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Abstract

A number of chemical reaction mechanisms involving nonadiabatic interaction as an essen-

tial factor are presented. We investigate those mechanisms by using nonadiabatic electron

wavepacket dynamics theory. Here the electronic wavepacket is explicitly time-dependent to

go beyond the Born–Oppenheimer approximation (adiabatic approximation between nuclear

and electronic motions). We are especially concerned with low energy dynamics, where the

total energy allocated to the nuclear motion toward the potential barrier is as much as its height.

In this case, nonadiabatic interaction is rather crucial than unignorable. In the first half of the

present thesis, we discuss explicit path-branching induced by nonadiabatic interaction. We de-

velop an algorithm based on the so-called path-branching representation (PBR) to apply it to the

low energy dynamics. Through the dynamics calculations in a one-dimensional model system,

we propose two mechanisms, namely, a tunneling-like effect and a friction-like effect induced

by nonadiabatic interaction. Full-quantum calculations and multi-dimensional implementation

are also performed to obtain results parallel to the one-dimensional ones.

In the second half, we demonstrate photodynamics of X-MnOH2 to propose a mechanism

of coupled proton-electron transfer in excited states resulting in charge separation. We are

stimulated to examine this system by a Mn cluster embedded in the photosystem II (PSII).

The Mn cluster performs photo-driven oxidation of water molecules to provide protons and

electrons, which is known to be an early process of photosynthesis. In the proposed mechanism,

the proton and electron take mutually different pathways to reach spatially different places

on the accepter to induce charge separation. The roles of Ca in PSII and the relation to the

Mn cluster are also presented. Through those nonadiabatic electron wavepacket dynamics, we

provide further insight into chemical reactions that is beyond the scope of the standard method

based on the Born–Oppenheimer approximation.
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Chapter 1

General introduction

The Born–Oppenheimer approximation [1] (adiabatic approximation between the nuclear and

electronic motions) is a basis of all molecular quantum mechanics. [2] The large mass of a

nucleus compared to that of an electron allows us to approximately separate the electronic and

nuclear motions. This separation vastly simplifies quantum treatment of molecules, where we

just solve an eigenvalue problem with respect to an electronic Hamiltonian Ĥ(el)(r;R) as

Ĥ(el)(r;R)Φα(r;R) = Vα(R)Φα(r;R). (1.1)

Such a time-independent electronic state theory is widely recognized as a robust framework of

molecular science, in which the obtained V0 (the ground electronic state) form Eq. (1.1) is used

as a potential function of the nuclear configuration.

However, necessity of nonadiabatic treatment of a molecule arises in some exotic cases.

Laser chemistry requires such a treatment of electrons. [3] The rapid advances of ultrashort

pulse lasers have reached pulse width shorter than 100 attoseconds, [4–6] which is comparable

to the time scale of electron dynamics. A molecule with highly (quasi) degenerate electronic

states is also of interest. [7] In this case, isolated molecular electronic states become almost

meaningless. [8]

A chemical reaction requires the nonadiabatic treatment as well, if the relevant shift of

nuclear configuration modifies electronic states in quality. In such a chemical reaction, nonadi-

abatic electron dynamics is inevitable for appropriate description of molecular dynamics. This

is the situation of the main interest in the present thesis. Typical examples can be found in

a forbidden reaction of the Woodward-Hoffman symmetry conservation, [9] fast relaxation of
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excited states through conical intersections, [2] and a coupled electron and proton transfer reac-

tion. [10, 11] In order to tackle such nonadiabatic problems, methodology should be developed

to take in mutually coupled multiple adiabatic states to express nonadiabatic transition. In

addition, it should be multi-dimensional so as to consider the interesting nonadiabatic effects

including those of a conical intersection [2] and a geometric phase. [12] Thus the problem is

essentially multi-state and multi-dimensional, and the involved electronic states must be time-

dependent.

Technically speaking, a full-quantum approach to such a multi-state and multi-dimensional

molecular system is too difficult in practice. Instead, various methods have been proposed to

enable us to investigate the nonadiabatic problems (discussed in Chapter 2 in detail). Some

of the methods including surface hopping methods [13–19] can take in nonadiabatic transition.

However, they are not suitable for electron dynamics, because they involve unphysical sudden

change of electronic states (hopping). In contrast, we approach this problem by means of an

on-the-fly nonadiabatic method based on the so-called path-branching representation (PBR),

[3, 8, 20–29] which can describe nuclear and electron dynamics consistently. We can clearly

interpret the physical picture of both electrons and nuclei with PBR. This feature enables us to

investigate insight into chemical reactions.

In the present thesis, we discuss novel mechanisms relevant to chemical reactions involving

nonadiabatic interaction thorough electron wavepacket dynamics. We are especially concerned

with low energy dynamics, where the total energy allocated to the nuclear motion toward the

potential barrier is as much as its height. In this case, nonadiabatic interaction is rather cru-

cial than unignorable. We begin with a one-dimensional model system, and proceed to multi-

dimensional molecular systems. The discussion flows from conceptual to realistic. The rest

of the thesis is organized to reflect this flow as clearly as possible. In Chapter 2, we examine

rather conceptual aspect of chemical reactions involving path-branching induced by nonadia-

batic interaction. We briefly review the theory of PBR [3, 8, 20–29] and develop an algorithm

so that we can investigate low energy systems, where the total energy allocated to nuclei is

comparable to the barrier height. [29] We demonstrate a tunneling-like effect and a friction-like

effect induced by nonadiabatic interaction in a one-dimensional model system by using the de-

rived algorithm. Full-quantum dynamics in the same model system is presented for qualitative

comparison. We also perform the multi-dimensional implementation of the PBR dynamics for

a molecular system to confirm that the mechanisms obtained above are not the characteristics
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of the one-dimensional system.

In Chapter 3, we examine rather realistic molecular systems to discuss photodynamical

mechanisms resulting in charge separation in excited electronic states. The mechanism is called

coupled proton-electron transfer, where the proton and electron take mutually different path-

ways to reach spatially different places on the acceptor. [11] That is the reason why the charge

separation is induced. The target systems commonly include a Mn atom. We are stimulated

to examine such systems by the Mn cluster in photosystem II (PSII). The Mn cluster performs

photo-driven oxidation of water molecules to produce protons and electrons, which is the early

process of photodynamics. The roles of a Ca atom in PSII are discussed by direct comparison

of the systems with and without Ca. We briefly investigate the relationship between the system

of X-MnOH2 and the Mn cluster in PSII to find they resemble each other significantly. Another

scenario (electron attachment instead of the coupled proton-electron transfer) is also mentioned.

Chapter 4 concludes this thesis. Some appendices follow to address technical details.
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Chapter 2

Low energy path-branching dynamics and

mechanisms induced by nonadiabatic

interaction

2.1 Introduction

The theory of nonadiabatic electron wavepackets has two mutually coupled aspects: One is

time-dependent nonadiabatically bifurcating electron wavepackets and the other is the dynamics

of associated nuclear paths, [30] which carry those electron wavepackets and branch in the

nonadiabatic regions (see Ref. [26] and Ref. [3] for review). It is therefore quite important to

know how the nuclear paths behave in those critical regions.

As an alternative to quantum-wavefunction method, path concept (as in path integration,

[31, 32] semiclassical dynamics, [33, 34] classical trajectory analysis, and so on) is often very

useful for conceptual understanding and qualitative analysis of chemical reactions. An example

of particularly characteristic dynamical processes is (tentatively) trapping phenomenon of a path

in the transition state region of the saddle structure. In addition to the reactive resonances (either

Feshbach type or shape resonance), two origins of trapping have been reported. One is a peri-

odic bouncing motion, the trajectory of which is transversal to the reaction coordinate, forming

the so-called periodic orbit dividing surface. [35, 36] The other is more universal and emerges

from the kinematic coupling between molecular rotation and vibration, which effectively makes

a potential basin in the saddle region. [37] These are relevant not only to the rate process but

to spectroscopies of the transition states (see [38] for an extensive review of transition-state
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spectroscopy. For a theory see [39]). Another interesting dynamics is deep tunneling, in which

a “path” penetrates into a potential barrier and eventually passes across to leak in the other

side. [40–45] This is a purely quantum phenomenon, and yet it can be well described with paths

in complex phase-space (or imaginary time) or by the so-called Bohmian trajectories. [46, 47]

These are dynamics on a single potential energy surface (PES).

In molecular systems, however, potential barriers (negatively convex structure along a reac-

tion coordinate) are quite often created by nonadiabatic interactions with upper potential energy

surfaces having basin-like structures. [2, 48] The relevant effects manifest themselves in spec-

troscopy through the Jahn-Teller effect and so on. [49] As for reactive scattering, the so-called

nonadiabatic tunneling as studied with Zhu-Nakamura theory is a highlight in semiclassical

path dynamics. [50] For a high-energy passage across nonadiabatic regions, the surface hopping

model is well accepted to conveniently describe nonadiabatic jump within the (classical) path

dynamics. [13–19] On the other hand, it has been revealed by full-quantum studies [51–54]

and experiments [55–57] that the passage of quantum wavepackets across nonadiabatic re-

gions (avoided crossing and conical intersection) can be indeed observed. In particular, the

theory of time-resolved photoelectron spectroscopy has illustrated how the wavepacket bifur-

cations can be reflected in the photoelectron signals and how they can be dynamically con-

trolled. [51–54,58] The wavepacket bifurcation is indeed essential because it is a manifestation

of electron-nuclear quantum entanglement induced by nonadiabatic interactions.

Such wavepacket bifurcation can be nicely represented in terms of the so-called path-branching

representation based on continuous non-Born–Oppenheimer paths in the theory of nonadiabatic

electron wavepacket dynamics. [3,8,20–29] In this theoretical framework, a Hamiltonian in the

general mixed quantum and classical representation described in the electronic Hilbert space

and nuclear configuration space is first established, with which the electronic wavepacket dy-

namics as well as the relevant nuclear path solutions are sought for. The solutions of these

dynamics give rise to infinitely many branching nuclear paths to represent the wavepacket bifur-

cation as emphasized above. However, the exact solutions of the dynamics should be too com-

plicated and time-consuming to attain. Therefore we introduce an approximate yet appropriate

averaging procedure to reduce the number (frequency) of the path-branchings. A typical exam-

ple can be seen in Refs. [3, 22]. To be a little more precise, the path-branching representation

consists of repeated applications of (i) averaging of many to-be-branched paths and (ii) branch-

ing of these averaged paths under certain conditions. The branching is performed in terms of
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the so-called force matrix. [20] Numerical assessments, accuracy and tractability of the method

of path branching, have been repeatedly performed with affirmative conclusions. [3, 8, 20–29]

In these former studies, however, we studied systems of rather high energy dynamics; the

total energy of the studied systems is higher than the energy of avoided crossing or conical

intersection. In order to study nonadiabatic chemical reactions in a low energy domain, on the

other hand, we need more careful treatment of path branching for the non-Born–Oppenheimer

trajectories. We therefore first revisit and refine the branching-and-averaging algorithm in an

energy range comparable to the height of potential barriers. We also show that the total energy

thus partitioned to the branched paths is conserved, even if some of the branched nuclear paths

penetrate into classically inaccessible domains. Thus these non-Born–Oppenheimer paths can

undergo classical forbidden events through nonadiabatic interactions.

To illustrate such nonclassical events as a manifestation of electronic quantum effects on

nuclear paths, we study two characteristic phenomena relevant to chemical reaction dynamics

for an incident nuclear wavepacket to encounter a potential barrier, on top of which lies an-

other adiabatic potential curve with nonadiabatic coupling. Two cases are surveyed: (1) Initial

paths coming into the nonadiabatic interaction region with energy lower than the barrier height,

and each can branch into two pieces (and repeat branching subsequently), the upper counter-

part of which may penetrate into the higher energy region and eventually branches back to

the ground state and proceed to the product site. This is so to say surmounting the potential

barrier via nonadiabatically coupling excited state. (2) A classical path whose initial energy

is a little higher than the barrier (and may be lower than the bottom of the excited state) can

branch and some of whose counterparts are trapped on top of the potential barrier. Those two

mechanisms are also termed in short a tunneling-like effect and a friction-like effect induced

by nonadiabatic interaction, respectively. It follows concomitantly that the trains of pulse-like

waves flow both to product and reactant sides with time-delay are observed. Such expectations

arising from the path-branching representation are numerically confirmed with full quantum

mechanical wavepacket dynamics. Although we here treat only a one-dimensional case since it

is most illustrative for qualitative presentation, the extension of path-branching theory to multi-

dimensional systems is rather straightforward.

This chapter is organized as follows. In Section 2.2, we outline the theoretical framework

of path-branching representation and then extend it so as to be able to treat low energy nona-

diabatic transitions by proposing a branching condition. Analysis on how the state populations
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and associated energies are partitioned to those individual paths is presented. In Section 2.3,

the algorithm is applied to the 1-dimensional 2-state model system. In Section 2.4 full-quantum

studies will be presented to confirm those expected wavepacket branching phenomena. In Sec-

tion 2.5, we perform multi-dimensional implementation for molecular systems. Section 2.6

concludes the chapter.

