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Abstract

In this thesis, we discuss level anti-crossing due to interaction between intersubband transition
and LO phonons in the quantum-well structure. Spectral measurement by using charge sensitive
infrared phototransistors (CSIP) has found evidence of strong resonant coupling of intersubband
transition with LO phonons.

Our aim is to develop high sensitive CSIPs for astronomical applications in the wavelengths of
30 — 60 um. Teraherz (THz) or Far-infrared (FIR) region (1 ~ 30 — 300 um) offers the opportunity
to probe the characteristics of stars, planets, and galaxies. However, astronomical observations in
30 — 60 um have been limited for the lack of sensitive detectors in this wavelength range.

CSIP is the promising detector with high sensitivity in the FIR region. This detector is a
quantum-effect device implemented in a GaAs/AlGaAs double quantum-well (QW) structure.
CSIP works as Field Effect Transistors (FET) consisting of both a photo-active part and read-out
circuit. The floating gate is positively charged up by photo-excitation via intersubband transition.
This mechanism gives extraordinary high photo-current responsivity (> 10° A/W). Adjusting the
width of the QW can control the target wavelength (intersubband transition energy, £1,).

Unfortunately, in GaAs there is the “Reststrahlen band” (33.8-36.8 um at 4K). In the Rest-
strahlen band, the light is strongly reflected and absorbed due to strong coupling of photons with
phonons. CSIP is, however, expected to exhibit finite response to the radiation in the Reststrahlen
band since the photo-active region is well within the penetration depth (around a few microns) of
radiation. Hence we designed and fabricated CSIPs for the target wavelength in the vicinity of the
Reststrahlen band (32, 36 and 48 um).

As a result, we observed photo-response in all the three devices. The spectral measurements
revealed that the photo-response is located in two distinctly separated spectral region away from
the target wavelength, one of which substantially overlaps with the Reststrahlen band.

In GaAs crystal, an electron in a QW repeats coherent process of virtual emission and ab-
sorption of LO phonons, leading to formation of a hybridized “polaron” state. The polaron states
will give rise to level anti-crossing as the intersubband energy (g12) is close to the LO phonon
energy (er0). In order to quantitatively discuss the experimental results, we consider a theoret-
ical model. The “dielectric continuum model” assumes a symmetric rectangular QW bounded
by infinite barriers taking into account the interaction between electrons and LO phonons. The
experimentally detected spectral energies were compared with the theoretical values with respect
to dependence of the coupled-mode energies on the bare intersubband transition energy (£12) and
on the two-dimensional electron density (Nopgg) in the QW. The experimental values are substan-
tially reproduced by the dielectric continuum model. This definitely indicates the validity of the
interpretation described as formation of Polaron states.

This paper have reported detailed experimental evidence of the strong coupling between in-
tersubband transition and LO phonons by using CSIPs. Thanks to high sensitivity and the unique
structure of CSIP, we observed the both spectral branches due to anti-crossing in the QW structure
for the first time. In order to develop CSIPs for the wavelengths of 30 — 60 um, we have to pay
careful attention to the strong coupling between intersubband transition and LO phonons.

This thesis is organized as follows: Chapter 1 describes that our interests in THz astronomy



and characteristics of CSIP. In Chapter 2, we indicate experimental methods and experimental
results for spectral measurement at the wavelengths close to that of the Reststrahlen band. Chapter
3 discusses the cause of the spectral splitting with the comparison with theoretical models. Finally,
conclusion is drawn in Chapter 4.
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Chapter 1

Introduction

The progress of astronomy has been promoted by the development of detectors. It is also the
case for the Terahertz (THz) astronomy. The Terahertz (THz) spectral region is a very important
spectral domain in astronomy, since the domain is the repository of half the electromagnetic energy
of galaxies. Development of sensitive THz detectors, however, is difficult because the frequencies
are too high for heterodyne detectors and the photon energies are smaller than intrinsic band gap
energies of semiconductors. Hence the same techniques established in the neighboring spectral
bands cannot be applied to the THz detectors. As a result, the THz region remains as the final
frontier in the wide frequency ranges from radio to y-ray.

Recently, Komiyama et al. [1] introduced a new device called “Charge Sensitive Infrared Pho-
totransistors” (CSIP), which is a promising candidate of sensitive THz detectors with performance
needed in the future astronomical observations.

1.1 THz (Far-Infrared) Astronomy

In this thesis, we define THz range as that with the frequency range of 1-10 THz (4 ~ 300 — 30
um), which is also called Far-infrared (FIR) region in astronomy. The THz or FIR region offers
a unique opportunity to probe the process of star-, planet-, and galaxy-formation. Star-forming
galaxies are heavily obscured by interstellar dust. Dust absorbs and re-radiates most of the energy
originally released by young, hot stars, and the galaxies emit more than 90% of their total energy
in the FIR [2] (Fig.1.1). Hence optical and near-infrared observations cannot reveal true nature of
these galaxies due to heavy dust extinction. On the other hand, far-infrared observations can reveal
the processes happening in these galaxies without much affected by dust extinction. One of the
keys to reveal physical processes in these galaxies is FIR spectroscopy, offering rich lines which
probe the characteristics of the interstellar medium in its ionized or neutral atomic and molecular
phases. Measurements of these lines provide redshifts, gas masses, metal content, dust properties,
and physical conditions from which luminosities, stellar populations, and star formation histories
can be derived. notable examples of these lines are [SII] 33um, [Sill] 35um, [Nelll] 36um, [OI]
63um, and [OIII] 52um, 88um [3].

Previous infrared space missions, e.g. Infrared Astronomical Satellite (IRAS) [4], Infrared
Space Observatory (ISO) [5], Spitzer Space Telescope [6], AKARI [7], and Herschel Space Ob-
servatory [8], made significant contribution in the current astronomy by making the best use of
the sensitive far-infrared observations in space. However, spectroscopic observations, especially
in the wavelength range of 30 — 60 um, have been very much limited due to the lack of sensitive
detectors in this range. The wavelength range (30 — 60 um) is especially important for the study
protoplanetary disks, which are the key to understand the planetary-formation processes. A pro-
toplanetary disk is a rotating circumstellar disk of dense gas surrounding a young newly formed
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star. FIR spectrometry will allow us to reveal the physical and chemical evolution of the disc along
the track of planetary formation. Figurel.2 shows a spectrum of the protoplanetary disk around
young star HD142527 observed by the Infrared Space Observatory (ISO) [9]. The disk has emis-
sion features of HyO water ice, which is expected to play essential roles both in energetics and in
chemistry. Crystalline and amorphous water ices will show emission features at 44, 62 ym and
at 46 um, respectively [10] (Fig.1.3). FIR spectroscopy in this wavelength region can distinguish
phase of H,O water ices, leading us to prove the thermal history of the disk. Hence spectro-
scopic observations of protoplanetary disks at the wavelength range of 30 — 60 um are expected
to reveal physical and chemical evolution of protoplanetary disks related with planetary-formation
processes.

Good spectroscopic observations require sensitive detectors. Hence, in this thesis, we focus on
the highly sensitive detectors for the wavelength range of 30 — 60 um, which has rich astronomical
information yet unexplored.
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Figure 1.1: The spectral energy distribution of the galaxy M82 with two models (the solid and
dashed curves) [11]. The vertical axis is the spectral flux density (Jansky, one Jansky corresponds
to 1072 W m~2 Hz™!). M82 is the galaxy undergoing an exceptionally high rate of star formation
(starburst galaxy), and is known as the closest starburst galaxy to our own Galaxy.
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Figure 1.2: The spectrum of the young star HD 142527 observed by the Infrared Space Obser-
vatory (ISO) [9]. This spectrum shows the model components including the crystalline water ice
features. The vertical axis is spectral flux density (Jansky).

AL B — R MAFNZB T B RE D
(Y QWA IRy . OF | /s

Figure 1.3: Imaginary part of the refractive index of crystalline H,O ice (solid line) and amorphous
H,O ice (dashed line) between 2 — 100 um [10]. This shows the positions of the major vibrational
spectral features, i.e. the stretching, bending, librational (hindered rotation), and lattice (transla-
tional) features. Spectral features have significant differences between crystalline H>O ice (44, 62

um-band-peak) and amorphous (46 um-band-peak) H,O ice.



4 1. Introduction

1.2 Charge Sensitive Infrared Phototransistor (CSIP)

Being situated between infrared light and microwave radiation, THz (or FIR) radiation is resistant
to the commonly employed techniques in the well established neighboring radio and near- or
middle-infrared (IR) regions. Therefore, THz range of electromagnetic spectrum still presents a
challenge for both electronic and photonic technologies. The future THz spectroscopy, however,
requires high sensitivity, in terms of noise equivalent power (NEP), ~ 10720 W/ VHz to achieve
the astrophysical photon noise limited performance. Recently, a few new devices approaching
this requirement have been demonstrated. In the hopeful THz detectors, we focus our attention
on the novel detector called “Charge Sensitive Infrared Phototransistors (CSIP)”. CSIPs for the
mid-infrared region (4 = 15 um) have reached NEP ~ 7 x10720 W/ VHz [1]. The characteristics
of this detector are as follows:

e CSIP has GaAs/AlGaAs double quantum-well (QW) structures.

e CSIP is working as a phototransistor, that is, consisting of both a photo-active part and a
read-out circuit.

o CSIP has amplification mechanism enough to detect a single photon.

o CSIP has spectral response at the mid-infrared region (4 = 12 — 19um).

o CSIP works at cryogenic temperature of 4.2 K, demonstrated up to 23 K for the mid-
infrared [12].

Moreover, easy-to-use due to large current responsivity along with remarkable sensitivity make
CSIP a extremely promising detector for versatile applications. By tuning the design parameters
of the wafer structure we can expand the target wavelength to longer region in principle. Thanks
to the simple device structure, CSIP has promising potential to build large format arrays [13]. In
the following subsections, details of CSIP are presented.

1.2.1 Intersubband transition within a quantum-well

In semiconductor materials, the radiation is usually absorbed via excitation of an electron from the
valence band to the conduction band for visible or near infrared photon detectors. For far-infrared
photons, smaller energy gaps are formed artificially, for example, by doping the impurity atoms
into the pure semiconductor crystal like extrinsic photoconductors. For CSIP, forming nano-scale
structures with compound semiconductors such as GaAs, energy levels of electron in a conduction
band are quantized according to the structure parameters.

