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Abstract (abridged) 

 
In this thesis, I will discuss my work toward discovering cyclic peptides against three 

large transmembrane proteins. The transmembrane proteins targeted in this study 

were chosen because they are only involved in protein-protein interactions and no 

drugs have been developed at this time to inhibit them from doing so. This is due to 

the fact that small molecules do not have a sufficient amount of possible contacts to 

get in the way of such interactions. Thus, peptides, which are slightly larger in size, 

are a great candidate drug class to fill this need for protein-protein interaction 

inhibitors. The RaPID (Random nonstandard Peptide Integrated Discovery) system 

has previously been shown to be a reliable platform for the discovery of cyclic 

peptides that bind with high affinity to enzymes and transporters as well as exerting 

varying degrees of inhibitory activity upon them. I used the RaPID system to generate 

macrocyclic peptides that bind to the three transmembrane proteins. 

  

In chapter 1, I discuss the current situation in drug discovery and the unmet 

challenges of generating drugs that block protein-protein interactions and how 

traditional drug discovery methods such as small molecule screens have not been 

adequate in addressing these challenges. The relevance and renewed focus on 

peptides as a drug class to meet these inadequacies of small molecules, and the 

superior features of in vitro display platforms such as the RaPID system compared to 

traditional high throughput small molecule screens are also discussed. 

  

In chapter 2, results of my selection for macrocyclic peptides that bind Plexins are 

described.  

  

In chapter 3, an attempt at discovering peptides with inhibitory activity against 

integrins is discussed.  

 

In chapter 4, a method to ribosomally synthesize fused tricyclic peptide libraries was 

developed and this is discussed in this section. 
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In chapter 5, selection of macrocyclic peptides that bind subunits of secretase 

complexes are described 

  

Chapter 6 is the conclusion of this thesis. Achievements and novel findings will be 

discussed. The implications of my findings and future possibilities stemming from the 

results of my studies will also be discussed       
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Chapters 1, 2, 3, 5 and 6 are not shown due to reasons 

involving patent applications. References of chapters 1, 2, 3, 

5 and 6 are included in this text. 
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Chapter 4 

 

Ribosomal synthesis of fused tricyclic peptides 
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Introduction 

In nature, several examples of polycyclic peptides exist, such as conotoxins, 

cyclotides and defensins1–3 and have a suprising variety of biological activities such 

as protease resistance, protein-protein interaction inhibition and, in some cases, oral 

bioavailability4,5. A method of ribosomally synthesizing such polycyclic peptides in a 

way that is compatible with mRNA display would be a very powerful tool in possibly 

discovering such peptides. However, these polycyclic peptides are often head-to-tail 

cyclized and contain multiple cysteines6. To be compatible with mRNA display, it is 

necessary to have a free C-terminus for puromycin attachment7. Additionally, 

scaffolds with multiple cysteines which have easily reversible disulfide bonds which 

make structural deconvolution a great challenge8. In an aim to develop a methodology 

to synthesize polycyclic peptides that are mRNA display compatible and have 

predictable yet complex topologies, the following method was established. 

 

Previous reports have shown that ribosomally synthesized peptides with an N-

terminal chloroacetyl group can be cyclized using the sulfhydryl group of downstream 

cysteines9. Additionally, it has been shown that there is some selectivity regarding the 

positioning of the cysteine in relation to the N-terminal chloroacetyl group10. When 

more than one cysteine is present, the N-terminal chloroacetyl group cyclizes with the 

foremost N-terminal cysteine. However, due possibly to steric reasons, a cysteine in 

the second amino acid position is not able to cyclize with the N-terminal chloroacetyl 

group. Therefore, an N-terminally chloroacetylated peptide containing a cysteine in 

the second amino acid position and three more arbitrarily spaced downstream 

cysteines would result in the formation of a cycle between the N-terminal 

chloroacetyl group and the second cysteine. The remaining unreacted first, third and 

fourth cysteines can then be reacted with 1,3,5-tris(bromomethyl)benzene (TBMB) to 

result in a fused tricyclic peptide. Such a methodology can be applied to the synthesis 

and screening of large fused tricyclic libraries. 
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Results and discussion 

Cyclizing peptides using an N-terminal chloroacetyl group and a downstream 

thiol is a very robust method of generating libraries of macrocyclic peptides9. 

Previous reports have identified that the N-terminal chloroacetyl group is not able to 

react with the sulfhydryl group of a cysteine at the second amino acid position10. 

