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Abstract

A number of chemical reaction mechanisms involving nonadiabatic interaction as an essen-
tial factor are presented. We investigate those mechanisms by using nonadiabatic electron
wavepacket dynamics theory. Here the electronic wavepacket is explicitly time-dependent to
go beyond the Born—Oppenheimer approximation (adiabatic approximation between nuclear
and electronic motions). We are especially concerned with low energy dynamics, where the
total energy allocated to the nuclear motion toward the potential barrier is as much as its height.
In this case, nonadiabatic interaction is rather crucial than unignorable. In the first half of the
present thesis, we discuss explicit path-branching induced by nonadiabatic interaction. We de-
velop an algorithm based on the so-called path-branching representation (PBR) to apply it to the
low energy dynamics. Through the dynamics calculations in a one-dimensional model system,
we propose two mechanisms, namely, a tunneling-like effect and a friction-like effect induced
by nonadiabatic interaction. Full-quantum calculations and multi-dimensional implementation
are also performed to obtain results parallel to the one-dimensional ones.

In the second half, we demonstrate photodynamics of X-MnOH, to propose a mechanism
of coupled proton-electron transfer in excited states resulting in charge separation. We are
stimulated to examine this system by a Mn cluster embedded in the photosystem II (PSII).
The Mn cluster performs photo-driven oxidation of water molecules to provide protons and
electrons, which is known to be an early process of photosynthesis. In the proposed mechanism,
the proton and electron take mutually different pathways to reach spatially different places
on the accepter to induce charge separation. The roles of Ca in PSII and the relation to the
Mn cluster are also presented. Through those nonadiabatic electron wavepacket dynamics, we
provide further insight into chemical reactions that is beyond the scope of the standard method

based on the Born—Oppenheimer approximation.
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Chapter 1

General introduction

The Born—Oppenheimer approximation [1] (adiabatic approximation between the nuclear and
electronic motions) is a basis of all molecular quantum mechanics. [2] The large mass of a
nucleus compared to that of an electron allows us to approximately separate the electronic and
nuclear motions. This separation vastly simplifies quantum treatment of molecules, where we

just solve an eigenvalue problem with respect to an electronic Hamiltonian H(D (r;R) as
H(r;R)®,(r;R) = Vo (R)D,(r;R). (1.1)

Such a time-independent electronic state theory is widely recognized as a robust framework of
molecular science, in which the obtained V{, (the ground electronic state) form Eq. (1.1) is used

as a potential function of the nuclear configuration.

However, necessity of nonadiabatic treatment of a molecule arises in some exotic cases.
Laser chemistry requires such a treatment of electrons. [3] The rapid advances of ultrashort
pulse lasers have reached pulse width shorter than 100 attoseconds, [4-6] which is comparable
to the time scale of electron dynamics. A molecule with highly (quasi) degenerate electronic
states is also of interest. [7] In this case, isolated molecular electronic states become almost

meaningless. [8]

A chemical reaction requires the nonadiabatic treatment as well, if the relevant shift of
nuclear configuration modifies electronic states in quality. In such a chemical reaction, nonadi-
abatic electron dynamics is inevitable for appropriate description of molecular dynamics. This
is the situation of the main interest in the present thesis. Typical examples can be found in

a forbidden reaction of the Woodward-Hoffman symmetry conservation, [9] fast relaxation of
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excited states through conical intersections, [2] and a coupled electron and proton transfer reac-
tion. [10, 11] In order to tackle such nonadiabatic problems, methodology should be developed
to take in mutually coupled multiple adiabatic states to express nonadiabatic transition. In
addition, it should be multi-dimensional so as to consider the interesting nonadiabatic effects
including those of a conical intersection [2] and a geometric phase. [12] Thus the problem is
essentially multi-state and multi-dimensional, and the involved electronic states must be time-

dependent.

Technically speaking, a full-quantum approach to such a multi-state and multi-dimensional
molecular system is too difficult in practice. Instead, various methods have been proposed to
enable us to investigate the nonadiabatic problems (discussed in Chapter 2 in detail). Some
of the methods including surface hopping methods [13—19] can take in nonadiabatic transition.
However, they are not suitable for electron dynamics, because they involve unphysical sudden
change of electronic states (hopping). In contrast, we approach this problem by means of an
on-the-fly nonadiabatic method based on the so-called path-branching representation (PBR),
[3, 8,20-29] which can describe nuclear and electron dynamics consistently. We can clearly
interpret the physical picture of both electrons and nuclei with PBR. This feature enables us to

investigate insight into chemical reactions.

In the present thesis, we discuss novel mechanisms relevant to chemical reactions involving
nonadiabatic interaction thorough electron wavepacket dynamics. We are especially concerned
with low energy dynamics, where the total energy allocated to the nuclear motion toward the
potential barrier is as much as its height. In this case, nonadiabatic interaction is rather cru-
cial than unignorable. We begin with a one-dimensional model system, and proceed to multi-
dimensional molecular systems. The discussion flows from conceptual to realistic. The rest
of the thesis is organized to reflect this flow as clearly as possible. In Chapter 2, we examine
rather conceptual aspect of chemical reactions involving path-branching induced by nonadia-
batic interaction. We briefly review the theory of PBR [3, 8,20-29] and develop an algorithm
so that we can investigate low energy systems, where the total energy allocated to nuclei is
comparable to the barrier height. [29] We demonstrate a tunneling-like effect and a friction-like
effect induced by nonadiabatic interaction in a one-dimensional model system by using the de-
rived algorithm. Full-quantum dynamics in the same model system is presented for qualitative
comparison. We also perform the multi-dimensional implementation of the PBR dynamics for

a molecular system to confirm that the mechanisms obtained above are not the characteristics
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of the one-dimensional system.

In Chapter 3, we examine rather realistic molecular systems to discuss photodynamical
mechanisms resulting in charge separation in excited electronic states. The mechanism is called
coupled proton-electron transfer, where the proton and electron take mutually different path-
ways to reach spatially different places on the acceptor. [11] That is the reason why the charge
separation is induced. The target systems commonly include a Mn atom. We are stimulated
to examine such systems by the Mn cluster in photosystem II (PSII). The Mn cluster performs
photo-driven oxidation of water molecules to produce protons and electrons, which is the early
process of photodynamics. The roles of a Ca atom in PSII are discussed by direct comparison
of the systems with and without Ca. We briefly investigate the relationship between the system
of X-MnOHj; and the Mn cluster in PSII to find they resemble each other significantly. Another
scenario (electron attachment instead of the coupled proton-electron transfer) is also mentioned.

Chapter 4 concludes this thesis. Some appendices follow to address technical details.
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Chapter 2

Low energy path-branching dynamics and
mechanisms induced by nonadiabatic

interaction

2.1 Introduction

The theory of nonadiabatic electron wavepackets has two mutually coupled aspects: One is
time-dependent nonadiabatically bifurcating electron wavepackets and the other is the dynamics
of associated nuclear paths, [30] which carry those electron wavepackets and branch in the
nonadiabatic regions (see Ref. [26] and Ref. [3] for review). It is therefore quite important to
know how the nuclear paths behave in those critical regions.

As an alternative to quantum-wavefunction method, path concept (as in path integration,
[31,32] semiclassical dynamics, [33, 34] classical trajectory analysis, and so on) is often very
useful for conceptual understanding and qualitative analysis of chemical reactions. An example
of particularly characteristic dynamical processes is (tentatively) trapping phenomenon of a path
in the transition state region of the saddle structure. In addition to the reactive resonances (either
Feshbach type or shape resonance), two origins of trapping have been reported. One is a peri-
odic bouncing motion, the trajectory of which is transversal to the reaction coordinate, forming
the so-called periodic orbit dividing surface. [35,36] The other is more universal and emerges
from the kinematic coupling between molecular rotation and vibration, which effectively makes
a potential basin in the saddle region. [37] These are relevant not only to the rate process but

to spectroscopies of the transition states (see [38] for an extensive review of transition-state
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spectroscopy. For a theory see [39]). Another interesting dynamics is deep tunneling, in which
a “path” penetrates into a potential barrier and eventually passes across to leak in the other
side. [40—45] This is a purely quantum phenomenon, and yet it can be well described with paths
in complex phase-space (or imaginary time) or by the so-called Bohmian trajectories. [46,47]

These are dynamics on a single potential energy surface (PES).