CSIP consists of GaAs and AlGaAs semiconductors. The difference of band gaps between
GaAs (1.4 eV) and AlxGa;_xAs (1.6 — 1.8 eV, for x = 0.15 — 0.30), makes a quantum-well (QW)
with subband levels in a conduction band. Subband energies in the QW is simply estimated as-
suming infinite potential well quantized in a one direction (z-direction). We thus have

hZ 2
g =| |/ (L.1)
2m*L2QW

where m”" is a effective electron mass, Low is a width of the QW, and j is subband index. Given a
intersubband transition from the ground state to the first excited state, by substituting j = 1,2 into
Eq. (1.1), the energy gap hiwi; is

3n%n?
ha)12=82—81 = T (1.2)
2m LQW
A dipole moment of a transition from the level n to m, {p,,,), is given by
8eLow mn
(Pn) = (mleziny = = (1.3)

(m2 _ n2)2 '
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In a two-dimensional electron gas (2DEG), dipole moment associating with transitions is limited
in perpendicular direction to 2DEG plane (z-direction). By using Eq. (1.1) and Eq. (1.3), oscillator
strength f,,, , therefore, is

64  m2n?

_ 2’n*(gm - gn)
772 (mz _ n2)3 ’

fmn = ) <pmn>2 = (1'4)

and we have f»; = 0.96 by substituting m = 2, n = 1. The result suggests that the 1 — 2 transition
dominates comparing to other intersubband transitions.

1.2.2 Photo-detection mechanism of CSIP

CSIP is a quantum-effect device implemented in a double quantum-well (QW) structure, in which
the two QWs are named upper QW and lower QW here, as shown in Fig.1.4. Infrared photons are
absorbed via intersubband transition in the upper QW. The excited electrons immediately tunnel
out from the upper QW and escape to the lower QW due to the potential gradient. The upper QW is
thereby positively charged up and the charged upper QW conduces to increase of the conductance
in the lower QW. As a result, we can detect infrared photons by measuring current increase in the
lower QW. A photo-active region in the upper QW is defined by negatively biasing two isolation
gates (IG) and one reset gate (RG) (Fig.1.4(b)). CSIP behaves as a kind of photo-sensitive field
effect transistor (FET).

In the case of conventional scheme such as photoconductors, photocurrent comes from carriers
(electrons and/or holes) generated by absorptions of incident photons. Owing to this scheme,
photocurrent to the incident radiation power P is expected as

P
I =n — Ge, (1.5)
hv

where hv is the incident photon energy, ; is the quantum efficiency for absorption, and G is the
photoconductive gain which is expected to be the order of unity for well-designed detectors. This
means that the one photon absorbed in the detector produces effective charge of Ge.

For new scheme of CSIP, photo-excited electrons escape to the lower QW. The positively-
charged upper QW keeps the conductivity in the lower QW higher until discharging of the upper
QW, whose timescale is expected to be more than 1 second for nominal CSIP. Thanks to this
scheme, CSIP detects the incident photons as the photocurrent increment. Increase of photocurrent
due to single photon absorption (Al,) depend on the electron mobility (i) in the channel (lower
QW), the channel length (L), and the channel bias (E):

_ eu.E _ aep,Vps
Al = HE _ actilos, (1.6)

here, the electric field E = aVps /L is used. Vpgs is the applied voltage between drain and source
electrode, and « is a geometrical factor of the device taken into account the voltage drops in the
channel (usually order of unity). As a function of the number of the accumulated positive charges
in the isolated upper QW island, the photocurrent through the channel increase linearly. That is,
if the isolated upper QW island is charged up to Ne*, the current through the lower QW increase
NAI, as a consequence. Thus, the photo-current increase in time interval ¢, Icsp(?), is given by

P
Iesip() =1 T tAl,. (L.7)
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Figure 1.4: (a) CSIP crystal structure and potential diagram for the target wavelength of 48 um
as an example. The light green layer indicates the upper QW, and the light blue indicates the
lower QW. The red line corresponds to the tunnel barrier. The right-hand side figure shows the
potential diagram of conduction band. &; and &, are intersubband levels, ¢ is the Fermi energy,
and &, is the top of the graded potential barrier. (b) Schematic representation of a CSIP device.
The light green and blue layer corresponds to the wafer structures shown in (a). The upper QW
is electrically isolated by applying voltage bias into Isolation gates (IGs) and the reset gate (RG).
RG is also applied the voltage pulse to prevent saturation.
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1.2.3 Operation of CSIP

The basic device design of CSIP is shown in Figure 1.4(b). There are two electrodes, named
“drain” (D) and “source” (S) to apply the proper voltages to the device. Furthermore, there are
three control electrodes, one of which is the reset gate (RG) and others are isolation gates (IGs).
These three control gates are utilized to form the isolated upper QW island, which works as a
photo-active region. RG is also assigned for discharge of the isolated upper QW island.

To operate the CSIP device, proper bias voltage should be applied to these electrodes. Figure
1.5 shows the drain-source current (Ipg) as a function of the IGs and RG voltage (V). The solid
(red) line and the dashed (blue) line correspond to the conditions with and without the radiation.
A small dip of the solid (red) curve around Vs = — 0.38 V indicates the threshold voltage (Vy).
Below the threshold voltage, the upper QW is electrically isolated, which works as the photo-active
region.

Figurel.5 also shows the bump of the drain-source current below the threshold voltage (Vg <
— 0.38 V). This is the photo-signal indicating the accumulation of positive charge in the isolated
upper QW. Therefore, IGs and RG are set to around Vg = — 0.42 V to operate the CSIP as a
photo-detector. The lower QW channel falls to disconnect with higher gate voltage bias and is
fully isolated at Vg < — 1.2 V.
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Figure 1.5: Drain-source current (Ipg) as a function of the IGs and RG voltage (V). The current
Ips was measured sweeping Vi between OV and — 1.3V. The solid (red) line and the dashed (blue)
line correspond to the conditions with and without the radiation. Below the threshold voltage (V;,),
the upper QW is electrically isolated. There is the bump of Ipg indicated between the two vertical
arrows. This bump is photo-signal due to the accumulation of positive charges in the isolated
upper QW.
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Since the photo-active region, i.e. isolated upper QW island, is floating electrically, positive
charges generated by photon absorptions are accumulated in the upper QW. As a result of charging
up in the isolated upper QW island, the potential band of the double QW changes as shown in
Fig.1.6. The potential of the graded barrier is suppressed with decrease in the potential of the
upper QW due to charging up. If the potential of the graded barrier is suppressed, probability of
the recombination of positive charges increase. Finally, the generation and recombination rate is
balanced, i.e. saturation of the photo-current.

A B — T MAFRIZBI T B[R E D
HoNph o= NG

Figure 1.6: Potential diagram illustrating saturation of photo-signal [14]. (a) No deformation
in initial/dark condition. (b) Moderate deformation in the linear response regime. (c) Strong
deformation in the saturated regime. The drop of the electrostatic potential of the upper QW (U)
increases with charge accumulation.

This situation can be seen in Fig.1.7(b). The measurements were carried at 4.2 K. This plot
shows the time profile of photo-signal under the constant irradiation. The signal increases grad-
ually from the zero photo-signal which correspond to the discharge of the upper QW. A slope
of the photo-signal, however, becomes moderate with accumulation of charges and flats finally.
Therefore, the discharge operation of the upper QW should be required for continuous operation
of CSIP. To discharge the upper QW, RG is applicable. Applying the short pulse to RG, CSIP can
operate continuously as shown in Fig.1.7(a). The interval of the discharge operation should be
selected within the linear region of the photo-response, where the recombination of the escaped
electron is negligible.
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Figure 1.7: Time trace of photo-signals at Vg = — 0.41V at the reset repetition rates of 40Hz (a)
and 11Hz (b). Different incident radiation intensities are indicated by red (higher intensity) and
black (lower one). Photo-signal is saturated in (b). The measurements were carried at 4.2K.

Averaged photo-current within a reset interval is given as

P Tre
Icsip = U re;etAIe- (1.8)

where Tt 1S the reset interval. This is a modification of Eq.(1.7) for actual condition. If we
compare Eq. (1.8) with Eq. (1.5), corresponding photoconductive gain (G¢sip) can be written by

Gesp = Tzet Al (1.9)

From Eq.(1.6) and Eq.(1.9), we obtain Gespp ~ 2 X 10° assuming Treget = 100ms, L = 300um,
te = 10* cm?V~!s7! and Vpg = 10mV as typical parameters of CSIPs we developed. This huge
value of photoconductive gain gives CSIP ultra-highly sensitivity.

When considering the natural background limited performance, observing performance is re-
stricted by photon statics. The quantum efficiency 7 is the dominant parameter in this case. For
the fundamental reason, the quantum efficiency of CSIP is constrained to smaller than that of
conventional semiconductor devices. CSIP has the photo-sensitive upper QW layer just below
the surface (about 100 nm-width). In a two-dimensional electron gas (2DEG) layer, dipole mo-
ment associating with transitions is limited in perpendicular direction to 2DEG plane (z-direction).
CSIP requires photo-coupling antenna that transforms the horizontal electric fields of incident ra-
diation into the vertical oscillating electric fields in the upper QW right below the antenna itself.
Cross-hole antenna arrays used in this paper have achieved the quantum efficiency of 7% [15].

1.2.4 Other characteristics

CSIP has ultra-high sensitivity due to the amplification mechanism of photo-electrons. In addi-
tion to the excellent sensitivity, CSIP is featured by a number of merits, such as a huge dynamic
range (> 10° by choosing proper reset interval) and low output impedance (103-10* Q) [1]. CSIP
can work very well at the nominal cryogenic temperature [12] in comparison to the high sensitive
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transition edge sensor (TES) bolometers which require sub-K temperature. Actually, the perfor-
mance of CSIP has temperature dependency through the increase of the recombination rate by
thermal-activated electrons. One of the excellent features of CSIP is that the target wavelength
can be designed by properly choosing the width of the upper QW. As seen in Fig.1.8, photo-signal
has finite spectral bandwidth that depends on interface roughness [16], lattice scattering [17], and
escape probability of electrons from the upper QW [12][18].

2 1
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:c;n\ 1 08
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Figure 1.8: Photo-response spectrum of 15 yum CSIP [S. Kim et al., submitted]. The value of 14.5
um is the designed wavelength taken into account Depolarization shift. The figure also shows
the wavelengths corresponding to the simulated transitions with relevant oscillator strengths as
discussed below.



Chapter 2

Photo-response in the Vicinity of
Reststrahlen Band

2.1 Background

The aim of this work is to achieve better understanding of the photo-response of CSIP in a longer-
wavelength range (30 — 60 um): Particular motivation behind this is to develop ultra-highly sen-
sitive CSIPs applicable to astronomical purposes. In general, when we aim at expanding the
wavelength range in the infrared region utilizing III-V compound semiconductors, we have to pay
special attention to the so called “Reststrahlen band”, which is defined by the Longitudinal Op-
tical (LO) phonon frequency, wyp, and the Transverse Optical (TO) phonon frequency, wro. In
GaAs (wrp = 36.7 meV, wrp = 33.7 meV), the Reststrahlen band is located in the range between
33.8 um (LO) and 36.8 um (TO) at 4K [19] “!. As shown in Fig.2.1(a) the light in Reststrahlen
band is strongly reflected and absorbed, due to strong coupling of photons with TO phonons [21].
Since the light does not penetrate substantially into the material, photo-response is completely
absent in the Reststrahlen band, as exemplified for quantum-well infrared photodetectors (QWIP)
in Fig.2.1(b) [21]. This fact has been well established both experimentally and theoretically in all
other conventional detectors based on III-V compound semiconductors.