Further, when multiple cysteines appear further downstream, the chloroacetyl group 

will cyclize with the foremost N-terminal cysteine. Thus if an N-terminally 

chloroacetylated peptide is designed to have a cysteine in the second amino acid 

position followed by three more randomly spaced cysteines, the cyclization will occur 

between the N-chloroacetyl group and the second cysteine leaving the first, third and 

fourth cysteines unreacted. Similar to the N-chloroacetyl group, TBMB can react with 

three sulfhydryl groups. Application of TBMB with the aforementioned peptide can 

result in a tricyclic peptide with a fused topology (Figure 1). Such a scaffold will 

make possible larger multicyclic peptides that still retain structural strain as well as 

the ability to interact with larger surface areas. 

 

Conditions of peptide tricyclization using TBMB would ideally not interfere 

with mRNA display steps as well maintain simplicity as to not reduce library diversity 

(i.e. buffer exchanges, changing tubes, etc). Several solvents (DMF, DMSO, 

acetonitrile, ethanol, methanol) were surveyed for their compatibility in reacting 

TBMB with in vitro translated peptides. In vitro transcription and translation of a 

DNA template L7WT and the addition of 40 mM TBMB in dimethyl formamide 

(DMF) following the reduction of disulfide bonds between cysteine residues with 18 

mM tris(2carboxyethyl)phosphine (TCEP) showed the cleanest and most reproducible 

post translational conversion of ribosomally synthesized monocyclic peptides to fused 

tricyclic peptides, detectable by an increase in 114.01 Da which corresponds to the 

addition of a mesitylene moiety (Figure 2a, b). To further confirm that this 114.01 Da 

shift was due to cyclization, MALDI-TOF MS/MS was used to compare the 

fragmentation pattern of monocyclic and proposed tricyclic peptides. The monocyclic 

sample should contain a long ‘tail’ which should produce various fragments upon 

collision induced decomposition. In contrast, if the TBMB treated monocyclic peptide 

is indeed tricyclized it will have only a short tail and will  

 



80"
"

 

 
not produce many fragments. MALDI-TOF MS/MS analysis of monocyclic L7WT 

showed several fragments which corresponded to various ‘tail’ regions (Figure 2c). 

However, as predicted, MALDI-TOF MS/MS analysis of TBMB treated L7WT did 

not produce any visible tail fragments which can be attributed to being tricyclized 

(Figure 2d). 

 

Although previous reports have determined this cyclization selectivity when 

multiple cysteines appear in the peptide sequence, the study was not performed with a 

peptide containing four cysteines. To demonstrate that this selectivity still exists with 

four cysteines a DNA template encoding a peptide containing a cysteine at the second 

amino acid position (Cys1) and three more downstream cysteines (from the N-

terminus: Cys2, Cys3, Cys4) all spaced seven amino acids apart was designed. 

Genetic code reprogramming via the FIT system was used to incorporate N-

chloroacetyl D-tryptophan at the first amino acid position. Further, genetic code 

reprogramming was used to incorporate L-lactic acid between Cys2 and Cys3. It is  

Figure 1. Reaction scheme of forming fused tricyclic peptides via ribosomal 
synthesis. Peptide translation initiated by an N-chloroacetylated amino acid 
and containing four downstream cysteines (with one of the cysteines in the 
second amino acid position) creates a monocyclic peptide. Reaction of the 
remaining three cysteines with tris(bromomethyl)benzene results in a fused 
tricyclic peptide. 
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established that the ribosome is able to catalyze ester bond formation11,12. Ester bonds 

hydrolyze much more readily relative to peptide bonds and therefore this peptide can  

be fragmented via alkaline hydrolysis and analyzed using MALDI-TOF MS to 

determine whether the initial cyclization event occurs between Cys2, Cys3 or Cys4 

Figure 2. Synthesis and MALDI-TOF MS/MS analysis of ribosomally 
synthesized monocyclic and tricyclic peptide L7WT. (a) Cyclization method of 
DNA encoded peptide L7WT. (b) MALDI-TOF MS analysis of monocyclic 
(monocyclic mobs = 3094.45 Da mcalc = 3094.45) and tricyclic (tricyclic mobs 
= 3208.50 Da mcalc = 3208.50) L7WT. (c) MALDI-TOF MS/MS fragmentation 
of monocyclic (Pm: parent ion) and tricyclic (Pt: parent ion) L7WT. Due to the 
high intensity of ions b1 and c1, expanded spectra are shown below. Several 
peaks corresponding to fragments of monocyclic L7WT were observed 
whereas only noise was observable in the expanded tricyclic L7WT spectra. 
(d) Observed fragmentation patterns of monocyclic and tricyclic L7WT. 
 



