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Abstract

Quantum statistical mechanics can be fomulated based on a single pure quantum state.

In this thesis, I establish this formulation, see the properties of such a pure quantum state,

and apply the formulation to a practical application.

Historically, it has been found that quantum states have robust ”typicality”, which is

the property that almost all the realizable state give equilibrium values correctly for all

”mechanical variables”, such as energy and a correlation function. I generally call the pure

quantum states which can represent the equilibrium state ”thermal pure quantum (TPQ)

state”. I extend the typicality so that it is applicable to ”genuine thermodynamic variables”,

such as entropy and temperature. I introduce many kinds of the TPQ states which include a

”(grand)canonical TPQ state” , which is specified by intensive variables such as temperature,

and a ”microcanonical TPQ state”, which is easy to generate. Owing to these results, I

establish the new formulation of statistical mechanics based on the TPQ states.

Furthermore, the TPQ state is macroscopically invariant under the time evolution. The

TPQ state can correctly give the predictions in linear response theory. Thus, when I compare

the TPQ state to an equilibrium state in the conventional formulation using ensembles,

they seem to be completely the same state. However, when we examine the fluctuation

of mechanical variables, I find that all the fluctuation which are predicted by the ensemble

average is squeezed into the quantum fluctuation in the TPQ formulation. Many microstates

within the range of the fluctuation are superposed in the TPQ state. Moreover, by seeing

the quantum entanglement, we clearly distinguish the difference between the TPQ state

and the conventional equilibrium state. The entanglement of the TPQ states are large, and

especially at high temperature, almost maximum. On the other hand, the entanglement of

the conventional equilibrium states are small and vanishing to zero as temperature is raised.

By introducing the transformation formulas among the TPQ states, effective numerical

calculations by applying the TPQ formulation are achieved. I apply the TPQ formulation

to the the spin-1/2 kagome Heisenberg antiferromagnet and find out the new behavior of

the specific heat.
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I. INTRODUCTION

Consider a glass of water placed gently on a table. The glass of water always relaxes to an

equilibrium state, which are specified only by several physical quantities such as temperature

and a volume. The glass of water will stay in the same equilibrium state. That is, when one

measures other quantities such as its pressure and density, they always take the same value

within the range of fluctuation. Thermodynamics is the theory which predicts properties of

the equilibrium states in macroscopic systems. All thermodynamic predictions are obtained

from thermodynamic functions such as entropy and free energy.

By contrast, if one can look at a glass of water in a microscopic scale, water molecules

are moving on and on and the microscopic state is changing continuously. This microscopic

world is described by quantum (or Newtonian) mechanics. However, we can never know

the microscopic state completely in the system which has Avogadro’s number of particles.

Moreover, even if we know it, we still do not understand why the macroscopic quantities such

as the density and the pressure stay invariant, while positions and momentums of particles

are changing.

Statistical mechanics is the theory which connects the gap between the microscopic world

and the macroscopic one and derives thermodynamical predictions from microscopic me-

chanics. To obtain the macroscopic predictions, we conventionally assume two principles in

statistical mechanics. One is ”the principle of equal a priori probability (PEPP)”, and the

other is ”Boltzmann’s entropy formula”. Using these assumptions, statistical mechanics has

achieved great success in the whole fields in physics for over a century.

However, the justification of these principles is not yet revealed. Especially, an attempt to

explain the PEPP from the microscopic mechanics has a long history [1–4]. Ergodicity, which

tries to derive the PEPP from time evolution of system, had been investigated thoroughly [2,

3, 5, 6] but has hardly succeeded in deriving it yet. Instead of the ergodicity, many statistical

physicists nowadays believe that typicality among states [7–17] should be the foundation of

statistical mechanics. The typicality is the property that almost all the realizable state can be
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regarded as an equilibrium state and the ratio of non-equilibrium state is vanishingly small.

The idea of the typicality has been proposed by many physicists, including Boltzmann, von

Neumann [2], Schroedinger [4] and so on. With the development of quantum information

theory [18] and experimental techniques to examine quantum mechanics, the typicality has

been attracting much attention recently. However, genuine thermodynamic variables such

as entropy and temperature cannot be obtained in these studies. Without the genuine

thermodynamic variables, a new formulation of statistical mechanics cannot be made.

In this thesis, I establish the formulation of statistical mechanics based on a pure quan-

tum state [19–21]. In this formulation, I fully use the typicality in the quantum system. I

generally call the pure quantum states which are regarded as the equilibrium state ”thermal

pure quantum (TPQ) states”. Not only mechanical variables such as energy and magneti-

zation, but also genuine thermodynamic variables such as entropy and temperature can be

obtained by a single realization of the TPQ state. I introduce microcanonical, canonical and

grandcanonical TPQ states, which correspond to the respective ensembles. Any of them is

sufficient to obtain all predictions in statistical mechanics. Moreover, these TPQ states are

transformed from one into the other. Since the equilibrium state is represented by quan-

tum mixed states in the conventional formulation using the ensembles, the TPQ states are

completely different from them. In fact, we can detect the difference by measuring quantum

entanglement, which quantifies the microscopic details. However, as far as we look at the

macroscopic quantities, they are regarded as the same equilibrium state. The formulation

using the TPQ states will deepen the understanding of statistical mechanics. Moreover, the

fact that a single pure quantum state is sufficient enables effective applications.

The contents of this thesis is as follows. In Sec.I, I will briefly survey the discussions of the

foundation of statistical mechanics. Among them, the typicality in quantum system gives the

strongest predictions. In Sec.III, I will define the TPQ state and introduce the cTPQ state.

In Sec.IV, I will introduce another TPQ state, the mTPQ state. The mTPQ state puts more

weight on practical applications than the cTPQ one. In Sec.V, the possibility of the TPQ

state will be discussed further. The TPQ states are applicable even to linear response theory.
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However, fluctuation of the TPQ states and that of the states in the ensemble formulation

are represented differently. Moreover, when we observe the quantum entanglement, they

are completely different. In Sec.VI, I will give transformation formulas among the TPQ

states. These transformations enable us to the effective calculations using the TPQ states.

In Sec.VII, I will examine the TPQ formulation as a numerical method. Then, the TPQ

formulation will be applied to the spin-1/2 kagome Heisenberg antiferromagnet (KHA),

which is one of the popular frustrated quantum models.
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II. TYPICALITY AND ERGODICITY

A. Typicality And Ergodicity In Classical Statistical Mechanics

The PEPP is the postulate that all the possible microscopic states appear in the same

probability. Since all the probabilities for the states are severely restricted by this postulate,

it is counter-intuitive and thus many people have tried to justify it microscopically. For the

justification, ergodicity of the state is often refereed. However, it is not physically realistic

and can not be the justification, although ergodic theorem itself has fruitful mathematics.

Therefore, I consider that we should understand PEPP from the view point of ”typicality”.

In this subsection, I review these points.

1. Ergodicity And Its Problems

When we employ a microcanonical ensemble in statistical mechanics, an equilibrium value

is obtained by microcanonical ensemble average,

⟨A⟩mc ≡

∫
E−∆E<E({pi}i,{qi}i)≤E

A ({pi}i, {qi}i) dΓ
W

(1)

where ({pi}i, {qi}i) is a set of positions and momentums for all particles, A ({pi}i, {qi}i) is a

value of a physical variable A for ({pi}i, {qi}i), E is energy, (E −∆E,E] is an energy shell,

dΓ ≡ Πidpidqi, and W is the number of states

W ≡
∫
E−∆E<E({pi}i,{qi}i)≤E

dΓ. (2)

The averaged value over time is

⟨A⟩time ≡ lim
T→∞

1

T

∫ T

0

A ({pi(t)}i, {qi(t)}i) dt (3)

where ({pi(t)}i, {qi(t)}i) is a set of positions and momentums at time t. Ergodicity is the

property that the microcanonical ensemble average value of every physical variable A is
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equal to the time average value of it, i.e., for ∀A,

⟨A⟩mc = ⟨A⟩time. (4)

In Newtonian mechanics, the ergodicity is proved for some models. However, even if Eq. (4)

holds, the time for the state ({pi(t)}i, {qi(t)}i) to evolve over all the possible states Tevolve

is usually too long to measure. Tevolve easily exceeds the lifetime of the universe. Namely,

we cannot wait for Tevolve coming, even if the ergodicity holds. On the other hands, we

have only to measure for a minute to know an equilibrium value of temperature of a glass

of water. Therefore, the ergodicity will not be the reason why the ensemble average gives

the correct equilibrium value. In addition to this, Tevolve increases exponentially as the size

of the system increases. In contrast to this, statistical mechanics is an asymptotic theory

whose prediction gets closer to thermodynamics as the system size increases. Hence, the

ergodicity seems to have nothing to do with the foundation of statistical mechanics.

2. Typicality In Weak Sense

In Sec. IIA 1, we saw that ergodicity cannot be used for the basis of statistical mechanics.

Alternatively, we can easily prove that ”weak typicality” among states can be substituted

for the PEPP.

The weak typicality is stated as follows. Let a macroscopic physical variable A be exten-

sive, that is, when a system gets x-times larger, a value of A also gets x-times larger. For

example, energy, magnetization, number of particle are the extensive variables. I say that

the weak typicality for A holds if ∀ϵ > 0, ∃system size V , s.t.

√
∆A2

V
< ϵ (5)

where

∆A2 ≡
∫
{A({pi(t)}i, {qi(t)}i)− ⟨A⟩ens}2 dΓ

W
. (6)
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Since the number of particles increases linearly as V increases,
√
∆A2 also increases as V

does. However, the weak typicality postulates that
√
∆A2 = o(V ). It means that if I prepare

a state for sufficiently large V randomly among all possible states,

a({pi(t)}i, {qi(t)}i) ≡
A({pi(t)}i, {qi(t)}i)

V
(7)

rarely deviates from its ensemble average. Therefore, I do not need to assume the PEPP to

obtain the thermodynamic predictions from Newtonian mechanics. Since the PEPP restricts

all the realizing probability of the possible states, it is a stronger assumption than the weak

typicality. If I only assumes the weak typicality instead of PEPP, a({pi(t)}i, {qi(t)}i) takes

the value which is equal to the ensemble average within a negligible error.

Inversely, I can also show that the weak typicality is proved from PEPP. I assume that

PEPP, the Boltzmann’s entropy formula, and the convexity of entropy, i.e.,

∂2S(E,A, V )

∂A2
≤ 0, (8)

where S(E,A) is entropy and I omit variables except for energy E, some physical quantity

A, and the volume V . By the definition of the Boltzmann’s formula, I get

W (E,A, V ) = exp[S(E,A, V )] (9)

= exp[V {s(u, a;V )}] (10)

where s(u, a;V ) ≡ S(E,A, V )/V , u ≡ E/V , and a ≡ A/V . s(E,A;V ) takes the maximum

at a∗ where

∂s(u, a;V )

∂a

∣∣∣
a=a∗

= 0. (11)

Expanding the rhs of Eq. (10) around a∗, I get

W (E,A, V ) = exp[V {s(u, a∗;V ) + s′′(u, a∗;V )(a− a∗2) +O
(
(a− a∗3)

)
}] (12)
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where

s′′(u, a∗;V ) ≡ ∂2s(u, a;V )

∂a2

∣∣∣
a=a∗

< 0 (13)

and s′′(u, a∗;V ) is Θ(V 0). Therefore, W (E,A, V ) behaves like a Gaussian distribution with

a peak at

a = a∗ (⇔ A = V a∗) (14)

and the width

∆a2 = Θ(
1

V
) (⇔ ∆A2 = Θ(V )). (15)

When one specify the value of energy but does not specify that of a, a may take various

values. However, since limV→∞ ∆a2 = 0 in Eq. (15), not only the ensemble average takes

a∗ but also the values of a of almost all the possible states take a∗ with errors vanishing to

zero with increasing V , This is the proof of the weak typicality for a derived from the above

three assumptions, PEPP, the Boltzmann’s entropy formula, and the convexity of entropy,

Since the Boltzmann’s entropy formula, and the convexity of entropy are always assumed in

a usual situation, the PEPP automatically implies the weak typicality.

In summary, the weak typicality is sufficient for obtaining thermodynamic perditions.

Moreover, the weak typicality is included by the PEPP. Therefore, I can say that the PEPP

is a sufficient condition for it but not a necessary one. Hence, one may expect that the

weak typicality can be the foundation of statistical mechanics. However, this discussion of

the weak typicality focuses only on the extensive variables. Other variables, for example,

fluctuation of the extensive variables, a position of one particle and intensive variables are

excluded. I do not know whether this discussion is extended to these variables. Thus, the

justification of statistical mechanics using the weak typicality in this form is not completed.
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B. Typicality And Ergodicity In Quantum Statistical Mechanics

In Sec. IIA, I have explained that neither ergodicity nor PEPP are necessary to obtain

thermodynamic predictions of some extensive variables in classical system, but the weak

typicality is sufficient. For quantum systems, I will show that ergodicity generally breaks

down [2, 5, 6, 22, 23], but typicality is proved in a stronger sense than what I have explained

in classical statistical mechanics [12–17]. I call it ”strong typicality”. The strong typicality

is stated as follows. First, the expectation value ⟨ψ|Â|ψ⟩ for any ”mechanical variables”

(defined in this section) is close to the microcanonical ensemble average under a natural

probability measure of the coefficients {cn}n. Second, the difference between ⟨ψ|Â|ψ⟩ and

the ensemble average is of the order exp[Θ(−V )], which immediately vanishes to zero as

V increases. It will turn out that the strong typicality can substitute for the PEPP as a

principle of statistical mechanics.

1. Ergodicity In Quantum Mechanics

Let me consider an arbitrary quantum pure state |ψerg⟩ in a energy shell (E − δE,E]. It

can be written in a general form,

|ψerg⟩ ≡
∑
n∈S

cn|n⟩. S = {n|un ∈ (E − δE,E]} (16)

where {cn}n is a set of coefficients and |n⟩ is an energy eigenstate, Ĥ|n⟩ = un|n⟩. The time

evolution of |ψ⟩ is

|ψerg(t)⟩ ≡
∑
n

cne
− i

ℏunt|n⟩, (17)

and the expectation value of |ψ(t)⟩ for an operator Â is

⟨ψerg(t)|Â|ψerg(t)⟩ =
∑
n,m

c∗ncme
i
ℏ (un−um)t⟨n|Â|m⟩. (18)
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Then, the time average of the expectation value is

⟨Â⟩time ≡ lim
T→∞

1

T

∫ T

0

⟨ψerg(t)|Â|ψerg(t)⟩

=
∑
n,m

c∗ncm⟨n|Â|m⟩ lim
T→∞

1

T

∫ T

0

e
i
ℏ (un−um)t (19)

=
∑
n,m

c∗ncm⟨n|Â|m⟩δn,m (20)

=
∑
n

|cn|2⟨n|Â|n⟩ (21)

On the other hand, the microcanonical ensemble average is

⟨Â⟩mc ≡
1

d

∑
n

⟨n|Â|n⟩. (22)

where d = dimS. Therefore,

⟨Â⟩time ̸= ⟨Â⟩mc, (23)

holds for all observable Â, if and only if

|cn|2 =
1

d
(24)

for ∀n. Except for the case of Eq. (24), the ergodicity does not hold in quantum statistical

mechanics, As I have emphasized, ergodicity is too strict and unnecessary statement. The

failure of the ergodicity is because the ergodicity tries to prove Eq. (23) for all observables,

which include arbitrary N -body correlations. For the foundation of statistical mechanics,

therefore, we have to think seriously what kind of operators we look at. This leads to the

understanding of the strong typicality.
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2. Strong Typicality In Quantum System

We examine the typicality in quantum systems. The discussion in Sec.II B 2 mostly follows

Refs.[14]. We consider a state |ψE⟩ in an energy shell;

|ψE⟩ ≡
∑
n∈S

cn|n⟩. S = {n|un ∈ (E − δE,E]} (25)

Here, {cn}n is coefficients, |n⟩ and un are energy eigenstates and corresponding energy

eigenvalues, respectively. Since the question ”Is it typical?” depends on a measure, We

introduce the probability measure P({cn}n) into {cn}i. Although |ψE⟩ looks the same as

|ψerg⟩, {cn}n in |ψE⟩ is random variables in this case. In order to make the measure be

natural for quantum systems, we impose two conditions to P({cn}n):

1) Invariance

The measure should be invariant under arbitrary unitary transformations.

