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Abstract

In this thesis, we study cosmological phase transitions with a hot thermal bath. We often use
effective potentials in considering such phase transitions, which give a simple explanation of
restoration of symmetry of the theory at high temperature. However, since the effective po-
tential is a static and homogeneous limit of the effective action, the effective action plays an
essential role in considering dynamical, inhomogeneous field configurations. It is known that
the effective action based on the finite-temperature field theory generally contains an imaginary
part, which can be rewritten by introducing stochastic noise terms. The equation of motion of
the field of interest, derived from this effective action, becomes Langevin equation. Therefore,
the thermal environment gives not only the correction to the effective potential but the thermal
fluctuations as well. The thermal fluctuation term is one of the important information that the
effective action includes. We review a method to extract thermal fluctuations for various inter-
actions. Interestingly, all the interactions which have been considered so far leads to the same
relation, known as fluctuation-dissipation relation. We verify this relation in scalar quantum
electrodynamics, as a first step to fully understand the dynamics of scalar fields with general
interactions including gauge theory.

We study the effects of thermal fluctuations on the phase transition at the end of thermal
inflation late in this thesis. Thermal inflation is a short period of accelerated expansion after
the primordial inflation, which can reconcile the theory of supersymmetry with cosmology by
diluting dangerous particles predicted by the theory. The end of thermal inflation is just a phase
transition in a hot environment created just after the primordial inflation. We study the scenario
of thermal inflation taking thermal effects into account, and see that the scenario itself is not
ruined but the phase transition at the end of thermal inflation proceeds through phase mixing,
which is different from what has been expected. An observational consequences of this result is
that even if thermal inflation has occurred in the early Universe, we cannot expect gravitational-
wave production, which is a characteristic phenomenon with strong first-order phase transitions.
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Chapter 1

Introduction

The modern cosmology, as the dynamics of spacetime, was born a hundred years ago when Al-
bert Einstein constructed general relativity. This huge shift of paradigm in theoretical physics is
now one of the basic common knowledge after astronomers found that the Universe is expand-
ing1). Further developments in observation technology enable us to conclude that the expansion
of the Universe is now accelerated [2]. Not only the dynamics of background spacetime, but
also the evolution of the density fluctuations of matter and the course of structure-formation
has been gradually unveiled. On the other hand, looking at the beginning of the Universe, the
paradigm of inflationary cosmology [3, 4] has been established but we have to say we do not
know much about what were really happening during inflation and the following reheating.

The cosmology of the early Universe is trying to answer the two fundamental questions.
The first is, of course, “How the Universe begins?” This may be the most fundamental question
which humans have been asking since ancient times. Not only this historical question, it has
potential to give suggestions of the second question: “What is the fundamental law of physics
of this world?” Since energy scales of phenomena in the early Universe are much higher than
that of artificial particle accelerators, we expect to get some suggestions from observing the sky
and decoding signals which were produced about 14 billion years ago. Therefore the role of the
cosmology of the early Universe, in the variety of fields of physics, comes to be more and more
important.

We can divide the role into two parts. The first is to rule out or give constraints on the
untested theories. Since the resources we can use to verify the high-energy theory are limited,
there are so many hypotheses which predict unreachable scale phenomena. By considering
physical processes and observational consequences which are predicted by these theories, we
can evaluate their validity by comparing with the real sky. The second is the role as a window to
utterly new physics. The modern physics is based on general relativity and the standard model
of particle physics described with quantum field theory, but cosmology is requesting physics

1)The history of observations related to cosmic expansion is summarized in Ref. [1] by B. P. Schmidt, one of
the winners of the Nobel Prize in Physics in 2011.
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2 CHAPTER 1. INTRODUCTION

beyond these theories. That is, we probably need the inflaton field in addition to the known
fields and also need an explanation of dark matter. Is the current accelerated expansion caused
by cosmological constant? Or does the theory of gravity have to be updated and modified from
general relativity? These questions have great possibilities to open the door to the new physics.

In this thesis, we focus on phase transitions in the early Universe. They have provided
mechanisms of inflation, called “old inflation” [4] and “new inflation” [5]. In both of the models
the vacuum energy before the end of the phase transition drives accelerated expansion. Not
only the primordial inflation, but the so-called thermal inflation [6, 7], which is a relatively
short accelerated period after the primordial inflation, is also caused by the potential energy of
the flaton field. Though both thermal inflation and the primordial inflation describe accelerated
expansion of the Universe and the name of thermal inflation make us feel it is one of the many
models of the primordial inflation, its role in cosmology is different. Again, thermal inflation
occurs after the primordial inflation, so that it can dilute dangerous particles such as gravitinos
[8] and moduli [9, 10, 11]. Since they come to be problematic after the primordial inflation,
thermal inflation provides a way to dilute them. Thermal inflation changes the expansion history
of the Universe, not only are the moduli and gravitinos diluted but the primordial gravitational
waves are damped as well [12]. On the other hand, collisions of bubbles generated during
a phase transition are thought to produce gravitational waves [12, 13, 14]. These examples
indicate that the phase transition is an important key to understand high-energy physics and
the very early Universe, especially through observations of gravitational waves, by DECIGO
[15] and BBO [16]. With this motivation we also study the description of thermal inflation,
particularly on how it ends [17].

Before studying thermal inflation, we improve our tools of finite-temperature field theory
to explore the hot early Universe, since precise descriptions of the dynamics of phase transi-
tions are necessary to compare predictions of each theoretical model with observations. The
finite-temperature field theory is a generalization of the quantum field theory treating fields in a
thermal state. Since the Universe after inflation is so hot that we expect thermal effects. In many
models of the early Universe, phase transitions are characterized by the expectation values of
the scalar fields, which are deeply related to temperature change. While the effective potential
is a useful quantity to derive properties of the phase transitions that happen quasi-statically, its
use often comes short because of dynamical nature of the scalar fields. In such cases, we need
to directly solve the evolution equations of the scalar fields derived from the effective action.
It has been shown that the behavior of a scalar field in thermal bath can be described by the
Langevin equation [18, 19, 20], which includes stochastic noise terms coming from interactions
with other fields in thermal bath. These noise terms may change the types of phase transitions.
For example, a previous study [19] indicates that the fermionic noise may lead to the phase
mixing, which invalidates the description of a phase transition using the effective potential.

This thesis is organized as follows. In the next chapter we shortly review the basis of modern
cosmology, that is, the theory of inflation and the physics in the hot Universe. As we briefly saw,
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the role of thermal inflation is different from the primordial one. In Chapter 2 we review the
fundamental role of primordial inflation, namely, generation of primordial fluctuations and real-
izing a hot Universe after accelerated expansion. In Chapter 3, we study the finite-temperature
field theory as a fundamental tool to explore the hot Universe. We consider the phase transitions
based on this formalism in Chapter 4. Chapter 5 is devoted to concluding remarks.





Chapter 2

Inflation and the subsequent Big-Bang
Universe

2.1 Inflation

In this section we briefly have a look at the inflationary Universe, which is the standard paradigm
of modern cosmology. To understand the inflationary Universe more comprehensively, one can
study Ref. [22], with other reviews and textbooks on inflation.

2.1.1 Basic Idea

The standard model of cosmology, or the simplest description of our Universe, is called ΛCDM
model, which assumes the cosmological constant Λ and the cold dark matter. Namely, we can
describe the Universe as a dynamical spacetime satisfying the Einstein equation

Rµν −
1
2

Rgµν + Λgµν = 8πGTµν , (2.1)

where Tµν is the energy-momentum tensor of the matter in the Universe, including the dark
matter in addition to “standard” particles like baryons. As for the spacetime metric gµν, the ho-
mogeneous and isotropic Universe is described by Friedmann-Robertson-Walker (FRW) metric,

ds2 = −dt2 + a2(t)
[

dr2

1 − Kr2 + r2(dθ2 + sin2 θdϕ2)
]
, (2.2)

where a(t) is the scale factor whose time dependence is determined by the energy contents of the
Universe. The 00-component of the Einstein equation for FRW Universe, known as Friedmann
equation, gives this relation as ( ȧ

a

)2

= H2 =
8πG

3
ρ − K

a2 , (2.3)

5



6 CHAPTER 2. INFLATION AND THE SUBSEQUENT BIG-BANG UNIVERSE

and the spatial components are reduced to

2
ä
a
+

( ȧ
a

)2

+
K
a2 = −8πGp . (2.4)

Therefore the energy density ρ and pressure p of the dominant component in the Universe
determine how the Universe evolves. It is convenient to introduce a parameter w characterizing
the equation of state as

w =
p
ρ
, (2.5)

which takes the following value,

w =


0 non − relativistic matter,
1
3 radiation,

−1 cosmological constant.

(2.6)

It is also convenient to introduce a constant called reduced Planck mass, as MPl = 1/
√

8πG =
2.4 × 1018GeV. With these setups we can consider the expanding Universe and trace back its
history. The current expansion suggests that the Universe was hotter and denser in earlier times.
One of the observational evidence of the hot Universe, or the Big-Bang Universe is the Cosmic
Microwave Background (CMB), a near-perfect blackbody background radiation of T ∼ 2.7K,
which is a snapshot of the Universe when the photons and electrons are decoupled and electrons
combine with protons to become neutral hydrogen atoms (recombination).

The idea of the inflationary Universe was originally motivated by solving problems with
the Big-Bang theory. First, the CMB is so homogeneous that we have to choose special initial
conditions over the superhorizon regions at the beginning of the Universe. This is called horizon
problem. Using the particle horizon, which means the largest causal distance after an initial time
ti,

dp(t) =
∫ t

ti

dt′

a(t′)
, (2.7)

we can see this problem more quantitatively. The causal region at the decoupling corresponds
to about 1degree2 in the observed homogeneous CMB sky, that is, we see that the temperature
of the Universe were almost homogeneous at least over 104 noncausal regions.

We also have to assume the smallness of the spatial curvature, which is known as flatness
problem. In addition to these problems related to unnatural initial conditions, we have a more
severe problem called monopole problem. Phase transitions of the Universe produces topologi-
cal defects, like monopoles. Since the energy density of them decreases as ∝ a−3, the expansion
history of the universe becomes different from our Universe. The exponential expansion of the
Universe at its early stage solves all the problems above.

Here we briefly review a class of working models called slow-roll inflation. In these models
we assume that inflation is driven by the homogeneous component of a scalar field, called
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inflaton, whose value varies slowly as it slowly rolls down the potential. In this case the energy-
momentum tensor becomes the form of a perfect fluid with

ρ =
1
2
ϕ̇2 + V[ϕ] ,

p =
1
2
ϕ̇2 − V[ϕ] . (2.8)

Therefore we expect an accelerated expansion when the following condition is satisfied.

ä
a
= − 1

6M2
Pl

(ρ + 3p) =
1

3M2
Pl

(V[ϕ] − ϕ̇2) > 0 . (2.9)

In order to quantify the slowness of the roll of inflaton, it is convenient to introduce slow-roll
parameters like

ϵv =
M2

Pl

2

(
V ′

V

)2

,

ηv =M2
Pl

V ′′

V
, (2.10)

which give the slow-roll conditions as ϵv < 1 and |ηv| < 1. Actually the above parameters are
slow-roll parameters defined by the shape of the inflaton potential hence we expect that we can
use them to distinguish models of inflation. We can take other definition in which we can see
the meaning of “slow-roll” more directly.

ϵSR =
1

2M2
Pl

ϕ̇2

H2 ,

ηSR = −
ϕ̈

Hϕ̇
. (2.11)

ϵSR parametrizes the slowness of the time evolution of the inflaton compared with H and small-
ness of ηSR represents that the change of ϵSR is small per Hubble time.

2.1.2 Generation of Primordial Fluctuations

The inflationary Universe becomes a key ingredient of the modern cosmology because it pro-
vides not only the solution of the problems with the Big-Bang model but also the generating
mechanism of density fluctuations necessary for the structure formations. The basic picture of
the generation of density perturbations in the inflationary Universe is that the perturbations of
the inflaton field on its homogeneous, slowly rolling component classicalizes at its horizon exit.
That is, quantum fluctuations consisting of modes with shorter wavelength than the horizon
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length becomes classical when the subhorizon modes become superhorizon. Let us consider a
test scalar field in de Sitter spacetime. The equation of motion is d2

dt2 + 3H
d
dt
+
|⃗k|2

a2(t)
+ m2

 ϕ(t, k⃗) = 0 . (2.12)

Using the conformal time η = − 1
aH , we obtain(

d2

dη2 −
2
η

d
dη
+ |⃗k|2 + m2

H2η2

)
ϕ(η, k⃗) = 0 . (2.13)

The general solution of this differential equation can be expressed as

C1 · (−kη)3/2H(1)
ν (−kη) +C2 · (−kη)3/2H(2)

ν (−kη) , (2.14)

where H(i)
ν is the Hankel function of the i-th kind and ν is equal to

√
9
4 −

m2

H2 . We impose a
boundary condition that in sub-horizon limit (kη ≫ 1) the mode function becomes equal to
positive-frequency mode in Minkowski spacetime. After normalization we obtain

ϕ(η, k⃗) =
√
π

4
H(−η)3/2H(1)

ν (−kη)

→ 1
√

2k
e−ikη × Hη

(
1 +

1
ikη

)
, (2.15)

where we take ν → 3/2 and −kη → ∞ in the second line. In the superhorizon limit |kη| ≪ 1, it
becomes a time-independent value, iH√

2k3
.

In considering realistic situations, we have to note that the inflaton or any matter in the Uni-
verse is not just a contents in the container of spacetime, but spacetime also have fluctuations.
Therefore we should treat the fluctuations of spacetime and inflaton field together, since coor-
dinate transformation enable us to reinterpret fluctuations of the metric as those of the energy-
momentum tensor. This choice of coordinate to define fluctuating quantity is called “gauge” in
cosmological perturbation theory. Though the fluctuations mix by coordinate transformation,
we decompose them into scalar/vector/tensor-type perturbations according to their properties of
coordinate transformation. The scalar-type perturbation represents the density fluctuation or the
curvature fluctuation and tensor-type corresponds to gravitational waves. This decomposition is
useful since they are decoupled at the linear order in the Fourier space. After the decomposition
we define gauge-invariant perturbation variables.

Now we evaluate the amplitude of the primordial fluctuations. In order to see that the fluc-
tuations of the spatial curvature are generated by inflation, we consider one example known as
comoving gauge. In this gauge the inflaton has no inhomogeneity but there are spatial curvature
as

ds2 = −dt2 + a(t)2[(1 − 2R)δi j + hi j] , (2.16)
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where hi j satisfies transverse-traceless condition, ∂ihi j = hi
i = 0. We can expand the action up

to the second order in R and obtain a dramatically simple form as

S 2 =

∫
dηd3x

[
1
2

v′2 +
1
2

(∇⃗v)2 +
1
2

z′′

z
v2

]
, (2.17)

where z = aϕ̇
H and v = zR, which is known as Sasaki-Mukhanov variable [23]. This is an

action of harmonic oscillators with time-dependent mass term. Note that the variable z can be
expressed with slow-roll parameter ϵ as z2 = 2aM2

PlϵSR hence the v becomes massless in the de
Sitter limit. The autocorrelation of R for each mode is evaluated at its horizon-exit,

⟨R(t, k⃗)R(t, k⃗′)⟩ = (2π)3δ(⃗k + k⃗′)
H4
∗

2k3ϕ̇2
∗
= (2π)3δ(⃗k + k⃗′)PR(k) , (2.18)

where H∗ and ϕ̇∗ represents values at the horizon exit. To consider the amplitude in the real
space, it is convenient to define the dimensionless powerspectrum as

∆2
R(k) =

4πk3

(2π)3 PR(k) =
H4
∗

(2π)2ϕ̇2
∗
. (2.19)

Namely, as the powerspectrum of scalar-type fluctuations we obtain

∆2
s (k) =

1
24π2ϵv

V
M4

Pl

∣∣∣∣∣∣
k=aH

. (2.20)

Next we consider the tensor-type perturbation, hi j. We can decompose it as

hi j =

∫
d3k

(2π)3

[
h+(t, k⃗)e+i j(⃗k) + h×(t, k⃗)e×i j(⃗k)

]
ei⃗k·x⃗ (2.21)

where eP
i j are the polarization tensors satisfying eP

i j(⃗k)eP′
i j (⃗k) = δPP′ . By substituting eq. (2.21)

into the action of gravity S G = −
M2

Pl
2

∫ √−gd4x R, we obtain

S G = M2
Pl

∫
d3k

(2π)3 a3

1
2
|ḣ+(t, k⃗)|2 + |⃗k|

2

2a2 |h+(t, k⃗)|2 + 1
2
|ḣ×(t, k⃗)|2 + |⃗k|

2

2a2 |h×(t, k⃗)|2
 . (2.22)

After redefining the two fields as

φP
h (t, k⃗) = MPl · hP(t, k⃗) , (P = +, ×) (2.23)

we can interpret the action of gravity as that of two canonical scalar fields since their equation
of motion in de Sitter spacetime are d2

dt2 + 3H
d
dt
+
|⃗k|2
e2Ht

φP
h (t, k⃗) = 0 , (2.24)
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which is equivalent to eq.(2.12). The powerspectrum of tensor-type fluctuations is

∆2
t (k) =

2
3π2

V
M4

Pl

∣∣∣∣∣∣
k=aH

. (2.25)

Since the amplitude of the scalar-type perturbations are well known through the CMB observa-
tions, the tensor-to-scalar ratio r ≡ ∆2

t /∆
2
s is often used to express the magnitude of tensor-type

perturbations. From eq. (2.19) and (2.25), we see

r = 16ϵ . (2.26)

In the slow-roll inflation, the Hubble parameter is slowly varying during inflation and the
amplitude of perturbations at its horizon exit weakly depends on the wavenumber. To charac-
terize the scale dependence of the powerspectrum, we often use the spectral index as

ns − 1 =
d ln∆2

s

d ln k
, nt =

d ln∆2
t

d ln k
, (2.27)

which are related to the slow-roll parameters as

ns − 1 = −4ϵSR + 2ηSR , nt = −2ϵSR . (2.28)

Then using eq. (2.26) and (2.28) we obtain a consistency relation for slow-roll inflation driven
by a single field,

r = −8nt . (2.29)

These dependences on scales are important keys to distinguish many models of inflation.

2.1.3 Models

So far many theoretical models of inflation have been proposed and specification of the favored
models is now ongoing. A comprehensive study of models is done by in Ref. [24]. Here we
briefly consider several famous models of slow-roll inflation.

“old” and “new” inflation model: In the oldest inflation model, called old inflation [4],
inflaton is trapped at the origin during inflation and its quantum tunneling, or a first-order phase
transition, ends inflation. Though this model turned out to be useless, the idea of phase transi-
tions was inherited to the new inflation [5]. In new inflation model, inflaton is also trapped at
the origin of the potential but it slowly rolls down to the bottom of the potential, with non-zero
potential energy. These models in which inflaton starts rolling down at the maximum of its
potential are called hilltop inflation.

hybrid inflation model: Building inflation models has been deeply related to phase transi-
tions. In the so-called hybrid inflation [25], inflaton spontaneously breaks symmetry due to the
existence of waterfall field.
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chaotic inflation model: A class of inflation model with simple potentials, called chaotic
inflation was proposed by Linde [26]. One can construct inflation model by simply assuming
the monomial inflaton potential like V ∝ ϕn (n: even integer). The initial condition of chaotic
inflation is V ∼ M4

Pl, which corresponds to the name of this model of inflation. We expect this
initial condition naturally by assuming the description of the Universe, or the classical evolution
of spacetime, becomes possible below Planckian energy scale. Chaotic inflation ends when ϕ
becomes as small as MPl, and ϕ starts oscillation at the bottom of the potential.

inflation model related to theory of gravity: The idea of modified gravity is also applied
to inflation model building. One of the simplest model of this kind of models is R2-inflation
proposed by Starobinsky [3]. In this model the action of gravity contains not only the Einstein-
Hilbert term, R, but also 1

M2 R2 term. One can see that this modification of gravity can be inter-
preted as introducing an additional scalar field, called scalaron, to the Einstein gravity theory
by performing an appropriate conformal transformation. Actually it drives inflation during it
slowly rolls down the potential. One of the features of this model is the smallness of the tensor
perturbation. When we obtain a stringent upper bound on the primordial tensor perturbations
by observations in the near future, this model would become a strong candidate to explain the
mechanism of inflation.

2.2 Hot Universe

We review basic thermodynamics in the expanding Universe in this section. Most of the con-
siderations are based on Refs. [27, 28]. This section would help us to understand the gravitio
problem and the cosmological moduli problem in Chapter 4, and the mechanism of reheating
after inflation.