82"
"

(Cys1 is not able to react due, most likely, to steric reasons)10 (Figure 3a). In vitro 

translation of this peptide followed by MALDI-TOF MS analysis showed a single 

peak corresponding to the full length monocyclic peptide (Figure 3b). Upon alkaline 

hydrolysis with sodium carbonate, two peaks, one with a mass corresponding to an N- 

terminal fragment of a cyclization event with Cys2 and another with a mass 

corresponding to a peptide fragment downstream of the ester bond was observed. A 

small peak corresponding to the full length unhydrolyzed product was observed as 

well. Importantly, no peak corresponding to a full length hydrolyzed peak was 

observed confirming that even with a peptide containing four cysteines, the same 

cyclization selectivity is retained. DNA templates to encode the same peptide with 

ester bonds in differing positions all showed no peaks to contradict this cyclization 

phenomenon. 

 

Using the established tricyclization conditions, four model peptides were 

tested with 1, 2, 5, and 10 amino acids between each cysteine residue to examine what 

size scaffolds are possible (Figure 4). In vitro translation followed by the addition 

TBMB to each model peptide showed complete conversion of monocyclic peaks to 

tricyclic peaks. Additionally, three model peptides which together comprise all 

proteinogenic amino acids (with the exception of methionine which must be excluded 

to incorporate N-chloroacetyl D-tryptophan) to confirm that TBMB will not result in 

any unwanted side reactions with other residues. MALDI-TOF MS analysis of these 

peptides showed clean conversion of all three model-peptides from monocylic to 

tricylic peptides (Figure 4).  

 

To determine whether this tricyclization chemistry is compatible with the 

conditions of the RaPID system, a puromycin ligated mRNA template encoding a 

peptide containing three cysteines with 4 amino acids between each, an N-terminal N-

biotinyl-L-phenylalanine and a C-terminal GS linker was used to make two samples 

of peptide-mRNA fusions two be tested for recovery from streptavidin-conjugated 

magnetic beads. One sample was reacted with TBMB while DMF was added to 

another sample. These reacted and unreacted samples were first mixed with 

streptavidin-conjugated magnetic beads pre-blocked with biotin. Next, the peptide-

mRNA fusions were transferred to unblocked streptavidin-conjugated magnetic beads. 

The peptide-mRNA fusions were then removed from the unblocked  
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streptavidin-conjugated magnetic beads and the amount of cDNA recovered from 

both blocked and unblocked beads were determined via RT-PCR (Figure 5a). 

Approximately 0.05 and 0.6% of the unreacted peptide-mRNA fusion sample was 

recovered from the blocked and unblocked streptavidin-conjugated magnetic beads, 

respectively. For the reacted peptide-mRNA fusion samples, approximately 0.025%  

Figure 3. Confirmation of initial cyclization topology. (a) Fragmentation of 
ester bonds placed between various cysteines via L-lactic acid will result in 
different fragment sizes dependent on cyclization topology. (b) MALDI-TOF 
MS analysis of the fragments formed depending on ester bond positioning. All 
peaks support the formation of a cycle with cysteine 2. 
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and 0.35% was recovered from the blocked and unblocked streptavidin-conjugated 

magnetic beads, respectively. Although the amount of peptide-mRNA fusions 

recovered from the reacted samples were slightly lower than the unreacted, the 

difference was low and the fold difference between the unblocked and blocked beads 

were 10.2 for the unreacted peptide-mRNA fusions and 14.0 for the reacted peptide- 

mRNA fusions. These results show that the chemistry involved in the tricyclization of 

peptides by TBMB does not interfere with the steps required for the RaPID system. 

Conversely, to see if the tricyclization reaction is compatible with the conditions of 

the RaPID system the tricyclization reaction was carried out on a peptide after 

reagents for reverse transcription were added. MALDI-TOF MS analysis showed a 

peak with a mass corresponding to a tricyclized peptide which was shifted 114 MW 

from an unreacted sample confirming that this reaction can still proceed under 

conditions of the RaPID system (Figure 5b).  