2) Normalization

{cn}n should be normalized;
∑

i |cn|2 = 1.

Therefore, P({cn}n) should be

P({cn}n) =
Γ(d− 1/2)

2πd−1
δ

(∑
i

|cn|2 − 1

)
, (26)

where d = dimS.

Under this measure [24], the variance of ⟨ψE|Â|ψE⟩ − ⟨Â⟩MC is calculated as

(
⟨ψE|Â|ψE⟩ − ⟨Â⟩MC

)2
=

⟨∆Â2⟩MC + ⟨Â⟩2MC

d+ 1
, (27)

where · · · denotes the random average of · · · , and ⟨∆Â2⟩MC ≡ ⟨(Â−⟨Â⟩MC)
2⟩MC. In Eq. (27),

the denominator of the rhs is exp[Θ(V )], and the numerator is the order of polynomial of V

for any mechanical variable (defined in Sec. II B 3). Hence,

the rhs of Eq. (27) = exp[−Θ(V )]. (28)
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This result means that almost all |ψE⟩’s give correct results which are close to the micro-

canonical ensemble average. In this sense, the typicality holds. Moreover, the error shown

in Eq. (27) is exponentially small as V increases. This error is much smaller than Θ( 1
V
),

which is the error of the weak typicality for classical systems in Sec. II A 2. Hence, I call

this typicality a ”strong typicality”. The strong typicality is the most important property

for statistical mechanics based on pure quantum states.

I note that the measure given in Eq. (26) is simple and natural but not necessary. I

expect that the typicality will hold for other reasonable probability measures of {cn}n I also

note a possible interpretation of |ψE⟩. In the ensemble formulation of quantum statistical

mechanics, equilibrium state corresponding to microcanonical ensemble is

ρ̂MC ≡ 1

d

∑
n∈S

|n⟩⟨n|. (29)

Then, I can show that

ρ̂MC = |ψE⟩⟨ψE|. (30)

Hence, |ψE⟩ can be interpreted as a single realization of a pure quantum state from ρ̂MC of

the form of Eq.(30).

3. Mechanical Variables And Genuine Thermodynamic Variables

In a macroscopic system, we don’t measure all of the possible observable, but measure

several macroscopic observables such as magnetization and correlation functions. I call these

macroscopic observables as ”mechanical variables (MVs)” and define them in a rigorous way

[19].
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� �
Def.) Mechanical Variables

A mechanical variable is a quantum-mechanical observable which is low-degree polyno-

mials of local operators and satisfies the condition that

⟨Â2⟩ensβ,V ≤ K(β)V 2mfor all β,V. (31)� �
Here, a function K(β) and a constant m are positive and independent of Â and V . I make

Â dimensionless by dividing an appropriate unit. Since I have fixed m, the number of

independent MVs NMV is Θ(V m).

Returning to the main result, we can rewrite Eq. (27) by using Markov’s inequality as

P
(∣∣∣⟨ψE|Â|ψE⟩ − ⟨Â⟩MC

∣∣∣ ≥ ϵ
)
≤ 1

ϵ2
⟨∆Â2⟩MC + ⟨Â⟩2MC

d+ 1
, (32)

where P(· · · ) denotes the probability of event · · · . Therefore, the probability that all expec-

tation values of the MVs for |ψE⟩ don’t deviate from the corresponding ensemble averages

is estimated as follows.

P

 ∑
Â∈MV

∣∣∣⟨ψE|Â|ψE⟩ − ⟨Â⟩MC

∣∣∣ ≥ ϵ

 ≤ N2
MV

ϵ2
1

d+ 1
maxÂ∈MV

(
⟨∆Â2⟩MC + ⟨Â⟩2MC

)
.(33)

Since NMV is Θ(V m), the rhs is still exp[Θ(−V )]. Hence, a single realization of |ψE⟩ for

sufficiently large V correctly gives all equilibrium values of the MVs simultaneously.

The number of mechanical variables NMV is exponentially smaller than d, which is the

dimension of the Hilbert space in the energy shell. Thus, even when we measure all the

MVs, we cannot identify a pure quantum state but almost all |ψE⟩ return the same value

for all the MVs.

However, entropy and temperature are not included in this discussion, because they can-

not be represented as a MV. If one stick to represent these variables as quantum mechanical

observables, they become N -body operators in general, while low degree polynomials of lo-

cal operators are the only MVs. In contrast to quantum mechanics, any equilibrium values

20



for macroscopic variables including entropy and temperature are obtained from any of the

thermodynamic functions in thermodynamics. I call these macroscopic variables except for

the MVs ”genuine thermodynamic variables (GTVs)” [19].� �
Def.) Genuine Thermodynamic Variables

Genuine thermodynamic variables are observables which are not MVs but can be derived

from entropy.� �
For example, (inverse) temperature is the derivative of entropy with respect to energy. Free

energy is obtained by Legendre transformation of entropy. Hence, they are GTVs.

4. Canonical Typicality

Using the results in Sec.II B 2, it is revealed that the subsystem of the |ψE⟩ is almost

identical to the Gibbs state in that subsystem [12, 13, 25–29]. Let the total system be a

composite of system (S) and environment (E) and the interaction between S and E be

negligible. The size of the system is v and the size of the environment is V . Here, we

consider the case v ≪ V . We assume the Hamiltonian

Ĥ ≡ ĤS + ĤE, (34)

where the support of ĤS is on S and that of ĤE is on E. We prepare |ψE⟩ of the total

system. the reduced density matrix of |ψE⟩ in S is

ρ̂S ≡ TrB[|ψE⟩⟨ψE|]. (35)

Next, let ÂS be an arbitrary observable in S. NS, which is the number of ÂS scales as

O(νv) while the total dimension of Hilbelt space d in Eq. (33) scales as O(νV ). Here, ν is

a constant, e.g., ν = 2 for the spin 1/2 model and ν = 4 for the Hubbard model. Hence,
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using Inequality (33), we get

P

∑
ÂS

∣∣∣⟨ψE|ÂS|ψE⟩ − ⟨ÂS⟩MC

∣∣∣ ≥ ϵ

 ≤ N2
S

ϵ2
1

d+ 1
maxÂS

(
⟨∆Â2

S⟩MC + ⟨ÂS⟩2MC

)
. (36)

Since the rhs is exp[Θ(−V )], we show that |ψE⟩ gives equilibrium value for all the observable

in S. I note that ÂS includes v-body correlations, which is a microscopic quantities for the

system S. Since v ≪ V , the v-body correlations are low-degree polynomial for the total

system. Therefore, |ψE⟩, which is the pure state of the total system can give all equilibrium

value for observables in S.

When two quantum states give the same expectation value for all the possible observable

in the subsystem S, these state are identical in S. Namely, ρ̂S ≃ e−βĤS/Tr[e−βĤS ] where β

is temperature s.t.

⟨ĤE⟩canβ,V = E. (37)

The expectation value of any observable Â in S gives

⟨ψE|Â|ψE⟩ = ⟨Â⟩canβ,V (38)

with the exponentially small error. This is so-called ”canonical typicality” [13].

5. Summary And Discussions Of Sec. II

In this section, we saw that the ergodicity is physically nonsense for the justification of

the PEPP. Moreover, it breaks down in quantum system. Thus, we saw the typicality among

states. Even in classical system, we can show the weak typicality, which is enough to obtain

thermodynamic predictions for some extensive variables. However, it may not be sufficient

for the foundation of statistical mechanics. In quantum system, the strong typicality was

shown. Owning to the exponentially large Hilbert space, all equilibrium values of the MVs,

which include even a position of a particle and higher order fluctuation can be predicted
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from a single pure state in the strong typicality. The strong typicality can be another

principle of statistical mechanics by substituting the PEPP. It will be also expected that the

exponentially small error enable us to apply such a pure state to practical applications.

However, the GTVs such as entropy are excluded from the MVs. From any of the

thermodynamic functions, all the thermodynamic predictions are derived. Since the genuine

thermodynamic variables are related closely to the number of states through Boltzmann

entropy formula, it may seem to be difficult to obtain them from a single pure quantum

state. In addition to this, we do not know whether there exist pure quantum states which

are specified by intensive variables such as temperature and chemical potential. For practical

applications, it is also preferred that such pure quantum states can be generated easily, but

we do not know how. I will answer these questions positively from now on. Here, I summarize

the important points for the following sections.� �
Lesson:

As far as we look at MVs, we can neither distinguish different realizations of |ψE⟩’s,

nor do |ψE⟩ from ρ̂MC.

Finding Of Previous Works:

The probabilistic error of |ψE⟩ is exp[Θ(−V )], which is much smaller than that of the

weak typicality, O( 1√
V
).

Questions:

Can we obtain the genuine thermodynamic variables from a single realization of a pure

quantum state?

By specifying the intensive variables, can we generate pure states which are regarded

as equilibrium states ?

How to construct these states?� �
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III. CANONICAL THERMAL PURE QUANTUM STATE

As I have briefly surveyed in Sec.II, there is the possibility that a pure quantum state

can represent an equilibrium state. In this section, I will define the pure state that can

be regarded as an equilibrium state. I call it a thermal pure quantum (TPQ) state [19]. I

will introduce other TPQ states corresponding to other ensembles [20]. I will show that the

equilibrium values of both the MVs and the genuine thermodynamic variables are obtained

from a single realization of the TPQ state. Using these findings, I will establish statistical

mechanics based on TPQ states [20].

A. Definition Of Thermal Pure Quantum State

I define the TPQ state by the following statement [19].� �
Def.) Thermal Pure Quantum State

Consider a state |ψ⟩ which has random variables, For ∀ϵ > 0, if ∃ηV (ϵ) such that

∀Â ∈ MVs,

P

(∣∣∣∣∣⟨ψ|Â|ψ⟩⟨ψ|ψ⟩
− ⟨Â⟩ens

∣∣∣∣∣ ≥ ϵ

)
≤ ηV (ϵ) (39)

and ηV (ϵ)
V→∞→ 0, I call |ψ⟩ a TPQ state.� �

Here, ⟨· · ·⟩ens is the ensemble average. For example, |ψE⟩ in the last section is a TPQ state,

by definition. However, it is not the only TPQ state corresponds to the microcanonical

ensemble, but various kinds of pure quantum states can be the one. Furthermore, since I do

not restrict the ensembles to the microcanonical one in Eq. (39), there can be TPQ states

correspond to the canonical and other ensembles. These TPQ states will be discussed in the

following suctions and subsections.
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B. Introduction Of Canonical Thermal Pure Quantum State

In this subsection, I introduce a TPQ state corresponds to the canonical ensemble. I call

it a canonical TPQ (cTPQ) state. Firstly, I consider

|i; β, V ⟩ = exp

[
−βĤ

2

]
|i⟩, (40)

where {|i⟩}i is a set of arbitrary orthonormal basis. The exponential function exp
[
−βĤ

2

]
works as an energy cutoff. However, when I choose |i⟩ randomly among {|i⟩}i, this state

may not be regarded as the TPQ state. To show this, I use these two results.

⟨i; β, V |Â|i; β, V ⟩
i

⟨i; β, V |i; β, V ⟩
i = ⟨Â⟩ensβ,V , (41)

(
⟨i; β, V |Â|i; β, V ⟩
⟨i; β, V |i; β, V ⟩

− ⟨Â⟩ensβ,V ,

)2
i

≥

(
⟨i; β, V |Â|i; β, V ⟩

Z(β, V )
− ⟨Â⟩ensβ,V ,

)2
i

(42)

≤ ⟨(∆Â)2⟩ensβ,V (43)

where · · · i denotes the average over all {|i⟩}i, ⟨Â⟩ensβ,V ≡ Tr[exp(−βĤ)Â]
Z(β,V )

, Z(β, V ) ≡ Tr[exp(−βĤ)],

and ⟨(∆Â)2⟩ensβ,V≡⟨(Â− ⟨A⟩ensβ,V )
2⟩ensβ,V .

I evaluate the lhs of inequality(42). Firstly, the equality in Inequality (43) is attained, for

example, if {|i⟩}i is a set of energy eigenstates and Â is Hamiltonian Ĥ. When this equality

is attained, I get

(
⟨i; β, V |Â|i; β, V ⟩
⟨i; β, V |i; β, V ⟩

− ⟨Â⟩ensβ,V ,

)2
i

≥ ⟨(∆Â)2⟩ensβ,V . (44)

Therefore, what I need to evaluate is ⟨(∆Â)2⟩ensβ,V . When the system is consistent with

thermodynamics [31, 32], we can usually expect Eq. (15), that is,√
⟨(∆Â)2⟩ensβ,V

⟨Â⟩ensβ,V

= O

(
1√
V

)
. (45)
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Using Eq. (45) and ⟨Â⟩ensβ,V = O(V m), the lhs of Inequality(42) can be larger than Θ(V 2m−1).

The condition (39) is violated in this case. Hence, |i; β, V ⟩ is not always the TPQ state.

The failure of |i; β, V ⟩ is because I employed some specific basis {|i⟩}. For example, when

I employ {|i⟩} as a set of product states and [Ĥ, Ŝz] = 0, |i; β, V ⟩ conserves Sz of the

initial state |i⟩. Thus, |i; β, V ⟩ can have an initial state dependence. In order to avoid this

dependence, I should use a set of random vector as the basis.

Learning from this lesson, I consider a state |β, V ⟩ which is the superposition of all

|i; β, V ⟩’s with random coefficients zi’s.

|β, V ⟩ ≡
∑
i

zi exp

[
−βĤ

2

]
|i⟩. (46)

Here, zi ≡ (xi+iyi)√
2

is a random variable, where xi and yi are real random variables, each

obeying the unit normal distribution, and {|i⟩}i is an arbitrary orthonormal basis set span-

ning Hilbert space. Since the probability measure of {zi}i is invariant under any unitary

transformation, the dependence on the basis |i⟩ vanishes owing to the introduction of {zi}i.

I will show in the next subsection that |β, V ⟩ satisfies the condition of the TPQ state. I call

this the canonical TPQ state.

In the conventional statistical mechanics using the ensemble formulation, the equilibrium

state specified by temperature is represented by a Gibbs state,

ρ̂β ≡ exp[−βĤ]

Z(β, V )
. (47)

In Sec.III C, I will show the following two results. First, using the cTPQ state |β, V ⟩,

the genuine thermodynamic variables are obtained from the length of the vector |β, V ⟩.

Second, MVs are obtained from its expectation values. In this sense, the cTPQ state is the

counterpart of the Gibbs state in the formulation of statistical mechanics based on the TPQ

states. Although I do not assume the PEPP, which is one of the basic principles in the

ensemble formulation, I will reveal in Sec.IIID that the random variables {zi}i substitute

for the PEPP in the TPQ formulation.
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I notice that the TPQ formulation is applicable even if the dimension of Hilbert space is

infinite [30]. Since |β, V ⟩ is the superposition of infinite number of states in such a case, one

might think its norm would diverge and |β, V ⟩ would be ill-defined. However, the exponential

function exp
[
−βĤ

2

]
cuts off high energy states and the norm of |β, V ⟩ becomes finite.

C. Main Results

In this section, I see some important results of the cTPQ state. The detailed calculation

will be shown in Sec.IIIG. In Sec.II, I have explained that the genuine thermodynamic

variables are difficult to obtain from a single realization of |ψE⟩. However, since I have take

|β, V ⟩ as unnormalized vector, I will show that the free energy is obtained from the length

of the cTPQ state,

f(β;V ) = − 1

V β
ln⟨β, V |β, V ⟩, (48)

with the stochastic error getting exponentially small as V increasing. Here, f(β;V ) is the

free energy density, f(β;V ) ≡ F (β,V )
V

. This stochastic error is the error coming from the

random variables {zi}i. I estimate this error and get

(
⟨β, V |β, V ⟩ − ⟨β, V |β, V ⟩

)2
= Z(2β, V ). (49)

In order to see this variance is negligible as compared to its average, I divide it by

⟨β, V |β, V ⟩
2
.