In molecular systems, however, potential barriers (negatively convex structure along a reac-
tion coordinate) are quite often created by nonadiabatic interactions with upper potential energy
surfaces having basin-like structures. [2,48] The relevant effects manifest themselves in spec-
troscopy through the Jahn-Teller effect and so on. [49] As for reactive scattering, the so-called
nonadiabatic tunneling as studied with Zhu-Nakamura theory is a highlight in semiclassical
path dynamics. [50] For a high-energy passage across nonadiabatic regions, the surface hopping
model is well accepted to conveniently describe nonadiabatic jump within the (classical) path
dynamics. [13—19] On the other hand, it has been revealed by full-quantum studies [51-54]
and experiments [55-57] that the passage of quantum wavepackets across nonadiabatic re-
gions (avoided crossing and conical intersection) can be indeed observed. In particular, the
theory of time-resolved photoelectron spectroscopy has illustrated how the wavepacket bifur-
cations can be reflected in the photoelectron signals and how they can be dynamically con-
trolled. [51-54,58] The wavepacket bifurcation is indeed essential because it is a manifestation

of electron-nuclear quantum entanglement induced by nonadiabatic interactions.

Such wavepacket bifurcation can be nicely represented in terms of the so-called path-branching
representation based on continuous non-Born—Oppenheimer paths in the theory of nonadiabatic
electron wavepacket dynamics. [3,8,20-29] In this theoretical framework, a Hamiltonian in the
general mixed quantum and classical representation described in the electronic Hilbert space
and nuclear configuration space is first established, with which the electronic wavepacket dy-
namics as well as the relevant nuclear path solutions are sought for. The solutions of these
dynamics give rise to infinitely many branching nuclear paths to represent the wavepacket bifur-
cation as emphasized above. However, the exact solutions of the dynamics should be too com-
plicated and time-consuming to attain. Therefore we introduce an approximate yet appropriate
averaging procedure to reduce the number (frequency) of the path-branchings. A typical exam-
ple can be seen in Refs. [3,22]. To be a little more precise, the path-branching representation
consists of repeated applications of (i) averaging of many to-be-branched paths and (ii) branch-

ing of these averaged paths under certain conditions. The branching is performed in terms of
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the so-called force matrix. [20] Numerical assessments, accuracy and tractability of the method

of path branching, have been repeatedly performed with affirmative conclusions. [3, 8,20-29]

In these former studies, however, we studied systems of rather high energy dynamics; the
total energy of the studied systems is higher than the energy of avoided crossing or conical
intersection. In order to study nonadiabatic chemical reactions in a low energy domain, on the
other hand, we need more careful treatment of path branching for the non-Born—Oppenheimer
trajectories. We therefore first revisit and refine the branching-and-averaging algorithm in an
energy range comparable to the height of potential barriers. We also show that the total energy
thus partitioned to the branched paths is conserved, even if some of the branched nuclear paths
penetrate into classically inaccessible domains. Thus these non-Born—Oppenheimer paths can

undergo classical forbidden events through nonadiabatic interactions.

To illustrate such nonclassical events as a manifestation of electronic quantum effects on
nuclear paths, we study two characteristic phenomena relevant to chemical reaction dynamics
for an incident nuclear wavepacket to encounter a potential barrier, on top of which lies an-
other adiabatic potential curve with nonadiabatic coupling. Two cases are surveyed: (1) Initial
paths coming into the nonadiabatic interaction region with energy lower than the barrier height,
and each can branch into two pieces (and repeat branching subsequently), the upper counter-
part of which may penetrate into the higher energy region and eventually branches back to
the ground state and proceed to the product site. This is so to say surmounting the potential
barrier via nonadiabatically coupling excited state. (2) A classical path whose initial energy
is a little higher than the barrier (and may be lower than the bottom of the excited state) can
branch and some of whose counterparts are trapped on top of the potential barrier. Those two
mechanisms are also termed in short a tunneling-like effect and a friction-like effect induced
by nonadiabatic interaction, respectively. It follows concomitantly that the trains of pulse-like
waves flow both to product and reactant sides with time-delay are observed. Such expectations
arising from the path-branching representation are numerically confirmed with full quantum
mechanical wavepacket dynamics. Although we here treat only a one-dimensional case since it
1s most illustrative for qualitative presentation, the extension of path-branching theory to multi-

dimensional systems is rather straightforward.

This chapter is organized as follows. In Section 2.2, we outline the theoretical framework
of path-branching representation and then extend it so as to be able to treat low energy nona-

diabatic transitions by proposing a branching condition. Analysis on how the state populations
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and associated energies are partitioned to those individual paths is presented. In Section 2.3,
the algorithm is applied to the 1-dimensional 2-state model system. In Section 2.4 full-quantum
studies will be presented to confirm those expected wavepacket branching phenomena. In Sec-
tion 2.5, we perform multi-dimensional implementation for molecular systems. Section 2.6

concludes the chapter.

2.2 Smooth path branching into classically forbidden regions

2.2.1 Electron wavepacket dynamics along nuclear non-Born—Oppenheimer

(BO) paths

First we briefly review the path-branching representation of nonadiabatic electron wavepacket
dynamics. Further details are available elsewhere. [3, 8, 20-29] In this theory, dynamics of
the nuclear degrees of freedom is realized by branching non-Born—Oppenheimer paths, and
the electron wavepackets propagate in time on these paths. Suppose we have a nonrelativistic
molecular system without external electromagnetic fields. The quantum molecular Hamiltonian

is written generally as
1 p2 |
= 52 B+ HmR), @.1)
k

where H(*)(r;R) = § 37 p7 + Ve(r, R) is the electronic Hamiltonian, with r and R denoting
the electronic and nuclear coordinates, respectively. p; and P, are the operators of the con-
jugate momenta of the components 7; and Rj, of r and R, respectively. V.(r;R) represents
the Coulomb interactions. Rewriting the total Hamiltonian Eq. (2.1) in the Hilbert space for

electrons and configuration space for nuclei as
1 el
H(R, elec) = 5 Zk: (Pk - mz 1D,V XF ( q>J|> + Z @) HD (@), (2.2)

Replacing the nuclear momentum operator here in this expression with the classical counter-
part P, — P,, we define the mixed quantum-classical Hamiltonian. Then we apply the time-

dependent variational principle with this Hamiltonian and attain the equations of motion for
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electron as

dCI e 2
ih—= = > (H b _ mZRkX}i, ;Yﬁ]) Cy, (2.3)

7
where the electron wavepacket state W, (R (¢)) is expanded in basis functions at each nuclear
position R(t) as

Vereo(r, R, 1) = > Cr(t) @1(r; R)|[p_pe) (2.4)
I

with {®;(r; R(¢))} being the Slater determinants, configuration state functions (CSF), adiabatic
electronic functions, and so on at R = R(¢). The matrix elements in these expressions are
defined as

62
R}

0

by = (o o

q)-]>7 X?J - <q:)l

In what follows, bra-ket inner products represent the integrations over the electronic coordi-

<1>J> and Y}, = <c1>1 <1>J>. (2.5)

nates. We have omitted the terms related to the external fields for the sake of simplicity, but the

relevant generalization is rather straightforward. [3, 8,24-29]

The nuclear path solutions are to be obtained by the Hamilton canonical equations of mo-
tions, which in turn give the force matrix F(R), a matrix representation of the force operator

F* in the kth direction, to drive the nuclear motion, which is defined as

FY, = (0| F*|®,)
aH(el (el) el
81% + Z <X§‘}< H§K)X;'“<J>

l k
+ihy R PX” — 8X”} , (2.6)
l

ORy, OR,

In the semiclassical Ehrenfest theory (SET), [59-64] one takes an force average in the kth

direction over the electron wavepacket such that

RY = (Weeo (r, R, )| F¥ | Weree (r, R, 1)) = > C7F},C
1,J

* el el
== Z Cr (X}CKHI((J) - H( )XKJ) ZOI
LJK

8H[jl

Cr, 2.7)
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which is equivalent to the Hellmann-Feynman force

GHE

R = — (i) |50

qjeleC(R(t))> ) (28)

if the electronic basis set happens to be complete. Note also that if X¥; is virtually zero in the
adiabatic representation, the force matrix has only the diagonal elements, which are equivalent

to the ordinary forces given by the energy gradients of the potential energy surfaces.

