学位論文

A study on extrasolar cometary source populations with the AKARI far－infrared all－sky survey

（『あかり』遠赤外線全天観測データを用いた系外彗星雲の研究）

平成 26 年 12 月博士（理学）申請

東京大学大学院理学系研究科

天文学専攻

有松 亘

Abstract

This thesis describes a search for cometary source populations (CSPs), corresponding to the scattered disk (SD) and the Oort cloud (OC), in extrasolar systems, using far-infrared all-sky map obtained with the FarInfrared Surveyor (FIS) onboard the AKARI satellite.

The SD and the OC are proposed for the origin of comets, and are thought to constitute major building blocks of the solar system. Objects resided in these CSPs are thought to be remnants of the planetesimals originally in the protoplanetary disk, which are scattered by giant planets during early stages of the planetary system formation. Unveiling analogues of these populations in extrasolar systems is fundamental to understanding an unknown nature of the outer (astrocentric distances of $>1000 \mathrm{AU}$) solar and extrasolar systems, and formation and evolution scenarios of typical stellar systems. One of the most effective diagnostic methods for the extrasolar CSP (exo-CSP) detection is infrared radiometry. The spatial and spectral properties of the far-infrared (FIR) emission around stars provide a direct evidence for the existence of the exo-CSPs. However, there has been lack of observational constraints on the FIR emission from the exo-CSPs so far, especially at larger astrocentric distances $\left(10^{3}-10^{4} \mathrm{AU}\right)$. Therefore I have carried out a search for the infrared emission from the CSPs around nearby stars with the far-infrared all-sky map taken by the AKARI/FIS. The sensitivity of the AKARI/FIS survey is still insufficient to detect the exo-CSPs around arbitral types of stars. Therefore I have selected nearby A-type stars for the targets, where the FIR emission is expected to be strong. In addition, I have carried out a stacking analysis to search for the emission from the exo-CSPs fainter than detection-limits.

The $A K A R I / F I S$ all-sky maps are calibrated only for diffuse sources. Therefore additional calibrations for point sources are carried out in order to perform accurate spatial and spectral studies of the exo-CSPs. Radial brightness profiles (RBPs) of point spread functions (PSFs) are determined using the stacked images of infrared standard stars, and are confirmed to be stable within the investigated flux range ($0.06-12 \mathrm{Jy}$) at the $90 \mu \mathrm{~m}$ band. Furthermore, aperture photometry of faint infrared standard stars is performed, and measured fluxes are compared with emission model values to derive photometric calibration factors. I have checked whether the calibration factors of the stacked point sources depend on the fluxes of the sources or not. Any flux dependence in the calibration factors with amplitude larger than $\sim 20 \%$ is not seen on the investigated flux ranges of $0.1-19,0.06-12$, and $0.02-3.7$ Jy at the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively.

Based on a data set of 3583 A-type stars located inside 158 pc from the Sun, stacking analyses have been performed with three appropriate distance bins ($15.8-39.8 \mathrm{pc}, 39.8-100 \mathrm{pc}$, and $100-158 \mathrm{pc}$ bins) using the $A K A R I / F I S$ all-sky map at the 65,90 , and $140 \mu \mathrm{~m}$ bands. The photometry of the stacked image presents a FIR excess emission that comes from closer than 2600 AU from the parent stars, and corresponds a ~ 120 K blackbody with a fractional luminosity (the energy contribution of the excess to the stellar photospheric emission) of $\sim 5 \times 10^{-5}$. These properties are in agreement with the average properties of known debris disks around A-type stars. In addition to the debris disk component, a colder excess component corresponding to the $\sim 23 \mathrm{~K}$ modified blackbody emission with a fractional luminosity of an order of 10^{-5} is seen in the annulus
corresponding physical radii of $2600-6600 \mathrm{AU}$. In order to make a constraint on a spatial distribution of the cold excess component, RBPs are derived from the stacked images at the $90 \mu \mathrm{~m}$ band. The RBPs indicate that the emission structure extends to approximately 5000 AU , which is larger than the typical debris-disk sizes (smaller than 1000 AU).

In order to evaluate the significance of the present detection, I have performed four tests. First, I have carried out a median stacking analysis that is thought to be more robust to contamination from background point sources. The median stack and average stack to the same sample give consistent results of the cold excess fluxes. I thus found no evidence of the cold excess emission from the background objects. Second, I have performed a stacking analysis of sub-groups of the sample and found that the observed cold excess fluxes are not due to anomalous contribution from minor samples. For the third test, the cold excess fluxes are compared with those derived from stacks of randomly selected blank regions, and are found to be above the statistical background fluctuations with significances of up to $\sim 2.5 \sigma$. Finally, I have derived the RBPs of four sub-regions of the stacked image, and found no evidence of the contamination of local background inhomogeneities to the observed profile.

Assuming the observed cold excess comes from the circumstellar dust grains around the stacked stars, the excess can be explained by the thermal emission from micron-sized grains with the mass of $\sim 0.1 \mathrm{M}_{\text {earth }}$. Taking interstellar diffusion timescales of the grains into consideration, these grains can be supplied form object groups with the total mass of $\sim 10-100 \mathrm{M}_{\text {earth }}$, which is comparable to the OC of the solar system, via several possible replenish processes. The present results indicate that the

CSPs are not exceptional products of typical stellar system formations.

Contents

abstract i
Chapter1 Introduction 1
1.1 Cometary source populatins 2
1.1.1 Comets and their origins 2
1.1.2 Origins of the CSPs 6
1.1.3 Observations of the CSPs in the solar system 8
1.2 Search for extra-solar CSPs 9
1.2.1 Motivations 9
1.2.2 Infrared observations of the exo-CSPs 11
1.2.3 Space infrared observations 12
1.2.4 $A K A R I$ all-sky survey 15
1.2.5 Detection algorithm: stacking analysis 15
1.2.6 Technical issues for the present study 16
1.3 Aim and outline of this thesis 18
Chapter2 Data sets and search concept 21
2.1 AKARI 22
2.1.1 the $A K A R I$ satellite 22
2.1.2 The Far-Infrared Surveyor (FIS) 25
2.1.3 AKARI/FIS all-sky survey 28
2.1.4 FIS all-sky map 30
2.2 Search concept 31
2.2.1 Expected FIR emission from exo-CSPs 31
2.2.2 Stacking analysis 35
Chapter3 Point source calibrations of the AKARI/FIS all-sky maps 39
3.1 Introduction 40
$3.2 \quad$ Data analysis 41
3.2.1 Selection of the data sets and stacking method 41
3.2.2 Stacking Analysis 42
3.3 Results 44
3.3.1 Point Spread Functions 44
3.3.2 Aperture correction factor 47
3.3.3 Stacked point sources with different fluxes 47
3.3.4 RBPs of point sources with different fluxes 50
3.3.5 Absolute Flux Calibration 51
3.4 Discussions 55
3.4.1 Comparison with the FIS Pointed Observations 55
3.4.2 Possible applications of the calibration factors for fainter sources 57
3.5 Summary of this chapter 59
Chapter4 Stacking analysis of the nearby A-type main-sequence stars 61
4.1 Introduction 62
4.2 Selection of the targets and stacking method 63
4.2.1 Target selection 63
4.2.2 Stacking Analysis 70
4.2.3 Stacking images 70
4.3 Photometry results 70
4.3.1 Aperture photometry 70
4.3.2 SED fit to the closest stacks 74
4.3.3 SEDs of distant samples 77
4.4 Radial brightness profiles 78
4.5 Summary of this chapter 81
Chapter5 Discussions 87
5.1 Possibilities of false detection 88
5.1.1 SED derived from median stacking results 88
5.1.2 SEDs of the split subsamples 88
5.1.3 Blank test 89
5.1.4 Flux distributions of the individual sample images 90
5.1.5 RBPs of four quadrants of the stacked image 91
5.2 Properties and origin of carriers of the possible FIR excess emission 91
5.2.1 Size and mass derivations of the dust grains 91
5.2.2 Diffusion timescale of the dust grains 93
5.2.3 Possible dust replenishment processes 94
5.2.4 Origin of the CSPs 97
5.3 Summary of this chapter 100
Chapter6 Conclusions and future prospects 109
6.1 Conclusions 109
6.2 Future Prospects 111
6.2.1 CSPs around other type stars and planet and debris disk host stars 111
6.2.2 Observations of the SD and OC in the solar system 112
AppendixATables of the selected A-type stars 113
acknowledge 183

Chapter 1

Introduction

Figure1.1 An example of the long-period comets, C/2013 R1 (Lovejoy). The spherical atmosphere, "coma", is seen as a green spot at the image center, whereas the blue, straight tail is streaming from the coma to the upper left of the image. This image is taken by the author from Kiso Observatory, Japan, on December 4th 2013. Image details: camera: Olympus EM- $5+45 \mathrm{~mm}$ F1.8 (F2.2), gain: ISO1600, 65×3 second exposure.

1.1 Cometary source populatins

1.1.1 Comets and their origins

The solar system comprises the Sun, eight planets, five dwarf planets, moons and rings around the planets, and other small bodies and dust including zodiacal
dust particles, asteroids, Kuiper Belt objects, and comets, according to the latest definitions and knowledge. Most comets have larger orbits (i.e., larger semimajor axes) with wider ranges of inclinations and eccentricities, compared with those of the known major and minor planets. When they approach to the Sun at their perihelia, the comets usually inhabit atmospheric spheres (called as "comas") and tails, which are seen at optical (see Figure 1.1) and other wavelengths. These coma and tail structures are formed with gas and dust that are ejected by the sublimation of volatile ices from a cometary nucleus, and are illuminated by the Sun. These comets are thought to supply the volatile materials and the dust grains in the interplanetary space and the planets including the Earth (e.g., Greenwood et al. 2011).

Comets are sorted according to their orbital characteristics and classified into two groups. Comets with semimajor axes larger than $\sim 40 \mathrm{AU}$ are referred to as "Long Period Comets" (LPCs), and the other comets are sorted to be "Short Period Comets" (SPCs). Most of the LPCs have orbits with isotropic inclinations. These LPCs have been thought to come from a shell-like reservoir called "Oort cloud" (OC). The idea of the OC was postulated by Oort (1950), who investigated the orbital characteristics of the comets. Figure 1.2 presents the distribution of the orbital energies of the LPCs, which is reproduced from Dones et al. (2004). Figure 1.2a shows the "osculating" orbital energies, which are derived from the semimajor axes of the LPCs measured during their perihelion passages, i.e., when the comets are orbiting with the heliocentric distances of about $<5 \mathrm{AU}$. The majority of the osculating energies distribute below zero; these comets are apparently weakly unbound, and seem to come from outside the solar system. In fact, this trend results from the gravitational perturbation by the major planets located within 40 AU from the Sun (the inner solar system). The "original" orbital energies, which are shown in Figure 1.2b, are the energies of the comets before the perturbations by the planets during the latest

Figure1.2 Histgram of the number of known LPCs as a function of the orbital energies, $E \equiv 1 / a$, the inverse of their orbital semimajor axes in $A U$. If $E<0$, comets are weakly unbound to the solar system, and have hyperbolic orbits. On the other hand, comets with $E>0$ are weakly bounded, and have elliptic orbits. Each panel shows the orbital energies of comets directly derived from the observed semimajor axis ("osculating", a), energies derived by correcting the gravitational effects ("original", b), and energies after passing through the inner solar system ("future", c), respectively. The orbital energies are quoted from the Catalogue of Cometary Orbits, and the figure reproduced from Dones et al. (2004).
perihelion passages, which are derived by orbital integration. The original energy distribution has a sharp peak at the corresponding semimajor axis of $\sim 27000 \mathrm{AU}$. Oort thought that this spike represents the typical orbital energy of the source of the LPCs, i.e., the OC. The orbital energies after passing through the inner solar system are derived by orbital integration, and their distribution is shown in Figure 1.2c. This
"future" orbital distribution does not show the peak seen in the original distribution, and indicates that the most of the comets will never go back to their original source; comets with negative energy values will be ejected from the solar system, whereas those with larger positive values will be more tightly bound orbits with smaller aphelia.

Since they are weakly bounded to the Sun, objects in the OC can be perturbed by nearby passing stars and molecular clouds, as well as long-term effects of nearby galactic matter ("Galactic tides"; Holmberg \& Flynn 2000). Several perturbed objects reduce the perihelion distances and enter into the inner solar system. Dynamical simulations indicate that the comets represent the outermost of the cloud, where the gravitational perturbations much more effectively disrupt the orbits (Hills, 1981). Therefore, the sharp peak of the original cometary semimajor axis distribution (see Figure 1.2b) does not represent the real distribution of the OC objects, but is due to the selection effect. The properties of the inner-side of the OC (the inner OC) remains unknown; the comets in the inner OC do not enter the inner solar system via usual perturbations because they are more tightly bound to the Sun.

The SPCs are sorted into two groups according to their semimajor axes. The SPCs having relatively larger semimajor axes $(7.4 \leq a \leq 40 \mathrm{AU})$ are called as Halleytype comets (HTCs). On the other hand, comets with their semimajor axes smaller than 7.4 AU are classified as Jupiter-family comets (JFCs). The HTCs have nearly isotropic inclinations (median $i \sim 64^{\circ}$, Dones et al. 2004), and are thought to arise from the OC (Levison et al., 2001). On the other hand, the JFCs have smaller inclinations (median $i \sim 11^{\circ}$, Dones et al. 2004), and are suggested to come from a different origin that contains low-inclination sources. As the source of the JFCs, a low inclination source called Edgeworth-Kuiper belt was firstly proposed (Joss, 1973; Fernández, 1980; Duncan et al., 1988). However, recent dynamical simulations
suggest that these "classical" Kuiper-belt objects, objects with lower inclinations and eccentricities, are not the primary source of the JFC (Duncan et al., 2004). Currently, these comets are thought to come from the scattered disk (SD, Duncan \& Levison 1997; Duncan et al. 2004; Volk \& Malhotra 2008) rather than the classical Kuiper belt. Objects in the SD are thought to have relatively higher eccentricity (i.e., aphelion distances) and higher inclinations than the classical Kuiper belt objects. From the SD, the JFCs can be supplied much more efficiently than the classical Kuiper belt (Duncan et al., 2004).

1.1.2 Origins of the CSPs

The cometary objects in the "cometary source populations" (CSPs), such as the OC and the SD , could not have formed in situ, because objects are not thought to have grown bigger than meter-sized beyond ~ 50 AU from the Sun (Weidenschilling, 2003). According to theoretical calculations (Duncan et al., 1987; Dones et al., 2004), these objects are thought to be originally formed in the inner solar system, and ejected into the present locations through gravitational perturbations by the major planets.

The early stages of the solar systems are thought to consist of the planets and many remaining planetesimals in the planetesimal disk with semimajor axes less than 50 AU (Weidenschilling, 2003). These planetesimals are gravitationally perturbed by giant planets. Through the perturbations, a fraction of the scattered planetesimals gained larger aphelion distances. Then, perturbations from passing stars and giant molecular clouds, and the tidal force from the Galactic disk ("Galactic tide") change the orbital characteristics of the planetesimals passing their aphelia; these perturbations increase perihelion distances of the planetesimals, and randomize their inclination distributions. Dynamical simulations indicate that the Galactic tide is the major perturber for the planetesimals with larger aphelia (Harrington, 1985; Heisler
\& Tremaine, 1986). Since the perturbations of the planetesimal disk are initially required to achieve the extended orbital distributions of the CSPs, giant planets are thought to be essential for the CSP formations.

The numerical simulations of the CSP formations infer the present properties of the OC (and SD). According to the simulations, the objects in the OC are expected to distribute with heliocentric distances of $\sim 10^{5} \mathrm{AU}$, where the gravitational force of the Sun becomes comparable to the interstellar gravitational effects. On the other hand, these simulations indicate that the inner OC is expected to contain a large number of cometary objects equivalent to (Dones et al., 2004), or larger than that of the outer OC (Duncan et al., 1987), which are concentrated on an inner edge of the cloud located at \sim a few thousand AU. According to the simulations by Duncan et al. (1987), the radial number density of the OC objects is expected to proportional to a power-law function of radius $r, r^{-\eta}$ with an index η of $\eta \sim 3.5$. This result suggests that the mass of the cometary objects with semimajor axes of $<20000 \mathrm{AU}$ are expected to be about 5 times larger than that of the objects with larger semimajor axes. According to Weissman (1996), based on the influx rate of the observed LPCs, the total mass of the observable OC cometary objects (objects with sizes typically $>1 \mathrm{~km}$) with semimajor axes of $>20000 \mathrm{AU}$ is deduced to be $\sim 7 M_{\text {earth }}$ ($M_{\text {earth }}$ is the mass of the Earth, $M_{\text {earth }}=5.97 \times 10^{27} \mathrm{~g}$). The Duncan et al. (1987) result thus gives the total mass of the OC to be $\sim 40 \mathrm{M}_{\text {earth }}$. Another work by Dones et al. (2004) reported that the model that is approximated by the power-law with the index of $\eta \sim 3$. In this case, the total OC mass is deduced to be $\sim 15 M_{\text {earth }}$. As a transitional phase of the OC, objects with relatively smaller perihelia (<50 AU) and high eccentricities are expected to be emerged (Dones et al., 2004). The characteristics of these objects are similar to that of the SD objects. These objects are thought to be supplied into the OC, even in the present day (Fernández, 2004).

According to the simulations, SD contains objects resided at heliocentric distances of $<4000 \mathrm{AU}$, and the number of the objects containing in the SD is comparable to that of the inner OC until \sim a few 100 Myr after the planet formation (Dones et al., 2004).

1.1.3 Observations of the CSPs in the solar system

After the discovery of the first candidate of the classical Kuiper belt objects (Jewitt \& Luu, 1993), several serendipitous surveys for the outer solar system objects have been performed with optical ground-based and space telescopes (Trujillo \& Brown, 2003; Brown et al., 2008; Schwamb et al., 2009, 2010). As of late 2014, more than 1500 bodies called trans-Neptunian objects (TNOs) are found outside the neptunian orbit. Firgure 1.3 plots the distributions of the eccentricities and inclinations against semimajor axes of known TNOs. Most TNOs have the semimajor axes between 30 AU and 50 AU , and low eccentricities and inclinations. In addition, about 200 SD objects have been found, and many of them have large sizes (with radius r of more than 100 km). If one extrapolates the size distribution down to $\sim \mathrm{km}$-sized, there are expected to be extremely large number ($\sim 10^{10}$) of kilometer-sized objects resided in the SD (Gomes et al., 2008).

Though several candidates of the inner OC objects have been found with the semimajor axes of $500-1000 \mathrm{AU}$ and the perihelia of $>40 \mathrm{AU}$ (orange dots in Figure 1.3), such as the large TNO Objects Sedna (Brown et al. 2004, a red circle in Figure 1.3), their belonging is still controversial because they seem to be more like transitional ("detached") SD objects between the outer SD and the inner edge of the OC (Jewitt \& Delsanti, 2006), than the native inner OC objects. Since the objects in the outer SD and the OC region is expected to be extremely faint (see Figure 1.3), direct detection of these objects located at $>1000 \mathrm{AU}$ are impossible with the current and
near-future observational instruments.

1.2 Search for extra-solar CSPs

1.2.1 Motivations

As reviewed above, there seem to be CSPs in the solar system containing a huge amount of primitive small bodies originally formed inside $\sim 50 \mathrm{AU}$ from the Sun, and then scattered into the outer regions. However, lack of direct observational evidences for the CSPs hampers us to understand the nature of the populations, especially those at larger distances from the Sun. It is worth studying the existence of similar populations around the extrasolar systems in the context of the planetary astronomy; unveiling the analogues of the CSPs in extrasolar systems are not only fundamental to understanding the unknown nature of the outer solar and extrasolar systems, but also to addressing the question of the universality of the solar system.

In addition, the existence of the OC and the SD analogues around the extrasolar systems is fundamental to understanding the general formation and evolution processes of stellar systems. Since the existence of the OC and the SD are indicative of orbital evolutions of planetesimals occurred in the early phase of the solar system, the evidence for CSP analogues would infer a similar evolutional history of the extrasolar systems. In the solar system, the OC and SD are signatures of the gravitational scattering of the protoplanetary disk by the giant planets. If extrasolar systems have CSP analogues, they are expected to have experienced similar planetesimal-scattering history. The study of the CSPs' analogues in the extrasolar systems thus should provide valuable information of the evolution scenarios of the typical stellar systems.

Protoplanetary disks around low- and intermediate-mass stars are known to have outer-edge radii of smaller than 1000 AU (Mannings \& Sargent, 1997; Vicente \&

Figure1.3 Distribution of orbital elements (semimajor axis, inclination, and eccentricity) of TNOs with known orbits. Blue and green dots indicate the orbital elements of the Kuiper belt objects and scattered disk objects, respectively. Orange dots are "detached" SD objects; objects having a perihelion distances of $q>40 \mathrm{AU}$, where perturbation by the giant planets does not affect. A red circle indicates the largest detached SD object, Sedna. The pink area indicates the outer edge of the SD and the inner OC regions, where observational constraints are not obtained due to instrumentation. The orbital information is obtained from the international Astronomical Union/Minor Planet Center.

Alves, 2005; Andrews \& Williams, 2007). Therefore, if a population containing small bodes is located beyond ~ 1000 AU from the stars after their formation phase, it can have been generated through similar formation pathways that generated the OC and SD in the solar system. I therefore search for evidences of populations extended more than $\sim 1000 \mathrm{AU}$ as candidates of the extrasolar CSPs (exo-CSPs).

1.2.2 Infrared observations of the exo-CSPs

Infrared observations should be a prospective method for a search of the exo-CSPs. Whatever is in the exo-CSPs around the stars, such as debris and dust grains, would emit far-infrared (FIR; $\lambda=50-200 \mu \mathrm{~m}$) radiation (Stern et al., 1991). The exoCSPs would thus appear as extended circumstellar FIR emission around the parent stars. Therefore the detection of the corresponding FIR emission would be a direct observational evidence for the exo-CSPs.

As well as the exo-CSPs, the debris disks and the parent stars' photospheres will emit FIR radiation. In order to surely extract the exo-CSP emission from the other emission components, the exo-CSPs should be spatially resolved. For example, if the extrasolar CSPs have a radius of 3000 AU , comparable to the outer SD (with radius up to 4000 AU) or the inner edge of the OC ($1000-5000 \mathrm{AU})$, the angular diameter of these exo-CSPs within $\sim 40 \mathrm{pc}$ to the sun are about $75^{\prime \prime}$, which can be resolved with the recent FIR instruments (angular resolutions typically smaller than $100^{\prime \prime}$; Werner et al. 2004; Kawada et al. 2007; Poglitsch et al. 2010).

The expected emission intensity from the exo-CSPs is determined by their unknown optical depth τ, which highly depends on the radial density profiles and size distributions of the exo-CSPs' objects. If a exo-CSP consists only of comet-sized (meter-to-kilometer sized) objects, the expected τ is smaller than $\tau<10^{-9}$, and such a cloud is too faint to be detected by recent and latest FIR observations. How-
ever, smaller dust particles are expected to be supplied from the larger objects via several possible processes (Stern et al. 1991; Yamamoto \& Mukai 1998; Howe \& Rafikov 2014; see details in Chapter 5). The expected τ of the exo-CSPs can thus reach to $\tau \sim 10^{-5}-10^{-7}$ (Stern et al., 1991).

The exo-CSP's intensity also depends on the luminosity of the parent star. The exo-CSPs around more luminous stars would be more luminous at FIR, and thus can be more detectable with FIR observations. For example, expected fluxes of the CSPs with $\tau=10^{-6}$ extending to 3000 AU from solar type (G2V) main-sequence (MS) stars at 40 pc are less than 10 mJy at $\sim 100 \mu \mathrm{~m}$. On the other hand, the corresponding intensity around A-type stars (5 - 50 times brighter than the solar luminosity) is expected to be more than 100 mJy (see details in Chapter 2). The exo-CSP emission thus may be more detectable, if the luminous stars are selected as the targets for the present study.

1.2.3 Space infrared observations

Since the infrared emissions are vulnerable to the emission and absorption from the atmosphere, only space-borne infrared observations can reveal the properties of the dust emission with a wide wavelength coverage and sufficient sensitivities. There are several infrared missions that are performed in space, which are shortly reviewed in the following paragraphs.

The first space telescope to perform infrared all-sky observations is the Infra-Red Astronomy Satellite (IRAS; Neugebauer et al. 1984), which was a joint mission by the United States, the United Kingdom and Netherlands, and was launched on January 26th 1983. The IRAS survey discovered the mid-infrared (MIR) to FIR thermal dust emission from the debris disks associated with nearby main-sequence stars (Aumann et al., 1984; Oudmaijer et al., 1992; Mannings \& Barlow, 1998).

The IRAS data was also used for a pioneering study of the exo-OCs. Stern et al. (1991) searched for the extended excess emission that are spatially associated with nearby main-sequence stars and extended more than $10^{3} \mathrm{AU}$. They selected 17 A to K-type stars located within 17 pc from the Sun for the target objects, and used IRAS survey maps at 60 and $100 \mu \mathrm{~m}$, where the intensity of the thermal emission from the exo-OCs is expected to appear. The radial brightness profiles (RBPs) were compared with the point spread functions (PSFs), to find an evidence for the extended emission. In this IRAS study, no evidence of extended emission associated with these stars was found. The obtained upper limits of the optical depth τ of the CSP emission around stars at $100 \mu \mathrm{~m}$ were typically $\tau \sim 10^{-3}-10^{-5}$ at astrocentric distances of $3000-10000 \mathrm{AU}$.

Observations with the Spitzer space telescope (Werner et al., 2004) have progressed the studies of the circumstellar environment of the main-sequence stars, owing to higher sensitivities and angular resolutions than IRAS. The Spitzer MIR to FIR observations had been performed during about two years (July 2004 - March 2009). Through the statistical studies of the emission characteristics, the Spitzer data made constraints on the formation and evolutions of the debris disks (Su et al., 2006; Wyatt, 2008). However, since the Spitzer FIR detector was also sensitive to nearinfrared photons, an artifact signals due to the reflection of near-infrared light within the optical instrument severely contaminated with the data at a longer wavelength $(160 \mu \mathrm{~m})$ band (Stansberry et al., 2007), where the intensity of the thermal emission from the CSPs is expected to be maximal. This artifact is clearly seen in the data of the nearby stars (Tanner et al., 2009), and hampers us from the search for the faint CSPs' emission accurately.

Latest observations performed with the Herschel space telescope (Pilbratt et al., 2010) have evolutionised debris disk studies, owing to its unprecedented spatial reso-
lutions and sensitivities for point sources. Two key programs of Herschel, Cold Disks around Nearby Stars (DUNES) and Disc Emission via a Bias-free Reconnaissance in the Infrared/Submillimetre (DEBRIS), especially dedicated to the study of debris disks around nearby stars. These observations began in 2009, and were completed in 2013. Among these key programs, Herschel observed more than 200 nearby stars located at distances of $\sim 40 \mathrm{pc}$ from the solar system, and enabled to investigate spatial and spectral characteristics of the debris disks (Morales et al., 2011; Eiroa et al., 2013; Marshall et al., 2014). However, both DUNES and DEBRIS surveys only gave the maps covering the rectangular area only about $\sim 200^{\prime \prime}$ high for most of the targets. Since the outer populations of the stellar systems, if exist, would extend more than $300^{\prime \prime}$ for the DEBRIS sample, it is difficult to recognize it due to small field coverage. Furthermore, strong low-frequency thermal noise from the detector system dominates the PACS data with the angular scale of more than $\sim 1^{\prime}$ (Ibar et al., 2010). Owing to this low-frequency noise confusion, the studies of debris disks and other circumstellar characteristics usually performed with the data that subtracts large angular scale components through the standard data reduction procedures (e.g., Eiroa et al. 2013). As a result of these procedures, faint and extended structures that are seen with other instruments were reported to be undetected in the Herschel data (Kerschbaum et al., 2010). Recent data reduction pipelines for the Herschel data offer techniques that enable us to restore low-frequency component with several image reconstruction methods (Cantalupo et al., 2010; Roussel, 2013). However, even if we use these procedures, it seems to be difficult to faithfully restore sources extended comparable to the map size, because the strong low frequency noise and real emission structures would be degenerated in the data. Therefore, it is controversial to perform investigations of the tenuous emission from the exo-CSPs using the Herschel data.

1.2.4 $A K A R I$ all-sky survey

AKARI is the first Japanese satellite that carried out MIR to FIR all-sky survey (Murakami et al., 2007). The AKARI all-sky survey in FIR wavelengths were performed from May 82006 to August 282007 with the Far-Infrared Surveyor (FIS, Kawada et al. 2007) in four bands, covering $50-180 \mu \mathrm{~m}$ wavelength range. The FIS scanned more than 98% of the sky, and provides the FIR all-sky dataset with the highest spatial resolutions and sensitivities (Kawada et al., 2007). Thanks to its high-performance cooling system, AKARI could maintain the system temperature down to $\sim 6 \mathrm{~K}$. Therefore the $A K A R I$ all-sky observation is not overwhelmed by thermal emission from the instruments, and is sensitive to emission on arcminute to degree scales (Doi et al. in prep.), which is wider spatial scale than that of any other existing FIR wide-field observation.

From the FIS all-sky data, the FIR bright source catalogue (BSC) is released (Yamamura et al., 2010). In addition, the all-sky maps will be available from the data archive server. The all-sky maps will enable us to perform studies of an arbitrary set of objects.

1.2.5 Detection algorithm: stacking analysis

The sensitivity of the FIS all-sky survey (550 mJy at the $90 \mu \mathrm{~m}$; Kawada et al. 2007) is still insufficient to search for the emission from the exo-CSPs around the individual stars. ($\sim 100 \mathrm{mJy}$ for 3000 AU exo-CSP with $\tau=10^{-6}$ at 40 pc from the Sun, see Chapter 2). Therefore, I have adopted a stacking analysis for the present study. Stacking analysis is a analytic method that is averaging the images at the locations of the targets to obtain an aggregate signal from the targets. The
background random noise of the stacked image would decreases against the signal as the number of the stacked images increases (approximately proportional to the square root of the number of stacked images, assuming the random noise). With the stacked image, one can perform the FIR photometry and the study of spatial structures of the sample with higher sensitivities than that performed with individual images. Therefore the stacking technique has been extensively adopted for the statistical FIR studies for faint sources, such as known normal galaxies and quasars (Kashiwagi et al., 2012), galaxy clusters (Giard et al., 2008), and mid-infrared extragalactic sources in deep field survey areas (Jauzac et al., 2011). These studies have succeeded in investigating FIR spectral and spatial features of the faint sources with fluxes even below the detection limits. Therefore, application of the stacking analysis to the AKARIFIR all-sky data would give us the opportunity of the detection, photometry, and studies of spatial properties of the emission from the CSPs (see Chapter 2).

1.2.6 Technical issues for the present study

The present study intends to measure radial brightness profiles (RBPs) of the stacked images to derive radial properties of the circumstellar FIR emission. In order to measure accurate RBPs of the CSP emission with angular sizes comparable to the PSFs, a subtraction of the component from the central point sources is required. This subtraction procedure requires information of the PSF in the FIS map. Furthermore, in order to carry out accurate detection and photometry of the FIR emission from the exo-CSPs with angular sizes comparable to the PSF, photometric calibrations for point sources are required. The FIS all-sky map is calibrated by diffuse sources, such as zodiacal light and interstellar dust emission (Matsuura et al., 2011; Doi et al., 2012). Additional flux calibrations for the point sources are thus needed. The present study plans to perform photometry and the RBP studies with fluxes
down to about one order of magnitude below the detection limits by applying the stacking analysis. The PSFs and calibration factors should be determined for objects with the faint fluxes. However, response functions of the FIS detectors in pointedmode observations are known to be incoming-flux dependent (Shirahata et al., 2009); Output signal intensities relative to the true fluxes can decrease as a function of point source fluxes (see Figure 1.4). One has to check whether the calibrations for point sources in the all-sky maps are valid to the faint sources or not.