Figure 4. Tricyclization of peptides with various size lengths and amino acid 
composition. (a) Schematic of tricyclized peptides in this study. (b) MALDI-
TOF MS analysis of monocyclic (black peaks) and corresponding tricyclic 
peptides (red peaks). Amino acid sequences are shown below each 
spectrum. (c) Calculated and observed masses of peaks in (b). 
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Figure 5. Compatibility of tricyclization chemistry with the RaPID system. (a) 
N-terminally biotinylated peptide-mRNA fusions were with and without the 
addition of tris(bromomethyl)benzene were subjected to streptavidin 
conjugated magnetic beads to determine if cDNA can still be recovered. (b) 
MALDI-TOF MS analysis of peptide tricyclization under mock RaPID system 
conditions. Peaks representing the conversion of the monocyclic peptide (M, 
black peak) to a tricyclic peptide (T, red peak) was observed. M mobs = 
3625.56 Da (mcalc = 3625.46); T mobs = 3739.61 Da (mcalc = 3739.51)  
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Conclusion 

In this chapter I described my work in developing a general and robust method 

of producing fused tricyclic peptides of ribosomal origin. This method can be applied 

to ribosomally synthesize vast libraries of fused tricyclic peptides in an mRNA 

display compatible manner. The fused tricyclic topology allows one to design larger 

more complex peptides while still maintaining the structural strain seen in smaller 

monocyclic peptides which is established as a necessity for high binding affinity. This 

method is compatible with all proteinogenic amino acids with the exception of 

methionine which was excluded to allow genetic code reprogramming. This 

tricyclization method can be used for another attempt at selecting for peptides that 

bind α6β1-integrin and inhibit its interaction with laminin-511 (Chapter 3). 

Additionally, the larger size may make it applicable to select for tricyclic peptides that 

bind unstructured peptides. The human genome encodes for approximately 300 SH3 

domains which are composed of ~60 amino acids and no disulfide bonds13. These 

SH3 domains are capable of binding a short 5mer linear motif and thus tricyclic 

peptides of similar size may be used to bind a variety of linear peptides. This can open 

up doors for non-invasive binding of GPCR N-termini to add a fluorescence tag, 

highly selective histone tail binders for ChIP-seq14 or structural investigations of 

intrinsically disordered proteins15. 
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Materials and methods 

EnAsn-3'.R20-OMe: 5’-TGGCGGCTCTGACTGGACTC-3’ 

EnAsn-3'.R38: 5’-TGGCGGCTCTGACTGGACTCGAACCAGTGACATACGGA-3’ 

EnAsn-5'.F49:  

5’-

GTAATACGACTCACTATAGGCTCTGTAGTTCAGTCGGTAGAACGGCGGA-3’ 

EnAsn CAU.R43:  

5’-GAACCAGTGACATACGGATTNNNAGTCCGCCGTTCTACCGACT-3’ 

dFx.R46:  

5’-ACCTAACGCCATGTACCCTTTCGGGGATGCGGAAATCTTTCGATCC-3’ 

dFx.R19: 5’-ACCTAACGCCATGTACCCT-3’ 

3C-1-ext1: 

5’-TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACAT 

ATGTGCGGCTGCGGTTGCGGCTGC-3’ 

3C-1-ext2:  

5’-

TTTCCGCCCCCCGTCTTACGAACCTTTGCCGCTGCGATAATCGCAGCCGCA

ACCGCAGCC-3’ 

3C-2-ext1: 

5’-TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACAT 

ATGTGCGGCACCTGCGGTTCGTGCGGCCGTTGC-3’ 

3C-2-ext2:  

5’-

TTTCCGCCCCCCGTCTTACGAACCTTTGCCGCTGCGATAATCGCAACGGCC

GCACGAACC-3’ 

3C-5-ext1: 

5’-TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACAT 

ATGTGCGGCACCATTGCGAGCTGCGGTTCGTTTAGCCTGTGCGGCCGTGA

AGCG-3’ 

3C-5-ext2:  

5’-

TTTCCGCCCCCCGTCTTACGAACCTTTGCCGCTGCGATAATCGCACAGCGC

TTCACGGCCGCACAGG-3’ 
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3C-10 new FW  

5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

CGGCACCATTGCGAAATTGCACGGTGCGATCTGCGGG-3’ 