In CSIP, however, the situation is largely different: Reststrahlen band provides us with a new
and extremely interesting subject of photo-response study. This is because the photo-active region
in CSIP is strictly limited to the upper quantum well (QW) that is located immediately below the
surface (about 100 nm depth). The photo-active region is well within the penetration depth of
the radiation in Reststrahlen band (around a few microns). Hence, CSIPs are expected to exhibit
finite response to the radiation in Reststrahlen band: Moreover, the response will be of particular
interest because of strong interaction of electrons with LO phonons (Polaron effect) and strong
interaction of photons with TO phonons (Polariton effect). It will be important to experimentally
clarify how these interactions play their roles in the photo-response mechanism. For this sake, we
have designed and fabricated CSIPs especially for the Reststrahlen band in this work; viz., upper
QW width along with the overall crystal structure were so designed that the target wavelength
falls in the Reststrahlen band. In the following sections, sample preparation is described, and
unexpected new experimental results are presented.

“ITn GaN and InP crystals, the Reststrahlen bands lie in 14 — 18 ym [20] and 29 — 33 um [19], respectively. In order
to avoid the Reststrahlen band of GaAs, we could choose these materials. However, GaAs systems are the most well
known/developed materials for quantum-well detectors. So, we limit our investigation to GaAs/AlGaAs crystals.

11
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A H =y MAFIZB T HFED
ootz IR

Figure 2.1: Characteristics of QWIP [21]. (a) The real refractive index and the extinction coef-
ficient for GaAs at 8K in a spectral range including the Reststrahlen band. (b) Calculated and
experimental photo-response spectrum. The QWIP device studied consists of 50 quantum-wells
of 12 nm-thick GaAs layers separated by 40 nm-thick Alpg5GaggsAs layers.

2.2 Experimental Methods

2.2.1 GaAs/AlGaAs double quantum well structure

We studied three crystals of GaAs/AlGaAs double quantum well shown in Figs. 2.2 (a), (b) and
(c). The target wavelengths of the crystals, which we designate as DQW-32, DQW-36, and DQW-
48, are designed to be 32, 36 and 48 um, respectively, as indicated in Table 2.1. The method of
design is described later.

The band structure of CSIP has to satisfy the following conditions, which are more demanding
for longer target wavelengths (since relevant photon energies are smaller). In the upper QW,
electrons are in the ground state (energy £;) under the absence of photons. When photons are
absorbed, electrons are excited to the first excited state (g;) and rapidly tunnel out of the QW.
These requirements are represented by the conditions (Fig.1.4(a))

g1 <éep <& <é, 2.1
where e is the Fermi energy and &, is the top of the graded potential barrier. Here,
Ec — EF > kBT (22)

(kg: Boltzmann constant 1.38 x 10723JK~!, T: temperature) is necessary to assure long recom-
bination lifetime of the photo-holes in the upper QW (kg7 = 0.36 meV at 4.2K). The relevant
parameter to gf is the two-dimensional electron density (N>pgg) of the upper QW,

*

m
NapeG = —3 (er —€1), (2.3)

where m™ is the effective mass in GaAs (im*=0.067m, with the free electron mass m,). In addition,
it is desirable from Eq. (1.6) that the electron mobility of the lower QW (u;) is as high as possible,
so that the signal current amplitude by one electron (Al,) is large. The electron density in the
lower QW (ny) should be minimized in order to suppress the background dark current or shot
noise. The Si—doping level for the upper QW is designed for the electron density in the upper QW
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Figure 2.2: CSIP crystal structure for (a) DQW-32, (b) DQW-36, (c) DQW-48. The light green
layer indicates the upper QW, and the light blue indicates the lower QW. The red line corresponds
to the tunnel barrier. The dotted area and the dotted lines are Si-doped and Si delta-doped regions,
respectively.
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to be ny = 2.5 x 10''em™2 (corresponding to £ — &£; = 10 meV) by using Eq.(2.3). The design
parameters and the specifications of the crystals are summarized in Tables 2.1 and 2.2.

The target wavelengths (the transition energies) are derived through a simulator “nextnano3”,
which solves one-particle Schrodinger equation and Poisson equation self-consistently for given
values of band parameters. The true experimental parameter values realized in actual crystals can
be slightly different from the designed values. The true structure parameters were investigated
through Secondary Ion Mass Spectrometry (SIMS) method, as Fig.2.3 displays an example for
DQW-32. In this example, we can notice that the aluminum content in the barrier layer is x = 0.34
whereas the designed value is x = 0.30 and Si-doping concentration is slightly different from the
designed value. Nevertheless, we confirmed for the three crystals that the basic crystal structure is
firmly formed with sufficiently low level of impurity contamination.

Simulation (nextnano3) was carried out by using parameter values determined through the
SIMS inspection. Figures. 2.4 through 2.6 display the wave functions with the five largest oscil-
lator strengths for the three crystals, respectively. All the possible transition energies are derived
along with relevant oscillator strengths. In Fig.2.4 through 2.6, there are multiple excited levels
with finite oscillator strengths from the ground level. These excited levels are attributed to the
interference of the electron wave function (g;) extending in the whole region including the upper
QW, the graded barrier region and the lower QW (The upper QW is not isolated but is coupled
through tunneling with its larger neighboring region reaching the lower QW.) The wavelength ob-
tained from the oscillator strength-weighted average of the multiple transition energies, {£12), is
defined to be the “average wavelength (£12)”, and is listed in Table. 2.1. It is noted that the average
wavelengths (g,) are slightly different form the target wavelengths (designed) but the difference
is small.

Table 2.1: CSIP structure parameters for the upper QW.

Sample Wavelength Upper QW (GaAs)
name Target (e12) *I 1 Well width ~ Si-well doping ny *? Hy *2
[um]  [um] [nm] [107ecm™3]  [10Yem™] [10%*cm?/V s]
DQW-32 32 322 16 1.0 2.6 12
DQW-36 36 35.7 17 1.0 2.5 16
DQW-48 48 48.6 20 1.5 24 3.8

*1 The wavelength defined from the oscillator strength-weighted average of the multiple tran-
sition energies, {€12).

*2 (ny, uy) s (the electron density, the electron mobility) of the upper QW.
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Table 2.2: CSIP structure parameters for the barrier layers and the lower QW.

Sample | Tunnel Graded Lower QW (GaAs)
name barrier barrier Well width np *2 ur *2
x 1 x *! [nm] [10''cm™2] [10%cm?/V s]
DQW-32 | 0.15 0—0.04 30 3.2 4.4
DQW-36 | 0.15 0—0.035 30 32 7.4
DQW-48 0.1 0.01—0.03 20 4.0 19

*1 Aluminum composition of AlyGa;_xAs. Tunnel barrier width is designed to be 3nm for all
samples.

*2 (ng, up) is (the electron density, the electron mobility) of the lower QW.
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Figure 2.3: SIMS data for DQW-32. The left-hand figure shows the depth profile for Ga (blue) and
Al (red) composition with secondary ion intensity [counts/sec] for As (yellow). The right-hand
figure shows the depth profiles for C (blue), O (red), and Si (green) concentration [atoms/cm?]
with secondary ion intensity [counts/sec] for Ga (yellow), Al (pink), and As (light blue).
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Figure 2.4: Calculated wave functions for DQW-32 using "nextnano3” simulator. The simulation
were taken into account the wafer structure measured by SIMS. eF is defined as zero point in
the simulator. This shows the wave functions with the five largest oscillator strengths and each
transition energy from the ground state.
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2.2.2 Device structure

Devices in this study (Fig.2.7) were fabricated through Electron Beam Lithography (EBL). A
bilayer 2DEG channel (the upper and the lower QW) of 100 um-width and 350 pm-length is
defined by wet mesa etching (90 nm-depth for DQW-32 and DQW-36, and 100 nm-depth for
DQW-48). Ohmic contacts to the both 2DEG layers are formed by alloying with a 200-nm-thick
AuGe/Ni layer. The four Isolation gates (IG) and three coupler gate (CG) are formed by depositing
a 20nm/80nm-thick NiCr/Au layer.

As elucidated in Fig.2.8, cross-hole metal mesh deposited on top of the channel serves as an
antenna or a photo-coupler. Earlier work on a 15 um CSIP [15] demonstrated that this type of
coupler yields a quantum efficiency around 7%. The sensitivity takes a maximum when photo-
coupler period, p, is nearly equal to the wavelength in GaAs. The dielectric constant of GaAs
largely vary in the Reststrahlen band according to

/12 _ /12
€() = €(o0) (A—LO) (2.4)

2_/1%0

Hence the real part of refractive index n(1) (= Ve(Q) ) largely varies accordingly. Nevertheless,
the relation between p and A, remains in the wavelength range longer than 15 um [22]. For the
devices in this work, cross-hole antennas with six different periods spanning from 6.0 to 22.3 ym
are formed on single device as shown in Fig.2.7 in order to assure reasonable sensitivity in the
Reststrahlen band. More detailed parameters of the photo-coupler are summarized in Table 2.3.

Table 2.3: The photo-coupler periods used in this work
Photo-coupler Period [um]

C1 6.0
C2 7.8
C3 10.1
C4 13.2
G5 17.1

Co6 22.3
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Channel width 100pm
Inner width between IG 100um
Gate width 10pm

Figure 2.7: The design pattern of devices. The blue area is defined by wet mesa etching. Ohmic
contacts to the double QW layer are indicated by the yellow areas. The metal gates and the photo-
couplers (orange areas) are formed by depositing a 20nm/80nm-thick NiCr/Au layer.
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Figure 2.8: (a) The micrograph of the photo-couplers. The photo-couplers (C1 to C6) are designed
with different cross-hole period p indicated in (b). (b) The photo-coupler design. The cross-hole
antennas are arranged with a constant period p. The length and the width of the cross-holes are
fixed to 0.7p and 0.16p. The values of p used in this work are listed in Table 2.3.
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2.2.3 Experimental set up

Throughout this work, experimental results obtained from CSIP devices fabricated in three differ-
ent wafers, DQW-32, DQW-36 and DQW-48, are described. All the experiments were carried at
liquid Helium temperature (4.2K). The devices are irradiated by the monochromatic light gener-
ated by monochromator (CT-25) at room temperature through the light pipe as shown in Fig. 2.9.
The monochromator covers the spectral ranges from 20 um through 54 um, by using three diffrac-
tion gratings (with Blaze wavelength being 30, 36 and 45 um). The light transmitted through the
monochromator is modulated by a chopper inside the monochromator at a frequency from 6Hz to
100Hz (Table 2.4). The spectrum of the transmitted light was calibrated by using a pyroelectric
detector and filters. Additional parameters adopted in the measurements are listed in Table 2.4.