1.3 Aim and outline of this thesis

The aim of this thesis is to reveal an evidence for the FIR emission around nearby stars with astrocentric distances characteristics of the CSPs (a few 10^{3} to $10^{4} \mathrm{AU}$). I use the $A K A R I /$ FIS all-sky map for the present study. In order to detect circumstellar FIR emission with sufficient sensitivities, I selected nearby A-type stars for targets, where the circumstellar FIR emission is expected to be ~ 10 times stronger than solar-type stars. I also adopt a stacking analysis technique that enhances signal-to-noise ratios by summing fluxes. In order to perform accurate photometry and radial distributions of the circumstellar FIR emission, the PSFs are determined and photometric calibration factors for point sources are estimated in a faint flux ranges. The rest of the thesis is organized as follows. Chapter 2 describes the instrumentation of the AKARI satellite, and the outline of the FIS all-sky observations. Also, Chapter 2 presents expected spectra of the FIR circumstellar emission from the exoCSPs with different optical depths and with different stellar types of the parent stars, and potential applications of the stacking analysis. Chapter 3 shows results of the PSF determination and the photometric calibration of infrared standard stars in the $A K A R I$ all-sky map. By stacking infrared standard stars with different ranges of the fluxes, the flux-dependences of the RBPs and of the calibration factors of the point sources are checked. In Chapter 4, results of the exo-CSP search are presented. From the stacked images of the nearby A-type stars, the spectral energy distributions and the radial brightnesses profiles of the possible extended emission are derived. Chapter 5 offers some discussions of the origin of the observed extended emissions. I have checked the possibilities of the contamination with the background objects by several tests. In this chapter, I also show that the observed excess can be explained by the
thermal emission from micrometer-sized dust grains around the target stars, assuming the detected emission is the real circumstellar emission. This chapter also focuses on possible processes that can supply the dust grains from larger-sized objects in the exo-CSPs, and discusses possible properties of the exo-CSPs. Chapter 6 summarizes the present thesis.

Figure1.4 The observed-to-expected flux ratio as a function of the expected flux derived from the spectral models. The observed fluxes are derived from data obtained in pointed-mode observation with the $A K A R I / F I S$. Note that the results are derived from pointed observations, not from the all-sky observations used for the present study (see Chapter 3 for details). Figure reproduced from Shirahata et al. (2009).

Chapter2

Data sets and search concept

2.1 AKARI

2.1.1 the $A K A R I$ satellite

AKARI (ASTRO-F) is the second Japanese space mission for infrared astronomy (Murakami et al., 2007), developed and operated by the Institute of Space and Astronautical Science (ISAS), and other collaborators. It was launched on February 21, 2006 (UT) by M-V-8 rocket, which was developed by the Japan Aerospace Exploration Agency (JAXA). The main purpose of the mission is to create the all-sky catalogue of the infrared sources with better angular resolutions, and a wider spectral range than the first catalogues produced by the IRAS (Neugebauer et al., 1984). The satellite was brought into a Sun-synchronous polar orbit with an altitude of 700 km and an inclination of $98^{\circ} .2$. The period of the orbit was about 100 min .

In order to reduce the thermal noise from the instruments, the whole system must be cooled. AKARI is equipped with a cooling system consisting of hybrid cryogenic system combining of cryogen and mechanical coolers. This unique system enabled to maintain the telescope temperature down to $\sim 6 \mathrm{~K}$ in a long cryogenic mission lifetime with only 170 litters of liquid helium. The observations with $A K A R I$ begun on May 8, 2006, and the liquid helium boiled off on August 26, 2007. After the liquid helium was exhausted, the telescope system is kept at about 40 K by the mechanical cooler and observations at near-infrared wavelengths had been continued until May 24, 2011. The operation of the $A K A R I$ spacecraft was finished on Novevmber 24, 2011. Figure 2.1 shows the overall structure of the $A K A R I$ spacecraft. The spacecraft is about 5.5 m height after deployment in orbit, and weighs 952 kg as launched.
$A K A R I$ is equipped with a Ritchey-Chretien type telescope with an effective aperture size of 68.5 cm and an $f / 6$ system, and two focal plane instruments (FPI), The

Figure2.1 An overall view of the AKARI spacecraft (ASTRO-F Observer's Manual, scales are in mm).

Infrared Camera (IRC) and the Far-Infrared Surveyor (FIS). In addition to the FPIs, two units of the Focal-Plane Star Sensor (FSTS) are equipped at the focal plane to obtain accurate position information during scanning observations. Figure 2.2 shows the focal-plane layout projected onto the sky. While the IRC and FIS share the focal plane near the telescope optical axis, they are disposed in different areas. The field

FSTS-L

Figure2.2 Focal-Plane layout of the $A K A R I$ telescope FPI. The IRC fields of view are shown as purple and yellow areas, whereas the fields of view of the FIS are shown as orange areas. The scan direction in the all-sky survey is indicated as a blue arrow at the bottom left. Figure reproduced from the ASTRO-F Observer's Manual.
of view of the FIS is offset from the telescope optical axis by about 19^{\prime} and is rotated by $26^{\circ} .5$ from the scanning direction.

A major goal of the mission is to carry out an all-sky survey with the FIS at the
four bands and additionally with the IRC at 9 and $18 \mu \mathrm{~m}$. AKARI also carried out dedicated pointed observations with both the FIS and IRC.

The schematic view of the in-orbit attitude of the AKARI observations is shown in Figure 2.3. During the all-sky survey, $A K A R I$ always points the telescope in the direction perpendicular to the Sun-Earth line, and revolved in a Sun-synchronous polar orbit with an angular speed of $3^{\prime} .6 \mathrm{sec}^{-1}$. Therefore the detector sweeps the sky with the same angular speed in a direction almost perpendicular to the ecliptic latitude and to the direction of the Sun. Since the direction of the orbit axis rotates as the Earth revolves about the Sun, the scan path moves with a rate of $4^{\prime} .1$ to the ecliptic between successive orbits, and thus the survey can cover the whole sky in half a year. On the other hand, in the pointed observations, the telescope was pointed towards the target for about 10 minutes. These pointed observations were inserted into the survey operations. As well as during the pointed observations, the all-sky survey operation was halted during the presence of the South Atlantic Anomaly (SAA, see Murakami et al. 2007) and the Moon.

2.1.2 The Far-Infrared Surveyor (FIS)

FIS (Kawada et al., 2007) was designed for the all-sky survey observation, but was also used for pointed observations in a slow-scan mode. It is also equipped with a Fourier Transform Spectrometer (FTS) that enables imaging spectroscopy over the full FIS wavelength range. The detector system of the FIS consists of two kinds of Ge:Ga extrinsic photoconductors, one is a monolithic Ge:Ga array detector, the Short Wavelength array (SW), covering the wavelength range of $50-110 \mu \mathrm{~m}$, and the other is a stressed Ge:Ga array detector, the Long Wavelength array (LW), covering $110-180 \mu \mathrm{~m}$, with four photometric FIR bands, N60 ($65 \mu \mathrm{~m}$), WIDE-S $(90 \mu \mathrm{~m})$, WIDE-L $(140 \mu \mathrm{~m})$, and $\mathrm{N} 160(160 \mu \mathrm{~m})$. The characteristics of the FIS photometric

Figure2.3 Schematic view of the in-orbit attitude of the AKARI observations (from ASTRO-F Observer's Manual version 3.2, Murakami et al. 2007).

Table2.1 The specification of the FIS photometric bands (Kawada et al., 2007)

Channel	SW		LW	
Detector	Monolithic Ge:Ga		Stressed Ge:Ga	
Band	N60	WIDE-S	WIDE-L	N160
Covering wavelength $[\mu \mathrm{m}]$	$50-80$	$60-110$	$110-180$	$140-180$
Central wavelength $[\mu \mathrm{m}]$	65	90	140	160
Bandwidth $[\mu \mathrm{m}]$	21.7	37.9	52.4	34.1
Array size	20×2	20×3	15×3	15×2
Field of view	$10^{\prime} \times 1^{\prime} .0$	$10^{\prime} \times 1^{\prime} .5$	$12^{\prime} \times 2^{\prime} .5$	$12^{\prime} \times 1^{\prime} .6$
5σ detection limit [Jy]	2.4	0.55	1.4	6.3

bands are summarized in Table 2.1 and the spectral responses of the four photometric bands are shown in Figure 2.4. Since each FIS band is sensitive to a fairly broad wavelength range, one should apply a color correction depending on the spectrum of the sources to the observed fluxes in order to obtain the monochromatic flux at the band center wavelength.

As shown in Figure 2.2, the WIDE-S and WIDE-L bands share the same field-

Figure2.4 Spectral response of the FIS photometric bands, each normalized at its peak.
of-view (FOV), whereas the N60 and N160 bands share the other FOV. Pixel sizes of detectors are $26.8^{\prime \prime} \times 26.8^{\prime \prime}$ and $44.2^{\prime \prime} \times 44.2^{\prime \prime}$ for the SW and LW detectors, respectively. These scales are comparable with the diffraction limit of the telescope at each wavelength ($24^{\prime \prime}$ and $51^{\prime \prime}$ at $65 \mu \mathrm{~m}$ and $140 \mu \mathrm{~m}$, respectively). To achieve a Nyquist sampling with the diffraction limited spatial resolution, the arrays are rotated by 26.5 degrees from the scanning direction (see Figure 2.2). In this configuration, the angular intervals between the neighboring scan-line paths of the detector pixels are $13^{\prime \prime}$ and $22^{\prime \prime}$ for the SW and LW detectors, respectively.

The optical layout of the FIS is shown in Figure 2.5. The incident beam comes from the entrance aperture ((a) in Figure 2.5) below the folding mirror (b) and paralleled by the collimator mirror (c). At the entrance aperture, there is a cold shutter to measure the instrumental dark current. The collimated beam goes to the filter wheel

Figure2.5 Optical configuration of the FIS. Figure reproduced from the FIS data user manual.
(d), which selects the observation mode. The scanner mode (photometric imaging mode) or the spectrometer mode is selected by rotating the filter wheel and selecting the combination of filters. In the scanner mode, the beam goes to the dichroic beam splitter (e). Photons of wavelengths longer than $110 \mu \mathrm{~m}$ goes through the splitter and is concentrated onto the LW detector module (f), while shorter wavelength photons are reflected by the beam splitter and sent to the SW module (g).

2.1.3 AKARI/FIS all-sky survey

As noted in the previous section, the primary purpose of the $A K A R I$ mission is to achieve the infrared all-sky survey. The AKARI all-sky observations in FIR wavelengths were performed from 2006 May 8 to 2007 August 28 with the FIS in the four
bands. During the period, the FIS observed more than 98% of the sky. In the survey observations, the detector sweeps the sky in a direction almost perpendicular to the ecliptic latitude with a scan speed of $3^{\prime} .6 \mathrm{sec}^{-1}$. During the scan, the integrated detector signals are continuously read out as time-series data with cadences of 25.28 $\mathrm{Hz}(65,90 \mu \mathrm{~m}$ bands) and $16.86 \mathrm{~Hz}(140,160 \mu \mathrm{~m}$ bands). These sampling timescales correspond to about three samples in a pixel crossing time of a point source (Kawada et al., 2007). Detectors are reset to discharge the stacked photo-electrons at intervals of about 2 seconds, nominally, 0.5 seconds for bright sky regions (regions with surface brightnesses greater than $60 \mathrm{MJy} \mathrm{sr}^{-1}$ at $140 \mu \mathrm{~m}$), except for the galactic plane (regions with surface brightnesses greater than $210 \mathrm{MJy} \mathrm{sr}^{-1}$ at $140 \mu \mathrm{~m}$), where the reset intervals are about 26 and 45 ms for the SW and LW detectors, respectively, not to saturate. In order to trace the detector responsivity, calibration pulse flashes with illuminator lamps are inserted every minute. Also, the cold shutter is closed for 1 minute at every 150 minutes or $3 / 2$ revolution of the satellite to monitor the instrumental dark current.

From the FIS all-sky survey data, the FIS Bright Source Catalogue (BSC) was released in 2010 March (Yamamura et al., 2009, 2010). The FIS-BSC contains 18638, 290209, 69092, 26631 sources detected at the $65,90,140,160 \mu \mathrm{~m}$ bands, respectively. According to Kawada et al. (2007), the 5σ detection limits for the $65,90,140,160$ $\mu \mathrm{m}$ bands are $2.4,0.55,1.4,6.3 \mathrm{Jy}$, respectively (see also table 2.1). Comparing to the 5σ detection limits of the previous IRAS survey at the two FIR bands (0.45 and 1.5 Jy at the 60 and $100 \mu \mathrm{~m}$ bands; Neugebauer et al. 1984), sensitivity for point sources is improved at $\sim 100 \mu \mathrm{~m}$ by a factor of three.

2.1.4 FIS all-sky map

In the preset study, I have used the FIS all-sky maps version 130401, which went through data reduction procedures that apply to the publicly released dataset. The all-sky maps are produced from time-series scan data obtained during the all-sky observations. To construct maps from the time-series data, the following two pipelines are carried out. First of all, the obtained data are pre-processed with the FIS pipeline tool originally optimized for bright point source extraction (Yamamura et al., 2009, 2010). The procedures exerted in this pipeline are as follows: Firstly, linearity is corrected by referring the intermittently inserted calibration pulses. Then the data that is affected by high-energy particles (Suzuki et al., 2008), and the saturation effect is rejected. The dark current signals are also subtracted in this pipeline using the data obtained during the shutter closed. Direction of the detector FOV is determined referring the data taken by the FSTS.

Following the pre-processing, an additional pipeline is used for depicting diffuse emission structures accurately (Doi et al., 2009, 2012). In the resultant data after pre-processing, the slow-transient response of the detector severely affects the signal structures. Therefore the effect of the transient response is empirically corrected using in-flight time-sequence data of the detector response to a step function of internal calibration lamp illuminations. This procedure corresponds a high-pass filtering in principle, and amplifies high-frequency noise as well as true signals. Therefore the maps are convolved with a Gaussian filter with $\sigma=13^{\prime \prime}$ in order to surpass the high-frequency part. Through the procedure, the maps can depict the diffuse signals accurately. However, the transient response is not corrected perfectly, especially for the point sources (see chapter 3). The zodiacal light (ZL) is the dominant emission source at the FIS bands, and the brightness strongly depends on the direction and
time. Therefore we have subtracted the smooth component of the ZD from the time-series data using the model proposed by Gorjian et al. (2000). The resultant image shows stripe-like patterns with typical angular scales of several degrees. These patterns are thought to be emerged due to imperfect flat-fielding caused by long-term sensitivity variations of the detector. We empirically subtracted these patterns from the images (Tanaka et al. in preparation).

Through these procedures, the all-sky map is produced with a sample scale of $15^{\prime \prime}$ and units of surface brightness in MJy sr ${ }^{-1}$. The derived map is compared with the COBE/DIRBE Zodi-Subtracted Mission Average data. The correction factor is derived from the comparison and adopted for the procedures recursively. The final maps obtained with the procedures are shown in Figure 2.6. The final map is confirmed to be well calibrated for the diffuse emission (Takita et al. in preparation).

2.2 Search concept

2.2.1 Expected FIR emission from exo-CSPs

In order to search for an evidence of the FIR emission surrounding nearby stars at astrocentric distances of the present interest (10^{3} to $10^{4} \mathrm{AU}$), one has to select targets of parent stars that enable us to detect the exo-CSP emission spatially resolved from the emission from the stellar photospheres and circumstellar debris disks. The apparent angular radius θ of an exo-CSP with a radius R is derived by

$$
\begin{equation*}
\theta=\tan ^{-1}\left(\frac{R}{d_{\mathrm{star}}}\right) \sim \frac{R}{d_{\mathrm{star}}}, \tag{2.1}
\end{equation*}
$$

where $d_{\text {star }}$ is the distance to a star from the Sun. Figure 2.7 shows how θ changes with R and $d_{\text {star }}$. The angular resolution of the AKARI/FIS $90 \mu \mathrm{~m}$ band map (the

Figure2.6 FIS all-sky maps at the 65, 90, 140, $160 \mu \mathrm{~m}$ bands. Figure reproduced from Doi et al. (2012).
cross-scan FWHM of $55^{\prime \prime}$; Arimatsu et al. 2014, see Chapter 3) is also shown for comparison. If R is $10^{3}-10^{4} \mathrm{AU}$, exo-CSPs surrounding the stars located within 20-200 pc of the Sun can be spatially resolved in the FIS map.

In the following, I provide an estimate of expected emission spectra from dust grains in the exo-CSPs. For simplicity, I assume a simple optical condition; the emissivity ($=$ absorption cross section) of the grain with a typical radius a at the wavelengths $\lambda>\lambda_{0}$ is $\left(\lambda / \lambda_{0}\right)^{-1} \pi a^{2}$, and $(1-A) \pi a^{2}$ at $\lambda<\lambda_{0}$, where A is the typical albedo of the grains (assuming A is independent of the wavelength) and λ_{0} is a reference wavelength. In the following, λ_{0} is set to be $\lambda_{0} \sim 1.5 a$, which is permissible for dirty ice grains (Stern et al., 1991). In the dust grains located at the distance from the parent star greater than $R>1000 \mathrm{AU}$, the ambient interstellar radiation should be taken into consideration, because the radiation from the parent star becomes relatively weak. If the grain is assumed to be in radiation equilibrium, the equilibrium temperature $T_{\text {eq }}$ is derived by the following equation (Stern et al., 1991);

$$
\begin{equation*}
T_{\mathrm{eq}}=5.2\left[(1-A)\left(\frac{\lambda_{0}}{1 \mu \mathrm{~m}}\right)^{-1}\left(T_{\mathrm{bkg}}^{4}+\frac{L_{*}}{16 \pi \sigma_{\mathrm{SB}} R^{2}}\right)\right]^{1 / 5}[\mathrm{~K}], \tag{2.2}
\end{equation*}
$$

where σ_{SB} is the Stefan-Boltzmann constant, L_{*} is the luminosity of the parent star and T_{bkg} is the effective radiative temperature of the interstellar radiation field. This equation is applicable when λ_{0} is larger than the wavelengths of incoming radiation, and is smaller than the reradiating wavelengths. In the following, A is assumed to be $A=0.03$ (comparable to the albedo of the comet nuclei), and the intensity of the interstellar radiation field is comparable to the solar neighborhood interstellar radiation field (i.e., $T_{\mathrm{bkg}}=3.5 \mathrm{~K}$; Spitzer 1978). Assuming the exo-CSP is optically thin spherical shell with an optical depth at $100 \mu \mathrm{~m}, \tau$, the expected spectrum $F_{\nu}^{\mathrm{CSP}}(\lambda)$
is derived by the following equation

$$
\begin{equation*}
F_{\nu}^{\mathrm{CSP}}(\lambda)=4 \pi \tau\left(\frac{R}{d_{\mathrm{star}}}\right)^{2} B_{\nu}\left(\lambda, T_{\mathrm{eq}}\right)\left(\frac{\lambda}{100 \mu \mathrm{~m}}\right)^{-1} \tag{2.3}
\end{equation*}
$$

where $B_{\nu}(\lambda, T)$ is the Planck function of temperature $T_{\text {eq }}$ at a wavelength λ.
Figure 2.8 shows expected infrared spectra of the exo-CSPs with $R=3000 \mathrm{AU}$ and different optical thickness τ surrounding solar type (G2V) and Delta Leonis-type (A4V) stars, located at 40 pc from the Sun; the 5σ detection limits of the FIS all-sky observations at each band (Kawada et al., 2007) is also shown for comparison. Since the stars with later spectral types (F, G, K, and M-types) have relatively lower stellar illuminates, they are incapable of heating grains in the zones of the present interest ($R=10^{3}-10^{4} \mathrm{AU}$) to the temperatures observable at the FIS bands ($T>20 \mathrm{~K}$, see Figure 2.8a). On the other hand, A-type stars, are enough luminous (5 - 50 solar luminosity) to heat-up grains with the temperature of $\sim 20 \mathrm{~K}$. The corresponding thermal emission would have a peak at $\sim 150 \mu \mathrm{~m}$ and be detectable with the FIS $90 \mu \mathrm{~m}$ (WIDE-S) or the $140 \mu \mathrm{~m}$ (WIDE-L) bands (see Figure 2.8b). Furthermore, the intensity of the FIR emission from the exo-CSPs with the same τ becomes an order of magnitude brighter at the FIS bands. Therefore nearby A-type stars are favorable targets for the present study.

As shown in Figure 2.8, the expected detection limit at the $160 \mu \mathrm{~m}$ (N160) band is insufficient to derive a nontrivial constraint on the exo-CSPs' emission intensity, compared to the other bands. Therefore the $160 \mu \mathrm{~m}$ data is not used for the following study. The sensitivity of the $65 \mu \mathrm{~m}$ (N60) band data is also insufficient to detect the exo-CSPs' emission. However, the $65 \mu \mathrm{~m}$ band is expected to be useful to understand spectral properties of the FIR emission from the debris disks, which typically has its spectral peak at $\sim 70 \mu \mathrm{~m}$ (Su et al., 2006). Therefore I use the FIS 65, 90, and $140 \mu \mathrm{~m}$ maps in the following study.

2.2.2 Stacking analysis

Even if one makes photometry for the individual nearby A-type stars, the expected sensitivity for the FIR emission from the exo-CSPs is insufficient for the detection, because the exo-CSPs are expected to be very optically thin $\left(\tau<10^{-5}\right.$, Stern et al. 1991), and their expected fluxes would be below the detection limits (Figure 2.8b). Therefore I adopted a stacking analysis to the set of nearby stars for the present study. A stacking analysis is a analysis that is averaging images of the targets with known positions to obtain an aggregate signal from the targets. If one assumes the noise in the images is random, the noise decreases as the square root of the number of the samples. According to the Hipparcos catalogue (Perryman et al., 1997), the number of the A-type stars within 40 pc from the Sun is about 100. If one stacks 100 stars, the S / N ratio can be improved by $\sim \sqrt{100}=10$. The stacking analysis thus allows us to gain the constraints on τ of the exo-CSPs' emission by an order of magnitude smaller (see Figure 2.8b). The expected 5σ upper-limit on the optical depth τ of the exo-CSP surrounding A-type stars at $R=3000 \mathrm{AU}$ is $\tau \sim 10^{-6}$ at the $90 \mu \mathrm{~m}$ band. The combination of the $A K A R I / F I S$ all-sky data with the stacking analysis of the A-type stars can make significantly deeper constraint of the evidence for the exo-CSPs than the previous study performed with $\operatorname{IRAS}\left(\tau=10^{-3}-10^{-5}\right.$; Stern et al. 1991). On the other hand, the number of G-type MS stars within 50 pc is about 1000 , and sensitivity would be improved by a factor of $\sim \sqrt{1000}=30$, if stacking. However, the 5σ sensitivity of the stacked 1000 G-type stars would be still low ($\tau \sim 10^{-5}$, see Figure 2.8a), compared to that from the stacked A-type stars $\left(\tau \sim 10^{-6}\right)$. Taking the high luminosity and sufficient abundance for the stacking analysis into consideration, the A-type stars are the most favorable targets for the present study.

Figure2.7 Angular radius of an exo-CSP with a geometrical radius R observed from the distance $d_{\text {star }}$. The cross-scan FWHM of the AKARI/FIS $90 \mu \mathrm{~m}$ band ($55^{\prime \prime}$;Arimatsu et al. 2014, see Chapter 3) is also plotted as the dotted line.

Figure2.8 The expected spectra of the assumed $R=3000$ AU exo-CSPs with different optical depths $\tau=10^{-4}-10^{-7}$ around a) the Sun (G2V: $L_{*}=1 L_{\odot}$), and b) an A-type star, Delta Leonis (A4V : $L_{*}=16 L_{\odot}$; Akeson et al. 2009), located at 40 pc from the Sun. The solid horizontal bars indicate the 5σ detection limits of the FIS all-sky survey (Kawada et al., 2007), and the dashed bars indicate those expected when stacking analyses of a) 1000 , and b) 100 stars are performed, respectively. The radius of the CSPs' grain a is assumed to be $a=5 \mu \mathrm{~m}$. The corresponding $T_{\text {eq }}$ is a) 13.2 and b) 22.1 K , respectively.

Chapter3

Point source calibrations of the

AKARI/FIS all-sky maps

Part of this chapter is published as: Ko Arimatsu, Yasuo Doi, Takehiko Wada, Satoshi Takita, Mitsunobu Kawada, Shuji Matsuura, Takafumi Ootsubo, \& Hirokazu Kataza
"Point source calibration of the AKARI/FIS all-sky survey maps for stacking analysis"

Publications of the Astronomical Society of Japan, Volume 66, issue 2, id 47

3.1 Introduction

The present study intends to search for exo-CSPs by investigating spatial and spectral properties of the FIR emission from the stacked images of nearby A-type stars. The spatial and spectral studies are performed by deriving radial brightness profiles (RBPs) and carrying out photometry. In order to extract accurate RBP of the FIR emission, a subtraction of the extended component from the central unresolved sources are needed, because the angular sizes of the exo-CSPs are comparable to that of the PSFs. This subtraction procedure requires the information of the RBP of the PSF (e.g., Arimatsu et al. 2011a), which was not determined in previous studies for the FIS maps. Furthermore, in order to carry out photometry of the exo-CSP emission, photometric calibrations for point sources are required. The FIS all-sky map is calibrated only by diffuse sources with angular scales greater than degreescale, such as zodiacal and interstellar dust emission (Matsuura et al. 2011, Takita et al. in prep.). Additional flux calibrations for point sources are thus required. Since the present study intends to perform the photometry and the RBP analyses of the exo-CSPs with fluxes down to an order of magnitude lower than the detection limits, by applying the stacking analysis, one has to check whether the calibrations and the radial properties of the PSF can be applied to the faint sources or not.

This chapter focuses on the post-launch calibrations for point sources in the AKARI/FIS diffuse maps. For the calibrations, I adopt infrared standard stars proposed by Cohen et al. (1999) with a flux range from 0.06 to 12 Jy at $90 \mu \mathrm{~m}$. To investigate PSFs and photometric properties of the faint standard stars, I use a stacking analysis for the present study. By stacking the FIS maps at the locations of standard stars, signals from the faint standard stars are statistically investigated.

I present RBPs of the point sources in the FIS maps with fluxes down to about ten times lower than the detection limits. Also, I compare fluxes of the stacked sources derived with aperture photometry to average fluxes that are expected from model spectral templates (Cohen et al., 1999). From the comparison, calibration factors for point sources are calculated. I also check flux-dependence of the calibration factors by comparing the calibration factors calculated between stacked stars of different flux ranges.

In this chapter, section 2 describes a selection method of the stacked targets and the stacking method used for the present study. In section 3, I report radial properties of point sources obtained by the stacking method and calibration factors for point source fluxes. Our results are discussed in section 4, and section 5 offers a short summary.

3.2 Data analysis

3.2.1 Selection of the data sets and stacking method

Calibration stars are selected from the infrared standard star catalogue proposed by Cohen et al. (1999). This catalogue includes 422 giant stars with spectral types of K0 to M0. These stars have been studied extensively using the optical and infrared observation data. Cohen et al. (1999) confirmed that the catalogued stars are well isolated, and the flux of each star is more than 20 times higher than the total flux from nearby sources located within a radius of 6^{\prime} at the mid-infrared wavelengths. The infrared model spectrum is derived for each star based on the photosphere emission templates scaled by photometric observation results, which are concluded to be reliable with accuracies better than 6%. However, these stars were checked in the FIR wavelengths range only with the IRAS data. These stars may have excess emis-
sion from their circumstellar dust at FIR that could not be detected with IRAS. I thus reject stars with possible FIR excesses by the following criteria.

For the calibration stars with their model fluxes less than 1.0 Jy at $90 \mu \mathrm{~m}$, information of the variability is extracted from the SIMBAD database (http://simbad. u-strasbg.fr/simbad/); the stars with the stellar types identified as variable stars are rejected from the sample. Several positions of the stars are severely contaminated with background interstellar dust emission, and I exclude positions with the background surface brightnesses of more than $20 \mathrm{M} \mathrm{Jy} \mathrm{sr}^{-1}$ at the FIS $90 \mu \mathrm{~m}$ band. Aperture photometry is performed at the individual positions of the stars on the $90 \mu \mathrm{~m}$ maps with an aperture radius of $90^{\prime \prime}$. I compare the observed fluxes with those expected from the model spectrum by Cohen et al. (1999), and five stars with fluxes 5σ higher than the expected fluxes are rejected. A search of the Cohen catalogue that satisfied these criteria produces 353 stars. I then exclude the images that contaminates with stripe-like patterns (thought to be due to anomalous output signals after the detector reset; Doi et al. in preparation) or speckles (thought to be due to high-energy particle hitting; Kawada et al. 2007) with surface brightness of larger than $\sim 6,2,4 \mathrm{M} \mathrm{Jy} \mathrm{sr}^{-1}$ at the 65,90 , and $140 \mu \mathrm{~m}$, respectively. Therefore 15 , 2,16 stars are excluded from standards at the 65,90 , and $140 \mu \mathrm{~m}$, respectively.

The number of the selected stars in each expected flux bin is presented in table 3.1. The expected flux is derived by convolving the model spectrum of each star with the spectral responsivity function for the FIS bands. The expected fluxes range from 0.1 to $19,0.06$ to 12 , and 0.02 to 3.7 Jy in the 65 , 90 , and $140 \mu \mathrm{~m}$ bands, respectively.

3.2.2 Stacking Analysis

I stack the all-sky map at the locations of the selected stars over their appropriate flux bins. In this procedure, I evaluate values on finer pixels ($3^{\prime \prime} .75 \times 3^{\prime \prime} .75$ grids) over

Table3.1 Number of selected standard stars in each flux bin.

flux range [Jy]	$60 \mu \mathrm{~m}$	$90 \mu \mathrm{~m}$	$140 \mu \mathrm{~m}$
used for the PSF	49	97	9
-3.98	7	4	0
$3.98-1.58$	29	16	2
$1.58-0.63$	41	43	11
$0.63-0.25$	89	39	34
$0.25-0.1$	172	182	37
$0.1-$	0	67	253

$24^{\prime} \times 24^{\prime}$ image by the cloud-in-cell interpolation; an output pixel value is derived by weighted averaging of the nearest four pixel values in an input image in accordance with the area of the overlap of the output pixel. The vertical axis of each image is aligned with the scan-direction of the survey. Then the median value of all pixel values in an image is estimated as a background pixel value. This background pixel value is subtracted from all pixels. After that, these images are combined by averaging to make a stacked image. In order to eliminate the contamination with the bright background objects in the stacked image, pixels with pixel values of more than 4σ above the r.m.s. of the background fluctuations are masked before stacking. This procedure is performed for all of the sample images, except for the image center. In the image center, a scaled PSF normalized to the central pixel value, is subtracted from the image in order to avoid masking signals from the central targets, and then the masking procedure is performed.

3.3 Results

3.3.1 Point Spread Functions

Firstly, in order to measure the PSFs for bright sources at the 65, 90, and $140 \mu \mathrm{~m}$ bands, I stack 49, 97, and 9 selected standard stars with their fluxes brighter than $1.2,0.28$, and 0.7 Jy , respectively (see Table 3.1). These thresholds correspond to the typical 2.5σ detection limits of the all-sky surey (Kawada et al., 2007). The stacked images are shown in Figure 3.1. The r.m.s. fluctuations of the surface brightnesses in the background of the stacked images relative to the central peak intensity are 4,2 , and 9% at the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively. The background fluctuation contaminates relatively stronger at the $140 \mu \mathrm{~m}$ band (Figure 3.1c). This is because the standard stars become faint due to the Rayleigh-Jeans distribution of the stellar photospheric spectra; expected fluxes at the $140 \mu \mathrm{~m}$ band are about 2.5 times fainter than those at the $90 \mu \mathrm{~m}$ band. At the 65 and $90 \mu \mathrm{~m}$ bands (Figures 3.1a and b), PSFs are elongated in the in-scan direction (corresponds to the vertical direction of Figure 3.1).