2.2 Smooth path branching into classically forbidden regions

2.2.1 Electron wavepacket dynamics along nuclear non-Born–Oppenheimer

(BO) paths

First we briefly review the path-branching representation of nonadiabatic electron wavepacket

dynamics. Further details are available elsewhere. [3, 8, 20–29] In this theory, dynamics of

the nuclear degrees of freedom is realized by branching non-Born–Oppenheimer paths, and

the electron wavepackets propagate in time on these paths. Suppose we have a nonrelativistic

molecular system without external electromagnetic fields. The quantum molecular Hamiltonian

is written generally as

H(r,R) =
1

2

∑
k

P̂ 2
k +H(el)(r;R), (2.1)

where H(el)(r;R) = 1
2

∑
j p̂

2
j + Vc(r,R) is the electronic Hamiltonian, with r and R denoting

the electronic and nuclear coordinates, respectively. p̂j and P̂k are the operators of the con-

jugate momenta of the components rj and Rk of r and R, respectively. Vc(r;R) represents

the Coulomb interactions. Rewriting the total Hamiltonian Eq. (2.1) in the Hilbert space for

electrons and configuration space for nuclei as

H(R, elec) ≡ 1

2

∑
k

(
P̂k − ih̄

∑
IJ

|ΦI⟩Xk
IJ⟨ΦJ |

)2

+
∑
IJ

|ΦI⟩H(el)
IJ ⟨ΦJ |. (2.2)

Replacing the nuclear momentum operator here in this expression with the classical counter-

part P̂k → Pk, we define the mixed quantum-classical Hamiltonian. Then we apply the time-

dependent variational principle with this Hamiltonian and attain the equations of motion for
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electron as

ih̄
dCI

dt
=
∑
J

(
H

(el)
IJ − ih̄

∑
k

ṘkX
k
IJ − h̄2

2

∑
k

Y k
IJ

)
CJ , (2.3)

where the electron wavepacket state Ψelec(R (t)) is expanded in basis functions at each nuclear

position R(t) as

Ψelec(r,R, t) =
∑
I

CI(t) ΦI(r;R)|R=R(t) (2.4)

with {ΦI(r;R(t))} being the Slater determinants, configuration state functions (CSF), adiabatic

electronic functions, and so on at R = R(t). The matrix elements in these expressions are

defined as

H (el)
IJ =

⟨
ΦI

∣∣∣Ĥ(el)
∣∣∣ΦJ

⟩
, Xk

IJ =

⟨
ΦI

∣∣∣∣ ∂

∂Rk

∣∣∣∣ΦJ

⟩
and Y k

IJ =

⟨
ΦI

∣∣∣∣ ∂2∂R2
k

∣∣∣∣ΦJ

⟩
. (2.5)

In what follows, bra-ket inner products represent the integrations over the electronic coordi-

nates. We have omitted the terms related to the external fields for the sake of simplicity, but the

relevant generalization is rather straightforward. [3, 8, 24–29]

The nuclear path solutions are to be obtained by the Hamilton canonical equations of mo-

tions, which in turn give the force matrix F(R), a matrix representation of the force operator

F̂k in the kth direction, to drive the nuclear motion, which is defined as

Fk
IJ = ⟨ΦI |F̂k|ΦJ⟩

= −

[
∂H

(el)
IJ

∂Rk

+
∑
K

(
Xk

IKH
(el)
KJ −H

(el)
IK X

k
KJ

)]

+ ih̄
∑
l

Ṙl

[
∂X l

IJ

∂Rk

− ∂Xk
IJ

∂Rl

]
, (2.6)

In the semiclassical Ehrenfest theory (SET), [59–64] one takes an force average in the kth

direction over the electron wavepacket such that

R̈k = ⟨Ψelec(r,R, t)|F̂k|Ψelec(r,R, t)⟩ =
∑
I,J

C∗
IF

k
IJCJ

= −
∑
I,J,K

C∗
I

(
Xk

IKH
(el)
KJ −H

(el)
IK X

k
KJ

)
CJ −

∑
IJ

C∗
I

∂H
(el)
IJ

∂Rk

CJ , (2.7)
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which is equivalent to the Hellmann-Feynman force

R̈k = −
⟨
Ψelec(R(t))

∣∣∣∣∂H(el)

∂Rk

∣∣∣∣Ψelec(R(t))

⟩
, (2.8)

if the electronic basis set happens to be complete. Note also that if Xk
IJ is virtually zero in the

adiabatic representation, the force matrix has only the diagonal elements, which are equivalent

to the ordinary forces given by the energy gradients of the potential energy surfaces.

2.2.2 The semiclassical Ehrenfest paths

The mean-field paths in the semiclassical Ehrenfest theory (SET), [59–64] appear to be as a

special case of the present theory when we take a force average in the kth direction over the

electron wavepacket such that

R̈k = ⟨Ψelec(r,R, t)|F̂k|Ψelec(r,R, t)⟩ =
∑
I,J

C∗
IF

k
IJCJ

= −
∑
I,J,K

C∗
I

(
Xk

IKH
(el)
KJ −H

(el)
IK X

k
KJ

)
CJ −

∑
IJ

C∗
I

∂H
(el)
IJ

∂Rk

CJ , (2.9)

which is equivalent to the Hellmann-Feynman force

R̈k = −
⟨
Ψelec(R(t))

∣∣∣∣∂H(el)

∂Rk

∣∣∣∣Ψelec(R(t))

⟩
, (2.10)

if the electronic basis set happens to be complete. Recall, however, that the equation for elec-

tronic state mixing, Eq. (2.3), contains the second-order derivative terms that does not arise in

the intuitively-derived equations of motion for the standard SET.

The SET is known to give very accurate nonadiabatic transition amplitude up to the quantum

phases as long as it is before the path enters an asymptotic region, where the nonadiabatic

coupling elements begin to vanish. [22] As stressed in Section 2.1, the nonadiabatic interactions

let the full quantum nuclear wavepackets branch into those pieces that eventually run on the

individual adiabatic potential surfaces. But an SET mean-field path can never branch in itself

but runs on an averaged potential surface.

Recently new lights are shed on the Ehrenfest paths. Miller has found a particular phys-

ical relevance of these paths [65, 66] (see also [67]) from the view point of the so-called

Meyer-Miller-Stock-Thoss theory. [59, 68] Shalashilin [69–71] has developed an MCTDH-
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based method [72, 73] for the Gaussian coherent states guided by many Ehrenfest paths. This

idea is an interesting modification of the method of generating basis functions due to the multi-

ple spawning method. [74–76] (Note though that the SET paths cannot always cover the entire

path-space as illustrated in Refs. [22, 23].) We also use the force averaging procedure in the

present theory to partly generate mean-paths before path-branchings. However, the main con-

cern of this work is to see how the non-Born–Oppenheimer paths are led to branch naturally by

the electronic quantum effects. In particular, we demonstrate that such branched paths are natu-

rally deformed and can penetrate into nonclassical domains, which are important for qualitative

understanding of chemical dynamics.

2.2.3 Phase-space averaging and natural branching (PSANB) of the non-

BO paths in low energy regime

Technically, the exact solutions of Eqs. (2.3) and (2.6) give rise to the rapid increase of the

infinite number of paths. Therefore we need to devise a numerical practice to suppress such

unlimited path-branchings. One of such algorithms has already been studied in an energy region

higher than those of the relevant avoided crossing or conical intersections, which is called phase-

space averaging and natural branching of paths (PSANB). [3, 8, 20–29] We here propose an

alternative path-branching algorithm for nonadiabatic dynamics, which works better in a low

energy regime. Since the new algorithm shares the many common practices with the high

energy PSANB, we begin with a brief review of it.

Force diabatization and branching paths

The force operator F itself can induce electronic-state mixing because of its off-diagonal ele-

ments. Such electronic-state mixing can be avoided by diagonalization of the force matrix for

each short time interval ∆t at a nuclear position R as

F(r;R)λK(r;R) = fK(R)λK(r;R), (2.11)

where λK(r;R) and fK(R) are the Kth eigenfunction and eigenforce, respectively. The elec-

tron wavepacket at R may be expanded in {λK} such that

Ψelec(r;R(t)) =
∑
K

DK(t)λK(r;R). (2.12)

23



Each electronic component DKλK(r;R) is carried by its own path driven by the eigenforce fK ,

without electronic-state mixing among {λK}. Note that different eigenforces make different

paths even if they start from a single phase space point (R,P) such as

(R,P) → (RK ,PK). (2.13)

Hence the number of paths which stem from a single path is as many as that of electronic states

involved in the nonadiabatic coupling. This is the origin of continuous path-branching.

Averaging over the paths to extract a (few) representative path(s) in the coupling region

The main purpose of PSANB [3, 8, 20–29] is to extract the “representative path” from the cas-

cade of branching paths. It is expected that the nonadiabatic region is narrow enough that those

branching paths should not geometrically deviate much from each other in phase space. There-

fore they should localize along a representative path forming a tube-like structure. We extract

such a path by taking an average of phase-space points in the following manner.

1. At a phase-space point (⟨R(t)⟩, ⟨P(t)⟩), diagonalize the force matrix as in Eq. (2.11).

2. The Kth eigenforce drives a path starting from (⟨R(t)⟩, ⟨P(t)⟩) for a short time ∆t as

RK(t+∆t) = ⟨R(t)⟩+∆RK , (2.14)

PK(t+∆t) = ⟨P(t)⟩+∆PK , (2.15)

3. Average them into the form

⟨R(t+∆t)⟩ = ⟨R(t)⟩+
∑
K

|DK(t)|2∆RK/
∑
L

|DL(t)|2 (2.16)

and

⟨P(t+∆t)⟩ = ⟨P(t)⟩+
∑
K

|DK(t)|2∆PK/
∑
L

|DL(t)|2, (2.17)

which make the next point (⟨R(t+∆t)⟩, ⟨P(t+∆t)⟩) of the representative path.

4. With this averaged point, we diagonalize the force matrix as in Eq. (2.11) at this phase-

space point and return to the step 2. The successive applications of procedures 1-3 give a

single finite path.
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Phase-space averaging of to-be-branched paths versus the force averaging (SET)

In the eigenforce representation, the averaged forces in the SET (recall Eq. (2.9)) are repre-

sented as

R̈k =
∑
K

|DK(t)|2fk
K/
∑
L

|DL(t)|2. (2.18)

The first order approximation to the SET is

⟨P(t+∆t)⟩SET = ⟨P(t)⟩+ R̈∆t

= ⟨P(t)⟩+
∑
K

|DK(t)|2∆PK/
∑
L

|DL(t)|2 (2.19)

and

⟨R(t+∆t)⟩SET = ⟨R(t)⟩+ ⟨P(t)⟩∆t

= ⟨R(t)⟩+ ⟨P(t)⟩
∑
K

|DK(t)|2∆t/
∑
L

|DL(t)|2 (2.20)

Equations (2.19) and (2.17) are formally the same (to the first order) for the short interval. Also,

it holds

⟨P(t)⟩
∑
K

|DK(t)|2∆t ≃
∑
K

|DK(t)|2∆RK (2.21)

in the first order approximation, and Eqs. (2.20) and (2.16) are also very close to each other

in the first order of ∆t. Thus, it turns out that phase-space averaging and SET are equivalent

to each other in the first order approximation. Technically, however, the latter (SET) should

be faster than the former (PSANB) because diagonalization of the force matrix is not neces-

sary. Therefore we use the force averaging as an averaging procedure in what follows for its

simplicity.

2.2.4 A guiding principle to let an averaged path branch

Branching condition

We next consider a condition to terminate the averaging procedure at a point, where one can

judge that it is inaccurate or not physically appropriate to continue the averaging. Such points

can be either an exit point of the interaction region or even in a region of strong coupling. In
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our former studies, [3, 8, 20–29] the path-branching condition was set to

|ṘXIJ | < A (2.22)

with A being a parameter that should be predetermined appropriately. This method has been

proved to be very useful for high energy cases compared to the barrier height to obtain rel-

evant paths and transition probability. Moreover, Eq. (2.22) has been applied mainly to the

path branching at the exit of nonadiabatic region. This is because for high energy passage of

nonadiabatic region an averaged path gives a good approximation as long as the nonadiabatic

electronic state mixing is strong. Therefore path branching that terminates the averaging was

usually applied once at an exit from the region of strong coupling. However, in case of an energy

comparable with or lower than the crossing energy, the branched paths in the strong coupling

region should well represent precise phenomena induced by the bifurcating quantum wavepack-

ets. For instance, when the total energy is comparable to the barrier height, it is anticipated that

one path may surmount the barrier while the other comes back. We therefore consider below

which conditions should be theoretically acceptable and numerically tractable.

It is quite natural to judge that path-averaging is no longer good when the average path devi-

ates appreciably from the paths that are generated according to their own individual eigenforces.

Suppose an averaged path lies at a phase space point (R(t),P(t)). From this point on, we can

keep generating an averaged path. But unaveraged paths can emanate that are driven by the

individual eigenforces fK(R). With (R(t),P(t)) being the initial point a path given by, say,

fK(R) is propagated as

RK(t+∆t) = RK(t) + ∆RK , (2.23)

PK(t+∆t) = PK(t) + ∆PK , (2.24)

where K is fixed for each path. We call these trajectories side paths. The number of side paths

is as many as that of eigenforces. The side paths are made restart at each starting point of the

average paths. They gradually deviate from each other, reflecting the diversity of the relevant

paths due to the nonadiabatic interactions. Some of the side paths are expected to run on the

edge of the cascade of branching paths as shown in Fig. 2.1. Therefore we monitor a pair of

side paths that are most separate in phase space, and if the distance exceeds a predetermined
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value Θ such that ∑
K<L

|RK −RL|2 + |PK −PL|2 > Θ, (2.25)

we judge that the real paths surrounding the average path are too widely distributed and it is a

time to terminate the path-averaging.

Branching

We here consider only a two-state case for simpler illustration, and extension to the more

states is rather straightforward. Suppose at a phase space point (R(t),P(t)) we have a SET

path, for which the force diagonalization gives a set of {D1(t), D2(t)} for the force eigenstates

{λ1(r,R(t)), λ2(r,R(t))}, giving rise to an electron wavepacket

Φ(t) = D1(t)λ1(r,R(t)) +D2(t)λ2(r,R(t)). (2.26)

We here consider the following two propagation of the state: (1) Continue the Ehrenfest dy-

namics for the next short time interval ∆t (denoted as path 0), and (2) let the path branch into

two pieces (path 1 and 2). For the path-branching, along with the associated electronic state

mixing, we prepare two vectors as the initial electronic states (at time t)

(D1(t), 0) and (0, D2(t)) . (2.27)

The wavefunctions for them are, respectively,

Φ1(t) = D1(t)λ1(r,R(t)) and Φ2(t) = D2(t)λ2(r,R(t)). (2.28)

With these initial conditions, two SET paths are generated. Then at time t + ∆t we compare

the energies thus partitioned. This gives two branching paths, which are different from the SET

path, as schematically illustrated in Fig. 2.1.

2.2.5 Energy allocated to branching paths and energy conservation

In branching from an averaged path as above, those paths can have different (higher and lower)

energies than that of the averaged (parent) path. Therefore we should survey how the popula-

tions and energies should be allocated to each path, and in so doing it is confirmed that the total
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Figure 2.1: Schematic representation of the expected exact solutions of Eq. (2.6) (expressed
as cascades) and the mean (SET) path as a representative (purple lines). The side paths running
on the edge lines of the cascades are monitored for a short time (see text). The mean path is let
branch when the side paths are significantly separated from each other.

energy summed up over all the branched paths are conserved.

First we consider the path 0 (SET path). The total Hamiltonian for the SET dynamics is

H0 (R,P) =
P2

2
+

⟨
Φ(t))

∣∣H(el)
∣∣Φ(t)⟩

⟨Φ(t)|Φ(t)⟩

=
P2

2
+

⟨
(D1(t)λ1(R) +D2(t)λ2(R))

∣∣H(el)
∣∣ (D1(t)λ1(R) +D2(t)λ2(R))

⟩
r

⟨Φ(t)|Φ(t)⟩
,

(2.29)

where again the bra-ket inner product is to be performed over the electronic coordinates alone.

Likewise the Hamiltonians to drive the path 1 and path 2 are, respectively,

HK (R,P) =
P2

2
+

⟨
ΦK(t))

∣∣H(el)
∣∣ΦK(t)

⟩
⟨ΦK(t)|ΦK(t)⟩

=
P2

2
+
⟨
λK(R)

∣∣H(el)
∣∣λK(R)

⟩
r

(2.30)

for K = 1, 2. It is well established that the individual energy is conserved along each SET path.

