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1.1. Preliminary 

 The quality of our lives has been greatly benefitted from the evolutionary 

development of chemical industries. Meanwhile, the growing demand for a large variety 

of chemicals has also caused the damage to the environment and the crisis of the 

resource depletion. Thus, the development of new manufacturing processes for chemical 

products to achieve higher atom efficiency as well as minimization (or elimination) of 

waste generation and energy consumption is now our urgent task. Catalysts play a 

central role in the development of environmentally benign chemical processes. Efficient, 

selective organic reactions can be carried out in the presence of proper catalysts, thus 

avoiding the use of hazardous reagents and drastically reducing organic and/or inorganic 

wastes.
[1]

 Therefore, the progress in catalysis science will directly contribute to our 

ultimate goal of realization of green and sustainable society.  

 The rapid evolution of catalyst research can dramatically simplify synthetic 

procedures and improve synthetic efficiency, which allows more cost-effective and 

energy-saving chemical industries. This thesis mainly focuses on “aerobic 

cross-dehydrogenative coupling” to realize step-economical green synthetic procedures 

for several important organic compounds which otherwise are synthesized by traditional 

multi-step or stoichiometric reactions with low efficiencies. According to target 

reactions, either heterogeneous or homogeneous catalyst systems are designed to fully 

explore the potential and advantages of these systems.  

 This chapter is composed of the following several sections. Firstly, the concept and 

importance of green chemistry are described followed by a brief introduction to 

homogeneous and heterogeneous catalysts. Then, historical background and recent 

progresses of cross-coupling reactions are discussed. Copper-based catalysts for the 
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aerobic cross-dehydrogenative coupling reactions and supported gold 

nanoparticle-catalyzed aerobic oxidative functional group transformations are also 

presented. Finally, the purpose and outline of this study are described. 

 

1.2. Background 

1.2.1. Green Chemistry 

 Chemical industries play key roles in modern society. Without the revolutionary 

development in chemical technologies, it is hard to imagine how our society likely to be 

now. However, as everything has its two sides, chemical industries also have some 

negative effects on our planet, such as environmental pollution and generation of a large 

quantity of waste from chemical factories. 

 Green chemistry focuses on preventing pollution and minimizing waste generation 

to replace end-of-the-pipe control technology and has drawn much attention in the past 

several decades. The term “green chemistry” is generally defined as “the invention, 

design, and application of chemical products and processes to reduce or eliminate 

substances hazardous to human health and the environment”, which can be explained 

by the 12 principles proposed by Anatas (Table 1-1).
[2,3]

 Green chemistry deals with the 

issues of the environmental impact of both chemical products and processes.
[4]

 The 

concept of green chemistry is relevant to high selectivity and the atom efficiency, simple 

synthetic procedures, and drastic reduction or elimination of wastes, and eventually to 

change the way of the use and manufacture of chemicals by introducing revolutionary 

new technologies. The ultimate goal of green chemistry is the realization of sustainable 

society that is defined as “meeting the needs of the present generation without 

compromising the ability of future generations to meet their own needs”.
[4c,d]
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Table 1-1. The 12 principles of green chemistry.
[3]

 

1. It is better to prevent waste than to treat or clean up waste after it is formed. 

2. Synthetic methods should be designed to maximize the incorporation of all 

materials used in the process into the final product. 

3. Wherever practicable, synthetic methodologies should be designed to use and 

generate substances that possess little or no toxicity to human health and the 

environment. 

4. Chemical products should be designed to preserve efficacy of function while 

reducing toxicity. 

5. The use of auxiliary substances (e.g., solvents, separation agents, and so forth) 

should be made unnecessary wherever possible and innocuous when used. 

6. Energy requirements should be recognized for their environmental and 

economic impacts and should be minimized. Synthetic methods should be 

conducted at ambient temperature and pressure. 

7. A raw material or feedstock should be renewable rather than depending 

wherever technically and economically practicable. 

8. Unnecessary derivatization (blocking group, protection/deprotection, temporary 

modification of physical/chemical processes) should be avoided whenever 

possible. 

9. Catalytic reagents (as selective as possible) are superior to stoichiometric 

reagents. 

10. Chemical products should be designed so that at the end of their function they 

do not persist in the environment and break down into innocuous degradation 

products. 

