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Abstract

In this thesis, we study the hydrodynamic response to jet propagation in the quark-gluon

plasma (QGP). The QGP, the deconfined state of quarks and gluons, is realized under extreme

conditions such as the heavy ion collisions (HIC) where extremely high-temperature is achieved

by a head-on collision of two heavy nuclei accelerated at nearly the speed of light. The QGP

created in the HIC behaves as an almost-perfect fluid and expands with relativistic velocity.

The space-time evolution of the QGP is known to be well described by the relativistic hydro-

dynamics. In the HIC, high-energy quarks and gluons, so-called jets, are produced by hard

processes. They do not participate in the hydrodynamical evolution of the QGP fluid, but tra-

verse the QGP while losing their energies and momenta due to strong interactions. The QGP

medium are excited by the incoming energy and momentum from jets and Mach cones emerge

as the hydrodynamic response. Such a hydrodynamic response carries the information of var-

ious properties of QGP. In Pb-Pb collisions at LHC, low momentum particles at large angles

from the jets are enhanced in dijet asymmetric events. Since these low momentum particles are

considered as constituents of the hydrodynamic fluid, their enhancement at large angles can be

interpreted as the hydrodynamic response to the jets.

Motivated by the experimental data in the HIC, we study the space-time evolution of the

QGP in dijet asymmetric events to make a theoretical connection between the medium response

to the jet propagation and the enhancement of the low-momentum particles in the HIC. We

formulate a hydrodynamic model with source terms to describe the space-time evolution of

the QGP fluid with jet propagations. Then, we perform simulations in the case of the dijet

traversing the center of the expanding medium. We find the Mach cones which are distorted

strongly by the radial expansion of the medium. We show the enhancement of low momentum

particles at large angles in dijet asymmetric events take place as a result of the distorted

Mach cone. Furthermore, we perform simulations by changing both the jet production points

and the initial energies of dijet. We evaluate the effect of the number of dijet events and

carry out the event averaged calculations. As a result, we show that the enhancement of

low momentum particles at large angles is the universal phenomenon originating from the

hydrodynamic response to the jet propagation.
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Chapter 1

Introduction

Quarks and gluons are the elementary particles with color charges: Their interactions are

described by quantum chromodynamics (QCD), which is one of the four fundamental forces

in nature. According to QCD, quarks and gluons are confined in hadrons and cannot be

observed as isolated particles in ordinary conditions (color confinement). However, QCD also

predicts the existence of the quark-gluon plasma (QGP), the deconfined state of quarks and

gluons, under extremely high temperature and density [1]. QGP is the primordial form of

the matter which filled the universe a few microseconds after the Big Bang. Investigation of

the properties of QGP provides not only insight into the underlying QCD theory in various

physical phenomena, but also understanding of the dynamics of the universe just after the Big

Bang. The experimental explorations in the research of QGP are carried out in the heavy-ion

collisions (HIC) at Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory

(BNL) and Large Hadron Collider (LHC) in CERN. In the HIC, extremely high-temperature

is achieved by a head-on collision of two heavy nuclei accelerated at nearly the speed of light.

The QGP created in the HIC is not static, so that its bulk properties are encoded in spectra

of low transverse momentum hadrons detected in the final state. The blue-shifted thermal

equilibrium spectra of the transverse momentum and the anisotropic azimuthal distribution

of particle emission are the consequences of the radial expansion of the hot matter with rela-

tivistic velocity: The QGP keeps local thermal equilibrium and collective flow in response to

the anisotropic pressure gradient structure associated with the initial geometry. Such clues

support that the QGP behaves as a relativistic fluid whose space-time evolution is described by

the relativistic hydrodynamic equations [2, 3, 4, 5, 6]. Hydrodynamic modeling of HIC provides

a unique phenomenological approach to extract the properties of the QGP from the space-time

evolution of non-static and strongly coupled matter.

The high transverse momentum region of hadron spectra in HIC is dominated by collimated

clusters of particles, so-called jets, originating from hard scatterings between the partons of the

two colliding nuclei in the initial stage. They do not take part in the hydrodynamical expansion

because of their large transverse momenta. They are subject to traverse the QGP fluid and lose

their energy through the strong interaction with the QGP medium [7, 8, 9, 10, 11, 12, 13]. As
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2 Chapter 1. Introduction

a consequence of this jet quenching phenomenon, yields of high-transverse momentum hadrons

in HIC are suppressed relative to in proton-proton collisions where the QGP medium is not

formed. Recent dijet event measurement at LHC provides more detail information about the jet

quenching. At the leading order, jets are created as a back-to-back pair with equal transverse

momenta. However observed dijets in HIC are highly imbalanced relative to the those in

hadron-hadron collisions [14]. This can be interpreted as a consequence of jet quenching and

path length difference of the dijet. The QGP created in HIC has finite size with a temperature

profile. One of the dijet going toward the inside high-temperature region of the QGP is more

quenched than the other one going the outside of the medium.

Jets in HIC lose their energy and momentum, so the lost energy and momentum must be

transfered somewhere due to the conservation law. In Pb-Pb collision at LHC, enhancement of

low transverse momentum particles at large angles from an axes of jets is observed in asymmetric

dijet events by CMS Collaboration [15, 16] [Fig.1.1]. These low transverse momentum particles

compensate the imbalance between the dijet and their transverse momenta are sufficiently low

so that one can consider them as constituents of hydrodynamical evolution. Therefore, it is

natural to consider that the energy-momentum deposition of jets wakes collective flow inducing

low momentum particles emitted at large angles from the jet axis.

Peak of jet

Low momentum 
particles

Figure 1.1: Azimuthal angle distribution of transverse momentum in dijet event observed by

CMS at LHC. Each color in histgrams represents the contribution in a transverse-momentum

ranges: 1-4 GeV/c (yellow), 4-8 GeV/c (green) and pT > 8 GeV/c (red). (Figure adapted from

the slides of Ref. [17].)

From the point of view of hydrodynamics, jets can be considered as supersonic moving

sources of energy and momentum. Such supersonic moving source in a fluid induces a conical

shock front, so-called the Mach cone, as interference of sound waves. The conical shock front

propagates toward a specific angle from the direction of the supersonic moving source. The

specific angle is determined by the sound velocity of the fluid [18]. If Mach cones are induced by
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jets in QGP fluid, constituent particles of hydrodynamical evolution are preferentially emitted

at large angles from the jet axis [19, 20]. The Mach cone in QGP fluid has been studied by

models of hydrodynamic calculations with [20, 21, 22, 23, 24, 25] and without [26, 27, 28, 29, 30,

31, 32] linearlization, models of AdS/CFT correspondence [33, 34, 35], and a parton-transport

model [36, 37]. It should be emphasized that the background QGP fluid in HIC expands

with relativistic flow velocity and the Mach cone propagates with 3-dimensional structure.

The expansion of the QGP distorts the Mach cone, so that the Mach cone breaks the boost

invariance which the QGP profile is supposed to have as an approximate symmetry.

In this thesis, hydrodynamic response to the jet propagation in the expanding QGP fluid

is studied. We formulate a hydrodynamical model to describe the space-time evolution of the

QGP with the energy-momentum deposition from the jet. Assuming that the deposited energy

and momentum are thermalized locally in the fluid, the source terms representing the incoming

energy and momentum are introduced to the hydrodynamic equations. We perform the simula-

tions of dijet events in HIC to see its space-time evolution as well as the resultant spectra from

the QGP medium modified by the jet propagation. We solve the relativistic hydrodynamic

equations with source terms numerically in the (3 + 1)-dimensional Milne coordinate. In the

simulations, Mach cones induced via the source term carry the deposited energy and momentum

away from the jet. In the expanding QGP, the structures of Mach cones are largely distorted

by the radial flow. The spectra from the QGP medium is modified by the flow structure at the

freezeout. As a result of the flows on the Mach cones spread away from the jets, the low-pT
particles are enhanced at large angeles from the jets as seen in the data by the CMS collab-

orations [15]. We first perform the simulations of the events with dijet traveling through the

center of the medium to study the low-pT enhancement at large angeles from the jets. Then,

we perform the simulations of a number of dijets events and study the low-pT enhancement

after averaging over the triggered dijet events.

The thesis is organized as follows. In Chap. 2, the overview of the HIC is given. Some

topics in HIC related to this thesis are also picked up and reviewed with the theoretical models

and the experimental results. The formulation of the hydrodynamic model with source terms

is presented in Chap. 3. Our hydrodynamic model consists of the relativistic hydrodynamic

equation with source term, initial condition, equation of state and freezeout. In Chap. 4 we

first perform a simulation in the case of the dijet traveling through the center of the expanding

medium to study the typical flow structures induced by the dijet. In Chap. 5 we performe

more realistic simulations by considering the the spacial distribution of the jet production

points, the initial momentum distribution of the jets and trigger threshold. Chap. 6 is devoted

to summary and concluding remarks. The thesis has appendices for supplemental information.

A brief explanation of the coordinate system used in HIC is given in Appendix A. In Appendix

B, we show the details of the numerical method which we employed for the hydrodynamics

calculations in full (3 + 1)-dimensional Milne Coordinates.

The formulation presented in Chap. 3, the whole works in Chap. 4 and in Chap. 5 are
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based on our original works in collaboration with Tetsufumi Hirano (Sophia Univ.) [29]. In

the works, based on discussions with the collaborator, the author carried out the formulation,

the implementation of the programs and the analysis. The codes for solving the the ideal

hydrodynamic equations in fully (3 + 1)-dimensional Milne coordinates are developed by the

author himself.



Chapter 2

Background

2.1 Heavy Ion Collisions

The strong interaction is one of the four fundamental interactions of nature, the others being the

electromagnetic interaction, the weak interaction and the gravitational interaction. As its name

suggests, the strong interaction is the strongest among the four fundamental interactions and

described by the quantum chromodynamics (QCD) for quarks and gluons with color charges.

According to QCD, colored charged particles cannot be observed as isolated particles under

ordinary conditions (color confinement) [38], which is one of the most fundamental features of

QCD. On the other hand, the quarks and gluons are deconfined at extremely high temperature

[39, 40]. The quark-gluon plasma (QGP) is the deconfined state of quarks and gluons and

supposed to have filled the universe a few microseconds after the Big Bang. As experimental

exploration, heavy ion collisions (HIC) are conducted to create the QGP in the laboratories.

In the HIC, extremely high-temperature is achieved by a head-on collision of two heavy

nuclei accelerated nearly at the speed of light. As a result, QGP is produced at sufficiently high

center of mass energy per nucleon-nucleon collision
√
sNN [41, 42, 43, 44]. HIC are presently

carried out at Relativistic Heavy Ion Collider (RHIC) in Brookhaven National Laboratory

(BNL) for Au-Au collisions at
√
sNN = 200 GeV and Large Hadron Collider (LHC) in CERN

for Pb-Pb collisions at
√
sNN = 2.76 TeV. Fig. 2.1 shows the schematic picture of the space-time

evolution of hot matter created in HIC:

1. Before the collision, the two heavy nuclei move nearly at the speed of light. In the the

laboratory frame, the nuclei are Lorentz-contracted in the direction of the collision axis

due to the large Lorentz dilation factor: γ ∼ 100 at RHIC energy
√
sNN = 200 GeV and

γ ∼ 1500 at LHC energy
√
sNN = 2.76 TeV.

2. The two incoming nuclei collide at τ = 0. Then, the hot medium is created between the

two outgoing nuclei. The medium is composed of deconfined particles with color charges

(mainly gluons) and it is in non-equilibrium state for short proper time after the collision.

5



6 Chapter 2. Background

t

z

�0

�f
Hadron fluid

QGP fluid

�� Thermalization

Hadron gas

Figure 2.1: Schematic representation of space-time evolution of the hot matter in HIC. The

vertical axis is time t and the horizontal axis is the longitudinal coordinate z (the collision

axis).

3. The experimental data in HIC supports the local thermalization of the hot medium at

an early proper time τ = τ0 < 1 fm/c. The mechanism of the early thermalization

is not fully understood and still a big mystery. The hot thermalized matter is called

QGP which expands with relativistic velocity. From the analysis of experimental data

of anisotropic azimuthal distribution in the momentum space, it has turned out that

the QGP behaves as a nearly perfect fluid [2, 3, 4, 5, 6]. Therefore, the relativistic

hydrodynamics is a powerful tool to describe the space-time evolution of the QGP fluid.

So-called “hydrodynamic models” for HIC start by setting up the initial condition for the

hydrodynamic equations at τ = τ0. After that, the thermodynamic variables of the QGP

fluid at every moment are calculated by solving the relativistic hydrodynamic equation

together with the equation of the state.

4. The QGP fluid cools down while expanding and turns into a hadronic fluid. In hydro-

dynamic models for HIC, this hadronization occurs according to the equation of state

employed in the hydrodynamical calculations.

5. After the hadronization, the medium keeps expanding and is diluted. As a result, the hy-

drodynamics becomes no longer applicable. of space-time evolution of the medium This
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is called kinetic freezeout. In hydrodynamic models, the hydrodynamic description is

switched to a particle picture for the weekly-interacting hadron gas at the kinetic freeze-

out. The most popular method is to assume that the kinetic freezeout occurs when the

temperature becomes below the freezeout temperature Tf . The phase space distribution

function of the weekly-interacting hadron gas obtained from the thermodynamic variables

of the fluid at Tf by employing the Cooper-Frye formula [45].

6. The weakly-interacting particles in the hadron gas after the kinetic freezeout scatter with

each other or decay during their evolution before detections. The space-time evolution

of the hadron gas (hadronic cascade) is described by the hadronic transport models. So-

called “hybrid models” for HIC describe not only the hydrodynamical evolution of the

medium but also the hadronic cascade by employing transport models such as the Jet AA

Microscopic transport model (JAM) [46, 47] or the Ultra-relativistic Quantum Molecular

Dynamics model (UrQMD) [48, 49]. Since the hadronic cascade plays important roles

especially in spectra for identified particle species, hadronic transport models are essential

to compare the theoretical predictions with experimental data.

A heavy-ion collision event consists of the various stages as shown above and the information

of all the stage of the medium evolution is encoded in the hadron spectra in the final state. The

transition between different stages are complex problem. Furthermore, not only the evolution

of the medium but also other phenomena, e.g. jet quenching, J/ψ suppression, thermal photon

emission, etc., are involved in a heavy-ion collision event.

2.2 Collective Dynamics

The medium created in the HIC is not static and the information of its space-time evolution

is encoded in the hadron spectra in the final state. Especially, the azimuthal distribution of

particle emission in non-central collisions is strongly related to the bulk behavior of the medium.

In the non-central nucleus-nucleus collisions, the overlapped region of the two colliding nuclei

does not have the rotational symmetry along the beam axis. The shape of the matter created

in the collisions in the transverse plane to the beam axis is rather elliptic. The azimuthal

distribution dN
dφp

for a non-central collision is shown in Fig. 2.2. The figure illustrates the two

situations in which the mean free path of the constituents in the medium is (a) much longer and

(b) much shorter than the typical scale of the medium. In the situation (a), the constituents

can move freely without interaction and are spread out isotropically regardless of the medium

profile. In the situation (b), on the other hand, the medium behaves as a fluid and its space-

time evolution is described by hydrodynamics. The anisotropic pressure gradient associated

with the initial elliptic profile of the matter induces the anisotropic collective flow: The pressure

gradient in direction of a minor axis of the initial elliptic profile is steeper than that in a major

axis direction, then the medium strongly expands in a minor axis direction. As a result, the
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(a) Long mean free path (b) Short mean free path

Figure 2.2: Schematic illustration of the azimuthal distribution dN
dφp

for a non-central collision.