(
⟨β, V |β, V ⟩
⟨β, V |β, V ⟩

− 1

)2

=
Z(2β, V )

Z(β, V )2

=
1

exp
[
2V β

(
f( 1

2β
;V )− f( 1

β
;V )

)] . (50)

Since f( 1
2β
;V ) − f( 1

β
;V ) ≥ 0 and Θ(V 0), the rhs of Eq. (50) is exp[−Θ(V )]. This result

is rewritten by using a Markov-type inequality. The inequality is: Let x be a real random
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variable and y a real number, then for arbitrary ϵ > 0,

P (|x− y| ≥ ϵ) ≤ (x− y)2/ϵ2, (51)

Using this inequality, I show that the length of the cTPQ state rarely deviate from its

average, Z(β, V ). For any positive constant ϵ,

P

(∣∣∣∣∣ ⟨β, V |β, V ⟩
⟨β, V |β, V ⟩

− 1

∣∣∣∣∣ ≥ ϵ

)
≤ 1

ϵ2 exp[2V β{f(1/2β;V )− f(1/β;V )}]
. (52)

This inequality indicates that the probability that ⟨β, V |β, V ⟩/ ⟨β, V |β, V ⟩ deviates from 1

is exponentially small. Thus, from a single ⟨β, V |β, V ⟩ gives the free energy correctly within

the exponentially small error.

Once we get the thermodynamic functions, any equilibrium values of the MVs and the

GTVs are obtained from the derivatives of them. However, the ensemble averages are

practically more useful to get the equilibrium values of MVs in the ensemble formulation .

In the TPQ formulation, the equilibrium values are obtained from the expectation values of

MVs using the TPQ states, i.e.,

⟨Â⟩TPQ
β,V = ⟨Â⟩ensβ,V (53)

with the error being exponentially small. Here,

⟨Â⟩TPQ
β,V ≡ ⟨β, V |Â|β, V ⟩

⟨β, V |β, V ⟩
. (54)

Just like the ensemble average, calculating the expectation value is more useful than cal-

culating the derivative of the thermodynamic function. I estimate the upper bound of the

error of Eq. (53). Dropping smaller order terms, I get

(⟨Â⟩TPQ
β,V − ⟨Â⟩ensβ,V )

2 ≤
⟨(∆Â)2⟩ens2β,V + (⟨A⟩ens2β,V − ⟨A⟩ensβ,V )

2

exp[2V β{f(1/2β;V )− f(1/β;V )}]
, (55)
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where ⟨(∆Â)2⟩ensβ,V≡⟨(Â− ⟨A⟩ensβ,V )
2⟩ensβ,V . Using inequality (51), I get

P
(∣∣∣⟨Â⟩TPQ

β,V − ⟨Â⟩ensβ,V

∣∣∣ ≥ ϵ
)
≤ 1

ϵ2
⟨(∆Â)2⟩ens2β,V + (⟨A⟩ens2β,V − ⟨A⟩ensβ,V )

2

exp[2V β{f(T/2, µ;V )− f(T, ;V )}]
. (56)

Since the rhs of inequality (56) is smaller than V 2m

exp[Θ(V )]
, inequality (56) means that the

expectation value of cTPQ state is very close to the ensemble average. This result is similar

to inequality (32) of |ψE⟩. However, the rhs of Inequality (56) is controlled not by entropy

but by the free energy. This is a consequence of not using the TPQ state whose energy is

specified but using the TPQ state whose temperature is specified.

To sum up,

� �
Genuine Thermodynamic Variables

The norm of a single realization of the cTPQ state gives the free energy. Its error is

exponentially small as shown in inequality (52). From the free energy, any equilibrium

values of genuine thermodynamic variables are obtained.

Mechanical Variables

For any Â ∈ MVs, the expectation value of a single realization of the cTPQ state gives

the equilibrium value correctly. Its error is exponentially small as shown in inequal-

ity (56)� �
I have shown that a single realization of the cTPQ state is sufficient to evaluate any quantities

which are interesting in statistical mechanics. Therefore, a new formulation of statistical

mechanics based on the TPQ state is established.

I notice that All the terms in the rhs of inequalities (52) and (56) can be estimated by

the cTPQ state itself. Thus, the cTPQ state evaluates its error from its own results. This

self-validating property is useful in practical applications.
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D. Mechanism

If the cTPQ state is regarded as an equilibrium state, its energy density converges to

some value. I will show that the cTPQ state has a sharp-peaked energy distribution in the

energy shell. In this subsection, I assume the dimension of the Hilbert space dimH is finite

for the simplicity. Even when dimH is infinite, the calculation in this subsection will be

easily extended. When dimH <∞, the cTPQ state is rewritten as

|β, V ⟩ = exp

[
−βĤ

2

]
|ψ0⟩, (57)

because the norm of |ψ0⟩ is finite and thus |ψ0⟩ is well-defined. Here,

|ψ0⟩ =
∑
n

zi|i⟩. (58)

Then, I expand |ψ0⟩ by energy eigenstates basis:

|ψ0⟩ =
∑
n

zn|n⟩ (59)

where |n⟩ is an energy eigenvector s.t. ĥ|n⟩ = un|n⟩, I notice that random variables zn have

an invariant probability measure under any unitary transformations. Therefore, {zn}n has

the same probability measure as {zi}i.

I define an energy distribution g̃(u) as

g̃(u) ≡
∑

n∈S(u)

|zn|2 (60)

where S(u) = {n|un ∈ (u− δ, u]}. Although each |zn|2 takes random value, the law of large

numbers works for the sum g̃(u), because dimS(u) = exp[Ns(u;V )] = exp[Θ(N)] at finite

temperature. Therefore, the sum g̃(u) converges to the density of states, i.e.

g̃(u) ≃ g(u). (61)
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For the cTPQ state |β, V ⟩ = exp[−βĤ
2
]|ψ0⟩, the energy distribution h(u) is

h(u) ≡
∑

n∈S(u)

|zn|2 exp[−V βu] (62)

≃ g(u) exp[−V βu] (63)

= exp [V (s(u;V )− βu)] . (64)

The rhs of Eq. (64) is the same as the energy distribution of the Gibbs state at the same

temperature. Since the rhs of Eq. (64) has a peak at u∗ s.t.

∂s(u;V )

∂u

∣∣∣∣
u=u∗

= β, (65)

I expand the rhs around u = u∗ and get.

h(u) ≃ exp

[
V

(
s(u∗;V ) +

∂2s(u∗;V )

∂u2
(u− u∗)2 +O

(
(u− u∗)3

))]
. (66)

When the system is consistent with thermodynamics, entropy has to be a convex function

of energy, i.e.,

∂2s(u∗;V )

∂u2
≤ 0, (67)

at least for sufficient large V , and entropy is extensive, i.e.,

s(u∗;V ) = s(u∗) + o(V 0), (68)

where s(u∗) is the entropy density for V → ∞ and is the order of unity. Therefore, Eq. (66)

means that h(u) has a sharp peak at u = u∗ and the width of the peak is Θ( 1√
V
). Since the

energy distribution of the cTPQ state is concentrated on the target energy u∗, I can expect

that the cTPQ state for large V will be regarded as the equilibrium state at this energy.

Namely, the cTPQ state and |ψE⟩ become almost the same state at large V .
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E. Thermo Field Dynamics

I also note that the TPQ states are completely different from ”purification” [18] of a

density matrix such as thermo field dynamics (TFD) [33]. The purification is the technique

that every density matrix can be represented as a pure quantum state by introducing ancilla’s

degrees of freedom. In order to prove that the purification is always available, I make an

example of the purification for an arbitrary density matrix,

ρ̂ =
∑
i

wi|i⟩1⟨i|1 (69)

where {wi}i is a set of probability with
∑

iwi = 1 and {|i⟩1}i is an orthonormal basis in H1.

Let H2 be a copy of H1. Then, I define

|ψ⟩ ∈ H1 ⊗H2 (70)

by

|ψ⟩ ≡
∑
i

√
wi|i⟩1 ⊗ |i⟩2 (71)

Obviously, by tracing out H2 from |ψ⟩, I get

TrB|ψ⟩⟨ψ| = ρ̂ (72)

This ”purified” pure state gives identical results to the density matrix. In the TFD, one does

not employ an orthonormal basis as {|i⟩1}i, but employs {|i; β, V ⟩1}i defined in Eq. (40).

Then, the TFD reads

|ψTFD⟩ ≡
∑
i

|i; β, V ⟩1
Z(β, V )

⊗ |i⟩2. (73)

The TFD use the ancilla and exactly equivalent to the Gibbs state.

In contrast to this, the TPQ states don’t use any ancillae. Since the corresponding density
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matrix such as the Gibbs state is mixed, a single realization of the TPQ states are quantum-

mechanically completely different from it. Moreover, different realizations of the TPQ states

are microscopically very different from each other. However, thanks to a vast number of a

degrees of freedom of a Hilbert space, almost all the TPQ states are macroscopically identical

to each other. They are also equivalent to the corresponding density matrix macroscopically.

This findings are the heart of the TPQ state.

F. Grandcanonical Thermal Pure Quantum State

In the light of the discussion of the cTPQ state, the TPQ state corresponding to the

grandcanonical ensemble is easily defined [20, 30]. I call it a grandcanonical TPQ (gTPQ)

state. Firstly, I begin with

|i; β, µ, V ⟩ ≡ exp[−1

2
β(Ĥ − µN̂)]|i⟩, (74)

where {|i⟩}i is an arbitrary orthonormal basis, and N̂ is the number operator. Then, I

superpose |ν; β, µ, V ⟩’s as

|β, µ, V ⟩ ≡
∑
i

zi|i; β, µ, V ⟩. (75)

|β, µ, V ⟩ is the gTPQ state. All the results in Sec.III C hold for the gTPQ state by substi-

tuting

Z(β, V ) → Ξ(β, ν, V ) ≡ Tr[exp{−β(Ĥ − νN̂)}] (76)

f(β, V ) → j(β, ν, V ) ≡ 1

βV
ln Ξ(β, ν, V ) (77)

⟨A⟩ensβ,V → ⟨A⟩ensβ,µ,V (78)

The gTPQ state is introduced and discussed in Ref.[30].
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G. Derivations Of Main Results

In this subsection, I introduce the main results, formula (50) and (56).

1. Random average and Variance

I consider two random variables f = f0 + δf and g = g0 + δg, where f0 and g0 are their

mean and δf and δg are their corresponding random variable, respectively. I calculate an

average and variance of f/g. First, I expand f/g as follows.

f0 + δf

g0 + δg
= (f0 + δf)

1

g0

(
1− δg

g0
+
δg2

g20
− · · ·

)
(79)

=
f0
g0

+
δf

g0
− f0δg

g20
− δfδg

g20
+
f0δg

2

g30
+O(δ3) (80)

So, the average of f/g is

(
f0 + δf

g0 + δg

)
=
f0
g0

− δfδg

g20
+
f0δg2

g30
+O(δ3) (81)

and the variance is

(
f0 + δf

g0 + δg
−
(
f0 + δf

g0 + δg

))2

=

(
δf

g0
− f0δg

g20

)2

+O(δ3) (82)

=
δf 2

g20
− 2

f0δfδg

g30
+
f 2
0 δg

2

g40
+O(δ3) (83)

In order to calculate an average and variance of the form f/g, I need 3 terms, δf 2, δfδg,

and δg2. In the following subsections, I calculate these terms.

Before starting the calculation of respective problems in the following subsections, I derive

a formula of a general form. I calculate

(
⟨ψ0|Â|ψ0⟩ − ⟨ψ0|Â|ψ0⟩

)(
⟨ψ0|B̂|ψ0⟩ − ⟨ψ0|B̂|ψ0⟩

)
(84)
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At first, {zn}n satisfies

zn = 0 (85)

z∗nzm = δn,m (86)

|zn|4 = 2 (87)

|zn|2|zm|2 = 1 (n ̸= m) (88)

z∗kz
∗
l zmzn = 0 (except for above two terms) (89)

Then, I get

(
⟨ψ0|Â|ψ0⟩ − ⟨ψ0|Â|ψ0⟩

)(
⟨ψ0|B̂|ψ0⟩ − ⟨ψ0|B̂|ψ0⟩

)
(90)

=
∑

n,m,n′,m′

z∗nzmz
∗
n′zm′⟨n|Â|m⟩⟨n′|B̂|m′⟩

−
∑
n,m

z∗nzm⟨n|Â|m⟩
∑
n′,m′

z∗n′zm′⟨n′|B̂|m′⟩ (91)

=
∑
n

|zn|4⟨n|Â|n⟩⟨n|B̂|n⟩+
∑
n ̸=n′

|zn|2|zn′ |2⟨n|Â|n⟩⟨n′|B̂|n′⟩

+
∑
n̸=m

|zn|2|zm|2⟨n|Â|m⟩⟨m|B̂|n⟩ −
∑
n

|zn|2⟨n|Â|n⟩
∑
n′

|zn′|2⟨n′|B̂|n′⟩

= 2
∑
n

⟨n|Â|n⟩⟨n|B̂|n⟩+
∑
n ̸=m

⟨n|Â|n⟩⟨m|B̂|m⟩

+
∑
n̸=m

⟨n|Â|m⟩⟨m|B̂|n⟩ −
∑
n,m

⟨n|Â|n⟩⟨m|B̂|m⟩ (92)

=
∑
n,m

⟨n|Â|m⟩⟨m|B̂|n⟩ (93)

2. Normalization Constant (Partition Function)

Now, I prove that the canonical TPQ state |β, V ⟩ gives the correct equilibrium values

by calculating the corresponding expectation values. Firstly, I see ⟨β, V |β, V ⟩, which works
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like a partition function. Its average behaves as

⟨β, V |β, V ⟩ = 1

D

∑
n

exp(−V βun) (94)

= Z(β, V ). (95)

Then, I see its variance.

(⟨β, V |β, V ⟩ − ⟨β, V |β, V ⟩)2 = ⟨β, V |β, V ⟩2 − (⟨β, V |β, V ⟩)2 (96)

In Eq. (93), this is the case of Â = B̂ = exp[−V βĥ]. Thus, I get

(⟨β, V |β, V ⟩ − ⟨β, V |β, V ⟩)2 =
∑
n

⟨n| exp[−2V βĥ]|n⟩ (97)

=
∑
n

exp[−2V βun] (98)

= Z(2β, V ) (99)

Thus, I get Eq. (50).

3. Mechanical Variables

Then, I consider an expectation value of mechanical variable, i.e.,

⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

. (100)

Using Eq. (81) and Eq. (83), I find that I need to calculate these two terms,

(
⟨β, V |M̂ |β, V ⟩ − ⟨β, V |M̂ |β, V ⟩

)2
(101)(

⟨β, V |M̂ |β, V ⟩ − ⟨β, V |M̂ |β, V ⟩
)(

⟨β, V |β, V ⟩ − ⟨β, V |β, V ⟩
)

(102)

First, I calculate the term (101). Using Eq. (93) with Â = B̂ = exp[−1
2
V βĥ]M̂ exp[−1

2
V βĥ],

36



I get

(
⟨β, V |M̂ |β, V ⟩ − ⟨β, V |M̂ |β, V ⟩

)2
=
∑
n

⟨n| exp[−1

2
V βĥ]M̂ exp[−V βĥ]M̂ exp[−1

2
V βĥ]|n⟩ (103)

=
∑
n

exp(−V βun)⟨n|M̂ exp(−V βĥ)M̂ |n⟩. (104)

Then, I calculate the term (102). Using Eq. (93) with Â = exp[−1
2
V βĥ]M̂ exp[−1

2
V βĥ]

and B̂ = exp[−V βĥ], I get

(
⟨β, V |M̂ |β, V ⟩ − ⟨β, V |M̂ |β, V ⟩

)(
⟨β, V |β, V ⟩ − ⟨β, V |β, V ⟩

)
=
∑
n

⟨n| exp[−1

2
V βĥ]M̂ exp[−3

2
V βĥ]|n⟩ (105)

=
∑
n

⟨n|M̂ |n⟩ exp(−2V βun) (106)

= ⟨M̂⟩ens2β,VZ(2β, V ) (107)

Now, I am ready to evaluate the average and the variance of ⟨β, V |M̂ |β, V ⟩/⟨β, V |β, V ⟩.