2.2.2 The semiclassical Ehrenfest paths

The mean-field paths in the semiclassical Ehrenfest theory (SET), [59—64] appear to be as a
special case of the present theory when we take a force average in the kth direction over the

electron wavepacket such that

R* = (e (r, R, )| FF| W ee (r, R, 1)) ZC*F

. . . aH el
e (XfKH§(9 —H “XKJ) Cy— Z ot UG 2.9)
ORy,
I,JK
which is equivalent to the Hellmann-Feynman force
.. OH €D
RF = — <\Ilelec(R(t)) ‘W \I/elec(R(t))> , (2.10)
k

if the electronic basis set happens to be complete. Recall, however, that the equation for elec-
tronic state mixing, Eq. (2.3), contains the second-order derivative terms that does not arise in
the intuitively-derived equations of motion for the standard SET.

The SET is known to give very accurate nonadiabatic transition amplitude up to the quantum
phases as long as it is before the path enters an asymptotic region, where the nonadiabatic
coupling elements begin to vanish. [22] As stressed in Section 2.1, the nonadiabatic interactions
let the full quantum nuclear wavepackets branch into those pieces that eventually run on the
individual adiabatic potential surfaces. But an SET mean-field path can never branch in itself
but runs on an averaged potential surface.

Recently new lights are shed on the Ehrenfest paths. Miller has found a particular phys-
ical relevance of these paths [65, 66] (see also [67]) from the view point of the so-called

Meyer-Miller-Stock-Thoss theory. [59, 68] Shalashilin [69-71] has developed an MCTDH-
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based method [72,73] for the Gaussian coherent states guided by many Ehrenfest paths. This
idea is an interesting modification of the method of generating basis functions due to the multi-
ple spawning method. [74-76] (Note though that the SET paths cannot always cover the entire
path-space as illustrated in Refs. [22,23].) We also use the force averaging procedure in the
present theory to partly generate mean-paths before path-branchings. However, the main con-
cern of this work is to see how the non-Born—Oppenheimer paths are led to branch naturally by
the electronic quantum effects. In particular, we demonstrate that such branched paths are natu-
rally deformed and can penetrate into nonclassical domains, which are important for qualitative

understanding of chemical dynamics.

2.2.3 Phase-space averaging and natural branching (PSANB) of the non-

BO paths in low energy regime

Technically, the exact solutions of Eqgs. (2.3) and (2.6) give rise to the rapid increase of the
infinite number of paths. Therefore we need to devise a numerical practice to suppress such
unlimited path-branchings. One of such algorithms has already been studied in an energy region
higher than those of the relevant avoided crossing or conical intersections, which is called phase-
space averaging and natural branching of paths (PSANB). [3, 8,20-29] We here propose an
alternative path-branching algorithm for nonadiabatic dynamics, which works better in a low
energy regime. Since the new algorithm shares the many common practices with the high

energy PSANB, we begin with a brief review of it.

Force diabatization and branching paths

The force operator F itself can induce electronic-state mixing because of its off-diagonal ele-
ments. Such electronic-state mixing can be avoided by diagonalization of the force matrix for

each short time interval At at a nuclear position R as
F(r;R)Ak(r;R) = fr(R)Ag(r;R), (2.11)

where A\x (r; R) and fx(R) are the K'th eigenfunction and eigenforce, respectively. The elec-

tron wavepacket at R may be expanded in {\x } such that

Vaee(r; R(1)) = > Di(t) Ak (r; R). (2.12)
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Each electronic component D Ak (r; R) is carried by its own path driven by the eigenforce fr,
without electronic-state mixing among {Ax}. Note that different eigenforces make different

paths even if they start from a single phase space point (R, P) such as
(R,P) = (Rx, Px). (2.13)

Hence the number of paths which stem from a single path is as many as that of electronic states
involved in the nonadiabatic coupling. This is the origin of continuous path-branching.
Averaging over the paths to extract a (few) representative path(s) in the coupling region

The main purpose of PSANB (3, 8,20-29] is to extract the “representative path” from the cas-
cade of branching paths. It is expected that the nonadiabatic region is narrow enough that those
branching paths should not geometrically deviate much from each other in phase space. There-
fore they should localize along a representative path forming a tube-like structure. We extract

such a path by taking an average of phase-space points in the following manner.

1. At a phase-space point ((R(t)), (P(t))), diagonalize the force matrix as in Eq. (2.11).

2. The K'th eigenforce drives a path starting from ((R(¢)), (P(¢))) for a short time At as
Rk (t + At) = (R(t)) + ARk, (2.14)

Px(t+ At) = (P(t)) + APk, (2.15)
3. Average them into the form
(R(t + At)) = (R(t)) + ; | Dic(t)|* AR/ EL: [ Dr(t)]” (2.16)
and
(P(t+ At)) = (P(t)) + ; |Dic ()P AP/ ; [ Dr(t)]?, 2.17)

which make the next point ((R(t + At)), (P (¢t + At))) of the representative path.

4. With this averaged point, we diagonalize the force matrix as in Eq. (2.11) at this phase-
space point and return to the step 2. The successive applications of procedures 1-3 give a

single finite path.
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Phase-space averaging of to-be-branched paths versus the force averaging (SET)

In the eigenforce representation, the averaged forces in the SET (recall Eq. (2.9)) are repre-

sented as

R = (D) i/ Y |1Do(t)P. (2.18)

The first order approximation to the SET is

(P(t+ At))spr = (P(t)) + RAt
= (P(t)) + Z |DK(t)’2APK/Z |DL(t)[? (2.19)

and

(R(t + At))ser = (R(t)) + (P(t)) At
= (R()) + (P(t)) > [Dx(t)PAt/) > |D(t)” (2.20)

Equations (2.19) and (2.17) are formally the same (to the first order) for the short interval. Also,
it holds

(P(t)) > [D()PAt = > " |Di(t)P ARk (2.21)

in the first order approximation, and Eqgs. (2.20) and (2.16) are also very close to each other
in the first order of At. Thus, it turns out that phase-space averaging and SET are equivalent
to each other in the first order approximation. Technically, however, the latter (SET) should
be faster than the former (PSANB) because diagonalization of the force matrix is not neces-
sary. Therefore we use the force averaging as an averaging procedure in what follows for its

simplicity.

2.2.4 A guiding principle to let an averaged path branch
Branching condition

We next consider a condition to terminate the averaging procedure at a point, where one can
judge that it is inaccurate or not physically appropriate to continue the averaging. Such points

can be either an exit point of the interaction region or even in a region of strong coupling. In
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our former studies, [3,8,20-29] the path-branching condition was set to
|IRX;,| < A (2.22)

with A being a parameter that should be predetermined appropriately. This method has been
proved to be very useful for high energy cases compared to the barrier height to obtain rel-
evant paths and transition probability. Moreover, Eq. (2.22) has been applied mainly to the
path branching at the exit of nonadiabatic region. This is because for high energy passage of
nonadiabatic region an averaged path gives a good approximation as long as the nonadiabatic
electronic state mixing is strong. Therefore path branching that terminates the averaging was
usually applied once at an exit from the region of strong coupling. However, in case of an energy
comparable with or lower than the crossing energy, the branched paths in the strong coupling
region should well represent precise phenomena induced by the bifurcating quantum wavepack-
ets. For instance, when the total energy is comparable to the barrier height, it is anticipated that
one path may surmount the barrier while the other comes back. We therefore consider below

which conditions should be theoretically acceptable and numerically tractable.

