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Abstract

In this thesis, we develop a probabilistic description of the time-symmetric for-
mulation of quantum mechanics. We derive a generalized form of the probability
distribution of a quantum process which is determined by performing pre- and
post-selections on a system. It gives the well-known value for an observable asso-
ciated to a quantum process, called weak value, as an expectation value. We show
that the generalized probability satisfies the law of total probability and admits
the transitive form by means of conditional probabilities. This motivates us to
step forward to a classical ensemble picture in quantum mechanics. In addition,
we present the description of quantum measurement in terms of the generalized
probability. It is suggested that the difference between the projective measurement
and the weak measurement corresponds to the choice of selections of the forward
and backward propagating processes.
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Chapter 1

Introduction

Quantum mechanics is the most successful theory for describing microscopic sys-
tems with an incredibly accurate expression of the microscopic nature. Although
quantum mechanics has been used extensively for about a century, we have not
quite succeeded in obtaining its underlying picture and grasping its implications
in a coherent framework. In particular, no one has succeeded in describing the
dynamics of measurements on quantum system without classical intervention.

By now, we are more or less forced to accept the idea that one has to be accus-
tomed to the characteristics of quantum mechanics which are beyond our intuitive
picture obtained by classical mechanics, because it is difficult to find a description
of quantum mechanics with the formalism in which our intuition can work properly.
One of the reasons comes from the absence of values assigned to observables on a
quantum system, whereas definite values are assigned to observables on a classical
system. In fact, the absence of values has been seriously discussed since the first
proposal of Einstein, Podolsky and Rosen argument on local hidden variables [3].
After three decades, Kochen and Specker proved that it is actually impossible to
assign values to all observables simultaneously [4]. We can perform assignment
of values at a time not for all observables but for the partial set of observables,
which is a set of mutually commutative observables. The choice of the set of mu-
tually commutative observables is called the context, and the dependence of the
assignment of values of observables on the context is called the contextuality of
value assignment. Since the contextuality does not appear in classical mechanics,
it seems that we have to abandon something which exists in classical mechanics
to describe quantum mechanics. Although it may be possible to construct a com-
pletely new dynamics in microscopic world, e.g., the Bohmian theory [11] or the
continuous spontaneous localization models [12], none of the formulations has been
completed yet.

Meanwhile, a theory which can explain the assignment of values of observ-
ables without the problem of contextuality has been proposed based on the time-
symmetric two-state vector formulation of quantum mechanics [30, 31, 34]. The
motivation of the formalism is to obtain an intuitive picture for quantum mechan-
ics by considering ensembles of the process determined by the initial and final
conditions of the process. Aharnov et al. introduced the forward and backward
propagating quantum states whose counterparts in classical mechanics may be the
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advanced and retarded waves in the absorber theory of electromagnetic radiation
[13]. They solved the contextual assignment of values of observables under the con-
dition that we require all boundary conditions which are determined by the results
of projective measurements performed on a system. One of the novel point of their
formalism is that we have only to implement a factual assignment for a part of
observables, not all observables. Since there are no other projective measurements
except at the two boundaries in a process, we need the contextual assignments
only for the set of compatible observables with both of the boundaries.

On the other hand, there is another approach based on the probability theory
which plays a key role in quantum mechanics. Indeed, recently some modifica-
tions of the interpretation of probability have been discussed [15, 16, 17], where it
is argued that the characteristics of quantum mechanics can be described by an
epistemic theory with subjective probability. If the probability described in quan-
tum mechanics is subjective, we do not need to consider the ensembles underlying
the probability. It requires no more explanation for the physical dynamics of the
transition of probability distributions of a system.

In the present thesis, however we consider an alternative probabilistic approach
in the time-symmetric formulation of quantum mechanics. The main aim of this
paper is to recover a probabilistic description with underlying ensembles by in-
troducing a probability distribution of quantum processes. In classical mechanics,
a system admits ensemble with ordinary real probability. Each of the ensembles
has a definite value assigned to an observable. If one obtains knowledge about the
system, the probability distribution changes to the conditional probability distri-
bution, which we call ’transition of probability’. In the standard formulation of
quantum mechanics, the probability to obtain a certain result is given by Born’s
rule. However, since we cannot define ensembles on a quantum system, the tran-
sition probability in quantum system cannot be given by conditional probability.
Here, we try to associate the probability distribution to quantum processes for
which a solution for the contextuality can be expected. An ensemble picture in
quantum mechanics as classical mechanics may then be expected to be found.

To this end, specifically we consider a general form of probability in a quantum
process defined by two states which correspond to the initial and final states of the
process. If we allow the probability to extend from the real valued interval [0, 1]
to the whole complex plane, the probability is generalized to the same extent that
has been used for the weak value of projective operators.

Once our generalized complex-valued probability is adapted, we can under-
stand the weak value of an observable in a coherent manner. In fact, the weak
value, which appears in the two-state vector formalism, is supposed to give a non-
contextual assignment of the values of observables in the formalism, which is also a
requirement for probability. The weak value is interpreted as the expectation value
of the observable with the generalized probability, whose derivation and discussions
have been presented in Ref. [1]. We can also define the conditional probability for
the generalized probability in such a way that it describes the transition of the
generalized probability to a process. We find that our generalized probability sat-
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isfies the law of total probability for conditional probabilities. This feature does
not exist in the ordinary probability in quantum mechanics. The law of total prob-
ability is necessary for constructing the classical ensemble picture from probability
distribution, though it is still difficult to restore the complete ensemble from the
generalized probability. Indeed, the transitive form of probability, which we derive
as the conditional probability, is found to be consistent with the transition of a
process.

Regarding the description of measurement in a process, although the two-state
vector formalism requires distinct treatments for describing projective measure-
ment and weak measurement, we can also see the connection between the two
measurements as two different ways of selections of processes based on the gener-
alized probability. Moreover, in our treatment, the forward and backward propa-
gating processes are understood in a natural manner.

The plan of the present thesis is the following. First, we give a preliminary
account on the classical difficulty in describing outcomes of quantum mechanics
in Chapter 2. Although there are arguments for the locality of the assignment
of values of dynamical variables, we focus on the contextual dependence of the
assignment of the values, as it is one of the most critical differences between clas-
sical mechanics and quantum mechanics. Then in Chapter 3, we introduce the
time-symmetric formulation of quantum mechanics. The formalism avoids the
contextuality problem by the description of only factual processes. However, we
mention that there are insufficient elements in their formalism. One of the prob-
lems lies in the notion of the forward and backward propagating states, in that
the distribution of values of observables is not defined in each propagating state.
Chapter 4 and Chapter 5 are devoted to our main works, of which one is the deriva-
tion of the generalized probability on a quantum system [1] and the other is the
acquisition of the descriptions of a quantum system and quantum measurement
through the generalized probability. In Chapter 4, we introduce the generalized
probability in a quantum process. the distribution of processes is defined as prob-
ability extended to complex plane. We present how the system with imaginary
generalized probability behave in oprical paths. We show that the probability sat-
isfies the law of total probability and that a consistent description of its transition
becomes possible as a part of the requirements for underling ensembles. Finally,
we present the description of quantum measurement in terms of the generalized
probability in Chapter 5. It is suggested that the difference between the projective
measurement and the weak measurement corresponds to the choice of selections
of the forward and backward propagating processes. We conclude this thesis with
discussions on our results in Chapter 6.
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Chapter 2

Preliminaries

2.1 Classical Ensemble Picture

First of all, we explain the classical ensemble picture which forms a basis of the
quantum ensemble we aim to obtain. A classical system is represented by an ob-
ject which has definite values of dynamical variables, e.g., a massive particle which
has values of position and momentum simultaneously. The dynamical variables
evolve according to the law of given dynamics. The state of a system at a time is
determined by all values of dynamical variables at the time. Since an observable
corresponds to a function on these dynamical variables, the value of an observ-
able on a state at a time is evaluated as the value of the function associated to
the observable on the state at the time. Multiple objects in a system give the
distribution of dynamical variables. The proportion of dynamical variables can be
represented by a probability distribution. The value of an observable on multi-
ple objects is given by the weighted sum of the value of the function associated
to the observable with the probability distribution. In this sense, the probability
distribution in classical mechanics is based on objects having definite values of
dynamical variables.

Accordingly we here define the classical ensemble picture as follows.

• A system is represented by objects having definite values which determine
the value of an arbitrary observable.

• A system is specified by a probability distribution of the values of observables.

The probability distribution of observables is given by the probability distribution
of dynamical variables through the function associated to the observable. In the
next section, we see the reason why it is difficult to obtain the classical ensemble
picture in quantum system.
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2.2 Problems on Classical Ensemble Picture in

Quantum Mechanics

Measurement is an operation to find the value of an observable in a system. We
can obtain the value of an observable through a measurement on a macroscopic
system. It is assumed that we can obtain the value of any dynamical variable
of a state by an appropriate measurement in classical mechanics. However, we
cannot obtain the value of a dynamical variable on a microscopic system without
disturbing other dynamical variables, according to the error-disturbance relation of
quantum mechanics. If we measure observables A and B on a microscopic system,
the square roots of the variances of obtained results σ(A) and σ(B) must satisfy
the Robertson-Kennard uncertainty relation [9, 10].

σ(A)σ(B) ≥ 1

2
|⟨[A,B]⟩| , (2.1)

where σ(A) :=
√

⟨A2 − ⟨A⟩2⟩ and ⟨·⟩ := ⟨ψ| · |ψ⟩ in the case that the state of the
system prepared in |ψ⟩. It is interpreted that the measurement disturbs the system
and randomize the values of observables. Thus we cannot determine all the values
of observables sharply at a time. It implies that the classical ensemble picture in
quantum mechanics is impossible. However, it was nevertheless suggested that if
we could precisely understand the dynamics of the disturbance in the measurement,
we could still trace the values of observables. This expectation was defeated by
the famous paper [3] in an elegant way.

2.2.1 EPR Paradox

The key to the statement of that paper is the measurement of an entangled state
which is called “EPR state”. If we measure one of the entangled pair, we can know
the value of dynamical variables on the system. We can perform a measurement
without disturbing its system under the assumption of the cluster decomposition
property of these variables.

In Ref. [3], the authors consider the entangled state of the positions, which is
given by

|Ψ⟩ :=
∫ ∞

−∞
dx
∣∣∣x1 = x+

x0
2

⟩ ∣∣∣x2 = x− x0
2

⟩
, (2.2)

where |x1 = a⟩ represents the localized state of system 1 around a (Fig. 2.1). If we
measure the position of system 1 and find it around a, we find that the position
of system 2 gets localized around a− x0 according to the calculation

⟨x1 = a|Ψ⟩ =

∫ ∞

−∞
dxδ

(
x+

x0
2

− a
) ∣∣∣x2 = x− x0

2

⟩
= |x2 = a− x0⟩ . (2.3)

Similarly, if we measure the momentum of system 1 as p1 = b, we find that the
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       EPR state

 (Entangled state)

System 1 System 2

Measurement

Figure 2.1: If we measure the position or momentum of system 1 of the EPR state,
we obtain the position or momentum of system 2 without disturbing the system
2.

momentum of system 2 is the same p2 = b.

⟨p1 = b|Ψ⟩ =

∫ ∞

−∞
dxe−ib(x+

x0
2
)
∣∣∣x2 = x− x0

2

⟩
=

∫ ∞

−∞
dx

∫ ∞

−∞
dpe−ib(x+

x0
2
)e−ip(x−

x0
2
) |p2 = p⟩

=

∫ ∞

−∞
dpδ(b+ p)e−i(b−p)

x0
2 |p2 = p⟩

= e−ibx0 |p2 = b⟩ , (2.4)

where we put ℏ = 1.
In the original arguments, they define the element of reality.

“If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical
quantity, then there exists an element of physical reality corresponding
to this physical quantity.”

We argue above that the position and momentum of system 2 can be measured
without disturbing the system 2 by the measurements on system 1. According to
their definition of the element of reality, the position and momentum of system
2 are the elements of reality according to their definition. Such elements of re-
ality, which are the position and momentum of system 2, have no simultaneous
eigenstates in quantum mechanics. This means that we cannot obtain the values of
observables with probability equal to unity. Consequently, they claimed that quan-
tum mechanics is not a complete theory of physics. It is important to recognize
that they supposed the cluster decomposition property of dynamical variables,
which means that the values of dynamical variables are locally determined. In
terms of dynamical variables, the position and momentum of system 2 are pre-
cisely determined against the uncertainty relation in quantum mechanics. The
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question was experimentally examined in 1982 [7] and the results contradicted the
explanation by the dynamical variables of local systems. If we can obtain values
of observables in some way, there must be a local operation extracting the values
of observables determined by local dynamical variables. The above example shows
that unlike classical mechanics, the microscopic system cannot be described by
dynamical variables on a local system.

Even though if we remove the assumption of locality, it is known that we
cannot define the value of dynamical variable on a system at a time. The next
theorem shows that the assignments of values must depend on the context, which
is determined by the ordering of measurements.

2.2.2 Kochen-Specker Theorem

The Kochen-Specker theorem argues the impossibility of assignments of values to
observables independently of the context [4]. In quantum mechanics, the value
assigned to an observable is supposed to be an eigenvalue of the observable, be-
cause we obtain one of the eigenvalues of the observable through the measurement
with probability unity when we prepare the system in the eigenstate of the observ-
able. Thus the value assigned to an observable in a system is represented by its
eigenstate. Though the simultaneous eigenstate for observables assigns the value
of them, there is no simultaneous eigenstate for non-commutative observables.
However, we cannot say that we are not able to assign values of observables on a
system due to absence of simultaneous eigenstate. If we measure non-commutative
observables, the measurement disturb the system and change the values of them.
The values of non-commutative observables before the measurement cannot be ob-
tained through the measurement due to the disturbance, hence we can expect that
the values assigned to observables are determined before the measurement on the
system, not as the result of measurement. Since there is an object having definite
values which determines a value of an observable in classical mechanics, we expect
that there are values to be assigned to observables on a system in quantum system
similarly as classical mechanics. Although the value of an observable is determined
by underlying variables through the function corresponding to the observable, it
is enough to consider the assignment of the value of the observable determined by
underlying variables.

This theorem states the impossibility of assignment of values of observables
which is compatible with consistency conditions in quantum mechanics. This
means that the classical ensemble picture is not achievable in quantum mechanics
since there is no object which determines the values of observables consistently. We
here introduce the simple proof by Peres [5, 6] instead of the original complicated
discussion, where one introduced a set of observables which partially commute
with each other. In a spin-1 particle system, the squares of spin components S2

x,
S2
y and S2

z are mutually commutative and satisfy the sum condition

S2
x + S2

y + S2
z = 2, (2.5)

where, for simplicity, we set ℏ = 1. Let us consider the assignment of values of the
spin components in various directions. We use Miller index for the description of
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Figure 2.2: The directions of spin components in the proof of Kochen Specker
theorem. The direction indicated by the Miller index is that from the origin to its
point.

the direction of spin components (see Fig. 2.2). First, we assign 1 in the directions
100 and 010 and assign 0 to 001 to satisfy the sum condition (2.5). Then, we
continue to assign eigenvalues to spin components in 33 directions in the following
table:

001 100 010 110 1̄10

101 1̄01 010

011 01̄1 100

11̄2 1̄12 110 021 2̄01

102 201̄ 010 2̄11

211 011̄ 2̄11 1̄02

201 010 102̄ 1̄1̄2

112 11̄0 1̄1̄2 02̄1

012 100 02̄1 12̄1

121 1̄01 12̄1 01̄2

We assign 0 to the direction in the left-hand side of the left column of table from top
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to bottom. The other directions are assigned 1. In the table, we gave 0 assignments
for 001, 101, 011 and 11̄2, and the other assignment is automatically determined. If
we assign 0 in the direction 001, 101 must have the different assignment against 1̄01
because 010 must be assigned 1. Similarly, each of 011, 112 and 11̄2 has different
assignments against 01̄1, 1̄1̄2 and 1̄12. Since we find the assignments in which some
neighbor pairs of directions 101, 11̄2, 01̄1, 1̄1̄2, 1̄01, 1̄12, 011 and 112 are assigned the
same value, we can obtain the above assumed assignments by interchanging the
x, y and z axes. Finally, we find that mutually orthogonal directions 100, 021 and
01̄2 have the assigned value 1, which contradicts the sum condition (2.5) which is
satisfied in the three orthogonal directions.

Here is another simple proof of this theorem. Consider a composite system of
two spin-1/2 particles and spin components on the system:

σ1
x σ2

x σ1
xσ

2
x

σ2
y σ1

y σ1
yσ

2
y

σ1
xσ

2
y σ2

xσ
1
y σ1

zσ
2
z

where σia represents the spin component in the a direction of system i for a = x, y, z
and i = 1, 2. The row and column of this table consist of mutually-commutative
observables. Since we can measure these mutually-commutative observables with-
out disturbance for the system by appropriate measurements, the assigned value
of σ1

xσ
2
y must be 1 if we assigned 1 to σ1

x and 1 to σ2
y. The commutative set of

observables is called “context”. As long as we treat the observables in one context,
we can assign their values by a simultaneous eigenstate of them. Now consider the
assignment of values over contexts. The simultaneous assignment for the observ-
ables in different contexts is called the counter-factual assignment. This comes
from the impossibility of obtaining the assigned values in actual simultaneous
measurements.