The full widths at the half maximum (FWHMs) of the in-scan, and the crossscan directions are derived from the stacked images, which are listed in table 3.2. The cross-scan FWHMs are less than $70^{\prime \prime}$ at the three bands. Especially at the 65 and $90 \mu \mathrm{~m}$ bands, the in-scan FWHMs are about two times larger than the crossscan FWHMs. A possible reason of this asymmetry is that the transient response of the FIS detector is not perfectly corrected in the data reduction procedure (Doi et al. 2009, 2012, see Chapter 2), and the latency of the signal is detected as the prolonged PSF features. I should note that the all-sky maps are constructed from the observations performed with two different scan directions, from North ecliptic

Figure3.1 Stacked images used to measure the PSFs for the FIS 65,90 , and $140 \mu \mathrm{~m}$ bands. Contours are at $75 \%, 50 \%, 25 \%$ and 10% of the peak pixel value.

Table3.2 In-scan and cross-scan FWHMs of stacked PSFs for the FIS all-sky map.

wavelength	$60 \mu \mathrm{~m}$	$90 \mu \mathrm{~m}$	$140 \mu \mathrm{~m}$
In-scan FWHM			
Cross-scan FWHM $^{* 1}$	$81.7^{\prime \prime} \pm 0.5^{\prime \prime}$	$98.2^{\prime \prime} \pm 0.3^{\prime \prime}$	$101.0^{\prime \prime} \pm 1.5^{\prime \prime}$

pole to South ecliptic pole and vice versa. The prolonged feature can thus be axially asymmetric and be different for individual sources in the maps, because the number of the scans of either direction used for the reconstruction of a signal at a pixel is different from location to location. The stacked images are made by simply averaging all observation data, and the asymmetry can be missed in the present study.

The RBPs of the PSFs are also derived from the stacked images by azimuthally averaging the surface brightnesses, which are shown in Figure 3.2. A continuous decline that is expected to be due to extended signals from the point source is seen at radial distances of up to $\sim 150-200^{\prime \prime}$ at the three bands.

[^0]

Figure3.2 RBPs of the stacked images used to measure the PSFs at the FIS a) 65, b) 90, c) $140 \mu \mathrm{~m}$ bands (see Figure 3.1). All profiles are normalized at the central peak. The error-bar corresponds to the 1σ r.m.s. fluctuations of the profiles in the background region (radial distances of $200^{\prime \prime}-300^{\prime \prime}$) The horizontal bar corresponds to the 1σ upper-limit at the radius.

Table3.3 Aperture correction factor for the $226^{\prime \prime}$ aperture

aperture correction factors	$60 \mu \mathrm{~m}$	$90 \mu \mathrm{~m}$	$140 \mu \mathrm{~m}$
$A\left(226^{\prime \prime}\right)^{* 1}$	0.810 ± 0.024	0.856 ± 0.054	0.97 ± 0.21

3.3.2 Aperture correction factor

In the following, aperture photometry for the standard stars is performed with an aperture radius of $90^{\prime \prime}$ and a background annulus between radii $120-300^{\prime \prime}$ in order to reduce contaminations of the background fluctuation. However, as shown in Figure 3.2, the signals from the point sources extend to $\sim 200^{\prime \prime}$. To correct the underestimation of the signals outside the small aperture, aperture correction factors should be applied to the measured fluxes. Two sets of aperture photometry on the stacked images are performed with different apertures; the $90^{\prime \prime}$ aperture, and an aperture with a radius of $226^{\prime \prime}$ and with a background annulus of $251^{\prime \prime}-703^{\prime \prime}$. The aperture correction factor $A\left(226^{\prime \prime}\right)$ is derived from the $90^{\prime \prime}$ aperture flux normalized by the $226^{\prime \prime}$ aperture flux, which is shown in Table 3.3. If one assumes that the $226^{\prime \prime}$ aperture is enough large to sum the total signals from the point source, one can deduce total signals by dividing the $90^{\prime \prime}$ aperture fluxes by $A\left(226^{\prime \prime}\right)$.

3.3.3 Stacked point sources with different fluxes

To investigate radial properties of the PSFs for sources with fainter fluxes, I stack the standard sources over their appropriate flux bins. Panels in Figures 3.3, 3.4, and 3.5 show the stacked images of standard sources with different flux bins at

[^1]

Figure3.3 Stacked images of standard sources for the FIS $65 \mu \mathrm{~m}$ band with different flux ranges. Contours are at $70 \%, 50 \%$, and 30% of the central pixel value. Stacked sources in the panels d and e are severely contaminated with background fluctuations. The 1σ background fluctuation levels are $2.3,4.6,7.3,25$, and 27% of the peak intensity of the central stacked source for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$, and e, respectively.
the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively. Note that a flux range of a bin at the $140 \mu \mathrm{~m}$ (Figure 3.5c, 0.8 dex) is different from the other bins (0.4 dex) in order to stack sufficient sources. All of the panels at the $90 \mu \mathrm{~m}$ (Figure 3.4) clearly show the stacked sources at the image center. At the $90 \mu \mathrm{~m}$ band, the shape of stacked sources for each flux bin seems to follow the stacks for the PSF determination (figure 3.1b). On the other hand, the intensity distributions in the images of two and three fainter groups at the 65 and $140 \mu \mathrm{~m}$ bands do not seem to follow the PSF (Figures 3.3d, e and $3.5 \mathrm{~d})$. In case of the $65 \mu \mathrm{~m}$ band, the r.m.s. fluctuations of the background surface brightnesses of the stacked images for the brighter three groups (Figures 3.3a, b, c) are

Figure3.4 Same as figure 3.3, but for the $90 \mu \mathrm{~m}$ band. The 1σ background fluctuation levels are $0.7,1.0,1.4,4.0,4.3$, and 9.6% of the peak intensity for $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}$, and f , respectively.

2,5 , and 7% of the peak intensity, respectively. On the other hand, the fainter group images (Figures 3.3d, e) have larger background fluctuation levels, which reach 25 and 27% of the peak, respectively. The background fluctuations are also clearly seen in the $140 \mu \mathrm{~m}$ band stacks (Figure 3.5c, and d). Especially, the background fluctuation level of Figure 3.5d is quite high; 57% of the peak intensity. The amplitude of the aberrations between the stacked sources and the PSFs are similar to the background fluctuations. In conclusion, I cannot exclude possibility that the shape of the PSF changes in these aberration levels.

Figure3.5 Same as figure 3.3, but for the $140 \mu \mathrm{~m}$ band. The 1σ background fluctuation levels are $9.4,13,20$, and 57% of the peak intensity for a, b, c, and d, respectively. The stacked source in the panel d is severely contaminated with background structures.

3.3.4 RBPs of point sources with different fluxes

To make a further constraint on the PSF for the fainter sources, the surface brightnesses of the stacked images are azimuthally averaged to derive RBPs. The RBPs for the brightest (dashed line) to faintest groups (dot-dashed line) are compared with the RBPs of the PSF stacks in Figure 3.6 (thick-solid line). At the $90 \mu \mathrm{~m}$ bands, all of the profiles are well consistent with that for the PSF with fluctuations smaller than 5% of the peak intensity; the 1σ deviations of these RBPs from the PSF profile are $1.6 \%, 0.5 \%, 0.5 \%, 0.6 \%, 1.0 \%$ and 3.2% of the peak intensity for the flux bins
of $12.2-3.98,3.98-1.58,1.58-0.63,0.63-0.25,0.25-0.1$, and $0.1-0.07 \mathrm{Jy}$, respectively. Therefore the RBP of the $90 \mu \mathrm{~m}$ PSF is well determined by the stacked image of bright standards (Figure 3.1b) in the investigated flux range ($0.06-12 \mathrm{Jy}$). On the other hand, significant aberrations from the PSF profiles can be seen in the profiles of several groups at the 65 and $140 \mu \mathrm{~m}$ bands. At the $65 \mu \mathrm{~m}$ band, the aberration is significant in the profile for the faintest bin ($0.25-0.1 \mathrm{Jy}$, dot-dashed red line in Figure 3.6a); the profile is dropped with an amplitude of $\sim 20 \%$ of the peak at $\sim 100^{\prime \prime}$ from the center. Though any gradual change of the RBPs as a function of the fluxes is not confirmed in brighter bins, I cannot exclude a possibility that the profiles can change for point sources with fluxes below 0.25 Jy at the $65 \mu \mathrm{~m}$ band. Aberrations are also seen in the profiles of the most flux bins at the $140 \mu \mathrm{~m}$ band (see Figure 3.6c). The aberrations do not seem to be a function of the flux, but their amplitude reaches $\sim 20 \%$ of the peak intensity at most. The RBP of the $140 \mu \mathrm{~m}$ PSF is not determined with a precision better than this aberration level in the present study.

3.3.5 Absolute Flux Calibration

In order to derive the calibration factor for point-source photometry, I compared the fluxes obtained by aperture photometry with their model prediction. Aperture photometry of stacked point sources is performed on the stacked images with the $90^{\prime \prime}$ aperture, which is presented in figure 3.6. The sky background is measured in the annulus with the inner and outer radii of $120^{\prime \prime}$ and $300^{\prime \prime}$. Uncertainties of the fluxes are derived from the scatter of the values measured in four areas with the same aperture radius of $90^{\prime \prime}$ in the background annulus. The derived fluxes are divided by the aperture correction factors, $A\left(226^{\prime \prime}\right)$ (see Section 3.3.2) to derive a total flux from the stacked sources.
standard aperture

--	$12.2-3.98 \mathrm{Jy}$
-	$3.98-1.58 \mathrm{Jy}$
-	$1.58-0.63 \mathrm{Jy}$
-	$0.63-0.25 \mathrm{Jy}$
-	$0.25-0.1 \mathrm{Jy}$
--	$0.1-0.07 \mathrm{Jy}$
-	PSF

Figure3.6 Normalized radial intensity profiles of a point source derived by the stacking image at the FIS a) 65, b) 90 , and c) $140 \mu \mathrm{~m}$ bands. The lines in the individual figures are the profiles for the standard stars with different fluxes. The bold dashed and dot-dashed lines in each panel are the stars for the maximum and minimum flux groups, respectively. The bold solid lines represent the profiles of the PSFs shown in figure 3.1. An aperture radius $\left(90^{\prime \prime}\right)$ for photometry is shown as the vertical dashed line, and the background annulus $\left(120^{\prime \prime}-300^{\prime \prime}\right)$ is also shown as the orange area.

Figure 3.7 shows the observed-to-expected flux ratio for the stacked calibration standards as a function of the average expected flux in each flux bin. The ratio between the observed and expected fluxes represents the calibration factor for pointsource photometry. The calibration factors are always lower than the unity at the three bands. This means that the observed fluxes are always lower than the expected ones at the three bands.

A possible reason for the obtained result is that the observed fluxes are underestimated due to missing fluxes from the point sources. The missing signals can be induced via the slow transient response of the detector (Shirahata et al., 2009). As already noted in Chapter 1, the transient response of the FIS detectors is a major cause to decrease the signals of the point sources. A typical transient timescale of the FIS detectors is known to be a few to 20 seconds (Kaneda et al., 2002). On the other hand, taking the scan speed ($3^{\prime} .6 \mathrm{sec}^{-1}$) and the cross-scan FWHMs of the PSFs (33, 55, and $70^{\prime \prime}$ for the 65,90 , and $140 \mu \mathrm{~m}$, respectively) into consideration, a point source is scanned in only $0.2-0.3 \mathrm{sec}$, which is much smaller than the transient timescales. This short scan timescale of the point sources is not enough for the detectors to reach a constant output level, and resulting in the relatively smaller output signals for point sources.

Missing signals also can be induced by scattered photons inside optical instruments and detectors. It is possible that photons from the point sources are scattered in the entire detectors, and can be missed, because they can be too extended and too faint (with brightness levels of down to smaller than 10^{-3} of the peak intensity of the PSFs; Arimatsu et al. 2011b) to detect the present RBPs of the stacked point sources (Figure 3.2).

The flux ratios do not seem to show a flux-dependent trend, and can be approximated by a constant value. The weighted means of the ratios are derived to be

Figure3.7 The observed-to-expected flux ratio as a function of the expected flux at the FIS a) 65 , b) 90 , and c) $140 \mu \mathrm{~m}$. The error bars on the y-axis represent the 1σ photometry uncertainties. The solid lines with gray areas are the weighted averages with the 1σ uncertainties. The vertical line represents the 5σ detection limit of the All-Sky Survey at each band (Kawada et al., 2007). The dotted lines in panels a and b indicate the correction factors derived by the slow-scan mode observations (Shirahata et al., 2009), which are normalized by the weighted averages at the expected flux of 1 Jy.
$0.760 \pm 0.019,0.930 \pm 0.007$, and 0.67 ± 0.09, for the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively. The deviations of the observed fluxes from the weighted means are 9, 3.2, and 21% for the 65,90 , and $140 \mu \mathrm{~m}$, respectively. The $140 \mu \mathrm{~m}$ deviation is relatively higher than the other two bands. Taking the large error bars of photometry, as shown in Figure 3.7c, into consideration, the deviation at the $140 \mu \mathrm{~m}$ is mainly due to the large flux uncertainties. These results present photometry for sources at the 65, 90, and $140 \mu \mathrm{~m}$ band can be performed by using the calibration factors approximated to be constant with accuracies of these deviations throughout the flux ranges of $19-0.1$, $12-0.06$, and $0.02-3.7 \mathrm{Jy}$, respectively.

3.4 Discussions

3.4.1 Comparison with the FIS Pointed Observations

In addition to the all-sky survey used in the present study, $A K A R I /$ FIS had performed slow-scan observations for the pointing mode, and their data characteristics were investigated in the previous studies (Kawada et al., 2007; Shirahata et al., 2009). In the previous studies, the ratios between the observed fluxes and those expected from model spectra show a clear flux-dependence at the 65 and $90 \mu \mathrm{~m}$ bands (Shirahata et al., 2009). In the flux range of $0.1-10 \mathrm{Jy}$, the calibration factor decreases with source fluxes by $\sim 20 \%$, and 30% for the 65 and $90 \mu \mathrm{~m}$, respectively (see dotted lines in Figure 3.7; Shirahata et al. 2009). On the other hand, the corresponding flux-dependences do not seem to appear in the present calibrations for the all-sky maps (Figure 3.7).

One of the major differences between the slow-scan and all-sky observations is scan speeds during the observations. The flux-dependence calibration trend seen in the slow-scan observations was thought to be due to an input-flux dependence of the
transient response function of the FIS detector. According to the laboratory tests, the response function depends on the input fluxes in a timescale of $1-20$ seconds (Shirahata et al., 2004). This means that the output signal intensity at a time within this timescale range is not linearly correlated with the input flux. In the slow-scan observations, the detector sweeps the sky with a scan speed of 7 or $15^{\prime \prime} \sec ^{-1}$, and thus the integration times of the point sources correspond to 7.9 or 3.7 seconds, respectively, assuming an angular size of the point sources is comparable to the cross-scan FWHM of the $90 \mu \mathrm{~m}$ band PSF ($55^{\prime \prime}$, see table 3.2). These timescales are comparable to the flux-dependent transient timescale. The observed flux ratio is thus thought to show the clear flux-dependence in the slow-scan observations.

On the other hand, the detector sweeps the sky with a much higher scan speed $\left(3^{\prime} .6 \mathrm{sec}^{-1}\right)$ in the all-sky observations. A point source is scanned in only about 0.25 second. The transient functions within this short timescale (initial pulse; with a timescale of ~ 0.1 second) are known to be flux-independent (Shirahata et al., 2004); the output signal intensity at a time within this timescale range is proportional to the input flux. Therefore the flux-dependent transient effect is expected to be less severe for the all-sky observations.

While the deviations of the fluxes after applying the calibration factors at the 65 and $140 \mu \mathrm{~m}$ bands (9 and 21%) are similar to, or slightly larger than that derived by pointed observations ($\sim 15 \%$, Shirahata et al. 2009), the deviation for the $90 \mu \mathrm{~m}$ band (3%) is much smaller than the slow-scan value (13%, Shirahata et al. 2009). However, I should note that the present results can be missed possible variations of the calibration factors due to spectral variations of the objects. The present study only uses the stars, whereas previous studies also used asteroids, which have different spectra at FIR. For the FIS detectors, each pixel of the detector array has a different spectral response (Kawada et al., 2007), which may result in the variations of the
fluxes. This uncertainty would be included in the uncertainty of the calibration factors derived by Shirahata et al. (2009), but would not be included in the present results. Especially for the $90 \mu \mathrm{~m}$ and the $140 \mu \mathrm{~m}$ bands, the wavelength ranges of the spectral responsivity are broader than the other bands (Kawada et al., 2007), and the flux variations due to the spectral variations thus can be more significant. According to Verdugo et al. (2007), the error in photometry variation of the spectral responsivity can be $\sim 10 \%$. Therefore, I assume the typical error in photometry due to infrared color of the object is 10%, and adopt the total error of the aperture correction factor at the $90 \mu \mathrm{~m}$ band to be 10% in the following study.

3.4.2 Possible applications of the calibration factors for fainter sources

Since signals in the FIS all-sky data are dominated by the background emission, such as the zodiacal light, the diffuse galactic interstellar emission, and the extragalactic background light, it seems to be possible that the constant calibration factors are allowed to be extrapolated to flux ranges fainter than the sources used in the present study. According to the empirical model for the FIS detector established by Kaneda et al. (2002), the slow transient response should depend on the total photo-current, which includes background light and signal from the target. Typical surface brightnesses at the high ecliptic and galactic latitudes, where the background zodiacal and diffuse galactic emission intensity reaches minimal level, are $\sim 4,4$, and $2 \mathrm{MJy} \mathrm{sr}^{-1}$ at the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively (Matsuura et al., 2011). Taking beam solid angles for the FIS bands (4,5 , and 10×10^{-8} sr; Shirahata et al. 2009) into consideration, fluxes of the background emission in a beam are expected to be larger than $\sim 0.2 \mathrm{Jy}$ at the three bands, which are 2,3 , and 10 times brighter than point sources in the faintest flux ranges investigated in the present study. Since the zodiacal and the diffuse galactic emission are stronger in most of the sky, photons in a beam are
typically dominated by the background light than the fainter point sources. It is thus unlikely that the calibration factors would be a function of the fluxes of the fainter point sources. Therefore, these flux-independent calibrations can be performed for objects with fluxes smaller than the investigated flux ranges.

3.5 Summary of this chapter

In this chapter, determinations of the RBPs and flux calibrations for faint point sources in the $A K A R I /$ FIS all-sky 65,90 , and $140 \mu \mathrm{~m}$ maps have been performed with infrared calibration stars. By stacking the bright sources the PSFs are determined. The RBP of the PSF is determined over a $12-0.06$ Jy flux range at the $90 \mu \mathrm{~m}$ map with precisions better than 5% of a peak intensity, but is not determined with precisions better than 20% at the 65 and $140 \mu \mathrm{~m}$ maps. The calibration factors are derived by comparing the measured photometry values of the stacked stars to the emission model values. The deviations of the observed photometry for the stacked stars with different fluxes from the calibration factor were estimated to be better than 20% for the three bands within flux ranges of $19-0.1,12-0.06$, and $3.7-0.02$ Jy at the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively. Any flux dependence in the calibration factors with amplitude larger than the deviations is not seen on the investigated flux ranges at the three bands.

Chapter4

Stacking analysis of the nearby

A-type main-sequence stars

Part of this chapter will be submitted to Astrophysical Journal as:
Ko Arimatsu, Yasuo Doi, Takehiko Wada, Satoshi Takita, \& Hirokazu Kataza
"Evidence for the extended dust emission around nearby A-type stars"

4.1 Introduction

This chapter describes the results of spatial and spectral studies on nearby A-type stars in the AKARI/FIS all-sky maps. Whatever is in the exo-CSPs around the stars, such as debris and dust grains, would emit far-infrared radiation (Stern et al. 1991; see chapter 2), which is the analogue of the infrared emission from debris disks. The FIR emission from the exo-CSPs can be distinguished from the debris disk emission because the exo-CSPs of the present interest are expected to extend ($>1000 \mathrm{AU}$, see Chapter 1) farther than typical debris disks (smaller than an order of 100 AU, Wyatt 2008). I thus have searched for the extended FIR emission around nearby A-type stars, where the emission from the exo-CSPs is expected to be strong (see chapter 2). In order to search for the faint exo-CSP emission, a stacking analysis for the A-type stars is carried out. In Chapter 3, I found stacked point sources in the AKARI FIS $65,90,140 \mu \mathrm{~m}$ all-sky maps are well calibrated by the calibration factors, and the radial profile of the stacked point sources is well determined at the $90 \mu \mathrm{~m}$. Therefore one can perform accurate photometry and investigations of the radial properties of the FIR emission using the stacked images.

In this chapter, section 2 describes a selection method of targets and a stacking method used in the present study. In section 3, I report results of photometry of the A-type stars using the stacked image. The SEDs of the measured fluxes are fitted to simple thermal spectra. Section 4 describes the RBPs of the FIR emission that are averaged from the stacked images. The RBPs are compared with the PSF and a simple profile model. Section 5 offers a short summary.

4.2 Selection of the targets and stacking method

In this study, I use the AKARI/FIS all-sky maps (Doi et al., 2009, 2012) at the N60 $(65 \mu \mathrm{~m})$, Wide-S $(90 \mu \mathrm{~m})$, and Wide-L $(140 \mu \mathrm{~m})$ bands. These maps are preliminary version 130401, which went through data reduction procedures that apply to the publicly released dataset. The properties of the point sources in the maps at the three bands are described in chapter 3. I do not use the $\mathrm{N} 160(160 \mu \mathrm{~m})$ band map because the sensitivity is too low for the faint source studies (see chapter 2).

4.2.1 Target selection

Targets for this study are selected from the Hipparcos catalogue (Perryman et al., 1997). The Hipparcos catalogue includes nearby stars with their parallaxes (i.e., distances). I adopt stars noted as A-type stars in the Hipparcos catalogue for the targets. In order to select stars close to the main-sequence phase, the targets must confirm the following criterion

$$
\begin{equation*}
-0.2<M_{V}<8 \times[B-V]+2 \tag{4.1}
\end{equation*}
$$

where $B-V$ is the star's color index and M_{V} is the absolute V -band magnitude. I should note that several A- stars with luminosity classes of IV - III, main-sequence stars with fainter spectral types (typically F0-F1V), and Herbig Ae/ Be stars can be included in the sample with this criterion, because they are negligibly off the MS on an H-R diagram. Especially Herbig Ae/ Be stars can be embedded in the dense interstellar medium that would result in confusions of the extended FIR emission around stars. I thus rejected candidates of the Herbig stars from the sample. The
candidates are selected using the Hipparcos catalogue and the near- to mid-infrared All-Sky Source Catalog produced by the Wide-field Infrared Survey Explorer (WISE, Wright et al. 2010), and the following spectral selection criteria proposed by Vieira et al. (2003);

$$
\begin{equation*}
0.75 \log \left(\frac{F_{12}}{F_{V}}\right)-1 \leq 2 \tag{4.2}
\end{equation*}
$$

where F_{V} is the flux at the V band, and F_{12} is that at the WISE $12 \mu \mathrm{~m}$ band. Several positions of the stars are severely contaminated with the interstellar dust emission. I thus exclude stars at positions with the background surface brightnesses of more than $\sim 20 \mathrm{M} \mathrm{Jy} \mathrm{sr}^{-1}$ at the FIS $90 \mu \mathrm{~m}$ band from the following analysis. This is the same criterion as that adopted for the standard star investigations (see Chapter 2), and allows us to select samples located at regions with typical background fluctuations below $\sim 1 \mathrm{MJy} \mathrm{sr}^{-1}$ at the $90 \mu \mathrm{~m}$ band. I also exclude images that severely contaminate with detector-induced noises (see Chapter 3) from the targets.

Finally, I have selected 63 A-type stars within $15.8-39.8 \mathrm{pc}$ from the Sun from the Hipparcos catalogue, which are listed in Table 4.1. In addition, 3520 stars within 39.8-158 pc (listed in Appendix A) are selected to compare the stacking results with the closer samples. The sample targets are divided into three distance bins, a, $15.8<$ $d<39.8$ (group 1), b, $39.8<d<100$ (group 2), and c, $100<d<158 \mathrm{pc}$ (group 3). Average distances of the stars in the three bins are 29.4, 78.4, and 131 pc , respectively. The positions of the selected stars that are overlaid on the FIS $90 \mu \mathrm{~m}$ band allsky map are shown in Figure 4.1. The target stars are isotropically distributed in the whole sky, except for the Galactic disk region, where the background diffuse infrared emission is severely contaminated. The typical background fluctuations of the selected regions are comparable to or smaller than $0.5 \mathrm{M} \mathrm{Jy} \mathrm{sr}^{-1}$ (see Table 4.1).

Figure4.1 The positions of the stars grouped into 0.4 dex distance bins: a), $15.8<$ $d<39.8$ (group 1), b), $39.8<d<100$ (group 2), and c), $100<d<158$ pc (group 3), overlaid on the FIS $90 \mu \mathrm{~m}$ band map.
Table4.1: Selected A-type stars located at $15.8<d<39.8$ pc (group 1)

Hipparcos ID	parallax [mas]	stellar type	K flux [Jy]	$90 \mu \mathrm{~m}$ expected flux [Jy]	background r.m.s. $\left[\mathrm{MJy} \mathrm{sr}^{-1}\right]$	$\begin{gathered} L_{*} \\ {\left[L_{\odot}\right]} \end{gathered}$
2072	42.51	A5IVn ${ }^{* 1}$	24.43	0.0252	0.24	10.9
8903	54.74	kA4hA5mA5Va*2	82.4	0.0851	0.33	21.1
9480	27.91	A5V*3	13.25	0.0137	0.30	16.5
10064	26.24	A5IV*2	56.59	0.0585	0.32	69.0
10670	27.73	A1Vnn ${ }^{* 4}$	17.41	0.018	0.38	20.9
12706	39.78	A2 $\mathrm{Vn}^{* 2}$	39.22	0.0405	0.32	15.0
14146	37.85	A4V ${ }^{* 5}$	24.82	0.0256	0.35	9.9
15197	27.18	kA4hA9mA9V*1	13.61	0.0141	0.56	11.0
18907	25.24	A0.5Va ${ }^{* 1}$	20.45	0.0211	0.38	30.7
22845	27.04	A3Va*2	11.42	0.0118	0.47	12.5
23875	36.71	A3IV* ${ }^{*}$	73.3	0.0757	0.32	38.5
27321	51.87	A6V*1	25.91	0.0268	0.38	7.8
32607	32.96	A8VnkA6 ${ }^{* 1}$	62.51	0.0646	0.17	29.5
33705	25.57	A4/A5IV*6	4.34	0.0045	0.46	2.4
35350	34.59	A3V ${ }^{* 7}$	25.7	0.0265	0.45	30.0
35643	28.99	F2VkF1mF0*2	7.66	0.0079	0.39	4.1

$\mathrm{kA} 15 \mathrm{hA} 3 \mathrm{~mA} 3 \mathrm{va}^{* 1}$
$\mathrm{~A} 2 \mathrm{Van}^{* 2}$
$\mathrm{~A} 7 \mathrm{IV}^{* 13}$
$\mathrm{~A} 3 \mathrm{Va}^{* 2}$
$\mathrm{~A} 7 \mathrm{IV}+(\mathrm{n})^{* 13}$
$\mathrm{~A} 0 \mathrm{~V}^{* 14}$
$\mathrm{~A} 3 \mathrm{IV}^{* 5}$
$\mathrm{~A} 6 \mathrm{III}^{* 3}$
$\mathrm{~A} 1 \mathrm{~V}^{* 15}$
$\mathrm{kA} 2 \mathrm{hA} 5 \mathrm{~mA} 7 \mathrm{~V}^{* 2}$
$\mathrm{~A} 1 \mathrm{IVn}^{* 2}$
$\mathrm{kA} 3 \mathrm{hF0mF0}$
kA 3 hF 1 mFO
A $7 \mathrm{~V}^{* 1}$
A3 IV

98495	30.73	A0Va*1	20.13	0.0208	0.39
102333	41.38	A9IV*1	19.77	0.0204	0.34
109427	33.77	A1Va*1	29.73	0.0307	0.40
110618	34.6	G9VFe-3.1CH-1.5*1	25.51	0.0264	0.24
111169	31.86	A1.5V*15	19.21	0.0198	0.27
112623	25.16	A2IVn*1	35.35	0.0365	0.26
113860	34.98	A9V *6	12.11	0.0125	0.39

$\quad{ }^{* 1}$ Gray et al. (2006)
${ }^{* 2}$ Gray et al. (2003)
${ }^{* 3}$ Helmut \& Nidia (1995)
${ }^{* 4}$ Phillips et al. (2010)
${ }^{* 5}$ Houk \& Smith-Moore (1988)
${ }^{* 6}$ Houk (1982)
${ }^{* 7}$ Boyajian et al. (2013)
${ }^{* 8}$ Seifahrt et al. (2010)
${ }^{* 9}$ Ginestet et al. (1997)
${ }^{* 10}$ Helmut (2008)
${ }^{* 11}$ Eggl et al. (2013)
${ }^{* 12}$ Robrade \& Schmitt (2011)
${ }^{* 13}$ Gray et al. (2001)
${ }^{* 14}$ Malagnini \& Morossi (1990)
${ }^{* 15}$ Zorec et al. (2009)
${ }^{* 16}$ van Belle \& von Braun (2009)

4.2.2 Stacking Analysis

To investigate average FIR emission properties associated with the A-type stars with sufficient sensitivities, I stack the FIS maps centered at the positions of the selected stars over the distance bins. I evaluate values on finer pixels ($3^{\prime \prime} .75 \times 3^{\prime \prime} .75$ grids) over $24^{\prime} \times 24^{\prime}$ images by cloud-in-cell interpolation of four nearest neighbors in the original pixels (see Chapter 3). The vertical axis of each image is aligned with the scan-direction of the survey. Then the median value of the pixel values is subtracted from each image as the background surface brightness. Pixels with pixel values more than 3σ above the background fluctuations are masked (see details in Chapter 3). After these procedures, I combine these images by averaging to make a stacked image.

4.2.3 Stacking images

Figure 4.2 shows the stacked images of the selected stars that are grouped into three distance bins at the 65,90 , and $140 \mu \mathrm{~m}$ bands. An emission located at the position of the stars is seen in each stacked image.