Two situations in which the mean free path of the constituents in the medium is much longer (a)

and much shorter (b) than the typical scale of the medium are shown. (Figure from Ref.[50].)

azimuthal distribution dN
dφp

for a non-central collision becomes a periodic function with a period

π. The amplitude of the periodic dN
dφp

normalized by
∫
dφp

dN
dφp

is given by

v2 =

∫
dφp cos (2φp)

dN

dφp

/∫
dφp

dN

dφp
, (2.1)

where φp is the azimuthal angle of the particle. The quantity v2 is called the elliptic flow and

characterizes the anisotropy originating from the fluidity of the medium [51, 52]. The finite

v2 is actually measured in HIC. Figure 2.3 shows the transverse momentum dependence of the

elliptic flow of π, K, p and Λ in 200 GeV Au+Au collisions at RHIC. Data measured by the

STAR collaboration [54] and results of the (2+1)-dimensional ideal hydrodynamic calculation

[53] is plotted. The ideal hydrodynamic model calculation explains well the elliptic flow in HIC

qualitatively. The success of the hydrodynamics in HIC indicates the appearance of the bulk

of strongly-coupled particles in HIC.

The azimuthal distribution of particle emission in HIC has not only the elliptic component

but also the other components due to the stochastically determined arrangement of the nucleons

in colliding nuclei [Fig. 2.4]. The Fourier harmonics vn of the azimuthal distribution are defined

as

vn (pT , y) =

∫
dφp cos (nφp − nψn)

dN

pTdpTdφpdy

/
dN

pTdpTdy
, (2.2)

where ψn is the azimuthal angle of the reaction plane for each vn in the laboratory frame.
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Figure 2.3: Transverse momentum dependence of the elliptic flow of π, K, p and Λ in
√
sNN =

200 GeV Au-Au collisions at RHIC. The dashed lines are the results of the ideal hydrodynamic

calculations in Ref. [53]. The experimental data are measured by the STAR collaboration [54].

(Figure from Ref. [42].)

vn (pT , y) is the coefficient of the Fourier expansion of the dN
pT dpT dφpdy

:

dN

pTdpTdφpdy
=

1

2π

dN

pTdpTdy

[
1 + 2

∑

n

vn (pT , y) cos (nφp − nψn)

]
. (2.3)

The azimuthal angle of the reaction plane ψn is defined for each event and for each vn as

⟨einφp⟩ = vne
inψn , (2.4)

where the angle bracket denotes averaging over all particles in a single event [Fig. 2.4]. In

various hydrodynamic models, the higher harmonics in HIC is studied by the event-by-event

analysis with the initial condition generated by the models with the Monte Carlo method, e.g.,

MC Glauber model [57, 58, 55], MC KLN model [59, 60], IP-Glasma model [61], etc. Fig. 2.5

shows the numerical results of the (3 + 1)-dimensional viscous hydrodynamic model with the

IP-Glasma initial condition [62]. The hydrodynamic calculation with the shear viscosity to

entropy ratio η/s ≃ 0.2 well reproduces all of v2, v3, v4 and v5 measured in HIC experiments

qualitatively.

Thus, hydrodynamics describes successfully the space-time evolution of the strongly-coupled

matter produced in HIC. The profile during the space-time evolution obtained from the hy-

drodynamic models is used as references in various calculations, e.g., thermal photon emission,

dilepton emission, jet quenching, etc.
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Directed Flow v1 Elliptic Flow v2 Triangular Flow v3

Figure 2.4: Schematic representation of the arrangement of the nucleons in nuclei at the time

of the collision generated by the calculation of the Monte Carlo (MC) Glauber model [55].

The azimuthal direction of the reaction plane for v1, v2 and v3 are also shown. (Figure from

Ref. [56].)

2.3 Glauber Model

The reaction of composite particles such as finite nuclei is usually a problem with high com-

plexity. However, in sufficiently high energies, semi-classical picture of nucleus-nucleus scat-

terings, so-called the Glauber model [64, 65, 66, 57] can be applied. In the Glauber model,

the nucleus-nucleus scattering are treated as multiple independent nucleon-nucleon scatterings.

The nucleons in the nuclei are assumed to have sufficiently high momentum so that they travel

in straight lines and are undeflected during the nucleus-nucleus collisions. The size of the nuclei

is large compared to the scale of the interaction between nucleons so that the distribution of

each nucleons in the nuclei is independently determined by a given density distribution. The

nucleon density distribution of typical heavy nucleus used in HIC such as Au or Pb are well

approximated by the Woods-Saxon distribution:

ρ (r) =
ρ0

1 + exp
(
r−R
a

) , (2.5)

where ρ0 is the nucleon density at the center of the nucleus, R is the nuclear radius and a is

the skin depth of the nucleus. These parameters are R = 6.38 fm, a = 0.535 fm for 197Au and

R = 6.62 fm, a = 0.546 fm for 207Pb. The Woods-Saxon nucleon distribution for 207Pb is shown

in Fig. 2.6.

Let us consider the geometry just before the collision in HIC [Fig. 2.7]. Nucleus A and B

collide at relativistic speed along the z-axis with impact parameter b. The thickness function,

namely transverse distribution of the nucleon density, is obtained by integrating the density

along beam axis, z. The thickness functions for nucleus A and B are

TA (sA) =

∫
dzAρA (sA, zA) , TB (sB) =

∫
dzBρB (sB, zB) . (2.6)
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Figure 2.5: Transverse momentum dependence of v2, v3, v4 and v5 in
√
sNN = 2.76 TeV Pb-

Pb collisions at LHC for 20-30% centrality [62]. The lines are the results of the hydrodynamic

calculations with the shear viscosity to entropy ratio η/s = 0.2 and the IP-Glasma initial

conditions. The experimental data are measured by the ATLAS collaboration [63].

The nucleon densities ρA and ρB are normalized to their mass number A and B:

∫
d2sATA (sA) =

∫
d3rAρA (rA) = A, (2.7)

∫
d2sBTB (sB) =

∫
d3rBρB (rB) = B. (2.8)

Let r⊥ denote any position in the overlap region of A and B in the transverse plane. The

origin is set at the midpoint of A and B in the transverse plane. The joint probability density

of nucleons in the overlap region is given by:

TA

(
r⊥ +

b

2

)
TB

(
r⊥ − b

2

)
. (2.9)

Hence, the number density of binary collisions between the nucleons in the transverse plane is

nbcoll (r⊥) = TA

(
r⊥ +

b

2

)
TB

(
r⊥ − b

2

)
σNN
inel , (2.10)

where σNN
inel is the cross section of the nucleon-nucleon inelastic collision. The examples of ncoll

for Pb-Pb collision with impact parameters b = 0 and 6 fm are shown in Fig. 2.8. In HIC,

the high momentum particles are produced from hard scatterings between the partons in the
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Figure 2.6: The Woods-Saxon nucleon distribution for 207Pb. The parameters in the Woods-

Saxon function are R = 6.62 fm and a = 0.546 fm.

initial stage, so their production mechanism is the same as the one in nucleon-nucleon collision.

Therefore, the production rate for sufficiently high momentum particles can be scaled by the

number of binary collisions between the nucleons, Ncoll =
∫
d2r⊥ncoll.

The number density of participants, namely the nucleons in the colliding nuclei that interact,

with impact parameter b is given by [67, 68]

nbpart (r⊥) = TA

(
r⊥ +

b

2

){
1−

[
1− TB (r⊥ − b/2)

B
σNN
inel

]B}
(2.11)

+TB

(
r⊥ − b

2

){
1−

[
1− TA (r⊥ + b/2)

A
σNN
inel

]A}
. (2.12)

In Fig. 2.9, the examples of npart for Pb-Pb collision with impact parameters b = 0 and 6fm are

shown. The total charged multiplicities in HIC are almost scaled by the number of participants,

Npart =
∫
d2r⊥npart. In Fig. 2.10, The total charged multiplicities Nch divided by ⟨Npart/2⟩

are shown as functions of Npart [69]. Figure 2.10 demonstrates that Npart scaling holds well

in HIC especially at lower energies. However, one can see that Nch
⟨Npart/2⟩ increases slightly with

Npart at higher energies. This tendency is particularly notable in the mid rapidity region.

Fig. 2.11 shows dNch/dη|η=0 normalized by ⟨Npart/2⟩ observed by the PHENIX Collaboration,
√
sNN = 130GeV [70]. It is conceivable that this deviation from Npart scaling is originating from

the contribution of the hard processes on the particle production. To include the contribution

of the hard processes, a simple linear combination of Npart/2 and Ncoll is usually used as the

fitting function of the experimental results [71, 72] :

dNch

dη

∣∣∣∣
η=0

∝ (1− α)

2
Npart + αNcoll. (2.13)
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Figure 2.7: Geometry of a nucleus-nucleus collision. a) View transverse to the beam axis. b)

View parallel to the beam axis.

The initial entropy density for the hydrodynamic model is taken to be proportional to the

similar linear combination of npart/2 and ncoll [51, 73, 74]:

s (τ = τ0, ηs = 0, r⊥) =
dS

τ0dηsd2r⊥

∣∣∣∣
ηs=0

∝ (1− α)

2
npart (r⊥) + αncoll (r⊥) , (2.14)

where τ0 is the initial proper time for the QGP fluid and ηs is the space-time rapidity. The

QGP fluid created in HIC evolves almost adiabatically, because of its extremely small viscosity.

Furthermore, its profile is approximately boost invariant especially at mid-rapidity. As a result,

the “space-time” rapidity density of entropy dS/dηs is an almost conserved quantity. From

the thermodynamical relation and the boost invariance, one may assume that dNch/dη ∼
dNch/dηs ∝ dS/dηs(τf ) = dS/dηs(τ0). This supports the use of Eq. (2.14) to estimate the

initial entropy density. The full profile of the initial entropy density for the hydrodynamical

calculation is assumed as following:

s (τ0, ηs, r⊥) =
C

τ0
θ (Ybeam − |ηs|)H (ηs)

[
(1− α)

2
npart (r⊥) + αncoll (r⊥)

]
, (2.15)

where Ybeam is the beam rapidity and H (ηs) represents the profile in the ηs-direction. H (ηs)

The profile in the ηs-direction is usually assumed to be flat at mid-rapidity like the Bjorken

model [75]. At both ends of the flat region, half Gaussians smoothly connected to a vacuum

are used [76, 77, 78, 79, 80]:

H (ηs) = exp

[
−(|ηs|− ηflat/2)

2

2σ2
η

θ
(
|ηs|−

ηflat
2

)]
, (2.16)
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Figure 2.8: The number density of binary collisions between the nucleons calculated from

equation (2.10) for Pb-Pb collision with impact parameters b = 0 (left) and 6 fm (right).

where ηflat and ση are the rapidity length of the flat region and the width of the Gaussians,

respectively.

To introduce the effect of the difference between the npart(r⊥) in the two colliding nuclei,

npart in Eq. (2.15) is replaced by [81, 82]

npart =
Ybeam − ηs

Ybeam
nA
part +

Ybeam + ηs
Ybeam

nB
part, (2.17)

nA
part = TA

(
r⊥ +

b

2

){
1−

[
1− TB (r⊥ − b/2)

B
σNN
inel

]B}
, (2.18)

nB
part = TB

(
r⊥ − b

2

){
1−

[
1− TA (r⊥ + b/2)

A
σNN
inel

]A}
. (2.19)

At ηs = 0, Eq. (2.19) reduces to Eq. (2.12). By introducing the trapezoidal weight, which

breaks the longitudinal boost invariance at mid-rapidity region, the pseudorapidity distribution

dNch/dη in the collisions between two different nuclei can be reproduced. The parametrization

given by Eqs. (2.15), (2.16) and (2.19) is called the modified BGK initial condition [83].

2.4 Jet Quenching

In HIC, the high-pT particles produced in the initial scattering between the partons in the

colliding nuclei traverse the QGP medium [Fig. 2.12]. The spectra of high-pT particles is
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Figure 2.9: The number density of participants calculated from equation (2.12) for Pb-Pb

collision with impact parameters b = 0 (left) and 6 fm (right).

modified from the ones without the medium by the effect of the interaction with the medium

during their traveling. This phenomenon is called the jet quenching and provides insight into

the properties of the QGP in HIC.

2.4.1 Hard Processes in HIC

Non-perturbative long-distance contributions are always involved in partonic reactions in nucleon-

nucleon collisions and in HIC because all partons are confined in hadrons at both the initial

and the final states. On the other hand, the cross section of short-distance hard processes be-

tween partons, in which large momenta are exchanged, can be calculated in perturbative QCD,

owing to asymptotic freedom. By the factorization theorem of QCD, the cross section for the

production of high-pT hadron in nucleon-nucleon collisions can be separated into the long- and

short-distance contributions [Fig. 2.13, left]:

σAB→h = fA
(
xa, Q

2
)
⊗ fB

(
xb, Q

2
)
⊗ σab→ij

(
xa, xb, Q

2
)
⊗Dj→h

(
z, Q2

)
, (2.20)

where σab→ij (xa, xb, Q2) is the short-distance cross section of the elementary process, ab → ij,

calculable in perturbative QCD, the other parts in the right-hand side are non-perturbative

quantities: fA (xa, Q2) and fB (xb, Q2) are parton distribution functions (PDF) representing

the structure of the colliding particles in terms of quarks and gluons. PDF, fA (xa, Q2), can be

interpreted as the probability to find a parton a with momentum fraction xa inside the colliding
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Figure 2.10: Nch/⟨Npart/2⟩ against Npart for
√
sNN = 19.6, 130, 200 GeV Au-Au collisions [69].

particle A. Dj→h (z, Q2) is the fragmentation function (FF) describing the hadronization pro-

cess of the parton j into the hadron h with momentum fraction z in the final state. PDF and

FF for proton-proton collisions are obtained by the global fitting various experimental data,

such as deep inelastic scattering and e+-e− annihilation, using the Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi (DGLAP) evolution equations [85, 86, 87, 88]:

t
∂D (x, t)

∂t
=

∫ 1

x

dz

z

αs

2π
P (z)D

(x
z
, t
)
, (2.21)

where t = µ2
F , µF is the factorization scale, αs = g/(4π) is the strong coupling constant, D (x, t)

can be either the PDF or the FF and P (z) is the splitting function [89].

In HIC, the factorization formula (Eq. (2.20)) must be modified due to the presence of the

QGP medium. Since the short-distance processes take place before the creation of the medium

[Fig. 2.13, right], only the FF is modified by the medium effects:

σAB→h = fA
(
x1, Q

2
)
⊗ fB

(
x2, Q

2
)
⊗ σab→ij

(
x1, x2, Q

2
)
⊗Dmed

j→h

(
z, Q2

)
. (2.22)

In HIC, the high-pT partons are created as well as in nucleon-nucleon collisions, and then

propagate through the QGP medium. The FF modified by the medium effect Dmed is subject

to the DGLAP equation with the medium effect during the propagation:

t
∂Dmed (x, t)

∂t
=

∫ 1

x

dz

z

αs

2π
Pmed (z)Dmed

(x
z
, t
)
. (2.23)
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Figure 2.11: The pseudorapidity density of the charged particle at mid rapidity (|η| < 0.35) as

a function of Npart measured by the PHENIX Collaboration at RHIC,
√
sNN = 130 GeV [70].

The data are fitted by equation (2.13) with α = 0.16 (solid line).