2.2.1 Boltzmann equation in FRW Universe

A set of many particles interacting with each other reaches a thermal equilibrium state. In this
case the phase space distribution function f (pµ, xµ) becomes a simple function of the energy E
as

f (E) =
1

eβ(E−µ) ∓ 1
, (2.30)

where µ is the chemical potential and minus (plus) sign corresponds to bosons (fermions). In
order to consider the radiation bath in the early Universe, let us take µ = 0 and consider the case
of T ≫ m (or, E ≈ | p⃗|). Then the number density n and energy density ρ are calculated as

n =
∫

d3 p
(2π)3

1
eβ|p⃗| ∓ 1

=
T 3

2π2

∫
dx x2 1

ex ∓ 1
, (2.31)

ρ =

∫
d3 p

(2π)3

| p⃗|
eβ|p⃗| ∓ 1

=
T 4

2π2

∫
dx x3 1

ex ∓ 1
. (2.32)
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After evaluating the x-integrals we obtain

n =
ζ(3)
π2 T 3 ×

1 boson,
3
4 fermion,

(2.33)

ρ =
π2

30
T 4 ×

1 boson,
7
8 fermion.

(2.34)

Since these results are applied to each single degree of freedom, it is convenient to express the
energy density of a radiation bath as ρ = π2

30g∗T 4, where g∗ represents the effective number of
particle species in the bath. It becomes 106.75 in the standard model for T ≫ 100GeV. As the
Universe expands and cools, g∗ gradually decreases.

In the early Universe, however, interacting particles never reach the equilibrium if the inter-
actions between them are too weak to take longer time to reach equilibrium than the expansion
timescale of the Universe. To see this, let us start with the Boltzmann equation in the FRW
Universe. In general it can be expressed formally as

L̂[ f ] = C[ f ] . (2.35)

C in the right hand side is the collision term, which represents interactions. In the left hand side,
L̂ is called Liouville operator and it is given by

L̂ = pµ
∂

∂xµ
− Γµαβpαpβ

∂

∂pµ
, (2.36)

in the covariant form. In the FRW Universe, in which we are interested, it becomes

L̂[ f (E, t)] =
(
E
∂

∂t
− H(t)| p⃗|2 ∂

∂E

)
f (E, t) . (2.37)

In considering “particles”, it is convenient to use the number density n(t), rather than f (E, t).
After performing a partial integral the Boltzmann equation becomes

d
dt

n(t) + 3H(t)n(t) =
g

(2π)3

∫
d3 p

1
E

C[ f ] , (2.38)

where g represents the inertial degrees of freedom.
Next let us consider the right hand side. Here we assume that the particles ϕ, a, b, · · ·

becomes A, B, · · · after the collision, where ϕ represents the particle of interest. The collision
term appearing in the equation of ϕ-particle can be written as

g
(2π)3

∫
d3 pϕ

1
Eϕ

C

= −
∫

dΠϕdΠadΠb · · · dΠAdΠB · · · (2π)4δ4(pϕ + pa + pb + · · · − pA − pB − · · · )

×
[
|M|2ϕ+a+b+···→A+B+··· × fϕ fa fb · · · (1 ± fA)(1 ± fB) · · ·

− |M|2A+B+···→ϕ+a+b··· × (1 ± fϕ)(1 ± fa)(1 ± fb) · · · fA fB · · ·
]
, (2.39)
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where dΠ = g
(2π)3

d3 p
2E for each particle and “±” applies boson and fermion respectively. Here

we consider two approximations. First is based on time-reversal symmetry, by which we can
equate the two transition amplitudes,

|M|2ϕ+a+b+···→A+B+··· = |M|2A+B+···→ϕ+a+b··· (= |M|2) . (2.40)

Second, if the difference between bosons and fermions is negligible, that is, the Bose-condensation
and Fermi-Blocking effect are absent, we simply use the Maxwell-Boltzmann distribution.
Since this is valid for f ≪ 1, we further replace (1 ± f ) with 1. Using the two approxima-
tions above, the Boltzmann equation for ϕ-particle becomes

dn
dt
+ 3Hn

= −
∫

dΠϕdΠadΠb · · · dΠAdΠB · · · (2π)4δ4(pϕ + pa + pb + · · · − pA − pB − · · · )

× |M|2[ fϕ fa fb · · · − fA fB · · ·
]
. (2.41)

Due to the cosmic expansion, the number density decreases with time. Therefore it is con-
venient to consider the particle number per comoving volume. Using the fact that the entropy
per comoving volume, s, is kept unchanged without production of entropy, it is often convenient
to define a new quantity,

Y ≡ n
s
. (2.42)

We can see that using this variable the left hand side of the Boltzmann equation can be written
as

ṅ + 3Hn = sẎ . (2.43)

So far we consider the evolution of the number density based on the cosmic time t. However,
in considering the interactions between particles, it is useful to use the temperature 1) as time
variable instead of the cosmic age. In the radiation-dominated Universe, the correspondence
between the cosmic time and the temperature is

t =
3
√

10
2π

g−
1
2
∗ MPl T−2 = 1.51 × g−

1
2
∗ MPl T−2 , (2.44)

Since the temperature decreases with time, we define the dimensionless “time” variable x as
x = m/T . Finally the Boltzmann equation can be expressed as

dY
dx
= − x

H̃(m)s

∫
dΠϕdΠadΠb · · · dΠAdΠB · · · (2π)4δ4(pϕ + pa + pb + · · · − pA − pB − · · · )

× |M|2[ fϕ fa fb · · · − fA fB · · ·
]
, (2.45)

where H̃(m) = π√
90

g1/2
∗

m2

MPl
, which is equal to the Hubble parameter at T = m.

1)Here “temperature” means that of a thermal bath dominating the Universe. The particle species which have
little interaction with bath particles may have different “temperature”.
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2.2.2 Decoupling

Here we consider the scenario that at some temperature ϕ-particle decouples from the thermal
bath. As an example let us see the annihilation/pair-creation process like

ϕ ϕ̄←→ χ χ̄ , (2.46)

through which the number of ϕ-particles changes. Since χ-particles are in thermal equilibrium,
we replace the distribution function of χ with its thermal-equilibrium value.

fχ fχ̄ = f eq
χ f eq

χ̄ . (2.47)

One component of the delta function corresponding to the energy conservation enable us to
rewrite it as

f eq
χ f eq

χ̄ = e−(Eχ+Eχ̄)/T = e−(Eϕ+Eϕ̄)/T . (2.48)

As for fϕ, we also rewrite it as

fϕ = e−(Eϕ−µ)/T = e−Eϕ/T ×
nϕ
neq
ϕ

, (2.49)

which also applies to fϕ̄ and we neglect the difference between ϕ and ϕ̄. Using the thermally-
averaged cross section,

⟨σv⟩ = 1
(neq

ϕ )2

∫
dΠϕdΠϕ̄dΠχdΠχ̄

(2π)4δ4(pϕ + pϕ̄ − pχ − pχ̄)|M|2e−Eϕ/T e−Eϕ̄/T , (2.50)

we obtain a simple equation

dnϕ
dt
+ 3Hnϕ = −⟨σv⟩

(
n2
ϕ − (neq

ϕ )2
)
, (2.51)

or with Y and x,
dY
dx
= − x · s · ⟨σv⟩

H̃(m)

(
Y2 − Y2

eq

)
. (2.52)

Thermal-equilibrium values are given by

Yeq =

 45
2π4 ·

(
π
8

) 1
2 · g

g∗s
x

3
2 e−x = 0.145 × g

g∗s
x

3
2 e−x (x ≫ 1, non − relativistic) ,

45
2π4 · ζ(3) · geff

g∗s
= 0.278 × geff

g∗s
(x ≪ 1, relativistic) ,

(2.53)

where in evaluating its relativistic limit we go back to the Bose-Einstein/Fermi-Dirac distri-
bution. Therefore the factor geff depends on the particle species, geff = g (3g/4) for bosons
(fermions).
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Equation (2.52) tells us a simple but important criterion of decoupling. Remembering that
H̃(m) = π√

90
g1/2
∗

m2

MPl
represents the Hubble parameter at T = m, or x = 1, the Hubble parameter

at x is H(x) = H̃(m) × x−2. Using this relation we obtain

x
Yeq

dY
dx
= − Γ

H(x)

( Y
Yeq

)2

− 1
 , (2.54)

where Γ = neq⟨σv⟩ is the annihilation rate. We can see that the ratio of Γ/H is important to
consider decoupling. When the annihilation rate Γ becomes smaller than H, the change of Y
stops and ϕ-particles decouple from the thermal bath.

2.2.3 Entropy Production by Decoupled Particle

In this subsection we consider a non-relativistic particle ψ, who decouples from the thermal
bath, decays with the lifetime τ. This consideration is applicable to not only reheating of the
Universe after the primordial inflation, but also the cosmological moduli problem we see late in
this thesis. The time evolution of the number density is

d
dt

(a3nψ) = −τ−1(a3nψ) , (2.55)

and the solution is

nψ(a(t)) = nψ(a(ti))
(

a(t)
a(ti)

)3

e−
t−ti
τ , or ρψ(a(t)) = ρψ(a(ti))

(
a(t)
a(ti)

)3

e−
t−ti
τ , (2.56)

where ti is some initial time and ρψ = mψnψ is the energy density of ψ-particle.
Assuming that the energy released by the decay of ψ-particle instantly thermalizes, we ob-

tain the equation for the energy density of radiations,

d
dt
ρrad + 4Hρrad = −τ−1ρψ . (2.57)

This equation is valid if the effective degrees of freedom are unchanged. In general we have to
consider the second law of thermodynamics in the comoving volume, which is given by

dS =
dQ
T
= −

d(a3ρψ)
T

=
a3ρψ

T
dt
τ
, (2.58)

which becomes a differential equation for entropy S ,

S
1
3
dS
dt
=

(
2π2

45
g∗

) 1
3

a4ρψτ
−1 . (2.59)

The formal solution is

S
4
3 = S

4
3 (ti) +

4
3
ρψ(ti)a4

i τ
−1

∫ t

ti
dt′

(
2π2

45
g∗

) 1
3 a(t′)

a(ti)
e−

t′
τ . (2.60)
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As a case of our interest, now we consider the Universe dominated by ψ until it decays. In
such a matter-dominant Universe the scale factor evolves as a ∝ t2/3 and the radiation energy
density decreases as

ρrad(a) = ρrad ·
(ai

a

)4
+

5
3
ρψ(ai)

t2
i

t · τ . (2.61)

The first term represents the effect of cosmic expansion and the second one is the energy con-
verted from ψ. We show the time evolution of the two energy densities in Fig.2.1. The dominant
energy density of the Universe changes around t ∼ τ.
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Figure 2.1: The evolution of ρψ (blue line) and ρrad (red line) are shown. As an example we
impose ρrad = 0 at t = 0.01τ. We normalize the energy density by ρeq, which is the energy
density of ψ and radiation when they are equal. The equality time is t = 1.05τ. The long
(short) dashed line is proportional to t−2 (t−1), showing that the dominant energy component
evolves as t−2 and ρrad before the decay of ψ evolves as t−1.

Now we consider the entropy production from the decay of ψ. Using the solution (eq.(2.60)),
the ratio of entropy per comoving volume before and after the decay becomes

S after

S before
=

1 + 4
3

(
2π2

45
g∗before

)− 1
3 mYbefore

Tbefore
× I


3
4

, (2.62)

where I is given by

I = τ−1
∫ ∞

tbefore

dt′
(
2π2

45
g∗

) 1
3 a(t′)

abefore
e−

(t′−tbefore)
τ . (2.63)
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If ψ is the dominant component in the Universe before its decay, we obtain 2)

I = 1.09 ×
(
2π
45

) 1
3

⟨g
1
3
∗ ⟩

(
ρψ(tbefore)

3M2
Pl

) 1
3

τ
2
3 , (2.64)

where ⟨g
1
3
∗ ⟩ represents a kind of averaged value over the integration time. The entropy ratio

becomes
S after

S before
≈ 0.817 × ⟨g

1
3
∗ ⟩

3
4
mYiτ

1
2

M
1
2
Pl

. (2.65)

The cosmic temperature just after the decay is

H(τ)2 ∼ 1
4τ2 ∼

1
3M2

Pl

π2

30
g∗T 4

R , TR ∼ 0.8 × g−
1
4
∗

(MPl

τ

) 1
2

. (2.66)

2.2.4 Reheating

We apply the discussion of the entropy production to the beginning of the Big-Bang Universe.
The inflaton, which finished the role of driving inflation, should pass its energy to standard
model particles. This process is called reheating of the Universe, often described as energy
dissipation of the homogeneous oscillation of the inflaton. Inflaton reaches the bottom of the
potential at the end of inflation and begins oscillation around there. Therefore the equation of
motion becomes

d2

dt2ϕ + 3H
d
dt
ϕ + m2ϕ = 0 , (2.67)

where m represents the curvature of the potential. From this equation we can see that the energy
density of this coherent oscillation decreases as ρϕ ∝ a−3, which is the same as that of non-
relativistic matter.

If we simply assume that the inflaton energy is converted into radiation with dissipation rate
Γϕ, that is,

dρϕ
dt
= −3Hρϕ − Γϕρϕ , (2.68)

dρrad

dt
= −4Hρrad + Γϕρϕ , (2.69)

the time evolution of each energy component becomes

ρϕ(t) = ρϕ(tend)
(

a(t)
a(tend)

)−3

e−Γϕ(t−tend) , (2.70)

ρrad(t) = Γϕa−4(t)
∫ t

tend

dt′a4(t′)ρϕ(t′) , (2.71)

2)Though the dominant contribution comes from t < τ and we can roughly evaluate the integral using the
functional form a ∝ t3/2, the numerical factor 1.09 is obtained after solving the evolution of the scale factor
numerically.
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where tend represents the moment of the end of inflation.
The reheating temperature is defined as the temperature when the energy density of the

relativistic particles exceeds that of the inflaton oscillation. As we saw before, this alternation
happens at t ∼ Γ−1

ϕ and the reheating temperature is roughly given by

TR ∼ 0.8 × g−
1
4
∗

(
ΓϕMPl

) 1
2
. (2.72)

From this moment the Universe enter the radiation-dominated era.

2.3 Phase Transitions

In this section, we briefly review the phase transitions in the early Universe. We focus on the
two phase transitions in the standard model and other possible ones.

Electroweak Phase Transition

The discovery of Higgs boson in the Large Hadron Collider in 2013 verifies that the stan-
dard model based on gauge principle is at least a working model for describing physics up to
O(100GeV). The change of vacuum expectation value of Higgs field causes electroweak phase
transition, after which the weak interaction and electromagnetic interaction were split up. To
be precise, the nonzero vev of Higgs field breaks the SU(2) subgroup of the SUL(2) × UY(1)
but leaves the subgroup Uem(1) unbroken. The vev of Higgs field makes the gauge bosons of
weak interaction massive, but the photon is still massless and electromagnetic interaction is still
long-range interactions.

Quark-Hadron Phase Transition

Hadrons such as protons and neutrons are not the elementary particles but composite particles
made of quarks and gluons. Though we cannot see the single quarks around us, they were not
confined before the QCD phase transition.

One of the models of this phase transition is called the bag model [29]. In this model a
hadron is modeled by a bag containing quarks in vacuum, which has the energy proportional to
the volume. In addition to this volume energy, the kinetic energy of quarks, which are assumed
to freely move inside the bag, is taken into account. Since the smaller size of the bag leads to
larger kinetic energy of quarks, the radius of a bag can be determined by minimizing the total
energy. The total energy of hadrons can be expressed as

EH = K +
4πr3

3
B , (2.73)
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where B is the constant energy density called bag constant. Assuming the form of the kinetic
energy as K ∝ 1/r, we can express the total energy of hadrons as

EH =
16π

3
r3B , (2.74)

which indicates B
1
4 ∼ O(100MeV) since the total energy or the mass of hadrons are O(100MeV)

and O(1fm) ∼ (O(100MeV))−1 for their radii. To estimate the critical temperature, we have to
use thermodynamics for the kinetic term. For massless degrees of freedom the pressure is
calculated as p = π2

90g∗T 4 (we discuss more in detain in later). In the quark-gluon plasma phase
it is evaluated as

pQGP = −B +
π2

90
T 4 × (2 × 8 +

7
8
× 3 × 2 × 2 × 2) , (2.75)

where we include 2 × 8 gluon degrees of freedom and light quark (up and down). In the hadron
phase, we consider 3 pion degrees of freedom. Equating these two pressures leads to

T =
(

45
17π2 B

) 1
4

= 0.72B
1
4 , (2.76)

from which we can estimate the critical temperature.

Theoretical Prediction

The only scalar boson in particle contents of the standard model is Higgs particle. However,
in the theory of supersymmetry (SUSY), we have bosonic fields as much as fermionic fields.
Therefore we expect the phase transition is ubiquitous in many SUSY models, which also pro-
vides a theoretical basis in building models of inflation.

The theoretical reason to expect the existence of supersymmetry is related to the mass of
Higgs boson [30]. The quantum loop correction to the mass of Higgs particle is so large that we
believe of some theoretical reason to keep it as small as the experimental value naturally. This
is known as the hierarchy problem. In SUSY we have the bosonic superpartner of each fermion
who cancels the mass correction from fermion. Though SUSY is an elegant theory it should be
broken if it really existed since we have never seen the superpartners whose masses are exactly
same as the particles in the standard model. In so-called soft SUSY breaking, the mass scale
introduced to break SUSY is expected to be TeV scale in order to give a natural solution of the
hierarchy problem [31].

Topological Defects

Most of the phase transitions in the early hot Universe are triggered by the temperature change.
Therefore huge spatial regions larger than horizon scale at that time undergo the phase transi-
tion and at some points scalar fields cannot move to the vev and forms so-called topological
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defects. There are several kinds of topological defects, which are determined by the mathemat-
ical structure of the broken symmetry. A comprehensive study on these topological defects are
found in Ref.[32]. Monopoles, which are the particle like defects, are generally predicted in
GUT theory. In the Big-Bang cosmology the generation of them cannot be avoided and this
is called monopole problem. One-dimensional defects are called cosmic strings. Their most
attractive property is that the network of cosmic strings satisfies the scaling rule and they never
dominate the Universe. A part of the energy of long strings is transferred to loops and even-
tually converted to the gravitational waves, which provides a way to observationally probe the
high energy physics through cosmic strings. Other topological defects, called domain walls and
textures, are also produced in the corresponding phase transitions.



Chapter 3

Finite-Temperature Field Theory

3.1 Basic Formalism

We summarize the basic method of finite-temperature field theory in this section, following Ref.
[33, 34] to prepare tools in treating interacting systems perturbatively.

3.1.1 From Statistical Mechanics to Quantum Mechanics

In statistical mechanics, expectation values in a thermal state are calculated as

⟨O⟩β =
∑

i

OiPi =

∑
iOi exp[−βEi]∑

i exp[−βEi]
, (3.1)

where Oi are eigenvalues of an operator Ô,

Oi = ⟨ψi|Ô|ψi⟩ =
∫

dqψ∗(q)Ô(q)ψ(q) . (3.2)

We can define the density matrix as

ρ(q) =
∑

i

exp[−βEi]ψ∗i (q)ψi(q) , (3.3)

which enable us to express the thermal average as

⟨O⟩β =
∫

dq Ô(q)ρ(q) = tr(ρO) . (3.4)

Now we see the analogy between statistical mechanics and quantum mechanics more. The
distribution function in statistical mechanics is given by

Z = tr
(
e−βH

)
=

∫
dq⟨q|e−βH |q⟩ . (3.5)

21
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On the other hand, the transition amplitude for a particle from position q (at time t) to q′ (at
time t′) in quantum mechanics is given by

A(q′, t′; q, t) = ⟨q′|e−iĤ(t′−t)|q⟩ , (3.6)

where e−iĤt is a time evolution operator for quantum states. Comparing eq.(3.5) and eq.(3.6) and
regarding e−βH as a time evolution operator of ∆t = −iτ = −iβ, we can express the distribution
function in a form of path integral.

Z =
∫

dqA(q,−iβ; q, 0)

=

∫
Dq exp

[
−

∫ β

0
dτ

(
1
2

mq̇2(τ) + V(q)
)]

=

∫
Dq exp [−S E] , (3.7)

where S E is the Euclidean action. Note that the boundary conditions of this path integral is
q(β) = q(0), which is different from ones in quantum mechanics where we have q(t) = q′ and
q(0) = q.