4.3 Photometry results

4.3.1 Aperture photometry

Since the exo-CSPs with sizes comparable to the outer SD (astrocentric distances of $\sim 4000 \mathrm{AU})$ and the inner OC $(1000-5000 \mathrm{AU})$ can be spatially resolved for the stars located within $\sim 50 \mathrm{pc}$ from the Sun (see Chapter 2), the exo-CSP emission

Figure4.2 Stacked images of the selected nearby A-type stars in the AKARI FIS maps. Panels in the upper, middle and lower rows represent AKARI 65 (blue), 90 (green), and 140 (red) $\mu \mathrm{m}$ stacked maps, respectively. Panels in the left, middle, and right columns represent stacked images of the stars with distances d of $15.8<d<39.8$ (group1), $39.8<d<100$ (group2), and $100<d<158 \mathrm{pc}$ (group3), respectively. The solid circles in the panels a , b , and c show apertures I use to extract the signal inside 226, 90 , and $90^{\prime \prime}$, respectively. The dotted circle in the panel a indicates another aperture with a radius of $90^{\prime \prime}$. The ellipses at the bottom left corner of the panels a, d, and g indicate the beam size at the 65,90 , and $140 \mu \mathrm{~m}$, respectively (see Chapter 3).
can be resolved in the stacked images of the group 1. Therefore, to extract both the extended emission, and the unresolved emission from the stellar photospheres and from the debris disks, I performed aperture photometry of the stacked images of the group 1 with two apertures; an aperture radius of $90^{\prime \prime}$ with a background annulus between radii of $120-300^{\prime \prime}$, and an aperture radius of $226^{\prime \prime}$ with a background annulus between radii of $251-703^{\prime \prime}$. The corresponding physical radii of the $90^{\prime \prime}$ and $226^{\prime \prime}$ apertures are ~ 2600, and 6600 AU, respectively. Fluxes with the both apertures are divided by the flux calibration factors derived in Chapter 3. Fluxes measured with the $90^{\prime \prime}$ aperture are also divided by the aperture correction factor $A\left(226^{\prime \prime}\right)$ (see Chapter 3). After that, I derived fluxes in an annulus between radii of $90-226^{\prime \prime}$ by subtracting fluxes derived with the $90^{\prime \prime}$ aperture from those with the $226^{\prime \prime}$ aperture. Uncertainties of the photometry are obtained with standard deviations of fluxes measured from stacked images centered at the same number of randomly chosen blank positions (see Chapter 5). Then 1σ errors of the photometry are derived by the square root of the square sum of these flux deviations, and the uncertainties of the flux calibration factors and aperture correction factors (see Chapter 3). The $90^{\prime \prime}$ aperture is also used for photometry of the two distant stacked groups (groups 2 and 3). The corresponding physical radii of the aperture radius are ~ 6700 and ~ 11000 AU for groups 2 and 3, respectively. The estimated fluxes are tabulated in Table 4.2.
Table4.2 Observed fluxes.

Observation	Band	Wavelength $[\mu \mathrm{m}]$	group1, $<90^{\prime \prime}$	group1, 90" $-226^{\prime \prime}$	group2	group3
	J	1.235	68.0 ± 1.2		9.75 ± 0.15	3.05 ± 0.05
	H	1.662	45.3 ± 0.9		6.57 ± 0.12	2.02 ± 0.04
	Ks	2.159	30.7 ± 0.6		4.24 ± 0.08	1.37 ± 0.03
WISE $^{* 2}$	band 3	11.56	1.36 ± 0.14		0.182 ± 0.018	0.058 ± 0.006
	band 4	22.09	0.54 ± 0.05		0.060 ± 0.006	0.0186 ± 0.0019
SKARI $^{* 3}$	N60	65	0.46 ± 0.10	0.12 ± 0.16	0.023 ± 0.027	0.013 ± 0.021
	WIDE-S	90	0.24 ± 0.04	0.27 ± 0.11	0.037 ± 0.007	0.013 ± 0.005
	WIDE-L	140	0.22 ± 0.11	0.65 ± 0.31	0.062 ± 0.025	0.010 ± 0.016

[^2]
4.3.2 SED fit to the closest stacks

Figure 4.3 displays the SED of the observed fluxes measured with the $90^{\prime \prime}$ aperture photometry on the stacked images of the group 1. The observed SED shows a clear FIR excess against the Rayleigh-Jeans limit of the photospheric emission (dotted curve in Figure 4.3). In order to interpret the spectral features of the fluxes, a simple infrared emission model consisting of a photospheric component and a blackbody component is employed. First of all, I derive the best-fit results of the model fitting by minimizing χ^{2} defined by the following function;

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{6} \frac{\left(F_{\nu}^{\mathrm{obs}}\left(\lambda_{i}\right)-A f_{\nu}^{\mathrm{ph}}\left(\lambda_{i}\right)-C B_{\nu}\left(\lambda_{i}, T_{\mathrm{warm}}\right)\right)^{2}}{\sigma_{i}^{2}} \tag{4.3}
\end{equation*}
$$

where $F_{\mathrm{obs}}\left(\lambda_{i}\right)$ is the observed flux at the wavelength $\lambda_{i}: i=1,2,3,4,5$, and 6 corresponding to 2MASS Ks $(2.17 \mu \mathrm{~m})$, WISE band $3(12 \mu \mathrm{~m})$, band $4(22 \mu \mathrm{~m})$, and AKARI N60 $(65 \mu \mathrm{~m})$, WIDE-S $(90 \mu \mathrm{~m})$, and WIDE-L $(140 \mu \mathrm{~m})$ bands, respectively. These fluxes are normalized by the 2MASS $2.17 \mu \mathrm{~m}$ band flux. σ_{i} is the uncertainty of $F_{\text {obs }}\left(\lambda_{i}\right) . B_{\nu}\left(\lambda_{i}, T_{\text {warm }}\right)$ is the Planck function of temperature $T_{\text {warm }}$, and $f_{\nu}^{\mathrm{ph}}\left(\lambda_{i}\right)$ is a model photospheric emission spectrum for A5V stars adopted from Kurucz (1992). In this fitting procedure, A, C, and T are the fitting parameters. Note that if I adopt models of other spectral types (A0- F0), the best-fit values of the parameters C and T do not change with amplitudes greater than 5%. This is because all of the model spectra are quite similar to each other at wavelengths $\lambda>2 \mu \mathrm{~m}$, where the spectra reach the Rayleigh-Jeans limit $\left(f_{\nu}^{\mathrm{ph}}(\lambda) \propto \lambda^{-2}\right)$.

In the fitting procedure, the observed fluxes should be compared with model flux values that are derived by taking a model spectrum and response functions of the bands into consideration. Since the flux of the AKARI/FIS data refers to the spec-
trum $\lambda F_{\lambda}=$ constant, a model flux value at the band $i, F_{\lambda}^{\mathrm{FIS}}\left(\lambda_{i}\right)$, is derived from a model spectrum $F_{\lambda}^{\text {model }}(\lambda)$ and a response function $R(\lambda)$ of the FIS bands;

$$
\begin{equation*}
F_{\lambda}^{\mathrm{FIS}}\left(\lambda_{i}\right)=\frac{\int F_{\lambda}^{\operatorname{model}}(\lambda) R(\lambda) d \lambda}{\int\left(\lambda_{i} / \lambda\right) R(\lambda) d \lambda} \tag{4.4}
\end{equation*}
$$

I use $R(\lambda)$ for the FIS bands measured in the laboratory (see Kawada et al. 2007). On the other hand, the calibration of the WISE data uses the spectrum with $F_{\lambda}=$ constant. I therefore apply the following correction;

$$
\begin{equation*}
F_{\lambda}^{\mathrm{WISE}}\left(\lambda_{i}\right)=\frac{\int F_{\lambda}^{\mathrm{model}}(\lambda) R(\lambda) d \lambda}{\int R(\lambda) d \lambda} \tag{4.5}
\end{equation*}
$$

As shown in Figure 4.3, the excess feature can be approximated by a blackbody model spectrum with the temperature of $T_{\text {warm }}=122 \pm 12 \mathrm{~K}$ (dotted-dashed curve in Figure 4.3). The excess temperature is marginally in agreement with a median cold disk temperature of nearby A-type stars obtained by the recent Herschel results ($T \sim 110$ K; Thureau et al. 2014). From the fitting results, the fractional luminosity ($f_{\text {warm }}$, the energy contribution of the excess to that of the photospheric emission) is obtained by the following equation;

$$
\begin{equation*}
f_{\mathrm{warm}}=\frac{C \int(\nu / c) B_{\nu}(\nu, T) d \nu}{A \int f_{\nu}^{\mathrm{ph}}(\nu) d \nu} \tag{4.6}
\end{equation*}
$$

The fractional luminosity is derived to be $f_{\text {warm }}=4.6_{-1.1}^{+1.5} \times 10^{-5}$. According to the recent Herschel results (Thureau et al., 2014), an occurrence rate and an average fractional luminosity of detected debris disks around A-type stars are $\sim 24 \%$ and $\sim 2 \times 10^{-4}$. If the contribution of undetected debris disks is ignored, an average fractional luminosity of the debris disks around A-stars is deduced to be $\sim 5 \times 10^{-5}$, which is comparable to $f_{\text {warm }}$. Therefore the spectral properties of the obtained

Figure 4.3 The obtained fluxes of the group1 measured with the $90^{\prime \prime}$ aperture (physical scale of 2600 AU) and the SED fit results. Open black circles with error bars show the measured fluxes and the near- to mid-infrared fluxes obtained by averaging the 2MASS (wavelength at $1.25,1.65$, and $2.17 \mu \mathrm{~m}$) and the WISE (12 and $22 \mu \mathrm{~m}$) catalogue values scaled by the $2.17 \mu \mathrm{~m}$ flux. Black points represent model flux values that take the spectral response functions of the bands into consideration, which are derived by the equations 4.4 and 4.5 . The solid, dotted, and dot-dashed curves are the SED fit results, which are derived by the equation 4.3.
excess in the $90^{\prime \prime}$ aperture is consistent with that of the known debris disks.
The SED of the group 1 fluxes measured with the $90^{\prime \prime}-226^{\prime \prime}$ annulus is presented in Figure 4.4. FIR emission is detected in this annulus. Since the corresponding physical scale of the annulus is $\sim 2600-6600 \mathrm{AU}$, and is larger than those characteristics for known debris disks (smaller than 1000 AU, Wyatt 2008), it is difficult to consider the FIR emission as the debris disk emission. The SED is fitted to a model consisting of a modified blackbody spectrum, in a manner that minimizes the following χ^{2};

$$
\begin{equation*}
\chi^{2}=\sum_{i=4}^{6} \frac{\left(F_{\nu}^{\mathrm{obs}}\left(\lambda_{i}\right)-E \lambda_{i}^{-1} B_{\nu}\left(\lambda_{i}, T_{\mathrm{cold}}\right)\right)^{2}}{\sigma_{i}^{2}} . \tag{4.7}
\end{equation*}
$$

In this fitting procedure, E and $T_{\text {cold }}$ are the fitting parameters. In this model, the emissivity ϵ of the grain is assumed to be proportional to λ^{-1}.

The fit result is shown as a solid curve in Figure 4.4. The corresponding temperature and the fractional luminosity of the emission is estimated to be $T_{\text {cold }}=22.8 \pm 5.2$ K and $f_{\text {cold }}=2.0_{-1.5}^{+6.3} \times 10^{-5}$, respectively. The obtained temperature $T_{\text {cold }}$ is lower than the typical debris disk temperature obtained in the present result ($T_{\text {warm }}=122 \pm 12 \mathrm{~K}$).

4.3.3 SEDs of distant samples

For comparison with the stacked SEDs of the group 1, fluxes of more distant two groups, $39.8<d<100 \mathrm{pc}$ (group2), and $100<d<158 \mathrm{pc}$ groups (group3), are shown in Figure 4.5. These fluxes are measured with a $90^{\prime \prime}$ aperture, which corresponds to apertures with physical radii of 6700 and 11000 AU , respectively. The SED of the group 2 stack (Figure 4.5a) seems to follow the total SED of the group 1 (crosses in Figure 4.5a). However, the excess intensities are relatively smaller
than that of the group 1. Taking the results of the group1 into consideration, I fit the SED with a spectral model consisting of a photospheric, blackbody, and additional modified blackbody components. The best-fit parameters for the two-temperature model are derived in a manner that minimizes the following χ^{2};

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{6} \frac{\left(F_{\nu}^{\mathrm{obs}}\left(\lambda_{i}\right)-A f_{\nu}^{\mathrm{ph}}\left(\lambda_{i}\right)-C B_{\nu}\left(\lambda_{i}, T_{\mathrm{warm}}\right)-E \lambda_{i}^{-1} B_{\nu}\left(\lambda_{i}, T_{\mathrm{cold}}\right)\right)^{2}}{\sigma_{i}^{2}} \tag{4.8}
\end{equation*}
$$

In this fitting procedure, $T_{\text {warm }}$, and $T_{\text {cold }}$ are set to be 122 K and 23 K , respectively, and A, C, and E are the fitting parameters.

The best-fit result is shown as solid curve in Figure 4.5a. The corresponding $f_{\text {warm }}$ for the group 2 is $1.7_{-0.7}^{+1.3} \times 10^{-5}$, which is smaller than the results of the group 1 $\left(\sim 4 \times 10^{-5}\right)$. On the other hand, the corresponding $f_{\text {cold }}$ is $1.1_{-0.3}^{+0.5} \times 10^{-5}$, which is in agreement with the results of the group $1\left(2.0_{-1.5}^{+6.3} \times 10^{-5}\right)$.

It is much more harder to understand properties of the group 3 SED (Figure 4.5b), because the error of the photometry is larger than the closer two groups. If performed the same fitting procedure, the $f_{\text {warm }}$ and $f_{\text {cold }}$ are derived to be $1.8_{-0.7}^{+1.4} \times 10^{-5}$ and $0.9_{-0.4}^{+0.8} \times 10^{-5}$, respectively, which is in agreement with the results of the group 2 . Therefore, the observed SEDs of these groups are consistent with the assumption of the existence of the cold emission component seen in the group 1 stack.

4.4 Radial brightness profiles

In order to investigate the spatial characteristics of the extended cold excess component, I have further investigated the stars in the map at the $90 \mu \mathrm{~m}$, where the RBP of the PSFs is well determined (see Chapter 3). The RBP of the group 1 stack is shown in Figure 4.6a. The profile follows the RBPs of the PSF (shown as a dotted curve in Figure 4.6a), except for that at a radial range of $\sim 120^{\prime \prime}-220^{\prime \prime}$; an excess of
the profile against the PSF is seen in this range. Taking the average distance of the stacked samples (29.4 pc) into consideration, this angular radial range corresponds to a physical radius of $\sim 3500-6500 \mathrm{AU}$.

For providing an example of interpretation, the obtained RBP is compared with a simple model profile. The model profile consists of two components; an unresolved component, which can be approximated by a point source and is represented by the PSF, and a resolved shell component. The shell component assumes that each stacked star has an optically thin shell with a fixed physical radius. The model profile is composed of the individual shell integrated along the line of sight, angularly scaled according to the distance of the stacked stars, and convolved with the PSF to assess the observed profile directly. In the fitting, amplitudes of the unresolved and shell components and radial distance of the shell are free parameters. Figure 4.6b shows the best-fit result of the model profile overlaid on the observed RBP. The observed RBP is approximated by the model of the shell with a radius of $6.1_{-0.2}^{+0.1} \times 10^{3} \mathrm{AU}$.

For comparison to the group 1 RBP, a RBP of the stack for the group 2, where a signal-to-noise ratio is still sufficient (~ 5), is derived (Figure 4.7). As shown in Figure 4.7a, the excess seen in the group1 profile does not appear in this profile; the RBP is consistent with the PSF in the radial range of $120^{\prime \prime}-200^{\prime \prime}$. Instead, a slight excess appears at an angular radial range $50^{\prime \prime}-120^{\prime \prime}$. This radial range corresponds to the distance of $\sim 4000-8000 \mathrm{AU}$. The RBP is fitted in the same the same manner as that for the group 1. According to the fit, this RBP is approximated by the model of the shell with a radius of $6.3_{-2.0}^{+1.9} \times 10^{3} \mathrm{AU}$ (see solid curve in Figure 4.7). The best-fit radius is consistent with that derived from the group 1 RBPs.

These results are consistent with an assumption that typical A-type star systems are surrounded by a common extended FIR emission structure. The corresponding radius is far larger than that of the known debris disks around A-type stars ($<$

1000 AU; Wyatt 2008), but comparable to that of the detached scattered disk, or the inner OC radius of our solar system (1000-10000 AU; Dones et al. 2004).

4.5 Summary of this chapter

In this chapter, stacking analyses of nearby 3583 A-type stars located within 158 pc from the Sun are performed with the $A K A R I / F I S$ FIR all-sky map with three appropriate distance bins ($15.8-39.8 \mathrm{pc}, 39.8-100 \mathrm{pc}$, and $100-158 \mathrm{pc}$ bins). The photometry of the stacked image presents a FIR excess emission that comes from closer than 2600 AU from the parent stars, and corresponds a $\sim 120 \mathrm{~K}$ blackbody with a fractional luminosity (the energy contribution of the excess to the stellar photospheric emission) of $\sim 5 \times 10^{-5}$. These properties are in agreement with the average properties of known debris disks around A-type stars. In addition to the debris disk component, a colder excess component corresponding to the $\sim 23 \mathrm{~K}$ modified blackbody emission with a fractional luminosity of an order of 10^{-5} is seen in the annulus corresponding physical radii of $2600-6600 \mathrm{AU}$. In order to make a constraint on a spatial distribution of the cold excess component, RBPs are derived from the stacked images at the $90 \mu \mathrm{~m}$ band. The RBPs indicate that the emission structure extends to approximately 5000 AU , which is larger than the typical debrisdisk sizes (smaller than 1000 AU).

Figure4.4 Same as Figure 4.3, but for the fluxes measured with an $90^{\prime \prime}-226^{\prime \prime}$ annulus (physical scale of 2600-6600 AU) overlaid with the best-fit model spectrum derive by the equation 4.7.

Figure4.5 The fluxes and the SED fit results for (a) the $39.8<d<100 \mathrm{pc}$ (group2), and (b) $100<d<158$ pc groups (group3). The fluxes are measured with a $90^{\prime \prime}$ aperture, which corresponds to physical radial scales of (a) 6700, and (b) 11000 AU , respectively. The best-fit model SEDs derived by the equation 4.8 are plotted as solid curves and the individual model components are presented as dotted, dot-dashed, and dashed curves. The fluxes of the group1 is plotted as crosses for comparison.

Figure4.6 a) The RBP of the stacked A-type stars located at 25.1-39.8 pc (gropu1) at the $90 \mu \mathrm{~m}$ band is shown as circles with error bars. The dotted curve indicates the RBP of the PSF at the $90 \mu \mathrm{~m}$ (Arimatsu et al., 2014), which is normalized to match the peak intensity. The errors are estimated from the variance of the intensity in each annulus. The gray region represents the uncertainty of the PSF, which is derived from the variance of the RBPs of the stacked standard stars with different flux bins (see Figure 3.6 and Chapter 3) . b) The same as a), but overlaid with the best fit model profile, which is shown as a solid curve. The model profile consists of two components; an unresolved component (black dotted line), which can be approximated by a point source and is represented by the PSF, and a resolved shell component (black dashed line). The shell component assumes that each stacked star has an optically thin shell with a fixed radius derived by the profile fit, $r=6100$ AU. Note that the surface brightness value at each distance bin is correlated with those of the neighboring bins due to PSF scattering of the signal.

Figure4.7 The same as Figure4.6, but for the stacks of the stars located at 39.8-100 pc (group 2), the best-fit radius derived by the fit is $r=6300 \mathrm{AU}$.

Chapter5

Discussions

Part of this chapter will be submitted to Astrophysical Journal as:
Ko Arimatsu, Yasuo Doi, Takehiko Wada, Satoshi Takita, \& Hirokazu Kataza
"Evidence for the extended dust emission around nearby A-type stars"

5.1 Possibilities of false detection

5.1.1 SED derived from median stacking results

The FIS all-sky maps adopted for the present study can be contaminated with background infrared sources. This confusion would affect the photometry derived with the stacked images, especially that for the closest group (group 1: 15.8-39.8pc), because the number of the allocated objects is relatively small (63 objects), and the adopted aperture size for the photometry is relatively large. The median stacks can help to reduce residual contribution from background objects, especially from background point sources. If the observed emission is due to the point source contamination, the FIR emission should not appear in the median-stacked images. Figure 5.1 shows the fluxes of the group 1 , which are obtained by the averaging and the median methods, and are measured in the $90^{\prime \prime}-226^{\prime \prime}$ annulus. The SED of the median stacks shows a similar distribution to that of the average stacks, corresponding to a modified blackbody spectrum with the temperature of $\sim 23 \mathrm{~K}$. The median fluxes are about 1.5 times smaller than the average values. This difference might reflect the confusion of the sources in the average stacks. However, this difference is difficult to confirm, taking the large error-bars into consideration.

5.1.2 SEDs of the split subsamples

In addition to the median stacking, I have also examined the effect of anomalous contaminations from minority of the samples by splitting into two samples (even and odd members of the original sample), and stacking the individual samples. Figure 5.2 shows the stacked SEDs of the subsamples. In both groups, the flux values are
consistent with the stacking results of the original sample, and show significant FIR excesses. I thus found no evidence for the observed cold emission from minority of the stacked samples.

5.1.3 Blank test

As described in Chapter 4, the uncertainties of the photometry are obtained with deviations of fluxes measured from stacked images of randomly selected blank regions. Figure 5.3 compared the stacked blank images with the stacked object images at the $90 \mu \mathrm{~m}$ band. In Figure 5.3, the central emission peaks are seen in the stacked images of the selected stars, which are shown in the upper panels. On the other hand, the corresponding peaks are not confirmed in the randomly stacked images shown in the lower panels. This result indicates that the obtained emission is the real emission associated with the stacked stars, not the artifacts generated by the data reduction procedures.

I estimate the probability that the detected cold emission in the annulus of the group 1 is due to statistical fluctuations of the background, by investigating distributions of the fluxes of the stacked blank images. I perform photometry on 150 stacked blank images, each of which is produced by stacking the same number of the blank images as the objects used for the stacks of the group 1 (63 objects). The average background surface brightness values of the selected blank images at the 65, 90, and $140 \mu \mathrm{~m}$ bands are $7.1,9.2$, and $9.4 \mathrm{MJy} \mathrm{sr}^{-1}$, respectively, which are comparable to those of the stacked sample images (6.5, 8.3, and 8.8 MJy sr-1). Photometry in the $90^{\prime \prime}-226^{\prime \prime}$ annulus region is made with these images. Figure 5.4 shows the histograms of the photometry results of the blank stack images at the a) 65 , b) 90 , and c) 140 $\mu \mathrm{m}$ bands. The average fluxes of the blank annulus are $0.006 \pm 0.013,-0.007 \pm 0.009$, and $-0.023 \pm 0.021 \mathrm{Jy}$ at the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively, and indicate
that any systematic effect accounts of the observed positive detections. On the other hand, as shown in Figure 5.4, probability distributions of the fluxes seem to follow normal distributions with variances of $0.16,0.10$, and 0.25 Jy , respectively. The significances of the excess of the fluxes observed in the group 1 annulus (Table 4.2) thus correspond to $0.8,2.7$, and 2.6σ at the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively. This result indicates the probabilities of $\sim 30 \%, \sim 1 \%$, and $\sim 1 \%$ that excesses are caused by random statistical fluctuations of the background at the 65,90 , and 140 maps, respectively.

5.1.4 Flux distributions of the individual sample images

For further calculation of the significances of the excess emission against the background fluctuation, we compare distributions of the fluxes measured in the circumstellar annulus regions of the individual group 1 sample images used for the stacking analysis with those of the blank images. Photometry in the $90^{\prime \prime}-226^{\prime \prime}$ annulus region is performed with individual extracted 63 images of the group1 sample (on-source population) and 10000 blank region images. The normalized distributions of the fluxes of these two populations are compared in Figure 5.5. While the standard deviations of the fluxes of the on-source images ($\sigma_{\text {source }}$) and those of the blank images ($\sigma_{\text {random }}$) are similar, the average fluxes of the on-source population (average ${ }_{\text {source }}$) are shifted against the average background values (average ${ }_{\text {random }}$), as already indicated by the stacked results (see Chapter 4). According to the two-sample z test for the difference between the average values of two populations, the significances of the excess of the average annulus fluxes for the on-source population thus correspond to $0.8,2.7$, and 1.7σ at the 65,90 , and $140 \mu \mathrm{~m}$ bands, respectively.

5.1.5 RBPs of four quadrants of the stacked image

In order to check false detections due to spurious features in the stacked image that are mimicking the excess emission seen in the RBPs (see Figure 4.6), I have derived RBPs of four quadrant sub-regions of the stacked image defined in Figure 5.6a; two regions include in-scan directions (quad 1 and 3), and the others include crow-scan directions (quad 2 and 4). Since the stars are stacked regardless of their orbital inclinations, the CSP emission in the stacked images will become spherically symmetric, even if they individually have asymmetric distributions, and will appear as similar excess profiles in the four RBPs.

Figure 5.6 b compares the RBPs of the four quadrant regions of the stacked image with those of the PSF. All of the four profiles show similar excess against the PSF profiles at a radial range of $120^{\prime \prime}-200^{\prime \prime}$. These similar profiles are in agreement with an assumption that the excess comes from real circumstellar CSP emission associated with the stacked stars.

5.2 Properties and origin of carriers of the possible FIR excess emission

5.2.1 Size and mass derivations of the dust grains

The present study found the cold excess emission that is approximated by the gray-body emission with the temperature of $\sim 23 \mathrm{~K}$ and spatially extended to be $\sim 5000 \mathrm{AU}$. The corresponding spatial scale of the excess emission is far larger than those of the known debris disks (<1000 AU, Wyatt 2008), and of protoplanetary
disks around Herbig Ae/Be stars (<1000 AU, e.g., Mannings \& Sargent 1997). This spatial scale rather resembles to those of the outer SD and the inner OC in the solar system (a few 1000 AU, Dones et al. 2004). If one assumes that the observed cold excess emission comes from dust grains around the target A-type stars, what kind of dust grains (size and mass) that account for the observed FIR emission? In order to estimate the particle size and total mass of the dust grains, a simple spectral model is fitted to the observed SED. Since the temperature and intensity of the FIR emission depend on luminosities of the parent stars, the stellar luminosities of individual stars are thus taken into consideration. Assuming that the dust grains are isotropically distributed at a radius R, and optically depth τ and grain radius a are identical, the expected spectrum is expressed by the following equation;

$$
\begin{equation*}
F^{\text {model }}=\tau F_{\text {scaled }}^{\text {model }}=\frac{\tau}{N} \sum_{j} 4 \pi\left(\frac{R}{d_{\text {star }_{\mathrm{j}}}}\right)^{2} B_{\nu}\left(\lambda, T_{\text {eq }}\left(a, L_{j}\right)\right)\left(\frac{\lambda}{100 \mu \mathrm{~m}}\right)^{-1} \tag{5.1}
\end{equation*}
$$

where L_{j} and $d_{\text {star }}$ are a luminosity and distance from the Sun of a stacked star j, and N is the number of the stacked stars. L_{j} is calculated from the fit to the fluxes at the Hipparcos I-band and the 2MASS J, H, and Ks bands, assuming that the photospheric spectrum follows a single-temperature Planck function. The derived L_{j} for each star is tabulated in Table 4.1 (see Chapter 4). The equilibrium temperature $T_{\text {eq }}\left(a, L_{j}\right)$ for each star j is derived by the equation 2.2 with L_{j} and a.

I derive the best-fit result of the model fitting by minimizing χ^{2} defined by the following function;

$$
\begin{equation*}
\chi^{2}=\sum_{i=1}^{3} \frac{\left(F_{\nu}^{\mathrm{obs}}\left(\lambda_{i}\right)-\tau F_{\mathrm{scaled}}^{\mathrm{model}}\right)^{2}}{\sigma_{i}^{2}} \tag{5.2}
\end{equation*}
$$

In this procedure, a and τ are fitting parameters. The total dust mass M_{d} is estimated
with τ;

$$
\begin{equation*}
M_{d}=N \frac{4}{3} \pi a^{3} \rho_{m}=\tau \frac{16 \pi}{3} a \rho_{m} R^{2}\left(\frac{100 \mu \mathrm{~m}}{\lambda_{0}}\right) \tag{5.3}
\end{equation*}
$$

where ρ_{m} is the volume density of the dust grains and λ_{0} is the reference wavelength. In the fitting, ρ_{m}, λ_{0} and R are assumed to be $\rho_{m}=1 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda_{0} \sim 1.5 a$, and $R=$ 5000 AU, respectively, The best-fit model spectrum $F_{\text {scaled }}^{\text {model }}$ is shown in Figure 5.7. Through the fitting procedure, a and M_{d} are derived to be $a=3_{-2}^{+8} \mu \mathrm{~m}$ and $M_{d}=$ $0.10_{-0.08}^{+0.38} M_{\text {earth }}$, respectively.

5.2.2 Diffusion timescale of the dust grains

In order to discuss the origin of the emission carriers, one should take possible dynamics that would act on the dust grains in the outer stellar systems into consideration. The stars located within $\sim 100 \mathrm{pc}$ from the Sun are sitting in the warm ($T \sim 7500 \mathrm{~K}$) tenuous ($n_{\mathrm{H}} \sim 0.24 \mathrm{~cm}^{-3}$) interstellar medium region called as "local bubble" (Lallement, 1998). In this tenuous environment, dust grains are expected to be photoelectrically charged to a potential of an order of one volt (Draine, 2010). Therefore the interstellar magnetic field interacts with the charged grains. If the stellar system moves in the interstellar medium with speed $-v_{w}$, the dust grain is expected to get accelerated to a velocity $\sim v_{w}$ in the stellar system frame on the Larmor period T_{L} (Belyaev \& Rafikov, 2010) for a grain with a radius a;

$$
\begin{equation*}
T_{L}=2 \pi \frac{m_{g}}{a|U| B_{\perp}} \sim 10^{6}\left(\frac{a}{5 \mu \mathrm{~m}}\right)^{2} \quad[\mathrm{yr}], \tag{5.4}
\end{equation*}
$$

where m_{g} is the mass of a dust grain, $|U|$ and B_{\perp} are the electrical potential of the grain and the magnetic flux density perpendicular to the interstellar flow. In
the above approximation, the interstellar magnetic flux density is assumed to be $B \sim 2 \mu \mathrm{G}$ (Ben-Jaffel \& Ratkiewicz, 2012). The diffusion timescale of the micronsized grains is approximately an order of Myr, which is much shorter than the typical age of A-type stars ($\sim 100-1000 \mathrm{Myr}$). Therefore, the dust observed in thousands AU away from the central stars cannot be primordial. A replenish process is needed to account for the observed emission.

Taking the obtained blown-out timescale ($\sim 1 \mathrm{Myr}$) and the observed dust mass ($0.1 M_{\text {earth }}$) into consideration, the efficiency of the replenishment is required to be greater than $0.1 M_{\text {earth }} / 10^{6} \mathrm{yr}$. This rate should be continued in the typical age of the A-type stars to account for the observed emission. The total mass of the source is thus required to be about $10-100 M_{\text {earth }}$, which is comparable to, or slightly larger than the total mass of the OC of our solar system (up to $40 M_{\text {earth }}$, Dones et al. 2004; Duncan et al. 1987).