If we assign 1 for four observables σ1
x, σ

2
x, σ

2
y, σ

1
y, the products of the pair of

them, which are σ1
xσ

2
x, σ

1
yσ

2
y, σ

1
xσ

2
y, σ

2
xσ

1
y, must be 1. Then, the product of σ1

xσ
2
x and

σ1
yσ

2
y and the product of σ1

xσ
2
y and σ2

xσ
1
y must be 1. However, we have the relation

of the product of operators of spin components as

σ1
xσ

2
yσ

2
xσ

1
y = σ1

zσ
2
z

σ1
xσ

2
xσ

1
yσ

2
y = −σ1

zσ
2
z ,

which have different signs. It is a contradiction. Furthermore, any other assign-
ments do not satisfy the relation. We can easily see the impossibility of assignment
values by the fact that there is no 3x3 magic square satisfying that the product
of the three operators in any row or any column must be 1 except the rightmost
column in which the product of three operators is −1.

This theorem shows that we cannot define values of observables which are
given by functions of dynamical variables independently from the context. This
is called the contextuality of the value of observables. Therefore we cannot ex-
plain the quantum system by the statistical ensembles of the objects which have
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dynamical variables determining the values of all observables. Although the selec-
tion of the context is mathematically defined by the selection of a set of mutually
commutative observables, it means physically the choice of the observables which
are measured not necessarily simultaneously. Consider that we first measure the
square of total angular momentum σ2 := σ2

x + σ2
y + σ2

z on a spin-1/2 system and
obtain its value 3/4. Then we can perform the second measurement of either σx
or σy, not the both at a time, to obtain its value. We cannot measure them at
a time due to the non-commutativity of observables [σx, σy] ̸= 0. This choice of
measurements is equivalent to the selection of context. If we can choose freely
the second measurement, the contextuality of the dynamical variables is a fatal
problem for the classical ensemble picture. Conway et al. discussed this point in
terms of the free will of observers [8] in choosing the second measurements on the
entangled systems.

We note here that the contextuality of the value of an observable cannot be
explained by the disturbance model which is independent from the context. The
measurement causes the disturbance which prevents measurements of observables
in other contexts. We expect that an appropriate disturbance model enables us
to construct a context free variable model which is equal to the classical ensemble
picture. We may assume that we can measure the system without disturbance
only when we measure the observables in one context, since we can assign the val-
ues and obtain them with probability unity only for these observables. However,
the disturbance model must depend on the context of observables. Consider the
disturbance in measuring the spin component of y. If we first measure σ2, the
disturbance in measuring σy does not occur since both of observables being to the
same context. On the other hand, if we first measure σx before measuring σ2, a
disturbance occurs in the second measurement of σy. This means that the state
at present is not enough to evaluate the disturbance. It is difficult to obtain the
explanation of the contextuality by such disturbance model. One of the reasons for
the difficulty is that the model loses the Markov property which quantum mechan-
ics assumes. In addition, we have to explain the impossibility of an appropriate
measurement of the observables in different contexts.

These are the reasons why it is difficult to construct a physical theory de-
termined by the dynamical variables, which is called the hidden-variable theory.
This means that building a classical ensemble picture in quantum mechanics has
a considerable obstacle to overcome.

2.3 Discussion on Assignment of Values to Ob-

servables

We here see how quantum mechanics avoids the problem of assignment of values to
observables together with possible explanations on the problem. The connection
between the observables and their values must be contextual. Quantum mechanics
performs a contextual assignment of the results of measurements at each time of
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the measurements. For a quantum state |ψ⟩, we can consistently assign values to
observables when one of its eigenstates is |ψ⟩. That is, we can perform assignment
for observables which commute with the projective operator Pψ := |ψ⟩⟨ψ|. The
assignment for the other observables is given at random according to the frequency
given by Born’s rule in quantum mechanics. The contextuality is consistent with
the fact that quantum mechanics does not explain the mechanism of determining
values of observables. In quantum mechanics, the transition of the complete set of
assigned values, which corresponds to the context, is described by the transition
of a quantum state. One of the transitions is the time evolution according to
the Schrödinger equation. The equation of motion in classical mechanics is its
counterpart. The other is the transition enforced by the measurement on the
system, which causes the contextuality.

To explain the contextuality caused by the ordering of the measurements, some
researches recognize that the transition by measurements should be described by
the subjective probability [15, 16], which appears in the epistemic theory. In
the epistemic theory, the probability distribution is modified by the acquisition of
knowledge of a system. The transition of the probability distribution also occurs in
classical mechanics when the system has ambiguity. For example, in the Bayesian
estimation theory, we suppose that a distribution of parameters represents incom-
plete knowledge. We update the distribution by the results of sequential measure-
ments about the related parameters since the distribution in the Bayesian theory
is a subjective probability distribution of the parameters. The epistemic theory
supposes that the probability distribution of observables is a subjective probability,
not an objective one. The subjective probability seems to be suitable for describing
quantum mechanics since it can be defined even if there is no underlying object.
According to this view, there is no object which determines the values of observ-
ables in quantum mechanics. This means that there is no objective probability
distribution for definite value of observables. Moreover, the subjective probability
provides a natural explanation for the discrete transition of the distribution which
is one of the problems on the locality in quantum mechanics. In this respect,
The epistemic theory provides a possible way to explain the quantum mechanics
consistently.

However, there is another solution for the contextuality. It has been intro-
duced by Aharonov et al. [31], called the two-state vector formalism, which is the
time-symmetric formalism of quantum mechanics. In this formalism, past and
future boundary conditions determine the assignment of the contextual values of
observables. Furthermore, the theory is capable of eliminating the jump of distri-
butions by a unique modification of the definition of a system. We introduce the
formulation in the next chapter.
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Chapter 3

Two-State Vector Formalism

We review one of the time-symmetric formulations of quantum mechanics, called
two-state vector formalism introduced by Aharonov et al. [31, 34]. Their formu-
lation leads to the discovery of the weak value and the weak measurement in a
quantum process. Our main discussion which starts from the next chapter is based
on this two-state vector formalism.

3.1 Time Symmetry in Quantum Mechanics

The two-state vector formalism (TSVF) is a new time-symmetric formulation
of quantum mechanics developed from the paper by Aharonov, Bergman, and
Lebowitz [31], where they consider time symmetry in quantum mechanics. The
time symmetric description of quantum mechanics means here that the
description of a quantum system is invariant under interchanging the
arrow of time. Their aim is to recover the time symmetric description of quantum
mechanics which is broken by measurements in a quantum system.

In the standard description of quantum mechanics, the time symmetry is bro-
ken. Consider a system which evolves with a time independent Hamiltonian H.
First, we prepare the system in the quantum state |ψ⟩ at time ti. After a while,
we measure the system and find the quantum state |ϕ⟩ at time tf . We assume
that the quantum state |ψ⟩ evolves forward in time according to the Schrödinger
equation and the state of the system becomes |ϕ⟩ by the measurement. Now, let us
consider the same system backward in time. The preparation of a quantum state
and the measurement to obtain a result are equivalent operations since they are
ideally projective measurements. Thus, we can may also assume that the quantum
state |ϕ⟩ is prepared at time tf and evolves backward in time, and then we find |ψ⟩
by the measurement at time ti. These two, forward and backward, descriptions
of the system are not equivalent owing to the difference of the quantum state of
the system at any time other than ti and tf . For example, we can interpret the
system between the preparation and measurement as two different states |ψ⟩ and
|ϕ⟩ when we are allowed to ignore the time evolution of the system.

Aharonov et al. found that if we introduce the description which treats equiv-
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alently the two states corresponding to the preparation and the measurement,
we can obtain a time-symmetric formulation of quantum mechanics. In fact, the
equivalent treatment of the two states corresponding to the preparation and the
measurement has already appeared in the standard description of quantum me-
chanics. The quantum theory predicts the probability distribution which is ob-
tained from the given quantum state. In the above system, the probability of
obtaining the quantum state |ϕ⟩ at time tf is given by∣∣∣∣⟨ϕ| exp(− i

ℏ

∫ tf

ti

Hdt

)
|ψ⟩
∣∣∣∣2 . (3.1)

We regard this expression such that the quantum state |ψ⟩ evolves forward in time
according to the Schrödinger equation. However, it is also possible to interpret it
as the quantum state |ϕ⟩ evolving backward in time. The backward propagating
picture is also obtained according to the Schrödinger equation for the bra state (in
other words, the complex conjugate of the wave function).

This picture is consistent even when we consider an intermediate measurement
in the system where we prepare the state |ψ⟩ at time ti and find the state |ϕ⟩ by the
measurement at time tf . We hereafter call the system between the two selections “a
quantum process”. If we measure an observable which is the projector Pa of state
|a⟩ at an intermediate time tm in the quantum process, the probability p(a, tm) of
obtaining |a⟩ at tm and then |ϕ⟩ at tf is given by

p(a, tm) :=
1

N

∣∣∣∣⟨ϕ| exp(− i

ℏ

∫ tf

tm

Hdt

)
Paexp

(
− i

ℏ

∫ tm

ti

Hdt

)
|ψ⟩
∣∣∣∣2 , (3.2)

where N :=
∑

a p(a, tm) is a normalization constant. This expression is also
time symmetric. Similarly, the time symmetry holds when we consider an imper-
fect measurement which is described by using a positive operator valued measure
(POVM). The imperfect measurement is a measurement which does not change
the state of a system into the eigenstate of the observable according to the mea-
surement outcome. The state of the system is turned into another state which is
represented by a density operator by the imperfect measurement. The transition
of quantum state by the imperfect measurement is represented as the map from a
quantum state to another quantum state. For example, if we obtain the result a
of the imperfect measurement on a quantum state ρ, the quantum state after the
measurement ρa is represented by using Kraus operators {Ma} as

ρa :=
MaρM

†
a

Tr
(
M †

aMaρ
) , (3.3)

where we ignore the time evolution of a quantum state for simplicity. The POVM
Πa is defined as Πa :=M †

aMa and satisfies
∑

aΠa = 1. If we perform the imperfect
measurement in the above process, the probability p′(a, tm) of obtaining the result
a in the measurement at the intermediate time tm is given by

p′(a, tm) :=
1

N ′

∣∣∣∣⟨ϕ| exp(− i

ℏ

∫ tf

tm

Hdt

)
Maexp

(
− i

ℏ

∫ tm

ti

Hdt

)
|ψ⟩
∣∣∣∣2 , (3.4)
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where N ′ :=
∑

a p
′(a, tm) is a normalization constant. This is also time-symmetric

as in the case of a projective measurement (3.2).
Although we can describe the prediction by the probability time-symmetrically,

one may say that the transition of quantum states by measurements seems to
be time asymmetrical. However, we do not need to describe the transition of
the quantum state, called the jump of a quantum state, in the two-state vector
formalism. We can predict the probability without considering the jump if we give
all boundary conditions of the system. In the time-symmetric formulation of the
quantum mechanics, we give all boundary conditions as the initial state and the
final state of the system to obtain the predictions for the system. We regard that
each state evolves forward and backward in the quantum process.

The most important point in the time-symmetric formulation is that it provides
a reasonable interpretation for the contextuality. We see this point later in this
chapter.

3.2 Formulation

The time-symmetric formulation of quantummechanics must have a time-symmetric
definition of states. Aharonov et al. [34] defined such states, named two-states,
by two vectors of the Hilbert space of a system. This is why the time-symmetric
formulation is called “two-states vector” formalism. Each vector represents the
time boundary condition of the system. We can select the initial state of the sys-
tem by performing a projective measurement by a certain state |ψ⟩. This is called
“pre-selection” and the state |ψ⟩ is interpreted as the initial boundary condition
of the system. Then we can perform another projective measurement at a later
time to examine whether the state is |ϕ⟩ or not. Since this projective measure-
ment can be treated on the same footing as the first projective measurement in
the time-symmetric view, this projective measurement is called “post-selection”
and the state |ϕ⟩ is interpreted as the final condition of the system. They call the
initial state |ψ⟩ “pre-selected state” and the final state |ϕ⟩ “post-selected state”.
The two-state of the system is defined by using the two states, |ψ⟩ and |ϕ⟩.

Definition 1 (Two-states: the states in the two-state vector formalism)
The two-state of a quantum process, which is pre-selected by |ψ⟩ and post-selected
by |ϕ⟩, is defined as

ϱ := |ψ⟩ ⟨ϕ| , (3.5)

if we ignore the time evolution of the system.

The two-state ϱ(t) evolves according to the Liouville-von-Neumann equation just
like the standard quantum states:

iℏ
∂ϱ(t)

∂t
= [H, ϱ(t)], (3.6)
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initial state

final state

two-state

Figure 3.1: The two-state, which is a state in the two-state vector formalism, is
defined by two states specifying the time boundary. The initial state does not
have to evolve into the final state. Each of the boundary states is determined by
projective measurements at each time, that is, it is given by the eigenstate which
corresponds to the result of the projective measurement at the time. We call the
projective measurement at the initial and final times the pre- and post-selection,
respectively.

which is derived by two Schrödinger equations for a system with a Hamiltonian
H, one of which evolves forward in time and the other evolves backward in time:

iℏ
∂

∂t
|ψ(t)⟩ = H |ψ(t)⟩ ,

−iℏ ∂
∂t

⟨ϕ(t)| = ⟨ϕ(t)|H −t→t′−−−→ iℏ
∂

∂t′
⟨ϕ(t)| = ⟨ϕ(t)|H.

The Liouville equation is derived as

iℏ
∂ϱ(t)

∂t
= iℏ

(
∂

∂t
|ψ(t)⟩ ⟨ϕ(t)|+ |ψ(t)⟩ ∂

∂t
⟨ϕ(t)|

)
= H|ψ(t)⟩⟨ϕ(t)| − |ψ(t)⟩⟨ϕ(t)|H
= [H, ϱ(t)]. (3.7)

If the Hamiltonian H depends on time, we need the extra term with dH/dt. Using
the unitary operator of time evolution U , the two-state at time t is described as

ϱ(t) := U(t, ti) |ψ⟩ ⟨ϕ|U(t, tf )†, (3.8)

for which the pre-selection is performed at ti and the post-selection is performed
at tf (Fig. 3.1).

The ability of prediction by the two-state vector formalism is equivalent to
that of the standard formalism of quantum mechanics. The standard formalism
of quantum mechanics provides the way to predict the probability of obtaining a
result of measurement. We can predict the probability of obtaining a certain result
of an intermediate projective measurement by the two-state. If we measure the

18



multiple-time state

system 1 system 2

Figure 3.2: The multiple-time state in two systems. Each system has the initial
and final boundaries. We here ignore time evolution of the systems. If there is
non-zero Hamiltonian including the interaction with each other in the process, the
initial and final states evolve according to the Hamiltonian.

observable A at time t in the quantum process determined by the two-state, the
probability of obtaining the result a which is an eigenvalue of A is given by

Prob(Pa) :=
1

N
| ⟨ϕ|U(tf , t)PaU(t, ti) |ψ⟩ |2, (3.9)

where Pa is a projective operator for the eigenstate of A corresponding to its
eigenvalue a and N :=

∑
a | ⟨ϕ|U(tf , t)PaU(t, ti) |ψ⟩ |2. This probability is called

the ABL probability, which is suggested by Aharonov, Bergmann and Lebowitz
[31]. This is just a conditional probability in the quantum processes, which is
obtained by the standard calculation of quantum mechanics. The ABL probability
(3.9) can be written by using the two-state,

Prob(Px) :=
1

N ′ |Tr (ϱ(t)Pa) |
2 (3.10)

where N ′ :=
∑

a |Tr (ϱ(t)Pa) |2.

The two-state arises actually as the simplest case in a more general descrip-
tion of quantum processes. We can perform multiple pre- and post-selections to
one quantum system. Multiple quantum systems can have these boundary condi-
tions of each subspace. Furthermore, we can perform projective measurements on
the same system repeatedly. To unify these two situations, Aharonov, Popescu,
Tollaksen and Vaidman [36] discussed the multiple boundary conditions in this
formalism. For simplicity, we hereafter ignore the time evolution of the system.
They give the following definition of multiple-time states.

Definition 2 (Multiple-time states: generalized states in the TSVF) The
multiple-time state of quantum process is defined as

Πk ⟨ϕk|tk Πl |ψl⟩tl (3.11)
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where |ψl⟩tl represents the pre-selected state at time tl for l = 1, 2, ... and |ϕk⟩tk
represents the post-selected state at time tk for k = 1, 2, ... (for example, see Fig.
3.2).

Here, each boundary condition corresponds to a projective measurement. We
therefore need the results of projective measurements on the system to describe
the system in terms of this multiple-time state. Since we can treat them similarly,
we also call the formalism including the multiple-time state as the two-state vector
formalism in this paper.

This multiple-time states can be defined even when the boundary conditions
are partially specified. The unspecified boundaries of a system are described as the
maximally entangled state with another system in the two-state vector formalism.
If we specify only the initial boundary condition of the system, which is described
as the one-time state, the two-state of the system is described by giving the final
condition as a maximally entangled state between the system and the other system.
For example, consider the N -level system which is pre-selected at time ti by the
projective measurement of |ψ⟩ on the system to prepare the state |ψ⟩. If we do
not specify the post-selected state of the system, the state is effectively given by
the maximally entangled state between the system and another copy of N -level
system

∑N
k 1/

√
N |wk⟩ ⊗ |wk⟩, where {|wi⟩} is a complete orthonormal system on

each system. Although the probability of obtaining the state |a⟩ in this process
is calculated by using the two-state (3.10), since the pre-selected state is only
specified on the original system, we take the trace in the original system and
consider the absolute value as the norm in the copied system.