(i) mean
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Using Eq. (81), (99), and (107) and neglecting O(δ4) terms in Eq. (81), I get the average∣∣∣∣∣∣
(
⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

)
− ⟨β, V |M̂ |β, V ⟩

⟨β, V |β, V ⟩

∣∣∣∣∣∣
=

∣∣∣∣∣−⟨M̂⟩ens2β,VZ(2β, V )

⟨β, V |β, V ⟩
2 +

Z(2β, V )⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

3

∣∣∣∣∣ (108)

=

∣∣∣∣∣−⟨M̂⟩ens2β,VZ(2β, V )

(Z(β))2
+

⟨M̂⟩ensβ,VZ(2β, V )

(Z(β))2

∣∣∣∣∣ (109)

=
∣∣∣−

(
⟨M̂⟩ens2β,V − ⟨M̂⟩ensβ,V

)
Z(2β, V )

(Z(β))2

∣∣∣ (110)

=

∣∣∣∣∣∣
Z(2β, V )

(
⟨M̂⟩ens2β,V − ⟨M̂⟩ensβ,V

)
Z(β, V )2

∣∣∣∣∣∣ (111)

=

∣∣∣⟨M̂⟩ens2β,V − ⟨M̂⟩ensβ,V

∣∣∣
exp[2V β(f(1/2β;V )− f(1/β;V ))]

(112)

(ii) variance : a rough estimate

Using Eq. (83), (99), (104), and (107), I get the variance

⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

−

(
⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

)2

=

∑
n exp(−V βun)⟨n|M̂ exp(−V βĥ)M̂ |n⟩

⟨β, V |β, V ⟩
2

−2
⟨M̂⟩ensβ,V ⟨M̂⟩ens2β,VZ(2β, V )

⟨β, V |β, V ⟩
2 +

⟨M̂⟩ensβ,V

2
Z(2β, V )

⟨β, V |β, V ⟩
2 (113)

=
1

Z(β)2

({∑
n

exp(−V βun)⟨n|M̂ exp(−V βĥ)M̂ |n⟩

}

−2⟨M̂⟩ensβ,V ⟨M̂⟩ens2β,VZ(2β, V ) + ⟨M̂⟩ensβ,V

2
Z(2β, V )

)
(114)
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This terms are estimated roughly as follows.

Eq. (114) =
1

Z(β)2

∑
n((∑

m̸=n

|⟨n|M̂ |m⟩|2 exp(−V β(un + um)

)
+
(
⟨n|M̂ |n⟩ − ⟨M̂⟩ensβ,V

)2
exp(−2V βun)

)

≤ 1

Z(β)2

∑
n

exp(−V βun) exp(−V βumin)((∑
m̸=n

|⟨n|M̂ |m⟩|2
)

+
(
⟨n|M̂ |n⟩ − ⟨M̂⟩ensβ,V

)2)
(115)

=
exp(−V βumin)

Z(β, V )

(∑
n

⟨M̂2⟩ensβ,V − ⟨M̂⟩ensβ,V

2

)

=
⟨(∆M̂)2⟩ensβ,V

exp[V β(f(0;V )− f(1/β;V ))]
. (116)

From this result, I get

� �

Prob

∣∣∣∣∣∣⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

−

(
(⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

)∣∣∣∣∣∣ ≥ ϵ


≤ 1

ϵ2
⟨(∆M̂)2⟩ensβ,V

exp[V β(f(0;V )− f(1/β;V ))]
. (117)

� �
Note that the rhs vanishes when

⟨(∆M̂)2⟩ensβ,V = 0. (118)

That is, the canonical TPQ state always gives the exact results for mechanical variables that

satisfies this condition.

(iii) variance : a better estimate

To get a better estimate, I go back to Eq. (114). If I number un s.t. un ≤ en′ for n < n′,
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I have

{ } in Eq. (114) =
∑
m,n

|⟨n|M̂ |m⟩|2e−V β(un+um) (119)

≤
∑
m,n

|⟨n|M̂ |m⟩|2 e
−2V βum + e−2V βun

2
(120)

=
1

2

∑
m

⟨m|M̂2|m⟩e−2V βum +
1

2

∑
n

⟨n|M̂2|n⟩e−2V βun

= ⟨M̂2⟩ens2β,VZ(2β). (121)

Therefore,

Eq. (114) ≤ ·Z(2β)
Z(β)2

(
⟨M̂2⟩ens2β,V − 2⟨M̂⟩ensβ,V ⟨M̂⟩ens2β,V + ⟨M̂⟩ensβ,V

2

)
. (122)

I can rewrite this by noting that the lhs does not depend on the origin of M̂ [because it

vanishes when M̂ = 1̂] as

Eq. (114) = Eq. (114) with M̂ → M̂ − ⟨M̂⟩ens2β,V (123)

≤ Z(2β)

Z(β)2

(
⟨(M̂ − ⟨M̂⟩ens2β,V )

2⟩ens2β,V + [⟨M̂⟩ensβ,V − ⟨M̂⟩ens2β,V ]
2

)
(124)

=
⟨(∆M̂)2⟩ens2β,V + [⟨M̂⟩ensβ,V − ⟨M̂⟩ens2β,V ]

2

exp[2V β(f(1/2β;V )− f(1/β;V ))]
, (125)

where

⟨(∆M̂)2⟩ens2β,V ≡ ⟨(M̂ − ⟨M̂⟩ens2β,V )
2⟩ens2β,V . (126)

From this result, I get

� �

Prob

∣∣∣∣∣∣⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

−

(
(⟨β, V |M̂ |β, V ⟩
⟨β, V |β, V ⟩

)∣∣∣∣∣∣ ≥ ϵ


≤ 1

ϵ2
⟨(∆M̂)2⟩ens2β,V + [⟨M̂⟩ensβ,V − ⟨M̂⟩ens2β,V ]

2

exp[2V β(f(1/2β;V )− f(1/β;V ))]
. (127)

� �
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Note that the rhs vanishes when

⟨(∆M̂)2⟩ens2β,V = 0 and ⟨M̂⟩ensβ,V = ⟨M̂⟩ens2β,V . (128)

That is, the canonical TPQ state always gives the exact results for mechanical variables that

satisfies this condition.

When neither conditions (118) nor (128) is satisfied, I have

rhs of (127)

rhs of (117)
=

⟨(∆M̂)2⟩ens2β,V + [⟨M̂⟩ensβ,V − ⟨M̂⟩ens2β,V ]
2

⟨(∆M̂)2⟩ensβ,V

× exp[V β{f(0;V )− f(1/β;V )} − 2V β{f(1/2β;V )− f(1/β;V )}]

=
⟨(∆M̂)2⟩ens2β,V + [⟨M̂⟩ensβ,V − ⟨M̂⟩ens2β,V ]

2

⟨(∆M̂)2⟩ensβ,V

× exp [−V β ({f(1/2β;V )− f(1/β;V )} − {f(0;V )− f(1/2β;V )})] .(129)

Since f(T ;V ) is convex up as a function of T (= 1/β) and ∂f/∂T = −s < 0 for all T ,

{f(1/2β;V )− f(1/β;V )} − {f(0;V )− f(1/2β;V )} = Θ(1). (130)

Therefore,

RHS of (127)

RHS of (117)
=

⟨(∆M̂)2⟩ens2β,V + [⟨M̂⟩ensβ,V − ⟨M̂⟩ens2β,V ]
2

⟨(∆M̂)2⟩ensβ,V

exp[−V βΘ(1)]. (131)

When the reasonable condition

⟨(∆M̂)2⟩ens2β,V + [⟨M̂⟩ensβ,V − ⟨M̂⟩ens2β,V ]
2

⟨(∆M̂)2⟩ensβ,V

≤ constant×Nm, m = o(N), (132)

is satisfied, I have

RHS of (127)

RHS of (117)
≤ constant×Nm exp[−V βΘ(1)] ≤ exp[−V βΘ(1) + o(N) lnN ]. (133)

This indicates that rhs of (127) gets exponentially smaller than rhs of (117) with increasing
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N . Since condition (132) seems to be satisfied for most mechanical variables of interest, I

conclude that inequality (127) is better than inequality (117) for most cases of interest.
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IV. MICROCANONICAL THERMAL PURE QUANTUM STATE

In this section, I introduce a microcanonical TPQ (mTPQ) state [19]. The mTPQ state

is the state which aims at practical applications. Although there are many possibilities to

construct the TPQ state with energy being specified, I believe the mTPQ state is one of the

most efficient TPQ states to generate in the applications.

A. Construction Of TPQ State

Since I consider the state which is easy to generate in the practical applications, I restrict

dimH < ∞. Although the cTPQ state is well defined even in the case of dimH = ∞. I

usually truncate high energy states and make dimH <∞ in practical applications.

Thanks to the restriction to dimH <∞, I can start from a random vector in the Hilbert

state,

|ψ0⟩ =
∑
i

zi|i⟩, (134)

where zi ≡ (xi+yi)√
2

is a random variable with probability P(xi = a) = P(yi = a) =

1√
2π

exp[−a2

2
], and {i}i is an arbitrary orthonormal basis set spanning the Hilbert space.

Then, I multiply some polynomials of Hamiltonian to it and make its energy distribution

be concentrated to a target energy density u0. There are many candidates of the multiplying

polynomials of Hamiltonian. Here, I introduce three of them.

(1)

|ψ1(u0, k)⟩ ≡ {1− α(ĥ− u0)
2}k|ψ0⟩ (135)

where ĥ ≡ Ĥ/V and α is an arbitrary parameter s.t. 1

∥ĥ−u0∥2
≥ α. For sufficiently large

k, |ψ1(u0, k)⟩ has a sharp peak around u0. However, since the number of states increases

exponentially as V increases, convergence of energy of |ψ1(u0, k)⟩ to u0 is slow.
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(2)

|ψ2(l, k)⟩ ≡ (l − ĥ)k|ψ0⟩, (136)

where l is an arbitrary parameter s.t. l ≥ max(ĥ). In order to construct |ψ2(l, k)⟩ which

have energy u0, l and k should be chosen properly.

(3)

|ψ3(u0, k)⟩ ≡
(

1

ĥ− u0

)k

|ψ0⟩. (137)

Since this resolvent has divergence at u = u0, the degree k is smallest among these three

to make the state converge to the energy shell. However, this resolvent is so strong that

|ψ3⟩ becomes a superposition of small number of energy eigenstates whose energies are very

close to u0. The heart of the strong typicality was that the state |ψE⟩ is a superposition

of exponentially large number of energy eigenstates. Thus, |ψ3⟩ is not suitable for effective

construction of the TPQ state. In addition to this, the resolvent of Hamiltonian is usually

harder to calculate than polynomials of Hamiltonian.

Among these three ways to construct the TPQ state, (2) is the most efficient. Hence, I

call |ψ2(l, k)⟩ the ”microcanonical TPQ state (mTPQ state)” and write it simply as |k⟩. In

the following subsections, I see properties of the mTPQ state.

B. Mechanism

In this subsection, I show why the mTPQ state has a sharp-peak energy distribution in

the energy shell. The discussion is similar to that in Sec. IIID, but I obtain the formula to

estimate temperature here.

Using Eq. (61), the energy distribution h(u) for the microcanonical TPQ state |k⟩ ≡
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(l − ĥ)k|ψ0⟩, is

h(u) ≡
∑

n∈S(u)

|cn|2(l − u)2k (138)

≃ g(u)(l − u)2k (139)

= exp[V {s(u;V ) + 2κ ln(l − u)}] (140)

= exp[V ξκ(u;V )], (141)

where ξκ(u;V ) ≡ s(u;V ) + 2κ ln(l − u). The rhs of Eq. (141) has a peak at u∗κ s.t.

β(u;V ) = −∂ (2κ ln(l − u))

∂u
(142)

=
2κ

(l − u∗κ)
(143)

where β(u;V ) ≡ ∂s(u;V )
∂u

. I notice that β(u;V ) is not a parameter like in the cTPQ state but

a function derived from entropy of finite V . I expand the rhs of Eq. (141) around u = u∗.

Dropping exponentially small order terms, I get

h(u) = exp
[
V
{
ξκ(u

∗
κ;V )− 1

2
|ξ′′κ|(u− u∗κ)

2

−1

6
ξ′′′κ (u− u∗κ)

3 +O
(
(u− u∗κ)

4
)}]

. (144)

where ξ′′κ ≡ ξ′′κ(u
∗
κ;V ) and ξ′′′κ ≡ ξ′′′κ (u

∗
κ;V ). Since I have assumed ∂2s(u∗;V )

∂u2 ≤ 0, ξ′′κ(u
∗
κ;V ) =

−Θ(1) ≤ 0. Therefore, h(u) behaves like a Gaussian distribution of the width Θ( 1√
V
) with

the peak at u = u∗κ. The energy distribution of Eq. (144) is the same as that of a density

matrix

ρk ≡ (l − ĥ)2k. (145)

These energy distributions converge to the delta function at u = u∗κ as N → ∞, Hence, I

call this ensemble the smooth microcanonical ensemble (because the energy distribution is

smooth). Although the mTPQ state is not specified u∗κ explicitly, it automatically has the
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sharp energy peak ruled by Eq. (143). Therefore, the mTPQ state is definitely the TPQ

state at energy u∗κ.

C. Main Results

Using the mTPQ state, all the variables of statistical-mechanical interest are obtained. I

show the formulas for temperature, entropy, and mechanical variables.

Eq. (143) was the condition that the energy distribution has the peak value. I can also

interpret this equation as the formula to give temperature. For this purpose, I substitute u∗κ

by

uκ ≡ ⟨k|ĥ|k⟩
⟨k|k⟩

(146)

and get

β(u;V ) ∼ 2κ

(l − uκ)
. (147)

To estimate the error of this formula, I calculate the difference between u∗κ and uκ. Using

Eq. (144),

uκ − u∗κ =

∫
(u− u∗κ)h(u)du

Qk

(148)

where Qk ≡
∫
h(u)du. The numerator is

∫
eV [ξκ(u

∗
κ;V )− 1

2
|ξ′′κ |(u−u∗

κ)
2]
(
(u− u∗κ) +

V |ξ′′′κ |
6

(u− u∗κ)
4 +O

(
(u− u∗κ)

5
))

du

= eV ξκ(u∗
κ;V )

[
ξ′′′

2V ξ′′2

√
2π

V |ξ′′|
+O

(
1

V 5/2

)]
(149)
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The denominator is

∫
eV [ξκ(u

∗
κ;V )− 1

2
|ξ′′κ |(u−u∗

κ)
2]
(
1− |ξ′′′κ |

6
(u− u∗κ)

3 +O
(
(u− u∗κ)

4
))

du

= eV ξκ(u∗
κ;V )

[√
2π

V |ξ′′κ|
+O

(
1

V 3/2

)]
(150)

By using Eq. (149) and (150), u∗κ is close to uκ as

u∗κ = uκ +
ξ′′′

2V ξ′′2
+O

(
1

V 2

)
. (151)

Hence, I can add the N -dependence to Eq. (147).

β(u;V ) =
2κ

(l − uκ)
+O

(
1

V 1

)
(152)

Moreover, using Eq. (151), I get a better formula,

β(u;V ) =
2κ

(l − u•κ)
+O

(
1

V 2

)
(153)

where

u•κ ≡ uκ +
ξ′′′

2V ξ′′2
. (154)

u•κ is 1
V

order correction for the energy uκ. I note that one can straightforwardly get the

higher order correction terms by evaluating the higher orders of Eq. (149) and (150).

Once one calculates temperature, entropy is the integral of it.

s(u;V ) =

∫
β(u;V )du. (155)

However, one can also calculate entropy directly in the similar manner as Eq. (48). By

dropping exponentially small order terms, I get

ln⟨k|k⟩ = lnQk. (156)
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From this equation and using Eq. (150), I obtain the formula for entropy

s(u∗κ;V ) =
lnQk

V
− 2κ ln(l − u∗κ) +

lnV

2V
− 1

2V
ln

(
2π

|ξ′′κ|

)
+O

(
1

V 2

)
. (157)

For this equation, I estimate the error caused by {zi}i in the same way as Eq. (52) and get

P

(∣∣∣∣⟨k|k⟩Qk

− 1

∣∣∣∣ ≥ ϵ

)
≤ 1

ϵ2
Q2k

Q2
k

. (158)

Since it can be proved that
Q2

k

Q2k
is exp[−Θ(N)], I can say that a single realization of the

mTPQ state gives entropy. It may be help for understanding to rewrite the rhs by using

Eq.(157). Then, I get

Q2k

Q2
k

=
1

exp
[
V
{
2s(uκ∗ ;V )− s(u2κ∗ ;V )− 4κ ln

(
l−u2κ∗
l−uκ∗

)}
+O(lnV )

] (159)

Very roughly speaking, this result means that the error of the mTPQ state is vanishing in

proportional to the number of state, W (uκ∗) ≡ exp[V s(uκ∗ ;V )]. It reminds us the result in

Sec.II B

I can also show that the expectation value of the mTPQ state

⟨Â⟩TPQ
k,V ≡ ⟨k|Â|k⟩

⟨k|k⟩
(160)

is very close to the corresponding ensemble average

⟨A⟩ensk,V ≡ Tr[Âρk]

Tr[ρk]
. (161)

I evaluate the difference between them, and get

P
(∣∣∣⟨Â⟩TPQ

k,V − ⟨A⟩ensk,V

∣∣∣ ≥ ϵ
)

≤ 1

ϵ2
⟨(∆Â)2⟩ens2k,V + (⟨A⟩ens2k,V − ⟨A⟩ensk,V )

2

exp
[
V
{
2s(uκ∗ ;V )− s(u2κ∗ ;V )− 4κ ln

(
l−u2κ∗
l−uκ∗

)}
+O(lnV )

] . (162)
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where ⟨(∆Â)2⟩ensk,V ≡ ⟨(Â−⟨Â⟩ensk,V )
2⟩ensk,V . Since the denominator is exp[Θ(V )] and the numer-

ator is O(V 2m), the difference between ⟨Â⟩TPQ
k,V and ⟨A⟩ensk,V is exp[−Θ(V )].