Potential energy varied

In the force-state representation, we usually do not directly refer to the value of adiabatic poten-

tial energy surfaces. Therefore the potential energy that each path bears is to be estimated with

integration of the force over a shifted distance. With the above Hamiltonian, Eq. (2.29) for path
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0, let us write down the time-derivative of the momenta, that is, the forces as

Ṗk
0= −

⟨
(D1(t)λ1(R) +D2(t)λ2(R))

∣∣∂H(el)/∂Rk
∣∣ (D1(t)λ1(R) +D2(t)λ2(R))

⟩
r

⟨Φ(t)|Φ(t)⟩
(2.31)

For the force eigenstates, the off-diagonal terms are close to zero, that is,

⟨
λ1(R)

∣∣∂H(el)/∂Rk
∣∣λ2(R)

⟩
≃ 0, (2.32)

and only the diagonal parts remaining in the expression as

Ṗk
0= −

⟨
D1(t)λ1(R)

∣∣∂H(el)/∂Rk
∣∣D1(t)λ1(R)

⟩
r
+
⟨
D2(t)λ2(R)

∣∣∂H(el)/∂Rk
∣∣D2(t)λ2(R)

⟩
r

⟨Φ(t)|Φ(t)⟩
.

(2.33)

Similarly we have the forces for path 1 and 2, respectively, as

Ṗk
K= −

⟨
λK(R)

∣∣∂H(el)/∂Rk
∣∣λK(R)

⟩
r
. (2.34)

for K = 1, 2.

The variation of the potential energy can be estimated rather directly with an elementary

expression as

∆V0 = ⟨Φ(t)|Φ(t)⟩
∑
k

∫ Rk+∆Rk

Rk

Ṗk
0dR

k. (2.35)

Note that the population of the state to be carried by the path 0 is multiplied to the classical

expression of the potential energy. Likewise, we have

∆VK = |DK(t)|2
∑
k

∫ Rk+∆Rk

Rk

Ṗk
KdR

k (2.36)

for path K (K = 1, 2). For a time interval as short as ∆t, ∆Rk can be approximated to be

∆Rk = Pk(t)∆t (2.37)

irrespective of the kind of these paths. Collecting Eqs. (2.33) to (2.34) and Eqs. (2.35) to (2.36)

altogether, we have

∆V1 +∆V2 = ∆V0, (2.38)

which claims that the variation in the sum of the potential energies of path 1 and path 2 is the
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same as that for path 0 in the first order.

Kinetic and total energies varied

Next we survey the variation of the kinetic energy. In the first order with respect to ∆t, one can

approximate as

P(t+∆t) = P(t) + Ṗ∆t, (2.39)

which in turns give the first order expression of the kinetic energy as

1

2
P(t+∆t)2 ≃ 1

2
P(t)2 +P(t) · Ṗ∆t. (2.40)

Recalling here that at the branching time t all the momenta are taken equal, that is, P(t) =

P0(t) = P1(t) = P2.(t), we compare only Ṗ∆t terms. For path 0, it is

Ṗ0∆t

= −
⟨
D1(t)λ1(R)

∣∣∂H(el)/∂Rk
∣∣D1(t)λ1(R)

⟩
r
+
⟨
D2(t)λ2(R)

∣∣∂H(el)/∂Rk
∣∣D2(t)λ2(R)

⟩
r

⟨Φ(t)|Φ(t)⟩
∆t,

(2.41)

while

Ṗk
K∆t= −

⟨
λK(R)

∣∣∂H(el)/∂Rk
∣∣λK(R)

⟩
r
∆t (2.42)

for path 1 and path 2 with K = 1 and 2, respectively. The same arithmetic in the potential

energy can be applied to the present case, and the result is

P(t) · Ṗ0∆t ⟨Φ(t)|Φ(t)⟩ = P(t) · Ṗ1∆t |D1(t)|2 +P(t) · Ṗ2∆t |D2(t)|2 . (2.43)

Therefore, in the first order, the kinetic energy is conserved as

P0(t+∆t)2 = P1(t+∆t)2 +P2(t+∆t)2. (2.44)
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Thus, the total energyE0 at the point (R(t),P(t)) with the population ⟨Φ(t)|Φ(t)⟩ is conserved

as

E0 = E1 + E2, (2.45)

where EK (K = 1, 2) is the energy carreied by path K, whose population is ⟨ΦK(t)|ΦK(t)⟩ =

|DK(t)|2.

In summary the total energy at a branching point is to be partitioned in proportional to the

populations of the to-be-branched paths, and each is carried in a manner to conserve their own

energy. Note that these branching paths should be guided by the eigenforces. Under the con-

servation rule, the individual non-Born–Oppenheimer paths can thus penetrate into classically

forbidden regions through nonadiabatic interactions.

2.2.6 Schematic illustration

Now that we know how the electronic population should be allocated to each path, we can

consider qualitatively important cases within the framework of the path-branching theory. An

illustrative schematic example is presented in Fig. 2.2: A path running on the lower potential

surface comes in the interaction region and at some point below the top of the adiabatic potential

(left white small circle) branches into two pieces, one with a smaller component but having a

higher energy and the other of larger population whose energy is lowered a little to cancel

the energy taken away by the counterpart. Note that these branched paths are continuously

connected with each other at the branching point in phase space, although the higher energy path

graphically seems to jump abruptly in the potential curve diagram. Therefore this continuous

branching should not be confused with the surface-hopping motion. (Note also that although the

adiabatic potentials are drawn in the figure in order to help imagination, but the dynamics are

performed with use of the force diabatization.) The higher energy path can proceed to totally

different course from the lower energy counterpart, and can bifurcate again at somewhere else

(right white circle). So does the lower path. Thus even after many-time branchings, all the

cascade paths can be continuously traced back to the original path with the total energy being

conserved in the above sense.
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Figure 2.2: Schematic representation of energy conserving path-branching in configuration
space. The branching paths are continuously connected in phase space.

2.3 Applications

2.3.1 Interactions and initial conditions

We apply the above algorithm to a model chemical reaction on one-dimensional, two-state

interaction potential, which is constructed as follows: We first determine a pair of adiabatic

potential energy curves (APEC) to be represented as

ϵ1(R) = VTS exp

(
−
(
R

a

)2
)

ϵ2(R) = −ϵ1(R) + b, (2.46)

where the parameters VTS, a, b are set to VTS = 0.01, a = 1 and b = 0.024 in atomic units, and

thus the top of ϵ1(R) is 0.01 while the bottom VB of ϵ2(R) is 0.014) As usual the matrix U

U =

 cos θ(R) sin θ(R)

sin θ(R) − cos θ(R)

 (2.47)
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transforms the APEC to diabatic potential energy curves (DPEC) with the coupling element

X12 is given as

X12 =
dθ

dR
= −X21, (2.48)

where the rotation angle θ as a function of R is given as

θ(R) =
π

4

(
2− exp

(
−4dR

π

))
, for x ≥ 0 (2.49)

and

θ(R) =
π

4
exp

(
−4dR

π

)
for x < 0, (2.50)

where d is a parameter. We here set d = 2. The resulting APEC and DPEC are shown in Fig.

2.3. In this scheme therefore we can scan the intensity of the nonadiabatic coupling elements

keeping the adiabatic potentials unchanged. We can thus uniquely define the total energy of the

non-Born–Oppenheimer paths with respect to the height of the potential barrier VTS .

The initial conditions are chosen so that the total energy of the path is comparable to the

barrier height VTS . The initial paths are generated on the ground state. The nuclear mass is set

to M = 1836, mimicking a proton. The initial position to launch the paths is set at R0 = −9,

and let them start with a momentum P0 =
√
2ME0 and the total energy E0 to the positive

direction (from left to right in the figures). We here illustrate four typical paths:

1. E0 = 0.0080 = 0.8VTS : below the barrier top (VTS)

2. E0 = 0.0099 = 0.99VTS : close to the barrier top

3. E0 = 0.0125 = 1.25VTS : higher than the top (VTS) and lower than the bottom of the

excited state (VB)

4. E0 = 0.0145 = 1.45VTS : a little higher than VB.

2.3.2 Surmounting a potential barrier by lower energy paths

We begin with the branching dynamics of the two lower energy paths of E0 = 0.8VTS and

E0 = 0.99VTS . As suggested above, quantum paths can branch into the excited state even if the

state energy is not classically accessible, the dynamics of which is caused by the electronic state

mixing due to the derivative coupling Xk
IJ . The surface hopping model and the related theories
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Figure 2.3: Potential energy curves versus the coordinate R. (a) Adiabatic representation. The
solid lines denote APEC ϵi, while the dashed line does nonadiabatic coupling element X12.
(b) Diabatic representation. The solid lines represent the DPEC (red: V11, green: V22) and the
dashed line shows the electronic coupling element V12.

based on it would miss this phenomenon. The branch parameter Θ (see Eq. (2.25)) is set to 8

for the path of E0 = 0.8VTS and to 7 for that of E0 = 0.99VTS . These parameters have been

chosen to make the demonstrations clear.

As observed in Fig. 2.4, the paths come in and return to the reactant site with a large

electronic-state population (the thicker is a curve, the larger is the associated population in the

figure). However, in spite of the fact that the energy of these paths are lower than the barrier

height, they begin to branch and some of the paths eventually reach the other side of the barrier.

Inspection over this figure also shows that some other branched paths go back to the reactant

site tracking the different routes from the parent one. Therefore, a part of the initial wavepacket

is bifurcated and surmounts the barrier.

The paths that reach the other side of the barrier are assisted by the forces from the excited

states. Let us focus on the path ending at around t = 5 × 103 and R = 1.5 of Fig. 2.4(a). The

precise history of this path is as follows. First, the path entered the interaction area with the first

diagonal force (dominated by that of the ground state), and then at a branching point the path

resumes to run driven by the second diagonal force (close to that of the excited state), and at the

second branching point the driving force comes back to the first diagonal component. In this

way the path could go over the barrier although it was classically forbidden.

The overall phenomenon effectively looks like the so-called deep tunneling. [40–45] How-

34



Figure 2.4: The branching paths of the total energy lower than the barrier height. The width of
the paths is proportional to the square root of the electron population on the path. The paths in
red (black) are driven by the forces mainly coming from the ground (excited) state.

ever, of course, they are independent phenomena. In the quantum deep tunneling, the paths go

over the barrier through imaginary space and/or time, as in the instanton theory. [40] On the

other hand, all the non-Born–Oppenheimer paths in this study are supposed to run in the real

space, although the present theory of path branching can be generalized so that the paths can

penetrate into complex spaces.

Another important difference between “surmounting” and “deep tunneling” is their depen-

dences on the potential curves. Deep tunneling tends to be more effective as the potential barrier

is thinner, while the nonadiabatic surmounting does not have such a simple characteristic. For

instance, the path ending at t = 5 × 103 and R = 0 in Fig. 2.4(b) is about to go back to the

reactant side. If this path branches and get back to the ground state, it does not contribute to

the increasing of reaction probability. Another difference is the time-delay of paths, which has

nothing to do with the so-called tunneling time. We will return the problem of time-delay in the

next section.

2.3.3 Trapping above the potential barrier

We next examine the case where the total energy is slightly higher than the barrier height,

namely, E0 = 1.2VTS (lower than the bottom of the excited state though) and 1.45VTS (higher

than the bottom too). Only to the last case, the surface hopping model can access. The branch

parameter Θ (see Eq. (2.25)) is set to 5 and 4, respectively. As shown in Fig. 2.5, some paths are
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Figure 2.5: The same as Fig. 2.4, except that the branching paths have the total energy higher
than the barrier height.

pushed back to the reactant side. These returning paths obviously work to reduce the reaction

probability, and can be regarded as a friction to the reactive motions.

The precise mechanism is as follows. The paths come about the strong interaction area,

where the electronic-state mixing is induced. The forces originated from the excited state trap

some paths as though they undergo vibrational motion on the excited state adiabatic potential

curve. However, again due to the nonadiabatic interactions, the trapped paths gradually spill out

to the both ends of the potential barrier of the ground state. From the view point of chemical

reaction therefore this delayed dynamics looks like a result of friction.

2.4 Full-quantum dynamics to verify the branching phenom-

ena

We now proceed to confirm the physical picture drawn by the path-branching representation

is consistent with the full-quantum results. Here in this chapter we compare the quantitative

aspects of the phenomena observed above.
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2.4.1 Method and initial conditions

The initial conditions for the quantum dynamics corresponding to those in the preceding section

are first described. Suppose a total wavefunction Ψ(R, r, t) is expanded as [77]

Ψ(R, r, t) =
∑
I

χI(R, t)ΦI(r;R), (2.51)

where χI is a nuclear wavepacket on the adiabatic potential curve created by the electronic

eigenstates ΦI(r;R), which are assumed to be known beforehand. We propagate the nu-

clear wavepackets with the extended split operator method. [15] The initial nuclear wavepacket

{χI(R, t)} is chosen to be a coherent-type Gaussian function on the adiabatic ground state as

χ1(R, 0) = (π∆R2)−1/4 exp

[
−(R−R0)

2

2∆R2
+ i

P0R

h̄

]
,

χ2(R, 0) = 0. (2.52)

R0 and P0 are the same quantities as those defined in Sec. 2.3.1 for the path-branching repre-

sentation. The wavepacket width in coordinate space is set to ∆R = 1. The number of grid

points for FFT is 512 on the space ranging from −32 to 32. Two absorbing imaginary potentials

Va are placed at the both ends, which are defined as

Va(R) = −30i exp

(
−
(
R± 20

2

)2
)
. (2.53)

Va works not only to avoid the artificial reflection of the wavepackets from the boundaries but

in the calculation of the reaction probability by integrating the absorbed components.

2.4.2 Time-delay induced by the trapping motion above the transition

The trails of the quantum wavepackets in (t, R)-coordinates are drawn in Fig. 2.6 left column,

corresponding to the above four energies: (a) E0 = 0.008VTS , (b) E0 = 0.99VTS , (c) E0 =

0.0125 = 1.25VTS , and (d)E0 = 1.45VTS . The color chart in each diagram clearly indicates the

wavepacket bifurcations, whose patterns are dependent on the energy.

In the right column, corresponding to each left panel, are depicted the square root of the

population of the state (|Ψ|) that passes across the line R = 9 (red and solid curve, measured

from right to left along the horizontal axis) and R = −9 (green and dashed curve, measured
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from the left to the right) as a function of time. The former is proportional to the magnitude of

|Ψ| reaching the product area, while the latter represents that of the original reactant area. (We

do not resort to the population |Ψ|2 itself to prevent the small components from being invisible.)

In the lowest energy case, we can readily identify the packet components that are flowing

out to the product site (of large positive R values). It is the usual practice that we attribute

this seemingly leaking dynamics to deep tunneling. That this is not the case can be readily

confirmed by running the full quantum dynamics without both the excited state and nonadiabatic

coupling elements (simple dynamics on the ground state alone with the wavepackets whose

average energies are lower than the barrier). It turns out that with this width of the potential

barrier, the pure (deep) tunneling turned out to be virtually invisible, and the so-called shallow

tunneling dominates (passing over the barrier by wavepacket components of energy higher than

the barrier height). However, the presence of the nonadiabatically surmounting dynamics is

clearly confirmed in terms of the time-delay components in the wavepacket dynamics, that is,

shoulders of |Ψ(9, t)| after the passage of the potential barrier (see Fig. 2.6, red curves after

t = 6 in the right boxes of panels (a) and (b)). Such shoulders are more prominent in case of

E0 = 0.99VTS (panel (b)). The shoulders are seen not only in the graph of |Ψ(9, t)| but in

that of reflecting wave |Ψ(−9, t)|. Without the nonadiabatic coupling, the nuclear wavepackets

would split into only two pieces and no those shoulders are found.