5.2.3 Possible dust replenishment processes

If the replenishment is true, what is the process that replenishes the grains? Since the FIR emission preferentially highlights smaller grains, a group of larger cometary source objects (i.e., exo-CSP) is the most likely replenishment source. The dust mass supplied by replenishment processes highly depends on the total mass and size distribution of the exo-CSPs (Howe \& Rafikov, 2014; Yamamoto \& Mukai, 1998). Here I assume that the bulk of mass in the exo-CSPs is concentrated in the smallest objects, and all objects have a radius $r=1 \mathrm{~m}$, because particles with sizes equal to or larger than this radius are always bound to the stellar system in various phase of the interstellar medium (Belyaev \& Rafikov, 2010). In the following calculations, a bulk mass density of the cometary objects ρ_{m} is set to be $\rho_{m}=1 \mathrm{~g} \mathrm{~cm}^{-3}$. Under the above assumptions, the total mass of the exo-CSP, $M_{\text {comet }}$, is approximated with the
number of the cometary objects $N_{\text {comet }}$;

$$
M_{\text {comet }}=N_{\text {comet }} \rho_{m} \frac{4 \pi r^{3}}{3}
$$

In the population, cometary source objects would be disrupted by mutual collisions, eroded by interstellar dust impacts, and sometimes heated by nearby supernovae and passing bright stars, which could result in replenishment of dust (e.g., Stern et al. 2003). In the proposed processes, one may think that the mutual collision is the most plausible replenishment process. In the solar system, mutual collision is thought to be the most efficient process to produce dust in the asteroid belt and Kuiper belt (Yamamoto \& Mukai, 1998). Once the objects mutually collide, a large number of small dust grains are produced through the collisional cascade (Stern et al., 1996). However, the collisions in the cometary population may be relatively rare due to lower number densities and lower orbital speeds. For simplicity, I assume that the objects in the exo-CSPs are isotropically distributed (e.g., assuming OC-like populations), and the number density profile $\rho(r)$ follows a power law of the form $\rho(r) \propto r^{-\eta}$, as suggested by numerical calculations of the OC's formation (Duncan et al., 1987; Dones et al., 2004). In the present calculation, the power-law index η is set to be $\eta=3.5$, as suggested by Duncan et al. (1987). In addition, all comets move on circular orbits. The collision speed is therefore approximated by the Keplerian speed. In these conditions, according to Howe \& Rafikov (2014), the total dust production rate $d M_{\text {dust }} / d t$, i.e., the erosion rate $-d M_{\text {comet }} / d t$ at a radius $R_{\text {in }}$ is approximated by

$$
\begin{equation*}
\frac{d M_{\mathrm{dust}}(t)}{d t}=-\frac{d M_{\mathrm{dust}}\left(R_{\mathrm{in}}, t\right)}{d t} \sim \frac{M_{\mathrm{comet}}(t=0)}{t_{\mathrm{er}}\left(R_{\mathrm{in}}\right)}\left(1+\frac{t}{t_{\mathrm{er}}\left(R_{\mathrm{in}}\right)}\right)^{-2} \tag{5.5}
\end{equation*}
$$

where $t_{\mathrm{er}}(R)$ is the erosion timescale at radius R, approximated as

$$
\begin{equation*}
t_{\mathrm{er}}\left(R_{\mathrm{in}}\right) \sim 5 \times\left(\frac{r}{1 \mathrm{~km}}\right)^{0.64}\left(\frac{R_{\mathrm{in}}}{1000 \mathrm{AU}}\right)^{4.39}\left(\frac{M_{\text {comet }}}{10 M_{\text {earth }}}\right)^{-1}\left(\frac{M_{\text {star }}}{1 M_{\mathrm{sun}}}\right)^{-1.39}[\mathrm{Gyr}] . \tag{5.6}
\end{equation*}
$$

In the above equation, $M_{\text {sun }}$ is the mass of the Sun and $M_{\text {sun }}=1.99 \times 10^{30} \mathrm{~kg}$, and $M_{\text {star }}$ is the mass of the parent star. Assuming $M_{\text {comet }}(t=0)=100 M_{\text {earth }}$, $r=1 \mathrm{~m}$, and $M_{\text {star }}=2 M_{\text {sun }}$ (characteristics of A 5 V stars), I find that the dust production rate $d M_{\text {dust }} / d t$ is $\sim 0.05 M_{\text {earth }} \mathrm{Myr}^{-1}$, comparable to that required for the observed emission intensity $\left(0.1 M_{\text {earth }} \mathrm{Myr}^{-1}\right)$. and $t_{\text {er }}$ is comparable to the A -type MS lifetime ($\sim 10^{9} \mathrm{yr}$). Note that this calculation assumes the isotropic distributions of the cometary objects. If I assume that the objects distribute more like the SD, with typical inclinations of less than 30 deg (Duncan et al., 2004), the squared volume density of the object (\propto collisional rate and thus the dust production rate) can be ~ 10 times higher.

Another continuous replenishment process is the interstellar dust impact (Yamamoto \& Mukai, 1998). In this process, the production rate is proportional to the total cross section of the cometary source object (Yamamoto \& Mukai, 1998), $N_{\text {comet }} \pi r^{2}$, and is proportional to $M_{\text {comet }}(t)$, assuming that r is invariant. $d M_{\text {dust }} / d t$ is therefore expressed as,

$$
\begin{equation*}
\frac{d M_{\mathrm{dust}}(t)}{d t}=-\frac{d M_{\mathrm{comet}}(t)}{d t}=E M_{\mathrm{comet}}(t=0) e^{-E t} \tag{5.7}
\end{equation*}
$$

where dust production efficiency E is defined with the mass flux of ejecting dust F (Yamamoto \& Mukai, 1998), such as

$$
\begin{equation*}
E \equiv F \frac{N_{\mathrm{comet}} \pi r^{2}}{M_{\mathrm{comet}}}=F \frac{3}{4 r \rho_{m}} . \tag{5.8}
\end{equation*}
$$

F, i.e., E varies substantially with surface conditions of the cometary objects (Ya-
mamoto \& Mukai, 1998). If the surfaces are composed of hard icy material, E will be smaller than $4 \times 10^{-5} \mathrm{Myr}^{-1}$. The produced dust mass on this efficiency is too small to account for the observed dust mass, assuming $M_{\text {comet }}(t=0)<500 M_{\text {earth }}$. On the other hand, if the surfaces are covered by loose icy particles composed with layers of fine grains, E would become $2 \times 10^{-2}-2 \times 10^{-3} \mathrm{Myr}^{-1}$ for $r=1 \mathrm{~m}$. Assuming $M_{\text {comet }}(t=0)=100 M_{\text {earth }}$ and $E=2 \times 10^{-3} \mathrm{Myr}^{-1}$, the production rate thus ranges from 0.2 to $0.03 M_{\text {earth }} \mathrm{Myr}^{-1}$ for $t=100-1000 \mathrm{Myr}$, which is comparable to that accounts for the observed emission $\sim 0.1 M_{\text {earth }} \mathrm{Myr}^{-1}$.

It is possible that other episodic processes can produce dust from the cometary source objects. For example, supernovae explosions occurred closer than 20 pc from the stars will be capable of heating the cometary source objects (Stern et al., 2003). Furthermore, close ($<5 \mathrm{pc}$) encounters of O-type MS and supergiant stars can also heat the objects well above temperatures capable of removing volatile ices from surface layers (Stern et al., 2003). These encounters are expected to be occurred about eight and 0.2 events in typical A-type MS lifetime ($10^{9} \mathrm{yr}$), respectively (Stern et al., 2003), and may be intermittently acting on the replenishments.

In all of the proposed cases above, the efficiency of the supply process highly depends on the size distribution and material properties of the cometary objects. Further FIR and sub-mm observations of the outer edge of individual stellar systems, and observations of the solar system objects (Kuiper-belt, SD, OC objects, and comets) are required for more precise discussions of the grain supplement processes.

5.2.4 Origin of the CSPs

The possible evidence for the large-scale dust emission gives a direct implication on the universality of the CSP formation in extra stellar systems. In general, the giant planets, such as Jupiter, Saturn, Uranus, and Neptune are thought to play an
important role on the formation of the CSPs by scattering the material to the outer solar system (Dones et al., 2004). The present results suggest that not a few A-type stars experienced such a gravitational scattering of their protoplanetary disks. The existence of scattering source in outer stellar systems is thus strongly supported.

If I assume that the exo-CSPs have formed through a scenario similar to that proposed for the solar system OC and SD formation, plants in the outer extrasolar system are proposed for the scattering sources. According to Higuchi et al. (2006), the efficiency of scattering planetesimals to higher-eccentricity bounded orbits can depend on the mass and semimajor axis of the planet, and eccentricities and number density profiles of the planetesimals in the protoplanetary disks. Assuming the standard protoplanetary disks (Hayashi, 1981), i.e., the surface number density of planetesimals is proportional to a power of the semimajor axis $R, \propto R^{-3 / 2}$, the efficiency of the scattering per unit time K is empirically approximated by

$$
\begin{equation*}
K \propto R_{p}^{0} M_{p}^{2} \tag{5.9}
\end{equation*}
$$

where R_{p}, and M_{p} are the semimajor axis and the mass of the planet, respectively, and the relation is valid within the range of $1<R_{p}<30 \mathrm{AU}$, and $0.1<M_{p}<10 M_{J}$ (M_{J} is the jovian mass). Therefore, the total mass of the resultant population can be less dependent on the semimajor axes of the planet, whereas it highy depends on the planet mass. According to the microlensing monitoring observations (Cassan et al., 2012), $17_{-9}^{+6} \%$ of all-types of the stars host planets with the mass of 0.3 to $10 \mathrm{M}_{\mathrm{J}}$ within $0.5-10 \mathrm{AU}$ from the star. In addition, outside 10AU from several nearby stars (including A-type stars), planets comparable to or superior to the jovian mass have been found in recent direct observations (Kalas et al., 2008; Marios et al., 2008; Carson et al., 2012). Therefore, the sputtering objects that cause the CSP formation may be common around stars.

I should note that the present results cannot exclude the possibility that the discovered FIR emission comes from the populations analogues to the detached SD, rather than the OC. In case of the planet-scatter scenario in the solar system (Duncan et al., 1987; Dones et al., 2004), the scattered objects are firstly injected into the SDlike population, and then end up in the Oort cloud via gravitational perturbations by passing stars and the Galactic tides. According to the numerical calculations by Dones et al. (2004), the total mass of the SD component is comparable, or more massive than that of the OC at the present day, until \sim a few 100 Myr after the planet formation, i.e., marginally comparable to typical MS lifetime of the A-type stars. This may not be the case for the typical A-type MS stars, because the mass of the stars and the orbital characteristics of the parent planets should be different from the solar system. Further observations as well as numerical calculations should be required for more precise discussions.

Another possibility is that the CSPs have been formed with a process that does not need giant planets. The CSPs may be ascribed to objects captured from the protoplanetary disks of other stars in their birth clusters (Levison et al., 2010). According to Levison et al. (2010), objects could have been captured from nearby stars during the close encounters, and then formed isotropic populations that extend more than thousands AU. If this is the case, the gravitational "slingshots" are not required inside the stellar systems, and the extended populations universally exist regardless of the structure of planetary systems.

5.3 Summary of this chapter

In order to evaluate the significance of the present detection, I have performed four tests. Firstly, the possibilities of contaminations with background objects to the excess is investigated by performing a follow-up median stacking analysis. The median result is consistent with the average results. I thus found no evidence of the observed cold excess emission from the background objects. Secondly, I have performed a stacking analysis of sub-groups of the sample, and found no evidence for any anomalous contribution from minor samples. For the third test, I have performed a stacking analysis of randomly selected blank regions, and found that the cold excess fluxes are above statistical background fluctuations with significance of $\sim 2.5 \sigma$. Finally, I have derived the RBPs of four sub-regions of the stacked images, and find no evidence of the contamination of local background inhomogeneities to the observed profile excess.

Assuming the observed cold excess comes from the circumstellar dust grains around the stacked stars, the observed emission can be approximated by the thermal emission from micron-sized dust grains with a total mass of $\sim 10^{-1} M_{\text {earth }}$. These grains would be diffused by the passing interstellar magnetic field in a timescale of $\sim 10^{6}$ years. Therefore the grains should be replenished from larger objects in the groups with a total mass of comparable to the OC in the solar system (\sim a few to $10^{2} M_{\text {earth }}$), via some replenish processes with efficiencies of $\sim 10^{-1} M_{\text {earth }} \mathrm{Myr}^{-1}$. The mutual collisions of the objects, the interstellar dust impact, and several episodic events are proposed for possible processes for the dust replenishment. The present results indicate that the cometary populations are natural by-products of typical planetary systems, rather than the exception.

Figure5.1 Black points with error bars show the fluxes obtained from the averaging stacked maps of 63 A-type stars located in the distance range $15.8-39.8 \mathrm{pc}$ (group 1), which are measured with the $90^{\prime \prime}-226^{\prime \prime}$ annulus (the same as Figure 4.4). The red squares present the fluxes obtained from the median stacks of the maps, and measured with the same annulus. The dashed curve shows the spectrum of gray-body emission with the temperature of 23 K .

Figure5.2 The same as Figure 5.1, but with the average fluxes of the two subgroups (red and blue circles), instead of the median fluxes.

Figure5.3 Upper panels (a, b, and c) are images centered at the positions of the selected A-type stars at the $90 \mu \mathrm{~m}$ band that are used for the present study (Figure 1). Lower panels (d, e, and f) show the images centered at randomly selected positions. The panels in each column are displayed with the same color scale, whose color bar is displayed at the bottom. Contours are at 70,50 , and 20% of the peak pixel value of the upper panels.

Figure5.4 Histograms of the fluxes obtained from the 150 test stack images that are made by stacking 63 randomly selected regions in the FIS a) 65 , b) 90 , and c) 140 $\mu \mathrm{m}$ maps with the $90^{\prime \prime}-226^{\prime \prime}$ annulus. Dashed curves indicate normal distribution fit to the distribution, and red vertical lines are the measured fluxes of the stacked A-type stars in the group 1 at the individual bands.

Figure5.5 Histograms of the fluxes of the images of the 63 selected stars in group 1 (red), and of those obtained from the 10000 blank region images (black) at the FIS a) 65 , b) 90 , and c) $140 \mu \mathrm{~m}$ maps with the $90^{\prime \prime}-226^{\prime \prime}$ annulus. The average and the deviation of the fluxes of the on-source and blank images are presented as average $_{\text {source }}, \sigma_{\text {source }}$, and average ${ }_{\text {random }}, \sigma_{\text {random }}$, respectively.

Figure5.6 a) Stacked image of the group 1 at the FIS $90 \mu \mathrm{~m}$ band, overlaid with the definition of the four quadrant regions. b) RBPs of the four quadrant regions (open circles with error bars) overlaid with the RBPs of PSF of the corresponding quadrant regions (dotted curves with error gray regions) normalized to match the peak intensity.

Figure5.7 The same plot as shown in Figure 4.4, but overlaid with the best-fit model spectrum provided in section 5.2.1, which takes the equilibrium temperature of the dust grains around the individual stars of the stacked sample into consideration.

Chapter6

Conclusions and future prospects

6.1 Conclusions

In this thesis, I searched for extrasolar CSPs around nearby A-type stars using the FIS all-sky maps obtained with the infrared satellite AKARI.

In order to obtain accurate spatial and spectral properties of the exo-CSP emission, calibrations for point sources in the FIS all-sky maps are carried out at the 65, 90, and $140 \mu \mathrm{~m}$ bands. By performing the stacking analysis with the images of the infrared standard stars, I can perform radial properties flux measurements of the point sources fainter than the detection limits of the FIS maps. The RBPs of the stacked point sources are determined, and are confirmed to be stable within the investigated flux range ($0.06-12 \mathrm{Jy}$) at the $90 \mu \mathrm{~m}$ band. The aperture photometry of the infrared standard stars is performed, and measured fluxes are compared with emission model values to derive calibration factors. The calibration factors for the point source photometry are determined with uncertainties of 9,3 , and 21% at the 65 , 90, and $140 \mu \mathrm{~m}$ bands, respectively. Any flux dependence in the calibration factors
with amplitude larger than $\sim 20 \%$ is not found within the investigated flux ranges at the three bands.

Based on a data set of 3583 A-type stars located inside 158 pc from the Sun, stacking analyses have been performed with three appropriate distance bins (15.8$39.8 \mathrm{pc}, 39.8-100 \mathrm{pc}$, and $100-158 \mathrm{pc}$ bins) using the $A K A R I /$ FIS all-sky map at the 65,90 , and $140 \mu \mathrm{~m}$ bands. The photometry of the stacked image presents a FIR excess emission that comes from closer than 2600 AU from the parent stars, and corresponds $\mathrm{a} \sim 120 \mathrm{~K}$ blackbody with a fractional luminosity (the energy contribution of the excess to the stellar photospheric emission) of $\sim 5 \times 10^{-5}$. These properties are in agreement with the average properties of known debris disks around A-type stars. In addition to the debris disk component, a colder excess component corresponding to the $\sim 23 \mathrm{~K}$ modified blackbody emission with a fractional luminosity of an order of 10^{-5} is seen in the annulus corresponding physical radii of $2600-6600 \mathrm{AU}$. In order to make a constraint on a spatial distribution of the cold excess component, RBPs are derived from the stacked images at the $90 \mu \mathrm{~m}$ band. The RBPs indicate that the emission structure extends to approximately 5000 AU , which is larger than the typical debris-disk sizes (smaller than 1000 AU).

In order to evaluate the significance of the present detection, I have performed four tests. Firstly, I have carried out median stacking analysis that is thought to be more robust to contamination from background point sources. The median stack and average stack to the same sample give consistent results of the cold excess fluxes. I thus found no evidence of the cold excess emission from the background objects. Secondly, I have performed a stacking analysis of sub-groups of the sample and found that the cold excess fluxes are not due to anomalous contribution from minor samples. For the third test, the cold excess fluxes are compared with those derived from stacks of randomly selected blank regions, and are found to be above the statistical
background fluctuations with significances of up to $\sim 2.5 \sigma$. Finally, I have derived the RBPs of four sub-regions of the stacked images, and found no evidence of the contamination of local background inhomogeneities to the observed profile.

Assuming the observed cold excess comes from the circumstellar dust grains around the stacked stars, the excess can be explained by the thermal emission from micronsized grains with the mass of $\sim 0.1 \mathrm{M}_{\text {earth }}$. Taking interstellar diffusion timescales of the grains into consideration, these grains can be supplied form object groups with the total mass of $\sim 10-100 \mathrm{M}_{\text {earth }}$, which is comparable to that of the OC of the solar system, via several possible replenish processes. The present results indicate that the CSPs are not exceptional products of typical stellar system formations.

6.2 Future Prospects

6.2.1 CSPs around other type stars and planet and debris disk host stars

The present study has investigated the FIR emission only from the A-type stars. Further studies of other types of stars including solar-type stars are required in order to understand common properties of the exo-CSPs. In addition, for further discussion on a possible link between the exo-CSPs, and planet and debris disk formation processes, comparisons of characteristics of the FIR extended emission around stars with/without planets and debris disks are required, which are not achieved in the present study due to the lack of sensitivity of the present data sets. For these purposes, FIR to sub-mm imaging observations with higher sensitivities should be performed in future missions, such as SPICA(Nakagawa et al., 2012) and CCAT(Woody et al., 2012).

6.2.2 Observations of the SD and OC in the solar system

In the present discussions, the radial distribution and size distribution of the objects in the exo-CSPs are assumed to be simple distributions, based on the numerical simulations of the solar system OC and SD formations (Duncan et al., 1987; Dones et al., 2004). Observational constraints on these properties are quite important not only to understand accurate properties, formation and evolution scenarios of the CSPs, but also to gain accurate discussions on the observational results of the extrasolar CSPs. However, the observational constraints are not available so far. Direct detection of the objects in the outer SD and the OC is impossible because they are extremely faint, and are thus invisible using the latest instruments.

Instead of the direct detection, I planed to detect the stellar occultation events by the SD and OC objects. I will perform serendipitous monitoring observations of a large number $\left(10^{4}-10^{6}\right)$ of stars with wide-field optical instruments, such as Hyper Suprime-Cam on Subaru telescope, and newly developed telescope array based on the small-sized (aperture sizes of $\sim 30 \mathrm{~cm}$) telescopes and CMOS cameras. By measuring the occurrence rate, the duration, and the amplitude of the occultation events, I will obtain the abundances, sizes, and orbital properties of the CSP objects These observations will provide the observational constraints on the physical properties of the outer SD and the inner OC, and a hint of the detailed formation and evolution scenarios of the CSPs.

AppendixA

Tables of the selected A-type stars

Tablea.1: Selected A-type MS stars located at $39.8<d<100 \mathrm{pc}$ (group 2)

Hipparcos ID	parallax [mas]	K flux [Jy]
128	15.2	2.61
159	16.92	2.19
432	10.35	1.67
1123	11.13	2.23
1302	10.75	2.6
1366	12.88	11.42
1473	23.11	10.92
1721	10.13	1.13
2225	12.32	6.76
2355	17.62	10.99
2381	18.08	7.8
2472	18.97	8.79
2479	13.44	1.67
2578	21.52	6.76
2852	20.12	4.54
3277	15.29	3.95
3405	13.57	12.61
3414	18.71	9.78
3438	12.96	2.36
3521	15.01	5.66
3572	11.24	3.83
3865	11.53	3.03
3903	10.31	3.26
3919	11.01	2.34
4212	11.72	2.83
4283	13.3	5.24

4303	10.32	0.79
4329	10.4	1.4
4366	11.94	3.35
4436	23.93	23.42
4852	14.39	5.42
5131	13.67	5.22
5132	14.67	3.8
5231	10.04	0.74
5259	13.96	3.27
5300	16.48	8.19
5317	16.61	8.25
5321	10.3	1.33
5363	11.5	2.26
5518	10.26	5.02
5542	23.73	14.88
5626	11.98	4.23
5661	13.62	5.52
5674	12.94	1.88
5737	22.09	9.93
6061	14.83	7.17
6108	11.41	1.66
6347	10.09	1.7
6369	12.26	1.97
6507	11.16	2.4
6514	15.43	6.87
6794	17.91	3.51
6888	11.44	3.41
6897	10.77	1.83
6960	14.72	6.9
7108	11.42	2.18
7113	10.5	1.91
7115	10.21	2.65
7262	13.7	1.66
7283	10.15	2.2
7298	12.89	2.32
7345	16.32	4.37
7364	12.0	1.27
7663	10.51	0.96
7825	12.15	6.2
7941	10.71	3.55
7987	10.41	1.63
8122	13.95	2.27
8151	11.95	1.1
8194	10.43	1.32
8241	17.54	6.89
8296	10.08	1.77
8454	10.29	1.33
8593	13.37	4.52
8847	13.61	2.48
8882	10.55	5.69
9295	12.12	3.74
9358	10.34	2.43

9563	10.46	1.74
9589	11.31	6.7
9598	20.12	18.01
9836	17.4	8.47
9858	14.09	2.02
9951	11.47	2.74
9977	16.48	11.32
10054	14.61	3.53
10099	11.31	1.94
10559	11.13	5.4
10819	12.77	5.19
11001	24.1	17.42
11102	16.3	4.45
11138	13.37	2.3
11348	15.24	3.71
11477	21.35	7.02
11578	12.33	2.93
11622	11.66	1.91
11678	14.44	4.26
11687	11.87	3.84
11821	11.39	1.2
11904	11.73	2.24
12225	22.49	10.33
12489	13.97	6.23
12725	12.39	2.55
12876	11.06	9.65
12990	21.24	5.05
13141	19.73	6.85
13271	10.02	2.26
13569	13.89	2.18
13579	10.41	2.16
13628	10.56	0.51
13717	17.28	7.6
13765	13.21	3.23
13782	20.54	7.21
13874	10.2	6.11
13883	11.11	3.84
13884	10.4	9.5
14109	15.24	3.98
14293	23.22	8.46
14479	13.21	2.02
14551	17.35	3.27
14554	10.13	0.89
14619	15.23	2.79
14751	10.57	1.12
14791	12.75	2.47
14844	16.13	4.09
14862	20.15	8.68
15039	14.16	1.78
15204	14.96	3.89
15239	11.99	1.46
15279	11.88	1.87

15353	17.24	3.53
15568	11.54	1.76
15614	12.38	1.99
15648	21.0	8.19
15660	11.62	1.46
15870	10.76	2.33
15886	10.62	1.93
15987	10.01	2.23
16285	16.04	5.62
16378	10.82	0.74
16449	13.55	2.42
16591	18.29	4.23
16835	14.98	3.16
16924	13.52	2.61
17395	23.3	6.21
17552	11.21	0.79
17717	11.98	6.2
17763	11.94	0.72
17846	14.43	5.51
17854	10.02	5.55
17891	14.11	5.24
17954	16.96	7.92
18153	10.91	2.18
18217	19.14	4.73
18286	10.69	1.67
18339	20.41	5.24
18438	16.64	4.18
18481	13.26	2.84
18492	11.29	1.39
18547	16.32	2.71
19121	12.26	2.34
19515	18.61	17.58
19571	13.06	4.37
19688	11.29	1.7
19718	10.81	2.25
20106	10.86	4.13
20109	13.49	7.35
20144	10.09	1.64
20257	11.25	2.45
20281	10.17	2.36
20380	10.53	4.01
20446	10.05	2.22
20507	15.66	7.14
20529	10.2	2.18
20576	10.64	1.32
21402	21.68	22.22
21618	10.67	1.7
21644	14.34	8.32
21670	19.44	7.96
21849	11.12	1.49
21915	13.9	2.86
21928	12.02	5.53

22028	11.06	4.45
22040	14.66	8.58
22137	11.0	1.72
22189	11.76	2.19
22192	17.4	3.45
22287	20.12	8.59
22361	21.92	5.44
22509	16.84	14.37
22573	11.39	4.13
22701	14.39	21.59
22833	13.54	7.77
22897	11.39	2.46
22926	12.45	2.0
23296	20.17	3.9
23554	16.65	4.89
23585	17.52	2.7
23879	16.84	10.21
23983	18.54	7.58
24009	11.81	2.54
24093	10.09	0.94
24348	12.16	2.75
24362	13.46	1.5
24394	13.31	5.04
24478	11.49	1.6
24528	11.65	1.79
25205	13.32	2.74
25280	14.84	3.67
25488	10.52	4.82
25517	12.41	1.39
25608	11.1	4.2
25807	11.7	1.91
25853	12.0	4.15
25911	10.05	3.36
26161	10.43	0.93
26309	17.68	3.01
26395	15.14	2.73
26410	12.6	3.94
26966	14.45	3.24
27192	16.29	2.99
27249	16.89	4.15
27259	10.6	1.45
27924	10.69	1.54
27949	13.54	8.28
28230	11.12	1.18
28484	15.82	5.73
28654	11.91	1.92
28778	10.74	1.18
28855	12.4	3.38
28878	10.23	1.0
28899	12.25	3.56
28910	19.14	10.35
28957	10.13	3.92

29064	12.48	4.35
29150	12.77	4.39
29357	11.85	1.76
29852	16.1	4.44
29857	11.9	1.26
30060	21.88	12.17
30165	11.72	1.19
30167	14.38	2.34
30252	13.84	2.12
30275	10.93	1.16
30342	19.87	6.48
30381	10.61	1.82
30423	10.22	2.23
30463	11.37	3.33
30651	12.01	6.71
30666	14.26	3.69
30760	12.66	1.9
30762	10.41	1.5
31092	10.74	2.9
31173	11.86	4.28
31386	12.02	1.01
31427	13.57	1.76
31472	10.99	0.92
31665	10.12	3.19
32104	23.41	6.6
32296	14.48	2.37
32319	11.21	1.72
32438	14.26	7.91
32594	11.07	1.09
32886	10.16	1.5
32938	18.14	4.16
33081	10.4	2.0
33477	10.24	1.21
33485	14.49	8.07
33584	13.69	2.71
34002	12.59	3.93
34059	16.98	9.93
34081	10.34	8.45
34276	10.77	1.71
34417	16.81	2.5
34589	15.76	3.23
34782	21.02	4.67
34897	15.07	2.68
34899	17.97	7.49
34952	10.22	2.22
35180	11.79	5.21
35229	10.38	1.36
35341	12.18	4.91
35384	10.97	9.47
35467	11.42	2.62
35543	10.9	1.8
35567	14.25	2.04

35578	11.08	2.42
35735	14.23	3.34
35842	10.46	2.28
35946	12.9	2.28
35987	10.28	6.3
36145	13.11	9.89
36624	10.61	1.81
36807	11.37	4.74
36922	10.1	1.6
37133	10.43	1.73
37140	12.44	4.37
37372	11.15	2.32
37394	10.51	3.94
37495	12.36	2.22
37519	13.93	2.13
37609	13.75	9.38
37921	10.44	5.93
38017	11.77	1.66
38083	14.33	1.79
38235	15.67	3.02
38266	10.82	1.39
38319	15.69	3.55
38393	11.87	1.57
38538	12.82	9.14
38723	16.55	4.63
39017	16.2	2.15
39095	13.69	12.6
39346	12.67	1.71
39567	15.49	6.09
39847	14.96	9.11
40293	10.31	2.11
40514	10.44	1.53
40646	10.73	5.86
40699	10.34	2.94
40791	15.19	2.04
40896	10.44	1.19
41036	15.36	3.85
41152	19.46	5.3
41336	10.21	2.24
41375	18.83	6.72
41451	11.43	4.02
41483	16.01	11.17
41564	11.73	3.9
41578	10.6	4.72
41754	11.93	1.82
41765	10.55	1.19
41893	14.1	3.6
42080	20.63	7.08
42090	10.17	4.04
42146	12.15	3.53
42197	13.08	1.67
42313	18.21	16.25

42334	13.49	4.96
42466	11.71	1.78
42794	10.23	3.04
42806	20.58	9.31
42874	10.95	1.97
42895	16.49	4.32
42928	12.78	3.91
42931	15.78	3.83
42989	12.01	2.5
43121	16.38	4.02
43330	11.86	2.13
43338	12.47	3.01
43620	11.01	2.55
43853	14.24	2.65
43932	16.73	6.52
43970	20.39	7.55
43976	12.14	1.84
44238	12.01	1.28
44331	15.24	4.05
44342	17.03	4.47
44393	11.16	1.02
44574	12.6	2.99
44578	10.99	1.73
44683	10.19	1.81
44714	10.36	0.76
44806	10.69	1.61
44923	12.52	3.55
45001	15.35	5.85
45150	19.65	3.98
45184	12.1	4.04
45257	11.48	1.54
45510	12.03	2.18
45511	12.3	2.02
45585	12.37	3.01
45667	10.51	1.3
45758	10.19	2.75
45892	11.37	1.85
45910	10.27	1.83
45938	10.26	1.29
46065	10.18	1.71
46081	10.42	1.76
46130	10.53	1.31
46223	14.29	2.12
46297	10.87	4.27
46328	14.65	3.68
46460	12.17	3.45
46517	16.04	4.01
46522	10.93	1.91
46546	10.38	2.1
46873	10.98	1.71
46891	10.85	2.38
47006	12.21	12.19

47070	11.5	2.32
47115	12.04	2.09
47335	11.66	1.36
47363	12.43	2.31
47664	10.9	2.17
47701	20.48	4.64
48164	11.17	1.49
48212	13.33	2.11
48266	10.65	4.2
48341	16.31	3.7
48390	24.9	9.1
48437	12.47	7.08
48590	10.79	0.64
48613	10.22	3.38
48682	14.65	6.19
48763	14.39	3.54
48977	10.18	2.1
49125	11.71	1.59
49165	14.13	1.82
49259	10.85	2.58
49802	12.57	3.04
49839	13.02	1.77
50070	20.06	9.5
50078	10.25	4.54
50083	10.74	9.28
50097	10.5	2.86
50196	12.37	2.52
50303	12.67	4.67
50320	10.89	2.0
50372	24.27	28.62
50391	16.07	3.68
50417	10.09	1.52
50448	13.07	4.9
50536	15.01	4.88
50649	10.46	1.67
50857	12.31	1.56
50860	14.18	4.18
50868	18.63	4.5
50888	24.7	8.9
50933	10.84	6.68
51194	14.22	3.23
51200	15.09	4.08
51295	10.16	1.22
51302	13.38	2.81
51438	12.6	9.95
51448	11.27	3.7
51556	13.33	4.14
51852	13.87	2.77
52131	10.47	1.89
52216	10.69	1.27
52352	11.04	1.94
52422	22.0	6.36

52455	10.21	0.98
52457	15.72	7.18
52513	15.37	3.28
52709	13.33	3.12
52737	14.88	6.04
52763	10.47	1.29
52913	10.43	2.56
52920	10.21	0.78
53005	15.82	3.09
53062	12.12	1.45
53295	12.22	8.84
53411	10.19	2.28
53524	10.92	1.28
53530	10.3	4.57
53771	16.7	3.29
53773	15.99	15.69
53824	21.61	9.51
53860	11.47	2.46
53963	18.84	4.56
54063	16.17	2.08
54136	12.41	3.89
54137	11.69	6.8
54315	10.67	3.6
54360	11.5	6.89
54388	13.23	2.6
54477	17.21	5.37
54515	13.07	1.8
54605	10.8	1.58
54674	11.22	2.37
54682	12.26	12.28
54688	16.43	3.3
54718	10.11	3.39
54721	10.87	2.56
54746	20.02	6.85
54854	12.13	2.16
54960	10.9	1.41
55002	11.84	1.72
55060	10.88	1.89
55081	11.27	1.9
55130	13.96	2.67
55266	17.82	10.96
55485	12.79	2.69
55488	12.4	2.83
55497	13.4	2.73
55564	11.58	3.13
55700	13.35	1.41
55740	10.02	1.86
55769	10.1	2.22
55781	10.17	1.48
55861	11.7	1.22
56034	15.59	5.02
56083	14.73	2.82