D. Comparison Between cTPQ State And mTPQ State

In this section, I introduced the mTPQ state to construct the TPQ state easily in prac-

tical applications. Actually, the mTPQ state can be generated just by multiplying the

Hamiltonian matrix to the initial random vector. However, the microcanonical ensemble

has the ambiguity such that the width of the energy shell is not unique but is tolerated as

far as it vanishes in the thermodynamic limit, i.e., o(V ). As a consequence, the results of

the mTPQ state has the correction terms. For example, in Eq. (157), Qk is not directly

related to the entropy density, s(u∗κ, V ), but the equation has many correction terms. When

I compare these merits and demerits to the main results of the cTPQ state, the latter is

concise with no correction terms, but exp[−1
2
βĥ] is difficult to calculate in most cases. To

combine the merit of the mTPQ state and that of the cTPQ state, I will show in Sec.VI

that the cTPQ state is effectively generated from the mTPQ states.

I note that the mTPQ state is advantageous when system is at a first-order phase tran-

sition [34]. In general,

∂

∂u
β(u;V ) ≤ 0 (163)

holds asymptotically, where the equality holds only at the first-order phase transition. Hence,

∂2

∂u2
ξκ(u;V ) =

∂

∂u
β(u;V )− 2κ

(l − u)2
< 0 (164)

holds for every finite u, even at a first-order phase transition. As a result, Eq. (150) is valid

even when a first-order phase transition takes place. (This is an advantage of our introducing

l!)

That is, at a first-order phase transition β(u∗κ;N) takes the same value for multiple values

of κ (and u∗κ). For each of such κ, however, Eq. (150) is valid. and the solution u∗κ of Eq. (143)
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is determined uniquely.

At a first-order phase transition an equilibrium state cannot be specified by (β,N)

uniquely. [See Ref.[10] for complete discussions, and Ref.[18] for a hint.] To specify an

equilibrium state uniquely, one must use (u,N) instead of (β,N). As a result of this fact,

neither the canonical density operator (of the ensemble formulation) nor the canonical TPQ

state (of our formulation) can specify an equilibrium state uniquely. One must use either

the microcanonical density operator (of the ensemble formulation) nor the microcanonical

TPQ state (of our formulation) to specify an equilibrium state uniquely, at a first-order

phase transition.

Nevertheless, one can use the canonical density operator (of the ensemble formulation) or

the canonical TPQ state (of our formulation) even at a first-order phase transition, because

they give the correct free energy, from which the entropy function (the fundamental relation)

can be obtained by the Legendre transformation [10]. As a result, all the formulas of our

paper are valid even at a first-order phase transition.
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V. EQUILIBRIUM STATE AND ENTANGLEMENT

Up to here, I have explained how to produce statistical mechanics based on a pure quan-

tum state. Conventionally, some quantum mixed states such as the Gibbs state may be

regarded as the only equilibrium states. However, I have showed that there is a wide range

of possibilities that many states including a pure quantum state can represent the equilib-

rium state. In this section, I will discuss the similarity and the difference between the TPQ

formulation and the ensemble one.

I will firstly investigate what is implied when a state is regarded as the equilibrium

state. I will show that the TPQ state is macroscopically time-independent and cannot be

distinguished from the conventional equilibrium states. I will also show that the TPQ state

can predict the linear response theory.

Second, I will discuss fluctuation [21]. I will reveal that a distinction between so-called

”thermal fluctuation” and ”quantum fluctuation” is impossible in mixed quantum states.

I will also discuss that the TPQ state does not have any thermal fluctuation but all the

fluctuation is squeezed into the quantum one.

Third, I will show that quantum entanglement is one of the way to detect the difference

between the TPQ states and the conventional states [21]. It directly leads to a stability of

pure quantum states. It will turn out that the TPQ state is stable state against a weak

classical noise.

A. Time Evolution

To begin with, let us consider the time evolution of the Gibbs state ρβ. Since ρβ commute

with Hamiltonian, it is time invariant:

e
i
ℏ Ĥe−βĤe−

i
ℏ Ĥ = e−βĤ (165)
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On the other hand, the time evolution changes the TPQ state:

|β, V (t)⟩ ≡ e−
i
ℏ Ĥt|β, V ⟩ (166)

=
∑
n

zne
− i

ℏunte−
1
2
βun |n⟩ (167)

̸= |β, V ⟩. (168)

However, the random variables {zn}n has an invariant probability measure under any uni-

tary transformation. Hence, all the result in Sec.III still hold for |β, V (t)⟩ and it is regarded

as another realization of the cTPQ state. Namely, although the cTPQ state microscopi-

cally changes over time, it stays macroscopically invariant. This fact closely related to the

thermalization [2, 22], because it suggests that a pure quantum state rarely returns to a

non-equilibrium state after it evolve into an equilibrium state.

B. Linear Response Theory

When a weak probe field f(t) is applied to an equilibrium state, the change of a mechanical

variable B̂ is predicted by linear response theory. I write time-dependent Hamiltonian as

Ĥ(t) ≡ Ĥ0 − Âf(t), where Ĥ0 is initial Hamiltonian and −Âf(t) is a perturbation which

consist of the external force f(t) and the corresponding mechanical variable Â. Then, the

response against a probe field f(t) is evaluated to a linear order of f(t) as

∆A(t) =

∫ tfin

−∞
dt′ΦAB(t− t′)f(t′), (169)

where ∆A(t) ≡ Tr[ρ̂(t)Â]− Tr[ρ̂0Â], ρ̂(t) is a state at t = tfin, and ΦAB(t− t′) is a response

function.

The Green-Kubo relations gives the response function from a time correlation function:

ΦAB(t− t′) =
1

iℏ
Tr
(
ρ0[B̂(t′ − t), Â]

)
(170)

where ρ̂0 is an initial equilibrium state ρ̂0 ≡ exp[−βĤ0]/Z(β, V ), and B̂(t′−t) ≡ exp[ iℏĤ0(t−
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t′)]B̂ exp[− i
ℏĤ0(t − t′)]. Hence, the response against some external force is obtained from

the corresponding time correlation function of the equilibrium state.

In the TPQ formulation, I substitute ρ0 with |β, V ⟩ in Eq. (170) and get a relation

ΦAB(t− t′) =
1

iℏ
⟨β, V |[B̂(t′ − t), Â]|β, V ⟩

⟨β, V |β, V ⟩
. (171)

This equation is correct within an exponentially small error. To estimate the error, I sub-

stitute [B̂(t′ − t), Â] for Â in Eq.(56) and get

P
(∣∣∣⟨[B̂(t′ − t), Â]⟩TPQ

β,V − ⟨[B̂(t′ − t), Â]⟩ensβ,V

∣∣∣ ≥ ϵ
)

≤ 1

ϵ2
⟨[B̂(t′ − t), Â]2⟩ens2β,V + (⟨[B̂(t′ − t), Â]2⟩ens2β,V − ⟨[B̂(t′ − t), Â]2⟩ensβ,V )

2

exp[2V β{f(T/2, µ;V )− f(T, ;V )}]
. (172)

Since ∥ exp[− i
ℏĤt]∥ = 1, the rhs of the numerator is O(V 2m). Therefore, the rhs is still

exp[−Θ(V )]. Even though the transportation is nonequilibrium phenomena, the linear re-

sponse theory focuses on mechanical variables. I only look at negligibly smaller number of

physical quantities than the degree of freedom which quantum system has. Thus, as far as

I measure values of mechanical variables, the linear response theory is in the capability of

the TPQ state.

C. Quantum And Thermal Fluctuations

To better understand the TPQ states, I now discuss the “quantum fluctuation” and

“thermal fluctuation”. For concreteness, I consider the canonical TPQ state |β,N⟩ and the

canonical density operator ρ̂β.

In the ensemble formulation, it is often said that a fluctuation of a mechanical variable

⟨(∆Â)2⟩ens ≡ ⟨(Â−⟨Â⟩ens)2⟩ens can be decomposed into the quantum fluctuation ⟨(∆Â)2⟩ensq

and the thermal one ⟨(∆Â)2⟩enst , i.e.,

⟨(∆Â)2⟩ens = ⟨(∆Â)2⟩ensq + ⟨(∆Â)2⟩enst . (173)
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The thermal fluctuation, whose specific expression will be given below, is conventionally

interpreted as a result of mixing many quantum states to form ρ̂,

ρ̂β =
∑
n

(e−βNun/Z)|n⟩⟨n|, (174)

where un and |n⟩ are eigenvalue and eigenstate, respectively, of ĥ. Consequently, it is

conventionally concluded that the thermal fluctuation of most mechanical variables does

not vanish at any finite temperature.

In the TPQ formulation, by contrast, |β, V ⟩ is a pure quantum state and therefore does

not have such “thermal fluctuation”, i.e., ⟨(∆Â)2⟩TPQ
t = 0 at all temperature. The TPQ

state has only the quantum fluctuation, i.e.,

⟨(∆Â)2⟩TPQ = ⟨(∆Â)2⟩TPQ
q ≡ ⟨(Â− ⟨Â⟩TPQ)2⟩TPQ. (175)

In other words, all fluctuations are included in the quantum fluctuation.

I have thus found that ρ̂β and |β, V ⟩, which represent the same equilibrium state, give

different values of the quantum and thermal fluctuations. This does not lead to any contra-

diction in experimentally-observable quantities because

⟨(∆Â)2⟩ens = ⟨(∆Â)2⟩TPQ, (176)

which are the only observable quantities in the above discussion. The quantum and thermal

fluctuations, ⟨(∆Â)2⟩ensq and ⟨(∆Â)2⟩enst , are, separately, not observable quantities. To see

this, let us write them down explicitly. I note that ρ has the following form,

ρ̂ ≡
∑
λ

wλ|λ⟩⟨λ|, (177)

where {wλ}λ is a set of positive numbers such that
∑

λwλ = 1, and {|λ⟩}λ is some set of

states (which is {|n⟩}n in Eq. (174)). In general, Â fluctuates quantum-mechanically in each

state |λ⟩. Hence, it may be reasonable to define ⟨(∆Â)2⟩ensq as the average of the fluctuation
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⟨λ|(Â− ⟨λ|Â|λ⟩)2|λ⟩ over |λ⟩’s, i.e.,

⟨(∆Â)2⟩ensq ≡
∑
λ

wλ⟨λ|(Â− ⟨λ|Â|λ⟩)2|λ⟩. (178)

This and Eq. (173) yield the thermal fluctuation as

⟨(∆Â)2⟩enst =
∑
λ

wλ⟨λ|Â|λ⟩2 −

(∑
λ

wλ⟨λ|Â|λ⟩

)2

. (179)

If I take wλ = e−βNun/Z and |λ⟩ = |n⟩, I find that ⟨(∆Â)2⟩enst > 0 for most mechanical

variables at finite temperature.

However, it is well-known that |λ⟩’s in Eq. (177) need not be orthogonal to each other

[18]. As a result, there are infinitely many possible choices of {|λ⟩}λ and {wλ}λ for the same

ρ̂ [18]. The experimentally-observable fluctuation ⟨(∆Â)2⟩ens is invariant under the change

of {wλ}λ and {|λ⟩}λ. By contrast, both ⟨(∆Â)2⟩ensq and ⟨(∆Â)2⟩enst do alter under the change

of {wλ}λ and {|λ⟩}λ. This fact clearly shows that the quantum and thermal fluctuations are,

separately, not experimentally-observable quantities. In other words, they are, separately,

metaphysical quantities.

It is instructive to consider a classical mixture

ρ̂′β ≡ 1

R

R∑
r=1

|β, V, r⟩⟨β, V, r|
⟨β, V, r|β, V, r⟩

(180)

of many realizations |β, V, 1⟩, |β, V, 2⟩, · · · , |β, V,R⟩ of the canonical TPQ state. Since each

|β, V, r⟩ represents the same equilibrium state, so does ρ̂′β. If I define the quantum and

thermal fluctuations in ρ̂′β in the same way as Eqs. (178) and (179), I find that the thermal

fluctuation is exponentially small for all mechanical variables. This shows that mixing many

states does not necessarily give “thermal fluctuation”. Since the thermal fluctuation in ρ̂′β

is negligible, I do not need to take an average over many relizations, but only need to pick

up a single realization.
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D. Entanglement

In macroscopic view point, the ensemble formulation and the TPQ one give identical

results for all quantities of statistical-mechanical interest. That is, as far as one looks at

macroscopic quantities, one cannot distinguish between these states. However, when I look

at the quantum entanglement, they are completely different.

1. Entanglement Measure For Pure State

When I measure the bipartite entanglement of a state |ψ⟩ on a system, I devide the

system into two parts. Let us call them a system A and a system B. Then, I trace out the

components of |ψ⟩ on the system B.

ρA ≡ TrB[|ψ⟩⟨ψ|] (181)

The von Neumann entropy is defined as

EvN(|ψ⟩⟨ψ|) ≡ Tr[−ρA ln ρA], (182)

and the purity is defined as

Epurity(|ψ⟩⟨ψ|) ≡ Tr[ρ2A]. (183)

When the state |ψ⟩ is pure, they can measure how much quantum entanglement exists

between A and B. As a state gets more entanglement between A and B, EvN takes larger

value and Epurity takes smaller value. In particular, when there is no entanglement between

them, EvN = 0 and Epurity = 1. Since ρA and ρB have the same entanglement, I assume that

the size of the system A is smaller than that of the system B without loss of generality.
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2. Entanglement Measure For Mixed State

When the state is mixed, classical mixture reduces the quantum entanglement. A mixed

state is in general represented as

ρ̂ ≡
∑
i,j

wi,j|i⟩⟨j| (184)

where wi,j is a positive definite matrix and
∑

iwi,i = 1, and {|i⟩}i is a set of orthonormal

basis. By diagonalizing the matrix wi,j, I get

ρ̂ =
∑
n

wn|n⟩⟨n| (185)

where wn is a probability s.t.
∑

nwn = 1, and {|n⟩}n is a set of basis which can be non-

orthogonal. Since {|n⟩}n is tolerated to be non-orthogonal, the set of basis {|n⟩}n is not

always unique. I define a group of the tolerated basis sets as

Dρ̂ ≡
{
{|n⟩}n

∣∣{|n⟩}n diagonalizes wi,j

}
(186)

Since there are many representations in the form of Eq. (185), I cannot use either Eq. (182)

or (183) directly but need to define a new probability measure. Although there are many

definitions of the entangle measure for the mixed states, I introduce ”entanglement of for-

mation” here. The entanglement of formation Eform is defined by

Eform(ρ̂) ≡ min{|n⟩}n∈Dρ̂

{∑
n

wnEvN (|n⟩⟨n|)

}
(187)

I note that Eform(ρ̂) reduces to EvN(ρ̂) when ρ̂ is a pure state.

3. Entanglement At Finite Temperature In Ensemble Formulation

When I employ the canonical ensemble in the ensemble formulation, the equilibrium state

is represented by the Gibbs state ρ̂β. I consider the quantum entanglement of it. However,
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it is known that the calculation of the quantum entanglement for the mixed state is very

hard (and NP-hard in many cases [35]). Thus, I consider β = 0 case and β → ∞ case.

In the former case, the Gibbs state reduces to an identical operator

1̂

D
≡ 1

D

∑
i

|i⟩⟨i| (188)

where D is the dimension of Hilbert space, and {|i⟩}i is an arbitrary orthonormal basis set.