In the higher energy regime, the evidence of the tentatively vibrational motion in the excited

adiabatic curve is clearly observed as the oscillatory structure around R = 0 in panel (d), left.

The major component in this energy is found in the product site. A remarkable consequence

of the tentative vibrational motion in excited state is a sequential appearance of pulse-train

wavepackets with “time-delay”, and the small shoulders arise from the delayed pulses. The time

interval of the appearance of the pulses is approximately equivalent to the vibrational period of

the excited state, although a complicated quantum interference gives rise to deviation from

such a simple rule. This phenomenon of pulse-train is essentially equivalent to those observed

by Zewail et al. in pump-probe experiments for the photodynamics of NaI. [78] However,

the present dynamics arises from collision events starting from the ground state and therefore

may give additional pieces of information about transition state and associated excited state if

observed experimentally.
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Figure 2.6: The reaction pathways in space-time for various total energies obtained from the
full-quantum mechanics. The color maps on the left hand side are the plot of |Ψ(R, t)|. The
plots on the right hand side are |Ψ(R = 9, t)| (solid line, measure to the left) and |Ψ(R = −9, t)|
(dashed line, measure to the right). The solid line is scaled as |Ψ| = 2.5× 10−2.
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2.5 Multi-dimensional implementation for molecular systems

2.5.1 Target system: Mn(OH)OH2· · · guanidine

Let us apply the theory of PBR to a multi-dimensional molecular system to confirm that the

mechanism discussed above are not the characteristics of the one-dimensional system. We

investigate the system of X-MnOH2· · ·Ac in advance for this purpose, where X and Ac are an

arbitrary subsystem and a proton-electron acceptor, respectively. In Chapter 3, we focus on only

the mechanism of coupled proton-electron transfer in excited states of X-MnOH2· · ·Ac for the

sake of simplicity, rather than explicit path-branching that we do in this section.

Now we preview the mechanism of coupled proton-electron transfer found in the photo-

dynamics of X-MnOH2· · ·Ac, in which we consider the path-branching dynamics. Here the

“photodynamics” denotes the nonadiabatic dynamics in excited electronic states accessed by

means of direct photoexcitation. If the total energy allocated to the nuclear degrees of free-

dom is as much as that of zero-point oscillation, the most probable chemical reaction is H atom

transfer between O and Ac, that is, interchange between [O-H· · ·Ac] and [O· · ·H-Ac].

In this section, we consider the case where X=OH and Ac=guanidine. The resulting molecule

and projected one-dimensional coordinate relevant to the photodynamics are shown in Fig.

2.7. All the other candidates of X and Ac discussed in Chapter 3 have similar projected one-

dimensional potential curves, thus we can probably find a similar path-branching dynamics

among those systems. (See Fig. 2.7(a)). The projected one-dimensional potential curves have

nonadiabatic region between S3 and S4.*1 As we explain in Chapter 3, in the ground electronic

state, this reaction is recognized as H+ transfer. However, in the excited electronic states, the

reaction mechanism is different from that of the ground state. This reaction is the coupled

proton-electron transfer to induces charge separation on Ac, because Hn+ and ne− (n ≈ 0.6)

reach spatially different places on Ac through mutually different pathways. The mechanism is

discussed in detail in Section 3.3.

2.5.2 Further approximation for multi-dimensional molecular systems

If we perform full-dimensional on-the-fly calculations for the system of X-MnOH2· · ·Ac, it

is still difficult in terms of machine power to apply the side paths algorithm to such a system,

because finite but a large number of paths need to be taken into account. For qualitative analysis
*1 Here “S” denotes the excited electronic states in ascending order of energy.

40



Figure 2.7: (a) The chemical structure of the target system Mn(OH)OH2· · · guanidine (the
same as Fig. 3.2(a)). (b) Projected one-dimensional potential curves relevant to the chemical
reaction under consideration, in which we perform multi-dimensional dynamics (the same as
Fig. 3.4). The atoms in the red circle are mainly involved in the reaction.

as a starting point, we reduce the calculation cost by performing further approximation to the

side paths algorithm.

We make the following assumptions about the side paths algorithm:

1. a set of adiabatic states can be used as an alternative set of of eigen force states.

2. the time when the momentum of the target degree of freedom is sufficiently small is the

most appropriate to invoke path-branching.

The first assumption is also mentioned in Ref. [22] to say that the result with adiabatic states is

similar to that with eigen force states. The second assumption can be justified with Fig. 2.2. We

consider a case where a path has slightly lower energy than to surmount the potential barrier.

It is anticipated that the path comes back to the reactant site after nonadiabatic transitions. If

the side paths were running, they would split off from each other near the turning point. That

is definitely when the momentum is sufficiently small. As shown later, the characteristic of the

mechanism is preserved even by this rather drastic simplification, although the calculation cost

is considerably saved.

2.5.3 Methods

The method for PBR photodynamics of Mn(OH)OH2· · ·Ac that uses the further approximated

algorithm is as follows:
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1. Run the full-dimensional adiabatic dynamics in S0 to obtain initial set of coordinates and

momenta. The total energy allocated to nuclei is set to as much as that of zero-point

oscillation.

2. Run the full-dimensional SET dynamics restarting in S3 each 10 fs with the same coordi-

nates and momenta as the adiabatic path at that time. We let the path integrated for further

10 fs.

3. Pick up a SET path that likely involves the tunneling-like effect induced by nonadiabatic

transition. In other words, we find a SET path that cannot surmount the barrier, but

undergoes adequate electronic state mixing.

4. Apply the algorithm discussed in Subsection 2.5.2 for PBR dynamics. Let each path

integrated further 25 fs.

2.5.4 The tunneling-like effect induced by nonadiabatic interaction in the

multi-dimensional system

Here we demonstrate that the tunneling-like effect induced by nonadiabatic interaction is indeed

found in this multi-dimensional system. Internuclear distance between the O and H atoms ROH

along the adiabatic path in S0 is shown in Fig. 2.8 as a dashed line. If ROH becomes more than

1.3 Å, we can regard the path as experiencing the H atom transfer (See Fig. 3.4). Thus in the

displayed time range, no H atom transfer takes place.

Solid (red) lines shown in Fig. 2.8 are corresponding to the SET paths restarted in S3

at every 10 fs with the same coordinates and momenta at that time. We have four restarted

paths and they can be classified into two groups. The first group contains paths restarting at

t = 10, 20 fs, which reach almost the same points as those of adiabatic path (dashed line). The

second group contains the others, which reach significantly different points. This difference

stems from whether the path enters the nonadiabatic region. The paths in the second group

undergo more than 20% of nonadiabatic transition as shown in Fig. 2.9. The path restarting at

t = 0 fs comes back, while that restarting at t = 30 fs surmounts the barrier (H atom transfer).

Following the method above, hereafter we focus on the path of t = 0 fs. The path would

likely involve the tunneling-like effect induced by nonadiabatic interactions. We confirm it by

calculating full-dimensional PBR dynamics.
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Figure 2.8: Time propagation of internuclear distance between the O-H bond of O-H· · ·Ac
bonds (See Fig. 3.2(a)) along the path of full-dimensional dynamics. The dashed line is the
path of adiabatic dynamics in S0, while solid lines are the paths of SET dynamics restarting in
S3 each 10 fs with same coordinate and momenta as the path of S0 at that time.

a) restarting at t = 0 fs b) restarting at t = 30 fs

Figure 2.9: Time propagation of adiabatic state population along the SET path restarting at
t = 0 fs (a) and t = 30 fs (b). Those lines are corresponding to S3 (cyan), S4 (magenta) and
S5 (yellow) in descending order of population. In both cases, more than 20% of nonadiabatic
transitions occurs.
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a) Time propagation of ROH

b) O-H· · ·Ac (S3) c) O· · ·H-Ac (S4)

Figure 2.10: Time propagation of ROH on the branching paths (a) and resulting geometry and
spatial distribution of unpaired electron density (Eq. (3.8)) from path-branching at t = 4 fs (b,
c). (b) and (c) are corresponding to the geometries and unpaired electron densities equivalent to
the restarting ones of S3 and S4, respectively.

The further approximated algorithm discussed in Subsection 2.5.2 is applied to the SET

path restarting in S3 at t = 0. The time to invoke path-branching is set to t = 4 fs, because the

momenta of the transferred H atom is sufficiently small. That is when the side paths would be

significantly apart from each other if they were running. We consider only the path-branching

between S3 and S4, which undergoes relatively large nonadiabatic transition (See Fig. 2.9(a)).

Path-branching is invoked only once for the sake of simplicity.

The branched paths shown in Fig. 2.10 obviously separate from each other. The path as-

signed to S3 when the path-branching is invoked comes back to the reactant site, while that to

S4 eventually surmounts the barrier. The latter path is definitely the path of tunneling-like effect
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induced by nonadiabatic interaction. In addition, electronic states along those paths are differ-

ent from each other. We can clearly find the difference by using unpaired electron densityD(r),

which is responsible for the radical character of an atom or a molecule. The unpaired electron

density of each branching-path is also shown in Fig. 2.10. To sum up, the tunneling-like effect

induced by nonadiabatic interaction can be indeed found even in this full-dimensional molec-

ular system. The friction-like effect should also be found likewise. The SET path restarting at

t = 30 fs is probably a good candidate for it.

2.6 Concluding remarks

We have developed an algorithm and computational practices for nonadiabatic path branching

of non-Born–Oppenheimer trajectories in an energy region comparable to the barrier height of

adiabatic potential energy curves in the theory of nonadiabatic electron wavepacket dynamics.

The theoretical analysis on the practice has shown that individual branched paths due to nonadi-

abatic interactions can undergo classically forbidden phenomena, with the total energy of them

being conserved. Using this algorithm, we have investigated the model chemical reactions that

involve nonadiabatic couplings.

Two reaction mechanisms, namely, “surmounting” and “trapping above” the potential bar-

rier have been discussed. They are also referred to as a tunneling-like effect and as friction-like

effect induced by nonadiabatic interactions, respectively. The former takes place when the to-

tal energy of the path is lower than the barrier height, and the latter is observed when it is

higher than the top. Although the surmounting phenomenon seems effectively similar to deep

tunneling, [40–45] they are physically independent of each other and can happen simultane-

ously. Likewise, the present phenomenon of trapping above the transition state, which works as

friction against chemical reaction, is independent of the kinematic effects arising from rotation-

vibration coupling on a single potential surface [37] and the periodic bouncing motion in the

transition state region [35, 36]. The solvent effect is also important in this regard, since sol-

vent molecules surrounding a reactive system are known to work as friction against the passage

across the transition state (see [79, 80] as early stage developments in this field and [81] for a

review.) Therefore they can further couple in nonadiabatic systems.

The present chapter has been devoted to conceptual and phenomenological aspects of nona-

diabatic transitions in chemical dynamics; path branching penetrating into classically forbidden
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regions and time-delay dynamics in passing over the transition state. On the other hand, the

method based on the path-branching representation can be readily extended to multi-dimensional

systems to analyze more realistic chemical reactions, as we actually performed before. [3,8,20–

29] Also, it can take account of external fields like laser or fluctuation due to solvents. Such

studies are now under way.
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Chapter 3

Photodynamics of OH dissociation and

charge separation in X-MnOH2

3.1 Introduction

An early process of photosynthesis, that is, photo-driven water oxidation to give protons, elec-

trons and molecular oxygen,

2H2O → 4H+ + 4e− +O2, (3.1)

is now widely studied not only to understand photosynthesis itself, but also to find a guiding

principle of solar cells and photocatalysts. This reaction is catalyzed by oxygen-evolving com-

plex embedded in photosystem II (PSII), a membrane pigment-protein complex. [82] The key

reaction is performed by the Mn4CaO5 cluster (the Mn cluster, in short) shown in Fig. 3.1 at the

center of the oxygen-evolving complex. It is hypothesized that four photons are successively

Figure 3.1: The structure of the Mn4CaO5 cluster (or the Mn cluster, in short) of the oxygen-
evolving complex embedded in PSII.
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absorbed by the oxygen-evolving complex to promote the redox states Ki (i = 0− 4), *1 which

is called Kok cycle. [83–85] In this cycle, the oxygen-evolving complex is increasingly oxi-

dized to K4, and eventually it oxidizes H2O to O2 to get back to K0. Surprisingly, no variations

have been observed so far among oxygenic photosynthetic organisms. [86] In other words, only

the Mn cluster can catalyze the photo-driven water oxidation in nature. This remarkable fact

has already been reflected to artificial solar driven oxidation of water as a part of dye-sensitized

solar cells. [87–90]

The Kok cycle was originally hypothesized in the context of flash-induced oxygen formation

experiments, [85] which was a charge-accumulation model, that is,

K0 → K1+
1 → K2+

2 → K3+
3 → K4+

4 → K0. (3.2)

Each oxidation step is driven by photon absorption. The water decomposition is supposed to

take place when the transition K4+
4 →K0 occurs. The redox state K is usually connected to

the structure and the electron spin states, [86] thus following the change of structure and/or

spin states of the oxygen-evolving complex in each redox state of the Kok cycle is frequently

recognized as leading to solve the mechanism of water oxidation.

Many experimental efforts based on the hypothesized Kok cycle have been made to clar-

ify the mechanism. Since the first X-ray crystal structure of PSII at ∼3.8 Å was published in

2001, [91] the resolution of the crystal structure has been improved in a gradual manner. [92–94]

In 2011, Shen, Kamiya and coworkers reached atomistic resolution (1.9 Å), [82, 95] which is

known to be a breakthrough. Structural analysis has also been performed by extended X-ray ab-

sorption fine structure (EXAFS), [96–100] which enables us to follow the structural “changes”

among redox states. Electron paramagnetic resonance (EPR) [101] is performed to identify the

spin state of Mn. Fourier transform infrared spectrum (FTIR) is also available for the structural

analysis. [102, 103]

As for theoretical aspects, this problem is usually tackled by means of energetics with sta-

tionary state quantum chemistry. Most studies are again based on the hypothesized Kok cycle.

With the help of rapid developing of massive computation, the system under consideration is be-

coming larger and larger. Most of the approaches of stationary state quantum chemistry depend

on density functional theory (DFT), which can reproduce a structure obtained experimentally

*1 “S” is usually used to represent the redox states of the Kok cycle, but here we use “K” to reserve it for
representing electronic states later.
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by X-ray diffraction (XRD). [104–111] Yamaguchi and coworkers have performed systematic

geometry optimization to find reaction paths. [110, 112–118] They pointed out that the geom-

etry in K2 and K3 can be altered compared to K0 and K1. Siegbahn has similarly calculated

energy diagram of the Kok cycle by using DFT. [104–107] The suggested mechanism is that

the optimal O-O bond formation occurs between an oxygen radical and an oxo ligand, or al-

ternatively, the oxygen radical reacts with an external water. In contrast, Kurashige performed

density matrix renormalization group (DMRG) [119–121] to determine the near-exact many-

electron wavefunctions corresponding to the XRD structure of the oxygen-evolving complex.