56253	16.72	3.98
56444	12.37	2.68
56573	17.24	9.29
56797	11.15	1.54
56920	13.93	2.32
57013	15.58	4.44
57253	11.18	1.7
57562	16.97	5.29
57646	15.96	4.84
57779	18.08	3.46
57805	15.87	3.84
57971	13.23	2.69
58188	11.42	5.67
58327	10.14	2.94
58510	11.8	4.89
58551	13.21	0.92
58591	11.0	1.59
58678	10.66	1.08
58823	10.55	1.01
59002	12.86	1.05
59203	10.32	1.1
59243	10.48	2.27
59309	22.81	6.74
59353	13.96	3.88
59364	10.6	3.84
59366	10.09	2.48
59451	10.31	1.54
59608	20.18	5.36
59676	12.04	2.91
59819	16.49	7.36
59868	10.53	1.25
59923	18.74	4.79
60014	11.85	2.6
60018	18.06	4.77
60044	11.29	5.26
60060	10.12	1.35
60066	13.14	2.7
60087	11.43	2.89
60123	11.01	2.34
60134	12.32	1.54
60266	11.2	1.44
60360	10.07	0.64
60490	11.57	2.53
60503	12.89	2.27
60514	11.47	7.34
60561	10.83	1.5
60746	11.56	9.21
60797	10.9	2.16
60891	12.66	2.52
60904	12.06	5.11
60957	12.84	4.5
60978	11.88	7.58

61071	10.49	5.2
61082	10.13	0.89
61280	11.81	2.36
61347	13.32	1.74
61498	14.91	3.28
61558	14.54	3.49
61622	24.77	21.81
61692	15.27	3.15
61782	10.01	0.62
61902	11.36	2.35
61937	14.6	3.65
61968	13.37	4.04
62081	13.9	3.19
62102	10.16	1.2
62140	10.77	2.01
62209	10.79	0.94
62267	13.36	10.9
62394	13.41	3.52
62402	15.85	4.69
62788	16.62	4.61
62896	21.03	21.79
62933	16.4	4.34
62972	13.43	3.57
62983	14.98	3.12
63123	10.08	1.31
63280	11.39	1.39
63320	13.39	1.86
63414	10.95	5.2
63453	10.79	1.24
63491	18.23	3.25
63531	11.5	1.51
63724	14.97	8.49
64003	14.22	3.97
64111	10.67	2.47
64246	16.12	6.08
64527	11.36	2.07
64692	13.32	5.44
64822	17.12	4.48
64882	11.81	1.79
64906	11.85	5.33
64921	11.71	1.57
65183	11.28	2.67
65198	15.32	4.17
65224	11.11	1.66
65241	15.7	3.76
65466	12.82	4.2
65728	13.79	4.47
65969	11.48	2.11
66015	13.94	4.22
66065	15.25	3.85
66198	11.77	3.71
66234	17.12	13.02

66376	10.99	2.02
66433	11.41	1.94
66522	13.95	3.04
66586	10.61	0.77
66634	19.27	5.68
66700	11.32	2.21
66729	10.14	1.4
66753	12.71	6.07
66798	14.74	3.68
66908	10.05	1.21
67143	11.35	3.46
67194	19.48	4.89
67270	10.35	2.63
67289	10.33	2.04
67292	16.64	5.12
67461	10.54	1.65
67483	15.41	3.77
67495	10.06	2.17
67548	12.12	2.24
67596	11.24	1.92
67630	12.73	1.8
67714	10.03	2.76
67782	15.46	4.34
68110	10.49	1.8
68414	13.03	2.66
68498	11.33	3.51
68520	14.94	15.4
68637	10.4	2.41
69200	11.55	0.76
69265	10.76	1.68
69592	16.95	2.97
69650	10.83	1.89
69658	12.49	4.01
69727	19.19	3.54
69828	12.49	2.21
69896	23.36	11.52
69904	10.2	3.23
69923	12.07	1.71
69929	11.08	3.08
69951	13.61	1.89
69974	17.47	13.41
69995	14.6	3.28
70022	14.29	3.46
70051	11.52	2.43
70400	21.56	8.23
70510	10.36	0.63
70556	10.19	0.84
70663	17.16	6.04
70680	13.83	2.85
70894	13.1	4.01
71077	10.08	1.37
71094	14.03	4.73

71206	12.9	2.52
71316	10.85	1.41
71618	16.56	5.25
71795	18.07	22.14
72104	15.76	8.18
72293	10.22	1.43
72552	11.06	3.88
72814	10.08	1.46
72940	10.63	1.47
73049	13.2	5.9
73535	11.9	0.98
73566	10.04	4.88
73587	10.56	2.28
73608	10.68	2.51
73841	12.55	3.81
73937	10.44	2.53
73990	10.29	0.79
74000	13.35	2.99
74144	12.47	1.47
74145	10.92	1.43
74149	10.59	1.21
74488	12.24	2.47
74505	11.58	2.42
74596	14.4	6.02
74689	20.2	5.66
74875	12.45	2.81
75000	11.72	3.23
75043	15.32	4.9
75164	10.23	2.71
75678	12.01	2.1
75729	11.09	1.05
75736	15.54	3.27
75788	10.89	2.07
75848	11.21	2.11
76251	11.38	1.37
76376	13.24	3.75
76736	12.94	2.07
76866	14.28	5.54
76878	18.78	5.08
76952	22.48	22.7
76996	15.02	5.9
77060	22.21	7.9
77089	10.8	0.69
77111	10.16	2.35
77277	12.0	6.29
77336	12.95	4.7
77370	12.56	4.79
77464	20.34	5.27
77516	20.94	22.04
77532	12.21	2.12
77660	20.47	8.8
77910	13.54	3.2

78553	14.93	2.42
78554	18.42	9.47
78583	10.3	1.21
78817	10.54	1.69
78893	11.92	4.48
79007	12.12	6.11
79036	10.47	1.87
79387	13.05	6.36
79472	11.21	1.85
79503	11.95	2.06
79781	21.0	4.87
79797	18.13	3.64
80170	16.69	44.29
80460	12.73	6.99
80939	12.18	1.04
80953	14.48	4.94
81016	10.97	1.46
81073	11.31	2.39
81248	10.62	1.11
81560	10.73	1.25
81634	10.73	1.45
81641	10.76	3.38
81840	11.04	2.65
81846	10.08	1.42
81873	10.7	2.93
81971	10.7	1.03
82312	10.03	1.1
82350	11.34	3.03
82402	17.3	5.41
82475	10.1	0.75
82779	11.49	1.41
82892	10.6	1.55
83207	20.04	18.09
83223	13.69	2.93
83313	11.05	5.71
83388	10.15	1.71
83478	12.38	2.85
83480	10.54	2.17
83494	18.5	3.83
83613	22.68	9.52
83738	11.38	3.34
83774	11.67	2.14
83853	12.0	3.29
84054	11.41	3.77
84433	11.28	1.14
84510	10.06	2.17
84606	18.34	11.19
85038	15.63	2.13
85086	10.09	3.29
85382	11.63	2.87
85463	10.37	1.26
85537	15.86	7.98

85666	10.55	1.9
85699	20.88	5.09
85790	11.86	3.69
85822	17.85	13.2
85840	13.18	1.9
86178	15.07	3.6
86179	11.14	1.77
86254	13.59	4.86
86378	10.29	1.72
87149	10.02	1.03
87174	19.58	4.74
87212	15.03	7.48
87247	10.82	1.67
87341	10.25	4.41
87386	16.64	2.88
87486	11.65	1.52
87875	10.46	3.77
87896	11.02	1.22
87960	10.4	1.17
88290	12.31	13.51
88349	11.2	1.55
88726	22.79	11.74
88866	23.55	20.06
88899	10.16	9.5
89056	11.45	1.05
89925	17.36	6.7
89935	11.79	10.79
89936	14.57	2.39
90089	11.35	2.22
90133	16.59	4.77
90304	14.03	3.97
91752	10.74	1.24
91775	13.91	2.09
91875	16.15	7.57
92040	11.33	3.6
92112	10.73	5.51
92269	17.81	3.84
92294	14.45	6.15
92312	11.63	3.13
92598	10.4	1.34
92676	11.26	3.06
93074	16.21	3.37
93266	10.32	1.78
93542	17.75	8.37
94140	10.15	2.09
94789	11.0	6.22
95077	17.52	7.16
95081	14.52	11.07
95167	10.56	3.27
95626	10.49	0.59
95720	12.87	1.72
95823	17.42	6.06

96286	10.94	2.44
96406	11.23	5.16
96534	13.04	1.61
96721	10.05	4.09
96739	11.84	2.45
96807	11.44	5.09
96907	12.0	3.44
97018	14.25	2.27
97086	10.62	1.12
97145	10.48	1.19
97229	18.48	4.38
97421	19.19	7.28
97423	16.0	3.44
97534	24.08	8.04
97581	12.27	1.46
97646	12.55	5.78
97871	11.79	4.25
97971	10.72	3.33
98055	11.3	10.64
98103	15.84	5.26
98111	11.67	2.88
98152	10.84	2.47
98258	11.18	7.91
98294	11.1	1.2
98382	11.11	1.69
98406	10.34	1.66
98421	20.81	7.56
98579	11.65	2.55
98633	10.54	4.24
98689	10.85	1.28
98705	11.47	1.52
99077	12.17	1.24
99149	10.55	1.87
99655	21.41	15.59
99742	21.24	8.26
99892	11.38	1.36
99994	13.89	2.31
100073	10.66	1.87
100118	10.16	1.26
100256	11.09	5.33
100305	10.39	1.23
100469	13.35	4.02
100526	14.44	2.22
100697	12.95	3.79
100787	16.52	2.31
100933	11.8	2.21
101044	11.77	3.17
101070	13.36	2.55
101093	24.04	21.69
101123	13.65	3.43
101300	12.33	3.58
101469	13.11	2.02

101483	18.85	5.33
101558	14.94	3.27
101589	14.36	12.05
101608	13.9	3.63
101800	18.4	5.04
101808	19.86	4.24
101867	15.27	7.63
102205	11.89	1.76
102253	23.49	6.31
102281	16.03	19.57
102373	11.38	1.62
102395	23.71	50.62
102878	10.09	1.64
102959	10.22	2.06
103045	21.01	17.34
103261	12.59	3.12
103298	16.35	5.61
103460	17.58	4.25
103545	11.83	4.77
103640	10.21	2.32
103652	13.85	5.5
103752	12.0	2.54
103777	10.94	2.88
104139	20.61	15.27
104293	12.73	1.92
104296	10.57	3.2
104308	15.05	2.5
104338	12.07	2.1
104365	17.06	5.03
104771	11.17	3.55
104772	10.51	1.9
104983	10.28	1.08
105140	19.76	10.63
105331	10.79	1.1
105685	10.39	3.09
105703	14.84	8.15
105819	11.46	2.75
105860	21.72	4.18
105913	18.57	8.72
105931	13.8	1.17
105966	17.96	5.1
105984	10.62	1.45
106310	11.34	1.34
106363	14.42	2.79
106654	18.57	5.48
106703	13.76	4.13
106783	12.68	2.39
106786	18.26	13.28
106856	18.74	6.62
106985	23.48	39.62
107100	13.74	2.04
107253	11.97	3.64

107302	19.08	4.57
107326	12.99	2.7
107334	10.76	1.92
107517	11.1	3.95
107573	11.01	1.43
107596	12.74	3.74
107763	10.78	6.25
107919	13.96	2.53
107925	10.01	0.97
107995	11.51	1.86
108060	14.18	3.73
108166	11.71	1.15
108220	10.34	1.63
108232	10.65	2.73
108294	10.35	5.72
108552	10.48	1.13
108759	10.48	3.39
108812	11.37	2.11
108991	14.1	8.14
109121	10.09	2.73
109147	11.08	1.47
109285	25.01	12.6
109306	12.7	3.44
109349	11.25	1.77
109404	15.35	8.38
109521	18.24	6.92
109667	17.22	3.39
109745	13.0	4.31
109831	11.67	3.63
109984	12.44	3.62
110166	10.01	1.59
110171	15.19	4.13
110395	20.67	16.43
110657	10.05	1.43
110658	10.02	1.28
110786	12.23	1.98
110787	15.98	4.04
110935	22.96	6.39
111056	13.75	5.39
111123	12.29	7.34
111188	21.99	13.27
111200	14.49	4.07
111314	13.11	5.5
111594	14.41	2.65
111622	10.48	0.92
111643	14.86	3.67
111659	11.37	1.85
111807	11.41	2.0
111898	10.15	2.85
112051	10.7	8.4
112346	11.82	1.1
112362	10.75	2.7

112405	23.23	21.77
112449	13.51	2.86
112548	10.2	1.5
112904	10.06	1.02
113048	19.22	6.41
113167	10.61	3.87
113186	11.55	7.73
113195	11.92	1.38
113307	11.98	5.24
113331	11.76	2.29
113465	10.41	2.35
113542	10.83	0.51
113629	10.65	1.54
113647	10.54	1.81
113711	10.49	1.48
114132	11.09	4.38
114224	10.7	0.91
114258	13.44	3.22
114373	10.08	2.35
114428	10.79	2.02
114448	11.45	1.62
114520	12.89	8.49
114822	14.09	4.6
115115	13.1	6.89
115250	19.5	15.49
115261	12.5	3.0
115288	15.11	3.14
115678	10.02	2.55
115723	10.05	1.37
115770	15.81	5.74
116323	14.17	5.25
116354	13.97	5.14
116370	13.64	2.43
116389	11.92	10.91
116482	15.51	2.85
116510	11.75	1.8
116602	16.26	10.37
116611	13.65	4.53
116714	12.4	3.72
116758	24.38	12.22
117173	13.24	2.37
117219	15.32	3.1
117254	12.91	1.58
117452	22.73	10.26
117500	12.22	4.22
117515	10.3	1.33
117558	10.03	1.03
117569	10.9	1.54
117629	10.16	4.19
117730	17.31	8.68
117734	12.09	1.55
117797	10.88	3.49

117990	12.44	2.78
118027	10.84	1.76
118092	15.91	3.49
118121	20.53	7.84
118256	11.46	2.03
118259	11.26	1.38

TableA.2: Selected A-type MS stars located at $100<d<158$ pc (group 3)

Hipparcos ID	parallax [mas]	K flux [Jy]
69	6.35	0.405
186	7.55	3.07
297	6.42	1.472
345	7.75	2.091
424	6.66	1.775
445	9.55	0.963
474	7.0	0.555
497	7.05	1.388
581	7.12	1.07
594	6.51	0.247
609	7.19	0.536
648	8.95	1.304
652	8.19	1.436
701	6.36	0.666
727	7.7	0.97
728	8.65	2.834
760	8.56	4.446
798	7.37	2.779
859	7.1	0.698
905	7.22	0.471
935	6.73	0.363
1043	8.09	1.388
1090	7.03	0.699
1101	9.78	1.616
1193	9.18	2.161
1215	7.92	1.962
1272	7.32	1.018
1318	7.65	1.54
1320	9.88	0.764
1333	7.18	1.27
1377	7.02	0.569
1409	7.31	0.487
1410	6.34	0.789
1413	8.06	1.047
1488	8.17	0.892
1496	9.28	1.366
1524	8.25	0.796
1677	7.87	1.733
1688	9.71	1.214
1714	7.25	0.734
1755	6.57	1.38
1777	7.4	0.844
1799	7.45	1.667
1916	6.46	0.765
1928	6.35	0.483
1979	7.33	0.472
2023	7.81	0.781
2071	7.58	0.277
2178	7.7	3.265

2184	8.63	2.359
2228	6.83	0.747
2243	6.59	1.344
2335	6.94	0.425
2395	6.77	0.383
2406	6.94	1.034
2415	8.46	1.598
2419	7.21	0.574
2420	7.14	0.853
2431	7.01	2.057
2488	7.95	0.339
2496	9.86	1.174
2500	7.6	0.56
2539	9.62	1.921
2629	6.65	5.325
2641	7.93	1.841
2658	7.02	0.991
2701	8.21	1.758
2782	8.57	1.339
2788	7.21	0.668
2850	9.61	0.832
2936	8.26	2.008
2993	7.76	0.675
3018	7.53	0.845
3042	7.58	1.626
3064	9.25	0.849
3080	7.8	0.709
3149	7.33	0.729
3227	6.53	0.976
3240	8.73	1.564
3269	7.06	4.324
3275	7.04	0.483
3351	6.41	1.563
3459	9.56	1.598
3516	6.86	0.391
3544	9.28	5.267
3672	6.68	1.098
3805	7.45	0.985
3896	6.33	0.475
3964	8.66	2.357
4059	9.72	0.774
4089	7.57	0.828
4115	6.89	0.526
4160	8.94	1.088
4267	8.88	3.203
4296	6.54	0.677
4390	6.41	1.443
4442	7.38	1.121
4470	7.65	0.777
4496	7.64	1.395
4519	6.64	0.863
4555	6.86	1.328

4558	7.62	2.21
4630	8.93	0.894
4695	7.8	0.774
4710	6.74	1.181
4863	6.85	0.857
4903	9.49	3.868
4911	9.68	3.179
4978	6.93	1.099
5035	7.56	0.455
5174	6.53	0.296
5188	6.94	0.885
5216	8.94	1.214
5233	8.91	2.041
5252	7.05	0.714
5425	6.39	1.022
5429	6.49	0.777
5442	8.3	0.99
5595	6.54	0.583
5615	6.49	0.31
5702	8.51	0.784
5886	7.47	1.843
5907	9.94	1.91
5991	7.34	0.486
5992	9.69	2.511
6048	9.75	2.828
6076	8.32	1.244
6082	6.34	1.034
6096	7.11	1.339
6256	9.78	1.488
6302	9.02	1.341
6349	8.28	0.745
6393	7.29	2.507
6513	6.47	0.608
6533	7.87	0.389
6606	9.15	1.235
6648	8.09	0.49
6663	6.45	0.597
6685	6.34	2.124
6850	6.81	0.891
6966	7.07	1.622
6981	8.61	4.149
7003	6.65	0.342
7004	7.11	0.591
7051	7.72	0.587
7125	7.04	1.084
7148	9.61	1.912
7160	7.44	0.679
7222	8.06	1.395
7331	7.55	0.65
7382	6.93	1.011
7383	7.61	0.707
7462	7.18	0.613

7552	6.4	0.656
7644	7.27	0.669
7724	9.4	1.203
7911	7.04	2.106
7957	7.97	1.051
7965	7.34	3.525
8009	7.42	0.902
8138	7.29	1.392
8168	9.2	1.115
8211	7.85	1.432
8466	6.66	0.549
8531	6.93	0.454
8754	6.4	0.847
8756	6.55	0.626
8784	7.01	0.693
8866	6.62	2.187
8877	7.28	0.629
8986	7.65	2.13
9075	9.31	0.805
9112	6.54	2.04
9154	6.56	0.705
9165	6.64	2.491
9166	6.39	0.919
9190	6.42	0.56
9285	7.36	1.339
9521	7.22	2.502
9570	8.81	4.897
9587	7.48	0.321
9690	9.78	1.589
9800	7.41	2.348
9881	6.97	0.73
9925	7.5	0.491
9955	9.43	1.589
10167	8.05	1.433
10194	7.68	1.596
10205	6.44	0.624
10220	6.76	2.79
10242	8.58	2.322
10253	6.71	0.302
10285	7.83	1.604
10309	7.95	2.989
10320	9.82	5.515
10355	9.79	1.04
10415	6.37	0.596
10432	8.35	0.687
10512	6.39	1.757
10549	7.44	0.377
10554	6.71	0.975
10730	6.68	1.01
10731	8.32	1.083
10732	8.42	4.655
10740	8.36	0.624

10793	9.31	5.775
10795	9.51	4.118
10814	7.22	3.544
10862	6.82	1.252
11075	9.34	1.907
11109	7.01	0.424
11112	6.97	1.108
11133	7.42	1.009
11145	6.36	0.647
11165	8.26	0.708
11256	6.91	1.305
11339	8.0	1.101
11397	8.61	0.687
11436	6.95	0.437
11456	6.69	0.605
11479	8.47	1.818
11525	7.05	0.324
11554	6.48	0.482
11635	7.17	0.469
11642	7.8	0.643
11643	8.51	1.017
11664	8.34	0.666
11690	8.46	0.667
11719	8.72	1.546
11744	8.46	1.31
11808	6.77	0.423
11959	7.54	1.015
11971	7.9	1.051
11980	6.49	0.621
12036	7.04	0.691
12113	9.04	2.204
12164	6.47	0.521
12229	9.6	0.986
12276	6.84	0.882
12332	9.41	6.917
12333	8.97	0.643
12441	7.6	1.024
12452	6.54	0.826
12571	7.57	0.486
12630	7.83	1.455
12640	9.64	3.429
12647	7.66	2.361
12733	7.29	0.77
12744	9.27	2.34
12775	8.06	2.973
12786	9.34	2.432
12821	8.02	3.677
12858	9.47	1.034
12899	6.42	0.9
12901	6.77	0.705
12937	7.09	1.062
12952	6.47	0.61

12959	9.92	1.412
12975	6.81	0.81
13063	8.39	1.498
13073	8.17	0.562
13121	7.08	2.886
13174	6.91	0.771
13175	8.74	1.38
13233	7.12	1.177
13259	7.01	0.643
13272	8.86	1.129
13304	6.96	0.565
13409	6.56	1.034
13413	7.0	0.861
13414	7.74	2.337
13421	9.94	3.05
13422	6.39	0.356
13488	6.86	0.615
13526	7.97	0.853
13545	6.5	1.03
13675	7.89	1.178
13682	7.98	0.557
13723	6.66	0.45
13742	6.85	0.615
13789	9.01	1.725
13821	7.74	0.949
13872	8.82	0.729
13947	7.9	2.089
14021	7.79	1.598
14051	7.18	0.875
14266	6.98	0.83
14312	6.45	0.333
14363	7.61	0.973
14375	7.37	0.473
14378	7.78	1.085
14385	6.55	0.747
14408	6.87	0.999
14557	7.47	1.53
14567	6.97	0.763
14643	6.95	0.77
14661	6.72	0.48
14664	6.77	0.497
14712	8.54	0.932
14758	7.85	1.512
14773	8.08	1.487
14790	8.11	1.647
14811	8.73	0.881
14867	7.66	0.609
14910	7.68	1.143
14956	6.77	0.601
15021	9.77	1.094
15064	7.46	1.083
15130	8.78	0.774

15154	7.52	4.273
15177	6.37	0.894
15193	7.9	2.452
15232	6.91	1.574
15277	7.23	0.751
15327	7.65	1.015
15365	8.12	0.76
15373	8.49	0.521
15392	7.78	0.537
15399	8.19	1.44
15400	7.19	0.812
15445	9.39	1.099
15659	6.93	0.402
15684	6.41	0.383
15697	8.13	1.179
15700	7.25	2.002
15882	7.74	1.561
15883	8.39	1.791
15884	7.49	1.793
15933	9.6	1.195
15978	6.68	0.785
16015	7.39	2.195
16077	7.78	2.589
16081	6.7	0.453
16086	8.62	0.932
16124	7.75	1.094
16156	9.01	2.083
16168	9.51	4.021
16201	6.59	0.83
16253	6.56	1.054
16263	7.76	6.503
16289	9.49	1.246
16300	6.63	0.911
16339	8.81	4.107
16384	6.5	0.41
16394	6.74	1.296
16403	6.78	0.388
16407	7.62	0.694
16424	6.97	2.684
16425	7.48	2.981
16444	7.45	0.866
16564	6.82	0.432
16596	7.06	1.35
16661	9.13	2.12
16682	8.54	1.576
16704	7.74	0.578
16795	9.1	0.943
16859	7.46	1.794
16868	7.02	1.039
16876	7.26	0.901
16961	8.17	1.175
16972	6.88	1.355

17000	7.88	1.429
17007	7.81	2.635
17026	6.6	2.425
17034	6.87	1.026
17081	6.91	0.676
17101	9.1	1.464
17142	9.52	1.266
17223	7.74	2.026
17227	9.7	0.899
17256	9.02	1.754
17273	7.51	0.669
17333	6.99	0.633
17337	7.07	1.819
17388	8.57	1.068
17428	7.81	0.756
17547	8.27	0.979
17549	7.33	1.134
17577	6.35	0.728
17618	9.9	3.966
17658	7.65	0.728
17694	9.87	0.655
17720	7.65	1.217
17729	7.61	0.551
17744	9.25	1.855
17872	6.43	1.186
17999	9.83	1.556
18026	6.44	0.366
18037	6.32	0.336
18066	6.56	2.669
18070	7.39	1.111
18072	8.16	0.577
18094	7.93	3.664
18109	9.3	2.025
18120	6.79	0.35
18146	8.77	0.806
18194	7.29	0.819
18201	6.82	2.852
18233	8.04	0.915
18254	6.93	1.543
18275	9.33	2.618
18297	8.98	0.888
18431	8.66	0.566
18437	9.66	1.201
18499	9.46	1.429
18507	8.26	0.84
18549	7.28	0.376
18602	7.49	1.301
18640	7.54	0.587
18650	6.91	0.934
18689	7.39	0.86
18715	7.2	0.477
18723	9.09	3.191

18729	9.86	1.928
18731	6.56	1.259
18756	7.06	0.815
18760	7.23	0.321
18777	7.0	1.026
18804	6.8	0.425
18863	7.44	1.208
18868	7.33	0.562
18905	7.39	0.282
18950	7.53	2.47
18956	7.32	1.814
18959	7.63	0.878
18969	7.45	0.893
18979	7.23	0.834
19047	6.57	1.043
19049	7.36	0.972
19086	7.17	0.667
19106	6.98	0.367
19177	7.13	3.238
19202	7.18	2.472
19241	6.6	0.519
19249	7.6	1.533
19305	7.68	1.235
19306	7.46	0.959
19317	8.7	0.575
19366	6.65	1.298
19399	6.46	1.416
19436	8.13	1.241
19440	6.78	1.415
19608	7.4	0.647
19704	8.73	2.255
19726	7.48	1.275
19760	6.87	0.715
19761	8.04	0.617
19824	7.21	0.775
19830	8.65	0.863
19831	6.93	0.703
19839	6.73	0.585
19857	8.03	1.221
19867	9.42	0.933
19878	9.41	1.686
19881	9.82	1.241
19917	8.41	2.278
19923	7.26	1.439
19972	9.42	0.725
20004	6.94	1.541
20046	7.55	1.323
20072	7.68	1.121
20096	6.37	1.173
20117	8.56	1.145
20121	6.39	0.338
20153	7.44	0.499

20173	8.27	0.928
20190	8.06	0.775
20289	6.81	0.901
20300	8.82	1.158
20306	6.58	0.82
20309	8.59	1.086
20315	6.48	0.756
20328	7.27	0.442
20358	7.78	0.703
20360	6.54	2.179
20405	7.31	0.514
20409	6.64	0.467
20456	8.62	3.206
20474	6.71	1.505
20510	6.94	0.494
20515	7.21	0.481
20521	9.69	0.822
20543	7.58	0.77
20603	6.32	0.924
20735	8.2	1.576
20765	9.0	3.354
20784	7.26	1.189
20799	8.17	0.807
20845	9.35	1.215
20957	8.12	1.153
20980	7.46	0.759
21020	7.5	0.796
21024	6.46	0.865
21032	7.06	2.025
21049	7.02	0.455
21050	6.32	0.452
21061	6.37	0.555
21087	7.93	0.876
21106	8.47	1.706
21110	8.16	2.563
21161	8.18	0.792
21193	7.14	0.768
21213	7.45	0.998
21219	7.51	1.706
21247	8.74	5.071
21266	6.39	0.707
21285	7.43	0.428
21295	7.99	4.273
21315	6.77	1.814
21316	7.57	0.364
21330	8.42	0.446
21370	6.99	0.379
21376	7.56	0.524
21419	6.57	0.291
21452	7.36	2.924
21485	6.96	0.754
21486	8.28	1.744

21560	7.67	0.464
21634	6.84	2.118
21653	7.43	0.867
21657	9.14	1.022
21775	8.31	0.59
21787	8.59	1.116
21957	6.56	1.022
22057	6.52	0.366
22093	6.55	1.533
22114	7.68	0.667
22163	8.3	0.748
22372	9.39	0.879
22476	8.4	1.202
22520	7.76	1.682
22590	6.89	0.881
22605	6.39	0.432
22640	6.49	0.632
22652	7.23	0.854
22709	8.33	0.794
22722	7.33	0.924
22818	7.83	0.672
22842	9.59	2.405
22923	6.66	1.808
22927	7.2	0.579
22936	6.82	4.483
22941	6.73	1.006
22984	6.34	1.168
23011	6.33	2.477
23012	8.43	0.667
23014	7.9	0.931
23024	6.55	0.462
23028	8.4	1.059
23090	7.36	1.767
23092	7.18	2.579
23129	6.73	1.274
23169	6.79	0.39
23192	6.74	1.077
23239	7.59	0.868
23262	6.31	0.431
23386	6.57	0.401
23451	8.92	0.611
23737	7.7	2.179
23746	6.31	0.3
23778	8.78	0.9
23891	6.49	0.732
23899	6.95	1.127
23901	9.21	1.325
23964	9.37	2.625
24036	6.65	0.903
24057	6.84	0.615
24106	8.85	0.999
24152	7.97	0.728

24311	6.31	0.583
24313	6.83	2.47
24401	7.09	1.115
24404	9.16	1.223
24440	7.75	2.051
24483	7.32	1.074
24507	9.09	2.394
24519	7.94	0.479
24530	6.71	0.6
24532	8.21	1.93
24576	7.31	0.638
24592	7.26	0.813
24599	8.81	1.418
24732	9.09	2.918
24741	6.63	0.699
24746	7.11	1.024
24831	7.31	2.596
24946	7.04	0.392
24961	6.37	0.841
24967	9.03	2.514
25010	8.41	1.344
25026	6.75	0.647
25058	7.25	1.238
25095	8.21	0.54
25136	7.65	1.889
25172	7.35	1.059
25197	9.59	5.764
25227	7.3	0.701
25259	7.98	1.141
25271	7.06	0.891
25298	6.75	1.706
25406	7.64	0.91
25437	8.85	1.142
25543	8.09	1.27
25602	7.25	0.741
25645	9.63	1.385
25727	8.06	1.437
25748	6.39	1.483
25776	9.35	2.383
25907	6.99	0.64
25933	7.16	0.753
25998	9.4	0.775
26107	6.66	0.72
26126	9.45	6.222
26146	8.35	0.709
26164	6.88	1.187
26195	6.51	0.606
26408	8.77	2.589
26429	7.05	0.84
26454	6.32	0.977
26555	9.42	0.415
26805	7.15	0.913

26831	8.92	1.226
26873	8.29	0.814
26895	6.57	0.284
26896	6.65	0.68
27015	6.9	1.506
27076	8.45	1.368
27121	6.86	1.428
27294	7.96	0.663
27462	7.3	1.129
27472	7.91	3.07
27577	6.79	0.509
27592	7.4	2.151
27598	7.37	0.841
27599	6.96	0.683
27674	7.9	0.849
27698	9.95	1.235
27701	8.33	1.429
27792	7.71	0.943
27822	6.58	1.468
27873	6.68	1.305
27942	6.97	1.063
28013	9.75	0.68
28043	6.42	1.56
28071	6.79	0.474
28078	8.16	0.95
28081	9.96	1.475
28096	6.85	0.807
28248	6.52	1.057
28325	9.93	9.426
28350	6.58	0.738
28385	9.54	3.65
28397	6.55	0.619
28464	9.87	1.398
28520	8.99	2.841
28523	6.79	2.739
28542	6.62	0.879
28601	6.68	0.608
28686	6.79	2.448
28758	7.05	0.382
28765	8.28	2.834
28836	7.75	0.802
28946	8.57	8.347
28971	7.17	0.961
28989	8.89	0.883
29152	6.45	0.505
29175	7.07	0.615
29307	7.48	0.797
29363	6.73	0.874
29365	7.36	1.91
29370	7.67	0.846
29375	8.18	1.123
29404	9.97	2.652

