Ooon

Molecular Dynamics Study of
Hamiltonian Mean Field Model
Utilizing Processor with
Many Cores

Jddddogooooggdd
Hamiltonian Mean Field Model [
Jdddddoon

oo

Contents

1 Introduction 5

2 Utilizing Processor with Many Cores for Computational Physics 7

2.1 Imtroductiono 7
2.1.1 The History of High Performance Computers 10
2.1.2 Many Core Accelerators 11

2.2 Method 12
2.2.1 Computation Configurations 18

2.3 Results and Discussion L. 18
2.3.1 Performance for LJ System 18
2.3.2 Performance for HMF Model 22

24 Summary 24

3 Molecular Dynamics Study of Hamiltonian Mean Field Model 27

3.1 Imtroduction 27
3.1.1 Hamiltonian and Equation of Motion 28
3.1.2 Quasi Stationary States 29
3.1.3 Vlasov Equation and Stationary Condition 29
3.1.4 Lynden-Bell Equilibrium and Initial Condition 30

3.2 Method 31
3.2.1 Energy Moment 31

3.3 Results and Discussion L. 33
3.3.1 Necessary Times for Calculation 33
3.3.2 Various QSS Distributions 34
3.3.3 Two Stagesof QSS 34
3.3.4 Non Unique QSS 36
3.3.5 Set of Quantities Specifying QSS Uniquely 36

3.4 Summary 46

4 Summary and Perspective 47

Appendix

5.1 Implementation Code for LJ Simulation
5.2 Implementation Code for HMF Simulation . . .
5.3 Supplementaries for HMF model

5.3.1 Generating (Ag, Ap) from (e, My) . . .

5.3.2 Density of States and Action Integral
Acknowledgment

Bibliography

CONTENTS

Chapter 1

Introduction

In recent years, accelerator devices such as GPU and Intel Xeon Phi are
receiving attentions. Actually some supercomputers have those accelerator
on them. These accelerators have relatively large number of cores on them.
This thesis aims to make good use of such many core type accelerator devices
to computational physics study. Up to now, the mainline of computational
science is utilizing CPU, whose number of cores is up to several tens, and
whose core clock is as high as several GHz. About accelerators, the core
frequency is relatively low ! and literally the number of cores is so large?.
That makes difficult using legacy code. However, from the viewpoint of ini-
tial financial cost, power consumption and physical space, those accelerators
have advantages, and if certain object for study to which accelerators are ad-
vantageous, it is better to utilize accelerators. Therefore, in this study, the
performance for molecular dynamics (MD) simulation is researched. Then
for mean field type systems, many core type accelerators are found to have
more performance than CPU, and the author studied Hamiltonian mean field
(HMF) model utilizing GPGPU.

HMF model is a toy model for studying systems with long range inter-
action such as self-gravitating systems and plasmas. HMF model as well as
those long range interacting systems have non gaussian stationary states or
quasi stationary states (QSSs) [1], and usually these are the main interest-
ing target. Until now, numbers of stability analyses [2-4] and predictions
of QSSs [5-7] are reported. However certain discrepancies exist between
the predictions and numerical simulations. The main goal of this study is
not precise prediction of QSS, but like thermodynamics, in which states are
specified by limited number of quantities such as temperature, finding set of
quantities which specifies QSS uniquely.

!The core frequency of NVIDIA Tesla K20 is 0.71 GHz.
2Tesla K20 has 2496 cores.

Chapter 2

Utilizing Processor with Many
Cores for Computational
Physics

2.1 Introduction

For computational physics, high-performance computer is a necessary tool.
computer processor is improving obeying Moore’s law [8]. Meanwhile, the
understandings of physics improves as shown on table 2.1. The improvement
of computers is closely related to our future.

In the history of computers, device miniaturization has been improving
performance. When the improvement of performance per one core reached
limit, CPU with multiple cores became mainstream.

Since the physical die size is limited, the number of cores was limited.
Until several years ago, most of the high-performance computer used CPU
with at most several tens of cores.

Meanwhile, GPU has large number of cores. The hierarchical architec-
ture optimized inter core connection, and physical size is reduced. on 2007,
NVIDIA released Compute Unified Device Architecture (CUDA), which en-
abled users to write programs for general-purpose computing on graphics
processing units (GPGPU). Following such situation, Intel released its first
many integrated core (MIC) device, Xeon Phi 5110P on 2012. The number
of cores on the device is 60, which is not so large as GPU, but larger than
normal CPU.

As seen from the above, two tendency exist: multiple high-performance
cores and many numbers of non high performance cores. As shown in figure
2.1, many core processor is advantageous. In addition, the prices per 1

7

8 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

TFLOPS of many core accelerator is cheaper. For example, that of NVIDIA
Tesla K80 is ¥200,000 !, while that of Intel Xeon E5-2699 CPU is ¥630,000 2 .
These are part of the reasons that in recent years some super computers adopt
many core accelerators. This tendency may accelerate and the computers
equipped with many core accelerators will be common in the near future.
Utilizing such accelerators for computational science is desirable.

However, there are problems that prevents users to use accelerators.
Rewriting code for accelerators need costs such as learning and development
time. In addition, even when a code for accelerator is prepared, it is not
necessarily efficient.

In this study, the way to utilize many core accelerators for computational
physics is studied. Through examining performances for short range system
and mean field system, what research way utilizing many core accelerators is
desirable.

10° (~10nm) local thermal equilibrium
MFLOPS efforts, computer in 1970 physics in 1980s

100® (~100nm) linear nonequilibrium MATERIAL
GFLOPS efforts, computer in 1985 physics in 1995~2005

1,000® (~1pum) nonlinear nonequilibrium DEVICE
TFLOPS efforts, computer in 1995 physics in 2005 ~

10,000% (~10pm) or more macroscopic complex system SYSTEM
PFLOPS efforts, computer in 2008 physics in 2010s

Furthermore, 10PFLOPS(Avogadro-scale computer) in 2011,
and EFLOPS(S? computer) will come in 2020.
COMMUNITIES of Systems: Society in Silico(S?)

Table 2.1: Scales from molecules to our world [9]. Size of simple molecules
is taken as a unit of length ~nm.

ltaken from http://www.amazon.com/dp/BO0Q707PQA as of 2015/2/3. The rate 117
¥/$ is assumed and price in yen is rounded to the nearest ten thousand.

2taken from http://www.amazon.com/dp/BOOPDD1ZX0 as of 2015/2/3. The rate 117
¥/$ is assumed and price in yen is rounded to the nearest ten thousand.

2.1. INTRODUCTION 9

100 . ‘ ‘
- NVIDIA Tesla o
Intel Xeon o
& 10 L |
[E
Q
O -
L 1 3
0.1 7 ‘ ‘ ‘
2008 2010 2012 2014 2016

Year

Figure 2.1: Scaling plot of the computation efficiency of typical GPU and
CPU series. The computation efficiency is the computation performance
divided by the thermal design power (TDP) [GFLOPS/W]. The lines are the
fit by the Koomey’s law A - 27 [10], where 7 denotes the time interval after
which the computation efficiency doubles. The obtained fitting parameters
7 for NVIDIA Tesla and for Intel Xeon are 1.4013 [year| and 1.5579 [year]
respectively. For FLOPS and TDP, see table 2.2.

Product GFLOPS TDP [Watt] Reference
Tesla C1060 7776 187.8 [11]
Tesla C2050 515 238 [12]
Tesla K20 1170 995 [13]
Tesla K20X 1310 235 [14]
Tesla K40 1430 245 [15]
Tesla K80 2010 300 [16]
Xeon W3580 53.28 130 [17]
Xeon X3480 48.96 95 18]
Xeon X5690 83.04 130 19]
Xeon E5-2687TW 198.4 150 [20]
Xeon E5-1680 v2 192.0 130 [21]
Xeon E5-2697 v2 259.2 130 [22]
Xeon E7-2890 v2 336 155 [23]
Xeon Eb5-2699 v3 662.4 145 [24]

Table 2.2: The specifications of NVIDIA Tesla series GPUs and Intel Xeon
series CPUs.

10 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

2.1.1 The History of High Performance Computers

The computers have been contributing to the developments of human’s knowl-
edge. For example, the Earth Simulator contributed to the 2007 Nobel Prize
of Intergovernmental Panel on Climate Change. The performance of com-
puters is often measured by Floating-point Operations per Second (FLOPS).
For example, TOP500 uses FLOPS for Linpack. The peak FLOPS is de-
rived by the number of cores x core clock frequency x instructions per cycle
(IPC). From this view point, we follow the development of high performance
computers up to now.

Until around 2000, the number of cores per one CPU processor was 1 for
most cases. For example, ASCI White, which became the first of TOP500 on
2000/11 had processors whose number of cores is 1. Until that time, mainly
the core frequency had been increased and accordingly FLOPS had been
improved. However, the improvement of core frequency is limited. When the
quantity of heat is too large, the processor does not work correctly. There
are two ways to change the situation.

One way is to improve IPC. The Earth Simulator, which was the first
of TOP500 on 2002/6 consists of vector processors. A vector processor exe-
cutes one instruction on multiple data. This way is called single instruction,
multiple data (SIMD).

Another way is to increase the number of cores. Multiple cores are im-
plemented on one processor. The reduced distance between cores makes the
time for communication short. Blue Gene/L, which was the first of TOP500
on 2004/11 is an example.

Adopting the two ways, FLOPS has been developing. The number of
cores has increased. IPC has been improved. The miniaturization has im-
proved. However, these improvements increases the density of heat. De-
creasing core frequency is one of the way to relax this problem. In order to
obtain as high performance as other computers at the same period, the num-
ber of cores is made relatively high. This type of processors is called many
core processors. The typical examples are GPU and Intel Xeon Phi. The
TOP500 champions which are equipped with such devices are Tianhe-1A on
2010/11, Titan on 2012/11, and Tianhe-2 on 2013/6. The computers with
many core processors which reached the top 10 of TOP500 are Tianhe-2,
Titan, Piz Daint, Stampede, and CS-Storm. This amounts to the half of the
top 10 computers. The many core processors have possibility to become the
mainline of high performance computers.

2.1. INTRODUCTION 11

2.1.2 Many Core Accelerators
NVIDIA GPU

Unfortunately, existing program code for CPU is not available for GPUs.
We have to explicitly write code for utilizing device such as data transfer,
execution of kernel function. A kernel function is a procedure of instructions
processed parallel on GPU.

The architecture of GPU is hierarchical: NVIDIA GPU has multiple
streaming multiprocessors (SM) and VRAM memory. Inside one SM, multi-
ple CUDA cores and shared memory exist.

The architecture of GPGPU is mapped to the CUDA (Compute Unified
Device Architecture) programming model. Block is group of threads. One
block mapped to one SM. For some GPUs, multiple blocks are mapped to
the same SM. The threads inside block are executed parallel. Especially the
threads within one warp are executed concurrently. This manner is called
“Single instruction, multiple threads” (SIMT). The set of threads processed
by one core is called warp. The number of threads inside one warp is 32.
When branching occurs inside one warp, it reduces efficiency. It is called
warp divergence.

Different two blocks are not necessarily executed concurrently. For ex-
ample when all the streaming multiprocessors are in use, other blocks must
wait for certain block to be completed.

Grid is group of all the blocks, which is mapped to one GPU device.
Global memory is globally accessible memory, which is mapped to Video
RAM. Shared memory exists inside each blocks, and is locally accessible
from threads inside the same block. Shared memory is mapped to memory
on streaming multiprocessor, and is faster accessible than global memory,
but shared memory outside the block is not accessible.

In order to obtain good performance, the large number of block threads
is desirable. This is related to the memory latency. On each block, all the
threads in one block are not processed simultaneously, but the threads in
several warps. When a memory access instruction is encountered, SM switch
warp in order to conceal memory access time.

Intel Xeon Phi

On Intel Xeon Phi, Linux operating system is running. Programs written in
normal C/C++ code is available. Therefore existing code may run. However,
there are problems. The frequency of core is relatively low compared with
CPU. The number of cores is huge. Intel Xeon Phi also has hierarchical

12 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

architecture We should be aware that these matters may cause unexpected
bottleneck.

For parallelization, frameworks such as Open MP, MPI are available. In
this study, Open MP is used.

2.2 Method

We carry on MD simulations and evaluate the performance.

Simply put, MD is N-body simulation. It simulate the movement of par-
ticles, which correspond to molecules in certain material. On the computer,
equation of motion is integrated numerically. There are many scheme for
integrating differential equation: symplectic integrator, predictor corrector,
and so on. In this study symplectic integrator is used. The basic idea of
symplectic integrator is as following. Usually strict integration of the original
Hamiltonian is impossible. However there exists approximate Hamiltonian
for which the strict numerical integration is available. The strict integration
of the approximate Hamiltonian is derived utilizing Suzuki-Trotter decom-
position [25] to the strict integration of the original Hamiltonian.

Symplectic Integrator

In this study, symplectic integrator is used. In most cases, the interesting
Hamiltonian is expressed like following:

H({ai}, {pi}) = K ({p:}) + U ({a:})- (2.1)

From now on, this expression is assumed. Consider time evolution of phase
space. Let p; ({q;},{pi}) the phase space distribution. The time evolution
equation of p; i.e. Liouville’s equation is expressed as

d 2
% = —iLups, (2.2)

where

) OX 0 09X 0
1LX_{'7X}_Z(api 0q; g; apz‘) 2

is Liouville operator. Since the equation is linear form, strict solution is
formally expressed as

PiiAr = €Xp (—At 1£H) Dt (2.4)

2.2. METHOD 13

The exponential operator is transformed as
exp (—At il — At iﬂU) . (2.5)

Applying Suzuki-Trotter decomposition [25], the operator is approximated
as

exp (—At iﬂK> exp (—At i£U> . (2.6)

Each exponential operator has a simple form:
oK
Chw). e

o (-tita) p(tad oh) = p({a+adf

o (~aik) pltad o)) = o (fad fpi-afo L) 2s)

Therefore the approximate update is done as following;:

oU
0q; 7

e update momentum p; < p; — At

e update and then update position q; < q; + Atgp .
From the alternating update of q and p , this is also called Leapfrog integra-
tion.

Since this integration is the strict integration of approximate Hamiltonian,
iterating the update does not conserve the energy calculated from the original
Hamiltonian expression but the fluctuation level is of At order. Higher order
integration [26,27] also exists.

Data Structure on Memory

There are two types of data structure: Structure of Arrays (SoA) and Array
of Structure (AoS).

For the example of HMF model, AoS means that structure of one parti-
cle variable is prepared, and array of the variable structure is allocated on
memory, SoA mean that for each variables (¢, p, 5, sy, - -+), separate arrays
are allocated on memory. Schematic pictures are shown on figure 2.2.

For the implementation of MD simulations, SoA is chosen. The reason
is explained in following. When a memory reading is needed, the necessary
memory region is split into set of fixed-size region and processed for each
region. This size of region is called bus width. Consider cases when we read
set of data whose size is smaller than bus width. When the set of data is

14 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

continuous on memory, the peak memory reading speed is obtained. For
cache enables processors including CPUs, the read data is stored in cache
memory in advance. For GPUs, the set of memory access from parallel
threads is coalesced and the bus width is fully used. Meanwhile, when the
set of data is not continuous, the number of times for memory transfer is
larger and the memory read time is bigger. For both short range system and
mean field system, the continuous access of parameters on each particles is
needed at many point. Therefore SoA is chosen.

AoS SoA
q | plsx[sy q L
- — p L LI
EEEEEREE sx LI]
sy LI g

Figure 2.2: Schematic picture of AoS and SoA.

System with Short Range Interaction

Usually actual molecules interact by short range interactions. For certain
purpose, Lennard-Jones (LJ) potential is often used. First, implementation
for single thread is explained, and then that for CPU parallelization and that
for GPGPU are explained.

LJ system We introduce a system defined by the Hamiltonian

Np2 N
H= 7+§

=1

V(e =) (2.9)

where V' is a truncated LJ interaction potential

N ,
vin={ Hm o m e tal r<r) (2.10)
0 (otherwise) .

r. denotes interaction range. cg and ¢y are taken so that the following equa-
tions hold: V (r.) = 0, 2% (r.) = 0.