One of the isolation gate (IG) is used also as a reset gate (RG). Six different antennas are
selectable by appropriately biasing IGs, so that spectral response of each photo-coupler antenna
can be separately studied.

Slit
4mm

Chopper

7 Grating

4 mm G/scan

Light pipe

— Chopperref.| | | | | |
Signal /]/]/]/]/ <« &7 Detector

(4.2K)
L Current amp.
—o0

3] ] 00 Lock-in Amplifier
I

Qutput

Figure 2.9: Setup for Spectral Measurement.

Table 2.4: Operation parameters of test devices for the spectral measurements.

Experimental parameter DQW-32 DQW-36 DQW-48
Isolation gate bias 0 o041v 0O 042V 0O 057V
Reset gate pulse voltage +0.30V +0.15V +0.40V
Reset gate pulse width 2usec 2usec 2usec
Chopping frequency 10Hz 100Hz 6Hz
Blaze wavelength of grating 36um 36um 45um
Grating scan speed 48nm/sec  48nm/sec  60nm/sec
Time constant Isec Isec Isec
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2.3 Experimental Results

2.3.1 Spectral photo-response

Spectral photo-response is displayed in Figs.2.10 through 2.14 for DQW-32, -36, -48. These
photo-response was observed in the two spectral region away from the target wavelength, which
has never been seen in 15 um CSIP (Fig.1.8). Different photo-response spectra are shown sepa-
rately in Figs. 2.10 (DQW-32) and 2.11 (DQW-36) for individual photo-couplers. In the measure-
ments, each photo-coupler (C1 to C6 in Figs. 2.7 and 2.8) is selectively used by biasing appropri-
ate isolation gates along with the choice of drain. In Figs. 2.10 and 2.11, two features are noted;
viz, (i) a large response band is located around 27 um (upper frequency branch, w,) and another
smaller one around 34 um (lower frequency branch, w_), and (ii) the longer-wavelength band,
or w_ branch, overlaps significantly the Reststrahlen band. This general features are commonly
noted in all the different photo-couplers. Relative signal intensity depends on the photo-couplers
but the wavelength position of relatively sharp response peaks are kept unchanged.

Individual sharp peaks noted in the response band around 27 um (w, branch) are caused by
the interference of the electron wave function (g;) extending in the confined region from the upper
QW to the lower QW as seen in Figs. 2.4 through 2.6. The feature of the spectral peaks has been
observed in 15 um CSIP (Fig.1.8), which is consistent with the feature derived from the nextnano3-
simulated transitions with the relevant oscillator strengths. In this work, intrinsic properties of the
photo-response bands should be studied rather than the coupler-specific features or the individual
sharp response peaks. Hence photo-response obtained by adding all the contributions from six
photo-couplers is of crucial interest. Figures 2.12, 2.13, and 2.14 show photo-response spectra
obtained by biasing IG1 and 1G4 with Vg_p; = Vs_pr = 10mV, to which all the couplers contribute
nearly equally. Surprisingly, distinct photo-response is observed in the Reststrahlen band, which
has never been seen in conventional QW photodetectors like QWIP [21].
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Figure 2.10: Photo-response spectra for DQW-32 with photo-couplers, C1 to C6. Each color
line shows photo-response using each photo-coupler as indicated in the figure. The y-axis (a.u.)
preserves relative scale of signal intensities. The shaded area is the Reststrahlen band of GaAs.
The arrows indicates the target wavelength (Aryger) Of the measured sample. Photo-responses are
split into two spectral bands (w4 and w-), which are divided at the wavelength corresponding to
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Figure 2.11: Photo-response spectra for DQW-36 with photo-couplers, C1 to C6. Each color
line shows photo-response using each photo-coupler as indicated in the figure. The y-axis (a.u.)
preserves relative scale of signal intensities. The shaded area is the Reststrahlen band of GaAs.
The arrows indicates the target wavelength (Amyger) Of the measured sample. Photo-responses are
split into two spectral bands (w4 and w-), which are divided at the wavelength corresponding to

wo = ,/w%z +w12,,.
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Figure 2.12: Photo-response spectrum for DQW-32. The photo-response spectrum was obtained
by biasing IG1 and 1G4 with Vs_p; = Vs_pp = 10 mV. The shaded area is the Reststrahlen band
of GaAs. The arrows indicates the target wavelength (Arage) of the measured sample. Photo-
responses are split into two spectral bands (w; and w-), which are divided at the wavelength
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Figure 2.13: Photo-response spectrum for DQW-36. The photo-response spectrum was obtained
by biasing IG1 and 1G4 with Vg_p; = Vs_p» = 10 mV. The shaded area is the Reststrahlen band
of GaAs. The arrows indicates the target wavelength (Aryger) Of the measured sample. Photo-
responses are split into two spectral bands (w4 and w-), which are divided at the wavelength
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Figure 2.14: Photo-response spectrum for DQW-48. The photo-response spectrum was obtained
by biasing IG1 and IG4 with Vs_p; = Vs_pp = 10 mV. The shaded area is the Reststrahlen band

of GaAs. The arrows indicates the target wavelength (Aryreer) Of the measured sample. Photo-
responses are split into two spectral bands (w4 and w_), which are divided at the wavelength
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2.3.2 Sensitivity estimation

Sensitivity can be roughly estimated from time-trace of photo-signal similar to Fig.1.7. From Eq.
(A.5), NEP is lower than 4 x 1071® W/ VHz for the measurement of DQW-36, which gives P ~
30pW, S/N ~ 10% and Af ~ 500kHz. Because of the same experimental setup as the measurement
in Appendix, the incident radiation power, P, was evaluated from Eq. (A.2) through (A.4) as 4
= 29um and A1 = 2um. No doubt a substantially lower sensitivity (NEP < 1 x 10~'® W/vHz
will be achieved if detector size is decreased to that of the 15 ym CSIP device (L X W =16 X 4
um?) through NEP o« W!/2 x L3/? relation derived from Eq. (A.5). On the other hand, Transition
Edge Sensor (TES) bolometers for 34—60 um have reached NEP = 4 x 1071 W/ VHz [23]. TES
bolometers, however, have too small current responsivity (~107?) and require extremely-low op-
eration temperature (~100mK). Compared to TES bolometers, CSIPs have distinct advantage of
easy-to-use due to outstanding current responsivity (10°~'?) and operation temperature (4.2K).



Chapter 3

Discussion and Interpretation

Two experimental findings described in Chapter 2,

(i) photo-response being split into two separated spectral bands and

(i1) one of the spectral bands being in (or close to) the Reststrahlen band,

cannot be explained in terms of a single-particle model of electrons. As shown in Figs.2.4-2.6,
simulations (nextnano3) of one-particle eigenstates in the double QWs predict only one detection
band around the target wavelength. In this chapter interaction of electrons with LO phonons is
argued to lead to level anti-crossing, which provides reasonable interpretation of the experimental
findings.

3.1 Anti-crossing due to Electron—L.O Phonon Interaction

Conduction electrons in GaAs strongly interact with longitudinal optical (LO) phonons through
Coulomb interaction [24]. Due to the interaction, an electron excited to the first-excited subband in
the upper QW will rapidly emit one LO phonon if a photon with the energy equal to the LO phonon
energy &1, is absorbed. The electron, thereby returning to the ground subband, re-absorbs the LO
phonon, and in turn, repeats coherent process of virtual emission and absorption of LO phonons.

This process leads to the formation of hybridized polaron state, which can be described ex-
plicitly by letting | e, Oro) be the ket vector of the state with an electron in the excited subband
and zero LO phonon, and | g, 170) be that of the state with the electron in the ground subband and
one L.O phonon. The eigenvector is expressed by a superposition of the two states,

| +) = A* | e,000) + B* | g, 110), (3.D

where A* and B* are appropriate complex numbers. As schematically shown in Fig.3.1, eigenen-
ergies of the upper and the lower branches show level anti-crossing as the intersubband energy
difference, £1;, is scanned across the LO phonon energy, £;0. Fundamental quantum mechanics
predicts that the amplitude of energy splitting at €12 = g1 is 2W, where W = 2 meV (GaAs) is the
electron-LO phonon interaction energy [25][26].

The scenario of anti-crossing described in the above is justified only when the electron/phonon
system is in a quantum-mechanically undisturbed state to assure coherent interaction between
electrons and LO phonons. This condition is satisfied in the present system because (i) the lifetime
of the excited electron state is evaluated from the spectral line width (FWHM = 1.2 um) to be ca.
4 psec, which is longer than the electron-LO phonon interaction time /W =~ 1.5 psec and (ii) the
lifetime of LO phonons (ca. 7 psec [27]) is also longer than 7/W =~ 1.5 psec.

It is hence highly probable that the intersubband transition in CSIP coherently couples with
LO phonons. The experimentally observed amplitude of energy splitting is ca. 10 meV, which

25
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Figure 3.1: Anti-crossing due to electron-LO phonon interaction as a function of €15. The y-axis
indicates the coupled mode energies. The horizontal and the vertical dotted lines are the position of
ero- The dashed line is the position of non-interacting intersubband transition energy £1,. Energy
splitting arises around the LO phonon energy as a result of anti-crossing.

is on the same order as (but larger than) the value, 2W = 4 meV, expected in the above. The
argument in the above is based on the simplified two-level model. In order to quantitatively discuss
the experimental results here, one needs a theoretical model which is more realistic as will be
described in the following section.

3.2 Comparison with Theory

We consider a so called “macroscopic model”, or a “dielectric continuum model”, by assuming the
quantum-well to be a homogeneous dielectric medium [28]. In this model, frequencies in coupled
modes, or anti-crossing energy levels, are derived as in the following. First, the resonant process
causes the real part of the dielectric constant to change. When the total charge included in the
homogeneous medium is kept unchanged, the propagation of electromagnetic wave satisfies,

div[D(w)] = div[e(w)E(w)] = 0. 3.2)
This requires for longitudinal waves to obey the equation
Re[e(w)] = Re[eo + sl = 0, (3.3)

where e o and egsp are the LO phonon and the intersubband transition contributions to the di-
electric function, respectively. The z component (normal to the plane of wells) of the dielectric
function is given by

2 2 2
W —w w
LO P
€(w) = €x 5 5 €0 o (3.4)
w —wT0+zw0 w —w12+1w0
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where wy; is the bare frequency of intersubband transition, 0% is the damping parameter which is
ignored here for simplicity, and wp is the plasma frequency of the two-dimensional electron gas,
given by

2
W = 2w12d{,N2pEG (35)
hepecLow
where
dip = efdzm(z))(z(Z) (3.6)
is the intersubband dipole. Eq. (3.3) through (3.6) lead to
w* - a)z(wio + w%z + a)%,) + w%owfz + w%wioeﬁ =0. (3.7)
€
By using the well known Lyddane-Sachs-Teller relation
€0
W = W p—, (3.8)
€s
Eq. (3.7) can be put into the form
wt - wz(in + w%z + w%) + w%ow%z + w%szO =0. 3.9
For convenience of the later discussion, we note that Eq. (3.9) is reduced to
w* = Wi, + wh, (3.10)
in the limit of w;p—0 (absence of interaction), and to
w = w2, WL, (3.1

in the limit of wp—0 (N2pec—0, absence of electrons). Eq. (3.10) indicates anti-crossing point
shifts from a)%z to “’%2 + w% due to “Depolarization shift” [29]. The Depolarization shift originates
from the collective nature of intersubband transitions as follows. When electrons absorb external
light and are excited via intersubband transition, the profile of their charge density distribution
is simultaneously modified. The modification in the charge density profile gives rise to restoring
Coulomb force, enhancing the plasma oscillation frequency. As a result, even if interaction with
LO phonons did not exist, Depolarization shift of the intersubband transition takes place, following
the relation w% = w%z + w%,. The situation is confirmed on Fig.1.8 which shows that the target
wavelength including Depolarization shift is consistent with the photo-response spectrum. At the
limit of wp = 0, or Napeg = 0, Eq. (3.11) tells us that the intersubband transition and the LO
phonons are decoupled, and one should observe the bare (non-interacting) intersubband transition
at wio.