3C-10 new RV1  

5’-

GGCTTGCGCAACGCTTCACGGCCGCAGTTACGGTGCTGTACCAAGGAACC

TTTCCCGCAGATCGCACCGTGC-3’ 

3C-10 new RV2 

5’-

TTTCCGCCCCCCGTCTTAGCGACCTTTACACTCCGAAGGCTTGCGCAACGC

TTCACG-3’ 

3C-5A FW  

5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

TGGAACGAATGCAAGTTGCGGTAGTTACAGCTTATGTGGG-3’ 

3C-5A RV  

5’-

TTTCCGCCCCCCGTCTTAGGAGCCTTTGCCGCTACGGAAGTCACACAGCGC

TTTGCGCCCACATAAGCTGTAACTACCGCAACTTGC-3’ 

3C-5B FW  

5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

TGGTACTGATCAAGCCTGCGGGAGTTGGTCTTTATGTGG-3’ 

3C-5B RV  

5’-

TTTCCGCCCCCCGTCTTACGACCCTTTACCCGAGCGCTTGTCGCAGAGGGC

TTCGCGTCCACATAAAGACCAACTCCCGCAGGC-3’ 

3C-5C FW  

5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

CGGAACCATCGCCTCTTGCGGTAGCCACAGTCTCTGTGGC-3’ 
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3C-5C RV 

5’-

TTTCCGCCCCCCGTCTTAAGAACCTTTACCAGAACGTTTATCACAAAGAAC

AGGGCGGCCACAGAGACTGTGGCTACCGCAAG-3’ 

L7 WT FW  

5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

TGGCACCATCGCAAGCAAACACTGCGGCTCCGCCCTTGTG-3’ 

L7 WT RV  

5’-

TTTCCGCCCCCCGTCTTATTTCGCATCACACGGGATGCGCAGAGCTTCACC

ACAGTGCTGCACAAGGGCGGAGCCGCAG-3’ 

L7 E1 FW 

 5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

TGGCACCATCATGAGCAAACACTGCGGCTCCGCCCTTGTG-3’ 

L7 E2 FW  

5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

TGGCACCATCGCAAGCAAACACTGCGGCTCCATGCTTGTGCAGCAC-3’ 

L7 E3 RV  

5’-

TTTCCGCCCCCCGTCTTATTTCGCATCACACGGGATGCGCAGCATTTCACC

ACAGTGCTGCACAAGGGCGGAGCCGCAG-3’ 

L7 E4 RV 

5’-

TTTCCGCCCCCCGTCTTATTTCATATCACACGGGATGCGCAGAGCTTCACC

ACAGTGCTGCACAAGGGCGGAGCCGCAG-3’  

3C-4FW: 

5’-

TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATGTG

TTGGACGGGCGGTCCGCAGTGCGGCGGTTCCCATTATACG-3’ 
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3C-4RV: 

5’-"
TTTCCGCCCCCCGTCTTAAGACCCGCGACCACTACGATAATCACACGTATA
ATGGGAACCGCCGCACTG-3’ 
 

Synthesis of L-lactic acid dinitrobenzyl ester 

1 equivalent of L-lactic acid (29 mg) was reacted with 1.5 equivalents of 

dinitrobenzyl chloride (111 mg) with 2 equivalents of diethylamine (117 µl) in DMF 

(Total volume: 2 ml) and stirred for 12 hrs. The reaction was confirmed on TLC using 

1:1 hexane:ethyl acetate. The reaction was quenched with 350 µl 1 M HCl followed 

by the addition of 1 ml diethyl ether. The reaction was transferred to a 100 ml 

separating flask containing ~80 ml 50% diethyl ether aq. Contents were then mixed 

and the aqueous phase was drained. The remaining organic phase was brought to 80 

ml with 1 M HCl aq. and the aqueous phase was drained. This was repeated with H2O, 

saturated sodium bicarbonate and saturated NaCl. The remaining aqueous phase was 

further dehydrated with anhydrous MgSO4. The contents were filtered to remove 

MgSO4 and the evaporated on the rotovap followed by an oil pump vacuum. The 

product weighed ~120 mg at this point and was resuspended in 1 ml DCM. The 

product was run on two preparative TLC plates using 1:1 hexane:ethyl acetate as 

mobile phase. The single band was cut out, filtered and eluted with diethyl ether 