As the initial condition for the DGLAP equation of Dmed, the the same value as the FF without

the medium effect Dvac is used, i.e. Dmed (x, Q2
0) = Dvac (x, Q2

0) [90, 91]. In this procedure,

it is assumed that at sufficiently large scale, Q2 = Q2
0, the hadronization process is completed

before affected by the medium because of the very large transverse momentum. So, all the QGP

medium effect in HIC is encoded in the FF through the medium-modified splitting function in

the DGLAP equation (2.23):

Pmed (z) = P vac (z) +∆P (z, t) , (2.24)

where P vac is the same function as P in Eq. (2.21) and ∆Pmed is the additional contribution

to take into account the interaction with the QGP medium during the propagation [92]. As

a result, the information about interaction between the propagating hard partons and the

QGP medium are encoded in the spectra of high-pT hadrons in the final state. Though the

factorization formula for HIC has not been proven but is simply assumed at the moment, it is

well supported by various experimental data compared with the ones in p-p collisions.

2.4.2 Parton Energy Loss in HIC

The high-pT partons, produced from early stage hard scatterings, do not participate in the local

thermalized fluid but traverse the fluid, because of their large transverse momenta. During

traversing the QGP-fluid, the high-pT partons strongly interact with constituent partons of the

QGP fluid. In the QGP medium, the high-pT partons are supposed to lose their energy via the

interactions such as the elastic collisions and the medium-induced radiation [Fig. 2.14)]. This

phenomenon is called the jet quenching [7, 8, 9, 10, 11, 12, 13].
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Figure 2.12: Schematic illustration of the high-pT parton traversing the QGP medium in HIC.

Figure from [84]

The idea of parton energy loss in the QGP medium was first proposed by Bjorken in 1982

[7]. He considered elastic scatterings with the thermalized partons in the QGP medium. The

energy loss of the high-pT partons via the elastic scatterings is called the collisional energy loss

and is given by [7, 12, 93, 94];

dE

dt

∣∣∣∣
col

= 2πCRα
2
sT

2

(
1 +

Nf

6

)
log

√
4ET

mD
. (2.25)

Here, E is the energy of the high-pT parton, CR is the Casimir operator taking its value

CR = CA = 3 where the the high-pT parton is a gluon and CR = CF = 4/3 where the the

high-pT parton is a quark, T is the temperature of the medium, Nf is the number of quark

flavors in the medium, and mD =
√

(1 +Nf/6) gT is the Debye color-screening mass of the

gluons in the QGP medium.

Especially for the light flavor partons with large momentum, the energy loss due to medium-

induced radiation is supposed to be much larger than the one due to the collisional energy

loss. Radiative energy loss has been studied in various formalisms with different assumptions;

Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov (BDMPS-Z) [95, 96, 97, 98, 99], Amesto-

Salgado-Wiedemann (ASW) [100, 101, 102], Arnold-Moore-Yaffe (AMY) [103, 104, 105, 106],

Gyulassy-Levai-Vitev (GLV) [107, 108] and higer twist (HT) [92, 109]. Radiated gluons carry
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Figure 2.13: Feynman diagrams for hard processes in nucleon-nucleon collision (left) and in

heavy ion-heavy ion collision (right). fA and fB are parton distribution functions and σab→ij

is the cross section of the short-distance process, ab → ij. D and Dmed are fragmentation

functions in the vacuum and in the QGP medium, respectively. The colored region indicates

the region where the presence of the medium affects the hard processes in HIC.

away energies and momenta from the leading parton. The radiative energy loss is given by

⟨∆E⟩ =
∫

d (∆E) ∆E P (∆E) . (2.26)

Here, ∆E is an averaged total energy carried away by radiated gluons and P (∆E) is the

probability distribution of parton energy loss. Assuming that successive gluon emissions are

independent, the Poisson distribution is commonly employed for P (∆E):

P (∆E) = exp

[
−
∫ ∞

0

dω
dI

dω

] ∞∑

n=0

1

n!

[
n∏

i=1

∫
dωi

dI (ωi)

dω

]
δ

(
∆E −

n∑

i=1

ωi

)
, (2.27)

where dI/dω is the spectrum of radiated gluons with energy ω. In BDMPS-Z formalism, the

spectrum is

ω
dIBDMPS−Z

dω
=

2αsCR

π
log

∣∣∣∣cos
[
(1 + i)

√
ωc

ω

]∣∣∣∣ (2.28)

≃ 2αsCR

π

{ √
ωc
ω for ω ≪ ωc,

1
3

(
ωc
ω

)2
for ω ≫ ωc.

(2.29)

Here, ωc is the characteristic gluon energy and its definition is given by

ωc ≡
1

2
q̂L2, (2.30)
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Leading-
parton

Figure 2.14: Schematic illustration of the high-pT parton traveling through the QGP medium.

The medium strongly interacts with the high-pT parton (leading parton) and induces gluon

radiation.

where q̂ is the jet quenching parameter and L is the path length in the medium. The jet

quenching parameter can be interpreted as a diffusion coefficient in k⊥-space; q̂ = ⟨k2
⊥⟩/L.

Here, k⊥ is momentum transverse to the direction of the leading parton. All the information

about the properties of the medium is encoded in q̂. From Eqs. (2.26), (2.27) and (2.29), the

total radiative energy loss in BDMPS-Z formalism is

⟨∆E⟩BDMPS−Z =

∫ ∞

0

dωω
dIBDMPS−Z

dω
= αsCRωc =

αsCR

2
q̂L2. (2.31)

We can see so-called L2-dependence of the radiative energy loss in Eq. (2.31).

The effect of the parton energy loss in HIC experiments can be extracted from the measure-

ments of the nuclear modification factor;

RAA (pT , ηp) =
1

⟨Ncoll⟩
dNAA

ch

dpTdηp

/
dNpp

ch

dpTdηp
, (2.32)

where ⟨Ncoll⟩ is the averaged number of binary collisions in A-A collisions, NAA
ch and Npp

ch are

the number of charged particles in nucleus-nucleus collisions and in proton-proton collisions,

respectively. If the spectra are not modified by the medium, RAA would be consistent with

unity. Figure 2.15 shows the nuclear modification factor measured by the ALICE collaboration

in HIC at LHC. It is found that RAA in the central (0-5%) collisions is small compared to

the one in the peripheral (70-80%) collisions at high-pT region. As collisions become more

peripheral, the size of the created medium is supposed to become smaller. As a result, there

is almost no modification on the high-pT particles by the medium and RAA is almost equal
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Figure 2.15: Nuclear modification factor RAA measured in central (0-5%) and peripheral

(70-80%) Pb-Pb collisions as a function of transverse momentum pT at LHC energy
√
sNN =

2.76TeV [110].

to 1 at high-pT region in the peripheral (70-80%) collisions. On the other hand, the high-pT
particles in the central (0-5%) collisions are strongly suppressed by the medium. If partons lose

their energy by the medium effect, the spectra are shifted to the low-pT direction. Then, the

particles in high-pT region are depressed because the spectra in hadron-hadron collisions are

steeply decreasing functions of pT . Therefore, the high-pT suppression in HIC shown above is

a consequence of the parton energy loss in the QGP medium.

2.4.3 Dijet Asymmetry in HIC

In the leading order, high-pT partons are produced as a pair in opposite azimuthal directions

with equal transverse momenta due to the energy momentum-conservation. Sufficiently high-pT
partons are hadronized through the fragmentation processes and detected as back-to-back pairs

of jets, namely collimated clusters of high-pT hadrons, in the final state in relativistic collision

experiments.

In recent Pb-Pb experiments at LHC, thanks to its high center of mass energy
√
sNN =

2.76 TeV per nucleon-nucleon collision, detailed measurements of fully reconstructed jets with

transverse momenta pjetT > 100 GeV/c has become available. A large number of dijet events,

namely events with two very high-pT triggered jets in an opposite direction each other, are
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Figure 2.16: Lego plot for a dijet asymmetric event in a Pb-Pb collision at
√
sNN TeV by the

CMS collaboration [15]. The height of towers indicates the total-pT detected in a calorimeter

cell at particular azimuthal angle φp and pseudorapidity ηp.

observed by the ATLAS Collaboration [14] and the CMS Collaboration [15, 111] [Fig. 2.16]

in HIC at LHC. The observed dijets are supposed to originate from pairs of partons produced

in early stage hard processes. Without the medium effect, the sum of the dijet momentum

is balanced due to the energy momentum-conservation in the hard process. However, a large

number of highly asymmetric dijet events are observed in HIC. To quantify the imbalance of

the dijet events, the asymmetry ratio is defined by

AJ =
pjet1T − pjet2T

pjet1T + pjet2T

(2.33)

where pjet1T and pjet2T are the transverse momentum of the leading jet and of the subleading jet,

respectively. In central Pb-Pb collisions at LHC, a mean shift of AJ to higher values from the

ones without medium effect is observed [14, 15, 111] [Fig. 2.17]. The increase of dijet events with

large-AJ compared with p-p collisions indicates a substantial amount of energy loss of partons

to be sources of jets in the QGP medium at LHC. In a dijet event, one parton going inside of the

QGPmedium is strongly quenched because of its long path length through the high-temperature

region of the medium and the other one going toward the outside does not lose so much energy.

As a consequence, the strongly quenched parton is detected as a subleading jet and the other



2.4. Jet Quenching 23

Figure 2.17: Event fraction as a function of the dijet asymmetry ratio AJ for leading jets with

pjet1T > 120 GeV/c, subleading jets with pjet2T > 50 GeV/c and the azimuthal angles between

dijet |φjet1
p − φjet2

p | > (2/3)π for p-p collisions at
√
sNN = 7 TeV and for Pb-Pb collisions at

√
sNN = 2.76 TeV in 50-100% (b), 30-50% (c), 20-30% (d), 10-20% (e) and 0-10% (f) centrality

bins by the CMS collaboration [15]. The histograms show the results form simulations using

event generator PYTHIA without the medium effect on jets.

one is detected as a leading jet. Various theoretical calculations based on parton energy loss

have been performed to explain the dijet asymmetry [112, 113, 114, 115, 116, 117, 118, 119].

In dijet asymmetric events, the sum of transverse momenta of jets is not balanced. Since

the total momentum of the whole system must be balanced at all times due to the energy-

momentum conservation, the lost momenta of jets is diffused somewhere in the system created in

HIC. The missing transverse momentum to see the balance of the whole transverse momentum,

is defined as

/p||T =
∑

i

−piT cos(φi
p − φjet1

p ), (2.34)

where i = 1 is an index for detected tracks in a dijet event and the sum is taken over all

the tracks. The missing transverse momentum /p||T is the net transverse momentum along the

jet axis and pT of all the tracks is projected onto the subleading jet axis φjet2
p = φjet2

p + π in
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for both centrality ranges and even for events with large observed dijet asymmetry, in both
data and simulation. This shows that the dijet momentum imbalance is not related to unde-
tected activity in the event due to instrumental (e.g. gaps or inefficiencies in the calorimeter) or
physics (e.g. neutrino production) effects.
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Figure 15: Average missing transverse momentum, h6pkTi, for tracks with pT > 0.5 GeV/c, pro-
jected onto the leading jet axis (solid circles). The h6pkTi values are shown as a function of dijet
asymmetry AJ for 0–30% centrality, inside (DR < 0.8) one of the leading or subleading jet cones
(left) and outside (DR > 0.8) the leading and subleading jet cones (right). For the solid circles,
vertical bars and brackets represent the statistical and systematic uncertainties, respectively.
For the individual pT ranges, the statistical uncertainties are shown as vertical bars.

The figure also shows the contributions to h6pkTi for five transverse momentum ranges from 0.5–
1 GeV/c to pT > 8 GeV/c. The vertical bars for each range denote statistical uncertainties. For
data and simulation, a large negative contribution to h6pkTi (i.e., in the direction of the leading jet)
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jected onto the leading jet axis (solid circles). The h6pkTi values are shown as a function of dijet
asymmetry AJ for 30–100% centrality (left) and 0–30% centrality (right). For the solid circles,
vertical bars and brackets represent the statistical and systematic uncertainties, respectively.
Colored bands show the contribution to h6pkTi for five ranges of track pT. The top and bot-
tom rows show results for PYTHIA+HYDJET and PbPb data, respectively. For the individual pT
ranges, the statistical uncertainties are shown as vertical bars.

this study to include the |hjet| < 0.8 and 0.5 < pTrack
T < 1.0 GeV/c regions not accessible for the

study in Section 3.2. The leading and subleading jets were again required to have |h| < 1.6.

In Fig. 14, h6pkTi is shown as a function of AJ for two centrality bins, 30–100% (left) and 0–30%
(right). Results for PYTHIA+HYDJET are presented in the top row, while the bottom row shows
the results for PbPb data. Using tracks with |h| < 2.4 and pT > 0.5 GeV/c, one sees that indeed
the momentum balance of the events, shown as solid circles, is recovered within uncertainties,
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this study to include the |hjet| < 0.8 and 0.5 < pTrack
T < 1.0 GeV/c regions not accessible for the

study in Section 3.2. The leading and subleading jets were again required to have |h| < 1.6.

In Fig. 14, h6pkTi is shown as a function of AJ for two centrality bins, 30–100% (left) and 0–30%
(right). Results for PYTHIA+HYDJET are presented in the top row, while the bottom row shows
the results for PbPb data. Using tracks with |h| < 2.4 and pT > 0.5 GeV/c, one sees that indeed
the momentum balance of the events, shown as solid circles, is recovered within uncertainties,
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for both centrality ranges and even for events with large observed dijet asymmetry, in both
data and simulation. This shows that the dijet momentum imbalance is not related to unde-
tected activity in the event due to instrumental (e.g. gaps or inefficiencies in the calorimeter) or
physics (e.g. neutrino production) effects.
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Figure 15: Average missing transverse momentum, h6pkTi, for tracks with pT > 0.5 GeV/c, pro-
jected onto the leading jet axis (solid circles). The h6pkTi values are shown as a function of dijet
asymmetry AJ for 0–30% centrality, inside (DR < 0.8) one of the leading or subleading jet cones
(left) and outside (DR > 0.8) the leading and subleading jet cones (right). For the solid circles,
vertical bars and brackets represent the statistical and systematic uncertainties, respectively.
For the individual pT ranges, the statistical uncertainties are shown as vertical bars.

The figure also shows the contributions to h6pkTi for five transverse momentum ranges from 0.5–
1 GeV/c to pT > 8 GeV/c. The vertical bars for each range denote statistical uncertainties. For
data and simulation, a large negative contribution to h6pkTi (i.e., in the direction of the leading jet)
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Figure 15: Average missing transverse momentum, h6pkTi, for tracks with pT > 0.5 GeV/c, pro-
jected onto the leading jet axis (solid circles). The h6pkTi values are shown as a function of dijet
asymmetry AJ for 0–30% centrality, inside (DR < 0.8) one of the leading or subleading jet cones
(left) and outside (DR > 0.8) the leading and subleading jet cones (right). For the solid circles,
vertical bars and brackets represent the statistical and systematic uncertainties, respectively.
For the individual pT ranges, the statistical uncertainties are shown as vertical bars.

The figure also shows the contributions to h6pkTi for five transverse momentum ranges from 0.5–
1 GeV/c to pT > 8 GeV/c. The vertical bars for each range denote statistical uncertainties. For
data and simulation, a large negative contribution to h6pkTi (i.e., in the direction of the leading jet)
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tected activity in the event due to instrumental (e.g. gaps or inefficiencies in the calorimeter) or
physics (e.g. neutrino production) effects.
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jected onto the leading jet axis (solid circles). The h6pkTi values are shown as a function of dijet
asymmetry AJ for 0–30% centrality, inside (DR < 0.8) one of the leading or subleading jet cones
(left) and outside (DR > 0.8) the leading and subleading jet cones (right). For the solid circles,
vertical bars and brackets represent the statistical and systematic uncertainties, respectively.
For the individual pT ranges, the statistical uncertainties are shown as vertical bars.