Prob(Pa) =
1

N ′

∣∣∣∣∣ 1√
N

∑
k

⟨wk| ⊗ ⟨wk|Pa |ψ⟩

∣∣∣∣∣
2

=
1

N ′
1

N

∣∣∣∣∣∑
k

⟨wk| ⟨wk|Pa |ψ⟩

∣∣∣∣∣
2

=
1

N ′
1

N

∑
k

|⟨wk|Pa |ψ⟩|2

=
1

N ′
1

N
|⟨a|ψ⟩|2, (3.12)

where Pa is the projector of the quantum state |a⟩ and N ′ :=
∑

a |⟨a|ψ⟩|
2 /N is the

normalization constant. This probability is equal to the probability of obtaining |a⟩
after we prepare |ψ⟩ on the system in standard quantum mechanics. Similarly, if we
do not specify the initial boundary, we can describe the system by considering the
pre-selected state as a maximally entangled state. This probability also represents
the probability of realizing the quantum process from |ψ⟩ to |a⟩ as in the case of
the one-state formalism where it is done by Born’s rule.
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3.3 Weak Value

Now, we consider the value of an observable in a quantum process. There is two
kinds of values of an observable in a quantum process, In the two-sate vector
formalism, we can calculate values of observables by using the ABL probability.
Let us consider the spectral decomposition of an observable A :=

∑
a aPa, where

{Pa} are projectors of the eigenstates |a⟩ of A. Using the ABL probability, we
calculate the value of the observable A in the process from |ψ⟩ to |ϕ⟩ as

⟨A⟩ψ→ϕ :=
∑
a

aProb(Pa) =
1

N

∑
a

a| ⟨ϕ|Pa |ψ⟩ |2. (3.13)

where Prob(Pa) is the ABL probability of obtaining the eigenvalue a and N is the
normalization constant of the probability: N :=

∑
a | ⟨ϕ|Pa |ψ⟩ |2. This is just the

conditional expectation value with the post-selection of |ϕ⟩. We can obtain the
value by performing projective measurements in the quantum process.

Meanwhile, we can also consider another value of an observable, called “weak
value”, defined as follows.

Definition 3 (Weak value) The weak value of the observable A is defined in the
process from the quantum state |ψ⟩ to |ϕ⟩ by

Aw :=
⟨ϕ|A |ψ⟩
⟨ϕ|ψ⟩

, (3.14)

when we ignore the time evolution of the states.

Using the two-state, the weak value can be written as

Aw =
∑
a

a
Tr (ϱ(t)Pa)

Tr (ϱ(t))
. (3.15)

The weak value is the value of an observable which arises specifically in a quantum
process in the two-state vector formalism [34, 14]. There is a connection between
the expectation value in the standard formalism and the weak value in the two-
state vector formalism [46],

⟨ψ|A |ψ⟩ =
∑
i

|⟨ϕi|ψ⟩|2
⟨ϕi|A |ψ⟩
⟨ϕi|ψ⟩

, (3.16)

where {|ϕi⟩} is a complete orthonormal set of post-selected states. This means
that the average of the weak value of A with the probability of finding the states
{|ϕi⟩} is equal to the expectation value of A. This allows us to interpret that the
weak value is the value of an observable for a part of events which are prepared in
the quantum state |ψ⟩.

The weak value is measured by a new scheme called the weak measurement in
a quantum process, which we describe next.
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Gaussian state

system meter

measurement of position

Figure 3.3: The simple boundary conditions for the weak measurement of a real
part of the weak value of a system observable A. We obtain the real part of the
weak value as the conditional expectation value of the position of the meter in the
case where the strength of interaction is weak so that the approximation (3.18)
holds.

3.4 Weak Measurement

Aharonov, Albert and Vaidman gave an operational meaning to the weak value
by finding a new type of measurement called “weak measurement” [18], which is
performed by using a weak interaction between a system and a meter.

First, we consider the weak measurement of the real part of the weak value
(Fig. 3.3). Let the system be prepared in a state |ψ⟩ and let the meter be prepared
in a Gaussian distributed state around the origin

|ψG⟩ := (2πσ)(−1/4)

∫
dxexp

(
−x2/4σ2

)
|x⟩

in L2(R), where σ2 is the variance of the position of the meter. The measurement is
performed by an interaction between the system and the meter. We use the von-
Neumann type interaction which includes the measuring observable A coupling
with the momentum p of the meter. We impose the interaction with the strength g
instantaneously at t1, so that the interaction is described byHint(t) := δ(t1−t)gAp.
After the interaction, the quantum state becomes exp (−igAp) |ψ⟩⊗|ψG⟩. Then we
perform post-selection for the system by the projective measurement Pϕ := |ϕ⟩⟨ϕ|.
The probability distribution of obtaining the position x of the meter after the
post-selection is given by

Pr(x) :=
1

N
| ⟨ϕ| ⊗ ⟨x| exp (−igAp) |ψ⟩ ⊗ |ψG⟩ |2, (3.17)

where the normalization constant N :=
∫∞
−∞ | ⟨ϕ| ⊗ ⟨x| exp (−igAp) |ψ⟩ ⊗ |ψG⟩ |2.
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Gaussian state

system meter

measurement of momentum

Figure 3.4: The simple boundary conditions for the weak measurement of the
imaginary part of the weak value of a system observable A. The difference from
the measurement of the real part of the weak value is in the readout observable of
the meter.

If the strength of the interaction g is weak, we can approximate (3.17) as

Pr(x) ≃ 1√
2πσN

∣∣∣∣⟨ϕ| ⊗ ⟨x| (1− igAp) |ψ⟩ ⊗
∫
dx′exp

(
− x′2

4σ2

)
|x′⟩
∣∣∣∣2

=
1√

2πσN

∣∣∣∣⟨x| ⟨ϕ|ψ⟩(1− ig
⟨ϕ|A |ψ⟩
⟨ϕ|ψ⟩

p

)∫
dx′exp

(
− x′2

4σ2

)
|x′⟩
∣∣∣∣2

≃ 1√
2πσN

∣∣∣∣⟨x| ⟨ϕ|ψ⟩exp(−ig ⟨ϕ|A |ψ⟩
⟨ϕ|ψ⟩

p

)∫
dx′exp

(
− x2

4σ2

)
|x′⟩
∣∣∣∣2

≃ 1√
2πσN

∣∣∣∣∣∣∣⟨ϕ|ψ⟩exp
−

(
x− Re

(
g ⟨ϕ|A|ψ⟩

⟨ϕ|ψ⟩

))2
4σ2


∣∣∣∣∣∣∣
2

. (3.18)

As a result, the Gaussian distribution of the meter shifts by the real part of the
weak value gRe (Aw). We can thereby obtain the real part of the weak value as the
shift in the expectation value of the position of the meter by choosing successful
events in the post-selection.

The imaginary part of the weak value is also obtained by the post-selection
technique (Fig. 3.4). If we measure the momentum of the meter at time tf , the
probability distribution of the momentum is calculated as

Pr(p) ≃ 1√
2πσN

∣∣∣∣⟨ϕ| ⊗ ⟨p| (1− igAp) |ψ⟩ ⊗
∫
dx′exp

(
− x′2

4σ2

)
|x′⟩
∣∣∣∣2

=
1√

2πσN

∣∣∣∣⟨p| ⟨ϕ|ψ⟩(1− ig
⟨ϕ|A |ψ⟩
⟨ϕ|ψ⟩

p

)∫
dx′exp

(
− x′2

4σ2

)
|x′⟩
∣∣∣∣2

≃ 1√
2πσN

∣∣∣∣⟨ϕ|ψ⟩exp(−ig ⟨ϕ|A |ψ⟩
⟨ϕ|ψ⟩

p

)∫
dx′exp

(
− x2

4σ2

)
⟨p|x′⟩

∣∣∣∣2
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≃ 1√
2πσN

∣∣∣∣⟨ϕ|ψ⟩exp(−σ2

(
p− g

2σ2
Im

(
⟨ϕ|A |ψ⟩
⟨ϕ|ψ⟩

)))∣∣∣∣2 , (3.19)

when g is small. The distribution of the momentum of the meter shifts by
gIm (Aw) /2σ

2, which is proportional to the imaginary part of the weak value.

The weak measurement is useful for precision measurements. Hosten and Kwiat
use the weak measurement to detect the spin Hall effect of light [21]. The infinites-
imal weak interaction of the effect was detected by the shift of the light, which is
proportional to the weak value. In the standard measurement scheme, the shift
caused by the interaction is restricted in the range of the spectrum of the observable
appearing in the interaction Hamiltonian. However, if we use the post-selection
technique, the shift is amplified beyond its spectrum. This amplification effect
is called “weak value amplification”, and the amplification effect is also used in
detection of the beam deflection in optical experiments [22].

From a technical point of view, there are discussions whether the weak measure-
ment scheme is useful for the detection or estimation of small effect of interactions
in a system. Koike and Tanaka showed that the weak measurement is not useful
in the estimation of the strength of interaction [23]. Since we dump unsuccess-
ful events of post-selection in the weak measurement, it is reasonable that the
weak measurement scheme is not useful in the statistical estimation. However,
the weak measurement is helpful when the system has systematic errors. If we
do not know what kind of errors exist in the system, we cannot treat the system
by exact statistical error models. Lee and Tsutsui show that the weak measure-
ment is helpful when we have such incomplete description of errors [24]. They
call the indeterminacy of errors “uncertainty”. If the system has the uncertainty,
the weak measurement is useful to detect or estimate parameters in the system.
For example, the experiment of detection of the spin Hall effect of light [21] was
performed by a relatively simple equipment of an optical system which does not
have an extraordinary noise proof. If the weak measurement can amplify the signal
beyond the uncertainty of the system, it allows us to measure the small effect of
interaction.

3.5 Danan’s Interferometer

There is an interesting example where the interpretation of the forward and back-
ward propagating states in the two-state vector formalism becomes relevant. Here
we mention it to show how it works with the interpretation involving real (but
negative) values of the generalized probability which is given by the weak value of
the corresponding projection operator. Later, we discuss another, novel example
with a modified setup in which the imaginary value of the generalized probability
appears, and demonstrate how it can be detected experimentally.

The first example was proposed by Danan et al. [44], where they use beam split-
ters (BS) and a Mach-Zehnder interferometer (MZI) (Fig. 3.5). The interferometer
is configured so that all incident photons go to a port below the interferometer in
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Fig. 3.5 (a). In this setup, the detected photons on the terminal detector should
come from the bottom path, which does not pass the interferometer.

Then we put a trick so that vertical oscillations are exerted on each mirror
with different frequencies. The output signal vibrates by the frequencies of the
mirrors which the detected photons passed. In the situation of Fig. 3.5 (a), the
detection of the frequency of the mirror C was expected. However, the frequencies
of the mirrors A and B were detected as well. Since the photons reflected by the
mirrors A and B are expected to go to a port below the interferometer, which is
not connected to the detector, this result is puzzling.

The detected photons seem to take the discontinued path, which does not
contact with the mirrors E and F. To provide an intuitive interpretation of this
result, the authors of [44] suggested to take account of both the forward and
backward propagating photons simultaneously. The forward propagating photons
which enter the interferometer go to a port below it and do not pass the mirror
F. On the other hand, the backward propagating photons, which enter from the
detector and go to the interferometer, go to the left port and do not pass the
mirror E. From the outcome of the experiment, one realizes that the only paths
where both the forward and backward propagating photons pass have affected the
output signals.

This suggests that, in order to see where the photons pass, we should con-
sider the forward and backward propagating photons simultaneously. The forward
propagating state of the photon, when it is reflected by the mirrors A, B and C,
is given by

|Ψ⟩ := 1√
3
(|A⟩+ i |B⟩+ |C⟩) , (3.20)

where |A⟩ , |B⟩ and |C⟩ are the localized states around the mirrors A,B and C.
The backward propagating state of the photon at the same time is given by

⟨Φ| := 1√
3
(⟨A|+ i ⟨B|+ ⟨C|) . (3.21)

The weak value of the projection operators on each site is calculated by the two-
states as

(PA)w = 1,

(PB)w = −1,

(PC)w = 1, (3.22)

(PE)w = 0,

(PF )w = 0.

The absolute value of the weak value of projection operators is regarded to rep-
resent the strength of the output signal of the frequency characteristics to the
mirror.
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Figure 3.5: (a) The experimental setup for Danan’s interferometer. Each labeled
mirror from A to F is a piezo driven mirror which vibrates around its horizontal
axis at each unique frequency. The Mach-Zehnder interferometer with the mirrors
A and B is aligned to emit all photons to a port below the interferometer. It seems
that all photons which are detected at the detector have passed the mirror C. (b)
However, the detected signal shows the characteristic frequencies of the mirrors
A, B and C. (c) Paths of the backward propagating photons. It suggests that
the backward propagating state passing the mirrors A, B and C affect the output
signal. (d) Paths in the vectorial representation.

Now we see how to reach the intriguing conclusion in detail for the setup Fig.
3.5 (a). It employs a polarized beam injected into the first polarization beam
splitter (PBS), which is produced with polarization at angle 54.7◦ so that one
third of the injected beam power goes to the lower arm and two thirds of the beam
power goes to the right arm. After passing the PBS1, the state of the beam is
then given by

1√
3

(
|H⟩ |C⟩+ i

√
2 |V ⟩ |E⟩

)
, (3.23)

where |H⟩ and |V ⟩ are the horizontal and vertical polarized states and |C⟩ and
|E⟩ are the localized states around the paths with the mirrors C and E. Now, BS1
splits the beam with equal power into two paths, |A⟩ and |B⟩, rendering the state
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as
1√
3
(|H⟩ |C⟩+ |V ⟩ (i |B⟩+ |A⟩)) . (3.24)

To describe the interference of the PBSs and BSs after passing mirrors A, B, and
C, we consider a vectorial representation of the paths by the three vectors, |a⟩, |b⟩
and |c⟩ (see Fig. 3.5 (d)) represented, for example, by |a⟩ = |V ⟩ |A⟩, |b⟩ = |V ⟩ |B⟩
and |c⟩ = |H⟩ |C⟩ around the mirrors A, B and C.

Suppose that we configure the setup so that all injected photons go to the
detector, and let the state of the injected photon be given by

|Ψ0⟩ :=

0
0
1

 := 0 |a⟩+ 0 |b⟩+ 1 |c⟩ . (3.25)

PBS1 and PBS2 can then be written as

PBS1 = PBS2 =

1 0 0

0 1/
√
3 i

√
2/
√
3

0 i
√
2/
√
3 1/

√
3

 , (3.26)

and BS1 and BS2 are

BS1 = BS2 =

 1/
√
2 −i/

√
2 0

−i/
√
2 1/

√
2 0

0 0 1

 . (3.27)

Thus, the pre-selected state around the mirrors A, B and C is found to be

|Ψ⟩ = BS1PBS1 |Ψ0⟩ =

1/
√
3

i/
√
3

1
√
3

 , (3.28)

which is equal to (3.24). If the MZI is aligned in such a way that all photons go
to the mirror E at BS2, it gives a phase π on the path |b⟩ by PSB(π), which is
defined by

PSB(θ) =

1 0 0
0 eiθ 0
0 0 1

 . (3.29)

The state after passing BS2 is

BS2PSB(π)BS1PBS1 |Ψ0⟩ =

 0

−i
√
2/
√
3

1/
√
3

 , (3.30)

from which one sees that indeed all photons end up in the detector,

PBS2BS2PSB(π)BS1PBS1 |Ψ0⟩ =

0
0
1

 . (3.31)
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Let us consider that the internal MZI does not provide an extra phase on the
path |b⟩, which means that it passes all photons to the port below it

BS2PSB(0)BS1PBS1 |Ψ0⟩ =

√
2/
√
3

0

1/
√
3

 . (3.32)

In this situation, the state of the backward propagating photon is determined from
the state at the detector,

⟨Φ0| :=
(
0, 0, 1

)
, (3.33)

as
⟨Φ| = ⟨Φ0|PBS2BS2PSB(0) =

(
1/
√
3, i/

√
3, 1/

√
3
)
. (3.34)

The pre- and post-selected states, |Ψ⟩ and |Φ⟩, are equal to (3.20) and (3.21).
To find the power spectrum of the final outcome, one needs to look at the

probability distribution of the position of the photons at the detector. For this
purpose, we note that a small tilt θA of the mirror A along the vertical axis causes
a vertical shift of the photon on the path of the mirror A, which is described by the
interaction Hamiltonian HintA := θAPAp, where PA is a projector for the localized
state around the mirror A and p is the vertical momentum of the photon.