It is quite natural to judge that path-averaging is no longer good when the average path devi-
ates appreciably from the paths that are generated according to their own individual eigenforces.
Suppose an averaged path lies at a phase space point (R(¢), P(¢)). From this point on, we can
keep generating an averaged path. But unaveraged paths can emanate that are driven by the
individual eigenforces fx(R). With (R(¢),P(t)) being the initial point a path given by, say,
fx(R) is propagated as

Rk (t + At) = Rg(t) + ARk, (2.23)

Py (t+ At) = Pk(t) + APk, (2.24)

where K is fixed for each path. We call these trajectories side paths. The number of side paths
is as many as that of eigenforces. The side paths are made restart at each starting point of the
average paths. They gradually deviate from each other, reflecting the diversity of the relevant
paths due to the nonadiabatic interactions. Some of the side paths are expected to run on the
edge of the cascade of branching paths as shown in Fig. 2.1. Therefore we monitor a pair of

side paths that are most separate in phase space, and if the distance exceeds a predetermined
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value © such that
Y Rk —Ry|*+|Px — P[> >0, (2.25)

K<L
we judge that the real paths surrounding the average path are too widely distributed and it is a

time to terminate the path-averaging.

Branching

We here consider only a two-state case for simpler illustration, and extension to the more
states is rather straightforward. Suppose at a phase space point (R(t),P(¢)) we have a SET
path, for which the force diagonalization gives a set of { D;(t), D(t)} for the force eigenstates

{A1(r,R(t)), \a(r,R(t))}, giving rise to an electron wavepacket
O(t) = Di()Ai(r, R(2)) + Da(t) Ao (r, R(2)). (2.26)

We here consider the following two propagation of the state: (1) Continue the Ehrenfest dy-
namics for the next short time interval At (denoted as path 0), and (2) let the path branch into
two pieces (path 1 and 2). For the path-branching, along with the associated electronic state

mixing, we prepare two vectors as the initial electronic states (at time t)
(D1(t),0) and (0, Dy(t)). (2.27)
The wavefunctions for them are, respectively,
®1(t) = D1(t)Mi(r,R(t)) and Po(t) = Do(t)Ao(r, R(2)). (2.28)

With these initial conditions, two SET paths are generated. Then at time ¢ + At we compare
the energies thus partitioned. This gives two branching paths, which are different from the SET

path, as schematically illustrated in Fig. 2.1.

2.2.5 Energy allocated to branching paths and energy conservation

In branching from an averaged path as above, those paths can have different (higher and lower)
energies than that of the averaged (parent) path. Therefore we should survey how the popula-

tions and energies should be allocated to each path, and in so doing it is confirmed that the total
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Meaﬁ pathé
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R, P

Figure 2.1: Schematic representation of the expected exact solutions of Eq. (2.6) (expressed
as cascades) and the mean (SET) path as a representative (purple lines). The side paths running
on the edge lines of the cascades are monitored for a short time (see text). The mean path is let
branch when the side paths are significantly separated from each other.

energy summed up over all the branched paths are conserved.

First we consider the path O (SET path). The total Hamiltonian for the SET dynamics is

B (2(1) [H | @(1))
H(R.P) = [o(0)[ 9 (1))
+ ((D1(t)A1(R) + Da(t)A2(R)) \HW (D1 ()M (R) + DQ(t)Ag(R)»r
£ (®(0)[9(1)) ’
(2.29)

where again the bra-ket inner product is to be performed over the electronic coordinates alone.

Likewise the Hamiltonians to drive the path 1 and path 2 are, respectively,

_p o)l o)
Hic (R, P) = — (Dg ()| Pr(t))

+ (Ak(R) [HD| A (R)),  (2.30)
for K =1, 2. Itis well established that the individual energy is conserved along each SET path.

Potential energy varied

In the force-state representation, we usually do not directly refer to the value of adiabatic poten-
tial energy surfaces. Therefore the potential energy that each path bears is to be estimated with

integration of the force over a shifted distance. With the above Hamiltonian, Eq. (2.29) for path
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0, let us write down the time-derivative of the momenta, that is, the forces as

((D1HA(R) + Da(t)A2(R)) [0H JOR| (Di(t)Ai(R) + Ds(t)22(R)))

Pk=— r(2.31)
° (1) 2(t))
For the force eigenstates, the off-diagonal terms are close to zero, that is,
(M(R)|0H JOR"| \2(R)) ~ 0, (2.32)

and only the diagonal parts remaining in the expression as

(DM (R) |0H D JORF| D1 ()M (R))_ + (Da(t)A2(R) [OHD JORF| Dy(t)A2(R)).,

Pl
’ (B(1)| (1))
(2.33)
Similarly we have the forces for path 1 and 2, respectively, as
Ph=— (Ax(R)|0H JOR*| \x(R))._. (2.34)

for K =1,2.

The variation of the potential energy can be estimated rather directly with an elementary
expression as
RF+ARY
AVh = (0| 2() Y / PR, (2.35)
x JRE
Note that the population of the state to be carried by the path 0 is multiplied to the classical

expression of the potential energy. Likewise, we have

R*+ARF

AVi = [Dx(t)) / Pt dRF (2.36)
k

RF

for path K (K = 1,2). For a time interval as short as At, AR can be approximated to be
ARF = P*(t)At (2.37)

irrespective of the kind of these paths. Collecting Eqgs. (2.33) to (2.34) and Eqgs. (2.35) to (2.36)
altogether, we have

AV + AV, = AV, (2.38)
which claims that the variation in the sum of the potential energies of path 1 and path 2 is the
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same as that for path O in the first order.

Kinetic and total energies varied

Next we survey the variation of the kinetic energy. In the first order with respect to At, one can

approximate as

P(t + At) = P(t) + PAt, (2.39)

which in turns give the first order expression of the kinetic energy as

%P(t + A~ ZP(t)? + P(t) - PAt. (2.40)

N | —

Recalling here that at the branching time ¢ all the momenta are taken equal, that is, P(t) =

Py(t) = Py(t) = P, (t), we compare only PA¢ terms. For path 0, it is

PoAt

~ (Di)M(R) |0H D JOR*| D1 ()M (R))_ + (Da(t)A2(R) [0H D /ORF| D2(t))\2(R)>rAt
B (@(t)] @(t)) ’

(2.41)

while

PhAt= — (A\x(R) [0H JOR*| \k(R)), At (2.42)

for path 1 and path 2 with X' = 1 and 2, respectively. The same arithmetic in the potential

energy can be applied to the present case, and the result is

P(t) - PoAL (D(1)| B(t)) = P(t) - P1AL D1 (1)]* + P(t) - PoAt | Dy(t)]* (2.43)
Therefore, in the first order, the kinetic energy is conserved as

Po(t + At)? = Py(t + At)? + Po(t + At)*. (2.44)
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Thus, the total energy Fj at the point (R(#), P(¢)) with the population ( ®(¢)| ®(¢)) is conserved
as

Ey = Ey + Es, (2.45)

where Ex (K = 1,2) is the energy carreied by path K, whose population is ( ®x ()| P (1)) =
D (1),

In summary the total energy at a branching point is to be partitioned in proportional to the
populations of the to-be-branched paths, and each is carried in a manner to conserve their own
energy. Note that these branching paths should be guided by the eigenforces. Under the con-
servation rule, the individual non-Born—Oppenheimer paths can thus penetrate into classically

forbidden regions through nonadiabatic interactions.

2.2.6 Schematic illustration

Now that we know how the electronic population should be allocated to each path, we can
consider qualitatively important cases within the framework of the path-branching theory. An
illustrative schematic example is presented in Fig. 2.2: A path running on the lower potential
surface comes in the interaction region and at some point below the top of the adiabatic potential
(left white small circle) branches into two pieces, one with a smaller component but having a
higher energy and the other of larger population whose energy is lowered a little to cancel
the energy taken away by the counterpart. Note that these branched paths are continuously
connected with each other at the branching point in phase space, although the higher energy path
graphically seems to jump abruptly in the potential curve diagram. Therefore this continuous
branching should not be confused with the surface-hopping motion. (Note also that although the
adiabatic potentials are drawn in the figure in order to help imagination, but the dynamics are
performed with use of the force diabatization.) The higher energy path can proceed to totally
different course from the lower energy counterpart, and can bifurcate again at somewhere else
(right white circle). So does the lower path. Thus even after many-time branchings, all the
cascade paths can be continuously traced back to the original path with the total energy being

conserved in the above sense.
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Figure 2.2: Schematic representation of energy conserving path-branching in configuration
space. The branching paths are continuously connected in phase space.