3.2.1 Energy level splitting

We can evaluate the coupled mode frequencies in the upper- and the lower branches by solving
Eq. (3.9). In doing this,

3h2 2
hop = ———, (3.12)
2m*LQW
and L6eL
eLow
= —2 (3.13)

o2
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are used for simplicity, which are derived by assuming a symmetric rectangular QW sandwiched
by infinite barriers, where Lo is the width of the QW corresponding to the intersubband transition
frequency w2, and Nopgg is the density of the two-dimensional electron gas (2DEG) in the QW
with €y = 8.85 x 10712As/Vm, €, = 10.86. Here Napgg = 2.5 x 10''em™ is taken as the average
value of experimental results.

The theoretical values (Eq.(3.9)) are shown in Fig.3.2 for comparison with experimental values
as a function of the bare intersubband transition energy £12. Equivalent data are re-plotted in
Fig.3.3 in terms of dimension-less quantities for convenience of later discussion (Sec.3.2.3 and
Fig.3.13). For Fig.3.2, the dashed straight line and the horizontal line indicate, respectively, &g =
(8%2 + sf))l/ 2 and the LO phonon energy £7. Depolarization shift of the anti-crossing point may
be evident.

For comparison with theoretical values, the weighted average of the spectral data were plotted
in Fig.3.2. The full theory incorporating the structure of CSIP would involve solving the full
problem in the presence of LO phonon and the interference of the wave function. The presently
available theories, however, assume a symmetric rectangular QW bounded by infinite barriers,
which would give a Lorentzian spectral shape. In addition, individual sharp peaks are sensitive
to the change of potential in the graded barrier and the quantum wells. (According to nextnano3
simulation, the energy of each excited level fluctuates by 0.3—1.0 meV changing the value of
each oscillator strength when the potential of the graded barrier varies in a few percentage. The
weighted average of the multiple transition energies, (£1,), remains in + 0.1 meV in the same
situation.) Hence the weighted average of the spectral data were compared with the theoretical
values.

The experimental value of each spectral band is derived by carrying out the weighted average
of the spectral data in Figs. 2.12 through 2.14,

A1) dA
Ay = f— 3.14)
S
where /(1) is the intensity of photo-response, and
S = fl(/l) da, (3.15)

is the integrated signal intensity for each spectral band. In the calculation, the wavelength range of
the upper (w; ) and the lower (w_) spectral bands were divided at the wavelength corresponding to
wo = (a)%2 + w%,)l/ 2, which is given by Eq. (3.10) when absence of interaction. When obtaining the
weighted average of the spectral data, we should take into account experimental uncertainty; the
systematic uncertainties by the monochromator and by the imperfect calibration of measurements,
and the random uncertainty. Figure 3.2 set their total uncertainty as an error bar in the y axis. The
result for 15 ym CSIP (Fig.1.8) is also plotted in Fig.3.2, which is only for the upper (w. ) spectral
band because the 15 um CSIP detected no photo-response in the lower (w_) spectral band. For
a correspondence of the values in the x axis to the y axis in Fig.3.2, the values of €, of the data
points were taken as the oscillator strength-weighted average of the multiple transition energies
from the ground state, (£1>), which their transition energies with relevant oscillator strengths are
derived from simulator calculations (nextnano3) as seen in Figs.2.4 through 2.6.

The data points representing those experimental values in Fig.3.2 are substantially reproduced
by the theoretical values based on the dielectric continuum model. This definitely indicates the
validity of the interpretation described in the above. In more detail, however, we notice further that
the experimental values of the lower energy branch (¢_) agree satisfactorily with the corresponding
theoretical values, while those of the upper energy branch (&) exhibit a certain deviation towards
higher values than the theoretical prediction. The discrepancy will be discussed later in Subsection
3.2.3.
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Figure 3.2: Coupled mode energies €. as a function of the bare intersubband energy £, in GaAs
for Noprg = 2.5 x 101 em™2. The experimental data in the present work (circles) are plotted with
the result for 15 ym CSIP (triangle). The top (red) and the bottom (blue) curves are the upper (w+)
and the lower (w-) energy branches obtained from the dielectric continuum model. The dashed

8%2 + 8%3. The horizontal line shows the LO phonon energy, € = €.9. The

line indicates g9 =
anti-crossing point (the intersection of the dashed line with the horizontal line) is shifted from

g2 = g0 to 1/.9%2 + sf, = gro because of Depolarization shift. The values of €1, for the data

points were taken as the oscillator strength-weighted average of the multiple transition energies.
For all the data points, experimental uncertainty is set as an error bar in the y axis.
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Figure 3.3: The data equivalent to those of Fig.3.2 are shown with values normalized by the LO
phonon frequency. The dielectric continuum model is calculated for Nopgg = 2.5 x 10 em™2
(solid), 5.0 x10''em=2 (dashed), and 1.0 x10'2cm™? (dotted). The top (red) and the bottom (blue)
curves are the upper (w,) and the lower (w-) frequency branches obtained from the dielectric
continuum model. The horizontal line shows the LO phonon frequency, w./wro = 1. Theoretical
values calculated with different two-dimensional electron density (N2peg) quantitatively require
more than twice for Nopgc than experimentally obtained values. (The experimental values of
Napeg remain in (2.5 + 0.2) x 10''em™2))
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3.2.2 Dependence on N,pgi

For the rigorous test of the interpretation described in the above, dependence of the spectral re-
sponse on the electron density, Nopgg, in the upper QW is studied. Equation (3.11) indicates
that the coupling strength of the intersubband transition with LO phonons is reduced with de-
creasing Nopgg and vanishes completely in the limit of Nopgg—0. In the experiment, Nopgg
can be reduced by applying negative bias voltage, Vg, to metallic photo-couplers (CG1, CG2,
CG3 in Fig.2.7 or C1 through C6 in Fig.2.8). Figure 3.4 displays the variation of spectrum with
decreasing V¢ from OV down to -250mV for DQW-32, where V¢ is applied equally to the six
photo-couplers (C1 through C6). Similar data for DQW-36 and DQW-48 are shown, respectively,
in Figs.3.5 and 3.6.

It is a common feature of the three samples that the spectrum in the upper frequency branch, w,
(shorter wavelengths) shifts its spectral weight towards lower frequencies (the longer wavelength
band) with decreasing Ve (or Naopeg) as a result of decrease in the Depolarization shift. On
the other hand, the multiple sharp peaks keep the positions with decreasing Noprg (or wp). The
influence of N>pgg to the multiple sharp peaks is left unclear. However, the unique behavior of this
interference pattern of the intersubband transition will offer a new insight into physics in the QW
structure. In the lower frequency branch w_ (the longer wavelength band), the spectrum does not
exhibit substantial shift but its intensity decreases significantly with decreasing Vg (or Nopeg).

As discussed in 3.2.1, the weighted averages of the spectral data were also taken for com-
parison of the intersubband transition energy with the theoretical model. The weight-averaged
wavelength (1) of each spectral band (Eq. (3.14)) is derived from the spectra at given values of
Vcg. The data points in Figs.3.7 through 3.9 show the experimental values of w, and w_ as a
function of Nopgg for DQW-32, DQW-36 and DQW-48, respectively, where w, and w_ are trans-
formed from the averaged wavelength (1) of each band to w. = 2nc /(1) and Nopgg are derived
from V¢ through the linear relation. The curves in the figures show theoretical values according
to Eq. (3.9), where wy;, is determined by (&1,), which is the oscillator strength-weighted aver-
age of the multiple transition energies from the ground state given by simulator calculations for
one electron. Between the maximum and the minimum values of N,pgg in this experiments, the
differences of (¢17) remain in 0.3meV. (The curves keep the shape within their line width.)

The experimental data in these figures definitely indicate that the amplitude of energy splitting
between the upper and the lower branches is reduced with decreasing Nopgg which is consistent
with theoretical prediction. The general trend of experimental w, and w- as a function of Nopgg
is reproduced substantially by the theoretical curves derived from the dielectric continuum model.
Nevertheless, experimental values in the upper branch w. are somewhat higher systematically than
the theoretical values. This discrepancy will be discussed later.
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Figure 3.4: Variation of the photo-response spectrum with decreasing V¢ for DQW-32. Each
color line shows photo-response applied each coupler gate (CG) bias V¢ as indicated in the
figure. The y-axis (a.u.) preserves relative scale of signal intensities. Photo-responses are split
into two spectral bands (w+ and w_), which are divided at the wavelength corresponding to wg =

,2 2
a)12+wp.
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Figure 3.5: Variation of the photo-response spectrum with decreasing V¢ for DQW-36. Each
color line shows photo-response applied each coupler gate (CG) bias Vg as indicated in the
figure. The y-axis (a.u.) preserves relative scale of signal intensities. Photo-responses are split
into two spectral bands (w. and w_), which are divided at the wavelength corresponding to wg =
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Figure 3.6: Variation of the photo-response spectrum with decreasing Vg for DQW-48. Each
color line shows photo-response applied each coupler gate (CG) bias V¢ as indicated in the
figure. The y-axis (a.u.) preserves relative scale of signal intensities. Photo-responses are split
into two spectral bands (w4 and w_), which are divided at the wavelength corresponding to wg =
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Figure 3.7: Coupled-mode frequencies, w, and w_, against Nopgg for DQW-32 (g1 = 38.5 meV).
For all the data points, experimental uncertainty is set as an error bar in the y axis. The top (red)
and the bottom (blue) curves are the upper (w+) and the lower (w_) frequency branches derived
from Eq.(3.9). The horizontal line shows the LO phonon frequency, w./wro = 1.
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Figure 3.8: Coupled-mode frequencies, w. and w_, against Noprg for DQW-36 (&1 = 34.7 meV).
For all the data points, experimental uncertainty is set as an error bar in the y axis. The top (red)
and the bottom (blue) curves are the upper (w.) and the lower (w-) frequency branches derived
from Eq.(3.9). The horizontal line shows the LO phonon frequency, w./wro = 1.
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Figure 3.9: Coupled-mode frequencies, w. and w_, against Noprg for DQW-48 (g5 =25.5 meV).
For all the data points, experimental uncertainty is set as an error bar in the y axis. The top (red)
and the bottom (blue) curves are the upper (w.) and the lower (w-) frequency branches derived
from Eq.(3.9). The horizontal line shows the LO phonon frequency, w./wro = 1.
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The integrated signal intensity, S (Eq.(3.15)), of each spectral band (w,, w-) is of particular
interest for seeking for a hint of designing THz-CSIPs. The values of S, derived from the data of
Figs.3.4 through 3.6, are plotted in Figs.3.10 through 3.12 for DQW-32, DQW-36, and DQW-48
as a function of Nypgg. Solid and dashed lines are guides for eyes. In all of the three samples,
linear relationship between S and Nypgg is found in neither of the two spectral bands. Particularly,
the intensity of the lower frequency branch (w-) in all the samples decreases more rapidly than
Nypgg. On the contrary, S of the upper frequency branch (w.) for DQW-48 even increases with
decreasing NopgG.