29455	6.47	0.549
29471	7.15	0.49
29487	6.88	1.706
29507	7.12	0.862
29527	6.78	0.627
29561	9.17	1.431
29590	7.86	0.917
29606	9.52	0.798
29633	7.34	0.627
29658	9.55	1.163
29671	9.04	0.858
29684	8.3	0.849
29699	6.71	2.066
29808	8.35	3.617
29816	6.6	0.779
29848	7.93	0.903
29851	9.34	1.049
29859	6.68	1.048
29965	6.58	0.553
29975	8.67	1.217
29998	6.8	0.8
30007	6.76	0.606
30105	8.67	2.253
30119	8.35	1.728
30121	7.0	0.684
30173	6.84	1.013
30194	8.1	0.541
30217	9.76	3.554
30265	6.9	0.662
30328	8.72	1.509
30372	7.37	1.324
30387	8.37	1.706
30491	6.45	1.169
30596	7.41	0.252
30602	7.18	2.177
30617	6.61	0.608
30675	7.97	1.754
30727	6.48	0.891
30797	6.35	0.426
30929	7.94	0.851
30933	6.64	0.744
31074	7.25	0.976
31150	9.86	1.379
31186	9.99	1.195
31194	8.29	0.767
31206	7.45	0.728
31282	6.8	0.57
31290	7.35	1.951
31316	9.06	1.969
31320	8.01	0.678
31323	8.83	1.527
31325	7.98	1.662

31355	8.64	0.868
31357	6.36	0.638
31479	8.85	0.753
31519	8.23	1.041
31531	8.76	1.523
31614	8.73	0.605
31673	7.21	1.07
31710	8.7	0.644
31741	6.44	0.373
31758	7.08	3.11
31871	7.8	1.088
31897	8.07	7.065
31904	6.75	0.77
31922	8.73	1.656
31944	9.41	2.171
31948	9.58	1.112
32029	8.93	0.602
32055	6.52	1.579
32061	9.19	1.246
32278	7.26	0.288
32295	6.53	1.071
32361	6.97	0.445
32379	7.87	0.856
32411	8.19	6.485
32453	7.01	0.513
32466	8.68	1.833
32493	8.18	0.814
32532	6.56	1.015
32539	7.56	2.247
32579	9.56	1.125
32615	7.2	1.074
32619	6.84	0.591
32629	6.72	0.517
32632	9.35	1.0
32643	7.33	0.609
32689	7.69	2.023
32691	7.75	0.778
32697	9.3	2.085
32793	9.94	2.686
32838	9.89	2.146
32884	6.98	1.065
32903	7.62	0.415
32905	6.66	0.717
32959	8.22	0.841
32964	7.18	1.919
32992	6.79	0.425
33012	6.94	2.635
33054	6.63	1.381
33056	9.08	3.742
33075	6.71	0.504
33077	9.9	7.091
33079	7.12	3.348

33126	6.91	2.344
33186	6.6	0.714
33218	7.6	1.035
33245	6.63	0.543
33297	9.74	2.353
33326	8.66	0.994
33360	7.95	1.096
33476	8.5	1.319
33502	8.1	1.053
33525	8.54	1.348
33574	7.05	1.576
33590	7.68	2.257
33609	7.13	0.818
33679	6.81	0.459
33784	6.62	1.098
33812	6.34	1.39
33823	7.64	3.15
33893	6.71	1.355
33909	7.99	1.659
33921	9.21	1.31
33984	9.71	1.335
34016	6.95	1.102
34246	7.03	0.819
34264	6.35	1.047
34439	6.65	1.192
34570	8.15	0.584
34621	8.99	1.432
34643	8.86	0.762
34657	7.61	0.85
34721	9.72	1.553
34722	8.36	4.759
34806	8.01	0.761
34881	6.54	1.356
35029	7.67	2.772
35095	7.18	2.542
35183	6.62	0.584
35194	8.33	0.762
35241	6.78	3.098
35244	7.63	1.22
35277	7.35	0.68
35400	6.38	0.399
35498	8.22	0.779
35540	6.53	0.607
35603	7.29	1.741
35610	8.99	1.641
35624	8.01	0.362
35676	6.51	0.981
35690	7.06	1.118
35770	9.59	0.909
35787	6.61	0.658
35866	9.35	1.329
35894	8.26	0.91

35953	7.05	0.926
35995	6.85	1.486
36087	7.66	1.067
36130	6.44	1.335
36281	8.8	1.557
36304	9.43	2.072
36305	8.83	1.12
36331	6.98	0.805
36371	9.61	2.719
36381	9.84	1.286
36384	8.66	1.006
36489	8.55	1.54
36506	6.99	1.168
36536	9.36	2.01
36595	6.47	1.249
36636	7.78	1.346
36687	6.4	1.132
36760	8.69	6.698
36780	7.46	2.782
36796	7.76	2.269
36811	9.08	0.9
36837	9.65	1.452
36869	6.98	2.897
36919	9.39	1.718
37004	9.27	1.038
37009	8.02	0.869
37056	7.68	0.571
37111	7.98	1.163
37116	7.8	0.76
37264	6.88	0.677
37269	7.5	2.463
37365	8.19	1.169
37371	9.94	1.01
37478	6.47	2.862
37593	8.42	1.11
37611	9.14	1.675
37679	7.02	0.768
37720	8.09	2.167
37811	7.08	1.676
37817	9.44	1.275
37861	7.31	0.749
37940	6.33	0.88
37980	8.16	0.99
38098	8.99	0.849
38199	8.02	0.449
38249	8.22	1.776
38274	8.0	1.46
38299	7.47	1.004
38403	9.6	2.601
38410	8.68	1.896
38578	7.15	1.294
38626	8.4	0.618

38722	9.61	4.711
38885	7.57	0.959
38891	8.61	1.59
39041	7.97	2.981
39062	9.9	1.298
39108	8.01	0.711
39121	8.98	0.703
39122	8.65	2.836
39134	9.17	1.509
39197	7.14	1.55
39207	7.9	1.563
39213	9.42	3.836
39214	7.02	1.574
39266	6.43	0.473
39288	7.49	1.622
39291	7.59	0.606
39358	6.32	1.701
39363	9.05	0.872
39488	7.32	0.615
39510	8.74	0.963
39520	9.31	0.941
39538	9.88	4.516
39643	6.58	0.499
39722	6.9	1.907
39833	7.81	0.958
40013	7.6	0.687
40194	9.11	0.566
40211	6.8	2.081
40237	9.76	0.843
40246	8.2	0.936
40342	9.91	3.385
40376	7.18	1.024
40386	8.67	2.441
40404	7.92	0.455
40474	6.53	3.039
40533	7.22	0.783
40621	7.36	1.048
40834	8.25	3.067
40901	8.7	1.406
40941	6.77	1.725
40984	8.04	0.71
40989	7.39	0.685
41003	9.16	5.855
41084	7.59	0.514
41140	7.29	0.641
41173	8.42	0.856
41213	6.93	0.478
41252	8.43	2.026
41328	9.79	4.099
41430	6.53	1.599
41478	8.42	1.669
41493	7.85	0.479

41504	9.89	2.149
41577	7.37	0.945
41630	7.04	0.68
41648	6.71	0.455
41782	6.81	1.437
41791	7.95	0.401
41960	6.88	0.531
42029	9.05	1.416
42101	6.8	1.935
42160	7.22	0.443
42164	7.01	0.949
42201	7.11	0.903
42225	6.76	0.423
42265	7.07	3.805
42274	6.56	0.572
42300	6.97	0.539
42330	6.97	0.874
42342	7.01	2.721
42348	8.92	1.419
42353	8.74	1.637
42374	7.02	0.689
42378	9.68	0.611
42412	7.01	0.982
42419	6.41	0.54
42434	9.05	1.978
42440	7.46	2.008
42511	9.39	1.435
42542	6.75	2.546
42578	6.44	1.96
42588	6.55	0.772
42606	7.63	1.497
42705	7.64	0.763
42766	7.9	0.397
42769	9.23	1.681
42770	6.61	0.662
42775	7.43	1.962
42899	8.18	1.441
42917	8.0	3.133
42994	7.74	0.848
43002	9.14	3.073
43043	8.77	0.87
43061	7.91	1.14
43078	6.99	0.588
43118	7.21	0.655
43142	9.61	6.432
43147	7.33	0.758
43201	6.75	0.842
43211	6.61	0.24
43385	7.03	0.676
43417	9.26	1.804
43456	6.37	0.501
43461	7.67	0.847

43480	6.78	0.407
43539	8.03	1.237
43551	6.38	0.542
43571	7.05	1.427
43666	7.97	1.619
43774	8.28	1.57
43775	6.5	0.963
43805	6.49	1.905
43817	6.53	0.841
43879	7.33	0.641
43962	6.58	0.904
43994	6.79	0.443
44006	6.65	0.454
44009	7.02	0.426
44017	8.45	1.375
44042	9.42	1.828
44056	7.51	1.676
44078	7.07	0.924
44085	7.11	0.807
44120	7.67	0.519
44135	7.58	1.284
44180	9.78	2.305
44249	6.56	0.507
44277	7.2	0.794
44280	7.01	0.827
44307	6.4	3.441
44325	6.79	1.04
44360	6.81	0.657
44380	6.87	0.672
44400	6.5	0.28
44421	7.64	1.441
44426	6.49	0.832
44450	8.19	0.854
44453	7.71	0.639
44459	6.56	0.416
44552	8.77	1.106
44635	6.71	0.615
44740	7.78	0.613
44764	7.48	0.658
44787	7.28	1.12
44876	9.79	1.153
44887	8.74	3.654
44967	9.67	0.789
45017	6.58	0.732
45037	7.85	1.692
45047	8.74	0.947
45152	8.41	1.501
45153	6.94	1.39
45167	8.68	2.379
45272	6.57	1.903
45286	9.27	0.689
45293	6.79	0.324

45354	6.65	1.05
45424	9.38	2.116
45440	8.33	0.848
45453	6.43	0.677
45550	7.35	1.322
45575	9.95	0.622
45590	8.89	3.215
45592	9.5	1.62
45640	7.59	1.296
45654	8.06	0.734
45658	7.48	0.637
45676	6.92	0.413
45710	6.95	0.946
45744	7.26	1.909
45813	8.06	2.087
45894	7.84	2.041
45895	6.73	0.737
45961	8.08	1.419
45999	7.2	2.307
46068	8.68	1.798
46075	9.92	2.511
46182	9.35	0.822
46208	8.47	2.167
46211	7.6	0.736
46258	9.68	1.572
46262	7.06	0.615
46279	7.99	0.986
46304	7.28	1.061
46313	7.03	1.184
46335	9.35	1.04
46336	7.4	1.788
46351	9.45	1.105
46376	7.13	0.898
46378	7.79	0.392
46396	8.72	2.596
46410	6.88	2.943
46498	6.82	0.701
46571	6.31	1.126
46621	8.34	0.799
46642	6.97	1.201
46681	6.49	0.687
46704	7.11	1.791
46727	7.43	1.095
46734	8.71	5.722
46758	7.13	0.854
46808	7.78	1.142
46812	6.48	0.688
46813	9.28	4.888
46856	9.76	0.982
46881	6.61	1.928
46890	7.6	1.622
46936	8.14	0.85

47082	7.02	1.345
47083	8.1	1.207
47096	6.39	2.335
47134	8.06	1.389
47151	7.85	0.607
47169	7.95	1.432
47194	6.84	0.469
47208	9.39	1.093
47249	8.7	1.717
47303	7.54	1.365
47336	9.68	1.96
47405	9.7	1.318
47439	7.36	0.826
47556	7.86	1.107
47571	9.57	1.227
47633	7.49	2.179
47636	8.46	2.676
47647	6.97	0.973
47670	6.34	0.484
47813	6.34	0.429
47822	7.83	1.058
47922	7.38	0.724
47953	6.77	0.313
47999	7.4	1.203
48098	7.17	1.219
48129	6.66	0.67
48218	6.34	4.344
48234	7.25	0.716
48278	7.65	0.848
48301	7.9	0.778
48403	7.05	0.507
48532	6.95	1.087
48584	7.13	2.57
48687	8.7	2.746
48776	6.49	3.182
48817	8.9	0.57
48849	6.63	1.015
48925	7.89	0.889
48960	7.76	0.919
48972	7.77	0.589
48994	6.51	0.586
49036	7.82	0.532
49047	7.98	1.165
49065	8.17	4.537
49099	6.86	0.604
49113	6.81	0.724
49200	7.1	0.653
49207	7.11	0.515
49209	9.25	2.128
49225	7.24	0.504
49328	6.8	1.695
49356	7.53	0.738

49362	7.56	0.871
49408	9.88	2.826
49416	6.93	1.499
49437	7.69	0.734
49458	6.35	0.52
49466	9.2	1.282
49518	7.23	1.251
49541	7.73	2.421
49567	6.35	0.448
49590	7.13	0.86
49647	8.3	0.812
49670	9.0	1.32
49726	6.82	0.401
49836	9.05	1.274
49900	6.74	2.439
50066	7.98	4.207
50187	6.61	0.924
50188	6.56	0.715
50305	9.5	3.351
50308	7.95	1.57
50459	7.83	1.522
50463	6.86	0.846
50508	9.05	1.364
50574	7.54	1.771
50593	7.38	1.048
50602	7.67	0.904
50612	6.34	0.756
50629	6.85	0.308
50658	9.81	1.374
50685	7.95	5.669
50698	9.31	1.091
50705	9.84	2.093
50728	8.73	2.787
50739	7.66	2.102
50755	6.85	2.439
50787	6.46	1.174
50901	9.16	0.754
50945	7.29	0.635
50974	6.7	0.371
50976	7.4	2.8
50990	7.28	0.794
51050	7.4	0.702
51061	6.37	1.243
51075	8.02	2.045
51122	7.25	0.521
51173	6.69	1.173
51213	8.47	2.563
51274	8.89	0.616
51458	8.98	0.645
51472	8.68	1.874
51501	6.88	1.381
51532	6.47	0.474

51603	8.16	1.223
51649	6.58	0.211
51788	9.64	0.883
51802	7.05	4.437
51837	8.34	1.165
51843	6.84	0.566
51937	6.91	1.128
52025	6.35	0.575
52035	8.15	0.886
52069	7.31	0.922
52109	8.77	1.11
52113	9.09	2.681
52280	6.51	0.469
52324	8.12	1.345
52344	8.48	0.995
52413	9.47	1.298
52478	8.87	3.07
52496	6.92	0.303
52520	9.43	3.627
52530	9.78	1.1
52537	9.2	3.093
52540	9.16	0.506
52602	9.42	1.941
52614	7.19	0.728
52638	8.64	4.617
52650	8.99	1.809
52683	8.0	1.61
52743	6.55	1.004
52814	8.2	1.004
52841	7.65	3.438
52844	6.95	0.623
52877	7.76	1.78
52883	7.26	1.863
52893	9.58	1.305
52911	9.76	6.222
52919	7.42	0.837
52965	9.41	4.324
52980	8.9	4.875
53258	6.38	0.644
53290	9.01	1.593
53329	6.69	0.763
53355	8.04	4.583
53379	6.58	2.35
53395	8.55	1.207
53409	7.31	0.292
53485	8.39	0.732
53501	7.73	0.91
53510	8.43	0.601
53571	8.02	0.668
53605	7.77	1.39
53659	6.81	0.773
53694	8.13	0.572

53702	9.17	3.305
53703	7.88	0.882
53722	9.43	0.402
53727	6.59	1.39
53741	6.67	1.155
53794	7.62	0.84
53857	6.51	1.028
53925	6.55	1.043
53977	8.62	1.115
54106	8.58	1.696
54107	8.77	1.52
54141	6.96	1.293
54157	7.32	0.674
54166	7.35	1.433
54220	8.07	0.475
54231	9.23	1.307
54302	7.74	0.907
54329	8.56	1.115
54430	7.13	1.919
54487	7.99	4.458
54561	9.54	3.705
54706	8.06	0.835
54716	8.55	1.135
54719	8.82	0.615
54736	6.66	0.345
54742	6.81	2.514
54752	8.51	0.819
54765	9.95	1.877
54807	6.5	2.973
54843	7.23	1.381
54983	9.27	0.953
54987	8.42	0.667
55019	6.31	1.643
55063	9.16	1.879
55106	7.75	3.535
55107	6.94	0.687
55133	8.13	1.912
55166	8.77	1.037
55170	9.13	1.809
55271	6.64	1.369
55332	6.71	1.882
55382	6.34	1.229
55443	6.87	1.007
55490	6.67	0.77
55531	7.77	1.533
55570	9.13	1.019
55679	8.03	0.699
55802	9.85	2.047
55851	8.1	0.476
55899	7.02	0.988
55960	8.38	0.902
56005	7.58	1.917

56059	7.55	0.33
56077	8.69	1.741
56098	6.35	0.556
56110	7.09	0.707
56207	6.75	0.778
56275	9.24	0.937
56324	7.56	0.667
56339	6.46	1.219
56378	6.49	0.279
56391	8.86	6.32
56395	8.23	0.739
56486	6.52	0.605
56543	7.31	0.522
56553	8.21	2.374
56597	8.71	0.509
56625	7.61	1.052
56631	7.42	0.89
56632	7.54	2.518
56649	7.4	1.261
56732	7.19	0.581
56746	6.97	0.817
56780	7.87	0.397
56893	7.04	0.842
56904	6.48	1.701
56925	7.8	1.248
56941	9.68	1.98
56963	8.89	0.694
56968	8.99	1.213
57014	6.93	0.592
57133	7.15	0.647
57158	6.71	0.666
57189	7.36	2.736
57234	7.77	0.77
57246	8.96	0.648
57258	8.55	0.67
57302	6.68	0.491
57446	7.21	0.719
57470	7.3	1.011
57515	8.71	1.368
57528	8.56	0.819
57567	8.03	0.776
57604	6.42	1.237
57710	8.41	0.532
57809	7.54	1.471
57813	8.78	1.236
57816	8.18	0.709
57910	7.45	0.326
57920	9.68	2.023
58039	8.59	1.169
58113	8.68	0.925
58131	8.37	1.266
58137	8.28	1.419

58297	6.34	0.424
58316	8.14	1.001
58396	6.49	0.344
58410	9.46	2.394
58416	8.64	1.327
58458	7.3	0.93
58505	6.68	0.502
58512	8.71	2.962
58525	8.74	0.456
58616	9.93	1.541
58637	9.3	0.519
58650	9.71	1.696
58674	9.53	1.352
58765	7.36	2.644
58797	8.42	1.193
58830	8.64	3.107
58851	8.05	0.88
58884	9.61	4.902
58937	6.57	0.354
59093	9.43	1.424
59100	7.15	1.52
59119	6.82	0.755
59167	6.62	0.475
59174	7.54	0.759
59229	9.99	5.669
59271	8.56	1.439
59275	6.47	0.656
59293	7.62	0.721
59346	9.05	2.839
59403	6.32	0.277
59505	9.21	0.554
59531	7.24	1.325
59541	7.64	1.02
59622	8.03	2.385
59636	7.09	1.066
59659	7.16	1.399
59675	6.33	0.626
59702	9.18	0.763
59724	9.11	0.72
59729	7.71	1.088
59825	6.47	0.677
59851	9.78	2.193
59852	7.3	0.573
59911	6.42	0.488
59950	6.68	2.301
60084	6.77	0.634
60133	9.27	1.574
60219	7.23	1.781
60313	8.3	1.544
60327	9.97	2.276
60334	7.97	1.9
60382	7.91	0.972

60426	7.48	1.097
60577	9.05	0.952
60667	7.12	0.857
60712	6.9	1.311
60726	8.29	1.127
60775	9.88	1.617
60805	6.9	1.091
60850	8.17	2.136
60880	9.76	2.669
60883	8.1	1.388
60939	9.98	0.15
61017	9.26	1.852
61034	6.95	0.964
61064	6.85	1.376
61077	6.45	0.524
61111	7.04	0.549
61122	7.62	0.695
61197	9.77	0.872
61214	9.35	1.067
61295	9.41	2.681
61342	8.86	1.138
61350	6.43	0.689
61353	9.43	1.476
61557	9.09	2.387
61579	6.78	2.479
61593	9.89	0.894
61628	9.28	1.286
61684	9.44	0.876
61711	7.55	0.961
61748	6.45	1.957
61814	7.83	0.429
61847	6.41	1.412
61989	9.45	1.879
62005	6.87	0.323
62096	6.64	1.077
62122	8.54	0.766
62170	7.05	2.865
62232	7.34	2.195
62478	8.01	1.891
62516	7.04	3.165
62541	8.1	3.958
62576	9.97	3.777
62641	8.43	5.133
62691	6.72	0.532
62703	8.53	4.803
62781	7.46	0.697
62792	7.42	0.623
62799	6.81	2.153
62810	8.72	0.868
62825	8.95	3.354
62907	8.05	1.416
62991	6.83	0.566

63096	6.68	1.464
63111	8.93	0.703
63120	7.35	0.826
63227	9.59	1.451
63236	8.97	1.453
63238	7.5	0.685
63331	7.22	1.804
63350	7.11	1.195
63459	6.74	1.251
63575	6.47	0.533
63592	7.58	1.52
63606	6.61	0.535
63654	6.83	0.563
63677	6.59	1.464
63775	6.91	1.298
63783	8.03	1.06
64023	7.72	0.74
64055	9.25	1.181
64086	6.33	0.334
64090	7.21	0.699
64093	8.69	0.571
64108	7.26	1.811
64364	8.19	0.775
64375	8.88	2.637
64525	6.86	0.333
64648	7.15	1.978
64752	6.91	0.508
64789	9.68	1.195
64828	8.39	2.463
64883	7.06	0.482
64925	9.87	1.183
64936	7.53	0.922
64954	7.32	1.799
65089	9.75	0.771
65119	7.97	2.689
65203	7.12	1.925
65219	7.77	1.595
65229	7.91	1.2
65230	7.12	3.777
65304	8.1	0.675
65348	7.67	0.402
65405	8.14	1.359
65426	9.44	1.305
65463	8.42	0.943
65522	7.03	3.58
65551	8.79	1.455
65822	7.36	1.416
65933	9.27	1.486
65942	9.51	1.314
66004	7.84	1.776
66063	8.37	0.615
66068	7.77	0.984

66094	9.3	2.114
66171	6.39	2.392
66235	8.2	1.051
66247	6.43	2.978
66330	7.1	0.808
66349	8.83	0.566
66394	9.5	1.561
66400	8.44	6.211
66424	6.48	0.835
66447	8.08	0.899
66463	6.85	1.034
66566	8.62	0.775
66684	6.49	0.971
66722	8.25	1.935
66728	8.57	2.297
66756	6.44	0.473
66857	7.48	2.305
66932	9.75	1.804
67002	8.15	1.194
67004	7.87	1.986
67005	9.46	2.684
67028	9.85	1.788
67036	8.88	1.384
67099	8.64	0.606
67139	9.63	2.596
67256	6.46	0.976
67318	6.82	0.256
67321	6.87	1.144
67481	6.97	2.189
67523	9.02	2.22
67581	7.92	0.839
67775	9.39	1.314
67848	7.35	3.571
67865	6.63	0.837
67893	8.39	1.357
67910	9.22	0.785
68055	7.69	1.226
68196	6.94	1.632
68219	6.32	0.441
68234	7.71	1.189
68276	6.79	3.486
68304	6.95	1.57
68440	6.62	0.508
68454	7.32	0.622
68466	8.13	0.945
68478	9.59	3.489
68615	9.12	1.385
68713	6.76	0.376
68722	6.71	0.543
68752	8.16	1.626
68771	8.11	0.636
68781	9.37	0.772

68808	8.56	2.13
68888	9.25	1.758
68891	7.7	1.64
68953	7.31	0.437
68956	7.45	2.537
68989	6.92	0.374
69092	8.83	1.511
69213	8.51	1.928
69302	6.78	0.552
69361	7.88	1.077
69455	8.08	0.402
69489	8.33	1.209
69575	7.96	0.924
69602	6.45	0.652
69698	9.16	1.42
69818	9.84	2.711
69858	6.7	0.487
69859	6.85	1.352
69917	9.84	1.589
69933	7.37	1.087
69948	6.68	0.699
69958	9.75	2.594
69983	9.52	0.79
70006	7.18	0.59
70029	7.3	2.414
70041	7.77	1.075
70050	7.3	1.047
70089	7.25	0.934
70120	6.36	1.276
70121	6.91	1.178
70141	7.42	1.031
70149	8.72	0.381
70183	7.78	0.829
70220	8.16	1.948
70282	7.58	1.599
70287	7.38	1.388
70375	8.22	1.747
70384	8.49	3.432
70429	8.17	0.589
70441	7.09	0.782
70443	6.75	0.848
70483	9.25	2.167
70518	7.01	2.126
70549	6.43	0.992
70553	7.07	0.922
70652	7.4	0.627
70697	7.88	0.879
70716	8.72	1.335
70765	8.62	0.6
70809	6.64	1.607
70814	7.14	0.687
70819	7.7	0.876

70822	6.38	0.436
70892	9.35	2.441
70918	6.92	1.914
70963	7.55	1.381
71008	9.2	1.64
71140	8.02	0.958
71199	6.35	0.664
71222	6.55	1.094
71234	6.41	1.221
71235	7.53	2.028
71237	8.25	0.586
71321	8.53	0.919
71379	8.27	1.119
71573	7.61	3.323
71585	8.62	2.004
71614	7.88	0.568
71708	7.76	0.512
71820	8.15	0.695
71925	8.45	1.153
71973	6.5	0.838
72015	7.78	1.48
72158	9.93	0.894
72192	7.72	1.411
72250	9.59	4.077
72299	7.2	0.76
72307	8.89	1.188
72316	8.22	0.369
72321	7.11	0.652
72330	9.07	1.588
72350	7.37	1.16
72514	7.77	0.432
72534	7.28	1.154
72627	7.8	1.722
72644	7.37	0.584
72725	9.12	1.67
72768	6.99	1.829
72802	6.9	1.015
72895	9.16	1.415
73028	9.08	1.428
73043	7.96	0.873
73051	7.08	0.736
73070	9.24	1.649
73102	7.47	1.515
73116	8.3	2.303
73125	7.86	0.625
73145	9.0	0.652
73150	8.24	1.331
73156	7.34	1.799
73174	7.52	1.17
73189	8.21	1.914
73200	6.46	0.62
73206	6.92	1.067

73215	9.03	1.509
73216	6.31	0.31
73249	8.67	1.573
73284	9.32	7.052
73393	6.64	0.873
73450	6.87	0.639
73507	9.98	3.929
73559	8.3	4.126
73635	7.54	1.339
73645	7.82	1.106
73672	8.97	2.425
73706	7.03	2.5
73730	9.33	1.068
73741	7.1	0.596
73808	7.57	0.78
73913	7.08	0.494
73987	8.25	1.027
74115	7.68	1.265
74154	8.17	0.557
74272	6.47	3.441
74284	7.18	0.923
74319	6.77	0.953
74328	7.99	0.974
74359	8.21	1.279
74382	6.83	0.434
74458	9.15	1.063
74468	9.97	0.555
74529	7.46	0.531
74551	7.31	1.1
74553	9.29	2.396
74574	8.1	1.054
74592	8.36	1.557
74659	6.36	0.633
74743	7.07	0.774
74749	9.35	2.868
74810	7.6	1.497
74923	8.65	0.876
74973	7.45	0.22
75031	6.43	0.961
75163	7.55	0.966
75216	7.24	1.067
75230	7.33	2.112
75256	7.07	2.599
75402	6.88	0.454
75439	8.48	4.226
75476	6.82	1.203
75492	6.88	0.539
75514	8.58	0.522
75587	8.99	2.072
75613	6.56	1.188
75622	7.51	0.641
75688	6.83	0.575

75756	9.8	2.049
75770	6.81	3.042
75825	7.04	1.432
75875	7.91	0.974
75896	7.3	0.911
75906	6.85	0.492
75911	9.36	0.53
75919	7.09	3.162
75953	9.14	1.388
75965	8.84	0.581
76043	8.21	1.024
76080	6.66	0.796
76138	7.43	0.816
76176	6.86	0.399
76196	8.21	2.318
76269	7.97	0.678
76305	9.01	0.856
76369	6.45	0.521
76438	7.23	1.112
76485	8.74	0.988
76517	8.57	0.962
76579	7.72	2.026
76610	8.9	1.519
76632	7.97	1.833
76637	6.44	1.65
76699	9.61	2.238
76773	7.36	0.925
76815	8.33	0.758
76892	6.61	1.457
76994	8.36	0.608
77013	6.86	1.069
77115	9.2	1.24
77163	8.49	4.495
77283	8.54	1.479
77570	8.96	1.238
77652	7.69	1.465
77755	6.46	1.975
77785	7.89	2.544
77849	7.13	0.801
77933	6.64	1.355
77975	6.61	0.667
78017	7.01	1.819
78116	7.23	0.508
78121	6.72	0.866
78124	8.51	1.339
78134	7.58	1.366
78196	8.98	1.026
78376	7.39	0.991
78448	8.04	1.707
78520	7.54	0.395
78545	7.9	1.513
78570	8.02	0.914

78590	7.56	1.392
78654	8.4	0.831
78722	6.96	1.704
78761	7.04	1.625
78763	7.99	0.762
78829	8.49	0.949
78840	8.1	2.671
78909	6.63	0.78
78958	9.75	0.989
79047	9.18	1.893
79102	8.88	2.457
79125	8.13	2.31
79204	6.34	1.561
79208	9.58	2.873
79217	6.4	0.709
79289	7.72	0.808
79332	7.41	2.575
79436	6.62	0.744
79465	7.26	1.928
79493	6.82	0.938
79841	6.84	0.7
79998	9.15	1.673
80005	6.98	1.373
80051	7.89	1.85
80152	8.98	1.573
80184	7.24	0.712
80231	6.93	0.705
80247	6.33	2.301
80261	7.85	1.638
80335	7.36	0.839
80351	9.55	3.344
80375	8.9	3.438
80379	7.59	1.338
80406	7.13	0.952
80409	6.47	0.51
80427	8.63	1.246
80457	7.25	0.798
80527	8.81	1.884
80641	6.49	2.058
80809	9.0	1.862
80814	9.53	1.585
80952	7.74	0.651
80971	6.35	1.497
80985	7.66	0.743
80991	9.72	3.235
80994	8.75	1.092
81115	9.32	0.952
81189	6.65	0.503
81230	6.55	0.991
81259	6.78	1.746
81320	6.92	1.263
81345	7.69	0.956

81401	6.59	1.136
81430	6.88	0.607
81440	7.92	4.13
81627	7.34	0.849
81630	6.56	0.435
81673	8.47	1.424
81717	7.99	1.631
81757	8.26	1.966
81940	6.73	0.621
82078	7.94	1.726
82104	7.69	0.49
82147	9.16	2.844
82162	6.62	3.973
82240	7.81	0.579
82253	8.7	1.534
82308	8.26	0.909
82415	6.73	0.824
82449	7.48	0.916
82480	9.45	4.92
82518	7.07	0.927
82556	6.78	0.546
82702	8.08	1.613
82806	7.27	3.489
82864	9.43	1.966
82884	7.06	1.527
82891	6.54	1.452
83128	8.26	1.346
83168	7.14	1.635
83210	6.36	0.424
83285	8.07	1.54
83342	8.6	2.459
83383	8.21	0.951
83384	7.92	1.254
83593	6.94	2.286
83640	6.38	1.131
83665	8.52	1.246
83724	7.04	0.785
83816	6.82	2.21
83876	8.9	1.689
83946	9.4	0.671
84036	8.57	1.939
84146	7.53	0.497
84273	7.0	0.666
84384	8.69	0.785
84432	6.39	0.479
84480	7.37	0.6
84495	6.95	1.175
84631	8.12	2.868
84644	6.9	0.62
84711	6.88	1.051
84732	8.12	1.141
84878	6.91	0.886