2.3 Applications

2.3.1 Interactions and initial conditions

We apply the above algorithm to a model chemical reaction on one-dimensional, two-state
interaction potential, which is constructed as follows: We first determine a pair of adiabatic

potential energy curves (APEC) to be represented as

1(R) = Vg exp (— (5))

EQ(R) = —€1 (R) + b, (246)

where the parameters Vg, a, b are set to Vg = 0.01, a = 1 and b = 0.024 in atomic units, and

thus the top of ¢;(R) is 0.01 while the bottom Vj of e2(R) is 0.014) As usual the matrix U

cosf(R)  sinf(R)
U= (2.47)
sinf(R) —cosf(R)
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transforms the APEC to diabatic potential energy curves (DPEC) with the coupling element
X1 is given as

Xig = - = —Xoy, (2.48)

where the rotation angle # as a function of R is given as

O(R) = = (2 — exp (—M—R» . for 23>0 (2.49)
4 T
and
O(R) = %exp (—M—R) for = < 0, (2.50)
Vs

where d is a parameter. We here set d = 2. The resulting APEC and DPEC are shown in Fig.
2.3. In this scheme therefore we can scan the intensity of the nonadiabatic coupling elements
keeping the adiabatic potentials unchanged. We can thus uniquely define the total energy of the
non-Born—Oppenheimer paths with respect to the height of the potential barrier Vg.

The initial conditions are chosen so that the total energy of the path is comparable to the
barrier height V. The initial paths are generated on the ground state. The nuclear mass is set
to M = 1836, mimicking a proton. The initial position to launch the paths is set at 7y = —9,
and let them start with a momentum Py = +/2MEj, and the total energy Ej to the positive

direction (from left to right in the figures). We here illustrate four typical paths:

1. Fy =0.0080 = 0.8Vpg : below the barrier top (Vrg)
2. Ey =0.0099 = 0.99Vrgs : close to the barrier top

3. By = 0.0125 = 1.25Vpg : higher than the top (Vs) and lower than the bottom of the

excited state (V)

4. Ey = 0.0145 = 1.45Vg : a little higher than V3.

2.3.2 Surmounting a potential barrier by lower energy paths

We begin with the branching dynamics of the two lower energy paths of £y = 0.8Vpg and
Ey = 0.99Vg. As suggested above, quantum paths can branch into the excited state even if the
state energy is not classically accessible, the dynamics of which is caused by the electronic state

mixing due to the derivative coupling X¥;. The surface hopping model and the related theories
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Figure 2.3: Potential energy curves versus the coordinate 1. (a) Adiabatic representation. The
solid lines denote APEC ¢;, while the dashed line does nonadiabatic coupling element X;,.
(b) Diabatic representation. The solid lines represent the DPEC (red: V74, green: V55) and the
dashed line shows the electronic coupling element V5.

based on it would miss this phenomenon. The branch parameter © (see Eq. (2.25)) is set to 8
for the path of £y = 0.8Vg and to 7 for that of £y = 0.99Vyg. These parameters have been

chosen to make the demonstrations clear.

As observed in Fig. 2.4, the paths come in and return to the reactant site with a large
electronic-state population (the thicker is a curve, the larger is the associated population in the
figure). However, in spite of the fact that the energy of these paths are lower than the barrier
height, they begin to branch and some of the paths eventually reach the other side of the barrier.
Inspection over this figure also shows that some other branched paths go back to the reactant
site tracking the different routes from the parent one. Therefore, a part of the initial wavepacket

is bifurcated and surmounts the barrier.

The paths that reach the other side of the barrier are assisted by the forces from the excited
states. Let us focus on the path ending at around ¢t = 5 x 10% and R = 1.5 of Fig. 2.4(a). The
precise history of this path is as follows. First, the path entered the interaction area with the first
diagonal force (dominated by that of the ground state), and then at a branching point the path
resumes to run driven by the second diagonal force (close to that of the excited state), and at the
second branching point the driving force comes back to the first diagonal component. In this

way the path could go over the barrier although it was classically forbidden.

The overall phenomenon effectively looks like the so-called deep tunneling. [40—45] How-
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Figure 2.4: The branching paths of the total energy lower than the barrier height. The width of
the paths is proportional to the square root of the electron population on the path. The paths in
red (black) are driven by the forces mainly coming from the ground (excited) state.

ever, of course, they are independent phenomena. In the quantum deep tunneling, the paths go
over the barrier through imaginary space and/or time, as in the instanton theory. [40] On the
other hand, all the non-Born—Oppenheimer paths in this study are supposed to run in the real
space, although the present theory of path branching can be generalized so that the paths can
penetrate into complex spaces.

Another important difference between “surmounting” and ‘“deep tunneling” is their depen-
dences on the potential curves. Deep tunneling tends to be more effective as the potential barrier
is thinner, while the nonadiabatic surmounting does not have such a simple characteristic. For
instance, the path ending at t = 5 x 10% and R = 0 in Fig. 2.4(b) is about to go back to the
reactant side. If this path branches and get back to the ground state, it does not contribute to
the increasing of reaction probability. Another difference is the time-delay of paths, which has
nothing to do with the so-called tunneling time. We will return the problem of time-delay in the

next section.

2.3.3 Trapping above the potential barrier

We next examine the case where the total energy is slightly higher than the barrier height,
namely, £y = 1.2Vpg (lower than the bottom of the excited state though) and 1.45Vg (higher
than the bottom too). Only to the last case, the surface hopping model can access. The branch

parameter O (see Eq. (2.25)) is set to 5 and 4, respectively. As shown in Fig. 2.5, some paths are
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Figure 2.5: The same as Fig. 2.4, except that the branching paths have the total energy higher
than the barrier height.

pushed back to the reactant side. These returning paths obviously work to reduce the reaction

probability, and can be regarded as a friction to the reactive motions.

The precise mechanism is as follows. The paths come about the strong interaction area,
where the electronic-state mixing is induced. The forces originated from the excited state trap
some paths as though they undergo vibrational motion on the excited state adiabatic potential
curve. However, again due to the nonadiabatic interactions, the trapped paths gradually spill out

to the both ends of the potential barrier of the ground state. From the view point of chemical

reaction therefore this delayed dynamics looks like a result of friction.

2.4 Full-quantum dynamics to verify the branching phenom-

€na

We now proceed to confirm the physical picture drawn by the path-branching representation

is consistent with the full-quantum results. Here in this chapter we compare the quantitative

aspects of the phenomena observed above.
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2.4.1 Method and initial conditions

The initial conditions for the quantum dynamics corresponding to those in the preceding section

are first described. Suppose a total wavefunction W(R, r, t) is expanded as [77]
\Ij(Rv T, t) = ZXI(Rv t)(I)I(T7R)a (251)
I

where x; is a nuclear wavepacket on the adiabatic potential curve created by the electronic
eigenstates ®;(r; R), which are assumed to be known beforechand. We propagate the nu-
clear wavepackets with the extended split operator method. [15] The initial nuclear wavepacket
{x1(R,t)} is chosen to be a coherent-type Gaussian function on the adiabatic ground state as

2
|
x2(R,0) = 0. (2.52)

x1(R,0) = (WAR2)_1/4 exp | —

Ry and F, are the same quantities as those defined in Sec. 2.3.1 for the path-branching repre-
sentation. The wavepacket width in coordinate space is set to AR = 1. The number of grid
points for FFT is 512 on the space ranging from —32 to 32. Two absorbing imaginary potentials

V, are placed at the both ends, which are defined as

2
Va(R) = —30iexp <— (RZSQO) > ) (2.53)

V., works not only to avoid the artificial reflection of the wavepackets from the boundaries but

in the calculation of the reaction probability by integrating the absorbed components.