2.2. METHOD 15

Basic Implementation This implementation is based on an efficient im-
plementation [28]. In order to calculate force and potential between particles,
the pairs of particles which are interacting should be listed. To speed up list-
ing the interacting pair, the simulation box is split into pieces of cuboid,
which is called cell. One has only to search neighbor cuboid cells for inter-
acting particles.

Let the interaction radius r.. The list of pair is made reusable for a short
time, by listing surplus pairs in addition: The two particles are not interacting
each other, but the distance is equal to or shorter than r,. Here r.(> r.)
denotes registering distance, and ry = r, — r. denotes surplus distance.

Accordingly the side length of cuboid cell is set equal to or longer than
r.. As explained above, one has only to search neighbor cells for the particle
pairs. Here neighbor cells means the first and second nearest neighbor cells.

Once the pair list is built, one can update position and momentum by
certain integration scheme. On the update of the particle positions, the
largest displacement distance of each particle is measured. One sums up the
largest distance each time. When the summation exceed %TS7 some interacting
two particles pair may appear which was not included in the list built last
time, therefore the pair list is no longer reusable. Then, One has to update
pair list in the manner mentioned above.

For further optimization, one sorts the data array of particles, just before
building pair list. Since this makes physically neighbor particles neighbor on
memory position, this decreases the probability of cache miss hit. Therefore
this improves memory load speed. Since the key of sorting is integer cell
number, bucket sort algorithm is used.

CPU Parallelization The implementation for parallel execution on CPU
is based on that for single thread. There are two typical parallelization for
short range systems: particle decomposition and domain composition. Par-
ticle decomposition means that different thread processes different particle.
Domain decomposition means that different thread processes different do-
main. The efficient implementation [28] adopts domain decomposition.

Implementation for GPU Since the architecture of GPU is simple, the
same implementation as CPU is not realistic. For example, dynamic memory
allocation on kernel is not available, the memory size is small for FLOPS,
and if-branching makes parallel efficiency worse. Therefore a simple imple-
mentation is introduced.

On this implementation, pair list is not built in advance. Instead, one
searches neighbor cells for pair particles on each update.

16 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

For GPU Implementation, particle decomposition is used instead of do-
main decomposition. The reasons are explained in following.

First, coalesced memory access is expected: On particle decomposition,
the chances for coalesced memory access is expected to be high. Assume that
all the particles are sorted on memory according to the position of cuboid
cell. The particles processed by threads in one warp are likely to be in the
same cuboid cell. Therefore the data is likely to be continuous, and memory
access is coalesced.

Second, warp divergence is expected to be suppressed. On domain de-
composition, the numbers of particles on each domains are not uniform.
Therefore, threads in one warp have different loop sizes and they must wait
for the thread which has the biggest workload. As stated above, On particle
decomposition, the particles in one warp is likely to be in the same cuboid
cell. Therefore, the necessary particle list to check for interaction is same.
Therefore warp divergence is relatively suppressed.

As described above, particle sorting is also done. For the parallelization
of bucket sort, prefix sum algorithm [29] is used.

For the implementation code, see 5.1.

System with Mean Field Interaction
As a typical mean field system HMF model is taken. For Hamiltonian and
the equation of motion, see section 3.1.1.
Implementation The basic procedure of HMF simulation is as follows:
1. Update momentum p; < p; + (—M, sing; + M, cos g;) At
2. Update position ¢; < ¢; + p; At
3. Update mean field magnetization M
There is certain freedom for implementation.
1. read s; = (cos ¢;,sing;) from memory or calculate it
2. parallel summation algorithm of M

The first one is up to device. If memory reading speed is slower than the
calculation of sine and cosine, then you may calculate s; from ¢;. Even if
memory reading speed is faster, calculation of sine and cosine may conceal
memory access time for other variables.

The second issue is simple for CPU. On single thread execution, one
may use for-loop to calculate summation. One may use loop unrolling, and

2.2. METHOD 17

software pipelining for optimization. For OpenMP and MPI, the reduction
function is provided.

However on some machines, the reduction function for OpenMP is slower
than the following reduction algorithm: calculate summation on each thread
locally, write local summation value on globally shared array, calculate the
summation of the array on a certain thread.

one kernel {
one kernel {

Global Memory

| 1] | |
HEEEEEEEEEEEREEE
Shared Memory < | [Ltoeee—rn—

Global Memory |£|

Figure 2.3: Schematic picture of parallel reduction algorithm [30]. The upper
half shows the overall flow. The lower half shows the instructions of one
block on one kernel function. Each threads in one block read each value on
the global memory, and write it on the shared memory. Each threads of the
former half of one block read a value on the former half of the shared memory
and a value on the latter half of the shared memory. The sum of the two
values is written on the shared memory. These instructions make the length
of array half. Repeating this instructions, the sum in one block is obtained.
When the number of blocks is not 1, the total sum is not obtained at once.
Repeating the above kernel function, the total sum is obtained.

For GPU, a highly optimized reduction algorithm [30] is introduced In
this study, the algorithm is applied.

18 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

Floating-Point Operation Count and Memory Load In order to eval-
uate the efficiency of calculation performance and memory load. For CUDA
available GPUs, CUDA Profiling Tools Interface (CUPTI) [31] allows per-
formance counting.

CUPTI provides a sample program callback_metric. The author modi-
fied the source code to perform calculation of simultaneous sine cosine func-
tion. In order to count double precision floating operation, metric name
flop_count_dp is used. Then one gets flop_count_dp = 1900000. Since the
total number of threads is 50000, flop of sincos is 38.

The overall count of floating operation is 86. The overall size of memory
load is 4 floats i.e. 32 bytes for double precision floating-point operation.

2.2.1 Computation Configurations

In this study, various kinds of computer machines are used. The computation
configurations are listed on table 2.3.

Name Table
Tesla K20 2.4
Xeon E5-1620 v2 2.7
Tesla C2050 2.5
Xeon X5570 2.8

Xeon Phi 5110 2.6
Xeon E5-2680 v2 2.9
SR16K OMP 2.10
SR16K MPI 2.10

Table 2.3: Computation configuration names and configuration tables.

2.3 Results and Discussion

In this chapter, The performances for LJ system and HMF model are evalu-
ated. MUPS denotes millions update per second.

2.3.1 Performance for LJ System

As shown in table 2.11, the performances for GPUs are less efficient than
that for Xeon. From this results, utilizing GPUs for LJ simulation is not
realistic at present.

2.3. RESULTS AND DISCUSSION

Target Product NVIDIA Tesla K20
FLOPS (single) 3520 GFLOPS
FLOPS (double) 1170 GFLOPS
Memory Bandwidth 208 GB/s

Amount of Memory 4800 MB

GPU Clock rate 506 MHz

Number of CUDA Cores 2496 Cores

TDP 225 W

0OS CentOS 6.6

CUDA Driver Version 6.5

CUDA Runtime Version 6.5

Compiler nvce 6.5.12

Host Configuration Xeon E5-1620 v2

Table 2.4: The configuration of Tesla K20.

Target Product NVIDIA Tesla C2050
FLOPS (single) 1030 GFLOPS
FLOPS (double) 515 GFLOPS
Memory Bandwidth 144 GB/s

Amount of Memory 2687 MB

GPU Clock rate 1147 MHz

Number of CUDA Cores 448 Cores

TDP 238 W

OS CentOS 6.6

CUDA Driver Version 6.5

CUDA Runtime Version 6.5
Compiler nvce 6.5.12
Host Configuration Xeon X5570

Table 2.5: The configuration of Tesla C2050.

20 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

Target Product Intel Xeon Phi 5110
FLOPS (single) 2006 GFLOPS
FLOPS (double) 1003 GFLOPS
Memory Bandwidth 240 GB/s

Amount of Memory 6144 MB

Core Clock rate 1100 MHz
Number of Cores 57 Cores
TDP 300W
Compiler icc 14.0.1

Host Configuration Xeon E5-2680

Table 2.6: The configuration of Xeon Phi 5110

Target Product Intel Xeon E5-1620 v2
FLOPS (double) 118.4 GFLOPS
Core Clock rate 3700 MHz

Number of Cores 4 Cores

TDP 130 W
0OS CentOS 6.6
Compiler gee 4.4.7

Table 2.7: The configuration of Xeon E5-1620 v2

Target Product Intel Xeon X5570
FLOPS (double) 46.88 GFLOPS
Core Clock rate 2930 MHz
Number of Cores 4 Cores

TDP 95 W
OS CentOS 6.6
Compiler gee 4.4.7

Table 2.8: The configuration of Xeon X5570

2.3. RESULTS AND DISCUSSION 21

Target Product Intel Xeon E5-2680 v2
FLOPS (double) 118.4 GFLOPS

Core Clock rate 2800 MHz

Number of Cores 10 Cores

TDP 130 W

Number of Cores for computation 8 Cores

OS CentOS 6.4

Compiler gee 4.4.7

Table 2.9: The configuration of Xeon E5-2680 v2

Target Product Hitachi SR16000 L1
FLOPS (double) 448 GFLOPS
Memory Bandwidth 224 GB/s

Amount of Memory 64 GB

Core Clock rate 3500 MHz
Number of Cores 32 Cores
TDP 4000 W

Table 2.10: The configuration of SR16K. For SRI6K OMP and for SR16K
MPI, Open MP and MPI are used respectively.

Device MUPS /TFLOPS /KW
Tesla K20 22.9 19.6 102
Tesla C2050 18.3 355 76.9
Xeon E5-1620 v2 15.0 126.7 140
Xeon E5-2680 v2 22.9 2418 220

Table 2.11: The performances for LJ system. MUPS, MUPS divided by
peak TFLOPS [MUPS/TFLOPS] and MUPS divided by power consumption
[MUPS/KW] are shown. The number of particles is 65,536. The cut off
radius 7. is 2.5. The simulation box size is L, = L, = L, = 96. The time
slice At is 0.0001. The number density is 0.7. For Xeon CPUs, an efficient
implementation [32] is used.

22 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

2.3.2 Performance for HMF Model

As shown on figure 2.4, 2.5 and 2.6, performances for HMF on various devices
are examined. The number of processing cores used is fixed to be maximum.
Meanwhile the number of particles changes. The fitting function wr% is
derived according to an idea similar to Amdahl’s argument [33]: Let A the
processing time of particle-wise procedures. Let M the number of processing
cores. Let a = %. Let b the processing time of system-wise procedures.
Typical examples are thread synchronization. Therefore the processing time
overall for N particles is AWN + b = aN + b, and the following estimation is

derived:
N

aN +b"

For convenience, call this idea Amdahl-like explanation.

MUPS =

(2.11)

900 ‘
Tesla C2050 —
800 - Tesla K20 7
MIC ——

700 - SR16BKOMP
600 | SR16KMPI

® 500 | 4
2 400 |- -
300 | 4
200 |- / i
100 | //Z/ -
108 104 10° 108 107

N

Figure 2.4: MUPS for HMF model as a function of number of particles. 1st
order symplectic integrator of HMF model is applied. The time slice At is
0.1. The points on the figure are obtained from simulation. The curves are

fitting function QNLH) for each devices.
Device a [ns] b [us]
Tesla C2050 2.23483 18.289
Tesla K20 1.14834 31.226

Xeon Phi 5110 0.99899 119.792
SR16000 OpenMP 1.88267 254.077
SR16000 MPI 3.55610 70.047

Table 2.12: Fitting parameters a and b for each devices.

2.3. RESULTS AND DISCUSSION

0.1 N ——
Tesla C2050 ——
0.09 - Tesla K20
| MIC ——
0.08 SR16K OMP —
0.07 | SR16K MPI
z 006 [
c
S 005
O
%S 004 L
0.03 |-
0.02 |-
0.01 |
0 . |
103 104

10°

N

108

107

23

Figure 2.5: The efficiency of FLOPS as a function of the number of particles.
The efficiency of FLOPS is the actual FLOPS divided by peak FLOPS. The

actual FLOPS is measured using CUPTI as explained on the section 2.2.

0.4
0.35 | Tesla K20

SR16K MPI

. 025|
[$)
c
o 02 L
O
© 015 |

01 L

Tesla C2050 —

MIC ——
0.3 L SR1I6BKOMP —

0.05 | /B/Z/

103 104

10°
N

108

107

Figure 2.6: The efficiency of memory bandwidth as a function of the number
of particles. The efficient of memory bandwidth is the actual memory load

speed divided by peak bandwidth.

24 CHAPTER 2. UTILIZING PROCESSOR WITH MANY CORES

Amdahl-like estimation seems to work well for all the devices. However,
small discrepancy exist for GPU devices. According to Amdahl-like expla-
nation, it is assumed that certain part exists whose time b is independent of
the number of particles N. For GPU, summation algorithm is implemented
by binary tree [30], and b changes as the number of reduction steps.

About FLOPS efficiency, on the limit of infinite number of particles N —
oo, SR 16000 MPI has the best performance. However, the performance for
limited number of particles is also important.

For N = 65536, Tesla C2050 has the best performance.

About memory bandwidth efficiency both for N — co and N = 65536,
many core accelerators have the best performance.

As stated above, the performance for the limited number of particles is
also important from the viewpoint of practicality. It is the N independent
term b that influences such performance. Hardwares and softwares that make
b small is preferable. As can be seen in table 2.12, especially GPUs have small
b. Possible factors are as follows. First, many core accelerator has hierarchi-
cal architecture. For GPU, the instructions are processed on each streaming
multiprocessor independently, and synchronization is designed available only
within a streaming multiprocessor. This enables fine synchronization, and
reduces unnecessary overall synchronization time. Intel MIC also has hier-
archical architecture. However, the implementation for normal CPU is used
this time, and the advantage does not make effect.

Secondly, for many core accelerator, core clock is relatively low. Generally
speaking, memory bandwidth is slower than calculation performance. For
example on SR16000, memory reading speed of double precision float is 28
G/s = (224 GB/s / 8 byte) , while the calculation performance is 448 G/s.
Actually, the position s; = (cos6;,sinf;) is not read from memory, but is
calculated from ;. Making the core frequency low, data hazard is relaxed
and instructions on pipeline are processed efficiently.

These are considered to be the b reducing factors.

2.4 Summary

In recent years, accelerator devices such as GPU and Intel Xeon Phi are
receiving attentions. From the viewpoint of initial financial cost, power con-
sumption, and physical space, such accelerators are advantageous, but ac-
tually it is not necessarily true. This time the performance for molecular
dynamics simulation is examined. For LJ system, accelerators are not ad-
vantageous. However, for HMF model they are useful. The performance for
HMF model is estimated by an idea similar to Amdahl’s law [33]: particle-

2.4. SUMMARY 25

wise time a and system-wise time b. For practically use, it is important to
reduce b as well as a. b is related to synchronization time, and it seems the
hierarchical architecture of many core accelerator makes b small. In addition,
for many core accelerators, the low core frequency reduced data hazard and
makes instructions on pipeline processed efficiently. From now on, searching
for topics for which many core accelerators are advantageous, and utilizing
them efficiently is an assignment.

Chapter 3

Molecular Dynamics Study of
Hamiltonian Mean Field Model

3.1 Introduction

In this section, a brief introduction to HMF model is given and then a verbose
explanation is given.

Most of the interactions in nature are finite range type. On systems with
such short range interaction, since the stationary state is thermal equilibrium,
one can analyze the system using Maxwell-Boltzmann distribution.

Meanwhile long range interaction also exists. Typical examples are self-
gravitating systems [34], plasmas [35], and fluids [36]. Since the partition
function diverges, the thermodynamic limit of such systems is not well defined
[37]. Therefore long range systems are different from short range systems.
Typical phenomena are stationary states [35, 38, 39|, and negative specific
heat [40]. In order to understand these phenomena, toy models such as
HMF model [41], and sheet model [42] are studied.

HMF model is a system of N-rotators with ferromagnetic XY interaction.
HMF model was originally introduced as a symplectic coupled map systems
[43], which is studied under the context of collective chaos. Then it was
transformed to a time-continuous Hamiltonian system. Its similarity to the
physical long-range systems such as self-gravitating systems [44], and the
collective behaviour in it [41] have attracted much interest.