85021	8.81	1.041
85067	8.25	0.641
85070	6.55	0.166
85146	6.69	0.75
85185	7.55	4.214
85279	7.12	0.88
85290	9.58	4.214
85317	9.15	2.322
85368	6.76	1.37
85379	8.98	4.685
85432	7.28	1.019
85759	9.62	1.197
85821	7.0	0.425
85981	9.65	1.338
85998	9.54	3.718
86009	6.97	1.062
86012	7.85	1.131
86041	8.38	1.002
86118	8.5	3.627
86148	7.15	0.863
86215	8.88	0.88
86306	8.87	1.248
86422	8.74	1.416
86443	8.35	0.266
86442	6.42	0.621
86446	7.49	1.559
86514	6.82	0.618
86546	7.76	2.072
86627	8.59	1.957
86648	6.72	0.95
86660	7.43	1.124
86679	8.86	2.784
86782	7.9	3.89
86806	7.29	0.54
86809	6.93	3.664
86908	8.23	0.794
86982	8.39	0.826
87021	6.61	1.184
87044	8.86	4.397
87045	7.6	2.295
87069	7.54	1.785
87146	7.26	1.449
87210	9.01	2.488
87297	6.36	1.776
87352	8.11	1.539
87405	7.34	1.826
87480	6.61	1.211
87507	7.93	0.56
87531	8.56	1.054
87610	7.69	1.07
87766	6.79	1.112
87825	8.66	1.355

87910	9.36	2.908
87976	7.11	0.434
88056	7.71	0.672
88132	6.34	1.828
88148	8.26	2.924
88283	6.72	0.894
88373	6.63	0.954
88379	7.43	1.244
88423	6.36	0.852
88429	8.01	2.053
88436	9.66	1.318
88547	8.3	0.708
88555	8.74	1.19
88664	7.64	0.955
88834	9.55	0.945
88841	7.24	2.247
88880	7.11	0.43
88975	6.79	1.313
88983	9.5	0.895
88997	8.05	0.622
89033	7.57	0.554
89070	7.34	1.424
89104	7.11	1.793
89171	7.19	1.21
89265	6.53	0.368
89277	8.52	1.628
89342	9.8	1.374
89368	6.55	1.566
89565	7.81	1.322
89572	8.12	0.621
89612	7.05	0.852
89819	6.88	0.4
90031	6.73	1.841
90052	6.81	3.289
90070	6.94	1.094
90105	7.45	1.471
90146	9.59	2.767
90187	9.81	1.87
90256	8.41	2.461
90262	6.66	0.586
90342	7.63	3.908
90429	6.9	0.428
90453	6.55	0.463
90557	9.17	1.048
90635	6.9	0.867
90716	7.08	0.802
90758	6.35	0.599
90762	7.88	4.289
90780	7.37	3.006
90929	7.49	0.67
91041	7.14	2.208
91052	6.39	1.384

91088	7.32	1.053
91144	6.74	0.694
91166	7.67	0.857
91242	8.79	0.554
91274	6.43	0.57
91315	7.66	3.332
91319	6.88	0.581
91378	6.41	0.644
91467	6.64	0.516
91534	6.54	0.882
91552	6.51	2.754
91575	8.74	1.256
91589	7.39	1.504
91670	8.5	0.614
91899	6.9	0.78
92015	7.26	1.368
92047	9.7	2.31
92143	9.13	1.498
92219	6.92	1.768
92268	6.42	1.957
92336	8.89	1.556
92346	9.6	1.64
92359	7.33	1.381
92544	8.68	0.689
92545	7.45	0.745
92583	7.75	0.489
92659	7.1	0.62
92672	6.65	1.646
92738	6.4	1.213
92954	7.09	0.992
92978	7.58	1.333
93068	8.59	2.101
93161	6.43	1.115
93470	9.25	2.151
93630	6.31	0.563
93640	8.33	0.732
93713	9.34	4.553
93775	7.25	0.728
93845	9.82	4.176
93862	9.33	2.744
93915	6.89	1.316
93965	9.3	1.025
94174	9.1	1.26
94177	6.67	1.577
94280	6.92	2.862
94288	6.5	0.487
94403	8.8	0.967
94510	7.39	1.325
94604	6.63	2.276
94690	8.03	1.096
94742	7.01	0.583
94921	8.87	1.925

94924	8.15	1.112
94974	7.25	2.403
94975	7.55	1.923
95091	6.92	1.15
95551	7.47	0.368
95574	7.82	1.689
95656	9.02	3.584
95671	8.42	0.708
95992	6.36	0.775
96010	6.72	0.778
96098	6.76	0.708
96141	8.05	6.402
96161	6.77	0.758
96178	7.47	4.111
96189	7.66	1.611
96195	7.76	2.068
96201	7.22	0.792
96234	7.49	3.847
96252	7.1	1.464
96328	8.23	0.949
96583	8.43	0.507
96603	9.96	1.714
96610	9.13	1.467
96718	9.32	1.173
96724	6.88	3.422
96729	8.03	2.146
96734	9.72	2.112
96749	7.73	0.635
96771	8.33	3.124
96777	8.98	1.335
96779	6.51	0.336
96848	7.13	0.611
96896	6.54	0.885
96910	6.76	0.402
97122	7.37	3.47
97134	7.27	0.793
97155	7.1	0.666
97367	8.16	0.943
97441	6.43	0.991
97502	7.08	0.703
97510	6.4	1.108
97511	7.84	0.978
97697	8.58	2.902
97749	9.62	4.483
97777	6.76	0.737
97892	9.61	2.726
97980	9.45	5.489
98028	6.93	1.237
98040	9.5	0.756
98144	6.83	0.391
98146	9.31	1.7
98191	9.38	1.267

98308	7.58	2.57
98342	7.39	1.445
98357	6.65	1.018
98361	7.3	0.626
98512	9.07	6.569
98643	8.28	2.058
98712	6.51	0.542
98733	6.61	1.057
98756	7.53	1.308
98924	6.74	0.249
98930	7.49	0.78
98951	6.37	1.135
99013	7.76	0.766
99054	7.94	0.922
99055	7.51	1.333
99125	8.76	0.905
99147	8.98	0.792
99282	6.59	0.178
99371	6.98	1.44
99426	6.94	0.854
99453	7.21	2.181
99650	7.87	0.709
99807	7.26	1.068
99860	8.73	1.166
99869	7.58	0.847
99978	6.76	0.492
99984	7.64	1.24
100014	7.49	1.279
100121	9.99	1.789
100128	8.3	1.689
100147	7.04	0.889
100162	7.75	0.953
100201	8.21	2.9
100206	7.43	0.832
100237	7.06	0.899
100253	7.51	1.617
100333	6.48	0.494
100349	6.74	1.138
100365	8.23	1.653
100376	9.53	0.316
100416	6.78	0.64
100481	6.69	0.813
100491	8.8	1.532
100495	6.64	0.568
100505	6.94	0.397
100547	8.47	0.937
100591	8.8	6.036
100594	8.18	1.061
100617	6.37	1.072
100636	7.02	0.652
100678	6.72	0.745
100696	6.99	0.894

100709	7.13	0.845
100716	6.89	1.549
100825	7.13	0.543
100845	7.93	0.604
100930	7.11	0.842
101189	9.26	0.721
101196	7.54	0.669
101213	9.43	2.862
101255	9.24	0.977
101294	7.37	0.664
101309	6.48	0.706
101384	9.31	1.935
101387	6.93	0.707
101397	8.64	0.714
101449	8.5	0.685
101460	8.18	1.003
101473	8.13	2.189
101492	7.67	1.56
101580	6.96	0.868
101646	7.46	0.756
101671	8.71	1.776
101758	7.05	0.56
101771	8.02	1.313
101823	7.62	1.731
101975	7.5	0.606
102030	7.85	0.858
102070	7.52	0.492
102114	6.32	1.799
102144	9.51	1.283
102165	8.17	0.687
102183	6.84	1.589
102208	9.11	3.567
102310	7.57	0.558
102324	6.96	0.559
102331	9.07	1.184
102384	7.58	1.939
102436	6.48	0.235
102565	7.35	0.596
102584	8.45	1.583
102627	8.85	1.295
102631	6.98	1.95
102694	7.6	0.95
102697	7.06	0.833
102876	7.03	2.502
102880	8.67	0.889
102946	6.55	0.776
102982	8.57	1.154
103043	7.0	0.822
103085	8.67	1.069
103105	8.48	1.495
103116	7.95	2.394
103164	9.92	2.472

103197	6.37	0.281
103335	6.78	0.978
103377	7.69	0.807
103400	7.2	0.383
103405	7.69	1.335
103435	6.65	0.939
103453	6.4	0.629
103468	9.35	1.488
103508	6.41	0.524
103529	9.72	0.833
103561	6.93	0.359
103616	7.58	1.718
103720	7.56	1.395
103797	6.88	0.411
103878	6.64	0.388
103924	6.84	0.606
103979	8.87	1.152
104014	6.68	0.657
104254	7.22	0.801
104272	7.5	1.684
104313	8.39	1.334
104317	9.85	1.053
104326	6.53	0.997
104430	9.75	2.087
104501	8.01	1.858
104538	6.81	2.805
104588	7.75	0.736
104615	9.36	1.456
104629	7.07	0.302
104670	8.04	1.031
104717	8.85	1.525
104743	8.5	1.046
104756	6.37	3.165
104793	7.07	0.463
104808	8.05	0.431
104810	7.19	1.1
104847	8.05	0.801
104978	8.22	5.474
105013	8.11	0.254
105093	7.47	0.459
105161	9.58	1.755
105169	8.61	1.611
105237	7.02	1.31
105365	6.34	0.263
105526	7.12	1.818
105570	9.06	7.19
105608	8.76	1.323
105674	6.62	0.813
105696	7.04	2.984
105779	6.57	1.629
105880	6.49	0.743
106037	7.53	1.119

106067	8.65	1.799
106148	6.58	0.535
106163	8.38	0.965
106184	8.15	2.625
106223	6.7	0.643
106258	9.39	1.811
106259	9.0	1.447
106371	6.42	0.426
106424	9.05	1.946
106464	9.05	0.896
106553	8.5	0.883
106597	6.38	0.371
106755	8.99	3.522
106758	8.18	2.539
106871	7.25	0.599
106953	7.01	0.404
106969	9.65	1.874
106981	7.61	1.464
107063	8.13	1.23
107083	6.53	0.631
107084	6.79	1.258
107097	7.16	3.101
107127	6.72	0.818
107232	7.97	5.54
107238	9.06	3.426
107268	8.86	1.31
107311	6.8	0.972
107324	9.08	0.973
107336	9.24	1.821
107386	7.54	0.761
107410	9.09	1.06
107498	7.61	1.175
107531	7.76	2.181
107555	6.62	1.808
107575	6.98	4.289
107606	6.31	0.791
107608	9.63	7.655
107610	8.17	1.284
107627	7.05	0.874
107683	9.94	1.504
107697	9.47	1.062
107724	8.65	1.237
107750	6.44	3.209
107766	7.95	1.068
108024	7.46	0.914
108084	9.16	2.34
108086	6.9	0.549
108180	6.49	0.852
108312	7.31	0.411
108327	6.51	1.617
108339	7.41	4.79
108340	6.83	1.222

108401	7.18	0.844
108414	7.59	0.952
108415	6.47	1.204
108482	7.33	0.491
108485	8.13	0.499
108622	6.99	0.982
108746	7.77	1.057
108786	7.03	0.282
108830	6.83	0.405
108856	6.48	0.788
108862	6.4	0.89
108976	8.19	1.38
109145	8.32	1.04
109167	7.86	0.582
109234	7.94	0.522
109251	6.52	0.962
109257	7.35	0.543
109277	7.02	0.887
109412	9.24	2.475
109418	7.94	1.641
109442	9.0	2.185
109493	7.8	3.366
109523	8.35	0.628
109546	6.63	0.865
109682	6.41	0.845
109755	8.99	1.201
109775	6.89	0.791
109819	8.88	0.749
109893	6.34	0.627
109939	8.25	2.452
109952	9.6	1.226
109969	6.99	0.472
109992	8.51	1.509
110036	7.63	1.559
110121	7.25	0.685
110152	6.88	0.848
110203	7.6	0.708
110372	6.35	1.162
110378	6.64	1.059
110383	7.4	2.091
110390	6.55	0.51
110422	9.95	0.908
110434	6.93	1.419
110465	9.78	1.523
110479	7.69	0.754
110507	7.25	0.546
110517	6.76	0.45
110522	8.96	1.818
110578	7.69	3.098
110584	6.73	0.712
110624	8.89	1.48
110746	6.59	2.041

110792	8.09	0.621
110829	6.52	0.457
110842	7.81	1.876
110982	7.4	0.606
111018	6.61	1.245
111032	8.61	1.119
111041	8.69	1.798
111127	8.64	1.3
111132	6.36	0.4
111142	9.43	0.957
111167	7.37	0.957
111191	8.0	3.107
111212	6.91	0.549
111307	6.83	0.857
111392	8.67	0.583
111411	8.4	1.359
111527	7.53	0.842
111583	7.39	0.683
111601	8.68	1.948
111619	6.72	0.783
111684	9.2	0.929
111789	6.45	1.02
111809	7.5	4.077
111837	6.4	0.314
112003	6.38	0.435
112071	6.64	0.682
112079	8.93	0.957
112099	7.77	1.249
112140	9.87	1.218
112179	8.87	1.706
112258	7.03	0.383
112281	9.88	1.411
112355	9.99	3.136
112500	6.92	1.9
112502	7.56	0.831
112518	6.74	1.437
112525	7.79	2.381
112582	6.61	0.564
112671	7.09	0.733
112674	6.78	0.611
112694	9.98	2.261
112705	9.13	0.793
112725	9.81	1.725
112754	6.32	0.374
112769	8.01	0.723
112775	7.25	0.703
112883	7.57	1.468
112900	7.26	1.352
113028	9.19	2.074
113039	7.73	0.987
113211	7.45	1.241
113300	7.04	0.355

113351	6.76	1.895
113391	7.79	0.517
113487	6.31	1.143
113564	7.49	1.473
113606	7.48	0.662
113649	7.24	0.77
113656	6.34	0.605
113664	7.26	2.511
113665	7.16	1.882
113673	9.97	2.945
113672	7.62	0.615
113788	9.33	8.886
113960	7.19	0.712
113967	9.72	1.741
114019	6.73	0.912
114031	8.09	1.302
114051	9.23	0.764
114164	8.26	0.886
114182	6.66	1.136
114184	8.85	1.07
114185	6.52	0.483
114187	6.64	2.514
114194	6.59	1.126
114262	7.25	0.773
114351	7.33	0.5
114358	6.95	0.891
114371	9.45	1.889
114547	7.46	0.353
114700	7.38	1.736
114705	9.06	0.81
114714	7.94	1.975
114745	7.16	2.986
114752	9.25	1.272
114774	7.48	0.965
114802	7.63	1.18
114804	7.7	1.062
114991	6.37	0.747
115015	8.37	2.39
115034	7.67	0.633
115065	6.9	4.478
115110	8.47	0.872
115120	7.96	2.589
115128	7.32	1.54
115209	6.4	0.461
115238	6.85	0.6
115255	7.97	1.102
115263	8.73	0.763
115316	7.07	1.803
115326	6.56	0.43
115394	8.03	0.341
115428	7.54	1.07
115627	7.34	0.938

115646	6.52	1.995
115667	6.76	1.058
115698	6.54	0.872
115711	7.38	0.636
115742	8.46	1.916
115796	9.61	1.308
115806	8.89	2.445
115820	7.22	1.262
115858	8.29	1.762
115908	8.58	2.654
115927	6.89	0.462
116065	7.37	0.904
116078	9.12	0.655
116088	6.96	0.538
116119	6.78	1.997
116204	6.51	1.649
116205	6.71	0.567
116225	7.58	1.226
116233	8.83	0.855
116245	8.55	1.38
116265	6.58	1.953
116321	8.1	1.21
116434	8.45	1.198
116592	8.97	2.314
116695	6.69	0.882
116715	6.85	1.009
116761	8.68	1.306
116835	6.49	0.752
116860	8.19	0.691
116998	6.55	1.266
117092	7.35	0.771
117127	7.24	0.586
117129	6.56	1.394
117208	7.21	0.507
117214	7.23	0.509
117231	8.12	0.724
117345	7.45	0.763
117346	6.34	0.375
117352	8.04	1.086
117442	7.29	0.619
117479	8.88	1.184
117510	8.24	2.234
117535	6.93	0.798
117746	7.87	0.945
117754	7.53	0.968
117774	7.06	2.124
117838	7.68	0.326
117856	6.47	0.85
117892	8.18	0.708
117897	7.02	0.658
117962	7.51	1.301
117998	7.32	0.628

118007	6.86	1.884
118177	7.55	2.535
118198	6.53	0.773
118241	9.44	0.415
118253	7.85	0.62
118257	7.36	0.887
118275	8.11	0.791

acknowledge

My deepest appreciation goes to Prof. Hirokazu Kataza who provided helpful comments and suggestions as my supervisor. I would also particularly like to thank Dr. Takehiko Wada whose opinions and information have helped me very much throughout the production of this study. I thank Dr. Shuji Matsuura, Takao Nakagawa, Mitsunobu Kawada, Satoshi Takita, and the other members of Laboratory of Infrared Astrophysics/ Institute of Space and Astronautical Science for supporting my work. I also appreciate Dr. Yasuo Doi for giving me an opportunity to make this work. Finally, I wish to thank my family and friends for their support.

References

Akeson, R. L. et al. 2009, A\&A, 474, 653
Andrews, S. M., \& Williams, J. P. 2007, ApJ, 671, 1800
Arimatsu, K., Izumiura, H., Ueta, T., Yamamura, I., Onaka, T. 2011, ApJ, 729, 19
Arimatsu, K., et al. 2011, PASP, 123, 906
Arimatsu, K., et al. 2012, Proceedings of the International Astronomical Union, IAU Symposium, 284, 210

Arimatsu, K., et al. 2014, PASJ, 66, 47
Aumann, H. H., Beichman, C. A., Gillett, F. C. et al., 1984, ApJ, 278, L23
Backman, D. E., Dasgupta. A., \& Stencel, R. E. 1995, ApJ, 450, L35
Beichman, C. A., Neugebauer, G., Habing, H. J., Clegg, P. E., \& Chester, T. J. 1988, Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Volume 1: Explanatory Supplement (Washington, DC: US GPO)

Ben-Jaffel, L., \& Ratkiewicz, R. 2012, A\&A, 546, 78
Belyaev M., \& Rafikov R. 2010, ApJ, 723, 1718
Bernstein, G. M. et al. AJ, 128, 1364
Bournaud, F. et al. 2012, ApJ, 757, 19
Boyajian, T. S., et al., 2013, ApJ, 771, 40
Brown, M. E., Trujillo, C., \& Rabinowitz, D. 2004, ApJ, 617, 645
Brown, M. 2008, In The Solar System Beyond Neptune Barucci, M.A., Boehnhardt,
H., Cruikshank, D.P., Morbidelli, A. Ed, 335

Cantalupo, C., Borrill, J. D., Jaffe, A. H., et al. 2010, ApJS, 187, 212
Carson J. et al. 2012, ApJ, 763, L32
Cassan, A. et al. 2012, Nature, 481, 167
Cohen, M., Walker, R. G., Carter, B., Hammersley, P., Kidger, M., \& Noguchi, K. 1999, AJ, 117, 1864

Doi, Y., et al. 2009, Astronomical Society of the Pacific Conference Series, 418, 387
Doi, Y., et al. 2012, PKAS, 27, 111
Dones, L., Weissman, P. R., Levison, H. F., and Duncan, M. J. 2004, In Michel C. Festou; H. Uwe Keller; Harold A. Weaver. Comets II. University of Arizona Press.,

Draine, B. T. \& Li, A. 2007, ApJ, 657, 810
Draine, B. T. 2010, Physics of the Interstellar and Intergalactic Medium Princeton, Princeton Univ. Press

Duncan M., Quinn T., and Tremaine S. 1987, AJ, 94, 1330
Duncan M., Quinn T., \& Tremaine S. 1988, ApJ, 328, L69
Duncan, M. J., \& Levison, H. F. 1997, Science, 276, 1670
Duncan M. J., Levison H. F., and Dones L. In Michel C. Festou; H. Uwe Keller; Harold A. Weaver. Comets II. University of Arizona Press., 153

Eggl, S., Pilat-Lohinger, E., Funk, B., Georgakarakos, N., Haghighipour, N. 2013, MNRAS, 428, 3104

Eiroa, C., et al. 2011, A\&A, 536, L4
Eiroa, C., et al. 2013, A\&A, 536, id. 11
Fernández J. A. 1980 MNRAS, 192, 481
Fernández J. A., Gallardo, T., \& Brunini, A. 2004, Icarus, 172, 372
Frisch, P. C., Dorschner, J. M., Geiss, J., et al. 1999, ApJ, 525, 492
Frisch, P. C., et al. 2009, Space Sci. Rev., 146, 235

Giard, M., Montier, L., Pointecouteau, E., \& Simmat, E. 2008, A\&A, 490, 547
Ginestet, N., Carquillat, J. M., Jaschek, C., \& Jaschek, M. 1997, A\&AS, 123, 135
Gomes, R. S., Fern Ndez, J. A., Gallardo, T., \& Brunini, A. 2008, In The Solar System Beyond Neptune Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A. Ed, 259

Gorjian, V., Wright, E. L., \& Chary, R. R. 2000, ApJ, 536, 550
Gray, R. O., Napier, M. G., Winkler, L. I. 2001, AJ, 121, 2148
Gray, R. O. et al., 2003, AJ, 126, 2048
Gray, R. O. et al., 2006, AJ, 132, 161
Greenwood, J. P., Itoh S., Sakamoto, N., Warren, P., Taylor, L., \& Yurimoto, H. 2011, Nature Geoscience, 4, 79

Harrington, R. S. 1985, Icarus, 61, 60
Hayashi, C. 1981, Prog. Theor. Phys. Suppl., 70, 35
Heisler, J., \& Tremaine, S. 1986, Icarus, 65, 13
Helmut, A. A., \& Nidia, M. I. 1995, ApJS, 99, 135
Helmut, A. A. 2008, ApJS, 176, 216
Higuchi, A., Kokubo, E., \& Mukai, T. 2006, AJ, 131, 1119
Hills J. G. 1981, AJ, 86, 1730
Holmberg J. \& Flynn C. 2000, MNRAS, 313, 209
Houk, N. 1982, Michigan Catalog of Two-dimensional Spectral Types for HD Stars, Vol. 3 (Ann Arbor: Univ. Michigan Dept. Astron.)

Houk, N., \& Smith-Moore, M. 1988, Michigan Catalog of Two-dimensional Spectral Types for HD Stars, Vol. 4 (Ann Arbor: Univ. Michigan Dept. Astron.)

Howard, A. W. 2013, Science, 340, 572
Howe, A. R., Rafikov, R. R. 2014, ApJ, 781, id 52
Ibar E. et al., 2010, MNRAS, 409, 38

Jauzac, M. et al. 2011, A\&A, 525, 52
Jewitt, D. \& Luu, J. 1993, Nature, 362, 730
Jewitt, D. C. \& Delsanti A. 2006, In Solar System Update : Topical and Timely Reviews in Solar System Sciences. Springer-Praxis Ed, 267

Joss P. C. 1973, A\&A, 25, 271
Kalas, P. et al. 2008. Science, 322, 1345
Kaneda, H., Okamura, Y., Nakagawa, T., \& Shibai, H. 2002, Adv. Space Res., 30, 2105

Kashiwagi, T., Yahata, T., \& Suto, Y. et al. 2012, PASJ, 65, 12
Kawada, M. et al. 2007, PASJ, 59, 389
Kenyon, S. J., Bromley, B. C., O'Brien, D. P., \& Davis, D. R., 2008, In The Solar System Beyond Neptune Barucci, M.A., Boehnhardt, H., Cruikshank, D.P., Morbidelli, A. Ed, 293

Kerschbaum, F., et al. 2010, A\&A, 48, L140
Kurucz, R. L. 1992, IAU Symposium, 149, 225
Lallement, R. 1998, in IAU Colloq. 166, The Local Bubble and Beyond, ed. D. Breitschwerdt, M. J. Freyberg, \& J. Truemper (New York: Springer), 19

Landgraf, M., Baggaley, W. J., Grun, E., Kruger, H., \& Linkert, G. 2000, J. Geophys. Res., 105, 10343

Laor, A., \& Draine, B.T. 1993, ApJ, 402, 2, 441
Lejeune, T., \& Schaerer, D. 2001, A\&A, 366, 538
Levison H. F., Dones L., \& Duncan M. J. 2001, AJ, 121, 2253
Levison, H.F., Duncan, M.J., Brasser, R., \& Kaufmann, D.E. 2010, Science 329, 187
Liu, Q., Tinggui, W., Peng, J. 2014, AJ, 148, 3
Malagnini, M. L., \& Morossi, C. 1990, A\&AS, 85, 1015
Mannings, V., Sargent, A., I. 1997, ApJ, 490, 792

Mannings V, Barlow M. J. 1998, ApJ, 497, 330
Marios, C. et al. 2008, Science, 322, 1348
Marshall, J. P., et al. 2014, A\&A, 565, id.A15
Mathis, J. S., Mezger, P. G., and Panagia, N. 1983, A\&A, 128, 212
Matsuura, S., et al. 2011, ApJ, 737, 2
Ménard, B., Kilbinger, M., Scranton, R. 2010, MNRAS, 406, 1815
Morales, F. Y., Rieke, G. H., Werner, M. W., et al. 2011, ApJ, 730, L29
Murakami, H. et al. 2007, PASJ, 59, S369
Neugebauer, G., et al. 1984, ApJ, 278, L1
Nakagawa, T., Matsuhara, H., \& Kawakatsu, Y. 2012, Proc. SPIE, 8442
Oort, J. H. 1950, Bull. Astron. Inst. Neth. 11, 91
Oudmaijer, R. D., van der Veen, W. E. C. J., Waters, L. B. F. M., et al. 1992, A\&AS, 96, 625

Perryman, M. A. C., et al., 1997, A\&A, 23, L49
Petit, J.-M., Kavelaars, J. J., Gladman, B. J., et al. 2011, AJ, 142, 131
Phillips, N. M., Greaves, J. S., Dent, W. R. F., Matthews, B. C., Holland, W. S., Wyatt, M. C., \& Sibthorpe, B. 2010, MNRAS, 403, 1089

Pilbratt, G. L., Riedinger, J. R., Passvogel, T., et al. 2010, A\&A, 518, L1
Poglitsch, A., Waelkens, C., Geis, N., et al. 2010, A\&A, 518, L2
PRISM Collaboration, 2013, arXiv:1310.1554
Robrade, J., \& Schmitt, J. H. M. M. 2011, A\&A, 531, 58
Roussel, H. 2013, PASP, 125, 1126
Schlichting, H. E., Ofek, E. O., Wenz, M., et al. 2009, Nature, 462, 895
Schlichting, H. E., Ofek, E. O., Sari, R., et al. 2012, ApJ, 761, 150
Schwamb, M., Brown, M., \& Rabinowitz, D. 2009, ApJ, 694, L45
Schwamb, M., Brown, M., Rabinowitz, D., \& Ragozzine, D. 2010, ApJ, 720, 1691

Seifahrt, A. et al., 2010, A\&A, 524, 11
Shirahata, M. et al. 2009, PASJ, 61, 737
Shirahata, M., et al. 2004, Proc. SPIE, 5487, 369
Smith, B. A., \& Terrile, R. J. 1984. Science 226, 1421
Spitzer, L. 1978, in Physical Processes in the Interstellar Medium, Wiley-Interscience
Stansberry, J. A., et al. 2007, PASP, 119, 1038
Stern, S. A. 1995, AJ, 110, 856
Stern, S. A. 1996, A\&A, 310, 999
Stern, S. A. 2003, Nature, 424, 639
Stern S. A., Stocke, J., Weissman P. R. 1991, Icarus, 91, 65
Su K. Y. L., et al., 2006, ApJ, 653, 675
Suzuki, T., Kaneda, H., Matsuura, S., et al. 2008, PASP, 120, 895
Tanner, A., Beichman, C., Bryden, G., Lisse, C., \& Lawler, S. 2009, ApJ,704, 109
Thompson, M. A., et al. 2010. A\&A, 518, L34
Thureau, N. D., et al. 2014, MNRAS, 445, 2558
Trujillo, C., \& Brown, M. 2003, Earth Moon Planet, 92, 99
van Belle, G. T. \& von Braun, K. 2009, ApJ, 694, 1085
Verdugo, E., Yamamura, I., \& Pearson, C. 2007
AKARI FIS Data User Manual Version 1.3
http://www.ir.isas.jaxa.jp/AKARI/Observation/IDUM/FIS_IDUM_1.3.pdf
Vicente, S. M., \& Alves, J. 2005, A\&A, 441, 195
Vieira, S. L. A., Corradi, W. J. B., Alencar, S. H. P., Mendes, L. T. S., Torres, C. A. O., Quast, G. R., Guimar es, M. M., \& da Silva, L. 2003, AJ, 131, 1163

Volk, K. \& Malhotra, R. 2008, ApJ, 687, 714
Weidenschilling S. 2003, In Michel C. Festou; H. Uwe Keller; Harold A. Weaver. Comets II. University of Arizona Press.,

Weingartner, J. C., \& Draine, B. T. 2001, ApJ, 548, 296
Weissman P. R. 1996, ASP Conference Series 107, 265
Werner M. W., et al. 2004. ApJS, 154,1
Woody, D., et al. 2012, Proc. SPIE, 8444
Wright, E. L., et al. 2010, AJ, 140, 1868
Wyatt, M. C. 2008, Annu. Rev. Astronomy and Astrophysics, 46, 339
Yamamoto, S., \& Mukai, T. 1998, Earth Planets Space, 50, 531
Yamamura, I., et al. 2009, Astronomical Society of the Pacific Conference Series, 418, 3

Yamamura, I., Makiuti, S., Ikeda, N., Fukuda, Y., Oyabu, S., Koga, T. \& White, G. J. 2010

AKARI/FIS All-Sky Survey Bright Source Catalogue Version 1.0 Release Note
http://irsa.ipac.caltech.edu/data/AKARI/documentation/AKARI-FIS
_BSC_V1_RN.pdf
Zhang, Z.-W. et al. 2013, AJ, 146, 14
Zorec, J., et al., 2009, A\&A, 501, 297

[^0]: ${ }^{* 1}$ Uncertainties are derived by taking the error-bars of the RBPs of the PSFs (see Figure 3.2).

[^1]: ${ }^{* 1}$ Uncertainties correspond to the deviations of the values measured by aperture photometry with the same aperture radius in four selected areas in the background annulus.

[^2]: ${ }^{* 1}$ Uncertainties correspond to the absolute calibration error of the 2MASS all-sky survey $(1.7 \%, 2.0 \%$, and 1.9% for the J, H, and Ks
 bands; from The 2MASS All-Sky Data Release and Extended Mission Ancillary Products)
 *2 Uncertainties correspond to the absolute calibration error of the WISE data (10% for the band 3 and 4; from Explanatory Supplement
 to the WISE All-Sky Data Release Products)
 *3 Uncertainties correspond to the square root of the square sum of the flux deviations measured from a set of the blank stack images and the uncertainties of the flux calibration factors aperture correction factors (see text)