2.4.2 Time-delay induced by the trapping motion above the transition

The trails of the quantum wavepackets in (¢, R)-coordinates are drawn in Fig. 2.6 left column,
corresponding to the above four energies: (a) Fy = 0.008Vpg, (b) Ey = 0.99Vrg, (¢) Ey =
0.0125 = 1.25V7pg, and (d) £y = 1.45Vg. The color chart in each diagram clearly indicates the
wavepacket bifurcations, whose patterns are dependent on the energy.

In the right column, corresponding to each left panel, are depicted the square root of the
population of the state (|¥]) that passes across the line R = 9 (red and solid curve, measured

from right to left along the horizontal axis) and R = —9 (green and dashed curve, measured
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from the left to the right) as a function of time. The former is proportional to the magnitude of
|| reaching the product area, while the latter represents that of the original reactant area. (We
do not resort to the population |\I/|2 itself to prevent the small components from being invisible.)

In the lowest energy case, we can readily identify the packet components that are flowing
out to the product site (of large positive R values). It is the usual practice that we attribute
this seemingly leaking dynamics to deep tunneling. That this is not the case can be readily
confirmed by running the full quantum dynamics without both the excited state and nonadiabatic
coupling elements (simple dynamics on the ground state alone with the wavepackets whose
average energies are lower than the barrier). It turns out that with this width of the potential
barrier, the pure (deep) tunneling turned out to be virtually invisible, and the so-called shallow
tunneling dominates (passing over the barrier by wavepacket components of energy higher than
the barrier height). However, the presence of the nonadiabatically surmounting dynamics is
clearly confirmed in terms of the time-delay components in the wavepacket dynamics, that is,
shoulders of |W (9, )| after the passage of the potential barrier (see Fig. 2.6, red curves after
t = 6 in the right boxes of panels (a) and (b)). Such shoulders are more prominent in case of
Ey = 0.99Vrs (panel (b)). The shoulders are seen not only in the graph of |V (9,¢)| but in
that of reflecting wave | (—9, ¢)|. Without the nonadiabatic coupling, the nuclear wavepackets
would split into only two pieces and no those shoulders are found.

In the higher energy regime, the evidence of the tentatively vibrational motion in the excited
adiabatic curve is clearly observed as the oscillatory structure around R = 0 in panel (d), left.
The major component in this energy is found in the product site. A remarkable consequence
of the tentative vibrational motion in excited state is a sequential appearance of pulse-train
wavepackets with “time-delay”, and the small shoulders arise from the delayed pulses. The time
interval of the appearance of the pulses is approximately equivalent to the vibrational period of
the excited state, although a complicated quantum interference gives rise to deviation from
such a simple rule. This phenomenon of pulse-train is essentially equivalent to those observed
by Zewail et al. in pump-probe experiments for the photodynamics of Nal. [78] However,
the present dynamics arises from collision events starting from the ground state and therefore
may give additional pieces of information about transition state and associated excited state if

observed experimentally.
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Figure 2.6: The reaction pathways in space-time for various total energies obtained from the
full-quantum mechanics. The color maps on the left hand side are the plot of |V (R, ¢)|. The
plots on the right hand side are |V (R = 9, t)| (solid line, measure to the left) and |V (R = —9, )|
(dashed line, measure to the right). The solid line is scaled as |¥| = 2.5 x 1072,
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2.5 Multi-dimensional implementation for molecular systems

2.5.1 Target system: Mn(OH)OH;-: - - guanidine

Let us apply the theory of PBR to a multi-dimensional molecular system to confirm that the
mechanism discussed above are not the characteristics of the one-dimensional system. We
investigate the system of X-MnOHs- - - Ac in advance for this purpose, where X and Ac are an
arbitrary subsystem and a proton-electron acceptor, respectively. In Chapter 3, we focus on only
the mechanism of coupled proton-electron transfer in excited states of X-MnOHs- - - Ac for the
sake of simplicity, rather than explicit path-branching that we do in this section.

Now we preview the mechanism of coupled proton-electron transfer found in the photo-
dynamics of X-MnOHs- - - Ac, in which we consider the path-branching dynamics. Here the
“photodynamics” denotes the nonadiabatic dynamics in excited electronic states accessed by
means of direct photoexcitation. If the total energy allocated to the nuclear degrees of free-
dom is as much as that of zero-point oscillation, the most probable chemical reaction is H atom
transfer between O and Ac, that is, interchange between [O-H- - - Ac] and [O- - - H-Ac].

In this section, we consider the case where X=OH and Ac=guanidine. The resulting molecule
and projected one-dimensional coordinate relevant to the photodynamics are shown in Fig.
2.7. All the other candidates of X and Ac discussed in Chapter 3 have similar projected one-
dimensional potential curves, thus we can probably find a similar path-branching dynamics
among those systems. (See Fig. 2.7(a)). The projected one-dimensional potential curves have
nonadiabatic region between S; and S,."! As we explain in Chapter 3, in the ground electronic
state, this reaction is recognized as H' transfer. However, in the excited electronic states, the
reaction mechanism is different from that of the ground state. This reaction is the coupled
proton-electron transfer to induces charge separation on Ac, because H"* and ne™ (n ~ 0.6)
reach spatially different places on Ac through mutually different pathways. The mechanism is

discussed in detail in Section 3.3.

2.5.2 Further approximation for multi-dimensional molecular systems

If we perform full-dimensional on-the-fly calculations for the system of X-MnOHs- - - Ac, it
is still difficult in terms of machine power to apply the side paths algorithm to such a system,

because finite but a large number of paths need to be taken into account. For qualitative analysis

*I Here “S” denotes the excited electronic states in ascending order of energy.
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Figure 2.7: (a) The chemical structure of the target system Mn(OH)OHs- - - guanidine (the
same as Fig. 3.2(a)). (b) Projected one-dimensional potential curves relevant to the chemical
reaction under consideration, in which we perform multi-dimensional dynamics (the same as
Fig. 3.4). The atoms in the red circle are mainly involved in the reaction.

as a starting point, we reduce the calculation cost by performing further approximation to the
side paths algorithm.

We make the following assumptions about the side paths algorithm:
1. a set of adiabatic states can be used as an alternative set of of eigen force states.

2. the time when the momentum of the target degree of freedom is sufficiently small is the

most appropriate to invoke path-branching.

The first assumption is also mentioned in Ref. [22] to say that the result with adiabatic states is
similar to that with eigen force states. The second assumption can be justified with Fig. 2.2. We
consider a case where a path has slightly lower energy than to surmount the potential barrier.
It is anticipated that the path comes back to the reactant site after nonadiabatic transitions. If
the side paths were running, they would split off from each other near the turning point. That
is definitely when the momentum is sufficiently small. As shown later, the characteristic of the
mechanism is preserved even by this rather drastic simplification, although the calculation cost

is considerably saved.

2.5.3 Methods

The method for PBR photodynamics of Mn(OH)OH,- - - Ac that uses the further approximated

algorithm is as follows:

41



1. Run the full-dimensional adiabatic dynamics in Sy to obtain initial set of coordinates and
momenta. The total energy allocated to nuclei is set to as much as that of zero-point

oscillation.

2. Run the full-dimensional SET dynamics restarting in S3 each 10 fs with the same coordi-
nates and momenta as the adiabatic path at that time. We let the path integrated for further

10 fs.

3. Pick up a SET path that likely involves the tunneling-like effect induced by nonadiabatic
transition. In other words, we find a SET path that cannot surmount the barrier, but

undergoes adequate electronic state mixing.

4. Apply the algorithm discussed in Subsection 2.5.2 for PBR dynamics. Let each path

integrated further 25 fs.

2.5.4 The tunneling-like effect induced by nonadiabatic interaction in the

multi-dimensional system

Here we demonstrate that the tunneling-like effect induced by nonadiabatic interaction is indeed
found in this multi-dimensional system. Internuclear distance between the O and H atoms Ron
along the adiabatic path in S is shown in Fig. 2.8 as a dashed line. If Rog becomes more than
1.3 A, we can regard the path as experiencing the H atom transfer (See Fig. 3.4). Thus in the
displayed time range, no H atom transfer takes place.