In the case of β = 0, when I use a set of product states as {|i⟩}i in Eq. (188), for ∀|i⟩,

EvN (|i⟩⟨i|) = 0. (189)

Therefore, by using Eq. (187), I get

Eform

(
1̂

D

)
= 0. (190)

Namely, ρ̂β has no entanglement at β = 0.

In the case of β → ∞, exp[−βĤ] reduces to an ground state. I consider the case that

symmetry of the state is broken and there is no degeneracy in the ground state. Thus, ρ̂β

reduces to a pure quantum ground state |ψ⟩⟨ψ|. Thus, the quantum entanglement is

Eform (|ψ⟩⟨ψ|) = EvN (|ψ⟩⟨ψ|) . (191)

In general, the value of EvN (|ψ⟩⟨ψ|) is nonzero except for some trivial models.

4. Entanglement At Finite Temperature In TPQ Formulation -Analytics

Since in the TPQ formulation the equilibrium states are represented by the pure quantum

states, the quantum entanglement is well-defined and easy to measure. The result is very

different from that of the ensemble formulation. I analyze the quantum entanglement of the
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(normalized) cTPQ state

|ψβ⟩ ≡
|β, V ⟩√

⟨β, V |β, V ⟩
(192)

for the three cases; (i) β = 0, (ii) β → ∞, and (iii) A≪B and A is sufficiently large.

(i) β = 0

The result is the same as Eq. (191).

(ii) β → ∞

According to Ref.[36],

Epurity(|ψβ⟩⟨ψβ|) = Tr[ρ̂2A] (193)

=
dA + dB
dAdB + 1

(194)

=
1

dA

(
1 +

1

dNB−NA
+ · · ·

)
, (195)

where · · · denotes average over {zi}i, d is the dimension per site, e.g., d = 2 for a spin 1/2

system, NA (NB) is the number of sites in A (B), and the dimension of Hilbert space of

subsystem A (B) is dA ≡ dNA (dB ≡ dNB). The minimum value of the purity for the number

of site being NA is 1
dA
, which is achieved in the case of ρ̂A = 1̂

dA
. Since the rhs of Eq. (195)

is very close to this minimum value, Eq. (195) indicates that the TPQ state for β → ∞ has

almost maximum entanglement.

(iii) A≪B and A is sufficiently large

In Sec.II B 4, I have shown that ρA becomes close to the Gibbs state of the subsystem A

when A≪B is satisfied. That is,

ρA ≃ exp[−βĤA]

ZA(β)
, (196)

where ĤA is Hamiltonian of the system A, and ZA(β) ≡ Tr
[
exp[−βĤA]

]
. Here, I ignore an
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interaction between A and B, because A is sufficiently large. In this case,

EvN(|ψβ⟩⟨ψβ|) ≃ S(β,NA) (197)

≡ β

(
Tr
[
ĤρA

]
− F

(
1

β
,NA

))
, (198)

where FA(
1
β
, NA) ≡ 1

β
lnZ(β, V ). Since S(β,NA) is Θ(NA) at finite temperature, this result

means that the cTPQ state is highly entangled. For the purity, I get

Epurity(|ψβ⟩⟨ψβ|) ≃
Z(2β, V )

Z(β, V )2
(199)

=
1

exp[2β(FA(
1
2β
, NA)− FA(

1
β
, NA))]

. (200)

(The rhs is mostly the same as the rhs of Eq. (50).) Since the rhs of Eq. (200) is exp[−Θ(NA)],

the purity also indicates that the cTPQ state is highly entangled.

5. Entanglement At Finite Temperature In TPQ Formulation -Numerics

To investigate entangelement of the TPQ state further, I perform some numerical cal-

culations. The system is 1D antiferromagnetic Heisenberg model with the number of site

N = 16. I choose consecutive q sites as the system A and the other consecutive N − q sites

are the system B. I prepare the mTPQ state for different energies. Their reduced density

operator ρq is obtained by tracing out the system B.

In Fig. 1, I show the result of their purity. I plot the minimum value of the purity

(triangles ▲) and the average value of the purity of the random vector |ψ0⟩ (inverse triangles

▼), which appeared in Eq.(195). It is seen that |ψ0⟩ has almost maximum (exponentially

large) entanglement [36]. The lines are the purity of the mTPQ states with different values of

the energy density. It is seen that the TPQ states have exponentailly large entanglement, and

that the entanglement gets larger at higher energy, i.e., at higher temperature. This result

is in marked contrast to entanglement of the density operator of the ensemble formulation,

because the latter has less entanglement at higher temperature. In Fig. 2, I plot the von

60



ò

ò

ò

ò

ò

ò

ô

ô

ô

ô

ô

ô low

energy high

ô Average Value for Random Vector

ò Minimum Value

TPQ states

1 2 3 4 5 6

0.02

0.05

0.10

0.20

0.50

q

T
rH
Ρ

q2 L

FIG. 1. Purity vs. q of the 1D Heisenberg chain for N = 16.

Neumann entanglement entropy of the mTPQ states. I can confirm that these results are

consistent with the results in Sec.VD4 and the TPQ states have large entanglement.

However, this is not a contradiction but a natural consequence of the nature of the

quantum entanglement. The purity of ρq is related to N -body correlation functions of

the TPQ state. Such higher-order correlation functions represent microscopic details of the

TPQ state. Therefore, the great difference in entanglement between the TPQ states and the

Gibbs states indicates a great difference in microscopic details. It is not surprising that such

microscopically completely different states give identical results for macroscopic quantities,

and thus represent the same equilibrium state.

E. Stability Against Noise

The TPQ states have the colossal large quantum entanglement. In quantum information,

one may think that a state with large quantum entanglement is unstable against noise

and the state will decohere immediately. Actually, it is true for Schoedinger cat states.
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FIG. 2. Purity vs. q of the 1D Heisenberg chain for N = 16.

However, I show in this subsection that the quantum entanglement of the TPQ states is

resistant against a weak classical noise.

The Schoedinger cat state is represented by the superposition of macroscopically distinct

states. For example,

|ψcat⟩ =
1

2
(| ↓↓↓ · · · ↓⟩+ | ↑↑↑ · · · ↑⟩) (201)

is the superposition of the state with Sz = Nℏ
2

and that with Sz = −Nℏ
2

where N is the

number of spins. Thus, the fluctuation of Sz is macroscopically large;

⟨ψcat|Ŝ2
z |ψcat⟩ − ⟨ψcat|Ŝz|ψcat⟩2 =

(
Nℏ
2

)2

(202)

By contrast, a normal quantum state in a usual experimental condition has a small quantum
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fluctuation. For example,

|ψreal⟩ =
1

N
(| ↓↑↑ · · · ↑⟩+ | ↑↓↑ · · · ↑⟩+ | ↑↑↓ · · · ↑⟩+ | ↑↑↑ · · · ↓⟩) (203)

is the superposition of N states. However, these states are macroscopically the same states

because all the state have Sz =
(N−1)ℏ

2
. Hence, the fluctuation of Sz is

⟨ψreal|Ŝ2
z |ψreal⟩ − ⟨ψreal|Ŝz|ψreal⟩2 = 0. (204)

(Strictly speaking, the state with no fluctuation may be also unrealistic. However, such a

state can be realized as a ground state.)

In order to detect the difference between the cat states and the normal states, I use

the index ”p”, which is introduced by Shimizu and Miyadera [37]. Let Â be a mechanical

variable with the degree m = 1. I call such a variable an ”additive operator”. I evaluate the

maximum value of the fluctuation among Â.

max
Â∈additiveoperator

(
⟨ψ|Â2|ψ⟩ − ⟨ψ|Â|ψ⟩2

)
= O(V p). (205)

Here, I define the index ”p”. Using this index, I can characterize the normal states as p = 1

and the cat states as p = 2. Then, I will show that the cat states is fragile against some

weak classical noises.

For a system with a weak classical noise, the locality requires that the Hamiltonian of

the noise is sum of local interactions;

Ĥint = λ
∑
x

f(x, t)â(x). (206)

Here, λ is a positive small constant, x is an index of a position, f(x, t) is an amplitude of the

noise with vanishing average over time, and â(x) is a local operatore at x. When a quantum

63



state sustains this weak classical noise, the rate of decoherence is measured by

Γ ≡ −1

2

d

dt

(
lnTr[ρ̂(t)2]

) ∣∣∣
t≪1/Γ

(207)

According to Ref.[37], when the p-index for a state is p = 1, Γ = O(V ) for any weak classical

noises and when the p-index for a state is p = 2, Γ = O(V 1+δ) (0 < δ ≤ 1) for some weak

classical noises. The former means that any state with p = 1 are stable against any weak

classical noises. The latter means that for every cat state there exist some noises which

break the quantum entanglement of the state.

Thermodynamics requires that any fluctuations of the additive operators are ⟨(∆Â)2⟩ens =

O(V ). Therefore, returning to the TPQ states,

⟨(∆Â)2⟩TPQ = O(V ) (208)

holds for any additive operators and p = 1 for the TPQ states. Therefore, I can say that

the TPQ states are stable against any weak classical noise in the sense of Eq.(207).
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VI. RELATION AMONG TPQ STATES

In thermodynamics, any of the thermodynamic functions such as entropy and free energy

is transformed into another one by Legendre transformation.

F = E − TS (209)

J = F − µN (210)

Similarly, the TPQ state itself can be transformed into another one [20]. Although the cTPQ

states and the gTPQ states have an exponential function of Hamiltonian, which are hard

to calculate, this transformation enable us to construct these TPQ states from the mTPQ

states, which are easy to construct.

A. Decomposition of cTPQ State and gTPQ States

The cTPQ state is decomposed into the superposition of the mTPQ states. I employ the

Taylor series expansion.

e
V βl
2 |β, V ⟩ =

∞∑
0

1

k!

(
V β

2

)k

(l − ĥ)k|ψ0⟩ (211)

=
∞∑
0

1

k!

(
V β

2

)k

|k⟩ (212)

=
∞∑
0

Rk|ψk⟩ (213)

where |ψk⟩ is a normalized mTPQ state, |ψk⟩ ≡ 1√
Qk

|k⟩, and Rk ≡ 1
k!

(
V β
2

)k √
Qk. Then, I

see the convergence of Rk. Using Eq. (150) and Stirling’s formula, I have

Rk ∼ exp

[
V

2
ζκ(β;V )

]
, (214)

where

ζκ(β;V ) ≡ ξκ(u
∗
κ;V ) + 2κ ln(β/2κ) + 2κ. (215)
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Here, β in the rhs is not a function β(u∗κ;N) but an independent parameter of the canonical

TPQ state. If κ took continuous values, ζκ would take maximum at κ∗∗ such that

β(u∗κ∗∗ ;N) = β. (216)

This can be shown by taking derivative of ζκ(β;V ) of Eq. (214) as

∂

∂κ
ζκ(β;V ) =

[
β(u∗κ;N)− 2κ

(l − u∗κ)

]
∂u∗κ
∂κ

+ 2 ln

[
β

/
2κ

(l − u∗κ)

]
(217)

= 2 ln

[
β

β(u∗κ;N)

]
. (218)

As κ is increased, u∗κ decreases and β(u∗κ;N) increases. Therefore, with increasing κ, this

derivative decreases monotonically from positive values (for κ < κ∗∗), to zero (at κ = κ∗∗),

and to negative values (for κ > κ∗∗). Hence, Rk takes maximum at κ = κ∗∗, if κ takes

continuous values.

Although κ actually takes discrete values (= 0, 1/N, 2/N, · · · ), I can find a value(s) κ∗

among these values such that

∣∣∣∣ ∂∂κζκ(β;V )

∣∣∣∣ is minimum. uκ also takes discrete values, whose

intervals are

uκ±1/N − uκ = Θ(1/N). (219)

Hence, from Eq. (151),

u∗κ±1/N − u∗κ = Θ(1/N). (220)

Therefore,

u∗κ∗ − u∗κ∗∗ = Θ(1/N), (221)

β(u∗κ∗ ;N) = β +Θ(1/N). (222)
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Since β(u;V ) = Θ(1), there exists a constant ∆κ of Θ(1) such that

∂

∂κ
ζκ(β;V ) =


Θ(1) (κ ≤ κ∗ −∆κ),

−Θ(1) (κ ≥ κ∗ +∆κ)

(223)

Therefore, there exists a positive constant η of Θ(1) such that

ζκ∗(β;V )− ζκ(β;V ) ≥ η|κ− κ∗| for |κ− κ∗| ≥ ∆κ. (224)

Hence, for κ− κ∗ ≥ ∆κ, I have the asymptotic inequality

|Rk| ≤ exp

[
N

2
ζκ∗(β;V )

]
exp

[
−N

2
η(κ− κ∗)

]
(225)

= exp

[
N

2
ζκ∗(β;V )

]
exp

[
−η
2
(k − k∗)

]
, (226)

where k∗ ≡ Nκ∗. I take kmax arbitrarily such that

kmax ≥ k∗ +N∆κ. (227)

Then I have∥∥∥∥∥ ∑
k≥kmax

Rk|ψk⟩

∥∥∥∥∥ ≤
∑

k≥kmax

Rk (228)

≤ exp

[
N

2
ζκ∗(β;V )

]
exp

[η
2
k∗

] ∑
k≥kmax

exp
[
−η
2
k
]

(229)

= exp

[
N

2
ζκ∗(β;V )

]
exp

[η
2
(k∗ − kmax)

] 1

1− e−η/2
, (230)

which vanishes as kmax → ∞. Since k∗ is a function of β and kmax > k∗, this means that the

series converges quickly for each value of β. Therefore, if I take arbitrarily the upper bound

βmax of β, then the series converges uniformly for all β such that 0 < β ≤ βmax.

Because of this good convergence, I can obtain inversely the mTPQ state from the canon-
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ical one, e.g., by

|k⟩ =
(

2

N

)k
∂k

∂βk
eV βl/2|β, V ⟩

∣∣∣∣
β=0

. (231)

The gTPQ state is obviously decompoed into the cTPQ states.

|β, ν, V ⟩ =
∑
N

eβνN |β,N, V ⟩ (232)

where |β,N, V ⟩ is the cTPQ state whose number of particle is restricted to N .

B. Practical Formula

Using Eq. (213) and (232), one can try the numerical calculation by just generating the

mTPQ states. The mTPQ state can be generated by multiplying (l− ĥ) with |ψ0⟩ k times.

Since Rk has a sharp peak at k∗ (given by Eq. (216)), one can terminate the sum at a finite

number kterm. It is sufficient to take kterm such that kterm − k∗max = Θ(N), where k∗max is k∗

corresponding to βmax. Since I can show that k∗ = Θ(N) for any finite β, k∗max = Θ(N).

Hence, kterm = Θ(N). In this way, one can obtain |β, V ⟩ by multiplying (l − ĥ) repeatedly

Θ(N) times. In this procedure, however, he can only get the cTPQ (or gTPQ) state for

the fixed temperature β. Thus, he has to repeatedly generate the cTPQ states for different

temperatures.

In order to overcome this inefficiency, I introduce another formula which is useful in prac-

tical applications. Actually, I use this formula to the applications in Sec.VII. All macroscopic

variables can be calculated from the obtained |β, V ⟩. One can also calculate them without

obtaining |β, V ⟩ explicitly. To see this, I note that all macroscopic variables can be obtained

from ⟨β, V |Â|β, V ⟩ and ⟨β, V |β, V ⟩, as shown by formulas (48 and (53). Since the latter is

included in the former as the case of Â = 1̂, I consider the former. From Eq. (213),

⟨β, V |Â|β, V ⟩ = e−V βl
∑
k,k′

1

k!k′!