On this model, long lasting states exist. They are called quasi stationary
states (QSSs). The duration of QSSs increases as the number of particle
N gets larger. When thermodynamic limit N — oo is taken, the duration
diverges [1].

Until now, numbers of researches explaining QSSs are reported. Station-

27

28 CHAPTER 3. MD STUDY OF HMF MODEL

ary states distribution is fit by Tsallis distribution [1], which is a general-
ization of Maxwell-Boltzmann distribution. Lynden-Bell equilibrium [45] ,
which is derived by assuming violent relaxation is applied to HMF model [5],
and QSS prediction is reported [6]. Fermi distribution is derived by the idea
of Lynden-Bell equilibrium. However, certain QSS distributions are not well
explained by it. In such situation, prediction using Core Halo distribution is
also reported [7].

Meanwhile, a number of stability analyses for HMF are reported [2-4]. In
addition to utilizing spectral stability, formal stability is used those studies.
The spectral stability analysis of Vlasov equation on Fourier space. The
formal stability is optimization of Casimir invariants.

In this study, various QSSs arising from various initial conditions are
researched. Then, QSSs those were not reported in former studies are found.
The author tried to characterize QSSs by some number of quantities like
the former studies, and it is found that set of energy, magnetization and
temperature-like quantity is useful.

3.1.1 Hamiltonian and Equation of Motion

The Hamiltonian of HMF model is expressed as

N

H ({a:}{pi}) Z % 2;[Z [1 —cos (¢ — q;)] - (3.1)

i=1 i=1 j=1

This is transformed as

H ({a:} {p:}) sz M, (3.2)

where

N
1
M ({¢:}) = NZ cos g;, sin g;) (3.3)

denotes magnetization. M = y/M,* + My2 is used as order parameter.

3.1. INTRODUCTION 29

The motion of equation is derived as follows:

N 0
—_ M2 M2
oM. oM,
= N(M,—+ M, :
(dq; MR dg;)
= —M,sing; + M,cosq; , (3.4)
= pi - (3.5)

3.1.2 Quasi Stationary States

It is reported that HMF model has quasi stationary states [1]. The time
evolution of M has two plateaus. The latter one is thermal equilibrium.
However the former one is not thermal equilibrium. The duration of the
former state diverges with N. Therefore, it is expected that when the limit
N — oo is taken, the duration diverges, and the system does not get out of
such state. This is called quasi stationary state (QSS).

3.1.3 Vlasov Equation and Stationary Condition

Vlasov equation is the time evolution equation of one body distribution for
collisionless system. As is well-known, Boltzmann equation is the time evolu-
tion equation of one-body distribution. Since HMF model is collisionless sys-
tem, collisionless Boltzman equation holds. That is Vlasov equation, which
is expressed as following:

S erd e sing 0 feosa) G 0. 39

where f (g, p, t) is the one-body distribution function, M [f] = (M, [f], M, [f]) =
[s(q) f(g,p,t) dgdp is magnetization as a functional of distribution, and
s (q) = (cos g, sinq) is single spin.

HMF model has quasi stationary states. On the limit N — oo, the
duration of QSSs diverges. It is naive to consider that QSSs are considered

as the stationary solution of Vlasov equation !.

Note that exceptions such as traveling clusters [46,47] exist.

30 CHAPTER 3. MD STUDY OF HMF MODEL

Consider (non periodic) stationary solutions, ie. f(gq,p,t) = f(q,p).
Substituting it to (3.6), one gets

af . of B
p8_q+< Mx[f]smq—i-My[f]cosq)a—p—O. (3.7)
Here is a sufficient condition solution
fa,p) = f(h(e,;; M[f])), (3.8)
where)
h(q,p; M) = P M. (cos g, sin q) (3.9)

2

denotes single-spin Hamiltonian. This result is reasonable: On stationary

state, M is constant and accordingly single-spin Hamiltonian h (g, p; M) is

time-independent. Therefore each spin moves on the single-spin micro canon-

ical orbit. In order to keep the same single-spin distribution function, the
density at the same single-spin energy should be constant.

d d

Actually, since micro canonical orbit (¢ (), p (t)) satisfacts d—z =p, d_]t) =

— M, sing + M, cosq, the left hand side of (3.7) is expressed as Lagrange

d ofdq Ofdp

derivative: — ty,pt) = ——+ ——

ver —f(a(t),p(?)) dedt T opat

sufficient condition is that f is constant alongside micro canonical orbit.

. Therefore the necessary and

3.1.4 Lynden-Bell Equilibrium and Initial Condition

It is reported that Lynden-Bell equilibrium [45] explains QSS [5]. The ba-
sic idea comes from violent relaxation: Since Vlasov equation is solely an
incompressive advection type equation, from the Lagrange view i.e. moving
alongside with each particles, the y space phase density does not change.
Therefore, relaxation is only made by mixing of the phase space.

Two level initial distribution is useful to examine that idea Water bag
initial condition (WBIC) is often used. Uniform density is put on a rectangle:

A A
F(a.p) = 4 IAgAp (lg] < Ag,|p| < p). (3.10)

0 (otherwise)

where Ag and Ap denote half width of q and that of p respectively. In this
study, WBIC is used. For the generation of Agq and Ap from M, and e,
please see subsection 5.3.1.

3.2. METHOD 31

Consider applying Lynden-Bell equilibrium to WBIC. The mixing entropy
is introduced:

s[f]:—/dpdq L{;m% (1—%)1 (1-%)] (3.11)

1
4AqAp’

where fy = Maximizing this entropy

f

S (€) = max (s (f)

6[f]=:€rP[f]==02/}hﬂqf:=1) (3.12)

derives stationary states, where fy = 1 A A / — fdpd
P
and P [f] = [pfdpdg. The derived stationary distribution is

exp (=8 (h(q,p; M [f])) — 1)

N =y e oMy -
Core-halo distribution [7] is also reported:
f(a,p) =nox (hr — 1 (q,p;M[f])) (3.14)

+mx (hn = b (g, p; Mf)) X (h (g, p; Mf]) = hp) . (3.15)

Although this distribution explains the simulation data well, discrepancies
exist.

3.2 Method

In this study MD simulation of HMF is performed instead of integrating
Vlasov equation.

For the implementation, see section 2.2. For the implementation code,
see section 5.2. Time slice At is 0.1. The 4th order symplectic integrator is
used. The water bag initial condition (see section 3.1.4) is taken. The devices
used in this chapter are Tesla C2050 and Tesla K20 (see section 2.2.1).

3.2.1 Energy Moment

In order to characterize (QSSs, energy moment is introduced in following.

32 CHAPTER 3. MD STUDY OF HMF MODEL

Area Density

As explained on 3.1.3, The distribution of stationary state is convertible to
the density profile of one body microcanonical orbit and vice-versa.

There is a slight difference between specifying orbit and specifying one-
body energy h(q,p; M). For example (¢,p) and (¢, —p) have the same one
body energy h (¢, p; M) = h (g, —p; M) , but they have different orbits. Nev-
ertheless assuming symmetric profile of p, the difference is taken away. Then,
area density function is introduced:

p(h; M)

f(h;M) = W) (3.16)

tribution and D (h; M) = [
section 5.3.2).

Moment

In order to specify QSS by a set of finite variables, the author considered mo-
ment expansion of f (h; M). Both energy area density function f (h; M) and
energy distribution function p (h; M) specifies stationary states uniquely by
its definition. f is advantageous for analysis: f is not influenced by D. There-
fore moment of f is considered. Three definitions of moment are conceivable:
moment about —M?, moment about 0 and moment about “average”3. The
definition of moment about c is

/(h —)" f (h; M) dh

= (3.17)
/f(h;M) dh
n p(h; M)
(h—c)" 222 gy

_ < éhd% i\)/l)> (3.19)

(ot

2_M is the minimum value of h.
3The word average is quoted because it is different from normal average. It is explained
later.

3.3. RESULTS AND DISCUSSION 33

For the “average” ¢ i8 Cayg = [hf (h;M)dh/ [f (h; M) dh. For your infor-
mation, the normal average is [hp (h; M)dh/ [p (h; M) dh.

On the following paragraphs, the three definitions of moment are com-
pared for Maxwell-Boltzmann case and step function case.

Maxwell-Boltzmann Distribution For thermal equilibrium states, f (h; M)
is Maxwell-Boltzmann type f(h;M) o« exp(—ph) (=M < h). The mo-
ment about c is

9" exp (=0 (=M —¢))

opr g
—) 3.20
M= exp (B M <) (3:20)
5
For the case ¢ = —M, it is quite simple:
n (=1)"n!
= (3.21)

From this fact, moment about —h is preferable for analysis.

Step Function Consider a case when the area density function is step
function: f(h;M) =1/Az (=M < h < Az — M). The moment is

(A.T — M- c)n+1 . (—M . C)TL+1

S 3.22
Hon (n+1) Az (3:22)
The moment about —h is quite simple:
Az"
-M
=) 3.23

Therefore, for step function too, the moment about —h is preferable.
From now on, we call y;* simply p,,.

3.3 Results and Discussion

3.3.1 Necessary Times for Calculation

Let 7% the necessary simulation time for state X. Therefore necessary cal-

N s
X % MUPS x 107 [s]. The number “3” on the

expression comes from the 3 loops on 1 update of 4th order symplectic inte-
grator.

Let the number of particles N = 65536. For early stage QSS stated later,
5 = 6553.6. For late stage QSS stated later, ¥ = 107. The necessary
calculation time is shown on 3.1.

culation time is 7¢ = 3

34 CHAPTER 3. MD STUDY OF HMF MODEL

Device MUPS 7§ [s] 7§ [h]
Tesla C2050 383 34 143
Tela K20 621 21 8.8
Xeon Phi 5110 348 37 15.7
SR16000 MPI 213 61 25.6

SR16000 OpenMP 173 7 31.6

Table 3.1: The necessary calculation time. N = 65536.

3.3.2 Various QSS Distributions

Changing WBIC parameters, various QSS distributions are realized as shown
on Figure 3.1. The QSS magnetization Mqgs is shown on Figure 3.2.

3.3.3 Two Stages of QSS

For certain cases of initial conditions, two QSSs are realized in addition to
the final thermal equilibrium state. The magnetizations of two stages are
almost 0. As can be seen in figure 3.3, the fluctuation level of magnetization
is different. The time duration of each stage is examined and shown on figure
3.4, 3.5 and 3.6. The scaling of duration 7 oc N also appears when M > 0,
and the scaling of duration 7 o« N7 appears when M = 0 is known and
analyzed [3,48].

As can be seen in time series, on early stage, the fluctuation of relatively
large. Since both stages have almost 0 magnetization, all the particles move
almost parallel to ¢ axis. As shown on figure 3.7, the distribution of mo-
mentum p is examined, and the two distributions are not so different each
other. However, as can be seen in figure 3.8 and figure 3.9 the phase space
distributions are quite different.

Particularly for early stage, traveling clusters [46,47] are observed. The
phase diagram of collective oscillation is researched [49]. The time evolution
of magnetization shown on figure 3.10 is quite similar to acoustic beat wave.
Assuming the traveling clusters are the cause of beat wave, the traveling time
period of clusters are closely related. From the time series, the corresponding
absolute values of momentum are 0.48 and 0.52, which are within the area
of two clusters.

As for late stage, clusters faded away, and beat wave form is not observed.
Still, as can be seen in figure 3.11, the collective oscillation exists, though
the amplitude is smaller than that of early stage. Absolute momentum value
corresponding to the oscillation frequency is 0.55, which is within the vicinity
of the peak of momentum distribution.

3.3. RESULTS AND DISCUSSION 35

1.0
H 0.9
TN
> 0.8
2]
g
8 07
Q
LT
0.6
0.5 ;
0.0 0.2 0.4 0.6 0.8 1.0
Initial Magnetization M,

Figure 3.1: A montage picture of various QSS Snapshots arising from WBIC.
The horizontal axis and the vertical axis of each snapshot picture show the
angle ¢ (—m < ¢ <) and the momentum p (—2 < p < 2) respectively. The
parameters are as follows: N = 65536. t = 6553.6.

’I [T T T T] 1
0.9 | | 0.8
0.8 L _ 0.6
(<))
0.4
0.2
0

0 0.2 0.4 0.6 0.8 1
Mo

Figure 3.2: QSS magnetization M as a function of e, My. The binwidth of
My and that of e are both 0.05. The parameters are as follows: N = 65536,
t = 6553.6.

36 CHAPTER 3. MD STUDY OF HMF MODEL

As described above, the early stage QSS has traveling clusters As time
passes, the traveling clusters fades and the oscillation becomes small.

0.5
0.45 ¢
0.4 ¢
0.35
0.3+
0.25 |
0.2 +
0.15 ¢
0.1+
0.05

Early Stage Late Stage

M

@ .) .
1077 1% 10" 102 10° 10* 10> 100 107 108

Figure 3.3: Time series of magnetization M. Two QSS stages are observed.
The parameters are as follows: e = 0.7, My = 0.5, N = 65536.

3.3.4 Non Unique QSS

When the initial condition is specified, thermal equilibrium is uniquely spec-
ified. For HMF model, the final canonical temperature is specified by the
energy density. However for some cases, QSS is not uniquely specified even by
the macroscopic initial condition variable set (e, My). As figure 3.12 shows,
the same initial parameter (e, My) does not necessarily result int the same
QSS. This tendency arises on certain region as figure 3.13 shows.

Comparing time series shown on figure 3.14, magnetization is rather close
until £ ~ 10, and the variation of magnetization arises after that.

3.3.5 Set of Quantities Specifying QSS Uniquely

Although numbers of stability studies for QSS of HMF are reported, the
number of QSS characterizing variables is not finite. Therefore extending
the idea previously stated for non thermal equilibrium cases is difficult. As
a small step, QSSs is restricted to be WBIC arising ones.

(e, My) is WBIC parameter set. Therefore if one has certain M specifying
variable(s), QSS is specified uniquely. However it is not a necessary condition:

3.3. RESULTS AND DISCUSSION 37

108

105 | /

A
10% | /
10% | /

102

duration

108 104 10° 100 107
N

Figure 3.4: Time duration of early stage QSS as a function of N. The red
points are obtained from simulation. The green line shows fitting function
kN. The parameters are as follows: e = 0.7, My = 0.5, N = 65536.

108
107 |
S N
IS p=18
3
108 |
10° :
108 10* 10°

N

Figure 3.5: Time duration of late stage QSS as a function of N. The red
points are obtained from simulation. The green line shows fitting function
kNP , where p = 1.8. The parameters are as follows: e = 0.7, My = 0,
N = 65536.

38

duration

107

10° |

10° |

10

CHAPTER 3. MD STUDY OF HMF MODEL

e

//
//
// exp(ae+b)
-
L
e
/
//'
06 062 064 066 068 07 072

Figure 3.6: Time duration of late stage QSS as a function of energy density
e. The red points are obtained from simulation. The green line shows fitting
function exp (ae + b) , where a = 42.932,b = —15.268. The parameters are
as follows: My =0, N = 16384.

density

0.6
0.5

0.3
0.2

0.1 +

t=79.1 %

i 1=332327.5

e}

il

.

-1.5

-1

-0.5 0 05 1
Y

1.5 2

Figure 3.7: Density profile of momentum p (p). p(p) is normalized so that
the equation [p(p)dp = 1 holds. The binwidth is 0.02. ¢ = 79.1 is within
early stage QSS. t = 332327.5 is within late stage QSS. Discrepancy between
the two is rather small, despite of large time difference. The parameters are
as follows: e = 0.7, My = 0.5, N = 1048576.

3.3. RESULTS AND DISCUSSION 39

0.12
0.1

0.08
0.06
0.04
0.02

Figure 3.8: One body phase space distribution of early stage QSS f (¢, p).
f (g, p) is drawn as brightness. f (¢, p) is normalized so that [f (¢, p) dgdp =
1. The binwidth of ¢ and that of p are 7/40 and 0.05 respectively. Traveling
clusters [46,47] are observed. In order to obtain a clear picture of clusters,

the large number of particles is set here. The parameters are as follows:
e=0.7. My=0.5. N =1048576. t = 79.1.