Using this condition we find

⟨Tq(−iβ)q(−iτ)⟩β = ⟨Tq(0)q(−iτ)⟩β . (3.8)

Let us consider the two-point function furthermore. Generally it is convenient to write the
T-product as

∆(τ) = ⟨Tq(−iτ)q(0)⟩β . (3.9)

The T-product can be expressed as a combination of the following two-point functions,

D>(t, t′) = ⟨q(t)q(t′)⟩β , (3.10)

D<(t, t′) = ⟨q(t′)q(t)⟩β . (3.11)

We can obtain the following representation by inserting a complete set of energy eigenstate
1 =

∑
n |n⟩⟨n|,

D>(t, t′) =
1
Z

∑
n,m

e−βEn−iEn(t−t′)e+iEm(t−t′) |⟨n|q(0)|m⟩|2 . (3.12)

From this expression we expect that the exponential factors determine the convergence of the
state summation, so that the function D>(t − t′) is well defined for

−β < Im(t − t′) < 0 , (3.13)

Similarly the function D<(t − t′) is defined for

0 < Im(t − t′) < β . (3.14)
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So far we see the two-point function ⟨Tq(t)q(t′)⟩β for −β < τ < β. Remembering that thermally-
averaged quantities can be calculated by performing traces, we can derive the Kubo-Martin-
Schwinger relation

D>(t, t′) = D<(t + iβ, t′) , (3.15)

or

∆(τ) = D>(−iτ, 0) = D<(−iτ + iβ, 0) = ∆(τ − β) , (3.16)

which gives a periodic condition and enables us to define the time-ordering product for any real
time variables as

D(t − t′) = θ(t − t′)D>(t, t′) + θ(t′ − t)D<(t, t′) . (3.17)

In order to calculate thermally-averaged quantities, it is convenient to define the generating
functional as

Z[J] =
∫
Dq exp

[
−S E +

∫ β

0
dτJ(τ)q(τ)

]
, (3.18)

which actually gives thermal quantities. Namely, we can formally express thermal quantities
like

⟨ f (q)⟩β =
1

Z[J]
f
(

δ

δJ(τ)

)
Z[J]

∣∣∣∣∣∣
J=0

. (3.19)

In particular, we can perform the q−integral for a harmonic oscillator with V = 1
2ω

2q2 to
obtain

Z[J] = (const.) × exp
[
1
2

∫
dτdτ′J(τ)K(τ − τ′)J(τ)

]
, (3.20)

where K is equivalent to

K(τ − τ′) = ⟨T(q(−i(τ − τ′))q(0))⟩ = ∆(τ − τ′) , (3.21)

and satisfy (
− d2

dτ2 + ω
2
)

K(τ − τ′) = δ(τ − τ′) . (3.22)

Using its periodic property eq. (3.16), we obtain

K(τ) =
1

2ω
[
(1 + n(ω))e−ωτ + n(ω)e+ωτ

]
, (0 < τ < β) (3.23)

where

n(ω) =
1

eβ|ω| − 1
. (3.24)
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3.1.2 Field Theory at Finite Temperature: Imaginary-Time Formalism

The generating functional is expressed as

Z =
∫
Dϕ exp

[
−S E +

∫ β

0
d4xJ(x)ϕ(x)

]
,

(∫ β

0
d4x =

∫ β

0
dτ

∫ +∞

−∞
d3x

)
(3.25)

where S E is the Euclidean action for a scalar field

S E =

∫ β

0
d4x

(
1
2
∂µϕ∂

µϕ +
1
2

m2ϕ2 + V[ϕ]
)
. (3.26)

For a free scalar field, the partition function becomes

Z[J] = (const.) × exp
[
1
2

∫ β

0
d4xd4x′J(x)∆(x − x′)J(x′)

]
. (3.27)

In Fourier space, the two point function K can be written as

∆(ωn, k) =
1

ω2
n + ω

2
k

,

(
ωn =

2πn
β

, ωk =

√
|⃗k|2 + m2

)
(3.28)

which is known as Matsubara propagator. Note that the Fourier transformation with respect to
τ becomes the Fourier series expansion due to the periodic property as follows.

∆(τ) =
1
β

∞∑
n=−∞

e−iωnτ∆(iωn) , (3.29)

∆(iωn) =
∫ β

0
dτ eiωnτ∆(τ) . (3.30)

We now compare the propagators at zero and finite temperature, and obtain a mathematical
relation between them. In real (Euclidean) space, they can be expressed as

∆(τ, x⃗,T = 0) =
∫

d4k
(2π)4

1
k2

0 + ω
2
k

e−ik0τ+i⃗k·x⃗ , (3.31)

∆(τ, x⃗,T ) =
1
β

∞∑
n=−∞

∫
d3k

(2π)3

1
ω2

n + ω
2
k

e−iωnτ+i⃗k·x⃗ . (3.32)

First, we see that the propagator at finite temperature can be calculated as

∆(τ, x⃗,T ) =
1
β

∞∑
n=−∞

∫
d3k

(2π)3

1
ω2

n + ω
2
k

e−iωnτ+i⃗k·x⃗

=

∫
d3k

(2π)3 e−i⃗k·x⃗ 1
β

2 ∞∑
n=1

cos
(

2πτ
β

n
)

(
2π
β

)2
n2 + ω2

k

+
1
ω2

k


=

∫
d3k

(2π)3 e−i⃗k·x⃗ 1
2ωk

[
(1 + n(ωk))e−ωkτ + n(ωk)eωkτ

]
, (3.33)
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where we use a mathematical formula,
∞∑

n=1

cos(nx)
n2 + a2 =

π

2a
cosh(aπ − ax)

sinh(aπ)
− 1

2a2 . (3.34)

Second, we also see that a quantity related to zero-temperature propagator is calculated as
∞∑

n=−∞
∆(τ + nβ, x⃗,T = 0) =

∞∑
n=−∞

∫
dk0

2π

∫
d3k

(2π)3

1
k2

0 + ω
2
k

eik0(τ+nβ)−i⃗k·x⃗

=

∫
d3k

(2π)3 e−i⃗k·x⃗
∞∑

n=−∞

1
2ωk

e−ωk |τ+nβ|

=

∫
d3k

(2π)3 e−i⃗k·x⃗ 1
2ωk

[
(1 + n(ωk))e−ωkτ + n(ωk)eωkτ

]
. (3.35)

From eq. (3.33) and eq. (3.35), we see that

∆(τ, x⃗,T ) =
∞∑

n=−∞
∆(τ + nβ, x⃗,T = 0) . (3.36)

Namely, the propagator at finite temperature can be expressed in terms of that of zero tempera-
ture.

3.1.3 Field Theory at Finite Temperature: Real-Time Formalism

In the so-called imaginary-time formalism, we have to perform analytic continuations to obtain
physical quantities. In this subsection we review “real-time formalism”, which enables us to
directly calculate real-time quantities. In this formalism, however, we have some additional
work in calculation.

As we saw before, we can take thermal average by generalizing the time variable to be
complex-valued. We can directly calculate quantities of interest, such as correlation functions,
if we take a part of the time path on real axis (Fig. 3.1).

We consider calculating n-point function,

Gc(x1, x2, · · · xn) = ⟨Tc

(
ϕ̂(x1)ϕ̂(x2) · · · ϕ̂(xn)

)
⟩ , (3.37)

where the suffix c represents the path-ordering in place of time-ordering in usual QFT. This is
because the time path we consider in finite-temperature field theory is defined on the complex
plane. The generating functional of these correlation functions is given by

Z[J] = tr
[
e−βĤTc exp

(
i
∫

d4xJ(x)ϕ(x)
)]

=

∫
Dϕ exp

[
i
∫

c
d4x (L + J(x)ϕ(x))

]
, (3.38)
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where c means the time path from ti = t to tf = t − iβ (see Fig. 3.1), and the boundary condition
is ϕ(t, x⃗) = ϕ(t − iβ, x⃗). Taking ti → −∞ allows us to neglect the C3 and C4 contribution [35].
Hereafter we call C1 (C2) path + (−) path. Namely, as the generating functional for free field we
have

Z[J] = (const.) × exp
[
1
2

∫ ∞

−∞
d4xd4x′Ja(x)Dab(x − x′)Jb(x′)

]
, (a, b = +, −) (3.39)

and we have four propagators who can be simply expressed in Fourier space as

D++(k) =
i

k2 − m2 + iϵ
+ 2πn(k0)δ(k2 − m2) ,

D−−(k) = (D++(k))∗ ,

D+−(k) = e+σk0 [n(k0) + θ(−k0)] 2πδ(k2 − m2) ,

D−+(k) = e−σk0 [n(k0) + θ(k0)] 2πδ(k2 − m2) . (3.40)

Since the choice of σ does not affect the final results, we choose σ = 0 hereafter.
With path integral representations we can evaluate interactions perturbatively. For a self-

interaction Lagrangian V(ϕ) we can formally express

Z = exp
[
−i

∫ +∞

−∞
d4x

(
V

(
δ

iδJ+(x)

)
− V

(
δ

iδJ−(x)

))]
× exp

[
−1

2

∫ +∞

−∞
d4xd4x′Ja(x)Dab(x − x′)Jb(x′)

]
, (3.41)

note that we have a term of −V since we rewrite the “minus path” from −∞ to +∞.

Re[t]

Im[t]
C1

C3
C2

C4

t
i
=t

t
f
=t-iβ

Figure 3.1: The time path used in the real-time formalism.

We briefly summarize the propagators for fermions here. In considering fermions we have
to note that the commutation relation is different from that of bosons. Due to the equal-time
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anti-commutation relations {
ψρ(t, x⃗) , ψ†σ(t, x⃗′)

}
= δρσδ(x⃗ − x⃗′) , (3.42)

it is convenient to define two-point functions as

S >
ρσ(x, x′) = +⟨ψρ(x)ψ̄σ(x′)⟩β , (3.43)

S <
ρσ(x, x′) = −⟨ψ̄σ(x′)ψρ(x)⟩β . (3.44)

The KMS relation is expressed as

S >
ρσ(t, x⃗; t′, x⃗′) = −S <

ρσ(t + iβ, x⃗; t′, x⃗′) . (3.45)

The Matsubara propagator in real space is given by

S ρσ(τ, x⃗; τ′, x⃗′) =⟨T (ψρ(−iτ, x⃗)ψ̄σ(−iτ′, x⃗′))⟩β (3.46)

=θ(τ − τ′)S >
ρσ(τ, x⃗; τ′, x⃗′) + θ(τ′ − τ)S <

ρσ(τ, x⃗; τ′, x⃗′) , (3.47)

and in Fourier space it becomes

S (−iωn, p⃗) =
m− ̸ p
ω2

n + E2
p

(3.48)

where ωn = (2n + 1)π/β is the Matsubara frequency.
Propagators in real-time formalism are given by

S ++(k) =
i

̸k − m + iϵ
− 2πn(k0)(̸k + m)δ(k2 − m2) ,

S −−(k) =
−i

̸k − m + iϵ
− 2πn(k0)(̸k + m)δ(k2 − m2) ,

S +−(k) = − [n(k0) − θ(−k0)] 2π(̸k + m)δ(k2 − m2) ,

S −+(k) = − [n(k0) − θ(k0)] 2π(̸k + m)δ(k2 − m2) . (3.49)

3.1.4 Renormalization Issue in Finite-Temperature Field Theory

One of the most complex calculations in quantum field theory is appropriate renormalization.
We also encounter divergences in finite-temperature field theory, however, renormalization pro-
cedures are the same as that of zero-temperature. Intuitively, the effects of the finite temperature
do not appear at much higher energy scale than temperature, so that ultraviolet divergences are
not changed. Let us see this issue more qualitatively in imaginary-time method. We saw that
the propagator at finite-temperature can be expressed as eq. (3.36),

∆(τ, x⃗,T ) =
∞∑

n=−∞
∆(τ + nβ, x⃗, T = 0)

= ∆(τ, x⃗,T = 0) +
∑
n,0

∆(τ + nβ, x⃗,T = 0) , (3.50)
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where the first term in the right hand side is just the zero-temperature propagator. From this
expression, we see that the divergences related to a loop integral, which is τ, x⃗→ 0 limit, is the
same as that at zero temperature.

In real-time formalism, we can also remove divergences by the similar way in zero-temperature
theory. The explicit calculation is shown in Section 3.3, where we consider scalar QED.

3.2 Effective Action Method

In this section we review the definition of effective action and consider the resulting equation
of motion. Practically, the effective action can be obtained from perturbative calculation with
respect to coupling constants characterizing the strength of interactions. Namely, we first con-
sider free theory at finite temperature and then perturbatively include interactions. Though the
Universe as a whole should evolve unitarily, the system of our interest, a scalar field ϕ for ex-
ample, is an open system which continuously exchange energy with other fields (e.g. a scalar
field χ). As a result, the effective action for the system which includes effects of such inter-
actions becomes a complex quantity. It is shown that the imaginary part of effective action
can be rewritten as stochastic noise, which is connected to the friction term via the fluctuation-
dissipation relation. This relation is derived on the assumption that both the system of interest
ϕ and other fields (χ) interacting with ϕ are in (nearly) thermal equilibrium.

In particular, it is convenient to consider the homogeneous and static limit, in which the
effective action reduces to effective potential. We also see the functional form of the one-loop
effective potential at the end of this section.

3.2.1 Definition of Effective Action

The generating functional for connected diagrams, W[J], is defined as

exp (iW[J]) = Z[J] =
∫
Dϕ exp

[
iS [ϕ] + i

∫
d4xJ(x)ϕ(x)

]
. (3.51)

Let us briefly see that the above definition of W[J] really gives the generating functional for
connected diagrams [36]. Just for simplicity we consider in Euclidean space. The generating
function Z is expanded as

Z[J] =
∫
Dϕ exp

[∫
d4xS [ϕ] +

∫
d4xJ(x)ϕ(x)

]
=

∑
N

1
N!

∫
d4x1 · · ·

∫
d4xN J(x1) · · · J(xN)⟨ϕ(x1) · · · ϕ(xN)⟩

≡
∑

N

1
N!

FN , (3.52)
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where we use FN = ⟨(
∫

d4xJ(x)ϕ(x))N⟩. Generally the N-point function contains disconnected
ones, which are Green functions satisfying ⟨ϕ1ϕ2ϕ3ϕ4⟩ = ⟨ϕ1ϕ2⟩⟨ϕ3ϕ4⟩, for example. Therefore
we can express a Green function by a linear combination of the products of connected func-
tions. By considering dividing N particles into various boxes (the number of boxes containing
k particles are defined nk), we obtain

FN =
∑
{nk}

N!
∏

s

(
1
s! F

c
s

)ns

ns!
δN,

∑
k k·nk , (3.53)

where Fc
s represents the s-point connected Green’s function (integrated with weight J(x)) and

{nk} means all the possible realization of the way of division. Remembering that the generating
function Z[J] contains the summation over N, we erase the Kronecker’s delta to rewrite∑

N

∑
{nk}

δN,
∑

k k·nk

∏
s

=
∏

s

 ∞∑
ns=0

 , (3.54)

then we find

Z[J] =
∑

N

1
N!

∑
{nk}

N!
∏

s

(
1
s! F

c
s

)ns

ns!
δN,

∑
k k·nk

=
∏

s

 ∞∑
ns=0

(
1
s! F

c
s

)ns

ns!


=

∏
s

exp
[
Fc

s

s!

]
, (3.55)

from which we can see that the W[J] is the generating function of the connected functions.

W[J] = log Z[J]

=
∑

s

1
s!

Fc
s

=
∑

s

1
s!

∫
d4x1 · · ·

∫
d4xsJ(x1) · · · J(xs)Gc(x1, · · · , xs) . (3.56)

Actually W[J] gives the vacuum expectation value of ϕ under the presence of an external field
J as

ϕJ(x) =
1

Z[J]

∫
Dϕ ϕ(x) exp

[
iS [ϕ] + i

∫
d4yJ(y)ϕ(y)

]
=

1
Z[J]

δ

iδJ(x)
Z[J]

=
δ

δJ(x)
W[J] . (3.57)
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We can interpret this equation gives the value of J which is required to obtain the expectation
value of ϕJ. Namely, to set the left hand side of eq. (3.57) as ϕJ = ϕ∗, we have to determine the
external field J to Jϕ∗ which satisfy ϕ∗ = δW[Jϕ∗]/δJϕ∗ .

Performing a Legendre transformation with respect to J, we obtain Γ as

Γ[ϕ] = −
∫

d4x ϕ(x)J(x) +W[J] , (3.58)

which consists of one-particle irreducible (1PI) diagrams. Γ is the quantum effective action
since its variation gives a equation of motion for the expectation value of ϕ if we set J = 0 as

δΓ[ϕ]
δϕ(x)

= −J(x) . (3.59)

3.2.2 Effective Action at Finite Temperature and Langevin equation

We now consider the effective action derived from finite-temperature field theory. Assuming
both the system of interest, ϕ, and the relevant fields interacting with ϕ are in thermal equi-
librium, we can perturbatively evaluate 1PI diagrams by using four propagators as we saw.
Generally the effective action can be expressed as [18, 19, 20, 21]

Γ = S 0 + ΓR + ΓI , (3.60)

where S 0 is the tree level action, and ΓR and ΓI, respectively, represent the real and imaginary
parts1) coming from interactions. In order to focus on the properties of the effective action,
we postpone seeing practical procedures in evaluating effective action until the next section,
where we consider scalar QED. Skipping calculations let us see specific examples studied in
Ref. [20]. An interaction term Lint = −λ2χ2ϕ2 leads to the 1PI diagrams shown in Fig. 3.2.
Their contributions to the effective action are calculated as follows.

ΓD1 = − 16λ4
∫

d4x1d4x2 Im
[
G++ϕ (x1 − x2)G++χ (x1 − x2)2

]
ϕ∆(x1)ϕc(x2)θ(t1 − t2)

+ 4iλ4
∫

d4x1d4x2 Re
[
G++ϕ (x1 − x2)G++χ (x1 − x2)2

]
ϕ∆(x1)ϕ∆(x2) , (3.61)

ΓD2 = − 8λ4
∫

d4x1d4x2 Im
[
G++χ (x1 − x2)2

]
×

(
ϕ∆(x1)ϕc(x1)ϕ2

c(x2) +
1
4
ϕ∆(x1)ϕc(x1)ϕ2

∆(x2)
)
θ(t1 − t2)

+ 4iλ4
∫

d4x1d4x2 Re
[
G++χ (x1 − x2)2

]
ϕ∆(x1)ϕc(x1)ϕ∆(x2)ϕc(x2) , (3.62)

where we use new variables for convenience,

ϕc =
ϕ+ + ϕ−

2
, ϕ∆ = ϕ+ − ϕ− . (3.63)

1)ΓI is purely imaginary.
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ΓD1 (ΓD2) represents the contribution from the left (right) diagram in Fig. 3.2. The first (second)
line contributes to the real (imaginary) part of the effective action. Not only for the interaction
we saw, Lint = −λ2χ2ϕ2, but for other interactions the basic structure2) of the effective action is
expressed as

Γ = S 0

−
∫

d4x1d4x2 Ba(x1 − x2)θ(t1 − t2)ϕ∆(x1)ϕc(x2)

−
∫

d4x1d4x2 Bm(x1 − x2)θ(t1 − t2)
(
ϕ∆(x1)ϕc(x1)ϕc(x2)2 +

1
4
ϕ∆(x1)ϕc(x1)ϕ2

∆(x2)
)

+
i
2

∫
d4x1d4x2 Aa(x1 − x2)ϕ∆(x1)ϕ∆(x2)

+
i
2

∫
d4x1d4x2 Am(x1 − x2)ϕ∆(x1)ϕc(x1)ϕ∆(x2)ϕc(x2) . (3.64)

Though functions A(x) and B(x) are obtained only after evaluating the effective action, the con-
tribution from 1PI diagrams with two (four) external lines takes the above form. Therefore we
proceed for a while without using specific forms of A and B, in order to make the consideration
applicable to various interactions.

φ φ

φ

φ

φ

φ

χχ

λ2
λ2 λ2

λ2

Diagram 1 Diagram 2

Figure 3.2: Two examples of 1PI diagrams coming from Lint = −λ2χ2ϕ2 are shown. In
Ref. [20] the contribution from the left (right) diagram to the effective action, ΓD1 (ΓD2), is
evaluated.

Now we are ready for introducing stochastic noise term. Remembering the Gaussian integral

2)To be precise, we have local corrections in addition to non-local terms in eq. (3.64). Though we do not show
them in eq. (3.64), they are included in Veff in EoM, eq. (3.70).
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formula,

exp
[
−

∫
d4xd4yφ(x)M(x, y)φ(y)

]
∝

∫
Dξ exp

[
−1

4

∫
d4xd4y ξ(x)M−1(x, y)ξ(y) + i

∫
d4x ξ(x)φ(x)

]
, (3.65)

we can rewrite the imaginary part by introducing integrals over ξ as follows.

exp [iΓI]

= exp
[
−1

2

∫
d4x1d4x2Aa(x1 − x2)ϕ∆(x1)ϕ∆(x2) + Am(x1 − x2)ϕ∆(x1)ϕ∆(x2)ϕc(x1)ϕc(x2)

]
=

∫
DξaDξm P[ξa]P[ξm] exp [iS noise] , (3.66)

where

P[ξa] ∝ exp
[
−1

2

∫
d4x1d4x2 ξa(x1)A−1

a (x1 − x2)ξa(x2)
]
,

P[ξm] ∝ exp
[
−1

2

∫
d4x1d4x2 ξm(x1)A−1

m (x1 − x2)ξm(x2)
]
,

S noise =

∫
d4x

[
ξa(x)ϕ∆(x) + ξm(x)ϕ∆(x)ϕc(x)

]
. (3.67)

The new variables, ξa and ξm, are introduced by considering Gaussian integrals. Though the
above procedure is nothing but a mathematical transformation so far, we can interpret the new
variables ξ as stochastic noise variables whose probability distributions are given by P[ξ]. The
validity of this interpretation is discussed soon.