In the present experiments, photo-response in the lower-frequency branch was much weaker in
all the crystals DQW-32, DQW-36, DQW-48. This is probably the electrons excited in the lower-
frequency branch is prevented to tunnel out of the upper QW because of an unsuitable height of
the graded barrier between the upper and the lower QW. Crystal growth with the proper height of
the graded barrier can increase photo-signal on the lower-frequency branch. Reducing the tunnel
barrier height may weaken the tight confinement of LO phonons in the quantum well, resulting in
the decrease in the strong resonant coupling. This control for the tunnel barrier height is expected
to enhance the lower-frequency branch that is near the bare intersubband transition frequency wj».
Especially, the influence of LO phonon coupling to the detector sensitivity is left unclear.
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Figure 3.10: Integrated signal intensity S as a function of two-dimensional electron density Nopgg
for DQW-32. All experimental data points set integrated intensity obtained from noise signal as
an error bar in the y axis. Solid and dashed lines are guides for eyes.
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Figure 3.11: Integrated signal intensity S as a function of two-dimensional electron density N2pgeg
for DQW-36. All experimental data points set integrated intensity obtained from noise signal as

an error bar in the y axis. Solid and dashed lines are guides for eyes.
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Figure 3.12: Integrated signal intensity S as a function of two-dimensional electron density Naopgg
for DQW-48. All experimental data points set integrated intensity obtained from noise signal as

an error bar in the y axis. Solid line is the guide for eyes.
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3.2.3 Enhancement of LO phonon coupling

Experimentally found level splitting (Figs.3.2 and 3.7 through 3.9) is somewhat larger than the
theoretical values predicted by the dielectric continuum model. It is suggested that quantitative
agreement between the experimental results and theory might be improved by a “microscopic
model”, which indicates that the coupling of intersubband transition with LO phonons is remark-
ably enhanced [30]. The enhancement takes place as a consequence of

e the collective nature of the intersubband transition and
o the natural tight confinement of LO phonons in the QW.

The model describes the intersubband transition under the influence of LO phonons by explicitly
treating the full Hamiltonian,

H = Z hwlzbgbq + thOr;rq

q
e I(g) T +
+ \/NZDEGhU)LO Jee, Y(bq +b_g)(rly +rq)
R (C))
+ N “Z bl +b_g)b +b 3.16
ZDEG4€0€OO C] ( q q)( —-q q), ( )

where the first term represents the electron energy, the second term the LO phonon energy, the
third term is the electron-LO phonon interaction [30], and the fourth term is the electron-electron
interaction. Here, bq, bz and rg, r; are annihilation and creation operators of electrons and LO
phonons, respectively, with in-plane wave vector q, €, is given by

1 1 1

€& €o &

with €; and €., being the static and high-frequency dielectric constant, and /(g) is defined by

1(g) = f dz d7 x1(@Qx2@x 2@ 1 Ye 1, (3.17)

The third term of Hamiltonian (Eq. (3.16)) shows that the electron-LLO phonon interaction is
enhanced as N»pgg increases since its amplitude is proportional to VNapgG.

Dashed lines in Fig.3.13 show two eigenfrequencies, w, and w-, derived from the diagonal-
ization of the Hamiltonian matrix, as a function of wi; (non-interacting intersubband transition
frequency). For comparison, corresponding values derived from the dielectric continuum model
(Eq. (3.9)) are shown with solid lines. Experimental values of wjz/wpo (corresponding to DQW-
32, DQW-36, and DQW-48) fall in a range of wiz/wro = 0.7 ~ 1.05 in the figure. Experimental re-
sults, however, cannot be directly compared with theoretical values here since the electron density
in the experiments (Nopgg < 2.5 X 10" em™2) does not match the value, Napgg = 1.0 x 102cm™2,
assumed in the calculation. Figure 3.13 shows w. as a function of Nypgg for wip/wro = 1.

It is evident in Figs.3.13 and 3.14 that (i) the energy splitting in the experimentally studied
range (wi2/wro = 0.7 ~ 1.05) is remarkably larger in the microscopic model, indicating that the
intersubband-LO phonon coupling is substantially stronger than that expected in the dielectric
continuum model, and (ii) the larger splitting is caused primarily by a large upward shift of the
upper frequency branch w,, while the lower frequency branches w_ of the two models give values
close to each other. These characteristics are consistent with the features experimentally found in
Figs.3.3 and 3.7 through 3.9. As shown in Fig.3.14, experimental data points of DQW-32 indeed
fall closer to the theoretical values of microscopic model. The coupling between intersubband
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transition and LO phonons is enhanced with increasing Nypgg also in the dielectric continuum
model, as noted by the increase of splitting with increasing Nopgg in Figs.3.7, 3.8, and 3.14.
However, the enhancement is not sufficiently taken into account in the dielectric continuum model.
In the microscopic model, all the relevant phonon modes are taken into account for calculation, but
the dielectric continuum model corresponds to a calculation of restricted phonon modes limited to
q = 0and q,—0.
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Figure 3.13: Dashed curves indicate eigenfrequencies (w.) derived from the microscopic quantum
model [30] (Eq. (3.16)) for Nopgg = 1 x 10"2cm™2 as a function of wi2/wro (normalized non-
interacting transition frequency). Solid curves are corresponding values derived from the dielectric
continuum model (Eq. (3.9)).
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Figure 3.14: Dashed curves indicate eigenfrequencies (w. ) derived from the microscopic quantum
model [30] (Eq. (3.16)) for wis/wrp = 1 as a function of Nopgg. Solid curves show the corre-
sponding values derived from the dielectric continuum model (Eq. (3.9)). The dots show the data
points of DQW-32, where wi2/wro = 1.05 is close to unity.
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3.3 Related Experiments

Prior to the present work, two experiments have reported on the LO phonon related anti-crossing
behavior. One is on self-assembled InAs quantum dots [31]: Magnetospectrosopic experiment
shows energy splitting on the both sides from the bare transition energy due to a resonant interac-
tion between the discrete state and LO phonons (Fig.3.15). This experiment studied the coupling
between electrons and LO phonons through the optical method (transmission spectrum) by using
quantum dots. On the other hand, the present work with CSIP has measured the anti-crossing
behavior in a more direct way (by measuring current response on the site of the interaction of elec-
trons and LO phonons) within the quantum-well structure. Another report is on quantum-wells
of quantum cascade lasers (QCL), where transmission spectrum exhibits anti-crossing [28]: The
anti-crossing behavior shows up when the difference between the pump and the lasing energies
(Raman shift) is comparable to the subband splitting energy as shown in Fig.3.16. This exper-
iment indicate that interaction between electrons and LO phonons gives rise to energy splitting
when transition energy is close to the LO phonon energy.

Distinct advantage of CSIP, when compared to other systems in view of a study tool of anti-
crossing behavior, is the outstanding sensitivity; viz., photo-response can be clearly seen simulta-
neously in both of the resonant modes. In Fig.3.16, however, two coupled modes cannot be seen
simultaneously, probably because LO phonon-like mode has too weak response to be detected,
while the intersubband-like mode is of strong response. In addition, CSIP measures signal current
in the lower QW channel applying weak voltage bias (Vgp = 10mV). Thanks to this mechanism,
CSIP can read out photo-response preserving the coupled mode states in the double QW. Aside
from the aspect of fundamental material research, significant message of the present work may be
the importance of the strong coupling with LO phonons in designing highly sensitive THz-CSIPs.
This is because unavoidable strong coupling between intersubband transition and LO phonons
causes remarkable modification in both the detection wavelength and probably the detection sen-
sitivity.
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Figure 3.15: Magnetic field dispersions of the resonance (full circles) [31]. The dashed lines
are the calculated dispersions from the simple perturbation approach. The solid lines show the
calculated coupling of electron-LO phonon interaction. Energy splitting is found to increase with
B because of the Zeeman effect. The interaction of the different transitions with LO phonons
provokes two anti-crossing. The insets shows the calculated time dependence of the survival
probability of the two non-interacting (zero-phonon) states (Rabi oscillation).
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Figure 3.16: (a) Emission peak position vs. pump position for the QCLs [28]. Each type of symbol
represents one sample. The inset to the figure shows the transmission spectrum for one sample. (b)
Difference between pump and emission photon energies, i.e. Stokes Raman shift, vs. intersubband
energy (1-to-2) [28]. The values of the y-axis are obtained from results shown in (a). The curves
(solid for GaAs phonon and dashed for AlAs-like phonon mode) are calculated from the model.
The two horizontal lines indicate the positions of the LO phonons, while the two vertical dotted
lines show the expected anti-crossing positions.
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3.4 Brief Summary of This Chapter

By using CSIP for the target wavelength of 32, 36, 48 um, we observed photo-response spectra
in the different wavelength regions from the target wavelength. In this chapter, we discussed the
origin of photo-response that consists of two distinctly separated spectral bands.

In GaAs crystal, strong coupling process of electrons with LO phonons leads to the formation
of hybridized “polaron” state, that is a superposition of the two states; the state with an electron
in the excited subband and zero LO phonon | e, 07), and the state with the electron in the ground
subband and one LO phonon | g, 1;0). The polaron states can give rise to level anti-crossing as
the intersubband energy difference &1, is close to the LO phonon energy ;0.