40 CHAPTER 3. MD STUDY OF HMF MODEL

0.12
0.1

0.08
0.06
0.04
0.02

Figure 3.9: One body phase space distribution of late stage QSS f (¢,p).
/ (g, p) is drawn as brightness. f (¢, p) is normalized so that [f (¢,p)dgdp =
1. The binwidth of ¢ and that of p are m/40 and 0.05 respectively. Clusters
faded away, which is present at early stage . The parameters are as follows:
e=0.7. My=0.5. N =1048576. t = 332327.5.

0.15
0.1}
0.05

-0.05 |
-0.1
-0.15

Magnetization

Figure 3.10: Time evolution of magnetization on early stage QSS. It seems
similar to acoustic beat wave. The number of the wave peaks in 100 <
t < 1100 is 80, and the number of the envelop peaks in 260 < ¢t < 1105
is 5. Therefore assuming this is the composition of two close frequencies,
the frequencies are 0.077 and 0.083. Assuming M = 0, the corresponding
absolute values of momentum p are 0.48 and 0.52. The parameters are as
follows: e = 0.7, My = 0.5, N = 1048576.

3.3. RESULTS AND DISCUSSION 41

0.01
0.005
0
-0.005 |

Magnetization

-0.01
332500 332600 332700 332800 332900 33300C

Time

Figure 3.11: Time evolution of magnetization on early stage QSS. It does not
seem to be a beat wave form. The number of the wave peaks in 332500 <
t < 333000 is 44. Therefore the frequency is 0.088. Assuming M = 0, the
corresponding absolute value of momentum p is 0.55. The parameters are as
follows: e = 0.7, My = 0.5, N = 1048576.

0.18 T T T
0.16 —
0.14 e=0.70 o
0.12 ©o

0.1 - —

M 008 o
0.06 - —

0.04 |-]

0.02 :

0

b i UL ' Vi I (' 1 i i e I
0O 02 04 06 08 1
M,

Figure 3.12: QSS magnetization M as a function of initial magnetization M,.
e = 0.70, N = 65536. N the number of samples per one parameter set is
50. Even when the same WBIC parameter set (e, M) is chosen, the realized
QSS can differ for certain cases.

42 CHAPTER 3. MD STUDY OF HMF MODEL

UM
0.1
[T
09 - - | 008
08 |- _® o006
e
07 |- 0.04
06 |- U 002
ST ! ! ! | L,
0o 02 04 06 08 1

M,

Figure 3.13: Uncorrected sample standard deviation of magnetization oy, =

\/ le Efil (Ml - M)2. oy is drawn as brightness. The binwidth of My and
that of e are both 0.05. The number of samples Ny is 50.

3.3. RESULTS AND DISCUSSION 43

O™
SN WPRRUITOY N0 W

Magnetization

0.1 1 10 100 1000

Time

Figure 3.14: Time series of magnetization M for various random seeds. The
number of samples is 100. The dotted points are obtained from 100 simula-
tions. The 5 lines shows interpolation lines of 5 samples for eye guide. The
parameters are as follows: e = 0.65, My = 0.95, N = 65536.

44 CHAPTER 3. MD STUDY OF HMF MODEL

part of information of initial condition can possibly be lost during relaxation.
Note that (e, M) is not sufficient. For example, when e is sufficiently large,
M =0 for any My , and f (h; M) changes as My. The goal is to specify QSSs
by e, M and certain limited number of p,. Since the system is rotational
symmetric, M, = 0 is assumed and M = M, holds.

Dependence of M, on energy moment ps is inspected. As can be seen in
figure 3.15, energy moment ps remember initial magnetization M, partly.

Specifying p, for any positive integer n determines energy distribution
f (h; M). Therefore if u,, is specified by certain set of quantities, the set of
quantities specifies energy distribution.

As seen in figure 3.16 and 3.17, py is uniquely specified by (e, M, ps).
Moreover that is true for pu, (n < 10). This fact is not proved for any positive
integer n this time. Nevertheless, assuming that, energy distribution f (h; M)
is uniquely specified by (e, M, p2).

0.8 -

0.6 -

04

U,

Figure 3.15: Initial magnetization M, as a function of uy. Note that for the
same e, M, does not make M change largely, which can be seen in figure 3.2.
The number of particles N is 65536.

Information of initial configuration is to a certain degree remembered as
a phase distribution. That remembered information is extracted by energy
momentum po, and (e, M, uo) succeeded to characterize QQSSs arising from
WBIC uniquely.

3.3. RESULTS AND DISCUSSION 45

0.8 T T T I
07 _e=0.50 —t— 46'3"]
e=0.60 ¢
06 176=0.70 —x— o N
0.5 Fe=0.80 T
++
U, 04 . . _
0.3 e - _
M
0.2 # —
01 *M N
0 pe | BIMM | | | l
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

u,

Figure 3.16: p4 as a function of sy is shown. It seems that for each energy
density e, py is specified uniquely by us. However for e = 0.70, it is not true.
The number of particles N is 65536.

0.16
0.14 |
0.12 |- S
01 E -
#a0.08 2

0.06

0.04

0.02 L1 1
0.12 0.16 0.2 0.24

223

Figure 3.17: u4 as a function of uy for e = 0.70 is shown. The red points are
obtained from simulations where My < 0.9. The green points are obtained
from simulations where My > 0.9. For each cases, 4 is uniquely specified
by ws. However for all points it is not true. For M, < 0.9, M = 0 and
for My > 0.9, M > 0. Therefore using M as an additional quantity, p, is
uniquely specified. The number of particles N is 65536.

0.4

46 CHAPTER 3. MD STUDY OF HMF MODEL

3.4 Summary

HMF model is a toy model for long range interacting systems. The author
aimed at finding set of variables which specifies QSS. Utilizing GPU, various
QSS is examined. Then two stages of QSSs and non unique QSS are found.
For two stages of QSSs, on the early stage QSS the phase distribution is
nonuniform and that makes collective oscillation [49]. As time passes the
nonuniformity is relaxed and collective oscillation disappears. About non
unique QSS, time series of magnetization suggest that there is fork when
M = 0. Introducing energy moment, the author succeeded int specifying
(QSSs uniquely. For long range systems, this energy moment has a possibilty
to play a good role and examining it is a future work.

Chapter 4

Summary and Perspective

In recent years, accelerator devices such as GPU and Intel Xeon Phi are
receiving attentions. From the viewpoint of initial financial cost, power con-
sumption, and physical space, such accelerators are advantageous, but actu-
ally it is not necessarily true. This time the performance for MD simulation
is examined. For LJ system, accelerators are not advantageous. However, for
HMF model they are useful. The performance for HMF model is estimated
by an idea similar to Amdahl’s law [33]: particle-wise time a and system-
wise time b. For practically use, it is important to reduce b as well as a. b
is related to synchronization time, and it seems the hierarchical architecture
of many core accelerator makes b small. In addition, for many core accelera-
tors, the low core frequency reduced data hazard and makes instructions on
pipeline processed efficiently. From now on, searching for topics for which
many core accelerators are advantageous, and utilizing them efficiently is an
assignment.

HMF model is a toy model for long range interacting systems. The author
aimed at finding set of variables which specifies QSS. Utilizing GPU, various
QSS is examined. Then two stages of QSSs and non unique QSS are found.
For two stages of QSSs, on the early stage QSS the phase distribution is
nonuniform and that makes collective oscillation [49]. As time passes the
nonuniformity is relaxed and collective oscillation disappears. About non
unique QSS, time series of magnetization suggest that there is fork when
M = 0. Introducing energy moment, the author succeeded int specifying
QSSs uniquely. For long range systems, this energy moment has a possibility
to play a good role and examining it is a future work.

47

Appendix

5.1 Implementation Code for LJ Simulation

Template library thrust [50] is used in the code.

#include <unistd.h>

#include <cstdio>

#include <cstdlib>

#include <ctime>

#include <cmath>

#include <csignal>

#include <vector>

#include <algorithm>

#include <thrust/host_vector.h>
#include <thrust/device-vector.h>
#include <thrust/scan.h>
#include <thrust/fill .h>
#include <thrust/copy.h>

// #define MD_DEBUG

// #define THRUST-DEBUG
#define CHECK.CUDA_ERROR(err) check_cuda_error

(err, __FILE_., __LINE_.)

static void check_cuda_error (const cudaError_t
err, const char* const file, const int
line)

if(err!=cudaSuccess) {

const charx str_err = cudaGetErrorString(
err);

char what_arg[128];

sprintf(what_arg, 7 [%s:%d] . -%s\n”, file ,
line , str_err);

throw thrust::system::system._error (err,

thrust:: cuda_category (), what_arg);
}
}

#ifdef MD_DEBUG

#define CHECK_.CUDA_KERNEL_ERROR ()
CHECK-CUDA_ERROR(cudaDeviceSynchronize ())

#else

#define CHECK.CUDA_KERNEL_ERROR ()

#endif

static int sigint_-status = 0;
static void sigint-catch (const int sig)
{
sigint-status++4;
fprintf(stderr, 7 [Info] SIGINT_(%d)\n”,
sigint_status);

if(sigint-status == 3) {
cudaDeviceReset () ;
exit (1);

i

namespace md

typedef double float_t;
typedef int int_t;
typedef unsigned int uint_t;

namespace mylib
struct add

template<typename T>

--device__ static T join(const T x, const
T vy)
return x + y;
}
}s

struct multiply

template<typename T>
__device__ static T join(const T x, const

T y) {
return x * y;

}
}s

struct max

template<typename T>
--device_-- static T join(const T x, const

T y) {
return tmax(x, y);
}
}s

struct min

template<typename T>

__device__ static T join(const T x, const
T vy)
return ::min(x, y);

}
T

namespace func {

template<typename T, typename F, bool
if_sync>

--device__. static int reduce_half

(

int active-threads ,

T+ const suml_shared

T suml_self = suml_shared [threadldx.x];

const int half_active_threads =
active_threads >> 1;

active_threads = (active_threads+1) >>
1;

if(if-sync) { --syncthreads(); }

if (threadIdx.x < half_active_threads){

T suml_read = suml_shared [threadldx.x+
active_threads |;

suml._shared [threadldx.x] = F:: join (
suml_self, suml_read);

}

return active_-threads;
}
template<typename T, typename F>
--device_. static void reduce
(T* const suml_shared
{

int active_-threads = blockDim.x;

20

while (active_-threads > 32) {

active_threads = func::reduce_-half<T,
F, true>
(active_threads , suml_shared);
}
active_threads = func::reduce_-half<T, F
false >
(active_-threads , suml_shared);
active_threads = func::reduce_-half<T, F,
false >
(active_-threads , suml_shared);
active_threads = func::reduce_-half<T, F,
false >
(active_threads , suml_shared);
active-threads = func::reduce-half<T, F,
false >
(active_threads , suml_shared);
active-threads = func::reduce-half<T, F,
false >
(active_threads , suml_shared);

i

namespace kernel

// required shared mem size blocksize =

sizeof (T)
template<typename T, typename F>
--global__ static void reduce

const Tx const inputl_global, Tx const
outputl_global

)
{
extern __shared_._. T suml_shared [];
const int idx = blockDim.x * blockIdx.x
+ threadIdx.x;
suml_shared [threadldx.x] = inputl_global

[idx]

mylib :: func :: reduce<T, F>(suml_shared);
if (threadldx .x==
outputl_global[blockldx.x] =
suml_shared [0];

-global__ static void init_kernel

:: float-t particle-interval,
int_t num_particles_line ,
float_-t pos-x-0,

:: float_t pos.y._0,

:: float-t pos-z_0,

* const pos.x,

+ const pos.y,
* const pos.z,
float_t* const mom._x,
float_t* const mom.y,
float_t+* const mom.z,
float_t* const f_x,
float-t* const f.y,
float_t* const f_z
const int idx = blockDim.x * blockIdx.x +
threadIdx .x;
md:: int_t n_line = idx;
pos-x[idx] = (n_-line % num_particles_line)
« (particle_interval) + pos_x.0;
n_line /= num_particles_line;
pos-y [idx] = (n-line % num_particles-line)
#* (particle-interval) 4+ pos_-y-0;
n_line /= num_particles_line;
pos-z[idx] = (n_.line % num_particles_line)
x (particle_interval) + pos.z_0;
mom-x[idx] = 0;
mom.y [idx] = 0;
mom.z[idx] = 0;
fox [idx] = 0;
foy [idx] = 0;
foz [idx] = 0;
}
--global__ static void detect-cell_.num_kernel
(
const : float_t cell_size ,
const :: float_-t cell_size_inv ,
const int_t log_num_cells_x ,
const int-t log-num_cells_y ,
const ::int_t log_-num_cells_z ,

CHAPTER 5. APPENDIX

;i float_t* const pos_x-global ,
md:: float_t+ const pos_y_global,
float-t* const pos-z-global ,
int-t+ const cell_num-_global ,
md::int_t* const num_particles_cell_global ,
H nt-t* const

num_-particles_cell_virt_global ,

md:: int_-t* const

num_particles_cell_imag-global ,

md:: int_t* const addr_in_cell_global

const md::int-t num-cells_-x = 1<<
og-num-_cells_x;

const md::int_-t num-cells_y = 1<<
log-num-_cells_y ;

const md::int-t num-cells_z = 1<<
log-num_cells_z;

const uint idx = blockDim.x * blockldx.x +
threadIdx.x;

md:: float_t pos_x_idx = pos_x_global [idx];

md:: float_t pos_y_-idx = pos_y_global[idx];

md:: float_-t pos_-z_idx = pos.z_global[idx];

md::int_t n_x = pos_x.idx * cell_size_inv;

md:: int-t n-y pos-y-idx % cell_size_inv;

md::int_-t n_z = pos_z_idx * cell_size_inv

/% mod periodic */
if (n_-x==0)
const md:: float_-t periodic_.mod_-x = (
num_cells_x —2)*cell_size ;
pos_x_idx += periodic-mod_x ;

pos_x_global [idx] = pos_x_idx;
n-x = num-cells_x — 2;
} else if (n_x==num-_cells_x —1){
const md:: float_-t periodic_.mod-x = (
num_cells_x —2)xcell_size ;
pos_x_idx —= periodic_mod_x ;
pos-x-global[idx] = pos_x_idx;
n.x = 1;
}
if (n.y==0) {
const md:: float_-t periodic_mod.y = (
num-_cells_y —2)xcell_size ;
pos_y_idx += periodic.mod_y ;
pos_y_global [idx] = pos_y_idx;
n-.y = num-cells_.y — 2;
} else if (n_y==num-_cells_y —1){
const md:: float_-t periodic_mod.y = (
num_cells_y —2)xcell_size ;
pos_y_idx —= periodic.mod_y ;
pos-y-global[idx] = pos_y-idx;
n.y = 1;
}

if (n-z==0)
const md:: float_-t periodic.mod.z = (
num_cells_z —2)xcell_size ;
pos_z_idx += periodic-mod-z;

pos.z_global[idx] = pos_z_idx;
n-z num-cells_z — 2;
} else if (n_z==num_cells_z —1){
const md:: float_-t periodic.mod.z = (
num_cells_z —2)xcell_size ;
pos_z_idx —= periodic.mod_-z;
pos-z_-global [idx] = pos-z_-idx;
n.z = 1;
}
const md::int-t n = n.x | ((n-y | (n-z <<

log-nume-_cells_.y)) << log-num-_cells_x

cell_num_-global [idx] =

addr_in_cell_global [idx] = atomicAdd(&
num_particles-cell_global [n], 1);

atomicAdd(&num-_particles_cell_virt_global [n
1. 1)

/% mirroring x/
for (int mz=0; mz<3; ++4mz) {

bool if_z;
md::int_t _n_z;

switch (mz) {

case O0:
if (n_z==1) {
if_.z = true
_n_z = num_cells_z — 1;
break;
} else {
continue;
}
case 1
if_z false;
-n_z n_z;
break;
case 2:

if (n_z==num-_cells_z —2){

5.1. IMPLEMENTATION CODE FOR LJ SIMULATION 51

-
o
w
o

~

continue ;

}
for (int my=0; my<3; ++my) {

crint_t if_y
ciint-ot _n_y;
switch (my) {

case O0:

1 {

if_y true;
_n_y = num-_cells_y — 1;
break;

} else {

continue

num_cells_x —2) {
true;

continue;