Though we do not use the specific form of A(x) and B(x), there is a necessary condition for
function A(x). Just like convergence of a one dimensional Gaussian integral,

∫
dx exp[−ax2],

requires a > 0, all of the eigenvalues of A(x1, x2) should be positive. This requirement is
understood more clearly in Fourier space,∫

d4xd4y ξ(x)A−1(x, y)ξ(y) =
∫

d4k
(2π)4 Ã−1(k)|ξ̃(k)|2 , (3.68)

then we see that Ã(k) should be positive.
Combined with the real part, we now obtain

eiΓ =
∫
DξaDξm P[ξa]P[ξm] ei (S 0 + ΓR + S noise) . (3.69)

Finally the equation of motion, which is the equation for ϕc obtained by varying the effective
action with respect to ϕ∆, becomes a Langevin equation. Since the equation of motion, δΓ/δϕ =
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0, is equivalent to δeiΓ/δϕ = 0, we obtain

□ϕ(x) + V ′eff[ϕ] +
∫ t

−∞
dt′

∫
d3x′ Ba(x − x′)ϕ(x′) + ϕ(x)

∫ t

−∞
dt′

∫
d3x′ Bm(x − x′)ϕ2(x′)

=ξa(x) + ξm(x)ϕ(x) . (3.70)

The suffixes a (m) represents additive (multiplicative) noise.

The above treatment of the imaginary part of the effective action is not just a mathematical
transformation but important steps to interpret the equation of motion. The right hand side, ξ
and ξϕ, kick or perturb the mean field ϕ and supply energy to it from the thermal bath. On
the other hand, the non-local terms on the left hand side represent the friction, which dissipate
energy of the mean field into the bath. In order for a system to achieve and keep thermal
equilibrium, there is a necessary condition between noise terms and the memory terms, which
is known as the fluctuation-dissipation relation.

For simplicity we concentrate on the additive noise term and the corresponding memory
term. The similar discussion holds on the multiplicative noise and the memory term [20]. Since
the fluctuation-dissipation relation can be seen simply in the Fourier space, we rewrite the equa-
tion of motion as

(−ω2 + |⃗k|2 + m2)ϕ̃(ω, k⃗) +
∫

dω′

2π
P

ω − ω′ iB̃a(ω, k⃗) +
1
2

B̃a(ω, k⃗)ϕ̃(ω, k⃗) = ξ̃(ω, k⃗) , (3.71)

where P means its principle value. The noise correlation is given by

⟨ξa(x1)ξ†a (x2)⟩ = Aa(x1 − x2) . (3.72)

Now the fluctuation-dissipation relation is written as

Ãa(ω, k⃗)
−1
ω

ImB̃a(ω, k⃗)
=
ω

2
eβω + 1
eβω − 1

= ω

(
1
2
+ nω

)
. (3.73)

For a variety of interactions we can check this relation. Explicit forms of non-local terms
and noise correlations are found in Ref.[20]. This is the quantum fluctuation-dissipation relation
[20, 21, 37, 38, 39]. In light of this fact, we conclude that the noise term introduced by rewriting
the imaginary part of the effective action is not just a mathematical trick. In the high temperature
limit, βω ≪ 1, the right hand side of eq. (3.73) reduces to T .

Now let us explicitly see the fluctuation-dissipation relation by considering Lint = −λ2χ2ϕ2.
Functions A and B for additive noise and the correspondent non-local term in Fourier space are
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calculated as

Aa(ω, k⃗) = −16πiλ4
∫

d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3 (2π)3δ3(q⃗1 + q⃗2 + q⃗3 − k⃗)
1

8ωq1ωq2ωq3

×
[ {

(1 + nq1)(1 + nq2)(1 + nq3) + nq1nq2nq3

}
δ(ω − ωq1 − ωq2 − ωq3)

+
{
(1 + nq1)(1 + nq2)nq3 + nq1nq2(1 + nq3)

}
δ(ω − ωq1 − ωq2 + ωq3)

+
{
(1 + nq1)nq2(1 + nq3) + nq1(1 + nq2)nq3

}
δ(ω − ωq1 + ωq2 − ωq3)

+
{
nq1(1 + nq2)(1 + nq3) + (1 + nq1)nq2nq3

}
δ(ω + ωq1 − ωq2 − ωq3)

+
{
(1 + nq1)nq2nq3 + nq1(1 + nq2)(1 + nq3)

}
δ(ω − ωq1 + ωq2 + ωq3)

+
{
nq1(1 + nq2)nq3 + (1 + nq1)nq2(1 + nq3)

}
δ(ω + ωq1 − ωq2 + ωq3)

+
{
nq1nq2(1 + nq3) + (1 + nq1)(1 + nq2)nq3

}
δ(ω + ωq1 − ωq2 + ωq3)

+
{
nq1nq2nq3 + (1 + nq1)(1 + nq2)(1 + nq3)

}
δ(ω + ωq1 + ωq2 + ωq3)

]
,

(3.74)

Ba(ω, k⃗) = 8πλ4
∫

d3q1

(2π)3

d3q2

(2π)3

d3q3

(2π)3 (2π)3δ3(q⃗1 + q⃗2 + q⃗3 − k⃗)
1

8ωq1ωq2ωq3

×
[ {

(1 + nq1)(1 + nq2)(1 + nq3) − nq1nq2nq3

}
δ(ω − ωq1 − ωq2 − ωq3)

+
{
(1 + nq1)(1 + nq2)nq3 − nq1nq2(1 + nq3)

}
δ(ω − ωq1 − ωq2 + ωq3)

+
{
(1 + nq1)nq2(1 + nq3) − nq1(1 + nq2)nq3

}
δ(ω − ωq1 + ωq2 − ωq3)

+
{
nq1(1 + nq2)(1 + nq3) − (1 + nq1)nq2nq3

}
δ(ω + ωq1 − ωq2 − ωq3)

+
{
(1 + nq1)nq2nq3 − nq1(1 + nq2)(1 + nq3)

}
δ(ω − ωq1 + ωq2 + ωq3)

+
{
nq1(1 + nq2)nq3 − (1 + nq1)nq2(1 + nq3)

}
δ(ω + ωq1 − ωq2 + ωq3)

+
{
nq1nq2(1 + nq3) − (1 + nq1)(1 + nq2)nq3

}
δ(ω + ωq1 − ωq2 + ωq3)

+
{
nq1nq2nq3 − (1 + nq1)(1 + nq2)(1 + nq3)

}
δ(ω + ωq1 + ωq2 + ωq3)

]
, (3.75)

where ωq1 =
√
|q⃗1|2 + m2

χ, ωq2 =
√
|q⃗2|2 + m2

χ, ωq3 =
√
|q⃗3|2 + m2

ϕ, and nqi =
1

eβωqi−1
. We can

explicitly see that the fluctuation-dissipation relation shown as eq. (3.73) holds.
Finally we comment on the functional form of the fluctuation-dissipation relation given by

eq. (3.73). We consider the following equation of motion

(−ω2 + k⃗2 +M2)ϕ̃(ω, k⃗) + b̃(ω, k⃗)ϕ̃(ω, k⃗) = ξ̃(ω, k⃗) , (3.76)

whereM is the effective mass including corrections from interactions. b̃(ω, k⃗) is defined as

b̃(ω, k⃗) =
∫ ∞

0
dt eiωtB(t, k⃗) . (3.77)



3.2. EFFECTIVE ACTION METHOD 35

This expression enables us to connect the thermal average of the scalar field and that of noise
term.

⟨ϕ̃(ω, k⃗)ϕ̃†(ω′, k⃗′)⟩ = ⟨ξ̃(ω, k⃗)ξ̃†(ω′, k⃗′)⟩(
−ω2 + k⃗2 +M2 + b̃(ω, k⃗)

) (
−ω′2 + k⃗′

2
+M2 + b̃∗(ω′, k⃗′)

) (3.78)

First, the ϕ in the left hand side is not an operator but a c-number, we may evaluate the left hand
side as a Fourier transform of a symmetric propagator ⟨{ϕ̂(t, x⃗), ϕ̂†(t′, y⃗)}⟩/2 which corresponds
to half of the Hadamard propagator. The Hadamard propagator G1 can be expressed as

G1(x, x′) = G++(x, x′) +G−−(x, x′) , (3.79)

since G++ is an expectation value of T-product (Feynman propagator), and G−− is that of anti
T-product (Dyson propagator). The right hand side becomes⟨

ϕ(ω, k⃗)ϕ†(ω′, k⃗′)
⟩

=

∫
dtdt′ eiωte−iω′t′(−i)

1
2

[
G++k (t′, t) +G−−k (t′, t)

]
(2π)3δ(3)(⃗k − k⃗′)

=

∫
dτdt′ eiωτei(ω−ω′)t′ 1

2ωk

[
(1 + 2nk)

(
e−iωkτ + eiωkτ

) ]
(2π)3δ(3)(⃗k − k⃗′) (τ ≡ t − t′)

=
1

2ωk
(1 + 2nk)

[
2πδ(ω − ωk) + 2πδ(ω + ωk)

]
(2π)4δ(ω − ω′)δ(3)(⃗k − k⃗′)

= (1 + 2nk)(2π)δ(ω2 − ω2
k)(2π)4δ(ω − ω′)δ(3)(⃗k − k⃗′) (3.80)

Second, the noise correlation in k-space is

⟨ξ̃(ω, k⃗)ξ̃†(ω′, k⃗′)⟩ = Ã(ω, k⃗)(2π)4δ(ω − ω′)δ(3)(⃗k − k⃗′) . (3.81)

The right hand side of eq. (3.78) can be written as

(2π)4δ(ω − ω′)δ(3)(⃗k − k⃗′)
Ã(ω, k⃗)(

ω2 + k⃗2 +M2 + b̃(ω, k⃗)
) (
−ω2 + k⃗2 +M2 + b̃∗(−ω, k⃗)

)
=(2π)4δ(ω − ω′)δ(3)(⃗k − k⃗′)

Ã(ω, k⃗)

−2iImb̃(ω, k⃗)

 1

−ω2 + k⃗2 +M2 + b̃(ω, k⃗)
− 1

−ω2 + k⃗2 +M2 + b̃∗(ω, k⃗)

 .
(3.82)

We further decompose the fraction like

1

−ω2 + k⃗2 +M2 + b̃(ω, k⃗)
=

1
2ωk

 1

ω + ωk − iImb̃(ω,⃗k)
2ω

− 1

ω − ωk − iImb̃(ω,⃗k)
2ω

 . (3.83)
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Since b appears from interactions, in taking small-coupling limit we can rewrite them with delta
functions by applying a formula

lim
ϵ→+0

1
x ± iϵ

=
P
x
∓ iπδ(x) . (3.84)

Note that, to use this formula, signs of Imbk⃗(ω) at ω = ±ωk are important. Let us assume B(x⃗, t)
is an even function of x⃗. Of course it should be real so that the action is real. Under these
conditions, Imb̃(ω, k⃗) becomes an odd function of ω. Furthermore, since A(x⃗, t) is expected
to be an even function of t, Ãk⃗(ω) is an even function of ω. Taking these considerations into
account, we can express the right hand side of eq. (3.78) evaluated at free limit as

π
Ã(+ωk, k⃗)

|Imb̃(+ωk, k⃗)|
δ(ω2 − ω2

k)(2π)4δ(ω − ω′)δ(3)(⃗k − k⃗′) . (3.85)

By equating eq. (3.80) and eq. (3.85), we obtain the fluctuation-dissipation relation

Ã(+ωk, k⃗)

| 2
ωk

Imb̃(+ωk, k⃗)|
= ωk

(
1
2
+ nk

)
=
ωk

2
eβωk + 1
eβωk − 1

. (3.86)

This is consistent with previous studies.

3.2.3 Effective Potential

In practice the effective potential is more useful than the effective action. Effective potential Veff

is defined as

Γ[ϕ(x) = φ] =
∫

d4x (−Veff[φ]) , or Veff[φ] =
−1
V4
Γ[ϕ(x) = φ] , (3.87)

where V4 =
∫

d4x is the spacetime volume and φ is a constant independent of spacetime co-
ordinate x. Namely, the effective action, which is a functional of any field configurations ϕ(x),
reduces to the effective potential up to the factor −V4.

The 1-loop correction of the effective potential is expressed as

V1−loop
eff [ϕ] =

1
2

∫
d4k

(2π)4 log
[
iG−1(k, ϕ)

]
, (3.88)

where ϕcl is the solution of the classical equation of motion and

iG−1(k, ϕ) =
δ2L(ϕcl + ϕ)

δϕ2

∣∣∣∣∣∣
ϕ=0

. (3.89)

Writing iG−1(k, ϕ) = k2 + m2(ϕ), we can perform the k0-integral and obtain

V1−loop
eff [ϕ] =

1
2

∫
d3k

(2π)3

√
|⃗k|2 + m2(ϕ) . (3.90)
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At finite temperature, the effective potential becomes

Veff[ϕ] =
1

2β

+∞∑
n=−∞

∫
d3k

(2π)3 log
(2πn

β

)2

+ |⃗k|2 + m2(ϕ)
 (3.91)

Evaluation of this expression is a bit technical [34]. We would like to calculate

vb(E) ≡
+∞∑

n=−∞
log

(2πn
β

)2

+ E2

 , (3.92)

which is diverging. However, we can extract the ϕ-dependent part by performing differentiation
and integration with respect to E to impose the divergence on the integration constant.

∂vb

∂E
=

∞∑
n=−∞

2E(
2πn
β

)2
+ E2

= β coth
βE
2
,

vb(E) =
∫

dE
∂vb

∂E
= βE + 2 log

(
1 − e−βE

)
. (3.93)

The above treatment leads to

Veff[ϕ] =
∫

d3k
(2π)3

[
1
2

√
|⃗k|2 + m2(ϕ) +

1
β

log
[
1 − e−β

√
|⃗k|2+m2(ϕ)

]]
+ (const.) , (3.94)

where the finite-temperature correction appears as the second term in the integrand.
The effective potential coming from interactions with fermions are calculated in the same

way.

Veff[ϕ] = −2
β

+∞∑
n=−∞

∫
d3k

(2π)3 log
((2n + 1)π

β

)2

+ |⃗k|2 + m2(ϕ)
 (3.95)

We also evaluate the following quantity

vf(E) ≡
+∞∑

n=−∞
log

((2n + 1)π
β

)2

+ E2

 , (3.96)

by a set of differentiation and integration as

∂vf

∂E
=

∞∑
n=−∞

2E(
(2n+1)π

β

)2
+ E2

=
4β
π

∑
n:odd

βE
π

n2 +
(
βE
π

)2 = β tanh
βE
2
,

vf(E) =
∫

dE
∂vf

∂E
= βE + 2 log

(
1 + e−βE

)
. (3.97)

Then the effective potential from interactions with fermion becomes

Veff[ϕ] = −
∫

d3k
(2π)3

[
1
2

√
|⃗k|2 + m2(ϕ) +

1
β

log
[
1 + e−β

√
|⃗k|2+m2(ϕ)

]]
+ (const.) . (3.98)
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3.3 Extension to Gauged Scalar Field

So far, the effective action and the resultant equation of motion of a scalar field has been studied
in models where it has self-interaction and interactions with other fermions and scalar bosons
[19, 20]. Therefore it is interesting to extend the previous studies to include interactions with
gauge fields. In this section we consider the effects from gauge interactions on the effective
action of scalar fields by analyzing scalar QED [40]. This consideration would help us to
complete the field theory at finite temperature.

3.3.1 Settings

The Lagrangian density of Scalar QED is given by

L =DµΦ
†DµΦ − m2Φ†Φ − 1

4
FµνFµν

=∂µΦ
†∂µΦ − m2Φ†Φ − 1

4
FµνFµν

+ ieAµ(Φ†∂µΦ − Φ∂µΦ†) + e2AµAµΦ†Φ . (3.99)

In considering physical quantities we impose the Coulomb gauge condition ∇⃗ · A⃗ = 0, which
enable us to rewrite the Lagrangian as

L =∂µΦ†∂µΦ − m2Φ†Φ +
1
2
∂µA⃗T · ∂µA⃗T

− ieA⃗T (Φ∇⃗Φ† − Φ†∇⃗Φ) − e2A⃗T · A⃗TΦ
†Φ

+
1
2

(∇⃗A0)2 − ieA0(ΦΦ̇† − Φ†Φ̇) + e2A2
0Φ
†Φ , (3.100)

where A⃗T represents the transverse components, which satisfy ∇⃗ · A⃗T = 0. Though we use the
Coulomb gauge, other choices of gauge, such as axial gauge or Lorenz gauge, should also be
possible in principle 3). Although the equation of motion may be gauge dependent, physical
quantities calculated from it should be gauge invariant. We discuss this issue in Appendix by
showing that the dissipation rate is independent on the choice of gauge.

Following Boyanovsky et al. [41], thermal propagators for the scalar field Φ and gauge field
A⃗T are expressed as follows.

Propagators for the scalar field:

⟨Φ(a)†(x⃗, t)Φ(b)(x⃗′, t′)⟩ = −i
∫

d3k
(2π)3 Gab

k (t, t′)e−i⃗k·(x⃗−x⃗′) (3.101)

3)In addition to these conditions, we come up with the so-called covariant gauge. While it is often convenient to
use it, we should note that it has a different meaning from other gauge conditions, namely, we do not specify the
gauge-fixing condition in the covariant gauge. In calculating effective action, this gauge is inappropriate since it is
useful only in the problems where physical quantities such as the S-matrix elements can be directly calculated.
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G++k (t, t′) = G>
k (t, t′)Θ(t − t′) +G<

k (t, t′)Θ(t′ − t) (3.102)

G−−k (t, t′) = G>
k (t, t′)Θ(t′ − t) +G<

k (t, t′)Θ(t − t′) (3.103)

G+−k (t, t′) = −G<
k (t, t′) (3.104)

G−+k (t, t′) = −G>
k (t, t′) (3.105)

G>
k (t, t′) =

i
2ωk

[
(1 + nk)e−iωk(t−t′) + nke+iωk(t−t′)

]
(3.106)

G<
k (t, t′) =

i
2ωk

[
nke−iωk(t−t′) + (1 + nk)e+iωk(t−t′)

]
(3.107)

ωk =

√
|⃗k|2 + m2, nk =

1
eβωk − 1

(3.108)

Although we have already seen these propagators before, it is convenient to use the expression
in (t, k⃗) space.

Propagators for the gauge field:

⟨A(a)
Ti (x⃗, t)A(b)

T j(x⃗′, t′)⟩ = −i
∫

d3k
(2π)3G

ab
k i j(t, t

′)e−i⃗k·(x⃗−x⃗′) (3.109)

G++k i j(t, t
′) = Pi j(⃗k)

[
g>k (t, t′)Θ(t − t′) + g<k (t, t′)Θ(t′ − t)

]
(3.110)

G−−k i j(t, t
′) = Pi j(⃗k)

[
g>k (t, t′)Θ(t′ − t) + g<k (t, t′)Θ(t − t′)

]
(3.111)

G+−k i j(t, t
′) = −Pi j(⃗k)g<k (t, t′) (3.112)

G−+k i j(t, t
′) = −Pi j(⃗k)g>k (t, t′) (3.113)

g>k (t, t′) =
i

2k

[
(1 + Nk)e−ik(t−t′) + Nke+ik(t−t′)

]
(3.114)

g<k (t, t′) =
i

2k

[
Nke−ik(t−t′) + (1 + Nk)e+ik(t−t′)

]
(3.115)

k =
√
|⃗k|2, Nk =

1
eβk − 1

, Pi j(⃗k) = δi j −
kik j

k2 (3.116)

The generating functional of the Green’s function, Z[J(+), J(−)], is

Z[J(+), J(−)] =
∫
DA⃗TDΦDΦ† exp

[
i(S (+) − S (−)) + i

∫
d4x

{
J(+)(x)Φ(+)(x) − J(−)(x)Φ(−)(x)

}]
,

(3.117)
where

S (±) =

∫
d4xL[A⃗(±)

T , Φ(±), Φ†(±)] . (3.118)
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3.3.2 Effective Action and Langevin equation

As we saw before, calculating the effective action corresponds to the summation of one-particle-
irreducible (1PI) diagrams. Practically, though, effective action can be obtained only by means
of a perturbative expansion in terms of the gauge coupling constant e. The lowest nontrivial
contributions to the effective action appear at the second order of coupling constant e. At this
order, there are two relevant diagrams, which are shown in Fig. 3.3.

Φ Φ Φ Φ

e2ee

Figure 3.3: O(e2) 1PI diagrams. The solid/wavy line represents the scalar/photon propa-
gator, respectively. The left diagram generates nonlocal terms in the effective action. The
right diagram produces a thermal correction to the mass term, which is proportional to T 2.