Through the analysis of the wavefunctions in the K2 state, their direct access to spin states

and spin projections suggests that existing candidates must be reassessed. He also performed

multi-state calculations, and find a nonadiabatic region.

In spite of both experimental and theoretical efforts, the mechanism of the early process of

photosynthesis is still a matter of controversy [86, 116, 122, 123]. Now let us recall the water

oxidation reaction (3.1). The reaction is driven by photoexcitation of electronic states (visible

light absorption), and such excited states can never be stationary. In this way, the mechanism

can be beyond the scope of the Born–Oppenheimer approximation, although even all atom

molecular dynamics simulation of PSII has been reported [124] base on this approximation.

Therefore, electron dynamics should play an important role in the early process of photosyn-

thesis. However, such a dynamical property has never been addressed in the system relevant to

the oxygen-evolving complex.

Electron dynamics has been proved to produce insight into chemical reactions. Ushiyama

and Takatsuka have performed electron wavepacket dynamics of H atom transfer in the system

of ground and excited states of H2O + H3O+. [125] They found a dynamical difference between

these states, although the transferred H nucleus moves in the same way. In the ground state,

H0.5+ is transferred, while in the excited states, a H radical is. We can even track pathways

of electrons in a chemical reaction in terms of Schiff probability current [126] (flux, in short).

Nagashima and Takatsuka calculated nonadiabatic electron wavepacket dynamics of phenol-

ammonia cluster in excited electronic states. [11] The result clearly shows the importance of

electron dynamics to understand the mechanism of chemical reactions. They demonstrated that

when the H nucleus was transferred from the phenoxy group to the ammonia cluster, approxi-

mately 0.5 electrons were bonded to the transferred H nucleus, and the rest of electrons (∼0.5)

took different pathways from the H nucleus. In addition, the electron reached spatially different
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places on the ammonia cluster to naturally induce charge separation. This result can be regarded

as a prototype mechanism of charge separation in excited states.

In this study, we calculate photodynamics of water decomposition by means of nonadiabatic

electron wavepacket dynamics theory. Here the “photodynamics” denotes the nonadiabatic dy-

namics in excited electronic states accessed by means of direct photoexcitation. We approach

this problem with two steps. First we perform analysis in the projected one-dimensional coor-

dinate relevant to the photochemical reaction dynamics to grasp the landscape. And then we

calculate full-dimensional nonadiabatic electron wavepacket dynamics to propose photodynam-

ical mechanism related to charge separation. The target system is chosen to be X-MnOH2· · ·Ac.

Here X and Ac are respectively an arbitrary subsystem and a proton-electron acceptor such as

guanidine and ammonia cluster. We are stimulated to examine the systems by the Mn cluster of

the oxygen-evolving complex, where such a charge separation by using photon energy must be

crucial. The oxygen-evolving complex is far more intricate than the systems under considera-

tion in this thesis, thus the present calculations are not regarded as simulations. Rather than that,

our purpose is to extract important partial systems to find a key component of the mechanism.

We propose a photodynamical mechanism resulting in charge separation, which is similar to

that of the phenol-ammonia cluster system proposed in a different context. The characteristic of

this mechanism is that protons and electrons are transferred to mutually different places on the

acceptor through difference pathways. In addition, we investigate such dynamics of molecules

including a Ca atom, which is known to be an essential cofactor for the Mn4CaO5 cluster of the

oxygen-evolving complex. [127] We find resemblances and differences in the photodynamical

mechanism to suggest the possible roles of the Ca atom. In connection with the oxygen-evolving

complex, we calculate the same properties in the projected one-dimensional coordinate relevant

to the full-dimensional dynamics. The result indicates that the same photodynamical mecha-

nism can be found even in the Mn cluster of the oxygen-evolving complex. This study takes the

first step of electron dynamics in the system relevant to the oxygen-evolving complex embedded

in PSII.

The present chapter is organized as follows. In Section 3.2, we state the methodology used

in this chapter. In Section 3.3, we propose a photodynamical mechanism to induce charge sepa-

ration through nonadiabatic electron dynamics. In Section 3.4, roles of Ca in PSII are addressed

in this context. In Section 3.5, possibility of the present mechanism in the Mn cluster of the

oxygen-evolving complex is considered. In Section 3.6, we mention the alternative mechanism,
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namely, electron attachment. Section 3.7 concludes this chapter.

3.2 Methodology

3.2.1 On-the-fly dynamics of the semiclassical Ehrenfest theory (SET)

We calculate nonadiabatic electron wavepacket dynamics in the level of theory equivalent to

the semiclassical Ehrenfest theory (SET) to the first order. Here we do not consider explicit

path-branching for the sake of simplicity, but we have presented it in part in Section 2.5. The

theory is derived from the path-branching representation [3,8,20–28] by means of wavepacket-

averaging of the force operator F̂k. Theoretical details have already been discussed in Chapter

2, thus here we rewrite only the resulting equations.

The electron wavepacket is expanded in the form

Ψelec(R, r, t) =
∑
I

CI(t)ΦI(r;R(t)). (3.3)

The electron wavepacket follows the equation of motion expressed as

ih̄
dCI

dt
=
∑
J

(
H

(el)
IJ − ih̄

∑
k

ṘkX
k
IJ − h̄2

2

∑
k

Y k
IJ

)
CJ , (3.4)

and a nuclear path is classically driven by the wavepacket-averaged force Fk defined as

Fk = ⟨Ψ|F̂k|Ψ⟩ =
∑
IJ

C∗
I ⟨ΦI |

∂Ĥ(el)

∂Rk

|ΦJ⟩CJ . (3.5)

In the present chapter, Y k
IJ (a correction term for intuitively derived SET [22]) is neglected in

all the calculations for the sake of computational cost, which should be justified because of the

factor h̄2.

In this study, those equations are numerically integrated with the matrix elements calculated

on-the-fly. The nuclear (classical) equation of motion using the mean force in Eq. (3.5) is nu-

merically integrated by using the velocity Verlet method with the time step of 0.25
3

fs. The elec-

tronic equation of motion (3.4) is also numerically integrated by means of the Adams method

with automatically controlled time step width, which is usually 10-100 attoseconds. The matrix

elements are updated at the same interval as nuclei for the sake of calculation cost, and assumed
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to be constant in the meantime. It is justified because the amount of changes in matrix elements

are much smaller than that of {CI(t)}.

Evaluation of derivatives of the matrix elements such as ∂H
(el)
IJ

∂Rk
or Xk

IJ takes so much longer

time of all the calculations involved, thus it is regarded as a bottle neck. In order to increase the

overall speed of computation, we implemented a framework to perform parallel computation of

numerical derivatives. We discuss technical detail in Appendix A.

3.2.2 Adiabatic wavefunctions as a basis set

In the present work, the basis functions of the electron wavepacket {ΦI(r;R(t))} shown in Eq.

(3.3) are chosen to be adiabatic wavefunctions {Φα(r;R(t))} obtained on-the-fly through quan-

tum chemical calculations. The adiabatic wavefunctions and relevant matrix elements are cal-

culated by using modified GAMESS programming package. [128,129] We perform CISD/RHF

level of calculation for all the static and dynamical analysis, except for geometry optimization

and following Hessian matrix evaluation (RHF level). Effective core potential is adopted for

Mn atom, and 6-31G basis set is for all other atoms. We added diffuse orbitals to the H and N

atoms, which are crucial for expressing the present mechanism. [11] Those to the other atoms

are omitted to reduce the cost and unstability of computation, but it does not cause qualita-

tive difference. Configuration state functions (CSFs) are generated by means of the graphical

unitary group approach (GUGA). [130–136] Only the HOMO to (HOMO+50) are taken into

account to generate CSFs, and all other orbitals are “frozen”. We “froze” HOMO-1 and lower

MOs, since the energy gap between HOMO and HOMO-1 is quite large (commonly more than

2 eV). MOs higher than HOMO+51 are not always far away from HOMO+50 in energy, but

they can be “frozen” because the resulting low-lying adiabatic states are sufficiently converged

without these higher MOs. We use first 50 of the adiabatic states {Φα} out of 1326 in ascending

order of energy as the basis set {ΦI} of electron wavepacket in Eq. (3.3).

Technically speaking, such an adiabatic basis set is not always continuous in a series of

time, which can cause a failure in computation. So as to avoid it, we transform the basis set at

each time step so that the neighboring basis sets are smoothly connected by using the overlap

between them. The method is discussed in Appendix B in detail.
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3.2.3 General settings of the target molecular system: X-MnOH2· · ·Ac

We investigate the system expressed as X-MnOH2· · ·Ac, where X and Ac are an arbitrary

subsystem and a proton-electron acceptor, respectively. Thus X-MnOH2 serves as a proton-

electron donor as we see in the rest of this chapter. In the present study, X is chosen to be one

of the three subsystems, namely, OH, O(Ca)H or Mn3CaO5. The choice has a specific purpose

as

OH: The simplest system to demonstrate the mechanism in detail.

O(Ca)H: A Ca adduct to find the roles of Ca in comparison with X=OH.

Mn3CaO5: The system of the same composition as the Mn4CaO5 cluster in PSII.

On the other hand, the choice of Ac generally does not affect the present mechanism on the

whole. Ac is chosen to be one of guanidine, imidazole, ammonia cluster, or N-methylformamidine.

The last one is used only for X=O(Ca)H, because it produces almost the same structure of X-

MnOH2· · ·Ac irrespective of the existence of the Ca atom. Ac=ammonia cluster is a similar

setting to the previous study — phenol-ammonia cluster system. [11] The other Ac’s, guanidine

and imidazole, come from parts of positively charged proteinogenic amino acids. The partial

systems are the edge of the amino acid residues that bring about basicity.

We focus on the H atom of O-H· · ·Ac bonds in the excited electronic states, which is in-

volved in the low energy (in terms of nuclear degrees of freedom) chemical reactions. We cal-

culate properties in the projected one-dimensional coordinate relevant to such a reaction for all

the target systems, and full-dimensional nonadiabatic electron wavepacket dynamics for some

systems that can be handled in terms of machine power available.

3.3 Photodynamical mechanism resulting in charge separa-

tion

3.3.1 Target system: X=OH, Ac=(guanidine, imidazole, or ammonia clus-

ter)

Here we consider photodynamics of X-MnOH2· · ·Ac, where X=OH and Ac=(guanidine, imi-

dazole, or ammonia cluster). The resulting chemical structures are shown in Fig. 3.2.

Without Ac, that is, if the Mn(OH)OH2 exists alone, the Mn(OH)O(H)-H bond is stronger

than the Mn(OH)-OH2 bond. Here the hyphen “-” denotes the bond to be compared. In short,
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Figure 3.2: The chemical structures of target molecules for full-dimensional photodynamics.
Mn(OH)OH2 is in common and Ac is different from each other. They commonly have O-
H· · ·Ac bonds, which is relevant to the mechanism proposed in this study.

a) Mn(OH)-OH2 b) Mn(OH)O(H)-H

Figure 3.3: Potential curves as functions of bond length denoted by hyphen “-”. (a) MnO bond,
(b) OH bond of the water molecule. The former is weaker than the latter in this condition, but
the relation is reversed if the accepter is attached (see Fig. 3.2).

OH and MnO bonds are compared. Potential curves as functions of the corresponding bond

length is shown in Fig. 3.3. Here all other geometries are fixed to the optimized geometry. The

OH bond is stronger than the MnO bond in this condition, but the relation is reversed if the

acceptor is attached. In other words, OH bond of the water molecule is significantly weakened

as a result of linkage to Ac.

3.3.2 Properties in the projected one-dimensional coordinate

Before full-dimensional dynamics, we investigate properties in the projected one-dimensional

coordinate relevant to the following full-dimensional dynamics. The chemical reaction that

occurs in the full-dimensional dynamics can be well explained by using this coordinate. The

projected one-dimensional coordinate is defined as the position of the H atom connecting O and
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Figure 3.4: Adiabatic potential curves as functions of position of the transferred H atom for
Mn(OH)OH2· · · guanidine. S3 and S4 are drawn as thick lines, which are the states that electrons
mainly populate in excited state in our analysis.

Ac, that is, the H atom of the O-H· · ·Ac bonds (See Fig. 3.2). We call the H atom “transferred

H atom” to distinguish it from the other relatively stable H atoms. All other atoms are fixed to

the optimized geometry. The transferred H atom is restricted to be on the line connecting O and

Ac. The O-Ac length is commonly as long as 2.5 Å. No further optimization is performed for

the sake of simplicity. We can obtain similar properties, and find the same mechanism among

those acceptors shown in Fig. 3.2, thus here we demonstrate only the case where Ac=guanidine

(Fig. 3.2(a)).

Here we focus on differences between S0 and the set (S3, S4) in the one-dimensional coor-

dinate. In what follows, “S” denotes the adiabatic states in ascending order of energy. Note that

it is not used for the redox states of Kok cycle. Those excited states are accessible by means

of photoexcitation, because the transition dipole between S0 and (S3, S4) is relatively large. On

the other hand, that between S0 and (S1, S2) is very small. Adiabatic potential curves in this

coordinate is shown in Fig. 3.4. The focused excited states (S3, S4) are represented as thick

lines there. We can find three characteristic differences as explained below.

The first difference is the position of the minimum in the one-dimensional potential curves.

While the minimum of the S0 in this coordinate is on the O atom side (left hand side), those of

(S3, S4) are on the Ac side (right hand side). This indicates that the structure having the H atom

on the Ac side is energetically more favorable in those excited states.

The second difference is the existence of nonadiabatic region (See thick lines in Fig. 3.4).
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Figure 3.5: Spatial distribution of the sum of electrons occupying natural orbitals whose occu-
pation number is less than two for Mn(OH)OH2· · · guanidine. The colors are attributed to atoms
as follows: H=white, C=black, N=blue, O=red and Mn=purple. Those electrons are responsible
for the differences among electronic states, thus here referred to as “responsible electrons”. The
row denotes the position of transferred H atom, while the column does the adiabatic states S0,
S3 and S4. Those of S1 and S2 are similar to that of S0. We can find the Rydberg-like diffused
states only in the excited states.

Drastic change of electronic states would take place near the avoided crossing at ROH = 1.25

Å, where ROH denotes the OH bond length in the one-dimensional coordinate. This avoided

crossing looks more like a conical intersection according to the situation, and we can probably

find such conical intersection if we do not restrict the H atom on the O-Ac line.

The third difference is the spatial distribution of electrons. We show the spatial distribution

of the sum of electrons occupying natural orbitals whose occupation number is less than two

in Fig. 3.5. Those electrons are responsible for the differences among electronic states, thus

here referred to as “responsible electrons”. This difference is particularly significant, because it

characterizes the H atom transfer in S0 and (S3, S4). In S0, the spatial distribution of responsible

electrons is kept almost unchanged to be on Mn(OH)OH2 regardless of the position of the

transferred H atom. Thus the H atom transfer in S0 should be recognized as ordinary proton

transfer, which is equivalent to common acid-base reaction. No charge separation on Ac is
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induced by this reaction in S0. On the other hand, spatial distribution of responsible electrons

in (S3, S4) depends on the position of the transferred H atom. Since the responsible electrons

follow the transferred H atom, the H atom transfer in those excited states is termed “coupled

proton-electron transfer”, which is originally termed in Ref. [11]. It should be distinguished

from H radical transfer, although it appears to be so. We also discuss this difference in detail in

the dynamics part (Subsec. 3.3.4).