}
for (int mx=0; mx<3; ++mx) {

int-t if-x;
int_t -n.x;
switch (mx) {

case O:

A

ifox true;
n-x = num-_cells-x — 1;
break;

} else

continue;

case 1:
ifox false;
-n_X = n.x;
break ;
case 2:
if (n.x==num_cells_x —2){
if.x = true;
-n_x = 0;
break;
} else {
continue;
}
if(ifox || ifoy || ifoz) {

const md::int_.t _n = _n_x | ((-n.y
| (-n_z << log_-num_cells_y)
) << log-num_cells_x);

atomicAdd (&
num_particles_cell_virt_global]|
-n], 1)

atomicAdd (&
num_particles_cell_imag_global [
-n], 1)

} /% end ifix if.y ifoz %/
} /+ end for mz x/
} /x end for my */
} /x end for mz x/

}
--global__ static void
sort_and_update_addr_kernel
(
const :: float-t cell_size ,
const int_-t log_-num-_cells_x ,
const int-t log-num-_cells_y ,
const int_t log_num_cells_z ,
:: float -t const pos-x-global,
:: float_t const pos_y_global ,
:: float-t const pos_-z._global ,
float_t+ const mom_x_global ,
>

float-t* const mom-z-global,
iint_t+ const cell_num_global ,

*
*
*
*

float-t* const mom_y_global
*
c

int-t* const addr-in_cell_global ,

:: float-t* const pos-x-new-global,
float_t* const pos_.y_-new_global,
:: float_t* const pos_z_new_global,
:: float-t* const mom-_x-new-global,
float_t* const mom_y_-new_global,
float_-t+* const mom.z_new-global,

c

trintot o

onst cell_num_new._global ,

md:: int_-t* const addr_-in_-cell_new_global ,

const md
const md

const cell_begin_global ,
const cell_begin_virt_global

const md const cell_begin_imag_global

>
ciint-t*x const logical-addr_-global ,
const logical_-addr_virt_global ,
const physical_addr_global

const uint idx =
threadIdx .x;

blockDim.x * blockIdx.x +

const md::int_-t cell_num = cell_num_global |
idx]
const md::int-t addr-in-cell_idx =

addr_in_cell_global [idx];

const md:: float_t pos_x_-idx = pos_x_global|
idx]

const md:: float_t pos_y_.idx = pos_y_global]
idx]

const md:: float_t pos_-z_idx = pos_z_global|
idx];

const md float_-t mom_x_idx = mom_x_global |
idx]

const md:: float_t mom_y_idx = mom_y_global|
idx];

const md:: float-t mom-z_idx = mom-_z_global [

idx]
const md::int_t cell_begin_log_idx =

cell_begin_virt_-global [cell_onum |;
const md::int_t cell_begin_phys_idx =

cell_begin_global [cell_num];

const md:: int_-t logical_-addr-idx =
cell_begin-log-idx 4+ addr-in-cell_idx ;

const md:: int_t physical_addr_idx =
cell_begin_phys_-idx 4+ addr-in_cell_idx;

// logical-addr-global [physical-addr_idz] =
logical-addr_idz ;

logical_addr_virt_global [physical_addr_idx]
= logical_addr_idx;

physical_addr_-global [logical_addr_-idx] =
physical_addr_-idx;

/* copy */

pos_x_new_global [physical_addr_idx] =
pos-x-idx;

pos-y-new-_global [physical_-addr_idx] =
pos_y_idx;

pos_z_new_global [physical_addr_idx] =
pos-z_-idx;

mom_x_new_global [physical_addr_idx] =
mome-_x_-idx ;

mom._y-new-global [physical_addr-idx] =
mom_y_idx ;

mom_z_new_global[physical_addr_idx] =
mom-z_idx ;

cell_-num_-new-global [physical_addr_-idx] =
cell_num ;
addr_in_cell_new_global [physical_addr_idx] =
addr_in_cell_idx ;

/% mirroring */

md:: float_-t _pos_-x_-idx;
md:: float_t _pos_y_idx;
md:: float_t _pos_z_idx;

const md:: int_t num_cells_x = 1<<
log-num_cells_x;

const md:: int_-t nume-_cells_.y = 1<<
log-num_cells_y ;

const md::int_t num_cells_.z = 1<<
log-num_cells_z ;

const md::int_t n_x = cell_num & (
num_cells_x —1);

const md:: int_t n_.y = (cell_num >>
log_-num_cells_x) & (num_cells_y —1);

const md::int-t n-z

= (cell_num >> (log_num_cells_x+
log-num-_cells_y)) & (num-_cells_z —1);

const md:: float_t periodic_.mod_x = (
num_cells_x —2)xcell_size ;

const md:: float_t periodic_mod_.y = (
num_cells_y —2)xcell_size ;

const md:: float_t periodic.mod_.z = (
num_cells_z —2)xcell_size ;

for (int mz=0; mz<3; 4++mz) {

bool if_z;
md::int_t _n_z;
switch (mz) {
case O0:
if (n_z==1) {
if_z = true
-n_z = num._cells_z — 1;

52

_pos-z_idx = pos_z_idx +
periodic_mod.z ;

break;
} else {
continue;
}
case 1:
if_z = false;
-n_z = n-z;
_pos_z_idx = pos_z_idx;
break;
case 2:
if(n_z==num_cells_z —2){
if_z = true;
n.z = 0;
_pos_z_idx = pos-z.idx —
periodic_-mod.-z;
break
} else {
continue;
}
}
for (int my=0; my<3; ++4my) {
md::int_-t if-y;
md::int_t _n_y

switch (my) {

case O0:
if (n_y==1) {
if_y = true;
-n.y = num-cells_y —

pos.y.idx = pos_y.idx +

periodic-mod_.y ;
break;
} else {
continue;

pos-y-idx;

_y==num-cells_x —2) {
= true;
= 0;
_pos.y-idx = pos.y-idx —
periodic_mod_ .y ;

break;
} else {
continue;
}
}
for (int mx=0; mx<3; ++mx) {
int_t if_x;
int-t -n_x;

switch (mx) {

_n_x = num_cells_x — 1;
_pos_x_idx = pos_x_idx +
periodic-mod_-x;

break ;
telse{
continue;
}
case 1
if.x = false;
-n_.X = n-x;
_pos.x.idx = pos_x_idx;
break;
case 2:
if (n_x=—num_cells_x —2){
if_x true;
-n_x = 0;
_pos_x_idx = pos.x_idx —
periodic-mod_-x ;
break ;
} else {
continue;
}
}
if(ifox||if-y [|if-z) {
const md::int-t cell-num-_virt
| ((-n-y | (-n-z <<

log-num_cells_y)) <<
log-num_cells_x);

md:: int-t
cell_begin_virt_global |
cell_num_virt];
const md:: int_t
cell_begin_imag_global |
cell_num_virt];

const

const md:: int_t
cell_begin_virt +
addr_in_cell_idx ;

cell_begin_virt

cell_begin_imag

logical_addr_virt

__global__

(

CHAPTER 5. APPENDIX

const md::int_t
cell_begin_imag +
addr-in-cell_idx ;

physical_addr_virt

pos_x_new._global [physical_addr_virt]

= _-pos-x-idx

pos-y-new-global [physical_addr_virt]

= _pos-y-idx;

pos_z_new_global [physical_addr_virt]

= _pos-z-idx;

cell_.num-new-global [
physical_addr_virt]
cell_num_virt

logical_addr_virt_-global [
physical_addr._virt] =
logical_addr_virt ;

physical_addr_global [
logical_addr_virt] =
physical_addr_virt;

Y /% end if-w if-y if-z x/
} /% end for ma x/
} /% end for my x/
} /% end for mz x/

const md:: float_t cell_size ,

const ::int-t log-num_cells_x ,
const int_t log_num_cells_y ,
const :int-t log-num_cells_z ,

static void update_addr_-kernel

md:: float_t+ const pos-x-_global,

md:: float_t* const pos_y-global,

md:: float_t+ const pos_z_global ,

md::int-t* const cell_num_global ,

const md::int_t* const addr_in_cell_global ,

const md::int_t* const cell_begin_virt_global

const md::int_tx const cell_begin_imag_global
int_-t+ const logical_addr_virt-global ,
iint_tx const physical_addr_global

const uint idx = blockDim.x = blockIdx.x +

threadIdx .x;

const md:: int-t cell_.num =
idx];
const md::int_-t addr-in_cell_idx =

addr_in_cell_global [idx];
const md:: int_t cell_.begin_idx =

cell_begin_virt_global [cell_num

md:: float-t pos-x-idx = pos-x-global
md:: float-t pos.y-idx =

md:: float-t pos-z-idx = pos-z_global
const md::int-t logical-addr-idx =

cell_begin_idx 4+ addr_in_cell_idx;

logical_-addr_virt-global [idx] =
logical_addr_-idx;

physical_addr_global[logical_addr_.idx] =

/% mirroring x/

md:: float_t _pos_x_idx;

md:: float_t _pos_y_idx;

md:: float_-t _pos-z_idx;

const md::int-t num-cells_x = 1<<
log-num_cells_x;

const md::int_t num_cells_y = 1<<
log-num-_cells_y ;

const md::int_-t num-cells_z = 1<<

log-num-cells_z ;

const md:: int-t n_.x = cell_num & (
num-cells_x —1);
const md:: int_t n_y = (cell_num >>

log-num_cells_x) & (num_cells_y —1);

const md::int_t
= (cell_num >>
log-num-cells_y)

n_z

(log-num_cells_x+

const md:: float_t periodicomod_.x =
num_cells_x —2)xcell_size;
md:: float_-t periodicomod.-y =
num-cells_y —2)xcell_size ;
md:: float_-t periodic_.mod_.z =
num-_cells_z —2)*xcell_size;

const

const

for (int mz=0; mz<3; ++mz) {
bool if_z;
md:: int-t _n_-z;

switch (mz) {

case O0:
if(n_z==1) {
if_z = true;

(
(

cell_.num_global [

]

[idx];
pos_y_global [idx];

lidx];

idx

) & (num_cells_z —1);

5.1. IMPLEMENTATION CODE FOR LJ SIMULATION

-n_-z = num-cells_.z — 1;
_pos_z_idx = pos-z_idx +
periodic-mod-z;
break;
} else {

continue;

_idx = pos_z_idx;

um-cells_z —2){

true;
-n_z = 0;
-pos-z_idx = pos.z_idx —
periodic.mod.-z;
break;
} else {

continue;

}

for (int my=0; my<3; ++my) {

md::int_t if_y;

md:: int-t _n.y;
switch (my) {

_n_y = num_cells_y — 1;
_pos_y.-idx = pos.y_-idx +
periodic_mod.y ;
break;
} else {
continue;
}
case 1
if_y = false;
-n.y = n.y;
_pos.y.idx = pos_y_idx;
break;
case 2:
if (n.y==num_cells_x —2) {
if_y true;
-n_y = 0;
_pos_y-idx = pos_y_idx —
periodic_mod.y ;
break ;
} else {

continue;

}
for (int mx=0; mx<3; ++4+mx) {

md::int-t if-x;
md::int_t _n_x;
switch (mx)

case 0:

if (n-x==1){
if_.x = true;
-n_x = num_cells_x 1;
-pos-x-idx = pos-x-idx +

periodic_mod_x ;

break

}else{

num-_cells_x —2){

true;
-n_x = 0;
-pos-x-idx = pos_.x_-idx —
periodic_mod_x ;
break;
} else {
continue;
}
if(ifox || ifoy || if-z) {
const md:: int_t cell_num_virt = _n_x
| ((-n_-y | -n_z <<

log-num_cells_y)) <<
log-num_cells_x);

const md::int_t cell_begin_virt =
cell_begin_virt_global [
cell_num_virt |;

const md:: int-t cell_begin_imag =
cell_begin_imag_-global [
cell_num_virt |;

const md:: int_-t logical_addr_virt =
cell_begin_virt 4+

93

addr_-in_cell_idx ;

const md:: int_t physical_addr_virt =
cell_begin_imag +
addr-in_cell_.idx;

pos-x-global[physical_addr_virt] =
-pos_x-idx;

pos_y.global [physical_addr_virt] =
_pos_y_-idx;

pos-z-global[physical_addr_virt] =
-pos-z_idx;

cell_.num_global [physical_addr_virt]
= cell_num_virt;

logical_addr_virt_global [
physical_addr_virt] =
logical-addr_-virt;
physical_addr_global [
logical_addr_virt] =
physical_addr_virt ;
} /% end if_z if-y if-z %/
} /* end for mz x/
} /% end for my %/
} /* end for mz x/

}

// todo

const md:: float_-t r_-c = 2.5;

const md:: float_-t r_c_.pow2 = r_cx*r_c;

const md:: float_t r_c_rpow2 = 1/r_c_.pow2;

const md:: float_-t r_.c_.rpow4 = r_c_.rpow2 x*
r_c_rpow2;

const md:: float-t r_.c_.rpow6 = r_c_-rpow4 x*

r.c_rpow2;
const md:: float_-t r_c_rpow8 = r_c.rpow4d
r_c_rpowd;

const md:: float_t r_c_.rpowl2 = r_c.rpow6 =x
r-c_-rpowb6 ;

const md:: float_t
r_c_rpow6 ;

r.c.rpowl4 = r_c.rpow8 =x

const md:: float_t c_1 4 % (—12 % r_c_rpowl4d

6 % r_c.rpow8);
const md:: float_t ¢.0 = 4 % (r_c_.rpowl?2
r_c.rpow6) — 0.5 % c_1 % r_c.pow?2;
const md:: float-t dr-s = 0.5;
const md:: float_t r_.r = r_c + dr_s;
--device__. static void force_lj_device
(
const : float_-t pos_x-i,
const : float-t pos_y-i,
const float_-t pos-z_i,
const float-t pos-x-j,
const float_t pos_y-_j
const md:: float-t pos-z-j,
md:: float_t* const pf_x_i

float-t* const pf_y-i
:: float-t* const pf_z_i

md:: float_t& f_x_i «pfox_i;

md:: float_t& f_y_i *pfoy_i;

md:: float_t& f_z_i = =pf_z_i;

const md:: float_-t delta.x = pos_.x_-i —
pos-x-j;

const md:: float-t delta.y = pos-y-i —
pos-y-j;

const md:: float_t delta_.z = pos-z_-i —
pos-z_-j;

const md:: float_-t r_.pow2 = delta_xxdelta_-x +

delta_yxdelta_y + delta_zsdelta_z;
if (ropow2 < r-c_pow2) {

const md:: float_-t r_rpow2 = 1.0/r_pow2;

const md:: float_t r-rpowd = r_rpow?2 s
rorpow?2 ;

const md:: float_t r.rpow6 = r_rpowdx
r.rpow2;

const md:: float_t r_rpow8 = r_rpowdsx
r-rpow4 ;
const md:: float_-t r.rpowl4d = r_rpow8x*

r_rpow6 ;

const md:: float_t k_lj = —4 % (—12 =
rorpowld + 6 % r.rpow8) + c_1;

* delta_-x;
%« delta_y ;
* delta-z;

i

--device-.. static md:: float_t

(

const md:: float_t pos_x_i,

e-pot-lj_device

54

const :float-t
const float_t
const float -t
const :: float -t
const :float_t
)
{
const md:: float_t delta.x = pos_x_i —
delta.y = pos-y-i —
y-js
const md:: float_-t delta-z = pos-z-i —

pos_z_j;

const md:: float_t r_p

ow2 = delta_xxdelta_x +

CHAPTER 5. APPENDIX

delta-yxdelta-y + delta-zxdelta-z;

if (r-pow2 <

const md:
const md:

r-c.pow?2) {

: float_t
: float_t

r-rpow?2;

const md:

: float_t

r_rpow?2
r_rpowd

r_rpow6 =

1.0/r_pow2;
r_rpow2x

r_rpowd x

const

const md:: float_-t e = 4 * (

r-rpow?2;
md:: float_t
r_rpow6 ;

r.rpowl2 = r_rpow6

r_rpowl2 —

rorpow6) — 0.5 % c_.l % r_pow2 — c.0;

return e;
} else {

return O0;