To evaluate the effect explicitly, we prepare the injected photons in a Gaussian
distribution of position |ψG⟩ along the vertical axis. If all mirrors tilt independently
by the angles θi for i = A,B,C, the total Hamiltonian reads θAPAp + θBPBp +
θCPCp, where Pi for i = A,B,C are projectors for the localized states around
the mirror i. After the interaction, the distribution of the position Pr(x) of the
detected photons, which passed the post-selection, turns out to be

Pr(x) :=
∣∣⟨x| ⟨Φ| e−i(θAPAp+θBPBp+θCPCp) |Ψ⟩ |ϕG⟩

∣∣2
≃ |⟨x| ⟨Φ| (1 − i (θAPAp+ θBPBp+ θCPCp)) |Ψ⟩ |ϕG⟩|2

= |⟨x| ⟨Φ|Ψ⟩ (1− i (θAPAwp+ θBPBwp+ θCPCwp)) |ϕG⟩|2

= |⟨Φ|Ψ⟩|2 |⟨x| (1− i (θAPAw + θBPBw + θCPCw) p) |ϕG⟩|2 , (3.35)

where Piw := ⟨Φ|Pi |Ψ⟩ /⟨Φ|Ψ⟩ for i = A,B,C are weak values of projectors. Using
(3.22), we obtain

Pr(x) ≃ |⟨Φ|Ψ⟩|2 |⟨x| (1− i (θA − θB + θC) p) |ϕG⟩|2

= |⟨Φ|Ψ⟩|2
∣∣∣∣∫ dp⟨x|p⟩ (1− i (θA − θB + θC) p) ⟨p|ϕG⟩

∣∣∣∣2 . (3.36)

Using the Gaussian distribution of the vertical momentum,

⟨p|ψG⟩ :=
(

1

2πσ2
p

) 1
4

e
− p2

4σ2
p , (3.37)
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where σ2
p is the variance of p, we perform the integration over p in (3.36) to obtain

Pr(x) ≃
√

2σ2
p

π

∣∣1 + 2 (θA − θB + θC) xσ
2
p

∣∣2 e−2σ2
px

2

≃
√

2σ2
p

π

(
1 + 4 (θA − θB + θC)xσ

2
p

)
e−2σ2

px
2

, (3.38)

where we have ignored the higher order of the tilts θi. The probability distribution
of the position of the detected photons depends on the tilts of all mirrors, A, B
and C. Since the mirrors vibrate with each frequency, the power spectrum of the
position of detected photons has peaks around each frequency of the mirrors.

This illustrates an interesting relation between the interference and the post-
selection, and the usefulness of the interpretation of considering both the forward
and backward evolving states simultaneously as proposed in [44]. However, it
should be noted that this effect may also be explained by the leakage of the photons
from the interferometer caused by the oscillations of the mirrors, destroying the
complete destruction of the interference due to the oscillation [45].

To argue the advantage of the proposed interpretation, consider that we per-
form a projective measurement on the paths around each mirror. In the setup, we
cannot find photons around the mirrors E or F, but we can find photons around the
mirrors A, B or C. Although each situation is counter-factual, and hence we cannot
identify the path of each photon, it is counterintuitive to realize such outcomes
with only the forward propagating picture. In this respect, one may think that
the interpretation offers a simple, and possibly intuitive, way to understand the
output of the measurement without being involved in the detailed consideration
of the leakage or the imperfection of the setup.

3.6 Assignment of Values to Observables in the

TSVF

We here discuss the assignment of the value of an observable in a quantum process
to see a merit of introducing the two-state vector formalism.

Consider the quantum processes given by the pre-selection and the post-selection.
The impossibility of assignment of values of observables argued in the previous sec-
tion also exists in assignment of values of observables to the quantum processes.
If we consider the assignments of all results of measurements to observables, we
know that it is impossible since the Kochen-Specker theorem is based on the only
simultaneous assignments of eigenvalues on non-commutative observables. The
post-selected ensembles cannot help solve the difficulty of non-contextual assign-
ments of the results of measurements.

However, we can consistently assign eigenvalues to more observables when we
consider a quantum process. For example, consider a spin-1/2 system (Fig. 3.6).
Let a process be pre-selected by |x+⟩, which is a spin-up state in the x direction,
and be post-selected by |z+⟩ which is that in the z direction. Px+ and Pz+ repre-
sent projective operators corresponding the states respectively. We can calculate
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Figure 3.6: In a quantum process fixed from the spin-up state in the x direction to
the spin-up state in the z direction, we can assign the values of observables, both
σx and σz with probability unity.

the conditional probability of obtaining |x+⟩ and that of obtaining |z+⟩ at the
intermediate time of the process. It is given by the ABL probability rule as

Prob(Px+) =
1

N
| ⟨z+|Px+ |x+⟩ |2 = 1, (3.39)

Prob(Pz+) =
1

N ′ | ⟨z+|Pz+ |x+⟩ |2 = 1, (3.40)

where the normalization constants are defined by N := | ⟨z+|Px+ |x+⟩ |2+
| ⟨z+|Px− |x+⟩ |2 and N ′ := | ⟨z+|Pz+ |x+⟩ |2+ | ⟨z+|Pz− |x+⟩ |2. This means that
the processes which pass these pre- and post-selections can be seen to have the
values assigned to two non-commutative observables σx and σz. This assignment
of eigenvalues to observables in a quantum process can be represented by the weak
value. In fact, we can calculate the weak value of σx and σz as

σxw =
⟨z+|Px+ |x+⟩
⟨z + |x+⟩

= 1, (3.41)

σzw =
⟨z+|Pz+ |x+⟩
⟨z + |x+⟩

= 1, (3.42)

which are consistent with the above results (3.39) and (3.40). This comes from
the fact that the weak value is equal to the eigenvalue of the observable if either
the initial or final state is an eigenstate of the observable.

Aharonov et al. suggested that the weak value is the value of an observable in a
quantum process. There are reasons why the weak value is suitable for the value of
an observable. One of the reasons is that the weak value represents the consistent
assignment of eigenvalues to observables which can be obtained by intermediate
projective measurements with probability unity. However, there is a crucial reason
which comes from the concept of assignment of the value of an observable. If we
suppose the weak value as the value of an observable in a quantum process, we
find that the weak value has interesting features as the assignment of the value of
an observable. Since we gives the projective measurement which will be performed
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on the system as the boundary condition of the system in this formalism, we only
assign eigenvalues of observables in a quantum process which are actually mea-
sured at the post-selection on the system. It means that this formalism naturally
excludes the counter-factual assignment of eigenvalues to observables which is one
of the assumptions of the Kochen-Specker theorem. To avoid the conflict with the
Kochen-Specker theorem, we must assign either factual values to observables or
assign eigenvalues not to all observables. The assignment of values to observables
by the weak value avoids the conflict with the theorem by the factual assignment
of eigenvalues to only a part of observables. This ensures that the weak value is
capable of consistent for the assignment for the value of an observable.

3.7 Is Weak Value the Element of Reality?

If the weak value is succeeded for the assignment of the value of an observable in
a quantum process, it may be possible to interpret the weak value as the value of
an observable corresponding to the element of reality of the observable. However,
the weak value does not satisfy the original definition of the value corresponding
to the element of reality, and hence we need to discuss in what sense it can be
regarded as the element of reality.

First, the value corresponding to the element of reality must be obtained with-
out disturbing the physical system in its measurement according to the EPR argu-
ment [3]. We can practically measure the weak value in a quantum process by the
weak measurement, which hardly disturb the system. The two-state vector formal-
ism supposes that all boundary conditions of the system are given at first. These
boundary conditions correspond to projective measurements at each time, which
are pre-selections and post-selections of the system. If we perform a projective
measurement A at an intermediate time of the process, the quantum process gains
another boundary condition by the projective measurement of A. If we calculate
the probability about another projective measurement B in the process, we need
to consider the modified quantum process including the new boundary condition
of the measurement of A. We call the modification of the quantum process the
transition of the quantum process. It is due to the fact that the projective mea-
surement disturb the system. It is difficult to consider the result obtained in the
measurement which causes disturbance on the system as the value of an observ-
able. On the other hand, if we perform a weak measurement of the observable A
in a quantum process, we do not need to consider the transition of the quantum
process by the weak measurement since the interaction of the weak measurement
scarcely disturbs the quantum process. Ideally, we can perform the weak measure-
ment with an infinitesimally weak interaction. This means that we can obtain the
weak value as the value related to an observable by a practical measurement with
an infinitesimal disturbance on the system.

Second, the non-contextuality is one of the properties required to be an ele-
ment of reality. To examine the non-contextuality, we require that there is an
appropriate measurement to measure a definite value of the observable which cor-
responds to the element of reality. The weak values of observables can be measured
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simultaneously even if these observables are not mutually commutative. Since the
measurement interactions are weak, we can ignore the order of the weak measure-
ment in measurements of the weak value of observables which are not mutually
commutative. This suggests that we can measure the weak values as the values of
observables without depending on the context.

Although there are reasons to interpret the weak value as the value correspond-
ing to the element of reality, we cannot conclude that the weak value corresponds
to the element of reality in the original sense of the term given by EPR. Vaidman
suggests a new definition of the element of reality which includes the weak value
[14],

“If, with scarcely disturbing a process, we can infer with certainty
the value of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity.”

The word “predict” in the EPR version is replaced by “infer” in this definition.
The weak measurement requires a number of trials to obtain the weak value except
for the one corresponding to an eigenvalue of the observable which occurs when
either the initial or final state is in its eigenstate. Thus, in general, the value of
each event is randomized, and therefore we obtain the results from a distribution
whose mean is the weak value. The distribution of the results allows us to “infer”
the weak value of an observable. In the original definition of the element of reality
[3], the value related to the element must be obtained with probability unity in
an appropriate measurement. This is important for the traceability of the value of
the element in the time evolution by the sequential measurements. However, the
result of each event of the weak measurement does not represent the weak value
of the measuring observable. Therefore, we cannot obtain a definite value of an
observable in each event. This is one reason why the weak value is not the element
of reality in its original definition.
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Chapter 4

Complex Probability Measure in
Quantum Process

4.1 Motivation

In Chapter 2, we have seen that the dependence of the value of an observable on the
context, called the contextuality, prevents the assignment of value to the observable
in a way required to obtain the classical ensemble picture. In Chapter 3, we have
learned that the two-state vector formalism solves the contextuality problem, but it
is not enough to realize the classical ensemble picture we want. When we consider
the value of an observable associated with a quantum process, the weak value is
shown to provide a non-contextual assignment of values. However, since the weak
value cannot be determined by one shot of measurement, it cannot be regarded as
the element of reality in the EPR sense. Accordingly, the weak value does not yield
a definite value to an observable and, therefore, it does not realize the classical
ensemble picture we want either.

Now, let us turn our attention to the probability distribution in the classical
ensemble picture. In classical mechanics, the probability distribution of the value
of an observable in a system is determined by objects having a definite value of the
observable in the system. Conversely, we can obtain the distribution of the object
which assigns a definite value of an observable in accordance with the probability
distribution of the values of observables. The distribution of the objects and the
probability distribution of the values of observables must be directly related, if we
are to measure the value of an observable without disturbing the system, that is,
without disarranging the distribution of the objects in the system. In quantum
mechanics, on the other hand, due to the difficulty in the assignment of value for an
observable, we cannot assume the object having definite values. It should be noted
that the probability distribution used in quantum mechanics is simply to obtain
the outcomes of measurement, without assuming the distribution of objects, like
we do in the classical ensemble.

In this Chapter, in order to obtain the probability distribution of the value of
an observable in a quantum system in accordance with the distribution of under-
lying objects, we shall introduce a generalized probability to a quantum process.
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Namely, we allow the probability to take any complex value, rather than the real
value in the range [0, 1] as the ordinary probability does. It will be shown then
that the possible form of the generalized probability can be pinned down from
the consistency conditions required from the process under consideration. Inter-
estingly, we shall then find that the weak value is just the expectation value of
the observable under the generalized probability. The derivation of the general-
ized probability and the relation to the weak value are mentioned in [1], which we
review below.

In fact, the generalized probability, which is equivalent to the weak value of a
projector, is suitable for a probability distribution in the classical ensemble picture
for a number of reasons. First of all, the non-contextuality is ensured for the weak
value. Note that the ABL probability, which is also defined as a probability asso-
ciated with a quantum process, is contextual and cannot be used for the realizing
the classical ensemble. To see that the contextual dependence causes a problem
for the distribution of objects, consider a measurement to examine whether the
state is found in |a⟩ or not in a given process. Since there are many ways to de-
fine the context by means of a complete orthonormal set of projectors to which
Pa := |a⟩⟨a| belongs, the context dependent probability distribution cannot be de-
termined uniquely by |a⟩ only. It is not reasonable that the underlying ensemble
depends on innumerable, virtual and counter-factual projectors.

Secondly, we can repeatedly measure the weak value of an observable without
disturbing the system in any significant manner by the weak measurements. Since
the measurement does not disturb the system, one may expect that the distribution
in the quantum process is unchanged under sequential weak measurements. This
allows us to interpret the generalized probability as a distribution of the physical
objects like the probability associated with a classical system.

Third, we shall see that the generalized probability satisfies a set of conditions
respected by the probability distribution of a classical system. In particular, it
satisfies the law of total probability required for the conditional probability, unlike
the ordinary probability in quantum mechanics which does not satisfy it. This
implies that the generalized probability proposed here occupies a status which is
closer to the probability distribution in the classical ensemble picture. We shall
argue this point in Chapter 4.4.

4.2 Probability Measure for Single States

For our purposes, we first recall Gleason’s theorem [39] which deduces Born’s
statistical rule based on a probability measure fulfilling certain logical conditions.
Given a Hilbert spaceH of a finite dimension d ≥ 3, consider a real-valued measure
µ which is a map from the space of projection operators P(H) of H to non-
negatives, i.e., µ : P(H) → [0,∞) ⊂ R. The theorem states that, if the map is
bounded |µ(P )| <∞ and satisfies the partial additivity condition,

µ

(∑
i

Pi

)
=
∑
i

µ (Pi) , (4.1)
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for a set of projection operators {Pi} which are mutually orthogonal PiPj = ∅ (null
operator) for i ̸= j, then it has the form,

µ(P ) = tr(WP ), (4.2)

with a positive self-adjoint trace class operator W .
Since we have µ(∅) = 0 from (4.2), if the range of the map µ is restricted to

[0, 1], and if the condition µ(1) = 1 is further imposed, then obviously the map
can be interpreted as a probability measure with the attached meaning that ∅ and
1 represent propositions which are identically false and true, respectively. Note
that µ(1) = 1 implies tr(W ) = 1.

In quantum mechanics, the probability measure is indeed realized by such a
measure µ, where the operator W corresponds to the density operator ρ that
characterizes the state of the system, and this includes the case of a Hilbert space
of dimension d = 2 as well. For instance, if the system is described by a pure
state ρ = Pψ := |ψ⟩⟨ψ| for some normalized |ψ⟩ ∈ H, our probability measure is
required to yield

µ(Pψ) = 1, µ(Pψ⊥) = 0. (4.3)

Here, the first condition states that the probability of being in the state |ψ⟩ is unity,
whereas the second states that there is no probability assigned for an arbitrary
state |ψ⊥⟩ orthogonal to |ψ⟩ for which the projection is given by Pψ⊥ := |ψ⊥⟩⟨ψ⊥|.
Namely, the measure µ has no support for the subspace P(H⊥

ψ ) ⊂ P(H), whereH⊥
ψ

is the orthogonal complement to the one-dimensional subspace Hψ = span{|ψ⟩}.
We note that, because of (4.1) the second condition in (4.3) actually follows from
the first for a non-negative map µ, but this will no longer be the case when the
non-negativity is lifted.

From (4.3) one finds that W is uniquely determined as W = ρ = Pψ, and this
shows that the probability of the state |ψ⟩ being in the subspace Hi ⊂ H specified
by the projection Pi reads µ(Pi) = tr(ρPi), which is just Born’s statistical rule. It
follows that, if an observable A is measured in the pure state ρ, the expectation
value is given by

E(A) :=
∑
i

ai µ(Pi) = ⟨ψ|A|ψ⟩, (4.4)

where ai is an eigenvalue of A, and Pi is the corresponding projection appearing
in the spectral decomposition A =

∑
i ai Pi. One notable consequence of this is

that the expectation value satisfies the sum rule, E(A + B) = E(A) + E(B) for
any observables A, B which may not commute with each other. This implies that,
although the sum of the individual measurement outcomes of A and B may not
be an eigenvalue of A+B, on average they coincide.

4.3 Complex Measure for Double States

Now we extend the forgoing argument to a measure characterized by double states.
Let {|ψ⟩ , |ϕ⟩} be two states arbitrarily chosen from H except that they are neither
identical (up to a phase) nor orthogonal to each other (i.e., ⟨ϕ|ψ⟩ ≠ 0).
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Analogously to the single state case (4.3), given the two states {|ψ⟩ , |ϕ⟩} we
wish to require

µ(Pψ) = 1, µ(Pψ⊥) = 0,
µ(Pϕ) = 1, µ(Pϕ⊥) = 0,

(4.5)

where Pϕ = |ϕ⟩⟨ϕ| and Pϕ⊥ = |ϕ⊥⟩⟨ϕ⊥| with |ϕ⊥⟩ ∈ H⊥
ϕ . Obviously, in view of the

uniqueness of W , this is impossible unless the two states are identical. However,
the condition (4.5) can be met if one promotes the measure to a complex one.