In addition to these 1PI diagrams, we have to rewrite A0 using its Euler-Lagrange equation
as

A0(x) = − 1
∆
ρ(x) + O(e2) (3.119)

ρ ≡ ie(ΦΦ̇† − Φ†Φ̇) (3.120)

and take the following interaction into account:

1
2

(∇⃗A0)2 td
= −1

2
A0∆A0 =

1
2
ρ

1
∆
ρ =

e2

8π

∫
d3y

(ΦΦ̇† − Φ†Φ̇)(x⃗, t)(ΦΦ̇† − Φ†Φ̇)(⃗y, t)
|x⃗ − y⃗| (3.121)

Here td
= means an equality up to a total derivative term. Obviously this represents the Coulomb

potential. Although the meaning of this interaction is clearly seen in real space, we can treat it
more easily in Fourier space. The action corresponding to this term is given by

S ⊃ e2

2

∫
dt

∫
d3k

(2π)3

∫
d3 p

(2π)3

∫
d3q

(2π)3

1

k⃗2

(
Φ̃(t, p⃗) ˙̃Φ†(t, p⃗ − k⃗) − ˙̃Φ(t, p⃗)Φ̃†(t, p⃗ − k⃗)

)
(3.122)

×
(
Φ̃(t, q⃗) ˙̃Φ†(t, k⃗ + q⃗) − ˙̃Φ(t, q⃗)Φ̃†(t, k⃗ + q⃗)

)
,

where Φ̃(t, p⃗) is the spatial Fourier transformation of Φ(t, x⃗), defined as

Φ̃(t, p⃗) ≡
∫

d3x eip⃗·x⃗Φ(t, x⃗) . (3.123)
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The contribution of the left diagram in Fig. 3.3 to the effective action Γ is

Γ ⊃ + 4ie2
∫

d4x1d4x2

⟨
A(+)

Ti (x1)A(+)
T j (x2)

⟩⟨
∂iΦ

†(+)(x1)∂ jΦ
(+)(x2)

⟩
Φ†(+)(x2)Φ(+)(x1)

+ 4ie2
∫

d4x1d4x2

⟨
A(−)

Ti (x1)A(−)
T j (x2)

⟩⟨
∂iΦ

†(−)(x1)∂ jΦ
(−)(x2)

⟩
Φ†(−)(x2)Φ(−)(x1)

− 4ie2
∫

d4x1d4x2

⟨
A(−)

Ti (x1)A(+)
T j (x2)

⟩⟨
∂iΦ

†(−)(x1)∂ jΦ
(+)(x2)

⟩
Φ†(+)(x2)Φ(−)(x1)

− 4ie2
∫

d4x1d4x2

⟨
A(+)

Ti (x1)A(−)
T j (x2)

⟩⟨
∂iΦ

†(+)(x1)∂ jΦ
(−)(x2)

⟩
Φ†(−)(x2)Φ(+)(x1) , (3.124)

and the right diagram gives the following contribution,

Γ ⊃ −e2
∫

d4x
[⟨

A(+)
Ti (x)A(+)

Ti (x)
⟩
Φ†(+)(x)Φ(+)(x) −

⟨
A(−)

Ti (x)A(−)
Ti (x)

⟩
Φ†(−)(x)Φ(−)(x)

]
. (3.125)

The propagators of gauge field are calculated as

⟨
A(+)

Ti (x)A(+)
Ti (x)

⟩
=

⟨
A(−)

Ti (x)A(−)
Ti (x)

⟩
=

∫
d3k

(2π)3

2
k

(
1
2
+ Nk

)
, (3.126)

where the first term in the bracket in the right hand side contains divergence, which should be
removed by the same counter term as that in zero temperature. Therefore we only focus on the
finite-temperature correction, which becomes

⟨
A(+)

Ti (x)A(+)
Ti (x)

⟩
=

⟨
A(−)

Ti (x)A(−)
Ti (x)

⟩
=

T 2

6
. (3.127)

As for the Coulomb potential term (3.122), although it does not have diagrammatic corre-
spondence, we implement the same procedure as the previous interaction terms. After taking
contractions except for two field variables which correspond to external lines, we have

Γ ⊃ −ie2
∫

dt
∫

d3k
(2π)3

d3 p
(2π)3

1

|⃗k − p⃗|2
[
−G++p (t, t)

( ˙̃Φ(+) ˙̃Φ†(+) − ˙̃Φ†(−) ˙̃Φ†(−)
)

(t, k⃗)

+G̈++p (t, t)
(
Φ̃(+)Φ̃†(+) − Φ̃†(−)Φ̃†(−)

)
(t, k⃗)

]
. (3.128)

Now it is convenient to introduce new variables and replace Φ(±) with them,

Φ(±) = ϕc ±
1
2
ϕ∆ . (3.129)

Finally we obtain the effective action Γ, incorporating these two diagrams and A0 terms up
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to the second order in e, as

Γ =

∫
d4x

[
ϕ†
∆
(x)

(
−∂µ∂µ − m2 − e2 T 2

6

)
ϕc(x)

+ ϕ∆(x)
(
−∂µ∂µ − m2 − e2 T 2

6

)
ϕc(x)†

]
− 4ie2

∫
d4x1d4x2

∫
d3 p1

(2π)3

d3 p2

(2π)3 e−i(p⃗1+p⃗2)·(x⃗1−x⃗2)Pi j(p⃗1)p2i p2 jΘ(t2 − t1)[
g<p1

(t1, t2)G<
p2

(t1, t2) − g>p1
(t1, t2)G>

p2
(t1, t2)

] (
ϕ†c(x1)ϕ∆(x2) + ϕc(x1)ϕ†

∆
(x2)

)
− 2ie2

∫
d4x1d4x2

∫
d3 p1

(2π)3

d3 p2

(2π)3 e−i(p⃗1+p⃗2)·(x⃗1−x⃗2)Pi j(p⃗1)p2i p2 j[
g<p1

(t1, t2)G<
p2

(t1, t2) + g>p1
(t1, t2)G>

p2
(t1, t2)

]
ϕ†
∆
(x1)ϕ∆(x2)

+ ΓA0 , (3.130)

ΓA0 = − e2
∫

d4k
(2π)4

d3 p
(2π)3

1

|⃗k − q⃗|2
·
(
1
2
+ np

)
·
(
ω2

ωp
+ ωp

)
×

(
ϕ̃c(k)ϕ̃∆

†(k) + ϕ̃∆(k)ϕ̃c
†(k)

)
≡

∫
d4k

(2π)4

(
ϕ̃c(k)ϕ̃∆

†(k) + ϕ̃∆(k)ϕ̃c
†(k)

)
f̃A0(k) . (3.131)

ΓA0 comes from the Coulomb potential term, which gives corrections to the dispersion relation
as well as the thermal mass term.

Let us show that the non-local terms which come from diagrams in Fig. 3.3 have a non-zero
imaginary part. First, both of the integrands are invariant under replacements p⃗1 → − p⃗1 and
p⃗2 → − p⃗2 respectively. This property allows us to replace e−i(p⃗1+ p⃗2)·(x⃗1−x⃗2) with cos

[
( p⃗1 + p⃗2) · (x⃗1 − x⃗2)

]
.

Second, from Eqs. (3.106), (3.107), (3.114), and (3.115), we note that g<G< − g>G> is purely
imaginary and g<G< + g>G> is real. Thus, the first non-local term is real and the second one is
purely imaginary.

The imaginary part of the effective action is

iΓ ⊃ −
∫

d4x1d4x2N(x1 − x2) (ϕ∆R(x1)ϕ∆R(x2) + ϕ∆ I(x1)ϕ∆ I(x2)) , (3.132)

where

N(x1 − x2) = − 2e2
∫

d3 p1

(2π)3

d3 p2

(2π)3 e−i(p⃗1+ p⃗2)·(x⃗1−x⃗2)Pi j( p⃗1)p2i p2 j[
g<p1

(t1, t2)G<
p2

(t1, t2) + g>p1
(t1, t2)G>

p2
(t1, t2)

]
. (3.133)

ϕ∆R/I are the real/imaginary part of ϕ∆, respectively.
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The Fourier transformation of N with respect to t − t′ and x⃗ − x⃗′ is

Ñ(ω, k⃗) =2e2
∫

d3 p1

(2π)3

d3 p2

(2π)3Pi j( p⃗1)p2i p2 j(2π)3δ(⃗k − p⃗1 − p⃗2)

2π
2p12ωp2

[{
(1 + Np1)(1 + np2) + Np1np2

}
δ(ω − p1 − ωp2)

+
{
(1 + Np1)np2 + Np1(1 + np2)

}
δ(ω − p1 + ωp2)

+
{
Np1(1 + np2) + (1 + Np1)np2

}
δ(ω + p1 − ωp2)

+
{
Np1np2 + (1 + Np1)(1 + np2)

}
δ(ω + p1 + ωp2)

]
. (3.134)

Clearly, this is positive for any (ω, k⃗), and thus this expression ensures us that we can use the
formula (3.65) and rewrite the effective action with stochastic noise terms.

Now we obtain a real effective action S eff by introducing noise terms. To derive an equation
of motion for the physical variable ϕc in the closed time-path formalism we take a variation with
respect to ϕ∆ and set it to zero. The equation of motion of the physical variable ϕc(x), which is
obtained after taking a variation with respect to ϕ∆ and setting it to zero, is(

□ + m2 + e2 T 2

6

)
ϕc(x) −

∫
d4x′ fA0(x − x′)ϕc(x′)

+ 4ie2
∫ t

−∞
dt′

∫
d3x′

∫
d3 p1

(2π)3

d3 p2

(2π)3 e−i(p⃗1+ p⃗2)·(x⃗′−x⃗)Pi j(p⃗1)p2i p2 j[
g<p1

(t′, t)G<
p2

(t′, t) − g>p1
(t′, t)G>

p2
(t′, t)

]
ϕc(t′, x⃗′)

= ξ(x) . (3.135)

By writing the non-local memory term as∫ t

−∞
dt′

∫
d3x C(x − x′)ϕ(x′) , (3.136)

The equation of motion in the Fourier space is

(−ω2 + k2 + m2)ϕ̃(ω, k⃗)

+

(
e2 T 2

6
− f̃A0(ω, k⃗) +

∫
dω′

2π
P

ω − ω′ iC̃(ω′, k⃗)
)
ϕ̃(ω, k⃗)

+
1
2

C̃(ω, k⃗)ϕ̃(ω, k⃗) = ξ̃(ω, k⃗) . (3.137)

Note that C̃ is purely imaginary and f̃A0 is real, hence all the coefficients of ϕ̃ in the second line
are real. They can be interpreted as corrections to the free part, i.e., the first line. The terms in
the third line can be interpreted as dissipation and fluctuation.
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The imaginary part of the Fourier transformation of the memory kernel C(t, x⃗) is

ImC̃(ω, k⃗) = −4e2
∫

d3 p1

(2π)3

d3 p2

(2π)3Pi j( p⃗1)p2i p2 j(2π)3δ(3)(⃗k − p⃗1 − p⃗2)

× 2π
2p12ωp2

[{
(1 + Np1)(1 + np2) − Np1np2

}
δ(ω − p1 − ωp2)

+
{
(1 + Np1)np2 − Np1(1 + np2)

}
δ(ω − p1 + ωp2)

+
{
Np1(1 + np2) − (1 + Np1)np2

}
δ(ω + p1 − ωp2)

+
{
Np1np2 − (1 + Np1)(1 + np2)

}
δ(ω + p1 + ωp2)

]
. (3.138)

Therefore the fluctuation-dissipation relation also holds in Scalar QED.

Ñ(ω, k⃗)
−1
ω

ImC̃(ω, k⃗)
=
ω

2
eβω + 1
eβω − 1

= ω

(
1
2
+ nω

)
. (3.139)

3.3.3 Properties of the Stochastic Noise

We see that the equal-time noise correlation is expressed as

⟨ξ(x⃗1, t)ξ†(x⃗2, t)⟩

=
e2

2

∫
d3 p1

(2π)3

∫
d3 p2

(2π)3 e−i( p⃗1 + p⃗2) · (x⃗1 − x⃗2)Pi j( p⃗1)p2i p2 j
1

p1ωp2

(1 + 2Np1)(1 + 2np2) .

(3.140)

It is convenient to divide it as

⟨ξ(x⃗1, t)ξ†(x⃗2, t)⟩ =
e2

2
(αi j − βi j)γi j

=
e2

2

[
− α(r)

(
γ′′(r) +

2
r
γ′(r)

)
− 2

r2β
′(r)γ′(r) − β′′(r)γ′′(r)

]
, (3.141)

where

αi j =

∫
d3 p1

(2π)3 e−ip⃗1 · r⃗ 1
p1

(
1 +

2
eβp1 − 1

)
δi j ≡ α(r)δi j , (3.142)

βi j =

∫
d3 p1

(2π)3 e−ip⃗1 · r⃗ p1i p1 j

p3
1

(
1 +

2
eβp1 − 1

)
≡ − ∂

∂ri

∂

∂r j
β(r) , (3.143)

γi j =

∫
d3 p2

(2π)3 e−ip⃗2 · r⃗ p2i p2 j

ωp2

(
1 +

2
eβωp2 − 1

)
≡ − ∂

∂ri

∂

∂r j
γ(r) , (3.144)

and we use r = |⃗r| = |x⃗1 − x⃗2|.
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The functions α, β, γ and their derivatives can be expressed as follows.

α(r) =
1

2πrβ
coth

(
r
β
π

)
(3.145)

β′(r) = − 1
2π2r

+

∞∑
n=1

−r + nβArccot( nβ
r )

π2r2 (3.146)

β′′(r) =
1
π2r2 −

1
2πrβ

coth(
r
β
π) +

∞∑
n=1

2
π2r3

[
r − nβArccot(

nβ
r

)
]

(3.147)

γ′(r) = − m2

2π2r
K2(mr) − m2r

π2

∞∑
n=1

1
r2 + n2β2 K2(m

√
r2 + n2β2) (3.148)

γ′′(r) = − m2

2π2

[ 1
r2 K2(mr) − m

r
K3(mr)

]
− m2

π2

∞∑
n=1

[ 1
r2 + n2β2 K2(m

√
r2 + n2β2) − mr2

(r2 + n2β2)3/2 K3(m
√

r2 + n2β2)
]

(3.149)

Kν(z) is the modified Bessel function of the νth order.
As can be seen from the above expressions, they are so complicated. Then we consider

simpler form in some limiting case. First, in the short-distance limit, the correlation function
reduces to

⟨ξ(x⃗1, t)ξ†(x⃗2, t)⟩ ≃ −
3e2

2π4r6Θ(r) +
e2

4π4r5 δ(r) . (3.150)

For the derivation of this expression, see Appendix B. Here we define the step function as

Θ(x) =
{

0 x ≤ 0 ,
1 x > 0 .

(3.151)

On the other hand, in the long distance limit r ≫ β, 1
m , it becomes

⟨ξ(x⃗1, t)ξ†(x⃗2, t)⟩ ≃ −
e2m2

8π2β2r2 e−mr . (3.152)

For the massless scalar field, we obtain

⟨ξ(x⃗1, t)ξ†(x⃗2, t)⟩ ≃ −
e2

8π2β2r4 . (3.153)

For the derivation of these expressions, see Appendix B.
We show the spatial correlation for various masses in Fig. 3.4. As the approximate expres-

sion (3.152) shows, the noise correlation is exponentially suppressed at r >∼ 1
m and monotonically

approaches zero. Asymptotically, the noise correlation obtained by numerical evaluation is con-
sistent with the above simple expressions that were obtained analytically. We see that the noise
in this model shows anticorrelation, which is different from the previous study [19].
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Figure 3.4: Noise spatial correlations for various mass values. The solid black line rep-
resents the exact expression (3.141) with Eqs. (3.145) ∼ (3.149). The dashed blue, red,
and green lines correspond to the analytical approximations (3.150), (3.152), and (3.153),
respectively. For r < 1

m , correlations obey power-law decay. They start to decay exponen-
tially when r exceeds 1

m .

3.3.4 Dissipation Rate

Let us evaluate the dissipation rate of the scalar field. As the equation of motion for the k mode
oscillation of a scalar field, we consider

(−ω2 + M2
k,ω)ϕ̃(ω, k⃗) +

1
2

C̃(ω, k⃗)ϕ̃(ω, k⃗) = ξ̃(ω, k⃗) . (3.154)

We assume the ω and nontrivial k dependence of Mk,ω is negligibly small, that is

M2
k,ω = k2 + M2

0 , (3.155)

where M0 is a constant. Under this assumption the dissipation rate of the k mode is given by

ΓD(⃗k) = −ImC̃(⃗k,Mk,ω)/2Mk,ω . (3.156)

From the previous consideration, Mk,ω is given by

M2
k,ω = k2 + m2 + e2 T 2

6
− f̃A0(ω, k⃗) +

∫
dω′

2π
P

1
ω − ω′ iC̃k⃗(ω

′) . (3.157)

Both f̃A0 and the principal value integral are divergent, however, we can remove them by renor-
malizing the scalar field strength. In other words, we can cancel out this divergence by adding
a counter term which is proportional to the kinetic term. The details are shown in Appendix.
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Although the k and ω dependences of Mk,ω are nontrivial, such corrections are proportional
to e2 hence we can neglect them in small-coupling limit. Assuming Mk,ω is given by Eq. (3.155),
we find

ΓD(⃗k) =
e2

4π
k√

M2
0 + k2

∫ p f

pi

dp
1 + 1

eβp − 1
− 1

eβ(
√

M2
0+k2−p) − 1


×

−M2
0

k2 +
(M2

0 − m2)
√

M2
0 + k2

k2 p
−

(M2
0 − m2)2

4k2 p2

 (3.158)

pi =
M2

0 − m2

2(
√

M2
0 + k2 + k)

, p f =
M2

0 − m2

2(
√

M2
0 + k2 − k)

Though we derive this expression assuming M0 > m, it is finite even in the limit of M0 → m. In
this limit, we can obtain

ΓD(⃗k) =

 e2

3πβ
k2

m2 k ≪ m
e2

2πβ k ≫ m .
(3.159)

We can see the physical processes related to dissipation and fluctuation by cutting the di-
agram into two pieces [42] since both the dissipation and fluctuation are derived from the left
diagram in Fig. 3.3. Considering the fact that due to energy and momentum conservation a
scalar boson cannot decay into a scalar boson of the same species and a massless gauge boson,
it may be doubtful that Eq. (3.158) really expresses the physical dissipation rate. Though the
calculated quantity is expressed as an integral over the loop momentum, only the p⃗ = 0⃗, or
a soft-photon loop, contributes to the resultant finite value 4). A mathematical explanation is
that it results from a cancellation between the divergent contribution from the bosonic distri-
bution function and the vanishment of the phase space, like

∫
0

p2dp × 1
p2 δ(p). If we include

higher-order corrections, for example, by using dressed propagators instead of free ones, gauge
fields acquire a plasmon mass. Therefore the bosonic distribution function at zero momentum
becomes finite, so that the dissipation rate from this diagram vanishes. In this case Eq. (3.134)
would also vanish, as it should.

The necessity of higher-order corrections to obtain a physical dissipation rate is also ex-
plained by another consideration. Since the contribution of the zero-mode seems important,
we have considered the same problem in a finite box having a spatial volume V with a peri-
odic boundary condition, by which we discretize the momentum and isolate the zero-mode. We
can see that the zero mode contribution contains the thermal average of the field value squared
which evidently diverges since no particular field value is energetically favored. As a result, the

4)We can see this more explicitly by going back to Eq. (3.138), which is related to the dissipation rate by
Eq. (3.156). After performing p2 integral, one can see that only the first and the third delta function can contribute
to the p1-integral at p⃗1 = 0 for on-shell scalar field.
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contribution to Eq. (3.158) scales as Φ2
Λ
/V , where ΦΛ is a cutoff of the zero-mode field ampli-

tude. Thus, the zero-mode contribution has an ambiguity arising from its dependence on the
order of taking the limit ΦΛ → ∞ and V → ∞. Hence we may not trust the finite value obtained
in Eq. (3.158) which is obtained by the particular continuum calculation. Indeed Eq. (3.158)
itself would vanish, if we incorporate a plasmon mass into the gauge field using a dressed prop-
agator or simply a mass term generated by a finite value of ϕ. In this case Eq. (3.134) would
also vanish, as it should.

Thus the dissipation arises from higher order diagrams with respect to the coupling constant
e, which is shown in Fig. 3.5 corresponding to the interaction e2AµAµΦ†Φ. In this case, the
noise becomes the multiplicative-type. As the nonlocal memory term in the effective action, we
obtain

Γ ⊃ − 4ie4
∫

d4x1d4x2
[
ϕcR(x1)ϕ∆R(x1) + ϕcI(x1)ϕ∆I(x1)

] [|ϕc(x2)|2 + 1
4
|ϕ∆(x2)|2

]
×

∫
d3k1

(2π)3

d3k2

(2π)3 e−i(k⃗1+k⃗2)·(x⃗1−x⃗2)Pi j(k⃗1)Pi j(k⃗2)[
g>k1

(t1, t2)g>k2
(t1, t2) − g<k1

(t1, t2)g<k2
(t1, t2)

]
Θ(t1 − t2) . (3.160)

In Ref. [20] the dissipation rate corresponding to multiplicative noise cases is also studied. We
can evaluate the dissipation rate for the homogeneous field configuration 5) as

ΓD =
C̃m(⃗k = 0⃗, 2M)

2iM
|ϕ(t)|2 = e4|ϕ(t)|2

4πM
(1 + 2NM) , (3.161)

where M is the angular frequency of the coherent oscillation and |ϕ(t)|2 is a mean square ampli-
tude around the time t. We now see that even the coherent oscillation has nonzero dissipation at
this order. The function C̃m is the Fourier transformation of the following function.