}
}

global__ static void calc_force_kernel
const int-t log-num-_cells_x ,

const :rint-t log_num_cells_y ,

const :int-t log-num-_cells_z ,

const float_t* const pos._x_global,
const float-t* const pos-y-global,
const md:: float_-t* const pos-z-_global,

const uint

: float_t* const

int_t=*
cint_to*

f_x_global ,

float-t* const f_y_global,
float_t* const f_z_global ,
int-t* const cell_-num_global ,

const cell_begin-virt_global ,
const physical_addr_global

idx = blockDim.x * blockIdx.x +

threadIdx .x;

const md::int-t num-.cells_x = 1<<
log-num_cells_x;

const md::int_t num_cells_y = 1<<
log-num-_cells_y ;

const md:: int_t num_cells_z = 1<<

log-num_cells_z ;

const md:: float_-t pos_-x_-i = pos_x_.global [idx

const md:: float_t pos_y_i = pos_y_global [idx

const md:: float_t pos_z_.i = pos_z_global [idx
I3

md:: float-t f_x_-i = 0;

mo float_t f_y_i 0;

md:: float_-t f_z_i = 0

const md::int_-t cell_num = cell_num_global|
idx]

const md::int_t n_x = cell_num & (
num_cells_x —1);

const md::int_t n_.y = (cell_num >>

const

log_-num_cells_x) & (num_cells_y —1);

md:: int-t n-z

(cell_num >> (log-num_cells_x+
log-num_cells_y)) & (num_cells_z —1);

for (int dz = —1; dz<=1; 4++dz) {
const md:: int_-t m-z = n_-z + dz;
for (int dy = —1; dy<=1; ++dy) {
const md::int_t m_.y = n_y + dy;
for (int dx = —1; dx<=1; ++dx) {
const md::int-t m.x = n_x + dx;
const md::int_-t cell_num_-m = mx | ((
m.y | (m.z << log-num_.cells_y)
) << log_num_cells_x);
const md:: int_-t cell_begin_m =

cell_begin_virt_global [cell_num_m

const md:: int_t cell_.end_m =
cell_begin_virt_global [cell_num_m

+11;
if (dx|dy|dz) {
// software

pipelining

int jO;
int j1 = physical_addr_global [
cell _begin_m];
for (int _j=cell_begin_.m; _j<
cell_end_-m; _j++4+) {
jo = j1;
j1 = physical_addr_global [_j +1];
const md:: float_-t pos-x_-jO0 =
pos-x-global[jO];
float_t pos_y_jO =
pos-y-global [jO];
const md:: float_t pos-z_j0 =
pos_z_global [jO];
force_lj-device (pos_-x-i, pos-y-i,
pos_z_i,
pos_x_j0, pos-y-joO
» Pos-z-jO,
&f_x_i , i
f_z_i
}
} else {
/) software pipelining
int jO;
int jl = physical_addr_global |
cell_begin_m];
for (int _j=cell_-begin_-m; _j<
cell_end-m; ++-j) {
jo = j1;
jl1 = physical_addr_global [_j+1];
if (jo==idx) continue;
const md:: float_t pos_x_.j =
pos-x-global [jO];
float_-t pos.-y-j =
pos_y-global[jO];
float_t pos.z_j =
pos-z-global[jO];
force_lj_device (pos_x_i, pos_.y_i,
pos-z_-i,
pos-x-j ,
pos_z_j
&f_x_i,
f_z_i
}
}
}
}
}
fox_global [idx] = f_x_i;
f_y-global [idx] = f_y-i;
f_z_global [idx] = f_-z_i;

—global__ static void calc_energy_kermnel
const cint-t log-num-._cells_x ,
const int_t log_-num_cells_y ,

const int-t log-num_.cells_z ,

const :: float_t* const pos_x-global
const :: float-t const pos_-y-global
const float_t const pos-z_global

float_t
const float_-t
const md:: float_t =
float_-t* const

const
const
const

*

*
const *
*

mom_y_global
mom_z_global

mom_x_global ,

md e_-kin_global ,
md:: float_t* const e_pot_global,
md nt_t* const cell_num_global ,

)
{

md nt-t+ const cell_begin_-virt_global ,
md::int_t* const physical_addr_global
const uint idx = blockDim.x = blockIdx.x 4+

threadIdx.x;

const md::int-t num-cells_x = 1<<
log-num_cells_x;

const md::int_t num-cells_y = 1<<
log_-num_cells_y ;

const md::int-t num-cells_z = 1<<

log-num_cells_z;

const md:: float-t mom-x-i =

;
const md:: float-t mom.y.i =

const md:: float_-t mom.z.i =

const md:: float_-t pos_-x-i = pos-x_global [idx
const md:: float_t pos_y_i = pos_y_global [idx
const md:: float_t pos_-z_.i = pos_-z_global [idx

mom-x-global [idx
mom_y_global [idx

mom _z_global [idx

5.1. IMPLEMENTATION CODE FOR LJ SIMULATION 95

md:: float_t e_pot_i = 0;
const md:: int_t cell_num = cell_num_global |
idx |;
const md:: float-t e-kin-i = 0.5
*

mom_x_i * mom_x_i +
mom_y_i * mom_y_i +
mom_z_i * mom_z_i

e_kin_global [idx] = e_kin_i;

const md::int-t n_x = cellonum & (
num-cells_x —1);

const md::int_-t n_y = (cell_num >>
log-num_cells_x) & (num_cells_y —1);

const m int_t n_z

= (cellonum >> (log-num_cells_x+
log-num_cells.y)) & (num-cells_z —1);

for (int dz = —1; dz<=1; ++dz) {
const md:: int_t m_.z = n_z + dz;
for (int dy = —1; dy<=1; ++dy) {
const md::int-t m.y = n_y + dy;
for (int dx = —1; dx<=1; ++dx) {
const md:: int-t m-x = n-x 4+ dx;
const md:: int_-t cell.num_-m = m-x | ((
m.y | (m.z << log_num_cells_y)

) << log-num-_cells_x);
const md:: int_t cell_begin_.m =
cell_begin_virt_-global [cell_num_m

const md::int-t cell_end-m =
cell_begin_virt_-global [cell_num_m

+1];
for (int _j=cell_begin_m; _j<cell_end_-m
ioH-i) o
int j = physical_addr_global[_j];
if (cell.num_m==cell_num && j==idx)

continue ;
/) if(i>=idz) break;

const md:: float_t pos_x_j =
pos_x_global [j];

const md:: float_-t pos_y_j
pos_y_global [j];

const md:: float_t pos_z_j
pos_z_global [j];

e-pot-i += e_pot-lj_device (pos_x-i,

pos-y-i, pos-z-i,
pos_x_j , pos-y-j,
pos-z-j);
i
}
}

}

e_pot_global [idx] = e_pot_ij;
__global__ static void update_particle_kernel

const md::
const md:

float_-t cell_size ,
int_t log_num_cells_x
const int-t log-num-cells_y
const int-t log-num-cells_z
:: float_t* const pos.x_global

s
s

:: float_t+ const pos-y-global
float_t* const pos_z_global
float_-t* const mom-x-global,

;i float_t* const mom-y-global,

:: float_t* const mom._z_global,

const float-t* const f-x-global ,
const float_t* const f_y_global ,
const float-t+ const f-z-global ,
const int-t+ const cell_num-global ,

const int_t* const cell_begin-imag_global

int-tx const addr_-in_cell_global ,
float_-t dt,
md:: float-t* const vel_-pow2_global

extern __shared.__ md:: float_t
vel_pow2_shared [];

const uint idx = blockDim.x =* blockIdx.x +
threadIdx .x;

const md::int-t addr-in-cell_-idx =
addr_in_cell_global [idx |;

float_t f_x_i = f_x_global [idx];
float_t f_.y_i = f_y_global [idx];

const md::
const md::

const md:: float_-t f_z_i = f_z_global [idx];

md:: float_t mom_x_i
md:: float_t mom_y_
md:: float-t mom-z-

= mom_x_global [idx];
mom_y_global [idx |;
mom-z_-global [idx];

md:: float_t
md:: float_t
md:: float_t

= pos_x_global [idx];
= pos_y-global [idx];
= pos_z_global [idx];

const md::int_t cell_num = cell_num_global |
idx ;s

mom_x_-i += f_x_i * dt;

mom_y_i += f_y_i = dt;

mom_z_i = f_z_i = dt;

mom-_x-global [idx]
mom._y-global [idx]
mom_.z_global [idx]

mom_x_i;
mom-y-i;
mom-z-i;

const md:: float_t vel_pow2_i
= mom_x_i*mom_x_i + mom_y_ixmom_y_i +
mom-z-i*mom-_z_i;

vel_-pow2_shared [threadldx .x] = vel_-pow2.i;
pos_x_i += mom_x_i

pos-y-i += mom_y-i
pos_z_i += mom_z_i

pos-x-global [idx] =
pos_y-global [idx]
pos-z_global [idx] =

mylib:: func:: reduce<md:: float_-t , mylib::max
>(vel_pow2_shared) ;
if (threadIdx .x==0)
vel_pow2_global [blockIdx.x] =
vel_pow2_shared [0];
}
/* mirroring */
md:: float-t _pos-x-_i;
md:: float_t _pos_y_i;
md:: float_-t _pos_-z_i;

const md::int-t num-cells_x = 1<<
og-num-cells_x;

const md::int-t num-.cells_.y = 1<<
log-num-cells_y ;

const md::int-t num-cells_.z = 1<<
log-num_cells_z;

const md::int_t n_.x = cell_num & (
num-cells_x —1);

const md::int_-t n.y = (cell_onum >>
log-num_.cells_x) & (num_cells_y —1);

const md:: int_-t n_.z

= (cellonum >> (log-num-cells_x+
log-num_cells_y)) & (num-_cells_z —1);

const md:: float_t periodic.mod_x = (
num_cells_x —2)*cell_size ;

const md:: float_t periodic_mod_.y = (
num_cells_y —2)*cell_size;

const md:: float_-t periodic_omod-z = (

num-cells.z —2)xcell_size ;
for (int mz=0; mz<3; +4mz) {
bool if_z;
md::int_t _n_z;
switch (mz) {
case 0:
if(n_z
if_z

_n-z num-cells_z — 1;
_pos i = pos_z_.i + periodic_.mod_.z;
break;
} else {
continue;
}
false ;
n_z;
i = pos_z_i;

num_cells_z —2){

true;

0;

i = pos_z_i — periodic_mod_z;

continue;

}
for (int my=0; my<3; ++4+my) {

int-t if_y;
crint-t -n_y;
switch (my) {

case 0:
if (niy==1) {
if_y true;

26

-n.y = num-cells_.y — 1;
_pos_y.i = pos_y.i + periodic_mod_y;
break;
} else {
continue;
}
case 1:
if_y false;
-n.y = n.y;
pos.y-i = pos_y-i;
break;
case 2:
if(n_y==num_cells_.x —2) {
if_y true;
-n.y 0;
-pos-y-i = pos-y-i — periodic-mod.y;
break;
} else {
continue;
}
for (int mx=0; mx<3; ++4+mx) {
md::int-t if-x;
md int-t _-n_x
1;
continue;
case 1:
if_x = false;
n_.X = n_x;
_pos-x-i = pos_x-_i;
break;
case 2:
if (n_.x==num_cells_x —2){
if_ox true;
-n_-x = 0;
pos-x-i = pos-x-i —
periodic.mod_x ;
break;
} else {
continue;
}
}
if(ifox [|if-y ||if-z) {
const md:: int_t cell_num_virt = _n_x
I Caonoy | onoz <<
log-num_cells_.y)) <<
log_num_cells_x);
const md:: int-t cell_begin_-imag =
cell_begin_imag_global [
cell_num_virt];
const md::int-t physical_addr_virt =
cell_begin_imag +
addr_-in_cell_idx ;
pos-x-global [physical_addr_virt] =
_pos_x_i;
pos_.y-global [physical_addr_virt] =
_pos_y_i;
pos_z_global [physical_addr_virt] =
-pos-z_i;
} /* end dif-xz if-y if-z %/
} /x end for mz x/
} /* end for my x/
} /+ end for mz %/
/* end mirroring x/
}
int main(const int argc, charx const argv[])

std ::

vector<md::int-t> block.size_array ;

block._size_array .push._back (256) ;
block_size_array .push_back (256) ;

const md::

int-t num.reduction_steps =
block_size_array.size () ;

::vector<md::int-t> num-blocks_array (
num._reduction_steps) ;

int_-t num_particles;
int-t reduction_wmem.size = 0;
int-t num-blocks_-i = 1;

i=num_reduction_steps —1; i>=0; ——i

CHAPTER 5. APPENDIX

num_blocks_array [i] = num_blocks_i;
reduction_.wmem_size 4+= num_blocks_
num_blocks_i *=

block_size_array [i];

num-particles = num_blocks_i;

const md:: int-t num_particles_virt = 2 x*
num_particles;

const md::int-t log_-num-.cells_-1 = 5;

const md:: int_t log_-num_cells_x =
log-num_cells_1;

const md::int_t log_num_cells_y =
log-num-_cells_1;

const md::int-t log_-num-.cells_z =

log-num_cells_1;

const md:: int_t num_cells_1 = 1<<
log-num-_cells_1 ;

const md::int-t num-cells_-x = 1<<
og-num-_cells_x;

const md::int_t num-cells_y = 1<<
log-num_cells_y ;

const md::int-t num-cells_z = 1<<
log-num_cells_z;

const md:: int-t num-cells = num-cells_x
num-cells_.y * num-.cells_z;

const md:: float_-t cell_size = r_r;

const md:: float-t L = cell_-size =
num_cells_1;

const md:: float_t
num-cells_x;

const md:: float_-t L.y =
num-cells_y ;

const md:: float_-t L.z =
num_cells_z;

fprintf(stderr, ”[info]._.L_=_%g\n”, L);

float_-t dt = 0.0001;
float -t

L.x = cell_size =*

cell_size =

cell_size x*

const md::

md:: rem_dist = —1;

signal (SIGINT, sigint_-catch);

thrust :: host_vector<md:: float_t >
num_particles) ;

thrust :: host_vector<md:: float_t >
num_particles) ;

thrust :: host_vector<md:: float_t >
num-_particles) ;

pos_z_h

thrust :: device_vector<md:: float_t >
pos-x-O_device (num-particles-virt);

thrust::device_-vector<md:: float_t >
pos-y-O_device (num-particles-virt);

thrust:: device_vector<md:: float_t >
pos-z_0_-device (num-particles-virt);

thrust :: device-vector<md:: float_-t >
mom_x_0_device (num_particles) ;
thrust :: device-vector<md:: float_t >
mom.y-O_device(num_particles) ;
thrust :: device-vector<md:: float_-t >
mom-_z_-0_device (num_particles);
thrust

::device_vector<md::int_t>

cell_num_0O_device (num_particles_virt);

thrust:: device_vector<md::int_t>
addr_.in_cell_O_.device (num_particles

:device_ptr<md:: float_-t >

::device_ptr<md::
mom_x_0_device.data () ;

thrust :: device_ptr<md:: float_t > mom_y_device
mom_y_O_device.data () ;

thrust :: device_ptr<md:: float-t > mom-z_-device
= mom_z_0_device.data () ;

thrust :: device_ptr<md::int_-t>
cell_num_device = cell_num_0O_device .
data () ;

thrust :: device_ptr<md::int_t >

addr-in-cell_-device =
addr_in_cell_O_.device .data () ;

thrust :: device-vector<md:: float_t >
pos_x_1_device (num_particles_virt);

thrust :: device-vector<md:: float_t >
pos_y_1_device (num_particles_virt);

thrust :: device-vector<md:: float_t >
pos_z_1_device (num_particles_virt);

thrust :: device_vector<md:: float _t >
mom.-x-1_device (num-particles);
thrust :: device_vector<md:: float _t >
mom.y-1_device (num-particles);
thrust :: device_vector<md:: float _t >
mom-_z_1_device (num-particles);
int_t>

thrust :: device_-vector <md::

cell_num_-1_device(num_particles_virt);