To see this, let us invoke the generalized Gleason’s theorem [40] which extends
the range of the map from [0,∞) to the entire reals R. Demanding the condition
(4.1), one finds that such a measure µR admits the same form,

µR(P ) = tr(WRP ), (4.6)

but nowWR is a self-adjoint trace class operator, not necessarily positive. In order
to extend the range of the map to complex numbers C, we choose two such real
maps µR, µ

′
R : P(H) → R and consider

µC(P ) = µR(P ) + iµ′
R(P ), (4.7)

with the imaginary unit i. Clearly, the map µC still fulfills (4.1) by linearity and
is written as

µC(P ) = tr(WCP ), WC = WR + iW ′
R, (4.8)

where WR and W ′
R are the self-adjoint trace class operators associated with µR

and µ′
R, respectively. We then have:

Theorem If a map µC : P(H) → C for H with finite dimension d ≥ 3 satisfies
the partial additivity condition (4.1) and the consistency condition (4.5) for two
non-identical states |ψ⟩ , |ϕ⟩ with ⟨ϕ|ψ⟩ ̸= 0, then it has the form,

µC(P ) = tr(WCP ),

WC = α
|ψ⟩⟨ϕ|
⟨ϕ|ψ⟩

+ (1− α)
|ϕ⟩⟨ψ|
⟨ψ|ϕ⟩

, (4.9)

for some α ∈ C.
Proof. The complex measure fulfilling (4.1) is given by (4.8) with a trace class
operator WC . Let {|ei⟩; i = 1, . . . , d} be a complete orthonormal basis in H with
|e1⟩ = |ψ⟩. In terms of this we expand WC and |ψ⊥⟩ ∈ H⊥

ψ as

WC =
d∑

i,j=1

βij|ei⟩⟨ej|, |ψ⊥⟩ =
d∑
i=2

γi|ei⟩, (4.10)

with βij, γi ∈ C. From (4.5) we have

0 = µC(Pψ⊥) =
∑
i,j

∑
k,l≥2

βijγkγ
∗
l tr(|ei⟩⟨ej|ek⟩⟨el|)

=
∑
i,j≥2

βijγjγ
∗
i , (4.11)
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which implies βij = 0 for i, j ≥ 2 since γi can be chosen arbitrarily. The operator
WC is thus written, with some (unnormalized) states |ξ1⟩, |ξ2⟩ ∈ H⊥

ψ , as

WC = |ψ⟩⟨ψ|+ |ψ⟩⟨ξ1|+ |ξ2⟩⟨ψ|. (4.12)

Defining
|η⟩ = |ϕ⟩ − ⟨ψ|ϕ⟩ |ψ⟩ ∈ H⊥

ψ , (4.13)

we further decompose

|ξi⟩ = zi |η⟩+ |ξ′i⟩, i = 1, 2, (4.14)

with zi ∈ C so that ⟨ξ′i| ∈ H⊥
η in addition to ⟨ξ′i| ∈ H⊥

ψ . Similarly, if we define

|ζ⟩ = |ψ⟩ − ⟨ϕ|ψ⟩|ϕ⟩ ∈ H⊥
ϕ , (4.15)

we find that both |ϕ⟩ and |ζ⟩ belong to the linear space spanned by |ψ⟩ and |η⟩.
It follows that |ξ′i⟩ ∈ H⊥

ϕ and |ξ′i⟩ ∈ H⊥
ζ for i = 1, 2 as well. This observation

motivates us to rewrite (4.12) in favor of |ϕ⟩, |ζ⟩ and |ξ′i⟩ to find

WC = ωζζ |ζ⟩⟨ζ|+ ωϕϕ|ϕ⟩⟨ϕ|+ ωϕζ |ϕ⟩⟨ζ|+ ωζϕ|ζ⟩⟨ϕ|
+ωϕξ1|ϕ⟩⟨ξ′1|+ ωξ2ϕ|ξ′2⟩⟨ϕ|+ |ζ⟩⟨ξ′1|+ |ξ′2⟩⟨ζ|, (4.16)

where

ωζζ = 1− z∗1⟨ϕ|ψ⟩ − z2⟨ψ|ϕ⟩,
ωϕϕ = 1− ωζζ + ωζζ |⟨ψ|ϕ⟩|2,
ωϕζ = z2 + ωζζ⟨ϕ|ψ⟩,
ωζϕ = z∗1 + ωζζ⟨ψ|ϕ⟩,
ωϕξ1 = ⟨ϕ|ψ⟩, ωξ2ϕ = ⟨ψ|ϕ⟩.

(4.17)

On the other hand, an analogous argument for the state |ϕ⟩ demanded by (4.5)
shows that WC must also be of the form,

WC = |ϕ⟩⟨ϕ|+ |ϕ⟩⟨χ1|+ |χ2⟩⟨ϕ|, (4.18)

with some (unnormalized) states |χ1⟩, |χ2⟩ ∈ H⊥
ϕ . Since |ψ⟩ and |ϕ⟩ are not iden-

tical, we have |ζ⟩ ̸= 0. Comparing (4.16) and (4.18), we obtain

ωζζ = 0, |ξ′1⟩ = |ξ′2⟩ = 0, (4.19)

which implies

WC = |ψ⟩⟨ψ|+ z∗1 |ψ⟩⟨η|+ z2|η⟩⟨ψ|
= z∗1 |ψ⟩⟨ϕ|+ z2|ϕ⟩⟨ψ|. (4.20)

Since z1, z2 are free parameters but subject to ωζζ = 0, we arrive at (4.9) after
putting α = z∗1⟨ϕ|ψ⟩.

Having found the complex measure µC for double states specified by (4.5), we
may consider the expectation value of an observable A. Putting aside the question
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of the meaning of complex probability for the moment, and assuming if necessary
that (4.5) is valid also for the case of dimension d = 2, we just follow the standard
construction of the expectation value as we did in (4.4) to find

λ(A) :=
∑
i

ai µC(Pi)

= α
⟨ϕ|A|ψ⟩
⟨ϕ|ψ⟩

+ (1− α)
⟨ψ|A|ϕ⟩
⟨ψ|ϕ⟩

. (4.21)

We then notice that Aharonov’s weak value Aw = ⟨ϕ|A|ψ⟩/⟨ϕ|ψ⟩ arises at the
choice α = 1 of the expectation value λ(A). Although λ(A) is complex in general,
it becomes real at α = 1/2 where WC becomes self-adjoint. This shows that one
can find the measure µ which meets the condition (4.5) by extending the range
of the map only to the entire R, but we shall soon realize that the particular
measure obtained by α = 1/2 does not account for all possible cases when applied
to quantum processes. Notice also that, as for E(A) the sum rule holds, λ(A+B) =
λ(A) + λ(B), for any α.

Interestingly, in the single state limit, that is, in the limit |ϕ⟩ → |ψ⟩ the
ambiguity of α disappears and our complex measure µC reduces to the real measure
µ in (4.2) with the condition (4.3) enforced. Accordingly, the expectation value
λ(A) also reduces to the conventional one E(A) in (4.4).

Another observation worth mentioning is that, since under the single state |ψ⟩
the probability µ(Pϕ) = |⟨ψ|ϕ⟩|2 represents the compatibility of the double states
|ϕ⟩ and |ψ⟩,

one obtains the overall expectation value ofA by the weighted product, |⟨ψ|ϕ⟩|2λ(A).
The average value obtained after allowing the state |ϕ⟩ to vary freely may then be
evaluated by ∑

|ϕ⟩∈B

|⟨ψ|ϕ⟩|2λ(A) = ⟨ψ|A|ψ⟩, (4.22)

where the summation is over the states of a complete basis B of H.
So far, we have considered complex measures with WC of the type (4.9) which

fulfills (4.5). As one can extend the scope of single states from pure states to
mixed states by allowing W to be any positive self-adjoint operators with unit
trace, one may similarly extend the scope of double states by allowing WC to be
any operators with unit trace. If we let T (H) be the space of operators with unit
trace, we have

β WC + (1− β)W ′
C ∈ T (H), (4.23)

for WC ,W
′
C ∈ T (H) and β ∈ C. This shows that, if we regard T (H) as the space

of such generalized double states, the space is ‘convex’ in the complex sense. The
measure µC(P ) also provides the map Pr(P ;WC) := µC(P ) = tr(WCP ), which
enjoys the affine property,

Pr(P ; β WC + (1− β)W ′
C)

= β Pr(P ;WC) + (1− β) Pr(P ;W ′
C), (4.24)
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analogous to the conventional probability map. Along with the property
Pr(∅;WC) = 0 and Pr(1;WC) = 1, this may be considered as a formal support for
µC(P ) qualifying as a probability measure, albeit it is complex. To explore the
possible use of the complex measure, and thereby examine the physical significance
of the complex parameter α in (4.9) or (4.21), we now turn to the probability
measure for a quantum process.

4.4 Probability Measure for a Quantum Process

The complex measure for double states can be used to furnish the probability
measure for a quantum process |ψ⟩ → |ϕ⟩ by taking the time dependence of the
states properly into consideration. Let ti and tf be the initial time and the final
time at which the states |ψ⟩ and |ϕ⟩ are realized, respectively, and let t be the
time of ‘measuring’ the observable A in the period, ti ≤ t ≤ tf . To evaluate the
outcome of the measurement results, we would like to have the complex measure
relevant at time t. Assuming that our system is closed during the process, we have
a unitary operator U to describe the time development in the period. The forward
time-developed state at t from the initial state is then given by U(t− ti) |ψ⟩, and
the backward time-developed state at t from the final state is given by U(t−tf ) |ϕ⟩.
This suggests that, instead of the two states |ψ⟩, |ϕ⟩, we should use these forward
and backward time-developed states to characterize the measure (4.9). We are
thus led to

WC(t) = α
U(t− ti) |ψ⟩ ⟨ϕ|U †(t− tf )

⟨ϕ|U(tf − ti) |ψ⟩

+(1− α)
U(t− tf ) |ϕ⟩ ⟨ψ|U †(t− ti)

⟨ψ|U †(tf − ti) |ϕ⟩
, (4.25)

from which we can obtain the time-dependent measure, µC(P ; t) := tr(WC(t)P ).
The expectation value (4.21) then acquires the corresponding time-dependence by
the use of µC(P ; t), which is now characterized by the consistency condition at the
initial and final times,

µC(Pψ; ti) = 1, µC(Pψ⊥ ; ti) = 0,
µC(Pϕ; tf ) = 1, µC(Pϕ⊥ ; tf ) = 0.

(4.26)

However, the identification of the operator WC by (4.25) with the process
|ψ⟩ → |ϕ⟩ in the period [ti, tf ] is not quite correct, because our measure for double
states is originally given at a single time t and does not involve the time direction
in any intrinsic manner. In fact, one can also associate the sameWC in (4.25) with
the ‘dual’ process U(ti− tf ) |ϕ⟩ → U(tf − ti) |ψ⟩ in the same period, since the two
states that determine the double states at time t are equivalent in both cases (see

Fig. 4.1). In fact, with ˜|ϕ⟩ := U(ti − tf ) |ϕ⟩, ˜|ψ⟩ := U(tf − ti) |ψ⟩, one can equally
characterize our measure by

µC(Pϕ̃; ti) = 1, µC(Pϕ̃⊥ ; ti) = 0,

µC(Pψ̃; tf ) = 1, µC(Pψ̃⊥ ; tf ) = 0,
(4.27)
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Figure 4.1: The double state WC(t) in (4.25) can equally be associated with either
of the two pure processes, |ψ⟩ → |ϕ⟩ shown by the solid arrows or its dual U(ti −
tf ) |ϕ⟩ → U(tf − ti) |ψ⟩ shown by the dashed arrows, representing the forward and
backward time developments.

instead of (4.26). This indicates that the proper interpretation of WC is that it is
the measure corresponding to a linear superposition of the two processes, with the
parameter of the superposition α. In particular, the choice α = 1 yields the pure
process |ψ⟩ → |ϕ⟩ whereas the choice α = 0 yields another pure process ˜|ϕ⟩ → ˜|ψ⟩.

To establish a one-to-one correspondence between the measure and a quantum
process, we remove, for the moment, the ambiguity of the complex probability
measure by fixing the constant α = 1. As a result, we obtain the generalized
probability in a quantum process as

Definition 4 (Generalized probability measure in a quantum process) The
generalized probability in the quantum process from |ψ⟩ to |ϕ⟩ is

Prob(ψ→ϕ)(P ) :=
⟨ϕ|P |ψ⟩
⟨ϕ|ψ⟩

, (4.28)

where we ignore time evolution of the system.

After our suggestion was made, the same complex probability was also argued in
[50] from a different viewpoint. Through this identification we can establish a
one-to-one correspondence between the measure and the superposed process, and
thereby remove the ambiguity in the expectation value λ(A). As a result, λ(A)
agrees precisely with Aharonov’s weak value Aw for WC(t) when the process is
|ψ⟩ → |ϕ⟩.

We note at this point that the generalized probability measure does not include
the ABL-probability (3.9) which was introduced into the two-state vector formal-
ism as the probability of obtaining a result in a process. The ABL-probability
depends on the context of measuring projective operators and, hence, it cannot be
calculated without fixing the complete orthogonal states including the measuring
projector. Accordingly, the value of probability alters even if we exchange the
complete orthogonal states which are orthogonal to the measuring projector.
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4.4.1 Three-Box Paradox

We now argue that the generalized probability may deduce some paradoxical re-
sults, including the following three-box paradox [33, 35]. Consider three boxes
which contain one electrically charged particle as superposition of localized states
in each box. We describe the localized states of the particles in the three boxes as
|1⟩, |2⟩ and |3⟩, respectively. First, let us prepare the initial state in

|ψ⟩ := 1√
3
(|1⟩+ |2⟩+ |3⟩) . (4.29)

Consider that we perform a post-selection by the projective measurement,

|ϕ⟩ := 1√
3
(|1⟩ − |2⟩+ |3⟩) . (4.30)

In this process, the generalized probability of the projective operator of each lo-
calized state, P1 := |1⟩⟨1|, P2 := |2⟩⟨2| and P3 := |3⟩⟨3| is

Prob(ψ→ϕ)(P1) = 1

Prob(ψ→ϕ)(P2) = −1 (4.31)

Prob(ψ→ϕ)(P3) = 1.

It suggests that the particle exists both in the box 1 and in the box 3. Us-
ing the weak measurement, we can shift meters in proportion to the weak value
which is equal to the above generalized probability. This implies that, if we use
the interaction which depends on the electric charge of the particle for the weak
measurement, we can measure the weak value by a meter which interacts with
each box. The amount of shift by the weak measurement is proportional to the
shift, which will be observed when we prepare a particle in each box. Namely, the
effect, which we see at the three boxes as the shifts of the meters, is equivalent
and indicates that there exists precisely one particle in each box. This allows us to
regard that the generalized probability represents the distribution of the physical
objects in a quantum system. However, when examined carefully, we find that the
effect seen at the box 2 is the opposite to the other boxes. On physical grounds,
the effect observed at the box 2 is precisely the opposite effect observed at the
other two boxes. A possible interpretation of this is offered by the scenario in
which the particle in the box 2 has the opposite charge. This suggests that the
physical meaning of the sign of the generalized probability is that it shows the
positivity/negativity of the physical behavior it may yield.

4.4.2 Paths with Imaginary Generalized Probabilities

We here discuss the physical meaning of the imaginary value of the generalized
probability through a novel experimental setup with interferometers. Consider the
setup which consists of beam splitters (BS) and phase shifters (PS) as shown in
Fig. 4.2. There are two Mach-Zehnder interferometers in this setup, which are
configured so that, when we remove the phase shifters from the optical paths, all

41



incident photons go to each right port of the interferometers. After putting the
phase shifters into the optical paths, which causes a phase shift that amounts to
the multiplication by i to the state on each path, the incident photons go partly to
the right port of each interferometer. This ensures that photons have gone through
any optical paths in the interferometers before they are observed at the detector.

As before, let us tune the characteristic vertical oscillations of the mirrors with
different frequencies from each other, so that the output signal of the detector is
expected to arise at the frequency characteristic to the mirror on which the photon
hit before it is detected. However, in reality, one finds in the experiment that the
output signal arises only at the frequency of the mirror B (Fig. 4.2 (b)), not at the
frequencies of the mirrors A and C.

B

PBS1

Source

Detector

A

B

C
Mirror

Frequency

  Power 

spectrum

(a) (b)

Source

Detector

(c)

A

C
Mirror

PS1

FT lens

Frequency

  Power 

spectrum

(d)

BS1

BS2 PBS2
PS2

Figure 4.2: Experimental setup of the optical paths with imaginary generalized
probabilities. The Mach-Zehnder interferometers are aligned to emit all photons
to right ports of the interferometers when the phase shifters (PS) are removed.
After inserting the PSs on each path, the photons pass any of the paths where the
mirrors vibrate with different frequencies. (b) The detected signal vibrates only at
the frequency of the mirror B. (c), (d) If we consider the detector of the vertical
momentum of the photons, we find the signal from the mirrors A and C. The paths
through the mirrors A and C have imaginary generalized probabilities.
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We now show that the generalized probability with imaginary values provides
a coherent interpretation of this result. To this end, we first note that, when the
forward propagating state of the system is reflected by the mirrors A, B, and C,
the state of the photon is given by

|Ψ⟩ := 1√
3
(i |A⟩ − |B⟩ − |C⟩) , (4.32)

where |A⟩, |B⟩ and |C⟩ are the localized states around the mirrors A, B and C.
The backward propagating state of the photon at that time is similarly given by

|Φ⟩ := 1√
3
(|A⟩+ |B⟩ − i |C⟩) . (4.33)

The generalized probability on each site is thus found to be

Prob(Ψ→Φ)(PA) := PAw = −i, (4.34)

Prob(Ψ→Φ)(PB) := PBw = 1, (4.35)

Prob(Ψ→Φ)(PC) := PCw = i. (4.36)

Below, we shall find that the paths with the imaginary generalized probabilities are
not detected in the setup mentioned above. However, this does not indicate that
the photon does not exist in the paths with the imaginary generalized probability,
because the signal of the power spectrum is sensitive only to the real part of the
weak value in the present setup.