(
V β

2

)k+k′

⟨k|Â|k′⟩ (233)
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In the case of [Â, ĥ] ̸= 0, on has to calculate all combinations of ⟨k|Â|k′⟩, whose number of

the combinations is Θ(N2). For the special case where [Â, ĥ] = 0, this reduces to

⟨β, V |Â|β, V ⟩ = {Â}′β,V , (234)

where

{Â}′β,V ≡
∞∑
k=0

(V β)2k

(2k)!
⟨k|Â|k⟩+

∞∑
k=0

(V β)2k+1

(2k + 1)!
⟨k|Â|k + 1⟩. (235)

Even when [Â, ĥ] ̸= 0, I can prove that Eq. (234) holds extremely well. Specifically, for

{Â}TPQ
β,V ≡

{Â}′β,V
{1̂}′β,V

(236)

and

un(A)
2 ≡ ({Â}TPQ

β,V − ⟨Â⟩ensβ,V )
2, (237)

I have

P
(∣∣∣{Â}TPQ

β,V − ⟨Â⟩ensβ,V

∣∣∣ ≥ ϵ
)
≤ un(A)

2/ϵ2, (238)

un(A)
2 ≤

⟨(∆Â)2⟩ensβ,V

ϵ2 exp[V β{f(0;V )− f(1/β;V )}]
. (239)

Eq. (239) means that

{Â}TPQ
β,V

P→ ⟨Â⟩ensβ,V (240)

exponentially fast and uniformly. Formula (234) is more useful than Formula (233) because

one needs only to calculate ⟨k|Â|k⟩ and ⟨k|Â|k + 1⟩ for all k ≤ kterm to obtain the results

for all β ≤ βmax.
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C. The TPQ Formulation Of Statistical Mechanics

To sum up the results which have been obtained, I have established the new formulation

of statistical mechanics, in the same level as the ensemble formulation. It is summarized,

for the microcanonical, canonical, and grandcanonical TPQ states, as follows. Depending

on the choice of independent variables, (E,N) or (β,N), one can use either state, because

they give identical thermodynamic results. A single realization of a TPQ state suffices

for evaluating all quantities of statistical-mechanical interest. Moreover, one can estimate

the upper bounds of errors (which vanish as N → ∞) by formulas (52), (56), (238) and

(239). The microcanonical and canonical TPQ states are transformed to each other by

simple analytic relations, Eqs. (213) and (231). Hence, getting either one implies getting

both. Using this fact, I have developed a practical formula (234). In addition to this, it is

straightforward to extend these results to the TPQ states corresponding to other ensembles,

such as the grand canonical ensemble.

Regarding the choice between the canonical and microcanonical TPQ states, one can use

either depending on the purpose. For example, if one is interested in a first-order phase

transition at which the specific heat c = ∂u/∂T = (∂T/∂u)−1 diverges the microcanonical

one is practically better, because T (u) is continuous (whereas u(T ) is discontinuous) through

the transition [32, 34]. On the other hand, the canonical one is better when one studies low-

temperature behavior of c, because ∂u(T )/∂T gets small (∂T (u)/∂u diverges) as c→ 0.
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VII. APPLICATION TO NUMERICAL CALCULATION

A. TPQ Formulation As Numerical Method

In the TPQ formulation, I have replaced the equilibrium state, which is a mixed state

in the conventional formulation, with the pure quantum state. This formulation is not only

interesting for the foundation of statistical mechanics, but also useful to a numerical method.

The merits of the TPQ formulation comparing to other numerical method are listed below:

1. Single realization is sufficient

There have been many methods in which one samples a small number of pure states.

To the best of my knowledge, however, the TPQ formulation is the first formulation

in which the error is concretely evaluated and revealed to be exponentially small.

These findings guarantee that a single realization is sufficient to evaluate all physical

quantities of statistical mechanical interest, which include the genuine thermodynamic

variables and dynamical quantities such as the time correlation functions.

2. No limitation of models

Since the TPQ states can be generated only by multiplying Hamiltonian matrix to a

vector, there are no restriction of models or spatial dimensions. The TPQ states has

been applied to spin-1/2 kagome Heisenberg antiferromagnet [20] and Hubbard model

on a triangular lattice [30], which are well-known as frustrated systems.

3. Easy to perform and parallelize

In the numerical calculation using microcanonical, canonical, or grandcanonical TPQ

states, a computer program consists of the generation of a random initial vector and

the multiplication of Hamiltonian matrix to the vector. Not only this is simple to code,

but also this simpleness arrow us to utilize library codes and efficient parallelization.

Especially, Hamiltonian used in statistical mechanics is a sparse matrix. Thus, the

parallelization efficiency is very high.
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4. Formulation for finite temperature

Since there are an exponentially large number of relevant states at finite temperature,

it is difficult to know the exact behavior of a physical system at finite temperature.

Actually, only several integrable models have been solved exactly at finite temperature,

while ground states have been obtained in a lot of models. In the numerical simulation,

I consider DMRG as an example. When DMRG is applied to the finite temperature

calculation, the number of the kept basis is exponentially increases, although the

number of it is O(Poly(V )) at the ground state. By contrast, as I have explicitly

shown in formulas (52), (56), and (239), the accuracy of the TPQ states gets better

as the number of the relevant states increases. The TPQ states take advantage of the

dense number of states to make the calculation accurate.

5. Almost self-validating

In Formulas (52), (56), and (239), all the terms in the right hand sides can be evaluated

by the TPQ states themselves. Therefore, one can estimate the upper bound of errors

from these formulas. This estimation will be practiced later.

6. Need to store only two vectors

Owing to formula(234), the calculation can be performed by just keeping the last state

|k⟩ in a computer memory and generating |k+1⟩. One can throw |1⟩, · · · , |k−1⟩ away

from the memory.

7. Free from orthogonality among states

In numerical calculations such as Lanczos method, the orthogonality among basis

states often debase the numerical accuracy. In Lanczos method, one has to reorthogo-

nalize all the basis states when the number of states exceed around 100. By contrast,

the orthogonality is never imposed on the mTPQ states |1⟩, · · · , |k⟩. Owing to it, one

can easily perform the numerical calculation for k > 103.
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B. Comparison To Other Methods

In the viewpoint of the numerical calculation, there are hundreds of competitive methods.

Among them, I compare the TPQ states to three major methods and three similar methods.

The former consists of quantum Monte Carlo method (QMC) [38], density matrix renor-

malization group (DMRG) [39], and numerical diagonalization (ND). The latter consists of

quantum transfer monte carlo method (QTMC) [44], finite temperature Lanczos method

(FTLM) [45], and kernel polynomial method (KPM) [46].

1. Quantum Monte Carlo

Quantum Monte Carlo method (QMC) [38] is one of the most successful method in

statistical mechanics. In QMC, a path integral is mapped onto a classical system and small

number of paths are sampled stochastically. When it works, its numerical cost is O(Poly(V )),

which is far better than the TPQ states. However, QMC has an infamous ”sign problem”,

which appears in the frustrated system and the fermion system. The failure of QMC in

these models is because the quantum state in these models at low temperature cannot be

represented by the sum of the polynomial order of classical states. Thus, the TPQ states

have an advantage in the point 2 of the previous section. It is also advantageous in point 3.

2. Density Matrix Renormalization Group

Density matrix renormalization group (DMRG) [39] has been one of the hottest numerical

methods recently. It represents a quantum state by a matrix product state. When this

representation is efficient, one can reduce the dimension of the matrix χ by truncating many

of irrelevant states. In 1D system, χ = O(Poly(V )), which is very efficient, is enough to

describe the ground state. By contrast, in d (≥ 2) dimensional system, χ = O(exp[V ]) is

needed. Thus, many people had been considering that DMRG is the method only for 1D.

However, after the difficulty of the frustrated system and the fermion system, e.g., Kagome
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lattice and Hubbard model has been recognized, DMRG is reconsidered as the method for

2 dimensions. It can simulate the ground state for Kagome lattice with the lattice site

N > 100. There are also suggested a lot of related methods, which are collectively called

tensor network states. For example, multiple entanglement renormalization ansatz (MERA)

[40] and projected entangled pair states(PEPS) [41] are famous among them. However, the

numerical procedure of the tensor network states is not easy to be programmed.

For finite temperature, imaginary time evolution of a pure quantum state [42] is often

used. Since the thermo field dynamics (TFD) is compatible to DMRG, it has been widely

used. Recently, minimally entangled typical states (METTs) was proposed [43]. Unlike the

TFD, the METTs does not need any ancilla. The latter seems to be better than the former

and is similar to the TPQ states. However, the state generated in METTs is the state

|i; β, V ⟩, which is defined in Eq. (40). |i; β, V ⟩ can not be the TPQ state. Returning to the

numerical efficiency of DMRG, the entanglement gets exponentially larger as temperature

is lowered in the DMRG calculation. To describe the state with the exponentially large

entanglement, exponentially large χ is needed. This is the bottleneck of DMRG.

To sum up, points 1,2,3,4 are the advantages of the TPQ states. Among them, points 2

and 4 are important. If one is interested in the ground state or 1D system, DMRG will be

the first choice for him.

3. Numerical Diagonalization

Numerical diagonalization (ND) of a matrix is a robust method, which is used in many

fields in the world. In statistical mechanics, we usually diagonalize a Hamiltonian matrix

and obtain energy eigenvalue (and energy eigenstates) numerically. For the ground state,

Lanczos method is often employed. The numerical cost of the Lanczos method is the same

order as the TPQ state. At finite temperature, however, one need to obtain a lot of energy

eigenvalues to calculate the ensemble average. In this case, the orthogonality among the

basis state becomes a serious problem in the Lanczos method. Instead of it, other ND
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methods such as Hausdorff method are employed. However, its numerical cost is more than

square of that of the TPQ state. Therefore, the TPQ state is far better than ND at finite

temperature.

4. Transfer Matrix Monte Carlo method

In 1987, Imada and Takahashi proposed transfer matrix Monte Carlo method (tMC). It

uses the same state as the cTPQ state defined in Eq. (46). In the practical calculation, one

starts a calculation by preparing random vector |ψ0⟩. Then, one multiplies exp[−1
2
βĤ] to it.

Up to here, tMC is the same as the cTPQ state in terms of numerical methods. In the tMC,

however, this state is regarded as just a sample state drawn from the Gibbs state. Then, the

calculation is justified by the sample average over many realizations of this state and the

error of the calculation is estimated by the sample variance. Hence, the theoretical aspect

is completely different from the TPQ formulation. In the TPQ formulation, the error is

upper bounded in good accuracy and it is guaranteed that the error is exponentially small,

(although the inventors of tMC realized that the error is very small.) As mentioned in the

point 5, these formula is derived by us it makes us possible to estimate the error by the

TPQ state itself.

Aside from the theoretical aspects, when we compare the tMC and the cTPQ state

in terms of numerical methods, they have many points in common. Both of the calcula-

tions based on the multiplication of Hamiltonian, although the way to multiplication of

exp[−1
2
βĤ] is different. In tMC, one use transfer matrix technique. In the cTPQ, one use

the mTPQ state. The numerical costs of both methods are also similar. Among them, a

clear advantage of the cTPQ state is that we can get the result for all β continuously, when

we calculate the mTPQ states once owning to the formula (239).
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5. Finite Temperature Lanczos Method

Finite temperature Lanczos method (FTLM) is a method based on the Lanczos technique

and high temperature expansion. Since our formula (213) is also the high temperature

expansion, the FTLM and the numerical calculation of the cTPQ state is similar. The

difference is that the FTLM employs the Lanczos technique and the cTPQ state uses the

decomposition of the mTPQ state. Both Lanczos technique and the generation of the mTPQ

state are performed by multiplying Hamiltonian to a vector, the numerical cost is similar.

However, the Lanczos technique has the difficulty of the orthogonality.

In the Lanczos technique, one considers the Krylov subspace,

K ≡ span{|v⟩, Â|v⟩, Â2|v⟩, · · · , Âk|v⟩}, (241)

where b is an initial vector, and Â is a matrix, as which we choose Ĥ now. Then, one prepare

an orthogonal basis set spanning K and diagonalize Â only within K. Using the eigenvalues

and the eigenstates which are obtained by this diagonalization, the FTLM evaluates the

terms in the high temperature expansion. However, the orthogonality among the basis in K

gets inaccurate as k increases, because of the round-off errors on a computer. Practically,

when k > 100, it becomes a severe problem.

This k is directly related to the degree of the high temperature expansion. So is the k

of the mTPQ state. In the FTLM, k is limited around k ∼ 100. When k exceed 100, the

calculation cost increases a lot because the reorthonormalization is needed. In the mTPQ

state, as I will demonstrate in the frustrated spin model, one can easily take k > 1000

because of the absence of the requirement of the orthogonality. Therefore, the point 7 seems

to be an advantage of the TPQ state comparing to the FTLM. In addition to this, one has

to keep all the basis in K in usual FTLM calculations while the cTPQ state needs to keep

the last mTPQ state |k⟩ only. The point 6 is also the advantage.
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6. Kernel Polynomial Method

Kernel polynomial method is the general name for the methods which expand a function

by some orthogonal polynomials. Among them, Chebyshev polynomials expansion [47] is

often used in condensed matter physics.

C. Application To Kagome Lattice Model

Using the TPQ formulation, I study the spin-1/2 kagome Heisenberg antiferromagnet

(KHA) [20]. KHA is a frustrated two-dimensional quantum spin system. The KHA is

expected to have a spin liquid state in the ground state. However, QMC, which is one

of the most efficient methods for quantum simulation has the negative sign problem. The

problem gets worse as temperature is lowered. Thus, QMC is difficult to be used to the

KHA. Using ND, one gets the ground state for finite size. The KHA up to the number of

sites N = 42 is analyzed by ND on supercomputers [48]. Among these numerical methods,

the most successful method for the KHA is the tensor network calculations including DMRG

and MERA. In the studies using DMRG, systems of over 100 sites were analyzed [49]. The

results of these studies show the strong evidence that the ground state is a Z2 spin liquid

[49, 50].

When I shift our vision to finite temperature, it was suggested that the specific heat

c has double peaks at low temperature [51]. However, the problem is still in dispute due

to the complexity of the frustration and the finite size effect [51–55]. QMC still has a

difficulty of the negative sign problem. In ND, one has to know the energy spectrum of all

energy eigenstates in order to analyze at finite temperature. Hence, ND is only available

up to around N = 20. There are some DMRG-based methods for finite temperature such

as METTs. However, these method require more numerical cost than the analysis of the

ground state because the number of excitation states increases exponentially and one has to

retain these states. After reviewing these circumstances, it turns out that the TPQ states

seem to be suitable for the analysis of the KHA, because the analysis for the large cluster
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has not be performed yet at finite temperature.

I apply the TPQ formulation to the KHA with N = 18-30. I compute specific heat c,

free energy density f , and entropy density s. I employ formula(235). In formula(235), I

terminate the sum up to kterm = 2000, where series expansion has converged so that the

residual is evaluated to be less than 10−10% for T ≥ 0.02J .

In Fig. 4 I plot c, which is obtained using

∂⟨ĥ⟩ensβ,V

∂β
= −⟨(ĥ− ⟨ĥ⟩ensβ,V )

2⟩ensβ,V (242)

≃ {∆̂2}TPQ
β,V , (243)

where ∆̂ ≡ ĥ− {ĥ}TPQ
β,V . I have also calculated c in the difference way as

∂⟨ĥ⟩ensβ,V

∂β
≃

({ĥ}TPQ
β+δβ,V − {ĥ}TPQ

β,V )

δβ
. (244)

The difference of these two numerical results is much smaller than the line width of the data

in Fig. 4. For N = 27 and 30, for which ND has never been performed, there is not a peak

but a shoulder around T = 0.1J . Although the finite size effect may still be non-negligible,

these results strongly suggest that the peak of c at lower temperature will vanish in N → ∞

I also estimate the error caused from the random initial vector |ψ0⟩ by using inequality

(239). In Fig. 3 I plot f (left scale), which are calculated from Eq. (48). Using the results

for f and those for

{(∆̂2 − {∆̂2}TPQ
β,V )2}TPQ

β,V , (245)

I find that the (normalized) standard deviation

DN(∆̂
2)

{∆̂2}TPQ
β,V

(246)

for N = 30 is less than 1% down to T = 0.1J . The error of f itself is also estimated to

be less than 1% down to T = 0.1J . In fact, when I estimate the standard deviation by
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FIG. 3. f and s vs. T for N = 30.

generating tens of realizations of the cTPQ state, it is less than 1% down to T = 0.1J . Such

a small error is attained because our method gets more accurate for larger entropy Ns and

the KHA has relatively large s at low temperature due to the frustration effect [53]. To see

this quantitatively for N = 30, I plot s in the inset of Fig. 3 (right scale). Since the norm

of the cTPQ state gives free energy, I convert it into entropy by Legendre transformation,

s = (u− f)β. (247)

At T = 0.2J there remains 45% of the total entropy (= N ln 2). Such a large entropy makes

DN(∆̂
2) small.