The figure also shows the contributions to h6pkTi for five transverse momentum ranges from 0.5–
1 GeV/c to pT > 8 GeV/c. The vertical bars for each range denote statistical uncertainties. For
data and simulation, a large negative contribution to h6pkTi (i.e., in the direction of the leading jet)
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Figure 14: Average missing transverse momentum, h6pkTi, for tracks with pT > 0.5 GeV/c, pro-
jected onto the leading jet axis (solid circles). The h6pkTi values are shown as a function of dijet
asymmetry AJ for 30–100% centrality (left) and 0–30% centrality (right). For the solid circles,
vertical bars and brackets represent the statistical and systematic uncertainties, respectively.
Colored bands show the contribution to h6pkTi for five ranges of track pT. The top and bot-
tom rows show results for PYTHIA+HYDJET and PbPb data, respectively. For the individual pT
ranges, the statistical uncertainties are shown as vertical bars.

this study to include the |hjet| < 0.8 and 0.5 < pTrack
T < 1.0 GeV/c regions not accessible for the

study in Section 3.2. The leading and subleading jets were again required to have |h| < 1.6.

In Fig. 14, h6pkTi is shown as a function of AJ for two centrality bins, 30–100% (left) and 0–30%
(right). Results for PYTHIA+HYDJET are presented in the top row, while the bottom row shows
the results for PbPb data. Using tracks with |h| < 2.4 and pT > 0.5 GeV/c, one sees that indeed
the momentum balance of the events, shown as solid circles, is recovered within uncertainties,

(a) (b) (c)

Figure 2.18: ⟨/p||T ⟩ as a function of the dijet asymmetry ratio AJ measured for dijet events in

Pb-Pb collisions at by the CMS collaboration [15]. The trigger for the leading jet is pT,1 > 120

GeV/c and the one for the subleading jet is pT,2 > 50 GeV/c. The angle and pseudorapidity

distance between the the leading and subleading jets are |φjet1
p − φjet2

p | > (2/3)π and |ηsjet1 −
ηsjet2| > 1.6, respectively. The tracks with |ηp| < 2.4 and pT > 0.5 GeVc are used in the result

Figure (a) shows the result for the whole region. Figure (b) is the result for inside the leading

and subleading jet cones (∆R < 0.8) and figure (c) is one for outside both of the leading

and subleading jet cones (∆R ≥ 0.8). The solid black circles show the total ⟨/p||T ⟩ and each

band represents the contribution in six transverse-momentum ranges: 0-0.5, 0.5-1, 1-2, 2-4, 4-8

GeV/c, and pT > 8 GeV/c.

the azimuthal direction in Eq. (2.34). /p||T is measured for dijet events in Pb-Pb collisions at

the LHC by the CMS Collaboration [15] [Fig. 2.17]. The event-averaged missing transverse

momentum, ⟨/p||T ⟩, turned out to vanish within uncertainties even in highly-asymmetric dijet

events. Figure 2.18 (a) shows that high-pT particles which mainly come from the leading jet

negatively contributes to ⟨/p||T ⟩ and this negative contribution is balanced by lower-pT particles

with 0.5 < pT < 8 GeV/c in the direction of the subleading jet. Let us consider two cones in

the momentum space around the leading jet axis and the subleading jet axsis with the size

∆R =
√

(∆φp)2 + (∆ηs)2 = 0.8, (2.35)

where ∆φp and ∆ηs are the azimuthal angle and pseudorapidity distance from the leading

or subleading jet axis in the momentum space, respectively [Fig. 2.19]. The contribution of

the particles inside (∆R < 0.8) and outside (∆R ≥ 0.8) the cones are shown in Fig. 2.18

(b) and (c), respectively. The contribution to /p||T from the in-cone region is negative and

dominated by high-pT particles. From this, we can see the imbalance between the jet. This

imbalance is compensated by the contribution from the out-of-cone region dominated by very
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Figure 2.19: Schematic illustration of regions in momentum space divided by two cones around

the leading and subleading jet axes with conesize ∆R =
√

∆φ2
p +∆η2p = 0.8. (Figure adapted

from the slides of Ref. [17].)

low-pT particles with 0.5 < pT < 2 GeV/c. Since the low-pT particles play an important role in

momentum balance of dijet asymmetric events, it has been suggested that the energy deposition

from the traveling partons wakes the QGP medium and induces collective flow to enhance low

momentum particles at large angles from the axis of the quenched jet.

2.5 Medium Response to Jet Quenching

The energetic partons originating from initial hard processes do not take part in the hydrody-

namical evolution of the QGP medium but traverse the medium. While traversing the medium,

the energetic partons deposit their energies and momenta due to the jet quenching. On the

side of the QGP fluid, jets can be be considered as supersonic moving sources of energy and

momentum.

A source in a fluid induces sound waves. When the source moving faster than the sound

velocity of the fluid, a shock wave front appears as an interference of the sound waves [Fig.

2.20]. The shock front, so-called Mach cone, forms a conical surface propagating at a specific

angle from the direction of the source. The specific angle is called Mach angle and its value is

given by

θM = arcsin
cs
v
, v > cs, (2.36)

where cs is the sound velocity of the fluid and v is the velocity of the source.

In the QGP fluid, Mach cones are supposed to be induced by the energy-momentum deposi-

tion from jets. [19, 20]. The Mach cone has been analyzed in various theoretical studies such as

hydrodynamics with [20, 21, 22, 23, 24, 25] or without [26, 27, 28, 29, 30, 31, 32] linearlization,

AdS/CFT correspondence [33, 34, 35], and a parton-transport model [36, 37].



26 Chapter 2. Background

Figure 2.20: Schematic illustration of a Mach cone induced by a supersonic moving source.

Fig. 2.21 shows an example of a result from ideal hydrodynamical calculation [28]. A jet

induces flows at angles with the jet due to a Mach cone, as well as a fast flow following the

jet. As a result of these flows, low momentum particles from the medium are preferentially

emitted at large angles from the jet axis. Furthermore, a vortex ring around the passage of the

jet arises inside the Mach cone and follows the jet.

The structure of the Mach cone depends mainly on the sound velocity of the medium as

seen in Eq. (2.36). The shape of the Mach cone is also modified by the shear viscosity of the

fluid. The shear viscosity transports the fast flow following the jets perpendicular to jet. As a

result, Mach cone structure smears out with increasing shear viscosity of the QGP [22, 25, 37].

Thus, collective flow induced by jet energy-momentum deposition carries a lot of information

of QGP.
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Figure 2.21: Temperature distribution and flow velocity field of the QGP fluid. An energetic

parton travels in x-direction while depositing its energy and momentum into the uniform fluid

with T = 0.3 GeV [28].





Chapter 3

Hydrodynamic Model with Source

Terms

We formulate a hydrodynamic model with source terms to study the transport dynamics of

momenta deposited from jets to the QGP fluid [29]. Assuming that the jets traverse the

expanding QGP fluids, we simulate dijet asymmetric events in HIC. The jets are subject to

deposit their energy and momentum into the QGP fluid through the strong interaction. We

solve the relativistic hydrodynamic equations with source terms numerically to describe the

space-time evolution of the QGP fluid affected by the jet. Then, we study the modification of

spectra from the medium by the jet propagation.

3.1 Hydrodynamic Equations with Source Terms

Assuming local thermal equilibrium, we employ the relativistic ideal hydrodynamic equations

to describe the spacetime evolution of the QGP medium after the local thermalization τ ≥ τ0.

The conventional hydrodynamic models for HIC require the energy-momentum conservation

only in the QGP medium. In the following, we introduce the source term in the hydrodynamic

equations which represents the incoming energy and momentum to the fluid. The source term

is modeled to conserve the energy and momentum of the whole system consisting of the jets and

the QGP fluid. The energy-momentum deposition by the jet induces flows in the expanding

QGP. As a result, the spectra of particles originating from the medium can be modified by jet

energy loss.

3.1.1 Relativistic Ideal Hydrodynamic Equations

The hydrodynamics is an effective theory of the many-body system in the long-distance and

long-time limit. If the mean free path of the constituents is significantly shorter than any

typical length scale in the system, the space-time evolution of the system is insensitive to the

microscopic details and described by the conservation laws of the macroscopic variables.

29
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The energy-momentum conservation law and continuity equations for conserved charges for

relativistic fluid are given by

∂µT
µν(x) = 0, (3.1)

∂µN
µ
i (x) = 0, (3.2)

where T µν is the energy-momentum tensor of the fluid andNµ
i is the density of the i-th conserved

charge. The meaning of each component is,

T 00 : energy density,

T 0i : i-th component of energy density flux,

T i0 : density of i-momentum,

T ij : i-th component of j-momentum flux,

N0 : charge density,

N i : i-th component of charge density current.

(3.3)

The energy-momentum tensor of the fluid is a symmetric tensor so that the fluid does not have

local torques.

In the following, only ideal, namely viscous-free, hydrodynamics will be considered. We

assume isotropy of the for ideal fluid in the local rest frame. Then, the energy-momentum

tensor in the local rest frame can be written as the following diagonal form:

T µν
LRF(x) =

⎛

⎜⎜⎜⎝

e(x) 0 0 0

0 P (x) 0 0

0 0 P (x) 0

0 0 0 P (x)

⎞

⎟⎟⎟⎠
, (3.4)

where e(x) is the local energy density and P (x) is the local pressure in the local rest frame.

One can obtain the energy-momentum tensor in any frame by the Lorentz Transformation of

T µν
LRF.

We introduce the four-flow velocity uµ defined as

uµ(x) = γ(x)(1,v(x)), (3.5)

where γ = 1/
√
1− |v|2 is the Lorentz factor. The four-flow velocity uµ is normalized as

uµ(x)uµ(x) = 1. (3.6)

By using uµ, the energy-momentum tensor and the conserved current for perfect fluid can be

decomposed as

T µν = (e(x) + P (x))uµ(x)uν(x)− P (x)ηµν (3.7)

= e(x)uµ(x)uν(x)− P (x)∆µν(x), (3.8)

Nµ
i (x) = ni(x)u

µ(x), (3.9)
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where ηµν = diag(1,−1,−1,−1) is the Minkowski metric, and ∆µν = ηµν − uµuν is the tensor

perpendicular to uµ:

uµ∆
µν = uµ(η

µν − uµuν) = (1− uµuµ)u
ν = 0. (3.10)

To see more in detail about the ideal hydrodynamic equations, we perform the projection

of Eq. (3.1) along the four-flow velocity:

0 = uν∂µT
µν (3.11)

= uµ∂µe+ (e+ P )∂µu
µ. (3.12)

If we assume the local thermal equilibrium, the following thermodynamic relations can be used:

de = Tds+
∑

i

µidni, (3.13)

e = Ts− P +
∑

i

µini, (3.14)

where s, T and µ are the local entropy density, the local temperature and the local chemical

potential, respectively. By using Eq. (3.13), Eq. (3.14) and charge conservation ∂µ(niuµ) = 0,

Eq. (3.12) becomes

∂µ (s(x)u
µ(x)) = 0. (3.15)

Thus, the entropy of the ideal fluid is conserved globally and not produced during the space-time

evolution.

Similarly, Eq. (3.1) projected by ∆µν is

∆ρν∂µT
µν = 0, (3.16)

which reduces to

(e+ P )uµ∂µuρ = ∆ρν∂
νP. (3.17)

Since uµ∂µuρ represents the acceleration of the flow, the flow is generated along the pressure

gradient. Eq. (3.17) is the equation of motion of the relativistic ideal fluid and corresponds to

the Euler equation in the non-relativistic hydrodynamics.

3.1.2 Source Terms

We introduce source term in the hydrodynamic equations which represents the incoming energy

and momentum from the jet:

∂µT
µν (x) = Jν (x) , (3.18)
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where Jν is the source term where is the four-momentum density deposited from the traversing

jet partons.

The detailed form of the source term and the mechanism of jet’s energy deposition into

the medium are not fully understood. The source term due to the collisional energy loss of an

energetic parton in the thermalized QGP medium is studied based on the Boltzmann-Vlasov

equation [120] and the hard thermal loop (HTL) perturbation theory [121]. The radiative energy

loss makes huge contributions to the energy-momentum deposition through the absorption or

collision energy loss of the soft radiated partons [114]. The flow structure induced by jets is

enhanced by the contribution of the radiative energy loss [24, 23]. More recently, the energy-

momentum deposition of jets has been studied in Refs. [122, 31] by performing Monete Carlo jet

quenching simulations based on perturbative QCD. It is also suggested that the flow structure

induced by jets can be largely modified by the effect of full (3+1)-dimensional space-time

structure of jet shower [121].

Here, assuming that the lost energy and momentum of energetic partons are instantaneously

deposited to and thermalized in a QGP-fluid cell, we employ a simple form for massless jets

traversing the QGP fluid:

Jµ (x) =
∑

a

Jµ
a (x) , (3.19)

J0
a (x) = −dp0a

dt
δ(3) (x− xa(t)) , (3.20)

Ja(x) =
pa

p0a
J0
a(x), (3.21)

where the index a denotes each jet and pµa = (p0a, pa) is the momentum of the jet.

For the energy loss of the jets in the local rest frame of the fluid, we take the collisional

energy loss formula [94]

−dp0a
dt

= A× 8

3
παs

2T 2

(
1 +

1

6
Nf

)
log

√
4Tp0a
mD

. (3.22)

Here, p0a is the energy of a jet in the local rest frame, αs = g2/ (4π) is the strong fine structure

constant, Nf is the number of active flavors and mD =
√
1 +Nf/6 gT is the Debye mass in the

QGP medium. The amount of the energy loss obtained from the collisional energy loss (3.22)

is too small to reproduce the highly asymmetric dijet event observed in HIC. To determine the

energy deposition into the medium in a more quantitative way, the contribution of the other

energy loss mechanisms must be considered. It should be noted that the purpose of the present

study is to investigate the hydrodynamic response of the QGP to the jets rather than the energy

loss mechanism itself. So, for simplicity, we introduce A which is a phenomenological parameter

which allows us to controls the strength of the energy loss. The momentum dependence is

included only logarithmically in Eq. (3.22) and the parameter A can be interpreted as a value

corresponding to a typical number of radiated partons in a jet.
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We solve the hydrodynamic equations numerically with the source terms (3.18) in the

(3 + 1)-dimensional Milne coordinates (τ, x, y, ηs) without linearization. Here, τ =
√
t2 + z2

is the proper time and ηs = (1/2) ln [(t+ z) / (t− z)] is the spacetime rapidity. The source

terms in the Milne coordinate are calculated by performing the Lorentz transformation on the

ones (3.19) in the local rest frame obtained from Eqs. (3.20), (3.21) and (3.22). See Appendix

A.1 for the Milne coordinate and Appendix B for the numerical techniques for the hydrody-

namic calculations. In this framework, we can handle an expanding background QGP fluid

created in HIC together with its response to the jet propagation.

In the hydrodynamic calculations, we developed a new and robust scheme for the Milne

coordinates [123] are employed to keep the energy-momentum conservation (see Appendix B.5

for details). This plays a crucial role in the calculations because the deposited energy and

momentum from a jet are very small relative to the total energy and momentum of the medium.

For the jet energy loss, we set Nf = 3 (u, d, s), αs = 0.3, and A = 15 in Eq. (3.22) to obtain

the typical amount of the energy loss at LHC [114, 122]. We assume that the jets interact

only with QGP with T > 0.175 GeV. Enhancement of the jet energy loss near the critical

temperature [124, 125, 126] and jet energy loss in the hadronic medium are not included in the

calculations.