Cm(x − x′) ≡4ie4
∫

d3k1

(2π)3

d3k2

(2π)3 e−i(k⃗1+k⃗2)·(x⃗−x⃗′)Pi j(k⃗1)Pi j(k⃗2)[
g>k1

(t, t′)g>k2
(t, t′) − g<k1

(t, t′)g<k2
(t, t′)

]
. (3.162)

3.3.5 Summary

In Section 3.3, we studied the role of gauge fields in the effective action for the scalar field
by considering the scalar QED theory. As can be expected from previous studies, the effective
action we obtained contains an imaginary part. We rewrote it by applying the Gaussian func-
tional integral formula, and interpreted the integral over the variable ξ as ensemble averaging.

5)Here we focus on the dissipation rate in the configuration which is essentially equivalent to the single field
dynamics (both the real and imaginary part are oscillating with the same phase).
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Figure 3.5: 1PI diagram relevant to the multiplicative noise. This O(e4) diagram
leads to the nonzero dissipation rate for the coherently oscillating scalar field.

The validity of this arrangement is confirmed by the fluctuation-dissipation relation between
the memory term and the introduced noise term. Then we analyzed the spatial correlation of
the noise, and found that the noise shows anticorrelation, which is different from the case of
scalar and fermionic interactions. The origin of this anticorrelation is due to the existence of
derivative interactions between the scalar and gauge fields. We also considered the dissipation
rate of the scalar field. Though we obtained a finite dissipation rate, it comes from a soft photon
in the loop. It would vanish if we incorporated a finite mass which may be generated from
higher-order loops. Furthermore since the dissipation we have obtained comes from derivative
interactions, the dissipation rate for the coherent oscillation vanishes. On the other hand, higher
order diagrams, consisting of a nonderivative interaction as depicted in Fig. 3.5, gives a nonzero
dissipation rate.

Considering that gauge coupling constants are generally larger than Yukawa coupling con-
stants, the absolute value of the noise correlation function for the massless case [Eqs. (3.150)
and (3.153)] can be larger than that of fermionic noise studied by Ref. [19]. It would be in-
teresting to study the phase transitions numerically with our results included. Another possible
extension is to apply our results to non-Abelian gauge theories in order to treat the realistic
phenomena in the early Universe.





Chapter 4

Phase Transitions in the Early Universe

4.1 Generalities on Cosmological Phase Transitions

4.1.1 Types of Phase Transitions

Phase transitions described by an effective potential with more than two local minima during
the phase transition are called first-order phase transition. On the other hand, we say the phase
transition is second order if the place of the local minimum continuously varies to the zero-
temperature value. In the first-order phase transition, the field value is determined by the false
vacuum and there appears a true vacuum with lower energy when the temperature drops below
the critical value. Since the true vacuum is energetically favored, phase transitions proceeds
by bubble formation, that is, in some spatial regions field values changes to the value of true
vacuum. This happens around the Universe over the Hubble volume since the values of temper-
ature are almost the same over huge spatial regions due to the inflation. The bubbles of the true
vacuum expands and finally the Universe transits to the true vacuum. In the second-order phase
transition there are no bubble creation and the field value gradually transit to the true vacuum.

Though the potential shape indicates a first-order phase transition, there is so-called phase
mixing case. If the height of the potential barrier between the false vacuum and the true vacuum
is low, the field value changes many times between false/true vacuum. In such a case the
transition is called weakly first-order and cannot be described by critical bubble formation.

4.1.2 Bubble Physics

Here we consider a decay of false vacuum by tunneling following Ref.[43]. The false vacuum
is a local minimum of the potential at ϕ = 0 and the true vacuum is the global minimum at
ϕ = ϕvev.

The tunneling rate for unit volume per unit time is expressed as

Γ = Ae−S 4 , (4.1)

51
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where the coefficient A and the exponent S 4 are

A =
(S 4

2π

)2 (
det′[−□ + V ′′(ϕ)]
det[−□ + V ′′(0)]

)− 1
2

, (4.2)

S 4 =

∫
d4x

1
2

(
dϕ
dt

)2

+
1
2

(∇ϕ)2 + V(ϕ)
 . (4.3)

The det′ means neglecting the zero-eigenvalue part in calculating the determinant. In order to
evaluate the Euclidean action S 4, we have to solve the equation of motion

d2ϕ

dt2 + ∇⃗
2ϕ − dV

dϕ
= 0 (4.4)

with boundary condition ϕ = 0|t2+|x⃗|2→∞. Though all the solution of this equation contribute to
the Euclidean action S 4, it is often considered to be sufficient to use only the O(4)-symmetric so-
lution since it minimize the action and give the largest contribution to the rate Γ. In considering
the O(4)-symmetric solution, we have to solve

d2ϕ

dr2 +
3
r

dϕ
dr
− dV

dϕ
= 0 , (4.5)

where r =
√

t2 + |x⃗|2 and the boundary conditions are ϕ(r = ∞) = 0, dϕ
dr

∣∣∣
r=0
= 0.

Next let us consider the above tunneling argument in a finite-temperature state. As we see
in Section 3.1, the finite temperature theory is described with an imaginary time which has a
periodicity of 1/T . Therefore we can replace the time integral in S 4 by a factor of 1/T and
obtain S 4 = S 3/T . By a simple dimensional analysis one can estimate the tunneling rate as

Γ ≈ T 4e−
S 3
T , (4.6)

where

S 3 =

∫
d3x

(
1
2

(∇ϕ)2 + V(ϕ)
)
. (4.7)

The dominant contribution comes from the solution of the equation of motion

d2ϕ

dr2 +
2
r

dϕ
dr
− dV

dϕ
= 0 , (4.8)

under the boundary condition ϕ(r = ∞) = 0, dϕ
dr

∣∣∣
r=0
= 0. In this equation r = |x⃗|.

We know that this equation describes the one-dimensional motion of a point mass whose
position at “time” r is ϕ(r). Note that the potential of this “particle” is −V . The solution with
boundary conditions ϕ(r = ∞) = 0, dϕ

dr

∣∣∣
r=0
= 0 satisfies ϕ(0) > ϕ⋆ since the equation of motion

contains the friction term which always gives a decelerating force.
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We briefly explain the strategy of evaluating the bubble action S 3. Due to the initial condi-
tion ϕ′(0) = 0, we expand ϕ around r = 0 as

ϕ(r) = ϕ0 + ϕ2 · r2 + · · · , (4.9)

where ϕ0 and ϕ2 are constants. Inserting this expression into eq. (4.8), we obtain

6ϕ2 −
dV
dϕ

∣∣∣∣∣
ϕ=ϕ0

= 0 , (4.10)

which fixes the value of ϕ2 as a function of ϕ0. Then we search the value of ϕ0 which leads
to a solution satisfying ϕ(r = ∞) = 0. If we choose a too large value of ϕ0, the field value ϕ
overshoots the origin at some r . On the other hand, with a too small ϕ0, ϕ(r) remains positive
and never reaches the origin. In this way we can find the appropriate initial value and the
corresponding solution of ϕ(r).

r=0

r=¥ ¬
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-
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inverse potential and boundary condition
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LogHrL

Φ
Hr
L

numerical solution of ΦHrL

Figure 4.1: An example of the inverse potential and corresponding solution of ϕ(r). By
choosing the “initial” position of ϕ(r) (the green point in the left panel), we can find the
solution which satisfy ϕ(r = ∞) = 0. If we choose too large (small) value, the solution
becomes like one shown with blue(red) line in the right panel.

The spatial fraction of the regions occupied by bubbles are evaluated as [44]

F(t) = 1 − e−P(t) , (4.11)

where

P(t) =
4π
3

∫ t

dt′ Γ(t′)a(t′)3
(∫ t

t′
dt′′

1
a(t′′)

)3

. (4.12)

4.1.3 Gravitational Waves from Bubble Collisions

Here we comment on the gravitational wave production by collisions of bubbles. There are
many studies on the gravitational waves from strong first-order phase transition [12, 13, 14].
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According to Ref. [14], the peak frequency of the gravitational waves produced by bubble
collisions and its density parameter ΩGW =

1
ρtot

dρGW
d lnω are estimated as follows. We parameterize

the bubble nucleation rate (at the phase transition) as

Γ = Γ0eBt . (4.13)

In other words, B = d
dt lnΓ parameterizes typical quantities. We expect that the duration of the

phase transition is characterized by B−1 and the typical bubble radius is B−1, whose percolation
produces gravitational waves with typical frequency ω ∼ B. Using eq. (4.6), we obtain

B
H
= T

d
dT

(S 3

T

)
− 4 , (4.14)

where we use T rather than t, since the effective potential and the corresponding value of S 3 are
computed as functions of T . The value of ΩGW at this frequency is estimated as

ΩGW = O(0.01) × H2

B2 κ
2 A2

(1 + A)2 , (4.15)

where κ is the efficiency factor representing the conversion rate of the energy from the vacuum
energy to the kinetic energy of bubbles. The parameter A is the ratio of vacuum energy in
the false vacuum to the radiation energy. In order to calculate the current frequency and the
density parameter, we have to specify the history of the Universe after the phase transition. In
the following sections we consider the phase transition at the end of thermal inflation. The
gravitational waves in this scenario is studied in Ref. [12]. The current peak frequency is

f0 ≈ 0.7Hz
(

B/Hp

1000

)  V1/4
TI

106 GeV


2
3 (

TR,TI

100 GeV

)1/3  V1/3
TI ap

ρ1/3
R,T IaR,TI

 , (4.16)

and the current density parameter at this frequency is

ΩGWh2 = 5 × 10−18
(

B/Hp

1000

)−2  V1/4
TI

106 GeV

−
4
3 (

TR,TI

100 GeV

)4/3  V1/3
TI ap

ρ1/3
R,T IaR,TI

4

, (4.17)

where the suffix “p” represents the value at the percolation. Other parameters like VTI and
TR,TI are defined later. This expression tells us that the gravitational waves produced by the
phase transition at the end of thermal inflation may be detectable by future experiments such
as DECIGO [15, 45]. However, the above arguments are based on the assumption that thermal
inflation ends with a strong first-order phase transition, which is described by bubble formation.
We consider its validity later.
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4.2 Thermal Inflation and Thermal Effects

Now we apply the finite-temperature field theory to phase transitions in the early Universe. We
focus on the so-called thermal inflation, which occurs in the presence of a thermal bath. In this
thesis we consider the phase transition related to thermal inflation [6, 7], however, it has other
interesting properties. For example, thermal inflation provides a mechanism for baryogenesis.
Though it washes out the baryon number generated before thermal inflation, mechanisms for
generating baryon asymmetry at the end of thermal inflation are studied in Refs. [46]. Effects
of thermal inflation on the primordial density fluctuations are also studied in Ref. [47].

4.2.1 Outline of Thermal Inflation

We briefly review the scenario of thermal inflation in this section. In considering the dynamics
of thermal inflation, we often use the thermal effective potential. Since thermal inflation occurs
after primordial inflation and reheating, there is a hot thermal bath and interactions between the
flaton and the fields in the bath lead to thermal corrections to the flaton potential. The flaton is
kept at the origin of the potential owing to this correction and the potential energy at the origin
drives thermal inflation. One example of the flaton potential at zero temperature is

V0(ϕ) = VTI −
1
2

m2
ϕϕ

2 + λ6ϕ
6, (4.18)

where the second term represents a tachyonic mass term, whose value is assumed to be set by
the soft SUSY breaking scale, mϕ ≈ msoft ≈ 103GeV. The energy scale of thermal inflation is
determined by the constant term VTI. The exactly flat potential is curved due to SUSY breaking,
and stabilized by unrenormalizable terms 1). By requiring the potential energy at the bottom of

the potential to be zero, we obtain λ6 =
m6
ϕ

54V2
TI

and ϕvev =
√

3VTI/mϕ, where ϕvev is the vacuum
expectation value of the flaton.

Let us move on to the thermal corrections. The one-loop effective potential arising from
thermal corrections is given by

V1−loop
T (ϕ) = T 4

∑
p

gpJp

(
mp(ϕ, T )

T

)
, (4.19)

where p labels both the bosonic and fermionic degrees of freedom and the function Jp is ex-
pressed in terms of an integral as

J±(y) = ± 1
2π2

∫ ∞

0
dx x2ln

(
1 ∓ e−

√
x2+y2

)
, (4.20)

1)The exact form of the third term and possible higher order terms are unimportant for our study.



56 CHAPTER 4. PHASE TRANSITIONS IN THE EARLY UNIVERSE

for bosons and fermions, respectively. Following Ref.[12], the effective mass squared for fields
in the bath are

m2
p(ϕ,T ) ≈

{
m2

b +
1
2λ

2
bϕ

2 + ( 1
4λ

2
b +

2
3g2

b)T 2 boson ,
1
2λ

2
fϕ

2 + 1
6g2

f T 2 fermion .
(4.21)

Here we consider Yukawa couplings between the flaton and scalar boson and fermion, with
coupling constants λb and λf , respectively. The coupling constants gb and gf are associated with
the gauge interactions of the scalar boson and fermion, respectively. We assume that the masses
of other bosons are also determined by msoft ≈ 103GeV and that fermions are massless at tree
level. Since these corrections lower the potential by O(T 4/10) around |ϕ| <∼ T , there appears a
small dip at the origin, which traps the flaton to drive thermal inflation. We show an example
flaton potential in Fig.4.2.
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Figure 4.2: The zero-temperature potential of the flaton and its finite-temperature correc-
tion.

The thermal inflation begins when the energy density of other components decays to be as
small as the potential energy of the flaton, VTI. Therefore we can tune the onset by changing the
value of VTI. We discuss the onset of the thermal inflation later.

During thermal inflation, the potential energy of the false vacuum phase around the origin
is larger than that of the true vacuum, meaning that we might expect tunneling from the false
to the true vacuum. However, the tunneling rate is so small [7] that the flaton is assumed to be
fixed at the origin until the dip almost disappears. Since the order of the curvature of the dip
is determined by the temperature as V ′′eff ∼ O(T 2), thermal inflation ends when the temperature
becomes as small as mϕ ≈ msoft. Therefore, by choosing VTI and mϕ, one can tune the duration
of thermal inflation.

4.2.2 Onset of Thermal Inflation

Thermal inflation begins when the potential energy density of the flaton dominates the energy
density of other components. After the primordial inflation, there are several possible scenarios
of the evolution of the Universe. Though one of the motivations of thermal inflation is to



4.2. THERMAL INFLATION AND THERMAL EFFECTS 57

solve the cosmological moduli problem, first let us assume there are no (dangerous) moduli.
In this case the Universe evolves from the oscillating-inflaton-dominated era to the radiation-
dominated (RD) era. If thermal inflation begins after reheating, Tbegin can be simply determined
as

Tbegin =

(
π2

30
g∗

)− 1
4

V
1
4

TI . (4.22)

Second, we take the possible moduli into account. Hereafter we use Φ to represent one
of the moduli fields. Its mass and initial amplitude of oscillation are denoted by mΦ and Φ0,
respectively. If the reheating temperature is much high, the Hubble parameter becomes as small
as mΦ after reheating and the moduli start oscillation in the RD Universe. Since the Hubble
parameter at reheating is HR =

(
π2

90g∗
)1/2 T 2

R
MPl

, the reheating temperature determines whether the
oscillation of moduli starts

A. before reheating, if TR <
(
π2

90g∗
)−1/4

m1/2
Φ

M1/2
Pl ,

B. after reheating, if TR >
(
π2

90g∗
)−1/4

m1/2
Φ

M1/2
Pl .

As for the onset of thermal inflation, there are three possible era, namely,

1. the era before reheating, when the oscillating inflaton dominates the Universe,

2. the RD era,

3. the era when the oscillating moduli becomes dominant after reheating.

Therefore from now we consider 6 possibilities.

scenario A-1

If the energy density of the flaton is larger than that of radiation at reheating, this is the case.
The condition is given by

VTI >
π2

30
g∗T 4

R . (4.23)

scenario A-2

In order for the moduli to begin oscillation after reheating, the condition VTI >
π2

30g∗T 4
R is re-

quired. Now we consider radiation-moduli equality time. Since the moduli start oscillation
before reheating, its energy density at reheating can be evaluated as

ρΦ(at reheating) =
1
2

m2
ΦΦ

2
0 ×

(
aosc

aR

)3

=
1
2

m2
ΦΦ

2
0 ×

(
HR

Hosc

)2

=
1
2
Φ2

0H2
R . (4.24)
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The temperature of radiation-moduli equality, Teq, is determined as

3M2
PlH

2
R ×

(
TR

Teq

)−4

=
1
2
Φ2

0H2
R ×

(
TR

Teq

)−3

, or
(

TR

Teq

)−1

=
Φ2

0

6M2
Pl

. (4.25)

Then the energy density other than the flaton at T = Teq is ρr + ρΦ =
1
63

π2

90g∗
Φ8

0
M8

Pl
T 4

R, the condition
that thermal inflation begins during RD era is

VTI >
1
63

π2

90
g∗
Φ8

0

M8
Pl

T 4
R . (4.26)

Since thermal inflation is assumed to begin in the RD Universe, Tbegin is the same as eq.(4.22).

scenario A-3

The condition of this scenario is

VTI <
1
63

π2

90
g∗
Φ8

0

M8
Pl

T 4
R . (4.27)

Since in this case thermal inflation begins when the energy density of moduli becomes equal to
the flaton energy density, Tbegin is determined by

1
2
Φ2

0H2
R ×

(
Tbegin

TR

)3

= VTI , (4.28)

which becomes
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(
180
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TI Φ
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0 T−4/3
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. (4.29)

scenario B-1

In this scenario, thermal inflation begins before reheating and before the moduli start oscillation.
Therefore thermal inflation cannot decrease the energy density of moduli, in other words, it
cannot serve as a solution to the cosmological moduli problem.

scenario B-2

In this scenario we again need to evaluate the radiation-moduli equality time. Since the moduli
start oscillation after reheating at T = Tosc, or

m2
Φ = H2

osc =
π2

90
g∗

T 4
osc

M2
Pl

, (4.30)
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is satisfied. Using this expression, the equality temperature becomes

Teq =
3−3/4

2

(
π2

30
g∗

)−1/4

m1/2
Φ

M1/2
Pl

(
Φ0

MPl

)2

. (4.31)

Then the total energy density other than the flaton at T = Teq becomes 6−3m2
Φ

M2
Pl

(
Φ0
MPl

)8
, which

gives the condition for this scenario as

VTI > 6−3m2
ΦM2

Pl

(
Φ0

MPl

)8

. (4.32)

Since we consider the scenario that thermal inflation begins in the RD Universe, Tbegin is the
same as eq.(4.22).

scenario B-3

The condition is given by

VTI < 6−3m2
ΦM2

Pl

(
Φ0

MPl

)8

. (4.33)

Tbegin is the temperature at which the energy density of moduli becomes equal to that of the
flaton. Namely,

1
2

m2
ΦΦ

2
0 ×

(
Tbegin

Tosc

)3

= VTI , (4.34)

where the temperature Tosc is given by eq. (4.30). We obtain

Tbegin = 21/3
(
π2

90

)−1/4

g−1/4
∗ m−1/6

Φ
M1/2

Pl V1/3
TI Φ

−2/3
0

= 3.4 × 105 GeV
( g∗
200

)−1/4
 V1/4

TI

107 GeV

4/3 (
Φ0

MPl

)−2/3 ( mΦ
1 TeV

)−1/6
. (4.35)

The condition for each scenario are summarized in Fig.4.3.

4.2.3 Entropy Production after Thermal Inflation

In this subsection, we consider the entropy production by the flaton decay after thermal inflation.
The entropy density at the end of thermal inflation, before flaton decay, is given by,

sbefore =
2π2

45
g∗(Tend)T 3

end , (4.36)

as usual. Then the energy density of the flaton, VTI is converted to radiation to reheat the
Universe with temperature T = TR,TI. This decay leads to the following entropy density,

safter =
4
3

VTI

TR,TI
, (4.37)
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Figure 4.3: The cosmic scenario after the primordial inflation to the onset of thermal
inflation. In this figure we set Φ0/MPl = 0.1, g∗ = 200, and mΦ = 103 GeV. The height
of green line is proportional to (Φ0/MPl)2. The region filled with blue corresponds to eq.
(4.23). The boundary between red and green regions are given by eq. (4.26) and eq. (4.32).
The vertical black line is the boundary between scenario A and B.

that is, the ratio of the entropy densities before and after the flaton decay becomes

safter

sbefore
=

4
3

VTI
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TeV
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. (4.38)

Here we implicitly assume the reheating temperature after thermal inflation as TR,TI ∼
1 GeV. This value strongly depends on the details of the model parameter of thermal infla-
tion. We do not explicitly build a model but note that we have to assume at least two kinds
of interactions to realize both thermal inflation itself and the subsequent reheating. As an ex-
ample, let us focus on a Yukawa-type interaction between the flaton ϕ and a real scalar field
χ like Lint = gϕ2χ2. First, the flaton should have non-suppressed interactions (g ∼ 1) to drive
thermal inflation in order for the thermal effective potential to keep the flaton at the origin of
the potential. Second, particles which interacts only weakly with the flaton should be exist in
order to reheat the Universe by the flaton decay. After thermal inflation, the flaton settles down
to the bottom of the potential to have a larger VEV (≡ M) than its tachyonic mass (mϕ) at
the origin. The mass of the flaton around the VEV is the same order of this tachyonic mass.
The particles interacting with the flaton acquire the mass through the VEV of the flaton, like
∆mχ ∼

√
gM. Therefore the fields strongly interacting with flaton become heavier than the
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flaton, which are not (directly) reheated by the decay of the flaton. On the other hand, fields
which interact with flaton via very small couplings, like g ≪ (mϕ/M)2, still remains lighter
than the flaton hence the flaton can decay to produce such particles and reheat the Universe.
If we assume g ∼ (mϕ/M)2, the reheating temperature after thermal inflation via the interac-
tion Lint = 2gMδϕχ2 (where we decomposed the field as ϕ = M + δϕ) is roughly given by

TR,TI ∼
√

MPlm3
ϕ/M2 ∼ 100GeV × (mϕ/103GeV)3/2(M/1011GeV)−1.