*

pos_x-host (
pos_y_host (

ost (

)

pos-x-device

pos-x-0O_-device.data () ;
:device_ptr<md:: float_t > pos_y._.device
pos_y_-O_device.data () ;
device_ptr<md:: float_-t > pos-z._device
pos-z-0_device.data () ;

float-t > mom-x-device

5.1. IMPLEMENTATION CODE FOR LJ SIMULATION 27

thrust ::device-vector<md::int_t>
addr-in_cell_-1_device (num_particles);

thrust :: device_ptr<md:: float_-t >
pos_x_sub_device = pos.x_l_device.data

O

thrust :: device_ptr<md:: float_-t >
pos-y-sub._device = pos.y-l_.device.data
O

thrust :: device_ptr<md:: float_t >
pos-z-sub_device = pos-z_-l_device.data

thrust :: device_ptr<md:: float_t >
mom_x_sub_device = mom_x_1l_device.data

thrust :: device_.ptr<md:: float_t >

mom-y-sub_device = mom-y-l_.device.data
(O]

thrust :: device_.ptr<md:: float_t >
mom-z-sub_device = mom-z_-1_device.data
O

thrust :: device_ptr<md::int_t>
cell_-num_sub_device = cell_num_1l_device
.data () ;

thrust :: device_ptr<md::int_-t>
addr_-in_cell_sub_device =
addr-in_cell_-1l_device .data();

thrust:: device_vector<md:: float_t >
e_kin_device (num_particles) ;

thrust:: device_vector<md:: float_t >
e_pot_-device (num_particles) ;

thrust :: device_vector<md:: float_t >
vel_pow2_device (reduction_.wmem_size) ;

thrust :: device-vector<md:: float_t >
f_x_device (num_particles);

thrust :: device-vector<md:: float_t >
f_y_device (num_particles);

thrust ::device-vector<md:: float_t >
f_z_device (num_particles);

thrust :: device-vector<md::int_-t>
num_particles_cell_device (num_cells+1);

thrust ::device-vector<md::int_-t>
num_particles_cell_virt_device (
num-_cells+1);

thrust :: device_-vector<md::int_t>
num-_particles_cell_imag-device (
num-_cells+1);

thrust :: device_vector<md:: int_t >
cell_begin_.device(num-_cells+1);

thrust :: device_vector<md:: int_t >
cell_begin_virt_-device (num-_cells+41);

thrust :: device_vector<md:: int_t >
cell_begin_imag_device (num_cells+1);

thrust ::device_-vector<md::int_t>
logical_addr_virt_-device (
num_particles_virt);

thrust :: device_vector<md::int_-t>
physical_addr_device (num_particles_virt
)

const md:: float-t particle-interval = 1.5;

const md::int_t num_particles_line = floor ((
L—2.5xcell_size) / particle_interval) ;

init-kernel <<<num-_blocks_-array [0],
block_size_array [0]>>>
(particle_interval , num_particles_line ,
cell_size = 1.5,
cell_size = 1.5,
cell_size * 1.5,
pos_x_device . ge
pos_y_device . ge
pos_z_device . ge
mom_x_device . ge
mom-.y-device . ge
mom-z_-device . ge
f_x_device.data().get (),
f_y_device.data () .get (),
f_z_device.data () .get ()
)
CHECK-CUDA_KERNEL_ERROR () ;

const int output_interval = 1000;
const int num_output = —1;

md:: float-t md-time = 0;

cudaEvent_-t start_ev , end-ev;
cudaEventCreate(&start_ev);
cudaEventCreate(&end_ev) ;

cudaEventRecord (start_ev , 0);
for (int 0=0; o!=num._output; ++o) {
for (int i=0; il=output_interval; ++i) {
if (rem_dist <0) {

const bool if_sort = true;

fprintf(stderr, ”[info]_rebuilding.
cell.structure_md_-time=%.5g._.o0=%d ~
i=%d\n” , md_time, o, i);

thrust:: fill
(num_particles_cell_device.begin (),
num_particles_cell_device .end (),

0.0);

thrust :: fill
(num_particles_cell_virt_device.
begin () ,
num._particles_cell_virt_device .end

,
0.0);
thrust:: fill
(num_particles_cell.imag_-device .
begin () ,
num_particles_cell_imag_device .end

,

0.0);

detect_cell_num_kernel
<<<num_.blocks_.array [0],
block_size_array[0]>>>
(cell_size , 1.0/ cell R
log-num-._cells_x , log-num-_cells_y ,
og-num-cells_z ,
pos_x_.device.get (),
pos_y.device.get (),
pos.z_device.get (),
cell_num_device.get (),
num_particles_cell_device.data ().

size

get (),
num._particles_cell_virt_device .data
) - get (),
num_particles_cell_imag_device.data
() -get (),
addr-in_cell_device .get ()

)
CHECK_.CUDA_KERNEL_ERROR () ;
if(ifosort) {

thrust :: exclusive-scan
(num_particles_cell_device .begin ()
num_particles_cell_device .end (),
cell_begin_device .begin ()

)
}
thrust :: exclusive-scan
(num_particles_cell_virt_device .
begin () ,
num.-particles_cell_virt_-device .end
cell_begin_virt_device.begin ()
)
thrust :: exclusive_scan
(num_particles_cell_.imag_device.
begin () ,
num_particles_cell_imag.-device.end
O

cell_begin_imag_-device .begin () ,
num-_particles
if(if_sort) {
sort_and_update_addr_kernel
<<<num-blocks_array [0] ,
block-size_array[0]>>>

cell_size ,
log_num_cells_x , log_num_cells_y ,
log-num_cells_z ,

pos-x-device.get (),
pos-y-device.get (),
pos-z_device.get (),
mom_._x_device. get () ,
mom_y._device. get (),
mom_z_device . get (),
cell_num_device .get () ,
addr_in_cell_device .get (),

pos-x_sub_device.get (
pos_y_sub_device . get (
pos_z_sub_device . get (

mom_x_sub_device . get (
mom_y_sub_device . get (
mom_z_sub_device . get (
cell_num_sub_device .get () ,

addr_in_cell_sub_device.get (),

o o

cell_begin_device .data () .get (),
cell_begin_virt_device.data() .get

cell_begin_imag_device.data () .get

o8

logical_-addr_virt_-device .data() .
get (),

physical_addr_device.data () .get ()

)

CHECK_-CUDA_KERNEL_ERROR () ;

std ::swap(pos_x_device ,
pos_x_sub_device) ;
std ::swap (pos_y-device ,
pos_-y-sub_device);
std ::swap (pos-z_device ,
pos-z_sub_device);

std ::swap(mom_x_device ,
mom-x-sub_device) ;
std ::swap (mom_.y_device ,
mom_y_sub_device) ;
std::swap (mom_z_device ,
mom_z_sub_device) ;

std ::swap (cell_.num._device ,
cell_.num_sub_device);

std ::swap (addr_in_cell_device ,
addr_in_cell_sub_device) ;

} else {
update_addr_kernel <<<

num_blocks_array [0] ,
block_-size_array[0]>>>

cell_size ,
log-num_cells_x , log_num_cells_y ,
log-num_cells_z ,

pos-x-device.get (),
pos-y-device.get (),
pos-z_-device.get (),

cell-num-device . get (),
addr_in-cell_device .get (),

cell_begin_-virt_-device .data () .get
s
cell_begin_imag_device.data () .get

logical-addr_virt_-device.data ().

get (),
physical_addr_device.data().get ()
)
CHECK-CUDA_KERNEL_ERROR () ;
}
rem._dist = dr.s * 0.5;
}
if(i==0 || sigint_status >1) {

cudaEventRecord (end_ev, 0);
cudaEventSynchronize (end.ev) ;

float cudatime;
cudaEventElapsedTime(&cudatime ,

start-ev ,end-ev);
const double mups = num_particles =x
((i==0)? output_interval : i)
* le—3 / cudatime;
// output energy
calc_energy-kernel <<<num_blocks_array
[0], block_size_-array[0]>>>

(log_num_cells_x , log_num_cells_y ,
log-num_.cells_z ,

pos-x_-device.get (),
pos_y-device.get (),
pos-z_-device.get (),
mom_x_device.get (),
mom_y_device . get () ,
mom_z_device . get () ,

e_kin_device .data () .get (),
e_pot_device.data () .get (),
cell_.num_device.get (),
cell_begin_virt_device .data().get ()

s
physical_addr_device.data () .get ())

CHECK_CUDA _KERNEL_ERROR () ;

const md:: float_-t e_-kin_total = thrust
:reduce(e_-kin_device.begin () ,
e_-kin_-device.end());

const md:: float_t temperature =
(2.0/3.0) * e_kin_total /
num-_particles ;

const md:: float_-t e_-pot_-total = thrust
:reduce(e-pot_-device.begin () ,
e_pot_device.end()) * 0.5;

const md:: float_t
e_pot_-total

e_pot_density =
/ num_particles ;

const md:: float_t e_total =
e_kin_total + e_pot_total;

}

i

CHAPTER 5. APPENDIX

const md:: float_-t e_density = e_total
/ nmum_particles;

fprintf (stdout, "%.5g-%.17g-%.17g-%.17
g-%g\n” , md_time, temperature,
e_pot_-density , e_density , mups);
fflush (stdout) ;

cudaEventRecord (start_ev , 0);

// sigint break

if (sigint_status) {
++sigint-status;
break;

}

calc_-force_-kernel

<<<num-_blocks.array [0],
block_-size_array [0]>>>
(log-num_cells_x , log.num_cells_y ,
log-num-cells_z ,
pos_x_device.get (),
pos_y-device.get (),
pos-z_-device.get (),
f_x_device.data () .get (
f_y_-device.data () .get (
f_z_device.data () .get (
cell_num_device.get (),
cell_begin_virt_device .data().get (),
physical_addr_device .data () .get ()
)

)
)
)

CHECK_CUDA_KERNEL_ERROR () ;

update_-particle_kernel

md:: float_t

<<<num-_blocks_array [0],
block_size_array [0],

block_size_array [0] x sizeof (md::
float_t)>>>

cell_size ,
log-num_cells_x , log_-num_cells_y ,
log_num_cells_z ,

pos_-x-device.get (),
pos-y-device.get (),
pos-z_-device .get (),
mom_x_device. get (),
mom_y_device.get () ,
mom_z_device . get () ,

f_x_device.data () .get () ,
f_y_device.data().get (),
f_z_device.data().get (),
cell_.num_device.get (),
cell_begin_imag-device.data().get (),

addr_-in_cell_device.get (),
dt ,

vel_pow2_device.data () .get ()
)

CHECK_CUDA_KERNEL_ERROR () ;

vel_pow2_max ;

thrust:: device_ptr<md:: float_-t >
vel_pow2_i-device
= vel_-pow2_device.data () ;
for (int i=1;
i) |
thrust::device_ptr<md:: float_t >
vel_pow2_il_device
= vel_pow2_i_device +
num_blocks_array [i —1];

i<num_.reduction_steps; ++

mylib:: kernel :: reduce<md:: float_t ,
mylib : : max>
<<<num-_blocks.array [i],
block.size_array [i],

block-size_array [i]*sizeof(md::
float_t)>>>
(vel_-pow2_i_device.get (),
vel_pow2_il_device.get ());
CHECK-CUDA_KERNEL-ERROR () ;
vel_pow2_i_device =
vel_pow2_il_device;
}
vel_pow2_max = vel_pow2_i-device [0];
}
const md:: float_-t dr-max = sqrt (

vel_pow2_max) * dt;

rem_dist —= dr_max;

md_time 4= dt;

if (sigint-status >1) break;

/*

end for num

output */

5.2. IMPLEMENTATION CODE FOR HMF SIMULATION 29

cudaEventDestroy (start_ev); }
cudaEventDestroy (end_ev) ;

5.2 Implementation Code for HMF Simula-
tion

Ounly the important part is shown. Template library thrust [50] is used in
the code.

/% ———— reduction library ———— x/ Tlx const suml_shared = (Tlx)shared;
) T2% const sum2_shared = (T2x)&shared [
1 1 f_ T1
temp a‘;§<boo if_sync , typename , typename blockDim .x%sizeof (T1)];
--device_- int reduce-half_func const int idx = blockDim.x * blockldx.x +
(threadIdx .x;
int active_-threads ,
T1x const suml_shared , sum1l_shared [threadldx.x] = inputl [idx];
T1lx const sum2_shared sum2_shared [threadldx.x] = input2[idx];
‘? reduce_per_block_func<T1l, T2>(suml_shared,
sum2_shared) ;
T1 suml_self = suml_shared[threadIldx.x]; .
T2 sum2._self — sumZ,Shared%threadldx.x%' if (threadldx.x==0) {
’ outputl [blockIdx.x] = suml_shared [0];
conmst int half-active threads = output2 [blockldx.x] = sum2_shared [0];
active_threads >> 1;
active_threads = (active_threads+1) >> 1; }
if(if-sync) { --syncthreads(); } }
// --syncthreads ();
)) . template<typename T1, typename I1, typename O1
if (threadldx.x < half_active_-threads){ . typename T2, typename 12, typename O2>
T1 suml_-read = suml],:;hared[tllreadldx.x+ void reduce_per_block
active_threads]; (
T2 sum2.read = sum2.shared[threadldx.x+ const size_-t num-blocks, const size-t
active_threads |; block_size ,
const Il inputl, const I2 input2,
suml,sharled[tcllxreadldxAx] = suml_self + const Ol outputl, const O2 output2
suml_read;
sum2_shared [threadldx.x] = sum2_self + %
sum2_read ;
3 reduce_per_block_-kernel<T1, I1, O1, T2, I2,
. 02>
return active_-threads; <<<num_blocks, block_size ,
} (sizeof (T1)+sizeof (T2))xblock_size >>>
i t1, i t2 tputl , tput2) ;
template<typename T1, typename T2> (inpu tnputs, outpu output2)
--device__. void reduce_per_block_func DEVICE_.CHECK_ERROR_KERNEL () ;
(T1% const suml_shared, T2% const sum2_shared) 1
{
int active_threads = blockDim.x; templf:te<typename T1, typename 11, typename O1
J/for (i active-threads > 32 ;) { typename T2, typename 12, typename O2
while (active_threads > 32) . U
active_threads = reduce_-half_func<true, T1 void rLdLTf'L’]mpl(.
> const size_-t num._degree,
L const size_t# const num_blocks_vec,
(active-threads, suml.shared, const size_t* const block._size_vec ,
sum2._shared); const Il inputl, const I2 input2,
} const Ol wmemOl, const O2 wmem02,
: . _ const Ol wmemll, const O2 wmeml2,
actlve’i‘;hxeads = reduce-half_func<false, TI1, const Ol outputl, const O2 output2
(active-threads , suml_shared, sum2_shared) %
active_threads = reduce_-half_func<false , TI1, reduce_per_block<T1, I1, O1, T2, I2, O2>
T2> (num-blocks_-vec [0], block-size_-vec[0],
(active_threads , suml_shared, sum2_shared) inputl, input2,
) num-_degree)? outputl: wmemOl),
active_threads = reduce_half_func<false, T1, num-degree)? output2: wmemO02)
T2>
(active_threads , suml_shared, sum2_shared)
; for(size_t d=1; d<num_degree; ++d)
active_threads = reduce_half_func<false , TI1, reduce_per-block<Tl, O1, OLl, T2, 02, O02>(
Tom num_blocks_vec[d], block._size_vec [d],
(active-threads , suml.shared, sum2_shared) ((d&1)? wmemOl : wmemll),
; ((d&1)? wmemO02 : wmeml2),
== —1)7? : ?
active_threads = reduce_half_func<false, T1, ((d==num-degree —1)? outputl: (d&1)7
Tow wmeml1l : wmemOl),
(active_-threads , suml_shared, sum2_shared) ((d==num._degree —1)7 c):)utpth: (d&1)?
3 wmeml2 : wmemO02
})
}
template<typename T1, typename 11, typename Ol // LOG_PRINTF (” called\n”");
, typename T2, typename 12, typename O2>
__global__ void reduce-per-block_kernel
(I1 inputl, I2 input2, Ol outputl, O2 output2) template<typename211, typename Ol, typename 12
, typename >
void reduce
extern __shared_-. char shared [];

const size-t num-_degree,

60

const num-blocks_-vec,
const block_size_vec ,
const I2 input2,
const O2 wmemO02,
const O2 wmeml2,
const O2 output2

size_tx
size_t*
inputl ,
wmemO1 ,
wmem11,
outputl ,

const
const
const
const
const
const

—~—

reduce_-impl
<typename
11,

metafunc:: deref_type::type
o1,
typename metafunc:
12, O2>
(num._degree, num-blocks_vec ,
block_size_vec ,
inputl, input2,
wmemO01, wmem02,
wmemll, wmeml2,
outputl , output2);