The scenario of anti-crossing is justified only when the electron/phonon system is in a quantum-
mechanically undisturbed state to assure coherent interaction between electrons and LO phonons.
This condition is violated in widely applied QWIPs, but is satisfied in the present system of CSIP.
This is because excited electrons are preserved coherently in isolated region consisting of the upper
and the lower quantum wells with a lifetime experimentally evaluated to be about 4 psec, which is
long enough for the formation of coupled polaron state. It is hence probable that the intersubband
transition in CSIP coherently couples with LO phonons.

In order to quantitatively discuss the experimental results here, we considered a theoretical
model. The experimental values are substantially reproduced by the theoretical values based on the
dielectric continuum model. This definitely indicates the validity of the interpretation described
as the formation of coupled polaron state.

The coupling strength of polaron states should be weakened if the density of electrons relevant
to the intersubband transition decreases. For more detailed test of the interpretation of the for-
mation of coupled polaron state, dependence of the anti-crossing on the two-dimensional electron
density (Napgg) in the upper QW is studied. The experimental data indicate that the amplitude
of energy splitting between the upper and the lower branches is reduced with decreasing Nopgg
which is consistent with theoretical prediction. The experimentally obtained coupled-mode fre-
quencies (w, and w-) as a function of N,pgg is reproduced substantially by the theoretical curves
derived from the dielectric continuum model. In more detail, however, we notice further that the
experimental values of the lower energy branch (w-) are in good agreement with the correspond-
ing theoretical values, while those of the upper energy branch (w.) exhibit a certain deviation
towards higher values than the theoretical prediction.

It is suggested that quantitative agreement between the experimental results and theory might
be improved by the microscopic model, which indicates that the coupling of intersubband transi-
tion with LO phonons is remarkably enhanced. As a result, this microscopic quantum model gives
rise to larger level anti-crossing than that of the dielectric continuum model. Experimental data
points indeed fall closer to the theoretical values of microscopic model. The microscopic model
could explain the difference between the experimental results and the prediction of the dielectric
continuum model.
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Conclusion

We have discussed the strong resonant coupling due to interaction between electrons and LO
phonons. Spectral measurement by using charge sensitive infrared phototransistors (CSIP) found
evidence of anti-crossing due to interaction of intersubband transition with LO phonons.

Our aim is to develop CSIP for astronomical applications for the wavelengths of 30 — 60 yum.
Teraherz (THz) or Far-infrared (FIR) region (4 ~ 30 — 300 um) offers the opportunity to probe
the process of star-, planet-, and galaxy-formation. In addition, the wavelength range of 30 — 60
pm is important for the study of protoplanetary disks, which provide the clue to understand the
planetary-formation process. However, spectroscopic observations in the wavelength range of 30
— 60 um, have been very much limited for the lack of sensitive detectors in this range.

Hence, in this thesis, we focused on the application of CSIP for the wavelength range of 30
— 60 pum, which has rich astronomical information yet unexplored. CSIP is a quantum-effect
device implemented in a GaAs/AlGaAs double QW structure. The operation mode of CSIP is as
follow: The upper quantum-well (QW) in the double QW structure is positively charged up by
photo-excitation via intersubband transition. This conduces to increase in the conductance of the
lower QW channel. In other words, the electrically isolated upper QW serves as a photo-sensitive
gate to the source-drain channel formed by the lower QW. This mechanism gives extraordinary
high photoconductive gain. Hence CSIP is the promising detector with high sensitivity in the
FIR. CSIP has been well established in the mid-infrared region (12 - 20 um), achieving Noise
Equivalent Power (NEP) of 7 x 10720 W/ VHz, which is much better than those of conventional
semiconductor detectors.

Widening the width of the upper QW can shift the target wavelength to longer region. How-
ever, within the wavelength region of 30 — 60 um, there is a wavelength range, called “Reststrahlen
band”, in which the light is strongly reflected and absorbed due to strong coupling of photons with
phonons. The wavelength range of the Reststrahlen band is bounded by the Longitudinal Optical
(LO) phonon frequency, wyp, and the Transverse Optical (TO) phonon frequency, wro. In GaAs,
the Reststrahlen band is located in the range between 33.8 um (LO) and 36.8 um (TO) at 4K.
Since the light does not penetrate substantially into the material, photo-response is completely ab-
sent in the Reststrahlen band, as exemplified for widely used Quantum-Well Infrared Photodetctors
(QWIP). In the case of CSIP, however, the photo-active upper QW is located immediately below
the GaAs surface (about 100 nm depth). The photo-active region is well within the penetration
depth (around a few microns) of radiation in the Reststrahlen band. Hence CSIPs are expected
to exhibit finite response to the radiation in the Reststrahlen band: The response is of particular
interest because of strong interaction of electrons and LO phonons (Polaron effect) and strong
interaction between photons and TO-phonons (Polariton effect). It is important to experimentally
clarify how these interactions play their roles in the photo-response mechanism.

For this sake, we have designed and fabricated CSIPs especially for the Reststrahlen band
in this work. The upper QW width along with the overall crystal structure was so designed that
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the target wavelength falls in the Reststrahlen band. The target wavelengths of the crystals were
designed to be 32, 36 and 48 um. As a result, we observed photo-response in all of the three
devices. Moreover, spectral measurement revealed that photo-response consists of two distinctly
separated spectral bands. One of the bands substantially overlaps with the Reststrahlen band, while
the other was found in shorter wavelength region than the target wavelength.

In GaAs crystal, conduction electrons strongly couple to longitudinal optical (LO) phonons
due to Coulomb interaction. Due to the interaction, an electron in a QW repeats coherent pro-
cess of virtual emission and absorption of LO phonons, leading to the formation of hybridized
“polaron” state, that is a superposition of the two states; the state with an electron in the excited
subband and zero LO phonon | e, Orp), and the state with the electron in the ground subband and
one LO phonon | g, 170). The polaron states give rise to level anti-crossing as the intersubband
energy difference g1 is close to the LO phonon energy €;0.

The scenario of anti-crossing is justified only when the electron/phonon system is in a quantum-
mechanically undisturbed state to assure coherent interaction between electrons and LO phonons.
This condition is violated in widely applied QWIP, but is satisfied in the present system of CSIP.
This is because excited electrons are preserved coherently in isolated region consisting of the upper
and the lower quantum wells with a lifetime experimentally evaluated to be about 4 psec, which
is long enough for the formation of coupled polaron state. It is hence probable that the subband
transition in CSIP coherently couples with LO phonons.

In order to quantitatively discuss the experimental results here, we considered the theoretical
model. The “dielectric continuum model” describes dielectric constant due to interaction between
intersubband transition and LO phonons in a homogeneous medium. The experimental values are
substantially reproduced by the theoretical values based on the dielectric continuum model. This
definitely indicates the validity of the interpretation described in the above.

The coupling strength of polaron states should be weakened if the density of electrons rele-
vant to the intersubband transition decreases. For rigorous test of the interpretation described in
the above, dependence of the anti-crossing on the two-dimensional electron density (N2pgg) in
the upper QW was studied. The experimental data definitely indicate that the amplitude of en-
ergy splitting between the upper and the lower branches is reduced with decreasing Nopgc which
is consistent with theoretical prediction. The general trend of experimentally obtained coupled-
mode frequencies (w+ and w-) as a function of Nypgg is reproduced substantially by the theo-
retical curves derived from the dielectric continuum model. In more detail, however, we notice
further that the experimental values of the lower energy branch (w-) agree satisfactorily with the
corresponding theoretical values, while those of the upper energy branch (w_) exhibit a certain
deviation towards higher values than the theoretical prediction.

It is suggested that quantitative agreement between the experimental results and theory might
be improved by the microscopic model, which indicates that the strong coupling of intersubband
transition with LO phonons is remarkably enhanced. As a result, this microscopic quantum model
gives rise to larger level anti-crossing than that of the dielectric continuum model. Experimental
data points indeed fall closer to the theoretical values of the microscopic model. The microscopic
model could explain the difference between the experimental results and the prediction of the
dielectric continuum model.

In order to develop THz-CSIP for the wavelengths of 30 — 60 um, we have to pay careful
attention to the strong coupling between intersubband transition and LO phonons. It is crucial for
THz-CSIP to enhance photo-signal in the w_ branch suppressing photo-signal in the w, branch.
The one approach to realize this condition is the reduction of the height of the graded and the
tunnel potential barrier of CSIP.

This paper have reported detailed experimental evidence that intersubband transition and LO
phonons are resonant in the strong coupling regime by using the novel detector, CSIP. Anti-
crossing has been clearly seen in our spectral measurement in the vicinity of the Reststrahlen
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band. The experimental values for frequency splitting are substantially reproduced by the theoret-
ical values based on the dielectric continuum model. The LO phonon-like mode (the mode with
frequency nearer wyp) is expected to have smaller photo-response compared to that of the inter-
subband transition-like mode, since the energy of LO phonon-like mode is spent for lattice scatter-
ing rather than intersubband transition. Previous experiments on Quantum-well detectors showed
small anti-crossing, showing photo-response only for the intersubband transition-like mode. The
current result is the first experimental results to show the two polaron states in the strong coupling
regime. This is partly because the lifetime of the resonant coupled modes is long enough to ob-
serve photo-response because CSIP can read photo-current keeping coupled quantum states in the
double QW. Thanks to high sensitivity and the unique structure of CSIP, we observed the strong
coupling in the both w; modes.
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Appendix
Optimization of Wafer Characteristics
for THz-CSIP

CSIPs have been developed at the wavelength of 12 to 45 um [32]. Shorter-wavelength CSIPs (12
— 19 um) have been successfully applied for the development of novel passive near-field optical
microscopy with unprecedented resolution [33]. Unfortunately, longer-wavelength CSIPs (30 — 45
um; THz-CSIPs), which have been developed for our interested wavelength region, had suffered
from substantially lower sensitivity than those for 15um [34]. We investigated the cause of this
lower sensitivity prior to the study described in this paper. In this appendix section, we describe
the improvement of the sensitivity of THz-CSIPs by optimizing wafer structures. Most of the
description in this appendix have been published as [35]. The published paper is available at
Springer via http://dx.doi.org/10.1007/s10909-014-1140-6.

A.1 Sample Wafers

We tested 9 types of GaAs/AlGaAs double QW heterostructure crystals, whose characteristics are
summarized in Table A.1 (sample A — I hereafter). All the samples were grown via molecular-
beam epitaxy (MBE). The upper QW thickness was designed as 20 nm for some crystals whose
targeted wavelength was 45 ym, and as 23 or 24 nm for other ones with the target wavelength
of 52 um. Following the aforementioned discussion, the Si-doping level for the upper QW was
designed so that the electron density of the upper QW to be ny = (1.4 — 3.5) x 10''cm™2, which
corresponded to e — &1 = 4.7 — 12 meV. Both designed and measured electron densities ny are
indicated in Table A.1. We normally designed the potential barrier between the upper and the lower
QW as a graded AlxGa;_xAs layer: Aluminum composition x linearly decreases in the direction
from the upper QW to the lower QW. All the lower QW consist of GaAs except for the samples A
and B. The samples A and B were designed to have more simple growth pattern to achieve proper
carrier redistribution, and whose potential barriers and lower QWs were designed as a layer with
constant material composition of AlyGa;_xAs, where x was constant values of 0.04 (Sample A)
and 0.02 (Sample B). To achieve high values of y; with relatively low values of ny, the lower QW
was remotely doped with Si for all the samples with a spacer layer, whose thickness was ~ 30 nm.