Solid (red) lines shown in Fig. 2.8 are corresponding to the SET paths restarted in S
at every 10 fs with the same coordinates and momenta at that time. We have four restarted
paths and they can be classified into two groups. The first group contains paths restarting at
t = 10, 20 fs, which reach almost the same points as those of adiabatic path (dashed line). The
second group contains the others, which reach significantly different points. This difference
stems from whether the path enters the nonadiabatic region. The paths in the second group
undergo more than 20% of nonadiabatic transition as shown in Fig. 2.9. The path restarting at
t = 0 fs comes back, while that restarting at ¢t = 30 fs surmounts the barrier (H atom transfer).
Following the method above, hereafter we focus on the path of ¢ = 0 fs. The path would
likely involve the tunneling-like effect induced by nonadiabatic interactions. We confirm it by

calculating full-dimensional PBR dynamics.

42



t/fs

89 1.0 1.1 1.2 1.3
Row/A

Figure 2.8: Time propagation of internuclear distance between the O-H bond of O-H- - - Ac
bonds (See Fig. 3.2(a)) along the path of full-dimensional dynamics. The dashed line is the
path of adiabatic dynamics in Sy, while solid lines are the paths of SET dynamics restarting in
S5 each 10 fs with same coordinate and momenta as the path of S, at that time.
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Figure 2.9: Time propagation of adiabatic state population along the SET path restarting at
t = 0fs (a) and ¢ = 30 fs (b). Those lines are corresponding to S (cyan), S, (magenta) and
S5 (yellow) in descending order of population. In both cases, more than 20% of nonadiabatic
transitions occurs.
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Figure 2.10: Time propagation of Roy on the branching paths (a) and resulting geometry and
spatial distribution of unpaired electron density (Eq. (3.8)) from path-branching at ¢ = 4 fs (b,
¢). (b) and (c) are corresponding to the geometries and unpaired electron densities equivalent to
the restarting ones of S3 and S, respectively.

The further approximated algorithm discussed in Subsection 2.5.2 is applied to the SET
path restarting in S3 at ¢ = 0. The time to invoke path-branching is set to t = 4 fs, because the
momenta of the transferred H atom is sufficiently small. That is when the side paths would be
significantly apart from each other if they were running. We consider only the path-branching
between S3 and S,, which undergoes relatively large nonadiabatic transition (See Fig. 2.9(a)).

Path-branching is invoked only once for the sake of simplicity.

The branched paths shown in Fig. 2.10 obviously separate from each other. The path as-
signed to S3 when the path-branching is invoked comes back to the reactant site, while that to

S, eventually surmounts the barrier. The latter path is definitely the path of tunneling-like effect
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induced by nonadiabatic interaction. In addition, electronic states along those paths are differ-
ent from each other. We can clearly find the difference by using unpaired electron density D(r),
which is responsible for the radical character of an atom or a molecule. The unpaired electron
density of each branching-path is also shown in Fig. 2.10. To sum up, the tunneling-like effect
induced by nonadiabatic interaction can be indeed found even in this full-dimensional molec-
ular system. The friction-like effect should also be found likewise. The SET path restarting at

t = 30 fs is probably a good candidate for it.

2.6 Concluding remarks

We have developed an algorithm and computational practices for nonadiabatic path branching
of non-Born—Oppenheimer trajectories in an energy region comparable to the barrier height of
adiabatic potential energy curves in the theory of nonadiabatic electron wavepacket dynamics.
The theoretical analysis on the practice has shown that individual branched paths due to nonadi-
abatic interactions can undergo classically forbidden phenomena, with the total energy of them
being conserved. Using this algorithm, we have investigated the model chemical reactions that
involve nonadiabatic couplings.

Two reaction mechanisms, namely, “surmounting” and “trapping above” the potential bar-
rier have been discussed. They are also referred to as a tunneling-like effect and as friction-like
effect induced by nonadiabatic interactions, respectively. The former takes place when the to-
tal energy of the path is lower than the barrier height, and the latter is observed when it is
higher than the top. Although the surmounting phenomenon seems effectively similar to deep
tunneling, [40-45] they are physically independent of each other and can happen simultane-
ously. Likewise, the present phenomenon of trapping above the transition state, which works as
friction against chemical reaction, is independent of the kinematic effects arising from rotation-
vibration coupling on a single potential surface [37] and the periodic bouncing motion in the
transition state region [35,36]. The solvent effect is also important in this regard, since sol-
vent molecules surrounding a reactive system are known to work as friction against the passage
across the transition state (see [79, 80] as early stage developments in this field and [81] for a
review.) Therefore they can further couple in nonadiabatic systems.

The present chapter has been devoted to conceptual and phenomenological aspects of nona-

diabatic transitions in chemical dynamics; path branching penetrating into classically forbidden
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regions and time-delay dynamics in passing over the transition state. On the other hand, the
method based on the path-branching representation can be readily extended to multi-dimensional
systems to analyze more realistic chemical reactions, as we actually performed before. [3,8,20—
29] Also, it can take account of external fields like laser or fluctuation due to solvents. Such

studies are now under way.
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Chapter 3

Photodynamics of OH dissociation and

charge separation in X-MnOH»

3.1 Introduction

An early process of photosynthesis, that is, photo-driven water oxidation to give protons, elec-

trons and molecular oxygen,
2H,0 — 4HT + 4e™ + Oy, 3.1

is now widely studied not only to understand photosynthesis itself, but also to find a guiding
principle of solar cells and photocatalysts. This reaction is catalyzed by oxygen-evolving com-
plex embedded in photosystem II (PSII), a membrane pigment-protein complex. [82] The key
reaction is performed by the Mn,CaQj cluster (the Mn cluster, in short) shown in Fig. 3.1 at the

center of the oxygen-evolving complex. It is hypothesized that four photons are successively

Ca
<N Mll‘n? ;

Figure 3.1: The structure of the Mn,CaOj cluster (or the Mn cluster, in short) of the oxygen-
evolving complex embedded in PSII.
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absorbed by the oxygen-evolving complex to promote the redox states K; (i = 0 — 4), ! which
is called Kok cycle. [83-85] In this cycle, the oxygen-evolving complex is increasingly oxi-
dized to K4, and eventually it oxidizes H,O to O, to get back to Kg. Surprisingly, no variations
have been observed so far among oxygenic photosynthetic organisms. [86] In other words, only
the Mn cluster can catalyze the photo-driven water oxidation in nature. This remarkable fact
has already been reflected to artificial solar driven oxidation of water as a part of dye-sensitized

solar cells. [87-90]

The Kok cycle was originally hypothesized in the context of flash-induced oxygen formation

experiments, [85] which was a charge-accumulation model, that is,
K, - Kit = K2t - K3t — Kit — K. (3.2)

Each oxidation step is driven by photon absorption. The water decomposition is supposed to
take place when the transition Kj*—K, occurs. The redox state K is usually connected to
the structure and the electron spin states, [86] thus following the change of structure and/or
spin states of the oxygen-evolving complex in each redox state of the Kok cycle is frequently

recognized as leading to solve the mechanism of water oxidation.