4.2.4 Gravitino Problem

The gravitino, a fermionic partner of the graviton with spin 3/2, appears in the theory of super-
gravity. Its number density per comoving volume is proportional to the reheating temperature
after inflation [8]. Therefore, if the reheating temperature is high, the gravitinos are abundantly
produced, so that their role in cosmology should be seriously considered. The mass of the grav-
itino depends on models of SUSY breaking [48, 49]. The lifetime of the gravitino is estimated
as

τ ∼
8πM2

Pl

m3
3/2

∼ 105 sec
( m3/2

1TeV

)−3
. (4.39)

If the gravitino mass takes a value m3/2 = 1TeV, they decay after Big-Bang Nucleosynthesis
(BBN) due to their very weak interactions. Subsequently, the decay products of gravitinos spoil
the light elements after BBN [50, 51]. Or if the gravitino is the lightest superparticle, it cannot
decay to others. In Ref. [52] it is shown that to avoid the overclosure by such stable gravitinos,
the reheating temperature is required to be low enough. These are called the gravitino problem.

Let us consider a simple estimation of the initial abundance of gravitinos by integrating
eq. (2.52) from reheating. We simply replace ⟨σv⟩ with αM−2

Pl , where α is the gauge coupling
constant. Since the abundance Y is much smaller than its equilibrium value, we neglect Y2 in
the right hand side. Then we obtain

Y ∼ αg1/2
∗

TR

MPl
Y2

eq ∼ 10−9 × α
( TR

1010 GeV

)
, (4.40)

where we used g∗ = g∗s = 200. A more precise estimation is shown in Ref. [51]. In order not
to contradict the observations, we need a mechanism to decrease Y if the reheating temperature
is high. Thermal inflation is the very phenomenon to solve the gravitino problem. It dilutes
gravitinos by a short accelerated period followed by entropy production due to the flaton decay.

4.2.5 Cosmological Moduli Problem

Using the same mechanism to solve the gravitino problem, thermal inflation serve as a solution
for the cosmological moduli problem. The scalar fields called moduli, with Planck-suppressed
couplings, are also dangerous in a similar way [9, 10]. The masses of the moduli are expected
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to be the same order of that of gravitino [10]. They start to oscillate when the Hubble parameter
becomes as small as their mass and soon dominate the Universe, since the initial amplitude of
such oscillations is expected to be on the order of MPl. Driven by the coherent oscillations of the
moduli fields the Universe evolves like a matter-dominated one, until the moduli decay to reheat
the Universe. The moduli fields are coupled very weakly with other fields, and as a result of their
long lifetime the reheating temperature is so low that BBN does not work. Furthermore, in Ref.
[53] it is shown that the energy density of moduli is also constrained by X(γ)-ray observations,
requiring that the theoretical prediction does not exceed the observed backgrounds.

Assuming the moduli start oscillating before reheating, during the era when the energy
density associated with the coherent oscillations of the inflaton dominate the Universe, the
moduli abundance before flaton decay is evaluated as

YΦ =
1

mΦ
1
2Φ

2
0H2

R
4

3TR
× 3M2

PlH
2
R

=
1
8

TR

mΦ

(
Φ0

MPl

)2

, (4.41)

where we use eq. (4.24) and assume that there is no entropy production after reheating. After
the flaton decays, by using eq. (4.38), YΦ becomes

YΦ, after ≈
π2

240
g∗(Tend)

(
Φ0

MPl

)2 TRTR,TIT 3
end

mΦVTI
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(4.42)

Therefore, with appropriate parameters, thermal inflation can make YΦ small enough for suc-
cessful BBN.

4.3 Consequences of the Existence of Thermal Fluctuations

4.3.1 Flaton Dynamics in a Thermal Bath

In this subsection, we consider the flaton dynamics based on the finite-temperature field theory.
In order to describe the dynamics of the expectation values of quantum fields in a thermal bath,
we use the effective action method as we consider in Chapter 3. The equation of motion of the
flaton field ϕ becomes a Langevin equation like

□ϕ(x) + V ′eff[ϕ] +
∫ t

−∞
dt′

∫
d3x′ Ba(x − x′)ϕ(x′) + ϕ(x)

∫ t

−∞
dt′

∫
d3x′ Bm(x − x′)ϕ2(x′)

=ξa(x) + ξm(x)ϕ(x) . (4.43)
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Though the noise terms generally consist of both additive noise, ξa, and multiplicative noise,
ξmϕ, we focus on the additive noise term since the former is more important to trigger phase
transition. Again, this noise term is related to the “friction” term though the fluctuation-
dissipation relation as we saw in subsection 3.2.1,

noise correlation
dissipation coefficient

=
Aa(ω, k⃗)

iBa(ω, k⃗)/2ω
= ω

eω/T + 1
eω/T − 1

→ 2T (T ≫ ω) . (4.44)

In Ref. [19] it was shown that the damping scale of the fermionic noise correlation is inde-
pendent of the mass of the fermion, which is different from the bosonic noise whose correlation
damps exponentially above the mass scale. Therefore, in the high-temperature regime T ≫ m,
the dominant noise component comes from interactions with fermions. More quantitatively, the
correlation function for fermionic noise can be expressed as

⟨ξ(t, x⃗)ξ(t, x⃗′)⟩ ∝ T 4

r2 e−2πrT , for r ≫ 1
πT

, (r = |x⃗ − x⃗′|) . (4.45)

From this expression we take the correlation length of thermal noise as (πT )−1. This length
scale is very important in estimating the typical value of the flaton at finite temperature. Here
let us take a quick look at this typical field value, as this will help us to understand the results
of numerical simulations later. The form of the effective potential is too complicated to be well
approximated by a simple polynomial function, so for simplicity let us neglect the potential
here. Following Ref. [54], the mean square value of the coarse-grained field ϕ over the spatial
scale R is given by

⟨ϕ2⟩R =
1

2π2

∫ ∞

0
dk k

(
1
2
+

1

e
k
T − 1

)
W(k,R)2 , (4.46)

where W(k,R) is the coarse-graining window function. As an example, if we take the Gaussian
function

W(k,R) = e−
1
2 k2R2

, (4.47)

we obtain
√
⟨ϕ2⟩ ≈ 0.43T for R = (πT )−1.

Since the correlation length of the noise is ∼ (πT )−1, we can treat the noise as being uncorre-
lated on larger scales. The same is true for the temporal noise correlation, since it is suppressed
exponentially for ∆t > (πT )−1. As such, the noise term can be approximated by a white, Gaus-
sian random variable when we consider dynamics on spatial and temporal scales that are larger
than the above correlation length. In other words, the noise correlation function is approximated
by a delta function as far as we consider larger scales than ∼ (πT )−1. Then the function Aa(ω, k⃗)
in the fluctuation-dissipation relation (eq. (4.44)) becomes a constant, which means the function
Ba/ω is also a constant at high temperature limit. This is realized by a local friction term, ηϕ̇(x),
since it leads to B(ω, k⃗) = −2iηω after performing Fourier transformation. In addition, follow-
ing Ref. [55], this approximation is also well-justified if we consider the nearly homogeneous
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field configuration and assume that it changes more slowly than non-local kernel B(t). Namely,
we approximate the field configuration in the integrand in eq. (4.43) as

ϕ(t′) ≈ ϕ(t) + ϕ̇(t) × (t − t′) , (4.48)

then the first term can be approximately absorbed in the (derivative of) effective potential part
and the second term leads to the following local quantity.

ϕ̇

∫ ∞

0
dτ

∫
d3x′ B(τ, x⃗′)τ =

(
−i
2

lim
k→0

∂

∂k0
B̃(k)

)
ϕ̇ = ηϕ̇ , (τ ≡ t − t′) (4.49)

where B̃(k) is the Fourier transformation of B(x).
Hence we use the following simple EoM.

ϕ̈(x⃗, t) − ∇⃗2ϕ(x⃗, t) + ηϕ̇(x⃗, t) + V ′eff[ϕ] = ξ(x⃗, t) , (4.50)

where the correlation function of the noise term is

⟨
ξ(x⃗, t)ξ(x⃗′, t′)

⟩
= Dδ(t − t′)δ3(x⃗ − x⃗′) . (4.51)

The fluctuation-dissipation relation in this simple EoM is

D
η
= 2T . (4.52)

Due to the fluctuation-dissipation relation, equilibrium values do not depend on the friction
coefficient η. Its value is related with the decay rate of ϕ particle if ϕ is oscillating [18, 20, 21].
On dimensional grounds we can take Γ ∝ T . Since the value of η only determines the time
scale on which the system approaches equilibrium, here we simply take η = T as strong enough
couplings between the flaton and the thermal bath are required for successful thermal inflation.
Then the ratio of the equilibration timescale to the cosmic expansion timescale is

equilibration timescale
Hubble time

∼ η−1

H−1 =
T−1

H−1 ∼


T

MPl
(RD era) ,

V
1
2

TI
MPl T (during thermal inflation) .

(4.53)

We see that this ratio is much smaller than unity in both the RD era and the period of thermal
inflation, from which we can conclude that the equilibration time is still much shorter than the
Hubble time even if we take other choices for the value of η. This huge difference between the
two timescales allows us to safely ignore the Hubble expansion in simulations we show later .
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4.3.2 Setup of Numerical Simulations

In this subsection we summarize the details of our three-dimensional lattice simulation. We
solved the equation of motion given by eq. (4.50) by the second-order explicit Runge-Kutta
method with the second-order finite differences approximating the spatial derivatives. The basic
setup is the same as in Ref.[19]. In numerical calculations we use dimensionless variables like
x̃ = T x, t̃ = Tt, ϕ̃ = ϕ/T , and ξ̃ = ξ/T 3 since the scale of interest is deeply related to the
temperature.

The noise correlation function on the lattice becomes

⟨ξ(x⃗i, tm)ξ(x⃗ j, tn)⟩ = 2ηδ(tm − tn)δ3(x⃗i − x⃗ j)→
2η

∆t(∆x)3 δm,nδi, j , (4.54)

since on the lattice the delta functions are properly replaced as δ(tm − tn) → (∆t)−1δm,n and
δ3(x⃗i − x⃗ j)→ (∆x)−3δi, j. The value of noise variable on each lattice is given by

ξ(x⃗i, tm) =
(

2η
∆t(∆x)3

) 1
2

Gi,m , (4.55)

where G is a standard Gaussian random variable.
We also define approximation function of the potential term, which is shown in Appendix.

As can be seen later, the quantitative shape of the effective potential is very sensitive to the tem-
perature, especially at the end of thermal inflation. Therefore we use the above approximation
function both in the lattice simulation and semi-analytic calculation.

We choose the initial condition for simulations as

ϕ(x⃗, t = 0) = ϕ̇(x⃗, t = 0) = 0 . (4.56)

Although this is an admittedly unrealistic initial condition, we have confirmed that the field
quickly reaches the thermal configuration compared to the typical duration of simulation time
and the timescale of the temperature variation.

With the above settings we use the 2563 lattice points and mϕ (and mb in eq. (4.21))= 103

and 102 GeV, but the qualitative results do not depend on these mass values.

4.3.3 Results of Numerical Simulations

phase 1: before thermal inflation

A necessary initial condition for the flaton to drive thermal inflation is that the field value of
the flaton should be homogeneously close to zero before thermal inflation begins. However, the
form of the 1-loop effective potential suggests that there is more than one local minimum, and
if the flaton field is trapped in the true vacuum in some spatial regions, the thermal inflation
scenario does not work. In order to determine whether or not this problem is encountered, we
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simulated the time evolution of the flaton from a very high temperature, T0, to the temperature
at which thermal inflation begins.

The “high” temperature T0 is determined by the following consideration. In order to realize
a situation where the typical value of the flaton is ϕvev (≡

√
3VTI/mϕ, the vacuum expectation

value at T = 0), we first perform a simulation at T = ϕvev, expecting
√
⟨ϕ2⟩ ≈ T ≈ ϕvev.2) At this

temperature the shape of the effective potential becomes like the potential labelled “T = T1” in
the right panel of Fig.4.2. We then perform a second simulation, setting the temperature to half
of that in the previous simulation and using the final configuration of the previous simulation
to determine the initial conditions. Since we fix the gridsize of the simulation and the value of
the lattice spacing normalized by the temperature, the physical size of the second simulation
box is larger than that of the previous, hotter simulation. We therefore use periodic boundary
conditions and define the initial condition for ϕ and ϕ̇ as averaged quantities of the previous
values of close grids on each new grids. Repeating this procedures N times we can follow the
flaton dynamics from T = T0 to T = T0 × 2−N ∼ Tbegin.

In the numerical simulations we consider corrections to the potential coming from a single
bosonic and single fermionic degree of freedom. In order to try and establish the importance of
the thermal effects we perform simulations with two choices of the coupling constants appearing
in eq. (4.21). Hereafter we refer to these two choices as the strongly and weakly coupled
cases, and they correspond to taking λb = gb = λf = gf = 1 and λb = gb = λf = gf = 0.1
respectively. We also consider two different scenarios. In the first scenario thermal inflation
is preceded by moduli domination (MD→TI) and in the second scenario thermal inflation is
preceded by radiation domination (RD→TI). The results of simulations are shown in Fig.4.4.
For the form of effective potential used in this study, we confirm that the typical value of the
flaton is

√
⟨ϕ2⟩ ≈ T , regardless of the temperature before thermal inflation. In other words, we

do not see any spatial regions where the field value remains so large that the flaton potential
energy becomes inhomogeneous and ruins the thermal inflation scenario.

We close this subsection with comments on the validity of our multistage simulation. The
result shown in Fig. 4.4 confirms us that we properly follow the dynamics of the flaton from a
high temperature to Tbegin, with multistage simulation. Since the equilibration timescale (∼ η−1)
is much shorter than that of temperature change (∼ H−1), the system approaches the equilib-
rium rapidly enough in each simulation with a fixed temperature. In other words, even though
we impose out-of-equilibrium initial condition which is simply connected by the previous sim-
ulation where the temperature is set twice as hot, we can realize the equilibrium distribution
(
√
⟨ϕ2⟩ ∼ T ) by performing a simulation for a longer time than η−1 (but much shorter than

2)Note that the VEV of the zero-temperature potential also depends on VTI as ϕvev =
√

3VTI/mϕ. Since the
temperature at the beginning of thermal inflation, Tbegin, is controlled by VTI (see subsection 4.2.2), we choose the
value of VTI such that the number of e-folds of thermal inflation becomes about 6. In order to calculate the number
of e-folds we also need to know the temperature at the end of thermal inflation, and this can be determined once
we have fixed the coupling constants.
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H−1). Therefore repetitive simulations enable us to consider a system in quasi-equilibrium state
for a longer time than Hubble time without including the exact change in temperature. The
smooth change of the root mean square (RMS) value obtained in Fig. 4.4 justifies a factor of 2
change of the temperature at each step is small enough to warrant the adiabatic change of the
temperature in the sequential simulations. As for the maximum value, we note that for random
2563 realization of Gaussian distribution, the probability the maximum exceeds 6.2σ (5.6T) is
1 % and that it lies lower than 5.2 σ (4.6T) is also 1%. Although the field value at each point
is correlated with nearby points, we find one-point distribution function is close to a Gaussian
distribution. Hence we may conclude the observed maximum values in Fig. 4.4 are also in
accordance with the entire distribution.

scenario couplings Tbegin[GeV] ϕvev(= T0)[GeV]
MD→ TI strong 2.1 × 106 3.7 × 1012

MD→ TI weak 1.7 × 107 8.3 × 1013

RD→ TI strong 2.1 × 106 6.0 × 1010

RD→ TI weak 1.7 × 107 3.9 × 1012

Table 4.1: The temperature at the beginning of thermal inflation and VEV of the flaton. Since
the ratio of these values are O(106) ∼ 220, we performed about 20 simulations to follow the
flaton dynamics from T0 to Tbegin.

phase 2: at the end of thermal inflation

It is believed that thermal inflation ends with a first-order phase transition accompanied by the
formation of bubbles, and that the collision of these bubbles then leads to gravitational wave
production. Here we briefly review the theory of tunneling at a finite temperature and define the
percolation temperature at which the bubbles collide and start generating gravitational waves.

As we consider in subsection 4.1.2, the fraction of spatial regions occupied by bubbles can
be written as [44]

F(t) = 1 − e−P(t) , (4.57)

where the function P(t) is given by

P(t) =
∫ t

dt′ Γ(t′)
4π
3

(∫ t

t′
dt′′

a(t)
a(t′′)

)3

=
4π
3

∫ t

dt′ Γ(t′)
1

H3

(
eH(t−t′) − 1

)3
. (4.58)

Making use of eq.(4.6) we can rewrite this in terms of temperature as

P(T ) =
4π
3

∫ ∞

T
dT ′

T ′3

H4

(
T ′

T
− 1

)3

e−
S 3(T ′)

T ′ . (4.59)
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In this study we define the percolation temperature as F(T = Tp) = 0.5 3) . Note that since
the exponential factor exp[−S 3(T )/T ] is very sensitive to the temperature and quickly becomes
small when we take a large value of T , it is sufficient to take the upper limit of the integral to be
some finite value. For example, it is enough to take it as 2Tcurv, where Tcurv is the temperature
at which the curvature of the potential becomes zero. After evaluating the above quantities
numerically, we find that the difference between the percolation temperature Tp and Tcurv is
tiny, so that the Universe becomes filled with critical bubbles almost immediately after bubble
formation effectively begins.

From the above consideration based on the shape of the flaton effective potential, we may
expect that thermal inflation ends with a first-order phase transition characterized by critical
bubble formation. However, this description is based on the assumption that the flaton is well
within the false vacuum phase before bubble nucleation occurs.

We see from Fig.4.5 that around the percolation temperature the potential barrier is located
at ϕ ≪ T and the height of the barrier is much smaller than T 4. Taking thermal fluctuations
into account, since the width of the field distribution is

√
⟨ϕ2⟩ ≈ T , we conclude that the small

potential barrier cannot trap the flaton in the false vacuum phase until the temperature becomes
as small as the temperature at which critical bubble nucleation occurs. This means that the
two phases coexist well before the percolation epoch in the bubble nucleation picture, and the
phase transition proceeds with phase-mixing. As such, the standard description of the end of
thermal inflation in terms of a strong first-order phase transition which is accompanied with
bubble formation is inappropriate.

Now let us investigate more quantitatively the failure of critical bubble formation as a de-
scription of the end of thermal inflation. The width of the wall trapping the flaton is broad at
high temperatures and gradually becomes thin as the temperature drops. We define the width in
field space, ϕwid, at temperature T , as

Veff[ϕ = ϕwid, T ] = Veff[ϕ = 0,T ] . (4.60)

Since the shape of the effective potential depends on temperature, we obtain ϕwid(T ) by solving
the above equation. As a typical temperature at which phase-mixing occurs, we define the
temperature Tsub as

ϕwid(T = Tsub) = Tsub , (4.61)

i.e. Tsub is the temperature at which the width of the potential wall becomes as small as the
temperature. As we see from the simulations in the previous subsections and the analytical
estimation (eq.4.46), the typical value of ϕ is as large as T . Therefore, at T = Tsub, and if the
height of the potential barrier is small enough, spatial regions in which the flaton lies outside of
the potential dip are ubiquitous in the Universe. We call such regions subcritical bubbles, which

3)The qualitative conclusion (Tcurv ≈ Tp < Tsub) remains unchanged if we employ other definitions such as
F(Tp) = 0.01 or 0.99.
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are continuously created and destroyed by thermal fluctuations and hence differ from the critical
bubbles which only grow after being nucleated by tunneling. For the effective potential we study
in this thesis, the relations Tsub > Tp and F(Tsub) ≪ 1 hold. Therefore, at T = Tsub the flaton
is no longer trapped at the local minimum at the origin, meaning that there are practically no
critical bubbles. Specific values are shown in Table 4.2 and 4.3. Field configurations for critical
bubbles are also shown in Fig. 4.6. We would like to make a comment on the temperature
at the end of thermal inflation, Tend quantitatively. From Table 4.2 and 4.3 we can see that
Tend(∼ Tcurv ∼ Tp ∼ Tsub) depends on the choice of parameters. In subsection 4.2.1 we simply
estimated Tend ∼ mϕ. Table 4.2 and 4.3, however, shows that while Tcurv, Tp, and Tsub coincide
with each other within 5% they deviate from mϕ by a factor of 0.5 - 40. Hence we should use
Tend ∼ Tsub to estimate the proper duration of thermal inflation.