(~200 ml). The product remained a viscous liquid following evaporation and 53 mg 

remained at this point. The product was resuspended in 2 ml chloroform-D and 

subjected to NMR analysis (Figure 6). The NMR spectra showed impurities and 

following the testing of several mobile phase options, 1:1 hexane:acetone was used to 

re-purify the product via preparative TLC. This purification resulted in a clean NMR 

spectra of L-lactic acid dinitrobenzyl ester. 
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Synthesis of dFx, tRNAenAsn

CAU and DNA templates. 

dFx was synthesized in the same manner as in Chapter 2 with the following 

exceptions: The extension step was performed with Fx-5’.F36 and dFx.R46. The 

following PCR amplification was performed with T7ex5.F22 and dFx.R19. 

tRNAenAsn
CAU was synthesized in the same manner as in Chapter 2 with the following 

exceptions: The exception step was performed with EnAsn-5'.F49 and EnAsn 

CAU.R43. The first PCR amplification was performed with T7ex5.F22 and EnAsn-

3'.R38. The second PCR amplification was performed with T7ex5.F22 and EnAsn-

3'.R20-OMe. 

DNA templates for tricyclic peptide experiments (3C-1, 3C-2, 3C-5, 3C-10, 

3C-5A, 3C-5B, 3C-5C, L7WT, L7E1, L7E2, L7E3, L7E4 and 3C-4) were all 

synthesized as the above templates with primers named accordingly. 

 

Aminoacylation of tRNAs via flexizymes. 

tRNAfMet
CAU was aminoacylated with cyanomethyl ester activated N-

chloroacetyl D-tryptophan or N-Biotinyl-L-phenylalanine which were synthesized in 

house as previously described. tRNAfMet
CAU and eFx were mixed to a final 

Figure 6. 1H-NMR spectrum of L-Lactic acid dinitrobenzyl ester in D-chloroform 
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concentration of 25 µM with a MgCl2 concentration of 600 mM in 50 mM HEPES-

KOH pH 7.5. To this, the aforementioned cyanomethyl ester activated amino acids 

were added to a final concentration of 5 mM. After a 1 hr incubation on ice (or 2 hrs 

for N-Biotinyl-L-phenylalanine), the reaction contents were precipitated using an 

ethanol/sodium acetate mixture at pH 5.2. Pellets were kept dry and at -80ºC until use. 

tRNAenAsn
CAU was aminoacylated with L-lactic-acid dinitrobenzyl ester using dFx by 

mixing both at a final concentration of 25 µM with a MgCl2 concentration of 600 mM 

in HEPES-KOH pH 7.5. To this, L-lactic acid dinitrobenzyl ester was added to a 

concentration of 5 mM and incubated on ice for 3 hrs followed by ethanol/sodium 

acetate precipitation.  

 

Ribosomal synthesis of tricyclic peptides. 

Using the FIT system, a monocyclic peptide is translated using a DNA or 

mRNA template encoding a peptide with a N-chloroacetylated amino acid in the first 

amino acid position, a cysteine in the second amino acid positions and three more 

arbitrarily spaced downstream cysteines. Following a 5 µl in vitro translation reaction, 

1 µl of H2O, 1 µl 150 mM tris(2-carboxyethyl)phosphine in 0.6 M HEPES KOH pH 

7.5 and 1 µl 40 mM tris(bromomethyl)benzene in DMF is added and incubated at 

25ºC for 1 hr. For MALDI-TOF MS or MS/MS analysis, 12 µl of HBS was added to 

each sample and desalted on a C-Tip column (AMR inc.) and eluted with a 50% 

saturated α-hydroxycinammic acid (Bruker Daltonics) solution of 80% acetonitrile 

0.5% sodium acetate. 

 

Translation and alkaline hydrolysis of L7 peptides. 

DNA templates encoding L7 peptides were synthesized using the methionine(-

) FIT system used in Chapter 2 with the following exceptions: L-lactic acid-

tRNAenAsn
CAU was added to the translation mixture at a final concentration of 50 µM 

and translation was performed at 37ºC for 1 hr due to compensate for the slow 

formation of ester bonds by the ribosome. Following translation, any intramolecular 

disulfide bonds were reduced by treatment with tris(2-carboxyethyl)phosphine. 1 µl of 

1 M sodium carbonate was then added and the mixture was incubated at 37ºC for 1 hr 

to hydrolyze the ester bonds. Following hydrolysis, the sample was neutralized with 1 

µl 2% trifluoroacetic acid and desalted on a C-Tip column for MALDI-TOF MS 

analysis. 
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