Finally, to confirm the validity, I compute c for N = 18, for which the result of the ND

is available [52]. For such a small cluster, the standard deviation estimated from inequality

(239) is about 35% at T = 0.1J . Hence, I have taken average over 100 realizations of the

TPQ state for N = 18 only. The difference between our results (18a, 18b) and those by the

ND [52] is less than the line width of the data in Fig. 4.
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FIG. 4. Specific heat c vs. T of the KHA for N = 18-30. (Inset) The shapes of the clusters of N

= 30 (left) and 27 (right). Those of 18a and 18b are shown in Ref.[56].

VIII. CONCLUSION

In this thesis, I have established the new formulation of statistical mechanics based on the

TPQ state. Moreover, although the TPQ formulation give all the predictions of statistical-

mechanical interest correctly, I have examined its difference from the ensemble formulation

by stepping in the microscopic world. Then, in order to make the most of the advantage of

the TPQ formulation, I have derived the formulas to transform from the TPQ states into the

others. Owing to these formulas, I applied the TPQ formulation to the frustrated quantum

spin model.

In Sec. III, I generally defined pure quantum states that can represent an equilibrium state

the TPQ states. Then, I introduced the cTPQ state, i.e., the TPQ state which is specified

by temperature. Not only the mechanical variables but also the genuine thermodynamic

variables are obtained from a single realization of the cTPQ state. In particular, the free

energy is obtained from the norm of the cTPQ state, within the exponentially small error.
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Any equilibrium value of the MV can be obtained by the expectation value using the cTPQ

state within the exponentially small error. Once we get both the free energy and any

equilibrium values of the MVs, we can get all the predictions in statistical mechanics from

them. Therefore, the new formulation of statistical mechanics based on the cTPQ state is

established. In addition to this, it is straightforward to introduce the gTPQ state, which

corresponds to the grandcanonical ensemble.

In Sec. IV, I introduced the mTPQ state, one of the TPQ states which are specified by

energy, and saw its properties. The mTPQ state focuses on practical applications. It can

be generated easily by multiplying Hamiltonian to an initial vector. In the same manner

as the cTPQ state, the norm of the mTPQ state gives entropy and the expectation value

of the mechanical variable gives the microcanonical ensemble average. Here, the errors are

also exponentially small. When we compare the mTPQ states to the other TPQ states, the

most suitable one depends on the situation, For example, when one analyzes the first order

phase transition, the mTPQ state will be most suitable.

In Sec. V, I compared the TPQ states to the equilibrium states in the conventional for-

mulation using the ensembles. The TPQ state is macroscopically invariant under the time

evolution. The TPQ state can also correctly give the prediction in linear response theory.

Thus, the TPQ state and the conventional equilibrium state look as if they were completely

the same state. However, when we examine the fluctuation of mechanical variables, a clue

to understand the difference between them is obtained. In quantum mechanics, a state has

a quantum fluctuation. Then, when we move to quantum statistical mechanics, a thermal

fluctuation is added to the quantum one. Therefore, it is often explained that the fluctu-

ation in quantum statistical mechanics is the sum of these two fluctuations. However, the

equilibrium state in the ensemble formulation is a quantum mixed state, and the quantum

mixed state has many ways to be decomposed into the classical mixture of pure quantum

states. Because of this ununiqueness, the decomposition of the fluctuation into the quantum

and the thermal ones cannot be determined uniquely. On the other hand, as the TPQ states

are pure quantum states, they have the quantum fluctuation only. Namely, all the fluctua-
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tion which are predicted by the ensemble average is squeezed into the quantum fluctuation

in the TPQ formulation. Thus, many microstates within the range of the fluctuation are

superposed in the TPQ state. This superposing make a single realization of the TPQ state

possible to give all the statistical mechanical predictions including the fluctuation. Here, as

we know that there are exponentially large number of energy eigenstates within the range of

the energy fluctuation, the TPQ states seem to be the superposition of exponentially large

number of states. This intuition is quantified by calculating quantum entanglement. By

seeing the quantum entanglement, we clearly distinguish the difference between the TPQ

state and the equilibrium state in the ensemble formulation. It is revealed that the entan-

glement of the TPQ states are large, and especially at high temperature, almost maximum.

On the other hand, the entanglement of the conventional equilibrium states is small and

vanishing to zero as temperature is raised. The entanglement of the TPQ states and that of

the conventional ones are the extreme opposites. When we recall that the former states are

pure and the latter ones are mixed, it is obvious that the appropriate measure can detect the

difference. Since the quantum entanglement is not included in either the MVs or the GTVs,

the entanglement is the quantity which is beyond statistical mechanics. Furthermore, it can

detect the difference between the TPQ state and the conventional equilibrium state.

In Sec.VI, we derived the relations between the TPQ states. I gave the transforming

formula from the mTPQ state into the cTPQ state and that from the cTPQ state into the

gTPQ state. Through these formulas, we can represent the cTPQ and gTPQ states as the

superposition of the mTPQ states. Moreover, I gave the transforming formula which is more

suitable for practical applications as well. These results in this section enable us to carry

out the efficient applications.

To make the most of the merit of the TPQ formulation, in Sec.VII, I performed a nu-

merical calculation using the TPQ formulation. Since a single realization is sufficient in the

TPQ formulation, it has an advantage over the ensemble average, which need to calculate an

average over all the realizable states. Particularly, in 2 dimensional frustrated systems and

fermion systems, where QMC and DMRG, which are two of the most powerful methods in
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condensed matter physics, become difficult to be performed. Therefore, I applied the cTPQ

to the KHA, which is one of the most famous frustrated spin systems and revealed the new

behavior of the specific heat.
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Appendix A: Derivation Of Formula (239)

In order to verify Formula (239), it is needed that both the variance of

⟨ψ0|Â|ψ0⟩/⟨ψ0|B̂|ψ0⟩ (A1)

is sufficiently small, where

Â ≡
∑
k

(V β)k

k!
(l − ĥ)⌊k/2⌋M̂(l − ĥ)⌊(k+1)/2⌋ (A2)

B̂ ≡ exp(V β(l − ĥ)). (A3)

In order to use Eq. (81) and (83), what I need are the following three terms.

(
⟨ψ0|Â|ψ0⟩ − ⟨ψ0|Â|ψ0⟩

)2
=
∑
n,k,k′

(V β)k+k′

k!k′!

⟨n|(l − ĥ)⌊k/2⌋M̂(l − ĥ)⌊(k+1)/2⌋(l − ĥ)⌊k
′/2⌋M̂(l − ĥ)⌊(k

′+1)/2⌋|n⟩

=
∑
n,k,k′

(V β)k+k′

k!k′!

⟨n|(l − ĥ)⌊k/2⌋M̂(l − ĥ)⌊(k+1)/2⌋(l − ĥ)⌊k
′/2⌋M̂(l − ĥ)⌊(k

′+1)/2⌋|n⟩ (A4)

where Z ′(β) ≡
∑

n exp(V β(l − un))

(
⟨ψ0|Â|ψ0⟩ − ⟨ψ0|Â|ψ0⟩

)(
⟨ψ0|B̂|ψ0⟩ − ⟨ψ0|B̂|ψ0⟩

)
=
∑
n,k

(V β)k

k!
⟨n|(l − ĥ)⌊k/2⌋M̂(l − ĥ)⌊(k+1)/2⌋ exp(V β(l − ĥ))|n⟩

=
∑
n

exp(2V β(l − un))⟨n|M̂ |n⟩

= ⟨M̂⟩ens2β,VZ
′(2β) (A5)
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(
⟨ψ0|B̂|ψ0⟩ − ⟨ψ0|B̂|ψ0⟩

)2
=
∑
n

⟨n| exp(2V β(l − ĥ))|n⟩

= Z ′(2β) (A6)

where I use Eq. (93). Using Eq. (81), (A5), and (A6), I get the average.

∣∣∣⟨ψ0|Â|ψ0⟩/⟨ψ0|B̂|ψ0⟩ − ⟨ψ0|Â|ψ0⟩/⟨ψ0|B̂|ψ0⟩
∣∣∣

=

∣∣∣∣∣− ⟨M̂⟩ens2β,VZ
′(2β)

Z ′(β)2
+
Z ′(2β)⟨M̂⟩ensβ,V

Z ′(β)2

∣∣∣∣∣ (A7)

=

(
⟨M̂⟩can(2β)− ⟨M̂⟩can(β)

)
exp[2V β(f(1/2β;V )− f(1/β;V ))]

(A8)

The rhs of this equation is exponentially small. Using Eq. (83), (A4), (A5), and (A6), I get
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the variance

(
⟨ψ0|Â|ψ0⟩/⟨ψ0|B̂|ψ0⟩ − ⟨ψ0|Â|ψ0⟩/⟨ψ0|B̂|ψ0⟩

)2
=

∑
n,m,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − um)
⌊(k+1)/2⌋(l − um)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋|⟨n|M̂ |m⟩|2

/ (Z ′(β))
2

−2⟨M̂⟩ens2β,VZ
′(2β)

⟨M̂⟩ensβ,V

(Z ′(β))2

+Z ′(2β)
⟨M̂⟩ensβ,V

2

(Z ′(β))2

=
∑

n,m̸=n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − um)
⌊(k+1)/2⌋(l − um)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋|⟨n|M̂ |m⟩|2/ (Z ′(β))

2

+
∑
n

exp(2V β(l − un))|⟨n|M̂ |n⟩|2/ (Z ′(β))
2

−2

(∑
n

exp(2V β(l − un))⟨n|M̂ |n⟩

)
⟨M̂⟩ensβ,V / (Z

′(β))
2

+

(∑
n

exp(2V β(l − un))

)
⟨M̂⟩ensβ,V

2
/ (Z ′(β))

2
(A9)

= Z ′(β)2( ∑
n,m̸=n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − um)
⌊(k+1)/2⌋(l − um)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋|⟨n|M̂ |m⟩|2

+
∑
n

exp(2V β(l − un))
(
⟨n|M̂ |n⟩ − ⟨M̂⟩ensβ,V

)2)
(A10)

= Z ′(β)2( ∑
n,m̸=n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − um)
⌊(k+1)/2⌋(l − um)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋|⟨n|M̂ |m⟩|2

+
∑
n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − un)
⌊(k+1)/2⌋(l − un)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋

(
⟨n|M̂ |n⟩ − ⟨M̂⟩ensβ,V

)2)
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Here, 1st term and 2nd term are respectively positive. So, I get

≤ Z ′(β)2( ∑
n,m̸=n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − umin)
⌊(k+1)/2⌋(l − umin)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋|⟨n|M̂ |m⟩|2

+
∑
n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − umin)
⌊(k+1)/2⌋(l − umin)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋

(
⟨n|M̂ |n⟩ − ⟨M̂⟩ensβ,V

)2)
= Z ′(β)2∑

n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − umin)
⌊(k+1)/2⌋(l − umin)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋

((∑
m̸=n

|⟨n|M̂ |m⟩|2
)

+
(
⟨n|M̂ |n⟩ − ⟨M̂⟩ensβ,V

)2)
(A11)

= Z ′(β)2∑
n,k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − umin)
⌊(k+1)/2⌋(l − umin)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋

((∑
m

|⟨n|M̂ |m⟩|2
)

− 2⟨n|M̂ |n⟩⟨M̂⟩ensβ,V

2
+ ⟨M̂⟩ensβ,V

2

)
(A12)

= Z ′(β)2
∑
n

(
⟨n|M̂2|n⟩ − 2⟨n|M̂ |n⟩⟨M̂⟩ensβ,V

2
+ ⟨M̂⟩ensβ,V

2
)

∑
k,k′

(V β)k+k′

k!k′!
(l − un)

⌊k/2⌋(l − umin)
⌊(k+1)/2⌋(l − umin)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋ (A13)

From here, I will prove
∑

k,k′ term in Eq. (A13) satisfies

∑
k

(V β)k

k!
(l − un)

⌊k/2⌋(l − umin)
⌊(k+1)/2⌋

∑
k

(V β)k
′

k′!
(l − umin)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋

≤ exp(V β(l − un + l − umin)) (A14)

I separate the sum of the l.h.s. of Eq. (A14) in terms of even odd. Before calculate it, I
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calculate the following.

∑
k

(V β)k

k!
(l − ea)

⌊k/2⌋(l − eb)
⌊(k+1)/2⌋

=
∑
k:even

(V β)k

k!
(l − ea)

k/2(l − eb)
k/2 +

∑
k:odd

(V β)k

k!
(l − ea)

(k−1)/2(l − eb)
(k+1)/2 (A15)

=
∑
k:even

(V β)k

k!
(l − ea)

k/2(l − eb)
k/2 +

√
(l − eb)

(l − ea)

∑
k:odd

(V β)k

k!
(l − ea)

k/2(l − eb)
k/2 (A16)

= cosh
(
V β
√

(l − ea)(l − eb)
)
+

√
(l − eb)

(l − ea)
sinh

(
V β
√
(l − ea)(l − eb)

)
(A17)

So, the sum of the l.h.s. of Eq. (A14) becomes

∑
k

(V β)k

k!
(l − un)

⌊k/2⌋(l − umin)
⌊(k+1)/2⌋

∑
k

(V β)k
′

k′!
(l − umin)

⌊k′/2⌋(l − un)
⌊(k′+1)/2⌋

=

(
cosh

(
V β
√

(l − un)(l − umin)
)
+

√
(l − umin)

(l − un)
sinh

(
V β
√
(l − un)(l − umin)

))
(
cosh

(
hV β

√
(l − umin)(l − un)

)
+

√
(l − un)

(l − umin)
sinh

(
V β
√
(l − umin)(l − un)

))
= cosh2

(
V β
√

(l − un)(l − umin)
)
+ sinh2

(
V β
√
(l − un)(l − umin)

)
+

(√
(l − umin)

(l − un)
+

√
(l − un)

(l − umin)

)
sinh

(
V β
√
(l − un)(l − umin)

)
cosh

(
V β
√
(l − umin)(l − un)

)
(A18)

= cosh
(
2V β

√
(l − un)(l − umin)

)
+

1

2

(√
(l − umin)

(l − un)
+

√
(l − un)

(l − umin)

)
sinh

(
2V β

√
(l − un)(l − umin)

)
(A19)

Here, I notice that the first and second term are respectively positive. I can easily evaluate

the first term as

cosh
(
2V β

√
(l − un)(l − umin)

)
=
∑
k:even

(2V β)k

k!

√
(l − un)(l − umin)

k
(A20)

≤
∑
k:even

(V β)k

k!
(l − un + l − umin)

k (A21)
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Here, I use the inequality of arithmetic and geometric mean. In the same manner, I can

evaluate the second term as

1

2

(√
(l − umin)

(l − un)
+

√
(l − un)

(l − umin)

)
sinh

(
2V β

√
(l − un)(l − umin)

)
≤
∑
k:odd

(V β)k

k!
(l − un + l − umin)

k (A22)

In order to prove Eq. (A22), I expand the l.h.s of it.

1

2

(√
(l − umin)

(l − un)
+

√
(l − un)

(l − umin)

)
sinh

(
2V β

√
(l − un)(l − umin)

)
=

1

2

(√
(l − umin)

(l − un)
+

√
(l − un)

(l − umin)

)∑
k:odd

(2V β)k

k!

√
(l − un)(l − umin)

k

=
1

2
((l − un) + (l − umin))

∑
k:odd

(2V β)k

k!

√
(l − un)(l − umin)

(k−1)

≤
∑
k:odd

(V β)k

k!
(l − un + l − umin)

k (A23)

Now, I have proved inequality (A22). Using inequality (A21) and (A22), I get inequality

(A14). Then, I return the main proof. Using inequality (A13), and (A14), I get the final

result

(
⟨ψ0|Â|ψ0⟩/⟨ψ0|B̂|ψ0⟩ − ⟨ψ0|Â|ψ0⟩/⟨ψ0|B̂|ψ0⟩

)2
≤ D

(D + 1)Z ′(β)2

∑
n

(
⟨n|M̂2|n⟩ − 2⟨n|M̂ |n⟩⟨M̂⟩ensβ,V

2
+ ⟨M̂⟩ensβ,V

2
)
exp(V β(l − un + l − umin))

=
D

(D + 1)

exp(V β(l − umin))

Z ′(β)

(
⟨M̂2⟩ensβ,V − ⟨M̂⟩ensβ,V

2
)

(A24)

=
D

D + 1

⟨(M − ⟨M⟩ensβ,V )
2⟩ensβ,V

exp[V β(f(0;V )− f(1/β;V ))]
(A25)

So, I verify that the expectation values of mechanical variables can be calculated by using

Eq. (A1) at finite temperature.
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