3.2 Initial Condition and Equation of State for QGP

Fluid

To solve the hydrodynamic equations, the initial condition and the equation of state are always

necessary. In the hydrodynamic model for HIC, the initial condition is set at the time when the

thermalization of the medium is achieved. There are various models for the initial condition

of the QGP fluid in HIC, e.g. the Glauber model [73], the KLN model [127] based on the

color glass condensate (CGC) picture [128, 129], the IP-Glasma model [61, 62] including the

effect of the space-time evolution of initial gluonic matter, etc. Especially the anisotropy in the

azimuthal spectra in the final state is expected to depend strongly on the initial profile of the

QGP fluid. In this study, we employ the Glauber model. As for the equation of state which

determines the relation among the thermodynamic variables, we take the ideal gas of massless

quarks and gluons.

3.2.1 Initial Profile of QGP Fluid

We apply the hydrodynamic model to the space-time evolution of the medium in the Pb-Pb

collisions after the themalization τ ≥ τ0 = 0.6 fm/c. Here, we employ the modified BGK initial
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condition to set the initial entropy density profile of the medium [83] (see section 2.3):

s (τ0, ηs, r⊥) =
C

τ0
θ(Ybeam−|ηs|)H(ηs)

×
[
(1−α)
2

(
Ybeam−ηs
Ybeam

nA
part(r⊥)+

Ybeam+ηs
Ybeam

nB
part(r⊥)

)
+αncoll (r⊥)

]
, (3.23)

H (ηs) = exp

[
−(|ηs|− ηflat/2)

2

2σ2
η

θ
(
|ηs|−

ηflat
2

)]
, (3.24)

where Ybeam = arccosh
(√

sNN/mN

)
is the beam rapidity of incoming nuclei, mN = 0.939 GeV

is the nucleon mass, nA
part and nB

part are participant number densities in each nucleus, nA
coll is

collisions number density. C, α, ηflat and ση are phenomenological parameters. For Pb-Pb

collision at LHC, we set
√
sNN = 2.76 TeV, C = 4.14, α = 0.08, ηflat = 1.9 and ση = 3.2

[130]. For the initial condition of the flow velocity, we assume that there is no radial and

rotational flow in the transverse direction. Also no additional flow to the Bjorken flow [75] is in

the longitudinal direction. In this case, the initial condition for the flow-velocity in the Milne

coordinate can be written as

uα (τ = τ0, x, y, ηs) = 0. (3.25)

This initial condition for the flow is commonly used in the hydrodynamic models for HIC. The

flow velocity of the expanding QGP is assumed to be driven only by the initial profile of the

medium at τ = τ0.

3.2.2 Equation of State

The ideal hydrodynamic equations (3.1) and (3.2) with n conserved charges consist of (4 + n)

equations and have (5+n) independent valuables, i.e. e, P , uµ (µ = 0, 1 2 3) and ni (i = 1, · · · , n).
Thus, the system of the equations is not closed and another equation, the equation of state, is

required. Whereas the ideal hydrodynamic equations describe only the macroscopic conserva-

tion law, the equation of state is determined by the microscopic dynamics.

In this study, we employ the equation of state for ideal gas of massless quarks and gluons.

We set the number of flavors in the QGP, Nf = 3 (u, d, s) to coincide with the one chosen in

the energy loss. The degrees of freedom for quarks and gluons in the QGP are

dquark = 3 (flavors) × 3 (colors) × 2 (spins) × 2 (particle-antiparticle) = 36, (3.26)

dgluon = 8 (colors) × 2 (spins) = 16. (3.27)

Here, we consider the baryon-free QGP fluid with no conserved charges. Under these assump-
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tions, the relations between thermodynamic variables of the QGP medium are

P = dQGP
π2

90
T 4, (3.28)

s = dQGP
2π2

45
T 3, (3.29)

e = dQGP
π2

30
T 4, (3.30)

where dQGP = dquark × 7
8 + dgluon is the effective degrees of freedom for the QGP. Then, from

these relations, the equation of state is obtained as follows:

P (e) =
1

3
e. (3.31)

Then, the sound velocity of the medium is

cs =

(
∂P

∂e

∣∣∣∣
s/n

) 1
2

=

√
1

3
. (3.32)

Figure 3.1 shows the initial energy density profile of the QGP medium for a central Pb-

Pb collision at LHC obtained from the modified BGK model (3.23) and the relations between

thermodynamic variables (3.29) and (3.30). The modified BGK initial condition for a central

collision of the same nuclei is reduced to the one (2.15).

Figure 3.1: Initial energy density profile of the QGP medium for a central Pb-Pb collision

at LHC in the y-ηs plane at x = 0 (a) and in the x-y plane at ηs = 0 (b) obtained from the

modified BGK model.
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3.3 Kinetic Freezeout

To obtain particle spectra at the end of the hydrodynamic evolution, it is necessary to convert

from the hydrodynamic variables to phase space distribution. In hydrodynamic models, it is

assumed that the kinetic freezeout is accomplished instantaneously in the fluid elements while

passing the freezeout hypersurface. The spectra can be given by integrating the local thermal

equilibrium distribution at the freezeout hypersurface boosted by the flow velocity:

p0
dNi

d3p
=

gi

(2π)3

∫

Σ

pµdσµ (x)

exp [pµuµ (x) /T (x)]± 1
, (3.33)

where i is an index for the species of the particle, Σ is the freezeout hypersurface, gi is the

degeneracy and ± corresponds to Fermi or Bose distribution for particle species i and dσ is the

hypersurface element. Eq. (3.33) is called the Cooper-Frye formula [45] and is used to obtain the

momentum distribution of particle species i from hydrodynamic outputs. The kinetic freezeout

is supposed to occur when the temperature falls below the freezeout temperature Tf , so the

freezeout hypersurface Σ is determined by Tf . The contributions of the fluid elements passing

the hypersurface from the region with T > Tf to the region with T ≤ Tf are added to the

spectra. On the other hand, when the fluid elements pass the freezeout hypersurface from the

region with T ≤ Tf to the region with T > Tf , their contributions are subtracted from the

spectra. By following this procedure at every moment, the surface integral (3.33) is carried out.

We use the Cooper-Frye formula to obtain the distribution of the transverse momentum

and the missing transverse momentum /p||T =
∑

−pT cos (φp − φ1):

d

dφpdy
⟨pT ⟩fluid =

∑

i

∫
dpT pT

dNi

dpTdφpdy
, (3.34)

⟨/p||T ⟩fluid = −
∑

i

∫
dpTdφp pT cos (φp − φ1)

dNi

dpTdφp
, (3.35)

dNi

pTdpTdφpdy
= p0

dNi

d3p
. (3.36)

Here, φp is the azimuthal angle in momentum space, y is the rapidity and mT =
√

m2
i + p2T is

the transverse momentum of the particle species i. Adding the transverse momentum of jets

traversing the medium in the final state to ⟨/p||T ⟩fluid, we obtain ⟨/p||T ⟩ to be compared with the

data.

In this thesis, we set the freezeout temperature, Tf = 0.16 GeV, to reproduce the magnitude

of the measured v2. The particles yielded after the kinetic freezeout are massless quarks and

gluons because we employed the equation of state for ideal gas of quarks and gluons which

does not contain the hadronization process. Here, the degeneracy di in Eq. (3.33) are set

to the degrees of feedom in Eqs. (3.26) and (3.27): dquark = 36 and dgluon = 15. In recent

hydrodynamic model calculations, the equation of state from lattice QCD calculations is used

for a more quantitative analysis. However, the lattice equation of state requires enormous
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calculation involving all the hadron resonances at the kinetic freezeout to see the subtle interplay

of momentum balance studied in the following. In this thesis, we employ the ideal gas equation

of state for simplicity and keep the strict momentum conservation at the freezeout as well as

that in hydrodynamic evolution. In the the lattice equation of state, the degrees of freedom

decrease while expanding and cooling down. This makes the cooling of the medium slower than

in the ideal gas one. For a more quantitative analysis, the employment of the lattice equation

of state and the freeze out calculation via Cooper-Frye formula with all the hadron resonances

would be needed and we postpone them as future studies.





Chapter 4

Collective Flow Induced by Dijet

Traveling through the Center of the

Medium

In this chapter, to study the typical flow structures in dijet events and the resultant spectra

from them, we perform simulations in the case of the dijet traveling through the center of

the expanding medium. The jet-induced flows is expected to develop largely because they are

caused in the high-temperature region of the QGP fluid. In our simulations, we use the model

for HIC at LHC explained in the previous chapter. By solving the hydrodynamic equations with

the source terms numerically, we study the space-time evolution of the flow induced by the jets

in the expanding QGP. Then, we calculate the spectra from the medium via the Cooper-Frye

formula. Then, we show that the low-pT particles are enhanced in dijet events as a result of the

energy-momentum transport by flows in the QGP. This firmly relates the experimental results

by the CMS Collaboration [15] with the hydrodynamic response to the jets in the medium.

The work presented in this chapter is original and done in collaboration with Tetsufumi Hirano

(Sophia Univ.). The auther builds the model, perform the simulations and analyze the data

from them based on discussions with the collaborator. The program codes for the simulations

are also developed by the auther himself.

4.1 Dijet Traveling through the Center of the Medium

We consider the dijet events in the central Pb-Pb collisions. The origin (x = 0, y = 0, ηs = 0)

is set at the center of the QGP fluid. A pair of back-to-back massless jets is supposed to be

created at (τ = 0, x = 0, y = y0 ≥ 0, ηs = 0) with the common energy, p0a (τ = 0) = 200 GeV.

Then the jets travel in the opposite direction along the y axis at the speed of light [Fig. 4.1].

Until τ = τ0 = 0.6 fm/c, these jets travel without interactions. At τ = τ0 = 0.6 fm/c, they

start to interact with the QGP fluid and deposite their energy and momentum into the fluid.

At the same time the hydrodynamic evolution of the medium starts.

39
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Leading Jet

Subleading Jet

pT1

pT2

200GeV

200GeV

x

y

QGP fluid

Figure 4.1: Geometry for the simulation of the dijet asymmetric event in section 4

In the events with a dijet created at an off central position, imbalance between the dijet

in the final state is generated due to the path length difference in the medium: One jet going

toward the outside of QGP is observed as a leading jet with transverse momentum pjet1T and the

other one going inside is observed as a subleading jet with transverse momentum pjet2T

(
< pjet1T

)
.

We control the jet asymmetric parameter AJ =
(
pjet1T − pjet2T

)
/
(
pjet1T + pjet2T

)
by changing the

initial position of the pair creation: When the position of the pair creation is off central, namely,

y0 > 0, the amount of energy loss is different between the two jets.

4.2 Numerical Results

4.2.1 Space-time evolution of the medium

Figs. 4.2 and 4.3 show the temperature distribution of the QGP fluid in the transverse plane

at ηs = 0 and in the reaction plane at x = 0, respectively. The pair of jet is created at

y0 = 0, 3.0 fm and 6.0 fm. We can see relatively higher temperature regions which have oval or

V-shaped structures in each case. These are the remnants of Mach cones which are generated

by the energy-momentum deposition from jets and then distorted by the expansion of the QGP.

Fig. 4.2 (a) shows the space-time evolution of the medium in the transverse plane for the

dijet symmetric event (y0=0). AJ for this event is to be vanished. In this case, both Mach

cones have the same structure and are pushed by the radial expansion of the medium only from

the inside of the cones. As a result, Mach cones become oval shape and their Mach angle θM
becomes effectively larger around the jet.

Figs. 4.2 (b) and (c) show the space-time evolutions of the medium in the transverse plane
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for the dijet asymmetric events (y0 = 3.0, 6.0 fm). The dijet asymmetry ratios for these event

are to be non vanishing (AJ > 0). In these cases, the two Mach cones induced by the leading

jet and the subleading jet have significantly different structures. The subleading jet travels

through higher temperature region and loses more energy and momentum than the leading jet.

As a consequence, the structure of the Mach cones induced by the subleading jets grows larger.

These larger Mach cones in the asymmetric events are pushed by the radial expansion of the

medium also from the outside of the cones. and their Mach angles are effectively sharper than

the one in the symmetric event. Since the Mach cone in the case of y = 6.0 fm is pushed for

a longer time, it is slightly sharper than the one in the case of y = 3.0 fm. In dijet event with

larger value of AJ , flows are induced in the larger angle direction from the jet axis. On the

other hand, the Mach cones induced by the leading jets does not develop so much largely. Since

they are pushed by the radial expansion at the edge of the medium from the inside even after

the end of the energy-momentum deposition, the tip of the Mach cones become flat and have

flow velocity almost in the direction of the jet axis.

Mach cones also develops in the longitudinal direction in the reaction plane as shown in Fig.

4.3. However, the longitudinal expansion of the QGP medium do not stretch the Mach cones

so much apparently in ηs-direction. This is simply understood because the coordinate itself

expands: the Mach cones are largely spread out in the z-direction in the Cartesian coordinate.

The space-time evolution of the medium as a fluid is finished when the maximum temper-

ature of the medium gets lower than the freezeout temperature Tf = 0.16 GeV. The proper

times for y0 = 0, 3, 6 fm corresponds to τ = 7.5, 8.1, 9.0 fm/c, respectively. From this, we can

see that as the balance between the dijet becomes more asymmetric as the lifetime of the fluid

gets longer. This is because the medium is reheated by the energy deposition.

Here, the equation of state of massless ideal gas is employed to respect the simple but strict

energy-momentum conservation at the later kinetic freezeout. However, we find that the basic

feature of the flow structure induced by jets in the expanding QGP fluid does not change when

we employ the equation of state from lattice QCD calculations [131]. In the realistic lattice

equation of state, the tip of the Mach cone is sharper than in the equation of state of massless

ideal gas. This is because the Mach angle θM = arcsin cs depends on the sound velocity of the

medium cs and the lattice equation of state has smaller cs than the ideal gas one.

4.2.2 Spectra from the medium

Missing transverse momentum

Figure 4.4 shows the missing transverse momentum /p||T =
∑

i −piT cos(φi
p − φjet1

p ) as a function

of the dijet asymmetry ratio AJ . Dijet events with large value of AJ , such as AJ ≥ 0.4,

is reproduced by set the phenomenologocal parameter A = 15 in eq. (3.22) to gain a large

amount of jet energy loss. Let us consider two cones around the leading axis and subleading

axis with the size ∆R =
√
∆φ2

p +∆ηs2 = 0.8 [Fig. 2.19], we separate the momentum space
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into two regions, the in-cone region and the out-of-cone region. ∆φp and ∆ηs are the azimuthal

angle and pseudorapidity distance from the direction of leading or subleading jet axis. Fig. 4.4

(a), (b) and (c) show the contribution of all the particles, the particles from the in-cone region

(∆R < 0.8) and from the out-of-cone region (∆R > 0.8). Here, the transverse momenta of the

jets in the final state are added to the contribution of particles with pT > 8GeV/c from the

in-cone region.

We can see the followings from Fig. 4.4:

• The total transverse momentum of the whole system is balanced well for any values of

AJ .

This guarantees that the energy and momentum are conserved in the calculations both of

the hydrodynamic equations with source terms and of the kinetic freezeout. The asymmetry

between the jets are balanced by the contribution from low-pT particles with pT < 2 GeV/c in

the subleading direction. These low-pT particles originate from the deposited energies of jets

in the QGP fluid.

• The total transverse momentum inside the cones is not balanced for the dijet asymmetric

events. The contribution to /p||T is negative, i.e., it is on the leading-jet side, and dominated

by high-pT particles with pT > 2 GeV/c.

The high-pT particles with pT > 8 GeV/c mainly come from the contribution of jet particles.

On the other hand, particles with 2-8 GeV/c originate from the medium with very large flow

velocity induced by jets in the direction of the jets.

• The low-pT particles with pT < 2 GeV/c are also emitted to the out-of-cone region. Their

contribution to /p||T is positive and compensates the a large fraction of imbalance inside

the cones.