3.3.3 Postulated mechanism of the coupled proton-electron transfer

From those one-dimensional static analysis, we can think of the reaction expressed as

X-MnOH2 + hν → X-MnOH + Hn+ + ne− (0 < n ≤ 1). (3.6)

In this reaction, photon energy is utilized for charge separation. The postulated mechanism of

this reaction is as follows:

1. Excited electronic states are generated by UV-visible light.

2. Hn+ is transferred to the acceptor (Ac) through nonadiabatic region.

3. ne− are transferred to the Rydberg-like states of Ac (see Fig. 3.5) through different

pathways from that of Hn+.

We emphasize that this mechanism results in charge separation on Ac, because Hn+ and ne−

reach different places on Ac through mutually different pathways. The step 2 and 3 are not

necessary to occur sequentially, but they can take place at the same time, or even in the reversed

order.

Until the present work, this kind of mechanism (coupled proton-electron transfer that results

in charge separation on an acceptor) had been appeared only in the literature of phenol-ammonia

cluster. [11] However, the mechanism was not discussed explicitly in the context of solar cells

or photocatalysts, because the excitation energy was as much as 6 eV (200 nm). Additionally,

only the set of phenol and ammonia clusters are discussed as a set of proton-electron donor and

acceptor. Thus our study can be recognized as relevant generalization of the mechanism so as

to be applicable in the context of solar cells and photocatalysts, with relatively various set of

proton-electron donor and accepters.
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3.3.4 Full-dimensional dynamics following the mechanism

Initial conditions

Now we proceed to full-dimensional dynamics so as to confirm that the dynamics indeed fol-

lows the postulated mechanism. We consider only Mn(OH)OH2· · · guanidine (Fig. 3.2(a)), but

the other acceptors shown in the Fig. 3.2 result in the same in quality. Before the dynamics

in excited states, completely adiabatic dynamics of zero-point oscillation in S0 is integrated for

250 fs to obtain a set of initial conditions assigned to nuclear coordinates and momenta. We

pick initial conditions every 10 fs from the path, and lift up the electronic wavepacket to S4. We

integrate SET dynamics for each path restarted in the excited state.

The energy allocated to the transferred H atom is as much as the barrier height located in the

projected one-dimensional coordinate (see Fig. 3.4). The total energy of nuclei is 3.3 eV, which

is corresponding to the total energy of zero-point oscillations. We can estimate the momenta PH

of the transferred H atom projected to the line connected to O and Ac as

PH = PH · RAc −RO

|RAc −RO|
(3.7)

to appraise the energy allocated to the one-dimensional coordinate, which is turned out to be

0.05 eV on average. This energy is comparable to the barrier height of the proton transfer in S0.

This is reflected in the adiabatic path in S0. The OH length along the path in S0 is shorter than

1.3 Å (OH bond is retained) until ∼100 fs, but it turns to longer than 1.3 Å (OH bond is broken

to generate H-Ac bond).

Excitation to S4 increases reactivity compared to S0

As we predicted in the analysis in the projected one-dimensional coordinate, the relevant H

atom becomes easy to be transferred to Ac if excited to S4. The internuclear distance ROH

between the transferred H atom and the nearest O atom along the path is shown in Fig. 3.6.

The projected one-dimensional potential curves (Fig. 3.4) would help us understand it. Let us

regard the transferred H as being on the O atom side if ROH ≤ 1.3Å (left hand side), and Ac

side if ROH > 1.3Å (right hand side).

First we focus on the path in S0, which is represented as a dashed line in Fig. 3.6. While

t < 100 fs, the H atom is on the O atom side. Then it moves to the Ac side to stay there during

100 < t < 250 fs (it gets back once at t = 210 fs, though). As mentioned before, this is the
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Figure 3.6: Internuclear distance between the transferred H and the nearest O along the path.
The dashed line is the path of zero-point oscillation in S0, which is completely adiabatic. The
solid lines are paths that restarted after vertical excitation to S3 with the same coordinates and
momenta as that of S0 at that time. Each excited-state path is generated every 10 fs and propa-
gate for further 10 fs with SET.

proton transfer and thus an acid-base reaction.

On the other hand, the H atom is immediately transferred to the Ac side in the paths restarted

in S4 (solid lines in Fig. 3.4) if it is originally on the O atom side (t < 100 fs). In contrast,

paths restarted from the Ac side (t > 100 fs) are not transferred back to the O atom side in (S3,

S4). These results indicate that it is indeed more favorable for the transferred H atom to be on

the Ac side if it is in (S3, S4) (they can mix by nonadiabatic transition) as we predicted in the

one-dimensional analysis (excluding the path restarting at t = 200 fs). Therefore, the forward

reaction (breaking the OH bond to form AcH) easily takes place in those excited states, while

the backward one does not.

The detailed mechanism of the coupled proton-electron transfer in excited states

Here we pick up and explain one of the most illustrative cases, which is the path restarted at

t = 0 fs in S4. Most of the paths restarted at t < 100 fs are the same in quality. We begin

with investigating the time propagation of the unpaired electron density along the SET path.

The unpaired electron density D(r) that uses natural orbitals as its basis functions is defined
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Figure 3.7: Snapshots of the unpaired electron density along the SET path obtained by full-
dimensional on-the-fly dynamics for the case of X=OH. It clearly demonstrates that the coupled
proton-electron transfer in excited states, where Hn+ and ne− takes mutually different pathways
and reach spatially different places on the accepter Ac (Ac=guanidine in this case, see Fig.
3.2(a)). Color attribution is the same as Fig. 3.5.

as [137]

D(r) =
NO∑
l

dl(2− dl)ψ
∗
l (r)ψl(r), (3.8)

where ψl and dl are respectively a natural orbital and its occupation number. Unpaired electron

density serves to estimate the electron density of the singly occupied orbitals, because the coef-

ficient dl(2− dl) in Eq. (3.8) becomes maximum when dl = 1 and minimum when dl = 0 or 2.

The unpaired electrons are responsible for radical character of an atom or a molecule. If the

transferred H atom is dressed with unpaired electrons, it is regarded as a radical.

In the present dynamics, both the H atom and the unpaired electrons are transferred to Ac,

but they obviously take different pathways and reach different places on Ac. Snapshots of the

unpaired electron density along the path are shown in Fig. 3.7. The H atom is accepted by the

nearest N atom of Ac, and the unpaired electrons become to occupy the Rydberg-like diffused

orbitals on Ac. At t = 2 fs, the H atom is on the O atom side, and most of the unpaired

electrons are on the same side. At t = 6 fs, both the H atom and the unpaired electrons take

middle positions. However, the unpaired electrons are likely not on the H atom, that is, the H

atom would not be a radical when it is transferred. At t = 6 fs, the H atom is finally transferred

to Ac, and the unpaired electrons reach the Rydberg-like diffused orbitals. Therefore the H

atom is still not a radical and charge recombination would not take place even at this point of

time. A little more quantitative characterization of the transferred H atom is given later.

As shown in Fig. 3.8, the molecule indeed undergoes nonadiabatic transition by passing
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Figure 3.8: Adiabatic state population Pα along the path obtained by full-dimensional on-
the-fly dynamics for the case of X=OH. The transition between S3 and S4 is prominent, which
would occur near the avoided crossing between them shown in Fig. 3.4.

through near the nonadiabatic region shown in Fig. 3.4. The nonadiabatic transition between

S3 and S4 is prominent. In this path, the other states contribute only a little to this dynamics

by chance, but they can be involved much more because S4 and higher states are densely quasi-

degenerate (See Fig. 3.4). The amount of nonadiabatic transition between S3 and S4 is as much

as 80%. This large transition implies that the avoided crossing is near a conical intersection. It

is anticipated that the conical intersection is probably generated by electronic states with and

without Rydberg-like diffused states.

The present mechanism is not equivalent to H radical transfer

Atomic population analysis can more quantitatively distinguish the present mechanism from

radical transfer. Here we apply a hybrid method of Mulliken [138] and Hirshfeld [139] atomic

population analysis. This hybrid method is explained in detail in Appendix C.

As shown in Fig. 3.9, the atomic charge QA of the transferred H atom along the path is

kept as much as +0.6. This means that the transferred H atom is not a bare proton, but dressed

with 0.4 electrons. As shown in Fig. 3.10, the atomic unpaired electron density DA is kept

close to zero, although the tonal number of the unpaired electrons is as much as 2.0. In this

way, the H atom is not a radical, thereby we can confirm that the unpaired electrons indeed take

different pathways to reach the Rydberg-like diffused states on Ac. Therefore, the transferred

H atom should be expressed as H0.6+, which is not a radical throughout the process. This result
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Figure 3.9: Atomic charge QA on the transferred H atom along the full-dimensional SET path,
which is kept as much as +0.6. This means that the H atom should be expressed as H0.6+ instead
of bare proton H+.

Figure 3.10: Atomic unpaired electron density DA on the transferred H atom along the full-
dimensional SET path, which is kept close to zero. This indicates that the transferred H atom is
not a radical throughout, and the unpaired electrons indeed take different pathways to reach the
Rydberg-like diffused states on Ac.
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Figure 3.11: Snapshots of the electron flux along the path. Huge values that come from inner
shell electrons are cut off to the preset maximum for a better visualization. The electron flux
indicates circular motions of electrons, and it does not go parallel to the transferred H atom.
Color attribution is the same as Fig. 3.5.

is parallel to the previous study of phenol-ammonia cluster system. [11]

Electron flux indicates circular motions of electrons

Here we calculate Schiff probability current (or flux, in short) [126] derived from the nona-

diabatic electron wavepacket to reexamine the different pathways of Hn+ and ne−. This type

of analysis has been performed by Takatsuka and coworkers, [11, 27, 140–142] and Manz and

coworkers, [143–152] which have proved to be useful to track the nuclear and/or electronic

pathways.

It would be worth mentioning here two typical examples where electron flux is useful to

understand mechanisms of chemical reaction. First, let us mention the ground state dynamics of

water-assisted proton relay in formamide [141]. This reaction results in intramolecular charge

transfer as if a bare proton is transferred, but the mechanism is actually not so simple. The

transferred H nucleus is always covered with as much as 0.7 electrons, and backward electron

flux balances the net charge distribution. Second, we mention the excited state dynamics of

coupled proton-electron transfer in phenol-ammonia cluster [11]. The electron flux serves to

track the different pathways of electrons from the transferred H nucleus to the Rydberg-like

diffused state on Ac. Here we apply the same analysis to find a similar result to this second

example.

Snapshots of the electron flux shown in Fig. 3.11 indicate circular motions of electrons. In

addition, the motions of electrons are not parallel to that of the transferred H atom. At t = 2 fs

(before prominent nonadiabatic transition between S3 and S4), relatively large electron flux can
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be seen only around Mn(OH)OH2. The unpaired electrons (Fig. 3.7) do not move to Ac yet at

this time as well. At t = 6 fs (right after the large nonadiabatic transition), the electrons look

like moving anticlockwise around the transferred H atom. We cannot find significant electron

flux parallel to the movement of the H atom. At t = 10 fs (the coupled proton-electron transfer

is complete), the electron flux is rather pointing to the Rydberg-like diffused states than to the

transferred H atom, thus the charge recombination is probably not starting yet.

As shown above, electron flux supports the mechanism involving different pathways. Ac-

cording to the electron flux, while Hn+ moves linearly from the O atom to Ac, electrons make

detours to the Rydberg-like diffused state on Ac to induce charge separation. It is consistent

with the analysis with the unpaired electron density to clearly distinguish the present mecha-

nism from H radical transfer.

3.4 Roles of Ca in the oxygen-evolving complex

3.4.1 Target system: X=(OH or O(Ca)H), Ac=N-methylformamidine

Let us investigate the roles of Ca in the context of photodynamics. A Ca atom is suggested to

be an essential cofactor in the Mn cluster in PSII. [127] However, the actual role of Ca atom has

not yet been definitely clarified. The roles proposed so far are mostly related to the structures

and/or oxidation potentials [116, 153–156]. Here we propose the other types of roles of Ca in

the context of photodynamics, namely, reducing the excitation energy and providing electrons

involved in the coupled proton-electron transfer.

We demonstrate the static and dynamical analysis to the system of X-MnOH2· · ·Ac, where

X=(OH or O(Ca)H) and Ac=N-methylformamidine [157] (an analog of guanidine). The result-

ing optimized chemical structures are shown in Fig. 3.12. The structures are fortunately very

similar to each other. In other words, the geometry is not affected so much by attachment of a

Ca atom on the OH site. Thus they are suitable for investigating the role of calcium atom by

comparison.

3.4.2 Properties in the projected one-dimensional coordinate

Those two molecules shown in Fig. 3.12 are similar to each other in a way that both pro-

jected one-dimensional potential curves and the electronic states remind us of the mecha-
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a) X=OH b) X=O(Ca)H

Figure 3.12: Chemical structures of X-MnOH2· · ·Ac, where Ac=N-methylformamidine is
common and X is different from each other. The structures are actually not planar, but rather
twisted along the O-H· · ·Ac bonds.

a) X=OH b) X=O(Ca)H

Figure 3.13: The one-dimensional potential curves of X-MnOH2· · ·N-methylformamidine,
where (a) X=OH and (b) X=O(Ca)H (See Fig. 3.12 for their structures). These potential curves
are obtained in the same manner as before shown in Fig. 3.4.

nism discussed in Section 3.3. The potential curves obtained as the same manner as before

(Fig. 3.4) are shown in Fig. 3.13. Both molecules have similar potential curves to that of

Mn(OH)OH2· · · guanidine (Fig. 3.4). They commonly have minima on the O atom side in

S0, and on Ac side in the excited states expressed as thick lines in Fig. 3.13. The responsible

electrons for the difference among the electronic states (the sum of electrons of natural orbitals

whose occupation number is less than two) are also similar to the previous case without Ca

atom (see Fig. 3.5). In S0, the responsible electrons are kept on the donor side irrespective

of the position of the transferred H atom, while those of the excited states commonly become

to have contributions of the Rydberg-like diffused states. However, there are two remarkable

differences between the two cases (with and without Ca).

First, excitation energy to access those excited states (expressed as thick lines in Fig. 3.13)
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Figure 3.14: Spatial distribution of the sum of electrons of natural orbitals whose occupation
number is less than two for X-MnOH2· · ·N-methylformamidine, where X=O(Ca)H. The dis-
play style is the same as Fig. 3.5. The distribution is similar, except that most of the electrons
are not on the Mn atom (see Fig. 3.15 for comparison). Color attribution is the same as Fig.
3.5, and Ca=orange.

is lowered from 3.2 eV to 2.4 eV when a Ca atom is attached. This shift indicates that the Ca

atom serves to lower the excitation energy to enter the visible light range. Second, the origin

of electrons responsible for the differences among the electronic states are altered when the Ca

atom is attached (Fig. 3.14). In all the cases without Ca atom, the responsible electrons in S0

are almost localized at the Mn atom connected with the water molecule. No such change is

observed in the case of X=OH (Fig. 3.15).