:deref_type<O2>::type

}

[* ————
__global__

*/

advance_state_kernel

update kernel

void

:: float -t
float_t
float-t
float_t
float_t
float_-t
float_t
float-t
float_t
:: float_t
:: float -t

num-_particles-inv ,
dt_c ,

dt-d,

theta_global ,
omega_global ,
pos-x-global ,
pos_y_global ,
mag-x-global ,
mag_y-global ,
wmem_mag_x_global,
wmem._-mag-y-global

¥ oK K K K K K ¥

—~—

extern __shared_._. md:: float_t sum_x_shared
md:: float_t* const sum_y_shared =

sum-x-shared+blockDim .x;

int idx blockDim .x =*
threadldx .x;

#ifdef READ_POS

md:: float_-t mag-x-cached
mag-x-global [0];

md:: float_t mag_y._cached
mag_y-global [0];

const = blockIdx .x —+

const

const

md:: float-t pos_x-idx = pos-x-global[idx];
me float_t pos_y.idx = pos_y_global [idx];
md:: float-t omega-idx = omega-global[idx];
md:: float-t theta_-idx = theta_global[idx];
#else

// read in advance for sincos

md:: float-t theta_-idx = theta_global[idx];
// conceal memory access time

const md:: float-t mag-x-cached =

mag-x-global [0];

const md:: float-t mag-y-cached =
mag._y-global [0];

md:: float_t omega_idx = omega_global [idx];
float_t pos_x_idx;

float-t pos_-y-idx;
sincos (theta_-idx , &pos_y_-idx , &pos_x_idx);
#endif
/) Advance
omega-idx
omega_idx +

(

Omega

pos_x_idx
pos.y-idx

mag_y-cached =
mag_x_cached x
dt_c;

) %
omega-global [idx]

// Advance Theta
theta_-idx += 4+ omega-idx = dt-d;
theta_global [idx] theta_idx;

omega-idx;

s

>

CHAPTER 5. APPENDIX

// Renew Position

sincos (theta_-idx , &pos_y_-idx , &pos_x_idx);

pos_x_idx;
pos-y-idx;

pos_x_global [idx]
pos-y-global [idx]

sum_x_shared [threadIdx .x] pos_x_idx =
num_particles_inv ;
sum._y_shared [threadIdx .
num_particles_inv ;

// Reduce Partly
reduce_per_block_func (sum_x_shared ,
sum_y_shared) ;

if (threadldx .x==0)
wmem._mag.-x-global [blockIdx .x]
sum_x_-shared [0];
wmem._mag.y-global [blockIdx .x]
sum_y_shared [0];

x] = pos-y-idx *

}
}
/% ———— czcerpt from main flow ———— %/
\{loid excerpt ()

certain code

//
advance_omega_kernel
<<<num-blocks_-vec [0],
(

—symp::prexdt,

block_-size_vec[0]>>>

omega_device . get (),

pos-x_-device.get (), pos_-y-device.get (),
mag_x._.device.get (), mag._y_-device.get ()
)3
for (size_-t t=0; t<num.advance.steps; ++t){

for (size_t s=0; s<symp::order —1; ++s) {

advance_state (
num_blocks_vec [0],
num_particles_inv ,
symp::c[s]*xdt, symp::d[s]xdt,
theta_device.get (), omega_-device.get ()

pos-x_device.get (), pos-y-device.get ()

block._size_vec [0],

mag-x-device.get (), mag-y-device.get ()

wmem_mag._x-device. get () ,
wmem_mag_y_device . get ()
)3
if (conf.update-mag_step >0 && step-count%
conf.update_mag_step==0) {
reduce
(num-_degree —1, &num_blocks_vec[1],
&block_size_vec [1],
get (),
get (),
wmem_mag_x_sub_device.get () ,
wmem-mag-y-sub_device.get () ,
wmem-mag-x-device. get () ,
wmem_mag._y-device. get () ,

wmem_mag_x_device .
wmem_mag_y_device .

mag_-x_-device.get (), mag_-y-device .
get ()
)i
}
}
simu-time 4= dt;

step-count++;
}

advance-omega_kernel <<<num-_blocks_-vec[0] ,
block_size_vec[0]>>>
(4+symp :: prexdt ,

omega_device. get () ,
pos_x_device.get (), pos_y-device.get (),
mag._x_device.get (), mag_y-device.get());
// certain code

5.3 Supplementaries for HMF model

5.3.1

e denotes the energy density e =
M.

N

Generating (Aq, Ap) from (e, M)

My denotes the initial magnetization

5.3. SUPPLEMENTARIES FOR HMF MODEL

On initial state, following conditions hold:

My = ‘/S(q)f(q,p)dqdp :

1 — My?
2

P
e = /Ef (¢,p) dgdp +
Utilizing (3.10), the equations are solved as

Aq = sinc 1M,
1 — My?
3= oo 150

sinx

where sinc™! z is the inverse function of (0 <z <m).

T

5.3.2 Density of States and Action Integral

Density of states for HMF model is

D (kM) = /5(h(q,p)—h)dqdp
Qdmax dq

0 V2h + 2M cosq
4 [h+ M
2 2M
4¢M+hK<¢h+M>(h>M)

where K (k) is complete elliptic integral of the first kind

= 4

/2 de
K(k:):/ — -
0 v1—k2sin“ 0

61

(5.1)

(5.2)

62
Action integral is

S(h;M) =

CHAPTER 5. APPENDIX

/ x (h = h (q,p)) dgdp (5.9)
4/h D (h: M) dh (5.10)
(4 h+ M
\/—M{2(h—M)K< —)
+AME < h;MM> } (h<M) , (511)
| AN 1 2hE (hiMM) (h> M)

where F (k) is complete elliptic integral of the second kind

w/2
E (k) :/0 V1 —k2sin?6do. (5.12)

Acknowledgment

I am deeply grateful to the members and the ex-members of Ito group.

Prof. Nobuyasu Ito gave me a lot of advices not only about research but
also other things such as the course of life. The chances to use many core
accelerators were valuable experiences.

Dr. Takashi Shimada also gave me a lot of advices with his keen way of
thinking.

Dr. Yohsuke Murase, Dr. Naoki Yoshioka and Dr. Hajime Inaoka Dr.
Teruhisa Komatsu, Dr Tomoaki Nogawa, Dr. Fumiko Takagi, Dr. Masamichi
Miyama, Dr. Yuuki Izumida gave a lot of advices.

Dr. Shigenori Matsumoto had many meaningful discussions and influ-
enced me a lot.

Mr. Koji Oishi, Mr. Takayuki Hiraoka and the other members and ex-
members of Ito group supported my life as a student.

[am also deeply grateful to Prof. Masao Doi. The first period I began
my research activity, I learned basis of physics in his laboratory.

Finally, I would like to thank my families and my friends for many sup-
ports.

63

Bibliography

1]

[7]

8]

Vito Latora, Andrea Rapisarda, and Constantino Tsallis. = Non-
gaussian equilibrium in a long-range hamiltonian system. Phys. Rev.
E, 64:056134, Oct 2001.

Alessandro Campa and Pierre-Henri Chavanis. A dynamical stabil-
ity criterion for inhomogeneous quasi-stationary states in long-range
systems. Journal of Statistical Mechanics: Theory and FExperiment,
2010(06):P06001, 2010.

Yoshiyuki Y. Yamaguchi, Julien Barr, Freddy Bouchet, Thierry Dauxois,
and Stefano Ruffo. Stability criteria of the vlasov equation and quasi-
stationary states of the hmf model. Physica A: Statistical Mechanics
and its Applications, 337(12):36 — 66, 2004.

Shun Ogawa. Spectral and formal stability criteria of spatially inhomo-
geneous stationary solutions to the vlasov equation for the hamiltonian
mean-field model. Phys. Rev. E, 87:062107, Jun 2013.

Andrea Antoniazzi, Duccio Fanelli, Julien Barré, Pierre-Henri Chava-
nis, Thierry Dauxois, and Stefano Ruffo. Maximum entropy princi-
ple explains quasistationary states in systems with long-range interac-
tions: The example of the hamiltonian mean-field model. Phys. Rev. F,
75:011112; Jan 2007.

Andrea Antoniazzi, Duccio Fanelli, Stefano Ruffo, and Yoshiyuki Y.
Yamaguchi. Nonequilibrium tricritical point in a system with long-range
interactions. Phys. Rev. Lett., 99:040601, Jul 2007.

Renato Pakter and Yan Levin. Core-halo distribution in the hamiltonian
mean-field model. Phys. Rev. Lett., 106:200603, May 2011.

Gordon E Moore et al. Cramming more components onto integrated
circuits, 1965.

65

66

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

BIBLIOGRAPHY

Nobuyasu Ito. BUTSURI, 67(7):478, 2012. in Japanese.

J.G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications of
historical trends in the electrical efficiency of computing. Annals of the
History of Computing, IEEFE, 33(3):46-54, March 2011.

NVIDIA. http://www.nvidia.co.jp/object/tesla_c1060_jp.html.

NVIDIA. http://www.nvidia.co.jp/object/product_tesla_C2050_
C2070_jp.html.

NVIDIA. http://www.elsa-jp.co.jp/products/products-top/
gpu_computing/tesla_ws/tesla_ws_list/tesla_k20/ Peak FLOPS
is (core frequency) x (number of SMXs) x 128.

NVIDIA. http://www.nvidia.com/content/PDF/kepler/
Tesla-K20X-BD-06397-001-v07.pdf Peak FLOPS is (core frequency)
X (number of SMXs) x 128.

NVIDIA. http://www.elsa-jp.co.jp/products/products-top/
gpu_computing/tesla_ws/tesla_ws_list/tesla_k40/ Peak FLOPS
is (core frequency) x (number of SMXs) x 128.

NVIDIA. http://www.elsa-jp.co.jp/products/products-top/
gpu_computing/tesla_server/tesla_k/nvidia-tesla-k80/ Peak
FLOPS is (boosted core frequency) x (number of SMXs) x 128.

Intel. Xeon W3580. http://ark.intel.com/products/39723/ Peak
FLOPS is (core frequency) x (number of cores) x 4.

Intel. Xeon X3480. http://ark.intel.com/products/48501 Peak
FLOPS is (core frequency) x (number of cores) x 4.

Intel. Xeon X5690. http://ark.intel.com/products/52576/ Peak
FLOPS is (core frequency) x (number of cores) x 4.

Intel. Xeon E5-2687W. http://ark.intel.com/products/64582/
Peak FLOPS is (core frequency) x (number of cores) x 8.

Intel. Xeon E5-1680 v2. http://ark.intel.com/products/77912/
Peak FLOPS is (core frequency) x (number of cores) x 8.

Intel. Xeon E5-2697 v2. http://ark.intel.com/products/75283 Peak
FLOPS is (core frequency) x (number of cores) x 8.

BIBLIOGRAPHY 67

23]

[24]

[25]

[26]

Intel. Xeon ET7-2890 v2. http://ark.intel.com/products/75242/
Peak FLOPS is (core frequency) x (number of cores) x 8.

Intel. Xeon E5-2699 v3. http://ark.intel.com/products/81061 Peak
FLOPS is (core frequency) x (number of cores) x 16.

Masuo Suzuki. Fractal decomposition of exponential operators with
applications to many-body theories and monte carlo simulations. Physics
Letters A, 146(6):319 — 323, 1990.

Masuo Suzuki. General theory of higher-order decomposition of ex-

ponential operators and symplectic integrators. Physics Letters A,
165(56):387 — 395, 1992.

Haruo Yoshida. Recent progress in the theory and application of sym-

plectic integrators. Celestial Mechanics and Dynamical Astronomy,
56(1-2):27-43, 1993.

Hiroshi Watanabe, Nobuyasu Ito, and Chin-Kun Hu. Phase diagram
and universality of the lennard-jones gas-liquid system. The Journal of
Chemical Physics, 136(20), 2012.

Mark Harris, Shubhabrata Sengupta, and John D Owens. Parallel prefix
sum (scan) with cuda. GPU Gems, 3(39):851-876, 2007.

Mark Harris et al. Optimizing parallel reduction in cuda. NVIDIA
Developer Technology, 2(4), 2007.

NVIDIA Corporation. CUPTI User’s Guide. http://docs.nvidia.
com/cuda/cupti/.

H. Watanabe, M. Suzuki, and N. Ito. Efficient Implementations of
Molecular Dynamics Simulations for Lennard-Jones Systems. Progress
of Theoretical Physics, 126(2):203-235, August 2011.

Gene M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, Spring Joint Computer Conference, AFIPS 67 (Spring), pages
483-485, New York, NY, USA, 1967. ACM.

Hiroko Koyama and Tetsuro Konishi. Emergence of power-law cor-
relation in 1-dimensional self-gravitating system. Physics Letters A,
279(34):226 — 230, 2001.

68

[35]

[36]

[44]

[45]

BIBLIOGRAPHY

Julien Barré, Thierry Dauxois, Giovanni De Ninno, Duccio Fanelli, and
Stefano Ruffo. Statistical theory of high-gain free-electron laser satura-
tion. Phys. Rev. E, 69:045501, Apr 2004.

Christian Beck, Gregory S. Lewis, and Harry L. Swinney. Measuring
nonextensitivity parameters in a turbulent couette-taylor flow. Phys.
Rev. E, 63:035303, Feb 2001.

David Ruelle and Statistical Mechanics. Rigorous results. World Scien-
tific, 1969.

Toshio Tsuchiya, Tetsuro Konishi, and Naoteru Gouda. Quasiequilibria
in one-dimensional self-gravitating many-body systems. Phys. Rev. E,
50:2607-2615, Oct 1994.

Alessandro Torcini and Mickaél Antoni. Equilibrium and dynamical
properties of two-dimensional n-body systems with long-range attractive
interactions. Phys. Rev. E, 59:2746-2763, Mar 1999.

D. Lynden-Bell. Negative Specific Heat in Astronomy, Physics and
Chemistry. Physica A Statistical Mechanics and its Applications,
263:293-304, February 1999.

Mickael Antoni and Stefano Ruffo. Clustering and relaxation in hamil-
tonian long-range dynamics. Phys. Rev. E, 52:2361-2374, Sep 1995.

Yoshiyuki Y. Yamaguchi. One-dimensional self-gravitating sheet model
and lynden-bell statistics. Phys. Rev. E, 78:041114, Oct 2008.

T Konishi and K Kaneko. Clustered motion in symplectic coupled map
systems. Journal of Physics A: Mathematical and General, 25(23):6283,
1992.

S. Inagaki and T. Konishi. Dynamical stability of a simple model similar
to self-gravitating systems. Publications of the Astronomical Society of
Japan, 45:733-735, October 1993.

D. Lynden-Bell and R. Wood. The gravo-thermal catastrophe in isother-
mal spheres and the onset of red-giant structure for stellar systems.
Monthly Notices of the Royal Astronomical Society, 138:495, 1968.

Julien Barré and Yoshiyuki Y. Yamaguchi. Small traveling clusters in
attractive and repulsive hamiltonian mean-field models. Phys. Rev. F,
79:036208, Mar 2009.

BIBLIOGRAPHY 69

[47] Yoshiyuki Y. Yamaguchi. Construction of traveling clusters in the hamil-
tonian mean-field model by nonequilibrium statistical mechanics and
Bernstein-Greene-Kruskal waves. Phys. Rev. E, 84:016211, Jul 2011.

[48] W. Ettoumi and M.-C. Firpo. Action diffusion and lifetimes of qua-
sistationary states in the hamiltonian mean-field model. Phys. Rev. F,
87:030102, Mar 2013.

[49] Hidetoshi Morita and Kunihiko Kaneko. Collective oscillation in a hamil-
tonian system. Phys. Rev. Lett., 96:050602, Feb 2006.

[50] Nathan Bell and Jared Hoberock. Thrust: A productivity-oriented li-
brary for cuda. GPU Computing Gems, 7, 2011.