This tendency is in good agreement with the data from the CMS Collaboration [15]. In the

calculations, collective flows are induced by jets and they carry the deposited energies and

momenta, with the result that the low-pT particles are enhanced at the large angles from jets.

This fact provides an intimate link between the hydrodynamic response to jet quenching and

the phenomena experimentally observed in HIC.

Compared to the data from CMS, a larger fraction of the low-pT particles are still emitted to

the in-cone region in the presented result. In the lattice equation of state, the low-pT particles

is expected to decrease in the in-cone region and to increase in the out-of-cone region by the

sharper Mach cone carrying the deposited energies and momenta at larger angles. This means

that the effect of momentum transport away from the jet axis is underestimated here.
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Transverse momentum distribution

Fig. 4.5 shows the transverse momentum distribution dpT
dφpdηp

in φp-ηp plane for the dijet asym-

metric events with y0 = 3.0 fm. Here, only the contribution of the particles originating from

the QGP medium are included in dpT
dφpdηp

and the transverse momenta of jets are not included.

The followings can be seen in Fig. 4.5:

• Total dpT
dφpdηp

has a narrow peak in the leading jet direction i.e., (φp, ηs) = (π/2, 0), and a

broad peaks in the subleading jet direction i.e., (φp, ηs) = (3π/2, 0).

Intutively, Mach cones are expected to produce ring-shaped spectra around the jet axes by

analogy to a ring image of the Cherenkov radiation. However, no such structure can be seen.

Three causes can be considered for the absence of such ring-shaped spectra. First, not only Mach

cones but strong collective flow following the jets are induced by the momentum deposition.

These strong following flow cause prominent peaks in the spectra in the direction of jets. Second,

the local thermal equilibrium distribution boosted by the flow velocity is used to calculate the

spectra in the Cooper-Frye formula (3.33). The resulting spectra are smeared out around the

direction of the flow velocity. Third, Mach cones are distorted by the expansion of the medium.

Actually, the characteristic pattern reflecting the Mach cone structure does not exist in the

observation by the CMS Collaboration [Fig. 1.1].

• In the region of pT > 8GeV/c, only a narrow peak in the leading jet direction can be

seen. In the regions of 4GeV/c < pT < 8GeV/c and 2GeV/c < pT < 4GeV/c, the peak

in the leading jet direction is much larger than the one in the subleading jet direction.

Since we employ the isothermal freezeout, the structure of the transverse momentum distribu-

tion is determined only by the flow velocity at the freezeout. The narrow peaks in the leading

jet direction in the high-pT regions are consequences of very fast flows induced by the leading

jet. The Mach cone induced by the leading jet does not grow large before the kinetic freezeout

because it caused in the rather low-temperature region.

• In the regions of 1GeV/c < pT < 2GeV/c and 0.5GeV/c < pT < 1GeV/c, the peak in

the subleading jet direction is larger and much broader than the one in the leading jet

direction.

The Mach cone induced by the subleading jet grows largely in the medium because it propagates

in the high-temperature region of the QGP fluid. As a result, the deposited energy and momenta

are widely diffused and low-pT particles have the broad peak in subleasing direction.



44Chapter 4. Collective Flow Induced by Dijet Traveling through the Center of the Medium

Figure 4.2: Temperature distribution of the expanding QGP fluid in transverse plane

at midrapidity ηs = 0. A pair of jets is produced at (τ = 0, x = 0, y = y0 = 0, ηs) (a),

(τ = 0, x = 0, y = y0 = 3 fm, ηs) (b) and (τ = 0, x = 0, y = y0 = 6 fm, ηs) (c). Then, the jets

travels in the opposite direction along the y-axis at the speed of light. The snapshots are

taken at τ = 3.0 fm/c, τ = 5.1 fm/c, τ = 6.9 fm/c and the proper time when the maximum

temperature of the medium gets lower than the freezeout temperature Tf = 0.16 GeV.
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Figure 4.3: Temperature distribution of the expanding QGP fluid in reaction plane at x = 0. A

pair of jets is produced at (τ = 0, x = 0, y = y0 = 0, ηs) (a), (τ = 0, x = 0, y = y0 = 3 fm, ηs)

(b) and (τ = 0, x = 0, y = y0 = 6 fm, ηs) (c). Then, the jets travels in the opposite direction

along the y-axis at the speed of light. The snapshots are taken at τ = 3.0 fm/c, τ = 5.1 fm/c,

τ = 6.9 fm/c and the proper time when the maximum temperature of the medium gets lower

than the freezeout temperature Tf = 0.16 GeV.
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Figure 4.4: /p||T as a function of the dijet asymmetry ratio AJ . Figure (a), (b) and (c) show

the contribution from the over all region, inside the leading jet cone or subleading jet cone

(∆R < 0.8), and outside both of the leading and subleading jet cones (∆R > 0.8) in the

momentum space. Each colored histogram represents the contribution to /p||T from six transverse-

momentum ranges: 0-0.5, 0.5-1, 1-2, 2-4, 4-8 GeV/c, and pT > 8 GeV/c.
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Figure 4.5: Transverse momentum density in φp-ηp plane
dpT

dφpdηp
for the dijet asymmetric event

with y0 = 3.0 fm. Only the contribution of the particles from the medium is included. The

right figures show the view of the left figures along the ηp-axis. Figure (a) shows total
dpT

dφpdηp
of

the particles from the medium. Figures (b), (c), (d), (e) and (f) shows the contribution in five

pT -ranges: 8-, 4-8, 2-4, 1-2GeV and 0.5-1GeV, respectively.



Chapter 5

Collective Flow in the Triggered Dijet

Events

In the previous chapter, we have fixed the dijet production points and the initial energies of

dijet. However, they are determined stochastically in actual events observed in experiments.

Furthermore, only the events in which the dijets are observed with the energy larger than the

trigger threshold are selected as dijet events in the analysis of the experimental data. In this

chapter, we perform simulations by changing both the jet production points and the initial

energies of dijet. Then, we take the event average weighted by the dijet production rate as

a function of the dijet creation point and dijet transverse momentum. We also introduce

trigger threshold for jets’ momenta in final states to select the dijet events similar to that in

the experiments. Jets with lower energies are produced much more frequently because the jet

production rate is a steeply decreasing function of the jet energy. If such low energy jets travel

through the center of the medium, they will not be triggered in the final state because they lose

much energy in the medium. Thus, dijet events with rather off-central path are dominant when

the event average is taken. As we have seen in the previous chapter, the shape of Mach cones

are largely modified by the radial flow depending on their geometry and the Mach cones in the

events with off-central path is expected to be asymmetrically distorted. Here, we investigate

whether the enhancement of low-pT particles at large angles from jets can be seen as the

hydrodynamic response to the jets when the contributions of events with such asymmetrically

distorted Mach cone are properly taken into account. The work presented in this chapter is our

original work in collaboration with Tetsufumi Hirano (Sophia Univ.). Based on discussions with

the collaborator, the auther carried out the formulation, the implementation of the programs

and the analysis.

5.1 Dijet Production and Trigger

We perform simulations of dijet event in the central Pb-Pb collisions at
√
sNN = 2.76TeV. The

origin (x = 0, y = 0, ηs = 0) is set at the center of the QGP fluid.
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We discretize the region x ≥ 0 and y ≥ 0 in the transverse plane ηs = 0 with 0.3 fm× 0.3 fm

square lattice. The dijet is produced at the every lattice point in the QGP with T > 0.175 GeV

and then travels in the opposite direction along the y axis at the speed of light [Fig. 5.1]. The

procedure above covers any path of the jets in the QGP in the completely central collisions. To

evaluate the effect of the number of dijet events, we use ncoll(x, y) at the jet production points

calculated by the Glauber model. As in the previous chapter, these jets do not interact with

x

y

QGP fluid

Leading Jet

Subleading Jet

pT,1 > 120GeV/c

pT,2 > 50GeV/c

Figure 5.1: Geometry for the simulation of the dijet asymmetric event in Chap. 5

the QGP medium until τ = τ0 = 0.6 fm/c. At τ = τ0, they start to deposite their energy and

momentum into the fluid.

We consider three different initial energies of the jets p0a (τ = 0) = 140, 160, 180 GeV. For

the momentum distribution of the jets at τ = 0, we use the leading jet pT distributions in p-p

collisions of the form,

1

Npp
jet

dNpp
jet

dpT
=

1

p0

(
p0
pT

)α
. (5.1)

The parameters p0 and α are chosen as p0 = 137GeV/c and α = 6.44 to reproduce the data by

the CMS Collaboration in p-p collisions at
√
s = 2.76TeV [132].

Events with the leading jet with pjet1T > 120GeV/c and the subleading jet with pjet2T >

50GeV/c in the final state are triggered as the dijet events.
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5.2 Numerical Results

5.2.1 Dijet asymmetry ratio

We count the number of triggered dijet events weighted by ncoll(x, y) at the jet production

points and the initial momentum distribution of the jets (5.1). In Fig. 5.2 we show the event

fraction of the dijet events as a function of the dijet asymmetry ratio. If there is no energy

loss of the jets, the event fraction will be unity only at AJ = 0. The event fraction in this

simulation is shifted to higher AJ : It has a peak around around 0.3-0.4 has a sharp cut off

above 0.4. The similar features are seen in the data from the ATLAS collaboration [14] and the

CMS collaboration [15]. Such event fraction distribution largely shifted to higher AJ is realized

by introducing the phenomenologocal parameter A = 15 in Eq. (3.22) to gain a large amount

of jet energy loss.
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Figure 5.2: The event fraction of the dijet events as a function of the dijet asymmetry ratio.

5.2.2 Space-time evolution of the medium

To see the dominant flow structures in the triggered dijet events, we show the temperature

distribution with maximum ncoll at the jet production points for each initial momentum of the

jets in Figs. 5.3 and 5.4. The detail information of each event is summarized in table 5.1.

The most dominant event is the event (a) in table 5.1. The position of the jet pair creation

is far from the center because only the path through the edge of the medium is allowed to be

triggered as dijet events for the jets with initial energy 140 GeV. In the transverse plane, the
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p0a(τ = 0) (x0, y0) ncoll(x0, y0) AJ

(a) 140GeV (2.7 fm, 4.5 fm) 10.27 0.402

(b) 160GeV (0.6 fm, 4.2 fm) 16.69 0.393

(c) 180GeV (0.6 fm, 3.3 fm) 21.12 0.316

Table 5.1: The position of the jet pair creation (x0, y0) and dijet asymmetry ratio AJ of the

triggered dijet event with maximum ncoll at the jet production points for each initial momentum

of the jets.

Mach cone induced by the subleading jet is pushed by the radial expansion of the medium. As

a result, the Mach cone is asymmetrically distorted and inclined to the inside of the medium.

On the other hand, the shape of the Mach cone in the reaction plane is not modified so much

because the flow in the longitudinal direction is almost same elsewhere at the midrapidity

region.

The jets with the initial energy 160 GeV and 180 GeV can travel rather close to the center

of the medium. In the events (b) and (c) in table 5.1, the Mach cones propagate almost the

center of the medium and their shapes are not modified largely from ones we have seen in the

previous simulations.

5.2.3 Event-averaged missing transverse momentum

We calculate the event-averaged missing transverse momentum ⟨/p||T ⟩ by taking the sum of /p||T
weighted by ncoll(x, y) at the jet production points and the initial momentum distribution of

the jets (5.1). Figure 5.5 shows the AJ dependence of ⟨/p||T ⟩ in the same way as Fig. 4.4.

We can also see the low-pT enhancement even after the event average. Especially for large

values of AJ , low-pT particles are more enhanced in the out-of-cone region.

Although various structures of the collective flow are seen in the simulations, the low-pT
enhancement at large angles is maintained even after averaging over the dijets events. Thus,

it is a universal phenomenon that the hydrodynamic response to the jet propagation in the

QGP induces the low-pT enhancement at large angles from the jet. This fact shows the rela-

tionship between the hydrodynamic response to the jet propagation in the QGP and the actual

phenomenon observed in HIC.
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Figure 5.3: Temperature distribution of the expanding QGP fluid in transverse plane at

midrapidity ηs = 0. The triggered dijet event with maximum ncoll at the jet production points

is selected for each initial momentum of the jets. A pair of jets is produced with p0a(τ = 0) = 140

GeV (a), 160 GeV (b), and 180 GeV (c). Then, the jets travels in the opposite direction along

the y-axis at the speed of light. The snapshots are taken at τ = 3.0 fm/c, τ = 5.1 fm/c,

τ = 6.9 fm/c and the proper time when the maximum temperature of the medium gets lower

than the freezeout temperature Tf = 0.16 GeV.
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Figure 5.4: Temperature distribution of the expanding QGP fluid in reaction plane at x = 0.

The triggered dijet event with maximum ncoll at the jet production points is selected for each

initial momentum of the jets. A pair of jets is produced with p0a(τ = 0) = 140 GeV (a), 160

GeV (b), and 180 GeV (c). Then, the jets travels in the opposite direction along the y-axis at

the speed of light. The snapshots are taken at τ = 3.0 fm/c, τ = 5.1 fm/c, τ = 6.9 fm/c and

the proper time when the maximum temperature of the medium gets lower than the freezeout

temperature Tf = 0.16 GeV.
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Figure 5.5: ⟨/p||T ⟩ as a function of the dijet asymmetry ratio AJ . Figure (a), (b) and (c)

show the contribution from the over all region, inside the leading jet cone or subleading jet

cone (∆R < 0.8), and outside both of the leading and subleading jet cones (∆R > 0.8) in

the momentum space. Each colored histogram represents the contribution to ⟨/p||T ⟩ from six

transverse-momentum ranges: 0-0.5, 0.5-1, 1-2, 2-4, 4-8 GeV/c, and pT > 8 GeV/c.





Chapter 6

Summary

In this thesis, we studied collective response of the QGP fluid under the energy-momentum

deposition from jets. Such collective response contains information of the various properties

of QGP e.g., the sound velocity, the viscosity, the stopping power, etc. In Pb-Pb collision

experiments at LHC, enhancement of low-pT particles at large angles from the jets is observed

in dijet asymmetric events by the CMS collaboration. The observed transverse momenta of the

low-pT particles are sufficiently low so that they can be considered a part of the of hydrodynamic

medium. Therefore, the low-pT enhancement at large angles from the jets can be interpreted

as the hydrodynamic response to the jet propagation in the QGP fluid. Motivated by these

findings, we studied the space-time evolution of the QGP fluid in dijet asymmetric events to

relate the low-pT enhancement observed in heavy ion collisions (HIC) with the medium response

to jet propagation.

In Chap. 2, the overview of HIC and some topics related to this thesis were presented with

the experimental data and the current theoretical pictures.

In Chap. 3, we formulated the hydrodynamic model with the source terms. In the con-

ventional hydrodynamic model, the space-time evolution of the QGP medium is described by

the energy-momentum conservation. To consider the incoming energy and momentum from

jets to the fluid, we introduce the source terms, assuming the instantaneously thermalization

of the deposited energy and momentum in the fluid. We employed the Glauber model for

initial condition and the Cooper-Frye formula at the kinetic freezeout to obtain the spectra

of the particles after the hydrodynamic space-time evolution. For the energy loss of the jets,

we employed the collisional energy loss formula. To reproduce the dijet events with large AJ

such as observed in HIC, we amplified the energy loss by phenomenological parameter A = 15.

The ideal gas equation of state for QGP which does not include the hadronization process is

employed in the hydrodynamic calculation and massless quarks and gluons are yielded after

the kinetic freezeout. This might have been too simplified but the energy and momentum are

strictly conserved at the kinetic freezeout as well as in hydrodynamic evolution.

