance, helpful comments, and continuous encouragements during
research. | would also like to thank Tomohiro Shiatara and Prof. Masato Koashi
for helpful discussions. | would like to thank Prof. Mio Murao, Prof. Akira
Shimizu, Prof. Yuji Tachikawa, Prof. Masaki Sano, and Prof. Izumi Tsutui for
refereeing my thesis and for valuable discussions.

This research has been supported by the the Leading Graduates Schools Pro-
gram “Advanced Leading Graduate Course for Photon Science” and the JSPS Re-
search Fellowships for Young Scientists DC2 (Grant No. 14J09905).

66



Bibliography

[1] C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zim-
mermann, Rev. Mod. PhyS§2, 341 (1980).

[2] V. B. Braginsky and F. Y. Khalili,Quantum measureme(@ambridge Uni-
versity Press, 1995).

[3] V. B. Braginsky and F. Y. Khalili, Rev. Mod. Phy68, 1 (1996).

[4] A. Shimizu and K. Fujita, First-kind measurements, non-demolition mea-
surements, and conservation laws, Qnantum control and measurement:
proceedings of the ISQM satellite workshop, ARL, Hitachi, Hatoyama,
Saitama, August 28-29, 199pp. 191-196, Amsterdam, 1993, North-
Holland.

[5] M. Srinivas and E. Davies, Opt. Acg8, 981 (1981).

[6] M. Ueda, Quantum Opt.: Journal of the European Optical Society Phrt B
131 (1989).

[7] N.Imoto, M. Ueda, and T. Ogawa, Phys. ReWA 4127 (1990).
[8] M. Ban, Phys. Lett. 2235 209 (1997).
[9] M. Ban, Int. Jour. Theor. Phy87, 2491 (1998).

[10] M. Ban, J. Phys. A: Math. Gei32, 1643 (1999).

[11] S. Kullback and R. A. Leibler, Ann. Math. St&2, 79 (1951).

[12] Y. Kuramochi and M. Ueda, Classicality condition on a system’s observ-
able in a quantum measurement and relative-entropy conservation law, 2014,
arXiv:1406.2130.

[13] P. R. HalmosMeasure TheorySpringer, 1974).
[14] W. F. Stinespring, Proc. Amer. Math. S@&;.211 (1955).

67



[15] K. Kraus, Ann. Phys. (NYP4, 311 (1971).

[16] M. Ozawa, J. Math. Phy£5, 79 (1984).

[17] C. E. Shannon, Bell Sys. Tech.2J, 379 (1948).
[18] C. E. Shannon, Bell Sys. Tech.2¥, 623 (1948).

[19] T. M. Cover and J. A. Thomagklements of information theofgohn Wiley
& Sons, 2012).

[20] K. Itd, An Introduction to Probability TheorgCambridge University Press,
1984).

[21] P. R. Halmos and L. J. Savage, Ann. Math. S28¢.225 (1949).
[22] M. Ueda and M. Kitagawa, Phys. Rev. L&8, 3424 (1992).

[23] M. Ueda, N. Imoto, and H. Nagaoka, Phys. Re\63 3808 (1996).
[24] H. M. Wiseman and G. J. Milburn, Phys. Rev4&, 642 (1993).
[25] H. M. Wiseman, Quantum Semiclass. Ofjt205 (1996).

[26] H. M. Wiseman and G. J. Milburn,Quantum Measurement and Control
(Cambridge University Press, 2010).

[27] K. Husimi, Proc. Phys.-Math. Soc. Japan. 3rd Se2i2<64 (1940).
[28] C. L. Mehtaand E. C. G. Sudarshan, Phys. R88 B274 (1965).

[29] H. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical
Fields(Springer, 2008).

[30] S. M. SrivastavaA course on Borel se{Springer, 1998).

[31] E. B. Davies and J. Lewis, Commun. Math. Ph}/&.239 (1970).
[32] E. B. Davies,Quantum theory of open syste(hglA, 1976).

[33] R. Tumulka, Lett. Math. Phy84, 41 (2008).

68