3.4.3 Full-dimensional nonadiabatic electron dynamics

Now let us proceed to the full-dimensional nonadiabatic electron dynamics of Mn(O(Ca)H)OH2· · · (N-

methylformamidine) to find the similarities and differences between the cases of X=OH and

O(Ca)H. The case of X=OH is not shown here, because its dynamics is quite similar to that of

the previous analysis done in the Sec. 3.3.

Initial conditions

Initial conditions are set in the same manner as the previous dynamics calculations. The total

energy allocated to the nuclei is as much as that of zero-point oscillation. The molecule is

vertically excited to S1 at arbitrary time, which is defined to be t = 0 fs. We integrate the

full-dimensional nonadiabatic electron wavepacket dynamics until t = 10 fs. Here we pick up

one of the most illustrative cases of the mechanism.
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Figure 3.15: Spatial distribution of the sum electrons in natural orbitals whose occupation
number is less than two for X-MnOH2· · ·N-methylformamidine, where X=OH. The display
style is the same as Fig. 3.5. The distribution is very similar to that of the case of Ac=guanidine
(Fig. 3.5). Color attribution is the same as Fig. 3.14.

Resemblances and differences in the mechanism

On the whole, the mechanism found in the Ca adduct (Fig. 3.12(b)) is the same as that without

the Ca (Fig. 3.12(a)). The atomic change QA on the transferred H atom (Fig. 3.16) and the

atomic unpaired electron density DA (Fig. 3.17) are qualitatively the same as those of the

previous analysis in Section 3.3. Thus the transferred H atom is actually H0.6+ and not a

radical as well. The part of the unpaired electrons reach the Rydberg-like diffused states on Ac

through different pathways from the transferred H atom as shown in Fig. 3.18.

However, there are some differences between the cases with and without Ca. As we have

seen in the projected one-dimensional analysis, the unpaired electrons likely populate on the Ca

atom instead of the Mn atom. At t = 6 fs, roughly half of the unpaired electrons seem to be

on the Ca atom (see Fig. 3.18), while they are on the Mn atoms in the previous calculation (see

Fig. 3.7). The electron flux around the Mn atoms is relatively small compared to that around

the Ca atom (see Fig. 3.19).

To sum up, the photodynamical mechanism found in the case of X=O(Ca)H is the same

as X=OH on the whole, but we found two significant differences. First, the photon energy to

access the relevant excited states are lowered from 3.2 eV (390 nm) to 2.4 eV (520 nm) by the
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Figure 3.16: Atomic charge QA on the transferred H atom along the full-dimensional SET
path, which is kept as much as +0.6. This indicates that the transferred H atom is actually H0.6+

as well as the previous analysis without the Ca atom (see Fig. 3.9).

Figure 3.17: Atomic unpaired electron density DA on the transferred H atom along the SET
path obtained by full-dimensional on-the-fly dynamics for the case of X=O(Ca)H. And the
unpaired electrons indeed take different pathways to reach the Rydberg-like diffused states on
Ac as well as the previous analysis without the Ca atom (see Fig. 3.10).
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Figure 3.18: Snapshots of the unpaired electron density along the SET path obtained by full-
dimensional on-the-fly dynamics for the case of X=O(Ca)H. Color attribution is the same as
Fig. 3.14.

Figure 3.19: Snapshots of the electron flux along the SET path obtained by full-dimensional
on-the-fly dynamics for the case of X=O(Ca)H. Color attribution is the same as Fig. 3.14.
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attachment of the Ca atom. Second, the unpaired electrons are likely produced by the Ca atom

instead of the Mn atom.
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a) Ac = guanidine b) Ac = ammonia cluster

Figure 3.20: Chemical structure of Mn4CaO5OH2· · ·Ac. a) The case where Ac=guanidine.
The MnOH2· · · guanidine part is almost the same as that of Mn(OH)OH2· · · guanidine shown
in Fig. 3.2(a). b) The case where Ac=ammonia cluster, Note that these structure is rather
schematic, but the actual structure is a little more distorted.

3.5 The Mn cluster of the oxygen-evolving complex embed-

ded in PSII

3.5.1 Target system: X=Mn3CaO5 and Ac=(guanidine or ammonia clus-

ter)

Now we demonstrate the case where the proton-electron donor X-MnOH2 is the Mn cluster of

the oxygen-evolving complex embedded in PSII shown in Fig. 3.1. The acceptor Ac is chosen

to be Ac=(guanidine or ammonia cluster). The resulting molecules are schematically shown in

Fig. 3.20. The actual structures are a little more distorted. This donor can also be expressed

as X-MnOH2 with X=Mn3CaO5. The O-MnOH2 part is common among molecules studied

so far. Since it is difficult in terms of machine power at present to perform full-dimensional

nonadiabatic electron wavepacket dynamics for this system, here we only investigate the one-

dimensional properties to demonstrate that they are significantly resemble those of X=OH and

X=O(Ca)H in many ways.

3.5.2 Properties in the projected one-dimensional coordinate

Here we show that the case of X=Mn3CaO5 resembles qualitatively the case of X=OH and

X=O(Ca)H that we have discussed so far. The projected one-dimensional potential curves ob-

tained in the same manner as Fig. 3.4 and 3.13 is shown in Fig. 3.21. The set of S0 and (S2,

S3) seems similar to that of S0 and (S3, S4) in the case X=OH in the following ways: i) The

minimum in S0 is on the O atom side, while those in (S2, S3) are on the guanidine side. ii) (S2,
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Figure 3.21: Potential energy curves of in the relevant one-dimensional coordinate, which is
obtained in the same manner as Fig. 3.4.

S3) has nonadiabatic region. iii) (S2, S3) has electrons in the Rydberg-like diffused states, but

S0 does not.

The electronic states of the present cases are also similar to those of X=OH and X=O(Ca)H.

The sum of electron density of natural orbitals whose occupation number is less than two

is shown in Fig. 3.22 and 3.23, which are respectively corresponding to Ac=guanidine and

Ac=ammonia cluster. In both cases, S3 becomes to have contributions from the Rydberg-like

diffused states on Ac when the H atom is transferred.

The photon energy to access the relevant excited states (expressed as thick lines in Fig. 3.21)

in the present system is more similar to that of X=O(Ca)H rather than X=OH (see Fig. 3.13).

That possibly owes to the Ca atom, as we have seen in the Sec. 3.4. The responsible electrons

(the sum of electrons of natural orbitals whose occupation number is less than two) in S0 are

shared by the Ca and Mn atoms, thus we can indeed find the contribution of the Ca atom.

The X-MnOH2 where X=OH or X=O(Ca)H can be regarded as a good representative of

the present system of the Mn cluster of the oxygen-evolving complex in a way that it has

similar potential curves and similar electronic states, although it contains only a single Mn

atom. Therefore, we can anticipate that the same photodynamical mechanism (coupled proton-

electron transfer resulting in charge separation on Ac) can be found even in these relatively

realistic cases.
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Figure 3.22: Spatial distribution of electrons in natural orbitals whose occupation number is
less than two for Mn4CaO5OH2· · · guanidine. The row denotes the position of transferred H
atom, while the column does the adiabatic states. We can find the Rydberg-like diffused states
in S3, which is the same situation in Fig. 3.5.
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Figure 3.23: Spatial distribution of electrons in natural orbitals whose occupation number is
less than two for Mn4CaO5OH2· · · ammonia cluster. The row denotes the position of transferred
H atom, while the column does the adiabatic states. We can find the Rydberg-like diffused states
in S3, which is the same situation in Fig. 3.5.
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Figure 3.24: Adiabatic potential curves as functions of position of the transferred H atom for
Mn(OH)OH2· · · (ammonia cluster) (a) and [Mn(OH)OH2· · · (ammonia cluster)]− (b). In the
case(a), S3 and S4 are drawn as thick lines, which include the Rydberg-like diffused states,
while in the case (b), such a state is S0 (see Fig. 3.26).

3.6 Electron attachment as an alternative mechanism

3.6.1 Target system: X=OH, Ac=ammonia cluster (neutral and anion)

Now we mention another scenario of water decomposition, which is related to the present cou-

pled proton-electron transfer. We have assumed so far that the energy to drive the reaction

of coupled proton-electron transfer is produced by direct photoexcitation, but this is not the

only possibility. Here we consider the case where an electron is somehow attached to the

Mn(OH)OH2· · · (ammonia cluster) (Fig. 3.2(c)). The resulting molecule [Mn(OH)OH2· · · (ammonia

cluster)]− is optimized again, but the geometry is not affected so much by this operation.

Incidentally, Mn(OH)OH2· · · (ammonia cluster) does not have electron affinity in terms of

the energy of MOs, thus the following analysis should be kept in mind as reference. It can

become more meaningful if this molecule is embedded in relevant environment such as a protein

or solvent.

3.6.2 Properties in the projected one-dimensional properties

The projected one-dimensional potential curves obtained in the same manner as Fig. 3.4 for

neutral and anionic molecules are shown in Fig. 3.24. In anion (Fig. 3.24(b)), the position of

the minimum in S0 is shifted from the O atom side to the Ac side. This shift reminds us of that

of the excited states (S3, S4) of the neutral (Fig. 3.24(a)). The spatial distribution of responsible

electrons are shown in Fig. 3.26 for the neutral and Fig. 3.25 for the anion. S3 or S4 of the
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Figure 3.25: Spatial distribution of the sum electrons of natural orbitals whose occupation
number is less than two for Mn(OH)OH2· · · ammonia cluster. The row denotes the position of
transferred H atom, while the column does the adiabatic states S0, S3 and S4. Those of S1 and
S2 are similar to that of S0. We can find the Rydberg-like diffused states only in the excited
states. They are quite similar to those of Ac=guanidine shown in Fig. 3.5. Color attribution is
the same as Fig. 3.14.

Figure 3.26: Spatial distribution of the sum electrons of natural orbitals whose occupation
number is less than two for [Mn(OH)OH2· · · ammonia cluster]−. The colors are attributed to
atoms as follows: H=white, C=black, N=blue, O=red and Mn=purple. The attached electron
likely occupies the Rydberg-like diffused states like those of (S3, S4) of the neutral shown in
Fig. 3.25. Color attribution is the same as Fig. 3.14.
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neutral is more similar to S0 of the anion than S0 of the neutral.

3.7 Concluding remarks

We have investigated photodynamics of X-MnOH2· · ·Ac, which is stimulated by the Mn cluster

embedded in PSII, by means of the theory of nonadiabatic electron wavepacket dynamics. Here

X and Ac are respectively an arbitrary subsystem and a proton-electron acceptor. Various X and

Ac are examined to find a common mechanism of coupled proton-electron transfer in excited

states. The reaction on the proton-electron donor (X-MnOH2) is expressed as

X-MnOH2 + hν → X-MnOH + Hn+ + ne− (n ≈ 0.6). (3.9)

The mechanism can be summarized as follows:

1. Excited electronic states are generated by UV-visible light.

2. Hn+ is transferred to Ac through nonadiabatic region.

3. ne− are transferred to the Rydberg-like states of Ac.

Significantly, this mechanism results in charge separation on Ac, because the Hn+ and ne−

reach different places on Ac through mutually different pathways (see Fig. 3.7 and 3.11, for

example). Charge recombination does not take place immediately after the coupled proton-

electron transfer, thus further charge separation can follow this mechanism as a trigger.

We have investigated various X and Ac, and found that they have similar projected one-

dimensional potential curves relevant to the present mechanism. We especially focus on the

case where X=OH and Ac=guanidine (Fig. 3.2(a)) to perform the full-dimensional nonadiabatic

electron wavepacket dynamics. In the derived mechanism from the dynamics, Hn+ and ne−

(n ≈ 0.6) take different pathways and reach spatially different places on Ac to induce charge

separation. Note that this is exactly the excited state mechanism. The ground state dynamics

with the similar initial nuclear coordinates and momenta results in a common acid-base reaction,

and thus it does not induce charge separation on Ac.

We have clarified the effect of a Ca atom in the X-MnOH2 system by comparing molecules

with and without the Ca atom, and found that the Ca atom serves to reduce the photon energy to

access the relevant electronic states, which was almost the same as the system of Mn4CaO5OH2.
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This implies that the role of Ca atom is to reduce the excitation energy, and produce the electrons

involved in the reaction.

In connection with the oxygen-evolving complex in PSII, we also investigated the case

where X=Mn3CaO5 and Ac=(guanidine or ammonia cluster), namely, Mn4CaO5OH2· · ·Ac

(Fig. 3.20). Even in this larger system, we could obtain similar projected one-dimensional po-

tential curves relevant to the present mechanism. This implies that the partial system (Mn(OH)OH2· · ·Ac,

for example) can well represent the dynamics of the Mn cluster in the oxygen-evolving com-

plex.

This work is stimulated by the system of the oxygen-evolving complex, but we do not

mean to “simulate” its dynamics at present. As we mentioned in Sec. 3.6, there are a number

of possible channels in the oxygen-evolving complex. However, our work provided the first

example of using photon energy for charge separation by means of electron dynamics in the

relevant system to the oxygen-evolving complex, which is a novel aspect of this field of science.
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Chapter 4

General conclusion

We have investigated nonadiabatic electron dynamics in chemical reactions to propose mecha-

nisms involving nonadiabatic interaction. We were especially concerned with low energy dy-

namics, where the total energy allocated to the nuclear motion toward the potential barrier was

as much as its height. In this case, nonadiabatic interaction is rather crucial than unignorable.

In Chap. 2, we have applied the developed method to rather conceptual systems, and pro-

posed two mechanisms involving nonadiabatic interaction, namely, tunneling-like effect and

friction-like effect. In the tunneling-like effect, some part of branching paths surmounts the po-

tential barrier by using the force from excited states, although the path originally does not have

enough energy to surmount the barrier in the ground state. On the other hand, in the friction-

like effect, the part of branching paths is reflected by the force from excited states, while the

path is originally able to surmount the barrier. These mechanisms are expected to bring about

pulse trains. This phenomenon is also confirmed in full-quantum calculation. We performed

multi-dimensional implementation to find essentially the same mechanism.

The method was derived in the present work from the path-branching representation (PBR),

which was the general expression of mixed quantum-classical theory. As we have explained,

exact calculation of PBR needs infinite number of branching paths, which is technically impos-

sible. Thus we needed to somehow extract representative paths from the cascade of branching

paths. We adopted wavepacket averaging of the force matrix to realize such an extraction. This

operation gave rise the equivalent force to the semiclassical Ehrenfest theory (SET) to the first

order. As for path-branching, the important idea was the use of “side paths”. The side paths

were defined to be virtually generated at the entrance of nonadiabatic region, and driven by

mutually different eigenforces. This method has an advantage over the previous methods for
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path-branching in low energy cases, where the total energy allocated to nuclear degrees of free-

dom is comparable to the potential barrier height. The number of side-paths is the same as

electronic states involved. When the side paths become far apart from each other more than a

given threshold, path-branching is invoked. The number of path-branching is unlimited.