By performing numerical simulations at T = Tsub we were able to verify that the height of
the potential barrier is small enough for the flaton to escape the local minimum. In some cases
we found that the flaton rolls down to the bottom of the potential, which means that thermal
inflation ends at T > Tsub. The time evolution of the field value in this case is shown in Fig.
4.8. In other cases we found that the flaton remained around the origin, 4) but with a distribution
width that was broader than the potential well. The histogram of field values on lattice points
is shown in Fig. 4.7, which tells us that even at this temperature the typical field value is as
large as the temperature. We summarize the dependence of the potential shape on temperature
in Fig. 4.9 schematically. We thus see that all cases deviate from the standard scenario in which
thermal inflation ends as the result of a strong first-order phase transition.

scenario couplings Tcurv[GeV] Tp[GeV] Tsub[GeV] F(Tsub)
simulated

√
⟨ϕ2⟩

at Tsub

MD→ TI strong 5230 5239 (2 × 10−3) 5502(5 × 10−2) 10−84 ϕvev

MD→ TI weak 41216.96 41216.97(4 × 10−7) 41378(4 × 10−3) less than 10−2000 0.91T

RD→ TI strong 5230 5252 (4 × 10−3) 5502(5 × 10−2) 10−77 ϕvev

RD→ TI weak 41216.96 41216.97(4 × 10−7) 41378(4 × 10−3) less than 10−2000 0.91T

Table 4.2: Specific temperature values for different parameters for mϕ = 1 TeV. Since
the values themselves are almost the same, we also show the relative differences, (Tp −
Tcurv)/Tcurv and (Tsub −Tcurv)/Tcurv in brackets. In evaluating Tp and F(T ), we fix the value
of VTI so that the thermal inflation begins at T = Tcurv × e6. The RMS values of ϕ at
T = Tsub, obtained by simulations with duration t = 2000/T are also shown. In two cases
the flaton leave the origin and settles in its VEV and in others it still stays at the origin, but
its width is as broad as the barrier. Though the potential barrier is negligible, the potential
force by the tachyonic mass term is also so weak that it may take a long time to distract the
flaton from the origin.

4)This may be explained as an effect of surface tension, which is stronger than the potential force pulling the
flaton away from the origin.
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scenario couplings Tcurv[GeV] Tp[GeV] Tsub[GeV] F(Tsub)
simulated

√
⟨ϕ2⟩

at Tsub

MD→ TI strong 522.97 525.07 (4 × 10−3) 550.2(5 × 10−2) 10−78 ϕvev

MD→ TI weak 4121.689 4121.697 (2 × 10−6) 4137.8(4 × 10−3) less than 10−2000 0.91T

RD→ TI strong 522.97 527.14 (8 × 10−3) 550.2(5 × 10−2) 10−70 ϕvev

RD→ TI weak 4121.689 4121.697(2 × 10−6) 4137.8(4 × 10−3) less than 10−2000 0.91T

Table 4.3: Specific temperature values for different parameters for mϕ = 100 GeV.

4.3.4 Summary

In Section 4.3, we studied the effect of thermal fluctuations on the thermal inflation scenario.
Thermal inflation is a short period of accelerated expansion after reheating and provides a way
to dilute dangerous moduli and gravitinos in order to make theories based on supersymmetry
compatible with cosmological observations. Thermal inflation is driven by the flaton potential
energy at the origin with the help of thermal corrections. Since the thermal environment gives
rise to thermal fluctuations as well, we used lattice simulations to study the dynamics of the
flaton taking into account the 1-loop effective potential, thermal fluctuations and the dissipation
term. First we studied the effects of thermal fluctuations before thermal inflation. Though
the effective potential contains multiple local minima during the course of the evolution of the
Universe, the flaton settles at the origin before thermal inflation even when thermal fluctuations
are taken into account. Therefore the scenario of thermal inflation may be feasible. Second, we
find that thermal inflation ends with a weakly first-order phase transition. The tunneling rate
of the flaton from the origin of the potential is so small that the tunneling does not occur until
the position of the potential barrier becomes very close to the origin. However, since the height
of the barrier is much smaller than T 4, the flaton can escape over the barrier before tunneling
occurs. Though the form of the effective potential suggests that thermal inflation ends with a
first-order phase transition accompanied by bubble formation, thermal fluctuations make the
transition weakly first-order, which is characterized by subcritical bubbles. As such, we cannot
expect critical bubble formation and the production of gravitational waves.
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Figure 4.4: The results of multistage lattice simulations. The root mean square of ϕ and the
maximum value of |ϕ|, in the first and the last simulation at each reference time, are shown.
The red lines with square vertices are the results of first (hot) simulation and the dashed blue
lines with circular vertices are that of the last (T ∼ Tbegin) simulation. Since we impose the
initial condition ϕ = ϕ̇ = 0 in the first simulation and the following simulations starts with
the previous, higher temperature results, the flaton distribution at each first reference time
is not the equilibrium value.
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Figure 4.5: Some examples of the effective potential at T = Tcurv, Tp, and Tsub are
shown. Since at T = Tp the local maximum locates at ϕ < T and its height is much
smaller than T 4, the flaton has already overflowed and critical bubble formation
theory is not applicable.
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Figure 4.6: Critical bubble configurations at T = Tp, Tsub, and 1.1Tcurv are shown. We
also mention the corresponding values of S 3/T , from which we can see that the tunneling
rate is strongly suppressed at high temperature (T > Tp).



4.3. CONSEQUENCES OF THE EXISTENCE OF THERMAL FLUCTUATIONS 73

-4 -2 0 2 4
0

100 000

200 000

300 000

400 000

500 000

600 000

700 000

Φ�T

histogram of flaton values on lattice

Figure 4.7: One of the histograms of the values of flaton on lattice, in a simulation in which
we do not see the rolling of the flaton within the simulation time. The dashed line represents
a gaussian function with σ = 0.91, which fits the data well.
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this result. However, we can conclude that at least the broad distribution (σ ∼ T ) is also
realized in this simulation hence the phase transition becomes cross over one.
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show the probability distribution function of the flaton at T = Tsub, which indicates that the
subcritical bubbles are abundant in the Universe at T = Tsub.



Chapter 5

Conclusion

In this thesis we explore the hot early Universe, especially focusing on phase transitions. The
hot Universe, which can be easily inferred from the fact of the ongoing expansion, has been a
paradigm of modern cosmology as we overviewed in Chapter 2. The initial condition of the
Big-Bang Universe is set by the preceding inflation, which is an accelerated expansion of the
Universe. Though there are many models of inflation, a wide class of models assumes the
potential energy of a scalar field called inflaton drives the inflation. It is also assumed that
the inflaton field decays to other particles and realize the hot Universe. In addition to this
background dynamics, the framework of inflation also provides a way of generating density
perturbations, which grow to form rich structures of the Universe.

In order to consider micro physics in the early Universe in terms of quantum field theory, we
reviewed basics and extended the effective action method in Chapter 3. Generally the equation
of motion for a scalar field interacting with thermal bath becomes a Langevin-type equation.
This equation is characterized by the noise term, which represents a kick from the bath particle.
In addition to the noise term, there is a dissipation term, which is in general non-local in the
equation of motion. The noise term and the dissipation term relate to each other through the
fluctuation-dissipation relation. In addition to the Yukawa-type interactions which have been
studied so far, we extended this method to gauge interactions. Though the gauge interaction
contains derivative coupling, we confirmed that the fluctuation-dissipation relation also holds in
this type of interaction.

The thermal fluctuations obtained by the above method play a fundamental role in phase
transitions. They give the origin of inhomogeneities, which are important in considering the
phase transitions since the process of phase transition is nothing less than the generation of in-
homogeneities. Though the effective potential, which is a convenient quantity in determining
the ideal value of fields, does not include this noisy effect. Since this noise generates inho-
mogeneity of the fields relevant to phase transitions, we consider the dynamics of the fields
coarse-grained over this length scale.

We studied thermal inflation based on the above consideration in Chapter 4. Thermal in-
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flation, which is a short inflationary period after the primordial one, has been studied to solve
the gravitino problem and the cosmological moduli problem in the theory of supersymmetry.
Though it is thought to end by a strong first-order phase transition so far, we found that the
thermal fluctuations get the flaton out of the potential dip earlier, when there are no bubbles in
the Universe. Therefore it ends by a cross over phase transition, which produces at least less
gravitational waves than what is believed before.

In summary, the thermal fluctuations derived from the effective action method based on
the finite-temperature field theory carry great significance, especially in considering dynamical
phenomena like phase transitions. The fact that thermal fluctuations change the intensity of
phase transitions implies that we have to take them into account seriously when trying to test
hypothetical theories by observations related to gravitational waves.
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Appendix A

Gauge Invariance of the Dissipation Rate

We briefly discuss the gauge invariance of the dissipation rate. The generating functional W f [J]
is defined by

eiW f [J] =

∫
DAµDϕ∗DϕeiS [A,ϕ]+i

∫
d4 x(JµAAµ+ϕJ+ϕ∗J∗)B[ f (A; x)] det

(
Fx,y

)
, (A.1)

where f (A; x) is the gauge fixing condition and Aλ is the transformed gauge field by the gauge
transformation specified by λ. The matrix Fx,y is defined by

Fx,y =
δ f (Aλ; x)
δλ(y)

∣∣∣∣∣
λ=0
. (A.2)

In the main text, we have been working in the Coulomb gauge for which we have

B[ f (A; x)] =
∏

x

δ( f (A; x)), f (A; x) = divA⃗(x). (A.3)

The purpose of this appendix is to comment on the gauge dependence of the dissipation rate of
ϕ on the gauge fixing condition. Although all the results in this note use the in-out formalism
for notational simplicity, the same results hold for the case of the in-in formalism.

Under the slight change of the gauge fixing condition from f to f + ∆ f , W f varies as [56]

W f+∆ f [J] −W f [J] =
∫

x,y
⟨(∂µJAµ(x) + ie(ϕ∗(x)J∗(x) − ϕ(x)J(x)))F −1

x,y∆ f (A; y)⟩, (A.4)

where ⟨O⟩ is defined by

⟨O⟩ = e−iW f [J]
∫
DAµDϕ∗Dϕ eiS [A,ϕ]+

∫
x(JµAAµ+ϕJ+ϕ∗J∗) O det

(
Fx,y

)
. (A.5)

Eq. (A.4) provides the transformation rule of W f [J] under the change of the gauge fixing con-
dition.
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From the definition of the generating functional, the expectation value of ϕ f in the gauge f
is given by

ϕ f (x) =
δW f [J]
δJ(x)

. (A.6)

If we set J = 0 on the right hand side of the above equation, ϕ f constitutes a solution of δΓ f

δϕ
= 0.

From Eq. (A.4), we obtain the transformation rule of ϕ f under the change of the gauge fixing
condition as

ϕ f+∆ f (x) − ϕ f (x) =
δ

δJ(x)

∫
y,z
⟨(∂µJAµ(y) + ie(ϕ∗(y)J∗(y) − ϕ(y)J(y)))F −1

y,z ∆ f (A; z)⟩. (A.7)

In particular, for ϕ f satisfying δΓ f

δϕ
= 0, we find

ϕ f+∆ f (x) − ϕ f (x) = −
∫

y
⟨ieϕ(x)F −1

x,y∆ f (A; y)⟩ = −ie⟨ϕ(x)Λ(x)⟩, (A.8)

where Λ is the gauge transformation connecting two gauges f and f + ∆ f and is related to ∆ f
by

Λ(x) =
∫

y
F −1

x,y∆ f (y). (A.9)

In a similar way, we find
Aµ

f+∆ f (x) − Aµ
f (x) = −∂µ⟨Λ(x)⟩. (A.10)

From Eqs. (A.8) and (A.10), we find that gauge transformation of the expectation value of any
field is given by expectation value of the gauge transformation for that field. We also find that
|ϕ f | is not gauge invariant in general. On the other hand, Fµν

f = ∂
µAν

f − ∂νA
µ
f is always gauge

invariant.
If the path integral to compute the right hand side of Eq. (A.8) is dominated by the field

configurations in close vicinity of ϕ f , which is the case investigated in the main text, Eq. (A.8)
approximately becomes

ϕ f+∆ f (x) ≈ (1 − ie⟨Λ(x)⟩)ϕ f (x), (A.11)

which means |ϕ f (x)|2 is gauge invariant and hence the dissipation rate, too.



Appendix B

Noise correlation

We show some detailed behavior of noise correlation function.

short-range correlation

From (3.145)∼(3.149), we obtain the following asymptotic form as r → 0.

α(r)→ 1
2π2r2

β′(r)→ − 1
2π2r

, β′′(r)→ 1
2π2r2

γ′(r)→ − 1
π2r3 , γ′′(r)→ 3

π2r4 (B.1)

To derive these results, we have used the fact that modified Bessel functions Kn(x) satisfy

lim
x→0

xnKn(x) = 2−1+nΓ(n) . (B.2)

Using the above expressions, the spatial noise correlation becomes

⟨ξ(x⃗1, t)ξ†(x⃗2, t)⟩ ≃ −
3e2

2π4r6 , (B.3)

as r approaches zero.
Since the value at r = 0 corresponds to ⟨|ξ(x⃗, t)|2⟩, the correlation function given by Eq.

(B.3) being negative seems strange. We speculate that the origin of this apparent contradiction
lies in the evaluation of γi j. To see the essence, we now consider the case where the scalar field
is massless.

The divergence comes from the zero-temperature part.

γ′zero =
1

2π2

∫ ∞

0
dp

(
p cos(pr)

r
− sin(pr)

r2

)
(B.4)

γ′′zero =
1

2π2

∫ ∞

0
dp

(
−p2 sin(pr)

r
− 2

p cos(pr)
r2 + 2

sin(pr)
r3

)
(B.5)

81



82 APPENDIX B. NOISE CORRELATION

These integrals are UV divergent. We regulate them by introducing a cutoff factor e−p/Λ, getting

γ′zero = −
1

2π2

2rΛ4

(1 + r2Λ2)2 , (B.6)

γ′′zero =
1

2π2

2Λ4(3r2Λ2 − 1)
(1 + r2Λ2)3 . (B.7)

If we evaluate the noise correlation with these regulated integral, the asymptotic form becomes

⟨ξ(x⃗1, t)ξ†(x⃗2, t)⟩ ≃ −
e2

2π4

Λ4(3r2Λ2 − 1)
r2(1 + r2Λ2)3 . (B.8)

When r > 0, taking Λ → ∞ gives the same result as (B.3). On the other hand, if we keep Λ
finite and take r → +0, we see that the spatial noise correlation goes to +∞. At r = 0, the
dominant part is e2

2π4
Λ4

r2(1+r2Λ2)3 . If we multiply it by r5 and integrate from 0 to ∞, we obtain a
finite value. ∫ ∞

0
dr

Λ4

r2(1 + r2Λ2)3 × r5 =
1
4

(B.9)

From this, we can write as follows.

e2

2π4

Λ4

r2(1 + r2Λ2)3 =
e2

4π4r5 δ(r) (B.10)

long-range correlation

We briefly show the long-range (r ≫ β, 1
m ) behavior. In this limit, we obtain

α(r)→ 1
2πβr

β′(r)→ − 1
4πβ

β′′(r)→ β

12πr3

γ′(r)→
 − 1

2πβr2 m = 0
− m

2πrβe−mr m , 0

γ′′(r)→
 1

πβr3 m = 0
m2

2πrβe−mr m , 0
(B.11)

In the evaluation of γ′ and γ′′, we used the asymptotic form for modified Bessel functions
Kn(x),

Kn(x)→
√
π

2
x−1/2e−x as x→ ∞. (B.12)



Appendix C

Scalar Field Strength Renormalization

In this appendix we consider a non-trivial renormalization issue. We show the divergent part of

− f̃A0(ω, k⃗) +
∫

dω′

2π
P

1
ω − ω′ iC̃k⃗(ω

′) (C.1)

can be removed by renormalizing the field strength of the scalar field.
First, f̃A0 can be expressed as

− f̃A0(ω, k⃗) =
e2

2

∫
d3q

(2π)3

ω2 + ω2
q

ωq |⃗k − q⃗|2
(1 + 2nq) . (C.2)

This is an UV-divergent integral, whose divergence comes from zero temperature part. Sticking
to massless case which does not loss generality of the analysis in this section, we find

− f̃A0(ω, k⃗)→ e2

16π2k

∫ ∞

0
dq(ω2 + q2) ln

(k + q)2

(k − q)2 . (C.3)

Now we use the dimensional regularization method. Changing the dimensions from 3 to 3 + ϵ
in Eq. (C.2) enables us to extract the divergence as follows.

− f̃A0(ω, k⃗) =
e2

12π2 (3ω2 + k2)
1
ϵ
+ (regular terms) (C.4)

Second, it is convenient to use another expression for the principal integral term,∫
dω′

2π
P

1
ω − ω′ iC̃k⃗(ω

′)

= −e2

2

∫
d3 p

(2π)3Pi jkik j
1

pωk+p

×
[
(1 + 2Np)

(
P

ω + p + ωk+p
− P
ω − p − ωk+p

− P
ω + p − ωk+p

+
P

ω − p + ωk+p

)
+ (1 + 2nk+p)

(
P

ω + p + ωk+p
− P
ω − p − ωk+p

− P
ω − p + ωk+p

+
P

ω + p − ωk+p

) ]
. (C.5)
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This is also UV divergent and we use the dimensional regularization method once more. The
above integral at large p is simplified to

−e2k2

3π

∫ ∞
dp p−1+ϵ → −e2k2

3π2

1
ϵ
. (C.6)

Finally we find Eq.(C.1) diverges like e2

4π2 (ω2 − k2) 1
ϵ
. This combination of (ω2 − k2) ensures

that we can remove this divergence by the renormalization of the scalar field strength.



Appendix D

Constructing Approximation Functions of
the Potential Term

In this appendix, we consider the approximation of Eq. (4.20), which determines the functional
shape of the thermal correction to the flaton potential. Expanding the integrand of Eq. (4.20),
we can perform the integration term by term,

J±(y) = ∓ 1
2π2

∞∑
n=1

(±1)n

n

∫ ∞

0
dx x2e−n

√
x2+y2

,

= ∓ y2

2π2

∞∑
n=1

(±1)n

n2 K2(ny), (D.1)

where K2(x) is the modified Bessel function of the second kind. The derivative of J(y) with
respect to y, which appears in the field equation, (4.50), is calculated as

dJ
dy
= ± y2

2π2

∞∑
n=1

(±1)n

n
K1(ny). (D.2)

For convenience, we define the shape function,

S ±(y) ≡
∞∑

n=1

(±1)n

n
K1(ny). (D.3)

The modified Bessel function K1(z) for small z can be approximated as

K1(z) ≈ 1
z
. (D.4)

Therefore, the shape function for small y becomes

S ±(y) ≈ 1
y

∞∑
n=1

(±1)n

n2 =
1
y
×

ζ(2), for +

−ζ(2)
2
. for −

(D.5)
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Away from y = 0 this approximation breaks down almost immediately. Moreover, it is diffi-
cult to achieve better accuracy by simply retaining more terms in the expansion in Eq. (D.4),
since there are logarithmic terms like ln z, meaning that we cannot take the infinite summation
analytically. Instead, we use the following ansatz,

S̃ (0)
+ (y) =

e−y

y

(
ζ(2) + a1y + a2y2 + a3y3

)
, (D.6)

S̃ (0)
− (y) =

e−y

y

(
−ζ(2)

2
+ b1y + b2y2 + b3y3 + b4y4

)
, (D.7)

where ai and bi are determined by requiring a good fit with the shape function in the limited re-
gion 0 ≤ y ≤ 2; we obtain ai = (0.146773, 0.106023,−0.0248936) and bi = (−0.772073, 0.163142,
− 0.0547415, 0.0107667).

In the opposite limit, for large y we can truncate the infinite summation in Eq. (D.3) at
relatively small n thanks to the asymptotically exponential decay of K1(ny). Here we take the
summation up to n = 2. We also use the asymptotic expansion of the modified Bessel functions.
To guarantee accuracy, we expand K1(y) up to y−3 and K1(2y) up to y−1. Eventually we obtain

S̃ (∞)
± (y) = ±

√
π

2y
e−y

(
1 +

3
8y
− 15

128y2 +
105

1024y3

)
+

√
π

16y
e−2y

(
1 +

3
16y

)
. (D.8)

Finally, we approximate the shape function given in Eq. (D.3) as

S ±(y) ≈

S̃ (0)
± (y), for y < 2,

S̃ (∞)
± (y), for y ≥ 2.

(D.9)

The partitioned fitting curve for the shape function constructed here has an accuracy E = 1.73×
10−3 for S − and E = 2.06×10−3 for S +, where E ≡ ||1− S̃ ±(y)/S ±(y)||∞. Note that, as a result of
the naive matching of the two functions, dV1−loop

T /dT is discontinuous at y = 2 by construction.
However, this is not problematic, since the amplitude of the discontinuity in dVT/dT at y = 2 is
on the order of 0.1%.
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