To observe the imaginary part, we consider the detection of the vertical mo-
mentum of the photons at the detector (see Fig. 4.2 (c)). This can be realized
by inserting an achromatic lens (FT lens), which induces an optical Fourier trans-
form, in front of the detector. We shall then obtain the output signal at the
frequencies of the mirrors A and C (see Fig. 4.2 (d)) as promised. This shows that
the imaginary part of the generalized probability also induces a physical effect on
the system under consideration, which in the present case is detected in the the
power spectrum of the vertical momentum. The measurement of the real part of
the weak value, which corresponds to that of the generalized probability, has been
considered in optical experiments [22], whereas we suggest that the imaginary part
of the generalized probability is also measurable by the proposed procedure.

Now we argue how the interference occurs in this setup Fig. 4.2 in detail. As
before, we arrange the setup in which the injected photons are polarized so that
two thirds of the beam power go to the lower arm and one third of the injected
beam power go to the mirror A. After passing PBS1, the state of the photon
becomes

1√
3
(
√
2 |H⟩ |MZI⟩+ i |V ⟩ |A⟩), (4.37)

where |H⟩ and |V ⟩ are horizontal and vertical polarized states and |A⟩ and |MZI⟩
represent localized states going to the mirror A and the MZI, respectively. PS1
changes the phase on |MZI⟩ by π/2, and BS1 splits the beam into

1√
3
(|H⟩ (− |B⟩+ i |C⟩) + i |V ⟩ |A⟩), (4.38)
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where |B⟩ and |C⟩ are localized states going to the mirror B and C. After PS2
changes the phase on the path with the mirror C by π/2, the state of the photon
becomes

1√
3
(|H⟩ (− |B⟩ − |C⟩) + i |V ⟩ |A⟩), (4.39)

which corresponds to the pre-selected state |Ψ⟩ in (4.32). We use, as before, the
vectorial representation of paths by three vectors, |a⟩, |b⟩ and |c⟩ (see Fig. 4.2)
given, for example, by |a⟩ = |V ⟩ |A⟩, |b⟩ = |H⟩ |B⟩ and |c⟩ = |H⟩ |C⟩ around the
mirrors A, B and C.

We first check that all photons end up in the detector in the situation where
two phase shifter are removed. First, the incident photon is given by the state,

|Ψ0⟩ :=

0
0
1

 := 0 |a⟩+ 0 |b⟩+ 1 |c⟩ , (4.40)

and PBS1 and PBS2 can be written as

PBS1 =

√
2/
√
3 0 i/

√
3

0 1 0

i/
√
3 0

√
2/
√
3

 , PBS2 =

√
2/
√
3 0 −i/

√
3

0 1 0

−i/
√
3 0

√
2/
√
3

 , (4.41)

whereas BS1 and BS2 are

BS1 = BS2 =

1 0 0

0 1/
√
2 i/

√
2

0 i/
√
2 1/

√
2

 . (4.42)

The destructive interference on the port below BS2 requires a phase shift by π
through PS in the optical length on |b⟩,

PS =

1 0 0
0 −1 0
0 0 1

 . (4.43)

In this situation, all photons go to the detector, which can be confirmed directly,

PBS2BS2PSBS1PBS1 |Ψ0⟩ =

0
0
1

 . (4.44)

We then consider installing PS1 and PS2, which are written as

PS1 = PS2 =

1 0 0
0 1 0
0 0 i

 . (4.45)

Accordingly, the pre-selected state is given by

|Ψ⟩ := PS2BS1PS1PBS1 |Ψ0⟩ =

 i/
√
3

−1/
√
3

−1/
√
3

 . (4.46)
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Analogously, the post-selected state is obtained by building up necessary factors
on the state at the detector,

⟨Φ0| :=
(
1, 0, 0

)
, (4.47)

as
⟨Φ| := ⟨Φ0|PBS2BS2PS =

(
−i/

√
3,−i/

√
3, 1/

√
3
)
. (4.48)

The pre- and post-selected state are expected forms (4.32) and (4.33).
Then, the distribution of the position Pr(x) of the detected photons, which

passed the post-selection, is evaluated as we have done before in (3.35). The result
is

Pr(x) :=
∣∣⟨x| ⟨Φ| e−i(θAPAp+θBPBp+θCPCp) |Ψ⟩ |ϕG⟩

∣∣2
≃ |⟨x| ⟨Φ| (1 − i (θAPAp+ θBPBp+ θCPCp)) |Ψ⟩ |ϕG⟩|2

= |⟨x| ⟨Φ|Ψ⟩ (1− i (θAPAwp+ θBPBwp+ θCPCwp)) |ϕG⟩|2

= |⟨Φ|Ψ⟩|2 |⟨x| (1− i (θAPAw + θBPBw + θCPCw) p) |ϕG⟩|2 , (4.49)

where Piw := ⟨Φ|Pi |Ψ⟩ /⟨Φ|Ψ⟩ for i = A,B,C are the weak values of the pro-
jectors. Since these weak values are just the generalized probabilities (4.36), we
have

Pr(x) ≃ |⟨Φ|Ψ⟩|2 |⟨x| (1− (θA + iθB − θC) p) |ϕG⟩|2

= |⟨Φ|Ψ⟩|2
∣∣∣∣∫ dp⟨x|p⟩ (1− (θA + iθB − θC) p) ⟨p|ϕG⟩

∣∣∣∣2 . (4.50)

Using the Gaussian distribution of the vertical momentum,

⟨p|ψG⟩ :=
(

1

2πσ2
p

) 1
4

e
− p2

4σ2
p , (4.51)

where σ2
p is the variance of p, we perform the integration in (4.50), and ignoring

the higher order of the tilts θi, we obtain

Pr(x) ≃
√

2σ2
p

π

∣∣1 + 2 (θB − i (θA − θC))xσ
2
p

∣∣2 e−2σ2
px

2

≃
√

2σ2
p

π

(
1 + 4θBxσ

2
p

)
e−2σ2

px
2

. (4.52)

This shows that the probability distribution of the position of the detected photons
depends only on the tilt of the mirror B, which implies that the power spectrum
of the position has a marked peak at the frequency of the mirror B which is in the
path with a real generalized probability.

Now, to find the contribution of imaginary generalized probabilities, we con-
sider the power spectrum of the vertical momentum Pr(p) given by

Pr(p) :=
∣∣⟨p| ⟨Φ| e−i(θAPAp+θBPBp+θCPCp) |Ψ⟩ |ϕG⟩

∣∣2
≃ |⟨Φ|Ψ⟩|2 |(1− i (θAPAw + θBPBw + θCPCw) p) ⟨p|ϕG⟩|2

= |⟨Φ|Ψ⟩|2 |(1− (θA + iθB − θC) p)|2 |⟨p|ϕG⟩|2

≃ |⟨Φ|Ψ⟩|2 (1− 2 (θA − θC) p) |⟨p|ϕG⟩|2 , (4.53)

45



where we have ignored the higher order of θi. In contrast to the previous case of
the position, this time we do find that the probability distribution of the vertical
momentum depends only on the tilts of the mirrors A and C which are in the paths
with imaginary generalized probabilities.

Note that the setup of Danan’s interferometer (Section 3.5), for which the real
part of the generalized probability is significant, has symmetrical arrangement of
paths of the photons, whereas the setup of the present interferometer, for which
the imaginary part of the generalized probability is significant, has asymmetrical
arrangement of paths due to the phase shifters. If we remove the phase shifter
from our setup, these generalized probabilities become real-valued as one might
expect.

Finally, we wish to remark on the implication of the complex nature of our
generalized probability. We recall that the conjugate of a generalized probability
of a process corresponds to that of the reversed process in time. This implies
that, if the process is described by a complex-valued generalized probability, the
reversed process has a different generalized probability distribution given by its
conjugate. In this respect, the present experiment with the asymmetry on the
paths of the photons provides an example of the system which has a counterpart
system, that is, the system governed by the conjugate generalized probability with
the forward and backward propagating states interchanged. The processes with
real probabilities do not afford such conjugate processes.

4.5 Weak Value in a Quantum Process

The expectation value of the observable A with the spectral decomposition A :=∑
i aiPi, in a quantum process is given by

⟨A⟩ψ→ϕ :=
∑
i

aiProb(Pi) (4.54)

where Prob(Pi) is the ABL-probability (3.9). To obtain an expectation value, we
perform a projective measurement of A in the intermediate time between the pre-
and post-selections, then average the results with its frequency of the successful
case of pre- and post-selections. This expectation value is based on the ABL
probability which is easily understood from the operational point of view.

However, we have found another probability in the quantum process in the
previous section. Let Prob(ψ→ϕ)(P ) be the generalized probability measure in
a quantum process. The weak value of an observable A is given by using this
probability measure (Fig. 4.3) as

Aw :=
∑
i

aiProb(ψ→ϕ)(Pi), (4.55)

where A has a spectral decomposition A :=
∑

i aiPi, {Pi} are mutually orthogonal
projective operators. The weak value is also a measurable quantity of an observ-
able. Note that our generalized probability measure manifests itself in the weak
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. . . .

Figure 4.3: The expectation value with the generalized probability in a process
becomes the weak value in the process.

value through the spectral decomposition of an observable. The observation of the
weak value being an expectation value under the generalized probability measure
has been pointed out earlier in our paper [1].

As we have argued, the weak value of a projective operator can be interpreted
as the generalized probability of finding the state of the system. Even though the
weak value is not always in the range [0,1], the probabilistic aspect of the weak
value can ‘explain away’ the paradoxical situations. For example, Yokota et al.
examine Hardy’s paradox by the weak value based on the interpretation that it
gives the probability of finding photons in optical paths [26].

4.6 Conditional Probability in a Quantum Pro-

cess

In the multiple two-state formalism, we require all boundary conditions on a system
which correspond to results of projective measurements in the system at each time.
The transition law of the probability distributions for two-state can be explained
by updating these boundaries. To see this, consider a quantum process from |ψ⟩
to |ϕ⟩. If we perform a projective measurement of a observable A and obtain a
result a as one of the eigenvalues of A, then the quantum process acquires a new
boundary condition occurred by the measurement A at the measurement time.
After the measurement of A, the boundary conditions of the quantum process are
updated by the state |a⟩, and the two-state is also updated to a new two-state
corresponding the quantum process from |a⟩ to |ϕ⟩.

We now take a look at this transition of probability distribution more closely
based on the generalized probability in a quantum process. The probability of find-
ing the state |a⟩ in the quantum process from |ψ⟩ to |ϕ⟩ is given by Prob(ψ→ϕ)(Pa)
and the probability of finding the state |b⟩ in it is given by Prob(ψ→ϕ)(Pb).

After a projective measurement of Pa, the probability of finding the state |b⟩
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is updated by the conditional probability, which is given by

Prob(ψ→ϕ)(Pb|Pa) :=
⟨ϕ|Pb |a⟩
⟨ϕ|a⟩

= Prob(a→ϕ)(Pb). (4.56)

This form of the conditional probability is derived from two assumptions, one of
which is the law of total probability:

Prob(ψ→ϕ)(Pb) =
∑
a

Prob(ψ→ϕ)(Pb|Pa)Prob(ψ→ϕ)(Pa) (4.57)

The from (4.56) satisfies this law,

Prob(ψ→ϕ)(Pb) =
⟨ϕ|Pb |ψ⟩
⟨ϕ|ψ⟩

=
∑
a

⟨ϕ|PbPa |ψ⟩
⟨ϕ|ψ⟩

=
∑
a

⟨ϕ|Pb |a⟩
⟨ϕ|a⟩

⟨ϕ|Pa |ψ⟩
⟨ϕ|ψ⟩

=
∑
a

Prob(ψ→ϕ)(Pb|Pa)Prob(ψ→ϕ)(Pa) (4.58)

The other assumption is the independence of the updated probability from
the past boundary condition. For example, this indicates that the conditional
probability Prob(ψ→ϕ)(Pb|Pa) does not depend on the initial boundary condition
|ψ⟩. If we measure Pa in a quantum process from |ψ⟩ to |ϕ⟩, the transition of
probability represents the acquisition of knowledge of the result of a measurement
when the measurement causes no disturbance on a system.

The proof of the conditional probability form (4.56) is given as follows. Con-
sider the conditional probability which is independent of the initial state |ψ⟩. Let
the initial state be described by |ψ⟩ := exp (iPb′θ) |ξ⟩, where |ξ⟩ is a certain state
and θ is a parameter. Since the conditional probability does not depend on θ, we
find

∂

∂θ
Prob(ψ→ϕ)(Pb|Pa) = 0. (4.59)

If we take the derivative of the law of total probability with respect to θ, we find

∂

∂θ
⟨ϕ|Pa |ψ⟩ =

∑
b

Prob(ψ→ϕ)(Pb|Pa)
∂

∂θ
⟨ϕ|Pb |ψ⟩

⟨ϕ|PaPb′eiPb′θ |ξ⟩ =
∑
b

Prob(ψ→ϕ)(Pb|Pa) ⟨ϕ|PbPb′eiPb′θ |ξ⟩

⟨ϕ|PaPb′ |ψ⟩ = Prob(ψ→ϕ)(Pb′|Pa) ⟨ϕ|Pb′ |ψ⟩ . (4.60)

As a result, we obtain

Prob(ψ→ϕ)(Pb′|Pa) =
⟨ϕ|PaPb′ |ψ⟩
⟨ϕ|Pb′ |ψ⟩

=
⟨ϕ|Pa |b′⟩
⟨ϕ|b′⟩

, (4.61)
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(a)

(b)

Figure 4.4: The probability in the one-state formalism does not satisfy the law
of total probability. (a) If we ignore the first measurement of A, the number of
events is less than that without the measurement of A. (b) Conversely, there are
ensemble where we find |b1⟩ but do not find anywhere in the measurement A. This
prevents us from recovering the underlying ensemble from the probability.

as expected.
The transition law of the probability in a quantum process, which is reasonable

for the description of distribution, gives a clear advantage to the two-state vector
formalism against the standard quantum mechanics. If all probabilities were [0, 1],
the transition of the distribution could be interpreted just as a selection of the pro-
cesses. Nonetheless, even though the generalized probability is complex valued, we
may call the transition of the probability distribution by conditional probabilities
as a selection of processes. Recall that the probability in the one-state formalism
does not satisfy the transition law of the probability (Fig. 4.4), and the proba-
bility of obtaining a state |a⟩ in a prepared state |ψ⟩ is described by Born’s rule
as p(a) := |⟨a|ψ⟩|2. Similarly, the probability of obtaining a state |b⟩ is given as
p(b) := |⟨b|ψ⟩|2. The conditional probability of obtaining the state |b⟩ after finding
the state |a⟩ is given by p(b|a) := |⟨b|a⟩|2. Obviously, these probabilities cannot
satisfy the law of total probability:

p(b) = |⟨b|ψ⟩|2 ̸=
∑
a

|⟨b|a⟩|2|⟨a|ψ⟩|2 =
∑
a

p(b|a)p(a) (4.62)

We may ascribe this inconsistency of probability to the measurement disturbance
incurred to a quantum state of the system. Otherwise, we may also regard it as
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introducing another transition law, which is described by using the instruments
corresponding to a map between density operators of a system. In the one-state
formalism, since we calculate the pullback of the probabilities represented by the
the density operator, the probability itself does not follow the standard treatment
of a probabilistic measure.

In this respect, it should also be mentioned that the complex amplitude prob-
ability satisfies the law of total probability:

⟨b|ψ⟩ =
∑
a

⟨b|a⟩⟨a|ψ⟩ (4.63)

It should be noted, however, that it cannot be directly interpreted as probability,
since it does not satisfy the normalization condition required for an ordinary prob-
ability of relative frequency. Note also that the square of the complex amplitude
corresponds to the probability, but it does not satisfy the law of total probability.
According to our derivation, the probability measure on the projective operators
has two different forms. One of them is the density operator representation in the
standard formulation, which is the square of the complex amplitude. The other
is the generalized probability representation, which corresponds to the probabil-
ity in a quantum process. We thus argue that, since the complex amplitude is
not the probability measure on projective operators, it is not quite convenient for
recovering the classical ensemble picture in a quantum system through probability.

4.7 Joint Probability in a Quantum Process

The joint probability in a quantum process is defined by the conditional prob-
ability as

Prob(ψ→ϕ)(Pa, Pb) := Prob(ψ→ϕ)(Pb|Pa)Prob(ψ→ϕ)(Pa)

=
⟨ϕ|Pb |a⟩
⟨ϕ|a⟩

⟨ϕ|Pa |ψ⟩
⟨ϕ|ψ⟩

=
⟨ϕ|PbPa |ψ⟩

⟨ϕ|ψ⟩
. (4.64)

Although the probability in a quantum process is defined only for projective op-
erators, the joint probability has the same form as the probability on a product
of the projective operators PaPb (Fig. 4.5). Another form of the joint probability
as the expectation value of the product form PaPb is defined at [49], which is the
probability in the standard formulation.