In Chap. 3, we have demonstrated the photodynamical mechanism resulting in charge sep-

aration. The system was chosen to be X-MnOH2· · ·Ac, where X and Ac were arbitrary subsys-

tem and proton-electron accepter, respectively. We were stimulated to examine such a system

by the Mn cluster of oxygen evolving complex embedded in the photosystem II (PSII). The

reaction on the proton-electron donor is expressed as

X-MnOH2 + hν → X-MnOH + Hn+ + ne− (n ≈ 0.6). (4.1)

In the proposed mechanism, Hn+ and ne− reach spatially different places on Ac through mu-

tually different pathways, which results in charge separation on Ac. We have emphasized that

this mechanism should be distinguished from H radical transfer, because the unpaired electrons

were not on the transferred H atom. Since charge recombination does not take place immedi-

ately after the coupled proton-electron transfer, this mechanism can be a trigger of the further

charge separation. This is the first example of mechanisms using photon energy for charge sep-

aration by means of electron dynamics in the relevant system to the oxygen-evolving complex.

On the whole, the mechanism was not affected by the attachment of Ca but we found two

possible roles of the Ca atom, namely, reducing the excitation energy and providing electrons

involved in the coupled proton-electron transfer. Because most of the proposed role of the Ca

atom is concerned with the structure and/or oxidation potential, our rule should be recognized

as a novel one.

We also examined one-dimensional properties of Mn4CaO5OH2· · ·Ac, in which the Mn

cluster of the oxygen-evolving complex is used as a proton-electron donor. The one-dimensional

properties well resemble those of molecules investigated so far, thus the similar mechanism can

probably be found even in this rather large system. This implies that the smaller subsystem

including only a single Mn atom can represent the more realistic larger cases.

The present work has proven that the nonadiabatic electron dynamics is indeed inevitable for

the appropriate description of some chemical reactions. By means of the nonadiabatic electron

dynamics, we could produce further insight into chemical reactions. It was beyond the scope of

standard methods based on the Born–Oppenheimer approximation. [1]
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Appendix A

Parallel computation of numerical

derivatives

A.1 Technical difficulty in the evaluation of derivatives

Here we discuss rather technical details to materialize full-dimensional, on-the-fly dynamics

for the system of X-MnOH2 in realistic calculation time. The rate-determining step of such a

calculation is evaluation of derivatives such as ∂H(el)
IJ /∂Rk and Xk

IJ . The program of analytic

derivatives with CISD/RHF level of calculation is implemented in the quantum chemistry pack-

age GAMESS. [128,129] However, it takes unrealistically long time for relatively large system

for technical reasons. There are mainly two reasons why the program of analytic derivatives

takes so long time.

First, the program for analytic derivatives does not run with “frozen virtual orbitals”. This

means that the number of configuration state functions (CSFs) increases exponentially as that

of AOs (MOs) does. We have to choose a very small basis set such as STO-6G because of this

constraint. In the present work, we calculate CISD by the graphical unitary group approach

(GUGA) [130–136]. In this method, we divide all the MOs (in ascending order of energy) into

four parts, namely, frozen core, active core, active virtual and frozen virtual orbitals. CISD is

calculated only among the active core and the active virtual orbitals to reduce the exponential in-

crease of the number of CSFs. However, we have to set the number of the frozen virtual orbitals

to zero in analytic derivative calculation, because it is not implemented. In other words, we

must set all the virtual orbitals to active ones. Therefore, if the number of AO (MO) increases,

the number of CSFs increases exponentially.
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Second, the program for analytic derivatives does not support parallel computation, although

that for single point energy does. Here the parallel computation means using many computers

to obtain a single target value. Therefore, no matter how many computational resources are

available, we cannot use them to improve the speed of calculation.

It is never easy to solve those problems by only modifying the codes of GAMESS, because

the relevant program is extremely complicated. On the other hand, single point energy cal-

culation does not have such problems, that is, it supports both the frozen virtual orbitals and

the parallel computation. Thus there is even a case where the evaluation speed of numerical

derivatives exceeds that of analytic derivatives if a target system is significantly large. Ac-

cordingly, we come to a conclusion that parallel evaluation of single point values to calculate

numerical derivatives is probably the fastest way in terms of real calculation time. In the follow-

ing sections, we discuss implementation of a framework of parallel computation of numerical

derivatives using the Python programming language as a wrapper of GAMESS.

A.2 Matrix elements to be calculated

We actually calculate numerical derivatives for ∂H
(el)
IJ

∂Rk
and Xk

IJ . In this section, we clarify what

is necessary to be evaluated in each single-point calculation. Now we consider the case where

adiabatic wavefunctions {Φα} are used as a basis set. They are expanded as

Φα =
∑
I

CαIΦI . (A.1)

{ΦI} can be any orthonormal basis set in general, but here we regard it as CSFs. The derivatives

of the adiabatic representation of the electronic Hamiltonian matrix
∂H

(el)
αβ

∂Rk
can be reduced as

∂H
(el)
αβ (R)

∂Rk

≈ δαβ
2∆R

[ϵα(R + ek∆R)− ϵα(R − ek∆R)] , (A.2)

where ∆R is small variation along each nuclear coordinate and {ϵα} is a set of adiabatic state

energy obtained through diagonalization ofH(el)
IJ . Thus the desired derivatives can be calculated
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if {ϵα} at 6N points*1 are obtained. The nonadiabatic coupling matrix Xk
αβ can be expanded as

Xk
αβ =

⟨
α
∣∣∣ ∂

∂Rk

∣∣∣β⟩
=

∑
I

C∗
αI

∂CβI

∂Rk

+
∑
IJ

C∗
αICβJX

k
IJ . (A.3)

We need to calculate numerical derivatives of both ∂CβI

∂Rk
and Xk

IJ to obtain Xk
αβ . The former

can be reduced as

∑
I

C∗
αI

∂CβI

∂Rk

≈ 1

2∆R

∑
I

C∗
αI [CβI(R + ek∆R)− CβI(R − ek∆R)] , (A.4)

which can be calculated if CαI of 6N points are available. The latter can be reduced as

∑
IJ

CαICβJX
k
IJ ≈ 1

2∆R

∑
IJ

CαICβJ (⟨ΦI(R)|ΦJ(R + ek∆R)⟩ − ⟨ΦI(R)|ΦJ(R − ek∆R)⟩) ,

(A.5)

which can be evaluated if the overlap matrix of the basis sets at the target point and 6N shifted

points are available. Here we have assumed that {ΦI} is CSFs, thus ⟨ΦI(R)|ΦJ(R + ek∆R)⟩

can be expanded as

⟨ΦI(R)|ΦJ(R + ek∆R)⟩ ≈
1

Ne

CSF∑
IJ

MO∑
ij

AO∑
µν

C∗
αICβJa

IJ
ij cµi(R)cνj(R + ek∆R)Sµν . (A.6)

Here we used the approximation ⟨χµ(R)|χν(R + ek∆R)⟩ ≈ Sµν . Therefore, Xk
αβ can be

obtained if {CαI} and {cµi} at 6N points under the approximation we made above. In short,

we just need to calculate a set of adiabatic state energy, {ϵα} , CI coefficients {CαI} , and MO

coefficients {cµi} for 6N points in parallel for fast evaluation of
∂H

(el)
αβ

∂Rk
and Xk

αβ .

A.3 A framework for parallel computation of numerical deriva-

tives

The basic idea of the framework is quite simple, that is, distributing 6N input data to many

computers to perform single-point calculations, and then collecting all the results to gener-

*1 N is the number of atoms. The “6N” is the number of points to calculate single-point values (forward and
backward shift × degrees of freedom).
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ate numerical derivatives. The setup to materialize this idea is schematically shown in Fig.

A.1. It consists of four types of “processes”, namely, client (C), server (S), translator (T) and

worker(W). Here the “process” with double quotation marks is defined to denote the process in

terms of computation.

The framework is a kind of the client-server model of computation. The client sends a

request to perform 6N single-point calculations to the server, and the client eventually receives

the results as its response. The server hides the translators and workers from the client to hide

their complexity as well. We have at most 6N pairs of translator and worker taking charge

of single-point calculations. It depends on the amount of computational resources. If we can

only generate less than 6N pairs, some pairs perform the calculation more than once. If excess

resources are available, they are assigned to each worker. The translator and worker always

appear in pair, and the worker can communicate only with its counterpart.

The framework is implemented with two programming languages, that is, Python and FOR-

TRAN 77. While the client, the server, and the translator are implemented with Python, the

worker is implemented with FORTRAN 77, which is nothing but modified GAMESS [128,129]

in the present study. We choose Python because of the library named multiprocessing in

the Python’s standard library. We can implement a multiprocess program with so much less

codes than using MPI by means of this library. We need the translator because GAMESS

[128, 129] cannot directly receive a Python object.

The actual data flow can be summarized as follows: (1) The client sends both the input data

(e.g. coordinates) and a request to perform single-point calculations to the server. (2) The server

distributes the received input data to the translators. (3) Each translator sends the given part of

input data to the worker after converting the data to readable format for it. (4) Each worker

performs single-point quantum chemical calculation corresponding to the given part of input

data. (5) Each result is sent back to the server through the connected translator. In this step,

the translator converts the result appropriately as it does for the part of input data. (6) After

all the single point calculations complete, the results accumulated in the server are sent back to

the client. (7) The client calculates numerical derivatives by use of the results of single point

calculation.
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Figure A.1: Schematic representation of the correlation of “processes” in the proposed frame-
work of parallel computation of numerical derivatives. Each piece denotes an independent
“process”. Connections among those pieces represent the existence of interprocess communi-
cation. This framework is a kind of the client-server model of computation. It consists of four
kinds of “processes”, namely, client (C), server (S), translator (T) and worker(W).
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Appendix B

Smooth connection among on-the-fly basis

sets

Technically speaking, it is not guaranteed that adiabatic wavefunctions calculated on-the-fly

varies continuously in time, because they have some arbitrariness. The electron wavepacket in

the present study is expanded in the form

Ψ(R, r, t) =
∑
α

Cα(t)Φα(r;R(t)), (B.1)

and {Φα} is adiabatic wavefunctions calculated on-the-fly. If the adiabatic wavefunctions calcu-

lated on-the-fly are continuous in time, the time-shifted overlap matrix S̄αβ(t) ≡ ⟨Φα(t)|Φβ(t−

∆t)⟩, where ∆t is a small time step, is almost equal to the identity matrix as

S̄αβ ≈ δαβ. (B.2)

However, in practice, the resulting S̄ matrix is quite often obviously different from the iden-

tity matrix. For example, if the phase (or +/−) of the wavefunction is reversed, S̄ should be

something like 

. . .

−0.99 0.01

0.01 0.99
. . .

 , (B.3)
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or if the order of them is swapped, S̄ should be something like

. . .

0.01 0.99

0.99 0.01
. . .

 . (B.4)

This discontinuity leads to (numerical) divergence in integrating the equations of motion. Thus

we need to make them smoothly connected in time.

Here we propose a simple method to realize such a smooth connection. In this method, we

transform the original on-the-fly basis set by attributing each component to that of the previous

one. Suppose the relevant transformation matrix is expressed as T, that is,

Φ′
α(t) =

∑
β

Φβ(t)Tβα, (B.5)

where {Φα(t)} is the raw on-the-fly basis set and {Φ′
α(t)} is the transformed but equivalent

basis set, which is smoothly connected to {Φ′
α(t−∆t)}. Here we define the “prime” symbol to

denote that the basis set is transformed to be smooth.

In order to construct T, first we expand {Φ′
α(t−∆t)} with {Φα(t)} as

|Φ′
α(t−∆t)⟩ =

∑
β

|Φβ(t)⟩⟨Φβ(t)|Φ′
α(t−∆t)⟩

=
∑
β

|Φβ(t)⟩S̄βα. (B.6)

Here the basis set is assumed to be complete. Now S̄ can be recognized as a matrix to transform

{Φα(t)} to {Φ′
α(t−∆t)}, therefore a good candidate for T.

Now we take S̄ as an initial guess for T. We assume that there is no degenerate component.

In this case, the matrix element of T should be one of 0, ±1, so that the transformed basis set is

equivalent to the original. T is calculated as follows (for each α),

Tβα =

 sign(S̄βα), if |S̄βα| = max(|S̄βα|)

0, otherwise
, (B.7)

where the “max” function scans index β of each α. Finally, the resulting T is used to calculate
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Eq. (B.5).

91





Appendix C

Hybrid atomic population analysis

Here we explain the hybrid population analysis used in Chapter 3 to assign either electron

density or unpaired electron density ρ(r) to a specific atom. The method is a hybrid of the

Mulliken [138] and Hirshfeld [139] methods. The former is oriented to atomic orbital (AO)

density matrix, while the latter is to spatial distribution. Mulliken’s method is in general not

suitable for the system where diffuse orbitals are included in the atomic basis set. [139, 158]

On the other hand, Hirshfeld can better assign it, but is numerically unstable, because inner

shell orbitals are too steep for easy numerical integral. [139] Therefore, we take an approach

such as dividing the density into two parts, where one of them includes most of the contribution

of diffuse orbitals (Hirshfeld’s method in charge), and the other one does that of inner shell

orbitals (Mulliken’s method in charge). Each partial density is integrated to obtain partial atomic

population. Finally we merge those two parts to evaluate atomic population. Hereafter we

explain the method in detail.

Now we consider to assign either electron density, unpaired electron density, or any other

density ρ(r). The density ρ(r) is expanded as

ρ(r) =
AO∑
µν

Pµνχµ(r)χν(r), (C.1)

where {χµ(r)} is an atomic basis set and Pµν is its density matrix, to a specific atomA. First we

derive a general form. Let us introduce a weighting operator ŵA to partition the density, which

is integrated to give PA as
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PA =

∫
ŵA ρ(r)dr. (C.2)

We can derive both Mulliken and Hirshfeld atomic population by setting ŵA appropriately.

The Mulliken atomic population [138] is derived by setting the weighting operator ŵ(M)
A as

ŵ
(M)
A Pµν ≡

 Pµν , if χµ belongs to atom A

0, otherwise
. (C.3)

Inserting Eq. (C.3) to Eq. (C.2) indeed gives us the definition of Mulliken atomic population

P
(M)
A as

P
(M)
A =

AO∑
µ∈A,ν

PµνSµν , (C.4)

where Sµν is an AO overlap matrix. Meanwhile, the Hirshfeld atomic population [139] is de-

rived by setting the weighting operator ŵ(H)
A as

ŵ
(H)
A ≡ ρatA (r)∑

B ρ
at
B (r)

, (C.5)

where ρatA (r) is spherically averaged ground-state electron density of an suitably positioned

(isolated) atom.

Next we proceed to divide the density into two parts so that one of them includes most

diffuse orbitals and the other does most inner shell orbitals to obtain the atomic population. We

can materialize it by dividing CI natural orbitals (NOs) into higher and lower parts in occupation

number. Lower parts should include most diffuse orbitals. The resulting parts of density, say

respectively ρi(r) and ρd(r), are integrated after operating ŵA to give atomic population PA

PA =

∫ (
ŵ

(M)
A ρi(r) + ŵ

(H)
A ρd(r)

)
dr (C.6)

This method provides numerically stable and not physically meaningful atomic population.
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