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In this paper, the concept of critical boundary vector is proposed and introduced to build 

classifiers having a low-power-consumption performance. Two classifiers are proposed and 

implemented to improve the learning speed and reduce the power consumption by analog 

circuits and digital circuits respectively.  

For the analog classifier, a self-adaptive Gaussian function is applied, which is very suitable 

for hardware implementation with a small amount of resource. The misclassification problem 

due to the zero tail regions has been eliminated by introducing the self-adaptive scheme in the 

quasi-Gaussian circuitry. By applying a floating threshold scheme, the quasi-Gaussian kernel 

adaptively extends its tail region according to the characteristics of input data. As a result, the 

problem of locating input data in zero tail regions has been completely avoided. In this way, the 

classification accuracy has been significantly improved. Moreover, separate bus lines are 

provided to individual classes for flexible resource utilization, thus resolved the problem of 

fixed architecture in previous work. The proposed classifier architecture has been verified by 

software simulation and Nanosim simulation of the designed chip. Experimental results show 

that the classifier can show comparable performance to other common classifiers, and the 

operation of the designed chip in a 180nm CMOS technology is also verified by the 

measurement results. However, the poor accuracy using analog circuitries for distance 

calculation limits its application.  

For the digital classifier, the concept of critical boundary vector is introduced into the nearest 

neighbor classifier in combination of a global characterization for further enhancement. In this 

work, a hardware-friendly template reduction method for NN classifiers that is applicable to a 

variety of classification problems is proposed. By introducing the concept of critical boundary 

vectors, a novel boundary vector selection algorithm with a global characterization scheme has 

been proposed to solve the issue of noisy boundary vectors. Based on simple distance 

calculation, the method automatically decides whether the vector should be removed from the 

template set or not according to the nature of the problem. In this manner, the accuracy is 

improved. In order to achieve a fast learning process and low power consumption, hardware 

system is also implemented. Experimental results show that the classifier can show superior 

performance to other common classifiers. Moreover, the FPGA implementation of this 

algorithm further improves the learning speed, and the power consumption for learning is 

greatly reduced as a result. 
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