The joint probability of an observables on distinct systems is also defined as
above with the boundary conditions of the total system. For example, consider
that the system H1 is a process from |ψ⟩ to |ϕ⟩ and the system H2, which is L2(R),
is a process from a localized state around xi, |xi⟩ to that around xf , |xf⟩. After
we let these two systems interact by the von-Neumann interaction gAp, the two-
state of the total system at the time is given by the forward propagating state
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Figure 4.5: The generalized probability distributions of the forward propagating
process. The joint probability for Pa and Pb is given by the product of the two
probability. The joint probability depends on the order of measurements.

|Ψ⟩ := e−igAp |ψ⟩ |xi⟩ and the backward propagating state ⟨Φ| := ⟨ϕ| ⟨xf |. Then
the joint probability of Pa ⊗ 1 and 1 ⊗ |x⟩⟨x| is given by

Prob(Ψ→Φ)(Pa, |x⟩⟨x|) := Prob(Ψ→Φ)(|x⟩⟨x||Pa)Prob(Ψ→Φ)(Pa)

=
⟨Φ| 1 ⊗ |x⟩⟨x| |Ψ′⟩

⟨Φ|Ψ′⟩
⟨Φ|Pa ⊗ 1 |Ψ⟩

⟨Φ|Ψ⟩

=
⟨Φ|Pa ⊗ |x⟩⟨x| |Ψ⟩

⟨Φ|Ψ⟩
(4.65)

where |Ψ′⟩ := |a⟩ |xi⟩.
The joint probability of the states separated in time can be also defined. Let

the system evolve according to the Hamiltonian H. Then the joint probability of
the state |a⟩ at time t1 and the state |b⟩ at t2(> t1) is described as

Prob(ψ→ϕ)(Pa, Pb) :=
⟨ϕ|U(tf − t2)PbU(t2 − t1)PaU(t1 − ti) |ψ⟩

⟨ψ|U(tf − ti) |ϕ⟩

=
⟨ϕ|U(tf − t2)PbU(t2 − t1) |a⟩

⟨ϕ|U(tf − t1) |a⟩
⟨ϕ|U(tf − t1)PaU(t1 − ti) |ψ⟩

⟨ϕ|U(tf − ti) |ψ⟩
=: Prob(ψ→ϕ)(Pb|Pa at t1)Prob(ψ→ϕ)(Pa) (4.66)

where U(t) := exp (−iHt).
We note that we cannot define the simultaneous joint probability for non-

commutative projectors as we cannot do so in the standard formulation. Since
the joint probability is defined by the product of two projectors, the value of the
probability depends on the order of them. This is one of the reasons for preventing
the construction of an underlying ensemble in a quantum system.

There is an experiment to measure the joint probability (4.64) for two non-
commutative observables. The joint probability in a quantum process is mea-
sured by the sequential weak measurement. The sequential weak measurement is
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Gaussian states

system meter 1

measurement of position

meter 2

measurement of position

Figure 4.6: The simple experimental setup for the sequential weak measurement
of observables, A and B. We can obtain the joint probability from the correlation
between the positions of meters, x1 and x2.

a method to measure the sequential weak value in a quantum process as a cor-
relation of measured variables on a meter. This weak measurement scheme with
multiple weak interactions, which is introduced by Mitchison et al [37], requires
multiple meters corresponding to each interaction.

Let us consider the sequential weak measurement on a system with two meters
(Fig. 4.6). The two meters couple with the system respectively by interactions,
Hint1 = gAp1, Hint2 = gBp2, where A is the first measured observable and B is the
second that. g is a common interaction strength and p1, p2 are momenta of each
meters. We perform pointer measurements for each meter to obtain results x1, x2.
After the post-selection, we calculate the average of the product of x1x2, which is
described by

E[x1x2]selected =
g2

2
Re ((A,B)w + (A)w(B)∗w) +O(g3), (4.67)

where E[·]selected means the average over post-selected results. (A,B)w is called a
sequential weak value, defined by

(A,B)w =
⟨ϕ|AB|ψ⟩
⟨ϕ|ψ⟩

, (4.68)

when we ignore time evolution of the system. If we put A = Pa and B = Pb, this
is just the joint probability of |a⟩ and |b⟩ in the process.

Quantum Cheshire Cat

Even if we consider the joint probability of two commutative observables, it may
still bring about nontrivial results, and the Quantum Cheshire cat is one of the
examples [19] (Fig. 4.7). Consider the weak measurements of the spin of the spin
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Figure 4.7: The experimental setup for Quantum Cheshire cat suggested in [19].
We weakly measure local spin components in the z direction, which corresponds to
a polarization of photon in this setup, at each arm. If we pre-select the initial state
by |Ψ⟩ and post-select the final state by |Φ⟩, we find that the spin component exists
in the right arm. However, the photon exists in the left arm of the interferometer
according to the generalized probability.

1/2 particle system. We prepare the initial state as

|Ψ⟩ := (i |L⟩+ |R⟩) |z+⟩ /
√
2, (4.69)

where |L⟩ and |R⟩ are localized states around the two distant region, which are
named Left and Right, and |z+⟩ represents the spin-up state in the z direction.
Let us perform the post-selection which consist of a phase shifter (PS), a half wave
plate (HWP) and beam splitters (BS) by the state

|Φ⟩ := (|L⟩ |z+⟩+ |R⟩ |z−⟩) /
√
2. (4.70)

The probabilities for the states |L⟩ and |R⟩ are

Prob(Ψ→Φ)(PL) = 1

Prob(Ψ→Φ)(PR) = 0.

Also we can calculate the joint probability of the position and the spin. The
expectation value for the spin components in the z direction is defined by the joint
probability as

⟨σLz ⟩ := Prob(Ψ→Φ)(P(z+)PL)− Prob(Ψ→Φ)(P(z−)PL) = 0,

⟨σRz ⟩ := Prob(Ψ→Φ)(P(z+)PR)− Prob(Ψ→Φ)(P(z−)PR) = 1.

This shows that the particle is in the Left region while the spin component exists
in the Right region, which is impossible in classical mechanics. This result is
demonstrated by the experiment using a neutron system [20], where the weak
measurement is used for the local region to measure the joint probability.
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Before proceeding, however, we mention that, in terms of the transition of prob-
ability in measurements, the two formulations contain clearly different treatments.
In quantum mechanics, there is the projection postulate to describe the transition
of probability distribution. The projection postulate determined the quantum
state after a projective measurement. For example, after a projective measure-
ment of a projector, the quantum state becomes an eigenstate of the projector. It
derives from the uniqueness of the probability distribution which indicates unity
for the measuring projector. In the two-state vector formalism, we do not consider
the transition of the two-state on a system since the two-state is given by the
factual boundary conditions which correspond to pre- and post-selections on the
system.

The generalized probability introduced in this paper provides another formula-
tion which differs form the two-state vector formalism in the transition of probabil-
ity. We derived a generalized probability measure from mathematical requirements
of the probability in a quantum process and derived a conditional probability in
a quantum process. Since the conditional probability represents the transition of
the probability by the acquisition of knowledge, we expect that the transition of
the generalized probability given by the conditional probability provides an expla-
nation of the transition of the probability in measurements. That this is in fact
the case will be seen when we discuss the description of measurement procedures
by means of the generalized probability next in Chapter 5.
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Chapter 5

Measurement in Quantum
Process

In this chapter, we see the measurement scheme in the time-symmetric formulation
in terms of the generalized probability.

5.1 Direct Measurement Scheme of Standard Quan-

tum Mechanics

For comparison, we begin by reviewing the measurement scheme in the standard
quantum mechanics with a simple measurement setup. Consider a system prepared
in the state |ψ⟩ to measure the observable A which has the spectral decomposition
A =

∑
a aPa. The probability of obtaining a in the measurement is given by the

probability postulate [2] as

p(a) := Tr (Pa|ψ⟩⟨ψ|) . (5.1)

This is Born’s rule, which is the fundamental postulate of quantum mechanics.
The expectation value of the measurement outcome of A is thus given by

⟨A⟩ :=
∑
a

aTr (Pa|ψ⟩⟨ψ|) = Tr (A|ψ⟩⟨ψ|) . (5.2)

This definition is quite natural so that the ensemble of the system is divided by
the results of measurement outcomes according to their probability. However, this
probability has no underlying ensemble as mentioned previously.

5.2 Indirect Measurement Scheme of Standard

Quantum Mechanics

The scheme mentioned above is of a direct measurement without considering the
measurement apparatus or meter explicitly. The measurement with a meter is
described in the indirect measurement scheme. A standard description of it goes
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system meter

measurement of position

Figure 5.1: The indirect measurement scheme in the standard quantum mechanics.
We prepare a localized state around xi as the initial state of the meter.

as follows. Consider a system prepared in the state |ψ⟩, and also consider a meter
prepared in the state |xi⟩ which is a localized state around x = xi in L2(R). The
projective measurement of the observable A on the system uses the instantaneous
von-Neumann interaction with the Hamiltonian Hint := δ(t− tint)gAp, where p is
the momentum of the meter and g is the strength of the interaction.

After the interaction between the system and the meter, we measure the po-
sition of the meter. The probability of obtaining the meter in xf is calculated
as

Pr(xf ) := Trsys
(
|xf⟩ ⟨xf | e−igAp |ψ⟩ |xi⟩ ⟨ψ| ⟨xi| eigAp

)
=

(∑
a

∫
dpdp′⟨xf |p⟩⟨p|xi⟩⟨xi|p′⟩⟨p′|xf⟩eiga(p

′−p)|⟨ψ|a⟩|2
)

=
∑
a

δ(xf − (xi + ga))|⟨ψ|a⟩|2. (5.3)

After tracing out the system state, we find that the shifts of the position of
the mater agree with the results in the direct measurement scheme. Indeed, the
expectation value of the results leads

⟨xf⟩ =

∫
dxfxfp(xf )

=
∑
a

(xi + ga)|⟨ψ|a⟩|2

= xi + g⟨A⟩, (5.4)

from which we obtain the expectation value of the measuring observable A by the
amount of the shift in the position of the meter.
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5.3 Projective Measurement and the Weak Mea-

surement in Quantum Processes

In the two-state vector formalism, since a system is described by the forward and
backward propagating states, the conditional expectation value determined from
these states is introduced as the value to be measured for a observable. If we take
the ABL-probability rule in place of Born’s rule, we obtain

⟨A⟩ψ→ϕ :=
∑
i

aiProb(Pi), (5.5)

where Prob(Pi) is the ABL probability. This is the conditional expectation value
of the observable in the two-state vector formalism.

If, instead, we want to measure the expectation value of the initial state in the
formalism, we need to use the one-state described in [36], which corresponds to the
situation where only the pre-selection is made for the system. Following discussion
given before, we prepare the maximally entangled state between the system and
the meter as the final boundary condition, and use the ABL-probability formula
to derive the expectation value.

If, on the other had, we choose to take the generalized probability in a quantum
process in place of the probability given by Born’s rule, we find the weak value as
the value of an observable,

Aw :=
∑
i

aiProb(ψ→ϕ)(Pi) (5.6)

Now, let us consider the relation between the projective measurement and the
weak measurement in a process. For this, we first note that, since we interpret
the generalized probability as the distribution of the objects on a quantum sys-
tem, the generalized probability does not have to directly correspond to the result
of measurement. However, the transition of the generalized probability given by
the conditional probability may correspond to the transition caused by the pro-
jective measurement. If so, the description of such measurements in terms of the
generalized probability should be consistent with the transition of the generalized
probability.

Moreover, one may expect that there is an unified treatment for these measure-
ments in terms of the generalized probability in a process. In fact, one knows that
the conditional expectation value ⟨A⟩ψ→ϕ can be obtained operationally by the
projective measurement, whereas the weak value Aw can also be obtained opera-
tionally by the weak measurement. This suggests that one can perform the above
two different measurements by changing the strength of measuring interaction,
that is, if one weakens the interaction strength of the interaction of a projective
measurement, one observes that the measurement tends gradually to the weak
measurement. In other words, these two measurements are loosely connected by
changing the strength of the measuring interaction. We shall see that this is indeed
the case below.
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Figure 5.2: Measurement in a process is described by the underlying distribution
given by the generalized probability. Both the forward and backward propagating
processes appear in the description of the measurement.

5.4 Direct Measurement Scheme in Quantum Pro-

cesses

To confirm our conjecture stated above, let us express the above two expectation
values in terms of the generalized probability measure we introduced. First, the
conditional expectation value is rewritten as

⟨A⟩ψ→ϕ =
1

N

∑
i

aiProb(ψ→ϕ)(Pi)Prob(ϕ→ψ)(Pi), (5.7)

whereN is a normalization constant given byN =
∑

i Prob(ψ→ϕ)(Pi)Prob(ϕ→ψ)(Pi).
Second, from the weak value which is already expressed in terms of the generalized
probability (5.6), we notice that the real part of the weak value is written as

Re (Aw) =
1

N ′

∑
i,j

ai + aj
2

Prob(ψ→ϕ)(Pi)Prob(ϕ→ψ)(Pj), (5.8)

where N ′ is a normalization constant given by N ′ =
∑

i,j Prob(ψ→ϕ)(Pi)Prob(ϕ→ψ)

(Pj) = 1.
One then observes from the expression (5.13) that the real part of weak value

is independently affected by the two quantum processes, |ψ⟩ to |ϕ⟩ and |ϕ⟩ to |ψ⟩.
On the other hand, the conditional expectation value is also affected by the two
processes, but these are completely correlated with each other.

The above observation allows us to interpret that the conditional expectation
value (5.7) and the real part of the weak value (5.13) are given by the contributions
coming from the forward and backward propagating processes of the system which
are considered as two independent processes. Namely, we here interpret the com-
plex conjugate of the generalized probability as the backward propagating process.
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Put differently, we regard the complex conjugate of a generalized probability as
the same generalized probability in a reversed process. This is in fact consistent
with the conjugation rule, (

⟨ϕ|P |ψ⟩
⟨ϕ|ψ⟩

)∗

=
⟨ψ|P |ϕ⟩
⟨ψ|ϕ⟩

. (5.9)

More precisely, in the terms of the wave function, we have an analogy that the
backward propagating process is represented by the complex conjugate of the gen-
eralized probability. To see this, consider a process on L2(R) which is pre-selected
by |ψ⟩ and post-selected by a zero-momentum state |p = 0⟩. The generalized prob-
ability of finding the position of the system at x is described by

Prob(ψ→p=0)(Px) =
⟨p = 0|x⟩⟨x|ψ⟩

⟨p = 0|ψ⟩
=

ψ(x)∫
dx′ψ(x′)

, (5.10)

where ψ(x) is a wave function of the state |ψ⟩. The complex conjugate of this
generalized probability is

Prob(ψ→p=0)(Px)
∗ =

⟨ψ|x⟩⟨x|p = 0⟩
⟨ψ|p = 0⟩

=
ψ(x)∗∫
dx′ψ(x′)∗

. (5.11)

This all stems from the simple fact that the complex conjugate of the wave function
represents a backward propagating wave function according to the Schrödinger
equation,

iℏ(−1)
∂

∂t
ψ(x)∗ = Hψ(x)∗. (5.12)

The conjugate of the generalized probability which corresponds to the backward
propagating state bring another measurement, which is for the imaginary part of
the weak value. The imaginary part of weak value is rewritten as

Im (Aw) = −i
∑
i,j

ai − aj
2

Prob(ψ→ϕ)(Pi)Prob(ϕ→ψ)(Pj), (5.13)

This implies that if the meter which couples with a system by a measuring interac-
tion behaves to the forward and backward propagating states in an opposite way,
we can measure the imaginary part of the weak value on the system. The measure-
ment of the imaginary part of weak value by the measurement of the momentum
of a meter is one of the realizations of it.

To sum up, here we interpret that we can obtain the result of the projective
measurement when the forward propagating state meets the backward propagating
state at the same time, and we obtain the result of the weak measurement wherever
these propagating states are present. We shall show next that this interpretation
provides a reasonable explanation for the measurement procedure in the indirect
measurement in a process, in which we explain the reason why the normalization
constant of the conditional expectation value is different from that of the real part
of weak value.
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5.5 Indirect Measurement Scheme in Quantum

Processes

There is an ideal measurement procedure to measure the conditional expectation
value and the weak value in a system through the indirect measurement of a meter.
To discuss it, we first consider a setup of the ideal measurement in a process.

Recall that in the standard formulation, a projective measurement is achieved
by the von Neumann interaction between a system and a meter, where we obtain
the expectation value in the system from the measurement of the position in the
meter state. Similarly, to obtain the conditional expectation value and the weak
value of a system from a meter, we consider the quantum process of the meter,
which is pre-selected by a localized state |xi⟩ and post-selected by a zero momen-
tum state |p = 0⟩. As before, we suppose that the system is pre-selected in the
state |ψ⟩ and post-selected in the state |ϕ⟩.