In Chap. 4, we performed simulations in the case of the dijet traveling through the center

of the expanding medium. A pair of jets travels through the center of the medium and the
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jets deposits their energies and momenta into the medium. Since the jets move faster than the

sound velocity of the fluid, Mach cones are induced: How they evolve depends on the geometry

of the QGP fluid. The structure of the Mach cones in the transverse plane is modified largely

by the radial expansion of the medium. We also calculated the spectra from the medium by

using the Cooper-Frye formula to study how the spectra is modified by the dijet. As a result of

the hydrodynamic response to the jet propagations, the yield of low-pT particles, which carries

the energy and momentum deposited from jets, increases at large angles from the jet axis. This

agrees with the tendency seen in the experimental data taken at LHC by the CMS collaboration

[15]. Despite of clear flow structures in the QGP fluid, no ring-shaped spectra reflecting the

Mach cone structure appeared. Possible causes are strong flow following jets, the employment

of the Cooper-Frye formula at the kinetic freezeout and distortion of the Mach cone by the

medium expansion. The absence of the ring-shaped spectra agrees with the observation by the

CMS Collaboration [Fig. 1.1].

In Chap. 5, we performed more realistic simulations by considering the spacial distribution

of the jet production points, the initial momentum distribution of the jets and trigger threshold

of the jet pT . The dijet is produced at the every lattice point in the transverse plane inside the

QGP and then travels in the opposite direction. The contribution of an event with each jet

production point is weighted by the distribution of binary collisions ncoll. We used three different

initial energies of jets 140, 160, 180GeV: The contribution of an event with each initial energy

is weighted by the jet pT distributions in p-p collisions. We counted the events with the leading

jet with pT,1 > 120GeV and the subleading jet with pT,2 > 50GeV in the final state as the dijet

events. In these simulations, events with the dijet traveling through the edge of the medium are

included. In such events, the Mach cones are largely distorted because they propagate against

the radial expansion of the medium. Although various structures of the collective flow are seen

in the simulations, the low-pT enhancement at large angles is maintained even after averaging

over the dijets events. Thus, it is a universal phenomenon that the hydrodynamic response to

the jet propagation in the QGP induces the low-pT enhancement at large angles from the jet.

This fact shows a solid relationships between the hydrodynamic response to the jet propagation

in the QGP and the observed phenomenon in HIC.

The results in this thesis shed light on a new phenomenological approach to extract the

properties of QGP by focusing on low-momentum particles at large angles from jet axis. The

amount of deposited energy and momentum can be estimated from quantitative comparison of

momentum distribution around the jet between the theoretical calculation and the experimental

data. The shear viscosity of the QGP can also be estimated from quantitative analysis of the

azimuthal angle distribution of the low-pT particles around the jet, since Mach cone structure

is smeared out with increasing shear viscosity of the QGP. The number of particles emitted

at large angles from the jet axis is supposed to decrease for larger shear viscosity. To realize

such quantitative comparison of the theoretical calculations and the experimental data, it is

important to develop the model as introduced in employed in this thesis and make further
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systematic studies of the hydrodynamic response to the jet propagation.
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Appendix A

Geometrical Setup for HIC

A.1 Space-time Coordinates

Milne coordinate is employed to describe the space-time of the medium in HIC. We take the

collision axis as the z-axis and the transverse plane as the xy-plane in Cartesian coordinates.

Then, One writes Milne coordinates (τ, x, y, ηs) in terms of Cartesian coordinates (t, x, y, z) as

follows:

τ =
√
t2 − z2, (A.1)

ηs =
1

2
ln

t+ z

t− z
. (A.2)

τ and ηs are called proper time and space-time rapidity, respectively. x and y are the same in

the both coordinate systems. On the contrary, t and z are written in terms of τ and ηs as

t = τ cosh ηs, (A.3)

z = τ sinh ηs. (A.4)

The coordinate transformation from Cartesian coordinates to Milne coordinates corresponds to

the “local” Lorentz boost of the frame with the velocity βs = z/t in z-direction:

Λαµ(βs) =

⎛

⎜⎜⎜⎝

γ 0 0 −γβs
0 1 0 0

0 0 1 0

−γβs 0 0 γ

⎞

⎟⎟⎟⎠
, (A.5)

where γ = 1/
√
1− β2

s is the Lorentz factor, α is a suffix for the Milne coordinates and µ is a

suffix for the Cartesian coordinates.

A.2 Momentum Coordinates

A detected particle in collider experiments are usually labeled with its transverse momentum

pT and pseudorapidity ηp. pT is the component of the particle’s momentum p = (px, py, pz)
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transverse to z-axis:

pT =
√
p2x + p2y = |p| sin θ, (A.6)

where θ is the poler angle of p with respect to z-axis. The pseudorapidity corresponds one-to-

one to θ:

ηp = − log

(
tan

θ

2

)
. (A.7)

pT and ηp are independent of the particle’s mass.

On the other hand, rapidity is defined as

y =
1

2
log

E + pz
E − pz

=
1

2
log

1 + β

1− β
, (A.8)

where E =
√

m2 + |p|2 is the energy of the particle, m is the particle mass and β = pz/E is

the velocity in the z-direction. We also define the transverse mass mT as

mT =
√

m2 + p2T =
√

E2 − p2z. (A.9)

The particle’s four-momentum pµ = (E, p) in Cartesian coordinate can be written as follows:

pµ =

⎛

⎜⎜⎜⎝

mT cosh y

pT cosφp

pT sinφp

mT sinh y

⎞

⎟⎟⎟⎠
. (A.10)

Here, φp is the azimuthal angle of p in the xy-plane.

In the extremely relativistic limit, i.e. E ≃ |p| ≫ m, we have

mT ≃ pT , (A.11)

y =
1

2
log

E + pz
E − pz

≃ 1

2
log

|p|+ pz
|p|− pz

=
1

2
log

1 + cos θ

1− cos θ
= − log

(
tan

θ

2

)
= ηp. (A.12)

Thus, when the mass of the particle is negligible, the transverse mass and the rapidity coincide

with the transverse momentum and pseudorapidity, respectively.

A.3 Freezeout Hypersurface

The general expression of the Cooper-Frye formula [45] is given by

p0
dN

d3p
=

∫

Σ

(p · dσ) f(p · u(x)), (A.13)

where N , p and f are the number, the momentum, and the momentum distribution function

at the kinetic freezeout respectively.
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In terms of the transverse momentum pT , the momentum azimuthal angle φp and the ra-

pidity y, 3-dimensional momentum differentiation in Eq. (A.13) is given by

d3p = mTpT cosh ηpdpTdφpdηp. (A.14)

Thus, the left-hand side of Eq. (A.13) can be written as

E
dN

d3p
= mT cosh ηp

dN

mTpT cosh ηpdpTdφpdηs
=

dN

pTdpTdφpdηp
. (A.15)

The product of the particle’s momentum and four-flow velocity in Eq. (A.13)

p · u = pµuµ = pαuα, (A.16)

where α is an index for the Milne coordinates and µ is an index for the Cartesian coordinates.

In the Milne coordinates, the momentum of the particle is

pα = Λ(ηs)
α
µ p

µ =

⎛

⎜⎜⎜⎝

mT cosh (y − ηs)

pT cosφp

pT sinφp

mT sinh (y − ηs)

⎞

⎟⎟⎟⎠
. (A.17)

Similary, the product of the particle’s momentum and the hypersurface element in Eq. (3.33)

is

p · dσ = pµdσµ = pαdσα, (A.18)

and the hypersurface element in the Milne coordinates is given by

dσα =

⎛

⎜⎜⎜⎝

dxdyτdηs
−dτdyτdηs
−dτdxτdηs
−dτdydy

⎞

⎟⎟⎟⎠
. (A.19)

Then, the explicit form of p · u and p · dσ are

p · u = mT[u
τ cosh (ηp − y)−uη sinh (ηp − y)] + pT[−ux cos (φp)−uy sinh (φp)] , (A.20)

p · dσ = mT[cosh (ηp − η) dστ−sinh (ηp − η) dση] + pT[− cosφpdσ
x−sinφpdσ

y] . (A.21)





Appendix B

Numerical Relativistic Hydrodynamics

B.1 Relativistic Hydrodynamics in Cartesian Coordinate

The relativistic hydrodynamic equations consist of the energy-momentum conservation law and

continuity equations for conserved charges:

T µν
;µ = 0, Nµ

i ;µ = 0. (B.1)

Here, T µν is the energy-momentum tensor of the fluid and Nµ
i is the i-th conserved charge-

current density. The sign ; before a lower suffix denotes a covariant derivative.

For perfect fluids, idealized model where all dissipative effects are neglected, the energy

momentum tensor and charge-current densities can be decomposed as

T µν = (e+ P )uµuν − Pgµν , Nµ
i = niu

µ (B.2)

where e, P , ni, uµ = γ (1,v) = 1√
1−v2

(1,v), and gµν are energy density, pressure, i-th conserved

charge density four-flow velocity, and metric, respectively. Hereafter we omit the index i for

conserved charge.

In numerical aspect, the expression in forms of continuity equation for each components of

the energy-momentum tensor is more convenient. The expressions in Cartesian coordinate are

the following,

∂

∂x0
T 0ν = − ∂

∂xi
T iν , (B.3)

where i = 1, 2, 3 is an index for spatial coordinate. The variables time-evolving in the numerical

calculation program are chosen as

Uµ = T 0µ, UN = N0. (B.4)

The other components can be written as

T i0 = vi
(
T 00 − P

)
, (B.5)

T ij = viT 0j − P δij. (B.6)

N i = viN0, (B.7)

67



68 Appendix B. Numerical Relativistic Hydrodynamics

The equations (B.1) in Cartesian coordinate can be summarized as continuity equations in the

following general form

∂

∂x0
U = − ∂

∂xi
F i (U) . (B.8)

All thermodynamic variables and flow velocity can be calculated from Uµ and UN together

with the equation of state P = P (e, n),

v = |v| = |U |
U0 + P (e, n)

, (B.9)

e = U0 − |U | v, (B.10)

n =
UN

τ

√
1− v2, (B.11)

U = (U1, U2, U3). (B.12)

B.2 Discretization and the Operator Splitting Method

The equations (B.8) discretized in time direction are

U (n+1) − U (n)

∆t
= − ∂

∂xi
F i
(
U (n)

)
, (B.13)

where n is a time step index and ∆t is an interval of the time step.

For each time step, the variables U evolve subject to the following equations,

U (n+1) = U (n) −∆t

[
∂

∂x1
F 1
(
U (n)

)
+

∂

∂x2
F 2
(
U (n)

)
+

∂

∂x3
F 3
(
U (n)

)]
. (B.14)

Calculating the right-hand side of the equations (B.14) including three-dimensional divergence

as they are is quite a formidable numerical task in general. To avoid this difficulty, one usually

employs the so-called operator splitting method to split the multi-dimensional equation into the

sequential one-dimensional equations. In the continuum limit, instead of the three-dimenssional

equations (B.14), it is equivalent to carry out the following three steps:

U (n+ 1
3 ) = U (n) −∆t

∂F 1

∂x1

(
U (n)

)
, (B.15)

U (n+ 2
3 ) = U (n+ 1

3 ) −∆t
∂F 2

∂x2

(
U (n+ 1

3 )
)
, (B.16)

U (n+1) = U (n+ 2
3 ) −∆t

∂F 3

∂x3

(
U (n+ 2

3 )
)
. (B.17)

In this procedure, the flux is transferred in x1-direction first, then in x2 direction, and then

in x3 direction. To minimize systematic errors on spatial anisotropy associated with the order of

the three steps (B.17), one permutates the order x1, x2, x3, every time-step in actual numerical

applications.
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The hydrodynamic equations in three dimensional space reduce to the continuity equations

in one dimensional space equation in the form of

U (n+1) = U (n) −∆t
∂F

∂x

(
U (n)

)
. (B.18)

Hereafter, we consider only the one-dimensional equation (B.18). From the next section, we

focus on the evaluation of the differential term ∂F
∂x in the discretized space for numerical calcu-

taions.

B.3 Approximated Solver of the Riemann Problem

One discretizes Eq. (B.18) in the space with equally-spaced interval ∆x and write the equation

for the i-th discretized space cell in a form

U (n+1)
i = U (n)

i − ∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
, (B.19)

where Fi+ 1
2
is the value of F (U) at the boundary between the i-th and (i+ 1)-th cell. The main

part of the numerical calculation of hydrodynamics is the evaluation of boundary values. In the

numerical calculation, there are discontinuities at boundaries between discretized space cells.

The problem to solve such a continuity equation together with initial condition having a step-like

discontinuity is called a Riemann problem. In the numerical calculation, one solves the problem

approximately by using a Riemann solver and obtain the values at the boundary between the

cells contained in Eq. (B.74). Here we employ a higher-order extension of Godunov’s method

consist of the piecewise parabolic method (PPM) [133, 130] and the relativistic Harten-Lax-van

Leer-Einfeldt (HLLE) algorithm [134, 135, 136, 137] as a robust Riemann solver.

B.3.1 Piecewise Parabolic Method (PPM)

In this subsection, we review PPM employed to evaluate the values of fields U around the

boundary between the cells.

Let xi+ 1
2
= xi +

∆x
2 , the definition of discrete field values at the i-th cell is

Ui =
1

∆x

∫ x
i+1

2

x
i− 1

2

dxU (x) , (B.20)

where U (x) is an interpolation function around the boundary between the i-th and (i+ 1)-th

cell and We fit the integral of U (x) by a quartic function with five parameters,

U (x) =
∫ x

x
i− 3

2

dξU (ξ) = ax4 + bx3 + cx2 + dx+ e, xi− 3
2
≤ x ≤ xi+ 5

2
, (B.21)
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and these fitting parameters are fixed by the following equations obtained from Eqs. (B.20)

and (B.21)

U (−2∆x) = 0, (B.22)

U (−∆x) = ∆xUi−1, (B.23)

U (0) = ∆x (Ui−1 + Ui) , (B.24)

U (∆x) = ∆x (Ui−1 + Ui + Ui+1) , (B.25)

U (2∆x) = ∆x (Ui−1 + Ui + Ui+1 + Ui+2) , (B.26)

here we can suppose xi+ 1
2
and U(xi− 3

2
) = 0 without loss of generality Thus we obtain the value

of U at xi+ 1
2
as

Ui+ 1
2

=
dU (x)

dx

∣∣∣∣
x=x

i+1
2

= 4axi+ 1
2

3 + 3bxi+ 1
2

2 + 2cxi+ 1
2
+ d (B.27)

=
1

2
(Ui + Ui+1) +

1

6
(δUi − δUi+1) , (B.28)

δUi =
1

2
(Ui+1 − Ui−1) , (B.29)

with a third-order accuracy. To guarantees that Ui+ 1
2
lies between Ui and Ui+1, one replaces

δUi in Eq. (B.29) by δ′Ui defined by the following rule:

δ′Ui=sgn (δUi)min (|δUi| , 2 |Ui−Ui−1| , 2 |Ui+1−Ui|) if (Ui+1−Ui) (Ui−Ui−1)>0,

δ′Ui=0 otherwise.
(B.30)

The results in the above are asigned to default values at cell boundary:

UR
i = Ui+ 1

2
=

1

2
(Ui + Ui+1) +

1

6
(δ′Ui − δ′Ui+1) , (B.31)

UL
i = Ui− 1

2
=

1

2
(Ui−1 + Ui) +

1

6
(δ′Ui−1 − δ′Ui) . (B.32)

Next, we concentrate on one cell which has the mean value of in the cell Ui and the value at

both ends UR
i and UL

i . One interpolates UR
i and UL

i with a quadratic function Ui(x) satisfying

the definition (B.20):

Ui (x) = UL +
x− xi− 1

2

∆x

[
∆Ui + U6

i

(
1−

x− xi− 1
2

∆x

)]
, (B.33)

U6
i = 6

[
Ui −

1

2

(
UR
i + UL

i

)]
, (B.34)

∆Ui = UR
i − UL

i . (B.35)

To impose monotonicity constraint on the interpolation function U(x) in the cell, one replaces

the values at cell boundary UR
i and UL

i , according to the following procedure [Fig. B.1]:

UR
i → Ui, UL

i → Ui if
(
UR
i − Ui

) (
Ui − UL

i

)
≤ 0,

UL
i → 3Ui − 2UR

i if∆UiU6
i > ∆U2,

UR
i → 3Ui − 2UL

i if∆UiU6
i < −∆U2.