The devices were fabricated by using a standard photolithography technique. The 2DEG lay-
ers were defined by wet mesa etching, and ohmic contacts were formed by alloying with 200 nm
AuGeNi layer. The photo-active region in the upper QW, whose length and width were L X W
= 150 um x 10 um, was defined by the negative biasing of the isolation gates (IGs) (Fig.A.1).
Electrons in the upper QW can be excited only by the electric field perpendicular to the two-
dimensional layer (hereafter we refer this direction as the z-direction) because the dipole moment
in the z-direction contributes to the excitation. To generate the electrical field component in the
z-direction, several dipole antennas were deployed on top of the photo-active region (Fig.A.1).
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Table A.1: Crystal structure parameters for THz-CSIP.

Sample Upper QW (GaAs) Lower QW (Al,Ga;_,As)
name | Well width Si-well doping *l ny 2 Hy X ny e
[nm] [10'7/cm?) [10'/cm?) [10*cm?/V s] [10"/em?]  [10*cm?/V s]
A 20 2.5 2.6 (3.5) 0.25 0.04 not detected  not detected
B 20 2.5 3.6 (3.5) 0.39 0.02 1.5 1.1
C 20 1.5 2.0(2.1) 0.91 0 (GaAs) 4.1 13
D 20 1.0 not detected (1.4) not detected 0 (GaAs) 3.2 4.6
E 20 1.5 22(2.1) 0.43 0 (GaAs) 39 16
F 20 1.5x10'%/cm? 0.6 (1.8) 19 0 (GaAs) 22 41
G 20 2.0x10"%/cm? 1.4(2.4) 8.3 0 (GaAs) 2.0 37
H 23 - 1.91.7) 39 0 (GaAs) 2.1 3.7
1 24 - not detected (1.7) not detected 0 (GaAs) 1.2 2.7

*1 Remote delta doping for Sample F and G, and no well-in doping for Sample H and I.

*2 The designed ny are indicated in the parentheses for respective crystals.

The lengths of the dipole antennas were different from each other, so that the antennas were sen-
sitive for different wavelengths of the incident radiation. The dipole antennas were separated by
obliquely-deposited 20nm/80nm NiCr/Au layers (Fig.A.1(b)). The efficiency of these antennas
may not be as high as that of the photo-couplers used above (Fig.2.8). However, we used this
antennas for this measurement to compare among different samples at first, since the fabrication
procedure was much simpler than the photo-couplers, as the antennas were fabricated only by
photolithography.

(a) (b)

Dipol t
lpole anl?:r\:?a iMe/sa 100nm
a- . —b
7! 4
“Upper QW

Figure A.1: (a) A micrograph of the device. (b) Schematic representation of one of the antennas.

A.2 Experimental Results and Discussion

Here we describe the experimental results of the THz-CSIP, and how to derive the electron density
and the mobility and to estimate the sensitivity.

All the measurements were carried out at 4.2 K with Vgp = 10 mV. The device was placed at
the end of a 1 m-long metal light pipe, which was inserted in a liquid Helium tank. The intensity of
the incident radiation was continuously changed by pulling up or pushing down a black polyethy-
lene plug into the light pipe, so that the temperature of the plug was continuously changed from
300 K to 4.2 K and the plug served as a black-body radiation source with those temperatures.

The measurement results are summarized in Table A.1. Photo signal detection was achieved
with Samples B and E. Figure A.2(a) shows the source-drain current of sample E as a function of
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Figure A.2: (a) Source-drain current against the gate bias voltage (Vg) in Sample E: The solid
line and the dotted line correspond, respectively, to the conditions with and without the radiation.
The inset shows magnified view. (b) Time traces of photo-signals at Vg = —1.0 V. Different curves
correspond to different intensities of radiation, where the strongest one corresponds to 300 K
radiation incident from the top of the light pipe and weakest one to the dark (4.2 K radiation). All
the data are obtained from Sample E.

the gate bias voltage, which was applied to both IGs and RG in the conditions with and without the
300 K radiation. A small dip of the curve around Vg = — 1.0 V indicates the threshold voltage (Vy3,).
Below Vy;, the photo-active region of the upper QW is electrically isolated (serving as a floating
gate). The inset in Fig.A.2 (a) shows a bump of the current under the 300K radiation below the
threshold voltage (Vg < — 1.0 V), which is the photo signal by the accumulation of positive charge
in the photo-active region. Figure A.2 (b) shows the time traces of the photo-current for sample E
under the reset operation, where a brief positive pulse (amplitude: 1.0 V, duration: 2us, frequency:
30 Hz) was applied to the RG.

The number of photo-induced charges n, on the isolated upper QW island can be evaluated
from the maximum amplitude of the saw-tooth signal current /s, (Fig. A.2(b)) by the relation:

L = nyAlL, (A.1)

where Al is given by Eq.(1.6). The rate of photo-induced charges accumulation N, is thereby
derived to be N, = 2.6 X 10% s~!'. The number of incident photon is estimated by the following
equation:
o= B(A, T)QAA
B [ he/A
where £ is the Planck’s constant, Q is the solid angle viewed from the detector to the light source,

AA is the bandwidth of the detector, S is the photo-active area, and B(4, T) is the Plank * s law,
which is described as the following:

] S[sec™, (A.2)

2hc

BA,T) = JE

2 hc -1
[exp (ﬁ kBT) - 1] Us~'m~2sr 'm™. (A.3)

@ can be evaluated from Eqs.(A.2) and (A.3), by substituting experimental values of 4 = 45um,
T = 300K, Q = S/d? (S: inner area of the light pipe, d: distance from the detector to the end of
the pipe). Taking into account the throughput of the light pipe of 10%, the quantum efficiency is

derived by 10X N
X Np
= . A4
n > (A4)
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NEP of a given detector is derived from the following equation ([1]):

hy

P
NEP = ———— = JU2)A (—) A5
SIN VAT VUIDAS e (A.5)

where P is the incident radiation power on the photo-active area, S/N is the signal-to-noise ratio,
Af is the measurement bandwidth, and (/?) is the noise current in bandwidth of Af. We estimate
NEP ~ 10~!5 W/ VHz for the measurement shown in Fig.A.2, whose P~100 pW, S/N ~102, and
Af ~100kHz. A sensitivity improvement of more than one order of magnitude has been achieved
from the earlier measurements [34]. This NEP can be improved as low as ~ 10718 wy VHz if we
decrease the detector size to that of the 15 um CSIP devise (L X W = 16 x 4 um?), expected from
NEP « W'/2 x L3/? relation derived from Eq.(A.5). However, this expected NEP is still ten times
worse than that of the 15um CSIP.

We obtained electron density and mobility from data of the source-drain current vs. gate bias
voltage shown Fig.A.2(a). When Vg > V,;, (above the threshold voltage), the isolated upper QW
island forms a capacitor with an ohmic contact on the surface. As Vg decrease below Vy, the
lower QW starts to form a capacitor with the ohmic contact. Analogous to Q = CV, electron
density is given by
_ eS Vth
==
where N is the number of S = L X W, & = g.59 (&,: relative permittivity, £y: permittivity of
vacuum), and d; is the distance between the surface and the upper QW. By substituting ny = N/S,
Eq.(A.6) is rewritten as

eN (A.6)

V
ny ==, (A7)
ed1
Moreover, analogous to j = enuE, mobility is given by
Iy Vsp
= == A8
W T enH T (A.8)

where [y is the current difference measured between V=0 and V=V,;. The mobility in the upper
QW (uy) can be derived from Eq.(A.8) with ny obtained from Eq.(A.7). We define a voltage
that source-to-drain current falls to zero, as V. For the lower QW, ny is derived from Eq.(A.7)
replacing Vi, and d; with Vy» and d,, where d; is the distance between the surface and the lower
QW. The mobility in the lower QW (uy) is also derived from Eq.(A.8) replacing Iy and ny with I,
and nz, respectively, where [ is the current difference measured between V,; and V. Table.A.1
lists experimental values of the electron density and the mobility for the upper and the lower QW.
The results of this measurement for nine samples can be summarized as follows:

e Photo signal has been detected with Samples B and E.

e Experimental values of ny in several samples are smaller than the designed values. This is
probably because of the imperfection of the crystal fabrication and the resultant localization
effect of electrons.

e Sample A does not show photo-signal because the conduction through the lower QW is
not detectable. This is because the electrons in the AlyGa;_xAs layer (x = 0.04) are nearly
localized due to alloy scattering.

e The photo-signal in sample B is smaller than that in sample E as the result of the lower
value of u;.

e In Sample D and I, the upper QWs show deficit in the electron numbers because the Si
doping concentration is not sufficient for these samples.

e In Sample F and G (remote delta doped), ny is found to be low and non-uniform, resulting
in no photo-signal. Crystal imperfections in the barrier layers give rise to electron traps
reducing ny.
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e In Sample H, y; is spatially non-uniform and much less than expected, and thus photo-
signal cannot be detected.

e Sample C is a unique example, in which both the upper and the lower QWs are reasonably
formed but the photo-signal is absent.

To investigate this puzzle of Sample C, we have carried out additional measurements. For sample
C, we confirmed that the recombination lifetime 7j;s. Was exceptionally short.; Ty & 150us. In
other words, the upper QW was not electrically isolated due to very small but finite electrical
leakage to the lower QW or to the ohmic contacts. The leakage mechanism is unclear at present
and left for future investigation.

A.3 Summary of This Work

We have improved performance of THz-CSIPs (45 um) by optimizing the design of GaAs/AlGaAs
double QW structures. Particularly, we found that Si-doping concentration in the upper QW should
be equal to or higher than 1.5 x 10'7 cm™3. We noticed that the average distance between doped
Si atoms at 1.5 x 10'7 cm™ reaches as large as 19 nm. Since this distance is larger than the
Bohr radius of Si donor level in GaAs, Si donors may remain localized without contributing to
the metal-like conduction. Another important message of this work is that the lower QW should
be a GaAs layer without Aluminum, since the small composition of Al in the lower QW substan-
tially degrades the detector performance. This is because n; is dramatically reduced due to alloy
scattering. For future improvements, Si-doping into the upper QW should be finely adjusted in
accordance with €1 < er < &, < &.

In this work, the sensitivity of the THz-CSIP has improved by more than one order of magni-
tude from the earlier experiments. We also found proper conditions of Si-doping concentration in
the upper QW and of the lower QW for further improvement of THz-CSIP.
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