Many experimental efforts based on the hypothesized Kok cycle have been made to clar-
ify the mechanism. Since the first X-ray crystal structure of PSII at ~3.8 A was published in
2001, [91] the resolution of the crystal structure has been improved in a gradual manner. [92-94]
In 2011, Shen, Kamiya and coworkers reached atomistic resolution (1.9 A), [82,95] which is
known to be a breakthrough. Structural analysis has also been performed by extended X-ray ab-
sorption fine structure (EXAFS), [96—-100] which enables us to follow the structural “changes”
among redox states. Electron paramagnetic resonance (EPR) [101] is performed to identify the
spin state of Mn. Fourier transform infrared spectrum (FTIR) is also available for the structural
analysis. [102,103]

As for theoretical aspects, this problem is usually tackled by means of energetics with sta-
tionary state quantum chemistry. Most studies are again based on the hypothesized Kok cycle.
With the help of rapid developing of massive computation, the system under consideration is be-
coming larger and larger. Most of the approaches of stationary state quantum chemistry depend

on density functional theory (DFT), which can reproduce a structure obtained experimentally

1 «“S” is usually used to represent the redox states of the Kok cycle, but here we use “K” to reserve it for
representing electronic states later.
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by X-ray diffraction (XRD). [104-111] Yamaguchi and coworkers have performed systematic
geometry optimization to find reaction paths. [110, 112-118] They pointed out that the geom-
etry in Ky and K3 can be altered compared to Ky and K;. Siegbahn has similarly calculated
energy diagram of the Kok cycle by using DFT. [104-107] The suggested mechanism is that
the optimal O-O bond formation occurs between an oxygen radical and an oxo ligand, or al-
ternatively, the oxygen radical reacts with an external water. In contrast, Kurashige performed
density matrix renormalization group (DMRG) [119-121] to determine the near-exact many-
electron wavefunctions corresponding to the XRD structure of the oxygen-evolving complex.
Through the analysis of the wavefunctions in the K state, their direct access to spin states
and spin projections suggests that existing candidates must be reassessed. He also performed

multi-state calculations, and find a nonadiabatic region.

In spite of both experimental and theoretical efforts, the mechanism of the early process of
photosynthesis is still a matter of controversy [86, 116,122, 123]. Now let us recall the water
oxidation reaction (3.1). The reaction is driven by photoexcitation of electronic states (visible
light absorption), and such excited states can never be stationary. In this way, the mechanism
can be beyond the scope of the Born—Oppenheimer approximation, although even all atom
molecular dynamics simulation of PSII has been reported [124] base on this approximation.
Therefore, electron dynamics should play an important role in the early process of photosyn-
thesis. However, such a dynamical property has never been addressed in the system relevant to

the oxygen-evolving complex.

Electron dynamics has been proved to produce insight into chemical reactions. Ushiyama
and Takatsuka have performed electron wavepacket dynamics of H atom transfer in the system
of ground and excited states of H,O + H3O. [125] They found a dynamical difference between
these states, although the transferred H nucleus moves in the same way. In the ground state,
HY®* is transferred, while in the excited states, a H radical is. We can even track pathways
of electrons in a chemical reaction in terms of Schiff probability current [126] (flux, in short).
Nagashima and Takatsuka calculated nonadiabatic electron wavepacket dynamics of phenol-
ammonia cluster in excited electronic states. [11] The result clearly shows the importance of
electron dynamics to understand the mechanism of chemical reactions. They demonstrated that
when the H nucleus was transferred from the phenoxy group to the ammonia cluster, approxi-
mately 0.5 electrons were bonded to the transferred H nucleus, and the rest of electrons (~0.5)

took different pathways from the H nucleus. In addition, the electron reached spatially different
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places on the ammonia cluster to naturally induce charge separation. This result can be regarded

as a prototype mechanism of charge separation in excited states.

In this study, we calculate photodynamics of water decomposition by means of nonadiabatic
electron wavepacket dynamics theory. Here the “photodynamics” denotes the nonadiabatic dy-
namics in excited electronic states accessed by means of direct photoexcitation. We approach
this problem with two steps. First we perform analysis in the projected one-dimensional coor-
dinate relevant to the photochemical reaction dynamics to grasp the landscape. And then we
calculate full-dimensional nonadiabatic electron wavepacket dynamics to propose photodynam-
ical mechanism related to charge separation. The target system is chosen to be X-MnOHs- - - Ac.
Here X and Ac are respectively an arbitrary subsystem and a proton-electron acceptor such as
guanidine and ammonia cluster. We are stimulated to examine the systems by the Mn cluster of
the oxygen-evolving complex, where such a charge separation by using photon energy must be
crucial. The oxygen-evolving complex is far more intricate than the systems under considera-
tion in this thesis, thus the present calculations are not regarded as simulations. Rather than that,

our purpose is to extract important partial systems to find a key component of the mechanism.

We propose a photodynamical mechanism resulting in charge separation, which is similar to
that of the phenol-ammonia cluster system proposed in a different context. The characteristic of
this mechanism is that protons and electrons are transferred to mutually different places on the
acceptor through difference pathways. In addition, we investigate such dynamics of molecules
including a Ca atom, which is known to be an essential cofactor for the Mn,CaOs cluster of the
oxygen-evolving complex. [127] We find resemblances and differences in the photodynamical
mechanism to suggest the possible roles of the Ca atom. In connection with the oxygen-evolving
complex, we calculate the same properties in the projected one-dimensional coordinate relevant
to the full-dimensional dynamics. The result indicates that the same photodynamical mecha-
nism can be found even in the Mn cluster of the oxygen-evolving complex. This study takes the
first step of electron dynamics in the system relevant to the oxygen-evolving complex embedded

in PSII.

The present chapter is organized as follows. In Section 3.2, we state the methodology used
in this chapter. In Section 3.3, we propose a photodynamical mechanism to induce charge sepa-
ration through nonadiabatic electron dynamics. In Section 3.4, roles of Ca in PSII are addressed
in this context. In Section 3.5, possibility of the present mechanism in the Mn cluster of the

oxygen-evolving complex is considered. In Section 3.6, we mention the alternative mechanism,
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namely, electron attachment. Section 3.7 concludes this chapter.

3.2 Methodology

3.2.1 On-the-fly dynamics of the semiclassical Ehrenfest theory (SET)

We calculate nonadiabatic electron wavepacket dynamics in the level of theory equivalent to
the semiclassical Ehrenfest theory (SET) to the first order. Here we do not consider explicit
path-branching for the sake of simplicity, but we have presented it in part in Section 2.5. The
theory is derived from the path-branching representation [3,8,20-28] by means of wavepacket-
averaging of the force operator F*. Theoretical details have already been discussed in Chapter
2, thus here we rewrite only the resulting equations.

The electron wavepacket is expanded in the form
Vaeo(R 1, t) = ) () (r; R(2)). (3.3)
I

The electron wavepacket follows the equation of motion expressed as

. dCI el . . h2
Zﬁﬁ = ; (HI(J) - Zﬁg R X}, — ol ?YIIZ Cy, (3.4)
and a nuclear path is classically driven by the wavepacket-averaged force Fj. defined as

Fr = (U|F*w) = ;C;<¢I|86H—};”|¢J>CJ' (3.5)
In the present chapter, YI’} (a correction term for intuitively derived SET [22]) is neglected in
all the calculations for the sake of computational cost, which should be justified because of the
factor A2
In this study, those equations are numerically integrated with the matrix elements calculated
on-the-fly. The nuclear (classical) equation of motion using the mean force in Eq. (3.5) is nu-
merically integrated by using the velocity Verlet method with the time step of 0'3& fs. The elec-
tronic equation of motion (3.4) is also numerically integrated by means of the Adams method
with automatically controlled time step width, which is usually 10-100 attoseconds. The matrix

elements are updated at the same interval as nuclei for the sake of calculation cost, and assumed
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to be constant in the meantime. It is justified because the amount of changes in matrix elements
are much smaller than that of {C/(t)}.

(el)

Evaluation of derivatives of the matrix elements such as %}CL or X¥, takes so much longer
time of all the calculations involved, thus it is regarded as a bottle neck. In order to increase the
overall speed of computation, we implemented a framework to perform parallel computation of

numerical derivatives. We discuss technical detail in Appendix A.

3.2.2 Adiabatic wavefunctions as a basis set

In the present work, the basis functions of the electron wavepacket {®;(r; R(¢))} shown in Eq.
(3.3) are chosen to be adiabatic wavefunctions {®, (r; R(t))} obtained on-the-fly through quan-
tum chemical calculations. The adiabatic wavefunctions and relevant matrix elements are cal-
culated by using modified GAMESS programming package. [128,129] We perform CISD/RHF
level of calculation for all the static and dynamical analysis, except for geometry optimization
and following Hessian matrix evaluation (RHF level). Effective core potential is adopted for
Mn atom, and 6-31G basis set is for all other atoms. We added diffuse orbitals to the H and N
atoms, which are crucial for expressing the present mechanism. [11] Those to the o