(B.36)
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Averages of the interpolation functions around the cell boundaries are

ŪR
i =

1

λRi ∆t

∫ x
i+1

2

x
i+1

2
−λRi ∆t

dxUi (x) , (B.37)

ŪL
i+1 =

1

λLi+1∆t

∫ x
i+1

2
+λLi+1∆t

x
i+1

2

dxUi+1 (x) . (B.38)

A reasonable estimation for λL and λR is the following [Fig. B.2]:

λLi =
∣∣∣max

(
0, cLi −vL

1−cLi v
L
i
, c̄Li −v̄Li
1−c̄Li v̄

L
i

)∣∣∣ , λRi =
∣∣∣max

(
0, cRi +vRi

1+cRi vRi
, c̄Ri +v̄Ri
1+c̄Ri v̄Ri

)∣∣∣ ,
v̄Li = 1

2

(
vLi + vRi−1

)
, v̄Ri = 1

2

(
vRi + vLi+1

)

c̄Li = 1
2

(
cLi + cRi−1

)
, c̄Ri = 1

2

(
cRi + cLi+1

)
(B.39)

where cL and cR are the sound velocities at the cell boundaries. One integrates Eq. (B.35)

inserting into Eqs. (B.37) and (B.37):

ŪL
i = UL +

λLi ∆t

2

(
∆Ui +

(
1− 2

3
λLi ∆t

)
U6
i

)
(B.40)

ŪR
i = UR − λRi ∆t

2

(
∆Ui −

(
1− 2

3
λRi ∆t

)
U6
i

)
(B.41)

B.3.2 Relativistic Harten-Lax-van Leer-Einfeldt (rHLLE) Algorithm

rHLLE approximately solves the Riemann problem whose initial conditions around the bound-

ary x = xi+ 1
2
are, cf. Fig. B.3:,

U (x, t = 0) =

{
ŪR
i , x ≤ xi+ 1

2

ŪL
i+1, x > xi+ 1

2

. (B.42)

The solution is approximated by a region of constant value between ŪR
i and ŪL

i+1 , cf. Fig. B.3:

U (x, t) =

⎧
⎪⎨

⎪⎩

ŪR
i , x ≤ xi+ 1

2
+ bRi t

Ūi+ 1
2
, xi+ 1

2
+ bRi t < x < xi+ 1

2
+ bLi+1t

ŪL
i+1, x ≥ xi+ 1

2
+ bLi+1t

. (B.43)

Here, bL ≤ 0 and bR ≥ 0 are the so-called signal velocities and the reasonable estimation for

them is

bRi = min
(
0, vRi −cRi

1−vRi cRi
, v̄i−c̄i

1−v̄ic̄i

)
, bLi+1 = max

(
0,

cLi+1+vL

1+cLi+1v
L
i+1

, c̄i+v̄i
1+c̄iv̄i

)
,

v̄i =
1
2

(
vRi + vLi+1

)
, c̄i =

1
2

(
cRi + cLi+1

)
.

(B.44)

The value of Ūi+ 1
2
is determined by the conservation laws around the boundary x = xi+ 1

2
.
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Integrating (B.8) over [xmin, xmax], [xmin, xi+ 1
2
] and [xi+ 1

2
, xmax], xmin < xi+ 1

2
+ bRi t, xmax >

xi+ 1
2
+ bLi+1t:

bRi Ū
R
i +

(
bLi+1 − bRi

)
Ūi+ 1

2
− bLi+1Ū

L
i+1 = −F

(
ŪR
i

)
+ F

(
ŪL
i+1

)
, (B.45)

bRi Ū
R
i − bRi Ūi+ 1

2
= −F

(
Ūi+ 1

2

)
+ F

(
ŪL
i+1

)
, (B.46)

bLi+1Ūi+ 1
2
− bLi+1Ū

L
i+1 = −F

(
ŪR
i

)
+ F

(
Ūi+ 1

2

)
. (B.47)

Solving the simultaneous equations (B.46)-(B.47), one finally obtains:

Fi+ 1
2

= F
(
Ūi+ 1

2

)
=

bLi+1F
(
ŪR
i

)
− bRi F

(
ŪL
i+1

)
+ bLi+1b

R
i

(
ŪL
i+1 − ŪR

i

)

bLi+1 − bRi
, (B.48)

Ūi+ 1
2

=
bLi+1Ū

L
i+1 − bRi Ū

R
i − F

(
ŪL
i+1

)
+ F

(
ŪR
i

)

bLi+1 − bRi
. (B.49)

Using the values of {Fi+ 1
2
} obtained above, one evolves the variables {U (n)

i } subject to the

equation (B.74). In the the present method, ŪR
i and ŪL

i+1 yielded from PPM are used in

the initial condition of the Riemann Problem instead of Ui and Ui+1. In PPM, a parabolic

interpolation is introduced and this prevents the overestimation of the flux between the flux

between the cell boundary even if in the case of steep profiles.

B.4 Hydrodynamic Equations in Milne Coordinate

In a general coordinate system, one must consider connection in the covariant derivative. The

left-hand side of hydrodynamic equations (B.1) in a general coordinates are

T µν
;µ = ∂µT

µν + Γµ
ρµT

ρν + ΓνρµT
µρ

=
1√
−g

∂µ
(√

−gT µν
)
+ ΓνρµT

µρ, (B.50)

Nµ
;µ = ∂µN

µ + Γµ
ρµN

ρ

=
1√
−g

∂µ
(√

−gNµ
)
. (B.51)

Here, Γµ
νρ is the Christoffel symbols of the coordinate system. We consider just torsion-free

space time in the following. In this case, the Christoffel symbols have only symmetric part in

their covariant (lower) indices and can be written:

Γµ
νρ =

1

2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) . (B.52)

We use Milne coordinate in the relativistic hydrodynamic calculations for the heavy-ion

collisions because of the convenience to describe the longitudinal dynamics. Milne coordinates

(τ, x, y, ηs) are written in terms of Cartesian coordinates (t, x, y, z) as followings:

τ =
√
t2 − z2, (B.53)

ηs =
1

2
ln

t+ z

t− z
. (B.54)
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τ and ηs are called proper time and space-time rapidity, respectively. Hereafter, we use the

indices µ, ν, ρ, σ... for Cartesian coordinates and the indices α, β, γ, δ... for Milne coordinates:

xµ = (t, x, y, z) , x′α = (τ, x, y, ηs) . (B.55)

The metric tensors for Milne coordinates are given by

gαβ =

⎛

⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −τ 2

⎞

⎟⎟⎟⎠
, gαβ =

⎛

⎜⎜⎜⎝

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 − 1
τ2

⎞

⎟⎟⎟⎠
. (B.56)

The Lorentz transformation between Milne coordinates and Cartesian coordinates is represented

by the matrices

gαµ =

⎛

⎜⎜⎜⎝

cosh ηs 0 0 − sinh ηs
0 1 0 0

0 0 1 0

− 1
τ sinh ηs 0 0 1

τ cosh ηs

⎞

⎟⎟⎟⎠
, gµα =

⎛

⎜⎜⎜⎝

cosh ηs 0 0 τ sinh ηs
0 1 0 0

0 0 1 0

sinh ηs 0 0 τ cosh ηs

⎞

⎟⎟⎟⎠
. (B.57)

The expressions of the relativistic hydrodynamic equations (B.51), (B.51) are

Tαβ
;α =

1

τ
∂α
(
τT αβ

)
+ ΓβγαT

αγ = 0, Nα
;α =

1

τ
∂α (τN

α) = 0. (B.58)

The equations of the energy-momentum conservation can not be written in the form of the

continuity equations because of the terms with Christoffel symbols for the second contravariant

index of the tensor:

∂

∂τ

(
τT τβ

)
= −

[
∂

∂x

(
τT xβ

)
+

∂

∂y

(
τT yβ

)
+

∂

∂ηs

(
τT ηsβ

)]
− τΓβγαT

αγ. (B.59)

The variables time-evolving in the numerical calculation program are chosen as

Ũα =

⎛

⎜⎜⎜⎝

Ũ τ

Ũx

Ũy

Ũη

⎞

⎟⎟⎟⎠
= τ

⎛

⎜⎜⎜⎝

T ττ

T τx

T τy

τT τηs

⎞

⎟⎟⎟⎠
= τΛαµU

µ =

⎛

⎜⎜⎜⎝

τ γ̃ (e+ p)− τP

τ γ̃ (e+ p) ṽx

τ γ̃ (e+ p) ṽy

τ γ̃ (e+ p) ṽηs

⎞

⎟⎟⎟⎠
, ŨN = τNα. (B.60)

The equations (B.58)in Cartesian coordinate can be summarized in the following general form:

∂

∂τ
Ũ = −∇̃aF̃

a(Ũ) + S̃(Ũ), (B.61)

∇̃ =

(
∂

∂x
,
∂

∂y
,
1

τ

∂

∂ηs

)
, (B.62)
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where a is a index for space components of Milne coordinates. S̃(Ũ) is a source term which

originates from non-zero non zero Christoffel symbols for Milne coordinates. Uµ of Cartesian

coordinates in Eqs.(B.4) and Ũα are connected by the following local Lorentz boost:

Ũα = ΛαµU
µ, Uµ = Λµ

αŨ
α, (B.63)

Λαµ(ηs) =

⎛

⎜⎜⎜⎝

cosh ηs 0 0 − sinh ηs
0 1 0 0

0 0 1 0

− sinh ηs 0 0 cosh ηs

⎞

⎟⎟⎟⎠
, Λµ

α(ηs) =

⎛

⎜⎜⎜⎝

cosh ηs 0 0 sinh ηs
0 1 0 0

0 0 1 0

sinh ηs 0 0 cosh ηs

⎞

⎟⎟⎟⎠
. (B.64)

F̃ (Ũ) and S̃(Ũ) in Eqs. (B.60) can be written as follows:

F̃ a
(
Ũβ
)

= τ

⎛

⎜⎜⎜⎝

T aτ

T ax

T ay

τT aηs

⎞

⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎝

ṽaŨ τ + τP ṽa

ṽaŨx + τP δax

ṽaŨy + τP δay

ṽaŨηs + τP δaηs

⎞

⎟⎟⎟⎠
, (B.65)

S̃
(
Ũα
)

= −

⎛

⎜⎜⎜⎝

τΓτ αβT αβ

τΓx
αβTαβ

τΓy
αβT αβ

τ 2ΓηsαβT αβ − τT τηs

⎞

⎟⎟⎟⎠
=−

⎛

⎜⎜⎜⎝

1
τ Ũ

τ (ṽηs)2 + P
[
1 + (ṽηs)2

]

0

0
1
τ Ũ

ηs

⎞

⎟⎟⎟⎠
, (B.66)

ũα = γ̃(1, ṽx, ṽy, ṽηs) = Λαµu
µ. (B.67)

From Ũα and ŨN together with the equation of state P = P (e, n), thermodynamic variables

and flow velocity can be obtained:

ṽ = |ṽ| =

∣∣∣Ũ
∣∣∣

Ũ τ + τP (e, n)
, (B.68)

e =
Ũ τ

τ
−

∣∣∣Ũ
∣∣∣

τ
ṽ, (B.69)

n =
ŨN

τ

√
1− ṽ2, (B.70)

Ũ = (Ux, U y, Uηs). (B.71)

B.5 Scheme for Numerical Hydrodynamic Simulation in

Milne Coordinate

A robust scheme for numerical hydrodynamics in full (3 + 1)-dimensional Milne Coordinates

[123] is employed in the calculations in this thesis and plays a crucial role to keep the energy-

momentum conservation in the hydrodynamical evolution.
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Hydrodynamic equations in Milne coordinate (B.62) are not written in the form of the

continuity equations because of the extra source terms. The discretized equations are

Ũn+1
i = Ũn

i − ∆τ

∆x

(
F̃i+ 1

2
− F̃i− 1

2

)
+ S̃i. (B.72)

In numerical calculations, discretization errors in the source terms break the conservation low.

If we keep the the second contravariant index of the energy-momentum tensor in Cartesian

coordinate, the source terms do not appear:

∂

∂τ
(τT τν) = −

[
∂

∂x
(τT xν) +

∂

∂y
(τT yν) +

∂

∂ηs
(τT ηsν)

]
. (B.73)

The numerical breaking of the conservation law can be avoided if we choose the variables

time-evolving in the program as:

Ǔµ = τΛτ νT
νµ = −Λµ

αŨ
α, (B.74)

∂

∂τ
Ǔµ + ∇̃aF̌

aµ = 0. (B.75)

However, in this case, a Lorentz transformation is needed when one calculates the flow velocity

used in PPM and rHLLE. Numerical errors in the Lorentz transformation induce extra fluxes

even in the case of zero flow velocity. To avoid both numerical breaking of the conservation law

and numerical extra fluxes, we refer F̌ aµ in Eq. (B.75) as a function of Ũα so that PPM and

rHLLE are applied to the variable Ũα:

∇̃aF̌
aµ = ∇̃a

[
Λµ

βF̃
a(Ũβ)

]
(B.76)

(B.77)

Once, one calculates F̃ (Ũ) through PPM and rHLLE, then performs the Lorentz transformation

of F̃ (Ũ). From the transformed F̃ (Ũ), one obtains the value of Ǔ at the next step:

Ǔ ν (n+1)
i − Ǔ ν (n)

i =
∆τ

∆x

[
−Λνα

(
ηs i+ 1

2

)
F̃i+ 1

2
(Ũα) + Λνα

(
ηs i− 1

2

)
F̃i− 1

2
(Ũα)

]
. (B.78)

A point to notice is that F̃i+ 1
2
is transformed according to the Lorentz boost with the value of

ηs at the cell boundary.

Finally, the value of Ũ at the next step is obtained by performing the Lorentz transformation

of Ǔ at the next step:

Ũα (n+1)
i = Ũα (n)

i + Λαν (ηsi)
[
Ǔ ν (n+1)
i − Ǔ ν (n)

i

]
. (B.79)
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Figure B.1: Reset of the value of UL and UR subject to the monotonicity constraint (Eqs.

(B.36)). a) The case where Ui does not take on its value between UL
i and UR

i . In this case, both

UL
i and UR

i are reset so that the interpolation function becomes constant. b) The case where

Ui is between UL
i and UR

i but the interpolation function has a local maximum or minimum.

In this case, the value at the edge farther from the local maximum or minimum point (in the

example of this figure, UL
i ) to move the local maximum or minimum point to the closer edge

of the cell (in the example of this figure, the right end) keeping the mean value Ui fixed.
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Figure B.2: a) The regions from where sound waves can arrive at the interface at the end

of the time step (the orange colored regions). b) The averaged values employed in the initial

condition of the Riemann problem (Eq. (B.42)) calculated by integration of the interpolation

function over these region
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Figure B.3: Approximated development of a Riemann problem a) Initial condition for the

Riemann problem to be solved approximately by rHLLE algorithm. b) The corresponding

spacetime regions where sound waves from the interface can reach up to the given time. c)

Approximated solution of the Riemnn problems.
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