After the system interacts instantaneously with the meter by the von-Neumann
type interaction gAp, in which A is the observable measured in the system and p is
the momentum of the meter, we perform a projective measurement of the position
x on the meter before the momentum post-selection on the meter. The weak value
of the position of the meter 1 ⊗ |x⟩⟨x| at the time is given by

(1 ⊗ |x⟩⟨x|)w =
⟨ϕ| ⟨p = 0| (1 ⊗ |x⟩⟨x|)e−igAp |ψ⟩ |xi⟩

⟨ϕ| ⟨p = 0| e−igAp |ψ⟩ |xi⟩

=

∑
a δ(xi + ga− x)⟨ϕ|a⟩⟨a|ψ⟩

⟨ϕ|ψ⟩
=

∑
a

δ(xi + ga− x)Paw′ , (5.14)

where Paw′ is the weak value of the projective operator Pa := |a⟩⟨a| on the original
quantum process of the system which is pre-selected by |ψ⟩ and post-selected by
|ϕ⟩. Since the joint generalized probability in the process is equal to the weak
value in the process in the total system, we define the generalized probability for
the position of the meter by the weak values

Prob(Ψ→Φ)(|x⟩⟨x|) := (1 ⊗ |x⟩⟨x|)w (5.15)

Prob(Φ→Ψ)(|x⟩⟨x|) := (1 ⊗ |x⟩⟨x|)∗w, (5.16)

where we write the initial state of the total system as |Ψ⟩ := |ψ⟩ |xi⟩ and the
final state of that as |Φ⟩ := |ϕ⟩ |p = 0⟩. The conditional expectation value of the
position x is calculated by (5.7) as

⟨x⟩xi→p=0 =
1

N

∫
dxxProb(Ψ→Φ)(|x⟩⟨x|)Prob(Φ→Ψ)(|x⟩⟨x|)

=
1

N

∫
dxx

∑
a

δ(xi + ga− x)Paw′

∑
a′

δ(xi + ga′ − x)P †
a′w′

=
1

N

∑
a

(xi + ga)Paw′P †
aw′
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system meter

weak measurement of position

Figure 5.3: The setup for the ideal weak measurement. We can extract the weak
value of the system by the weak measurement on the meter only. If we use the
projective measurement instead of the weak measurement, we can extract the
conditional expectation value of the system.

= xi +
g

N

∑
a

aPaw′P †
aw′

= xi +
g

N

∑
a

aProb(ψ→ϕ)(Pa)Prob(ϕ→ψ)(Pa)

= xi + g⟨A⟩ψ→ϕ. (5.17)

We thus find that the conditional expectation value of the shift of the position of
the meter is equal to the conditional expectation value of the observable A on the
system ⟨A⟩ψ→ϕ, which shows that this is indeed the ideal projective measurement
in a process.

Now, the weak value of the position of the meter is calculated from (5.13) as

Re (|x⟩⟨x|w) =
∫
dxdx′

x+ x′

2
Prob(Ψ→Φ)(|x⟩⟨x|)Prob(Φ→Ψ)(|x′⟩⟨x′|)

=

∫
dxdx′

(x+ x′)

2

∑
a

δ(xi + ga− x)Paw′

∑
a′

δ(xi + ga′ − x′)P †
a′w′

=
∑
a,a′

(
xi + g

a+ a′

2

)
Paw′P †

a′w′

= xi + g
∑
a,a′

(a+ a′)

2
Paw′P †

a′w′

= xi + g
∑
a,a′

(a+ a′)

2
Prob(ψ→ϕ)(Pa)Prob(ϕ→ψ)(Pa′)

= xi + gRe (Aw′) . (5.18)

This shows that the real part of weak value of the system is obtained from
the weak measurement of the position of the meter. Since the weak value of the
system is transported to the meter, this procedure is again considered to be the
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ideal weak measurement in a process (Fig. 5.3). We note that the real part of weak
value of the observable on system is extracted by the weak measurement of the
meter observable. It means that we need another weak measurement to measure
the weak value of the meter observable.

We next consider the weak measurement in the indirect measurement scheme,
in which the weak value of a system is obtained form the probability distribution of
results of a projective measurement on a meter. To this end, we prepare a Gaussian
distributed meter state |ψG⟩ and a system state |ψ⟩. After the instantaneous von-
Neumann type measurement interaction gAp, we post-select the meter by the zero
momentum state |p = 0⟩ and the system by |ϕ⟩. The generalized probability of
finding the meter in the position x after the interaction is given by

Prob(Ψ→Φ)(|x⟩⟨x|) =
⟨Φ| (1 ⊗ |x⟩⟨x|) |Ψ⟩

⟨Φ|Ψ⟩

=
⟨ϕ| ⟨p = 0| (1 ⊗ |x⟩⟨x|)e−igAp |ψ⟩ |ψG⟩

⟨ϕ| ⟨p = 0| |ψ⟩ |ψG⟩

=

∑
a

∫
dx′δ(x− ga− x′)ψG(x

′)⟨ϕ|a⟩⟨a|ψ⟩
⟨ϕ|ψ⟩⟨p = 0|ψG⟩

=

∑
a ψG(x− ga)⟨ϕ|a⟩⟨a|ψ⟩
⟨ϕ|ψ⟩⟨p = 0|ψG⟩

=

∑
a ψG(x− ga)Prob(ψ→ϕ)(Pa)

⟨p = 0|ψG⟩
, (5.19)

where Prob(ψ→ϕ)(Pa) is the generalized probability of finding the state |a⟩ in the
process and ψG(x) := ⟨x|ψG⟩. If we measure directly the position of the meter at
the time, the conditional expectation value of the position x is calculated as

⟨x⟩Ψ→Φ =
1

N

∫
dxxProb(Ψ→Φ)(|x⟩⟨x|)Prob(Φ→Ψ)(|x⟩⟨x|)

=
1

N

∑
a,a′

∫
dxxψ(x− ga)ψ(x− ga′)∗Prob(ψ→ϕ)(Pa)Prob(ϕ→ψ)(Pa′)

where N is the normalization constant given by N :=
∫
dxProb(Ψ→Φ)(|x⟩⟨x|)

Prob(Φ→Ψ)(|x⟩⟨x|). This conditional expectation value of the position of the meter
is exactly the same as the output of the weak measurement for the real part of the
weak value since the pre- and post-selected state of the system and the pre-selected
state of the meter are exactly the same as the original weak measurement setup
(Fig. 3.3). This gives the procedure to obtain the real part of weak value of an
observable on the system as the conditional expectation value of the position of
the meter, which is the indirect measurement scheme of the weak measurement of
the real part of the weak value.

Let us compare the weak measurement for the real part of weak value and the
projective measurement, which is shown as the ideal projective measurement in
a process (5.17), in the indirect measurement scheme. The difference of the two
procedures is only in the pre-select state of the meter. In both of the procedures,
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system meter

projective measurement of position

Figure 5.4: To perform the weak measurement for the real part of weak value, we
prepare the initial state of meter by a Gaussian distributed state |ψG⟩.

we perform a projective measurement of the position to obtain the result of the
measurement after the measurement interaction, and then post-select the meter
by |p = 0⟩. These two indirect scheme use the virtual final boundary condition
|p = 0⟩ to extract the output probability distribution of the position of meter.
Since the process cannot give the frequency of the finding the process itself, the
zero momentum state |p = 0⟩ which causes no bias for the position is the most
suitable boundary for calculation of frequency of processes.

5.6 Consistency of the Probability in the For-

ward and Backward Processes

The indirect measurement scheme in a process explains the difference of the nor-
malization constants of the projective measurement and weak measurement in the
direct measurement scheme in a process. We consider the forward propagating
process and the backward propagating process in a system. If the two processes
are independent on each other, any pair of processes should appear in the calcula-
tion. The probability of finding the pair of processes where forward propagating
process is found in |ai⟩ and the backward propagating process is found in |aj⟩
is given by Prob(ψ→ϕ)(Pi)Prob(ϕ→ψ)(Pj). This probability of finding the pair of
processes satisfies the normalization,∑

i,j

Prob(ψ→ϕ)(Pi)Prob(ϕ→ψ)(Pj) = 1. (5.20)

In a measurement of the real part of the weak value, all processes in the system
contributes to the meter through the measurement interaction. On the other hand,
the coincident pairs of processes, which are the pairs of the forward propagating
process and the backward propagating process found in the same state, contribute
to the meter when we perform the projective measurement. If we take account only
of these coincident pairs in the calculation, we obtain the normalization constant
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meter 2meter 1system

Figure 5.5: The selection on the meter 2 restricts the processes in the system in
the measurement procedure.

as
N =

∑
i

Prob(ψ→ϕ)(Pi)Prob(ϕ→ψ)(Pi) ̸= 1. (5.21)

This does not mean that we cannot find a intermediate state, or we find a inter-
mediate state without finding events at the pre- or post-selections. The selection
of the coincident pairs, which occur in a projective measurement, comes from the
selection of the meter which interacts with the system. This implies that we need
to consider another set of boundary conditions on another meter system required
to obtain the result of the projective measurement on the meter.

To meet such an extra requirement, consider a process of a system from |ψ⟩ to
|ϕ⟩, and a process of a meter from |xi⟩ to |p = 0⟩ (see Fig. 5.5). To measure the
position of the meter in an intermediate time, we use another meter named meter
2, which interacts with the original meter, named meter 1. We thus prepare the
setup in which the meter 2 is prepared in |x′i⟩ and the result of the measurement of
the position of the meter 2 is x′f . The measuring interaction between the system
and the meter 1 is given by gAp, where g is the measurement strength, A is a
measured observable on the system and p is the momentum of the meter 1. In
addition, another measuring interaction between the meter 1 and the meter 2 is
given by xp′, where x is the position of the meter 1 and p′ is the momentum of the
meter 2.

Now, suppose that the forward propagating processes affect the forward propa-
gating processes of other systems through the measuring interactions, and similarly
the backward propagating processes affect the backward propagating processes of
the other systems, respectively. We then discuss how the forward propagating
states interacts each other in this situation. First, if the forward propagating state
of the system is found in the state |a⟩, the meter 1 shifts by ga. Since the meter
is pre-selected in |xi⟩, the position of the meter 1 changes to xi + ga. Then if we
interact the meter 1 and the meter 2, the meter 2 shifts by ∆ := xi + ga. In this
situation, there is only the process of the meter 2 whose shift is equal to x′f − x′i
because of the pre- and post-selections on the meter 2. Thus the forward propa-
gating state of the meter 1 is selected as |x = ∆⟩, where ∆ = xi+ga. Similarly, the
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meter 2meter 1system

Figure 5.6: Weak measurement is preformed by arranging the pre-selected state of
the meter 1 by a Gaussian distributed state |ψG⟩. Even if we pre- and post-select
the meter 2, the process of the system is not restricted to a coincident pair.

backward propagating state of the meter 1 is selected as |x = ∆⟩. This indicates
the forward and backward propagating states on the meter 1 shift by ga, that is,
that the forward and backward propagating states in the system are found in |a⟩.

It follows that the probability of finding the forward propagating and backward
propagating process of meter 1 at |x = ∆⟩ is given by

Prob(Ψ→Φ)(|a⟩⟨a|)Prob(Φ→Ψ)(|a⟩⟨a|), (5.22)

where a = (∆ − xi)/g. Since we perform many projective measurements on the
meter 1 to obtain the probability distribution, the shift of the position of the meter
2 ∆ is dispersed randomly. Therefore, the total number of the selected processes
is calculated as ∑

a

Prob(Ψ→Φ)(|a⟩⟨a|)Prob(Φ→Ψ)(|a⟩⟨a|), (5.23)

which is the expected result form (5.21). We obtain only the subset of the forward
and backward processes which form the coincident pairs, because the results of
measurement of the position of the meter are obtained by using another meter
which has the boundary conditions determined by the measurement itself.

This explanation of the coincident pairs of the forward and backward processes
is compatible with the weak measurement scheme (Fig. 5.6). Indeed, if we prepare
the initial state of meter 1 as a Gaussian distributed state |ψG⟩, the shift of the
position of the meter 2 is not limited to one value. Since the meter 1 evolves from
the Gaussian distributed state and is post-selected at p = 0, the generalized prob-
ability of the position of meter 1 distributes according to the Gaussian distribution
and hence any amount of the shift on meter 1 is allowed.

Here, it is important to recognize that the shift of the backward propagating
process in the system can take different values from that of the forward propagating
process. As a result, the total number of the selected processes is calculated as∑

a,a′

Prob(Φ→Ψ)(|a⟩⟨a|)Prob(Φ→Ψ)(|a′⟩⟨a′|) = 1. (5.24)
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However, we remark that the initial Gaussian distribution causes a biased selection
in the processes, and hence the selection with the Gaussian distributed meter is
not ideal for obtaining the real part of the weak value as the conditional expec-
tation value. This is an inevitable consequence of the fact that the ideal weak
measurement is performed by the infinitely broad Gaussian distributed state of
the meter.
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Chapter 6

Conclusion and Discussion

We wish to have a proper description of the microscopic system, ideally by means
of the classical ensemble picture. However, the contextuality of the value of ob-
servables poses a problem for realizing the classical ensemble picture. Quantum
mechanics, which describes the microscopic world, avoids the problem of contextu-
ality by introducing the probability distribution which does not presuppose under-
lying objects. The probability distribution in quantum mechanics is described by
states which are just a mathematical entity to represent probabilities, not some-
thing existing in physical reality. Without underlying objects, we cannot interpret
the probability distribution attached to a quantum system as that of the distri-
bution of underlying objects. Thus, to understand the dynamics of probability
distributions in the microscopic world, we need the solution for the contextuality
problem in one way or the other.

The time-symmetric formulation of quantum mechanics advocated by
Aharonov et al. [31, 34], which is also called the two-state vector formalism, does
indeed solve the contextuality problem by introducing the forward and backward
propagating states. The two-state defined by the two propagating states gives
the probability of obtaining a result on the system, which agrees with that of the
standard formulation of quantum mechanics. In the time-symmetric formalism,
the non-contextual assignment of the value is achieved by the weak value which
is specified by the boundary conditions of a quantum process. The boundary
conditions restrict the context of the system, and give a consistent assignment of
values to observables in a given process. However, we are not sure whether the
weak value gives the true value assigned to a system which fulfills the requirement
of the element of reality in the sense of EPR. After all, we cannot measure the
weak values in a single trial in general, except for the particular case where the
weak value happens to be equal to the eigenvalue corresponding either to the initial
or to the final state of the process. The weak value is therefore an intrinsically
statistical quantity and cannot escape from the ambiguous status when it comes
to the reality question.

In the present paper, we turn our attention to the question of probability itself
and have tried to provide a probability distribution which can reasonably be close
to the one associated with the classical ensemble as much as possible. To this end,
in Chapter 4 we have introduced a generalized probability defined on a quantum
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process, where we allowed the probability to take complex values, not just the
ordinary values within the range [0, 1]. We also assumed that the probability is
objective, rather than subjective as in the recent interpretation of QBism [17].
From a set of consistency requirements, including the boundary conditions of the
given process, we have succeeded to derive the possible form of the generalized
probability as shown in (4.28). An interesting byproduct of this is that the weak
value turns out to be precisely the expectation value (4.55) under the generalized
probability we have just found.

More importantly, we have found that the generalized probability satisfies the
law of total probability (4.57), which is a basic requirement for conditional prob-
ability. Obviously, the law of total probability is respected by the classical prob-
ability, but it is not so by the ordinary probability in quantum mechanics. This
implies that, unlike the ordinary probability, the generalized probability allows for
the updating law of distribution of the processes which occurs in the acquisition of
information concerning a result of measurement. Thus, although it does not admit
the ordinary relative frequency interpretation, the generalized probability shares
an important common feature with the probability associated with the classical
ensemble picture.

Another advantage of our generalized probability is found in describing quan-
tum measurement in a process. Indeed, as shown in (5.7), (5.13) in Chapter 5,
with the use of the generalized probability, the two distinct measurements, the pro-
jective measurement and the weak measurement which are treated differently in
the conventional description of measurement, can be treated in a unified manner.
This has been made possible thanks to the fact that the generalized probability
describes a process in which the initial pre-selected state evolves forward in time
and the final post-selected state evolves backward in time in a coherent framework.
We emphasize here that nevertheless the generalized probability yields outcomes of
joint measurements which are in complete agreement with the standard probability
of quantum mechanics and cause no discrepancy in prediction. It has the prop-
erty being closer to the classical ensemble picture in that it is non-contextual and
respects the requirement for conditional probability, both enjoyed by the classical
probability.

Finally, we give some remarks which are related to the interpretation of the
weak value. It is known that the weak value of an observable can exceed the
range of the spectrum of the observable, in which case the weak value is called
‘anomalous’. The anomalous weak value of the projectors occurs when the gen-
eralized probability exceeds the ordinary range [0, 1]. Since the anomalous weak
value appears in the system where quantum nature becomes significant [46], the
generalized probability which exceeds [0, 1] may be regarded as something signi-
fying the quantum nature. Another point to be noted concerns with the physical
significance of the imaginary part of the weak value. We have seen that its imagi-
nary part appears in the experimental setup with the asymmetric on the process,
where the time evolution of the forward propagating state and that of the back-
ward propagating state differ. These connections seem to suggest that, if we can
obtain a deeper understanding of the generalized probability, we can learn more
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about the weak value and possibly its physical significance. These are certainly
part of the important issues awaiting for future investigation in the foundation of
quantum mechanics.
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