11. Analytical methodologies need to be developed further to allow for real-time 

in-process monitoring and control before the formation of hazardous 

substances. 

12. Substances and the form of a substance used in a chemical process should be 

chosen so as to minimize the potential for chemical accidents, including 

releases, explosions, and fires. 
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 The general methods for the evaluation of the potential environmental acceptability 

of chemical processes are the E-factor and the atom efficiency.
[4,5]

 

 The E-factor first proposed by Sheldon
[4]

 is derived by dividing the total mass of 

wastes by the mass of product [Eq. (1)], which is used to quantify the amount of wastes 

being generated by various segments of the chemical industry (Table 1-2).
[5a]

 These 

wastes are defined as everything produced in a chemical process except the desired 

product. The higher E-factor indicates the more waste generation in a chemical process. 

As shown in Table 1-2, the E-factor generally increases from bulk to fine chemical 

industry, and is dramatically higher for the production of pharmaceuticals partly because 

of the multi-step synthetic procedures and the use of stoichiometric reagents rather than 

catalytic methods.
[5b]

 

 

Table 1-2. E-factors for various sectors of chemical industry.
[5b]

 

Industry Product tons per year Waste/product ratio by weight 

Oil refining 10
6
−10

8
 ~0.1 

Bulk chemicals 10
4
−10

6
 <1−5 

Fine chemicals 10
2
−10

4
 5−50 

Pharmaceuticals 10
0
−10

3
 25−>100 

 

 The atom efficiency (or atom economy) first introduced by Trost
[6]

 is calculated by 

dividing the molecular weight of the desired product by the summed molecular weights 

of all of the reactants [Eq. (2)], which can be used to rapidly evaluate the amount of 

total mass of byproducts (wastes) 

mass of desired product 

Atom efficiency (%) = 
molecular weight of desired product 

sum of molecular weight of reactants 

E-factor =  

× 100 

(1) 

(2) 
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wastes being generated in a chemical process. A good example to demonstrate the atom 

efficiency is the comparison between traditional cross-coupling and aerobic 

cross-dehydrogenative coupling reactions, as shown in Figure 1-1. The cross-coupling 

of aryl boronic acids and aryl halides, namely Suzuki–Miyaura reaction, is one of the 

most efficient synthetic procedures for biaryls.
[6]

 Because of the utilization of the 

pre-functionalized starting materials and a stoichiometric amount of a base such as 

NaOH, large amounts of wastes are often generated in the cross-coupling as well as the 

pre-functionalization steps. In contrast, biaryl synthesis by the direct aerobic 

cross-dehydrogenative coupling of two arenes, which avoids the pre-functionalization 

steps as well as bases, can drastically reduce the amount of wastes. Consequently, the 

atom efficiency for the aerobic cross-dehydrogenative coupling is higher than the 

traditional cross-coupling. In addition, the aerobic cross-dehydrogenative coupling uses 

molecular oxygen as the terminal oxidant and produces water as the sole by-product, 

consequently greatly reduces the environmental impact. 

 

 

Figure 1-1. Atom efficiencies of the traditional cross-coupling and the aerobic 

cross-dehydrogenative coupling reactions. 

Traditional cross-coupling (Suzuki–Miyaura cross-coupling): 

Aerobic cross-dehydrogenative coupling: 

+H H +     H2O+    1/2 O2

B(OH)2 I+ + NaOH + B(OH)3 + NaI
[Pd]

atom efficiency = 154/172 = 90% 

atom efficiency = 154/366 = 42% 
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1.2.2. Catalyst and Catalysis 

1.2.2.1. Definition  

 In 1836, Berzelius defined the term “catalyst” as “a compound, which increases the 

rate of a chemical reaction, but which is not consumed during the reaction”.
[8a]

 In 1895, 

Otswald amended Berzelius's definition of the catalyst, considering the possibility of 

catalyst deactivation during the reaction, as “a substance that increases the rate of 

approach to equilibrium of a chemical reaction without being substantially consumed 

in the reaction”.
[8a]

 More recently, the IUPAC (International Union of Pure and Applied 

Chemistry) defined the catalyst as “a substance that increases the rate of a reaction 

without modifying the overall standard Gibbs energy change in the reaction”; and “the 

process is called catalysis”.
[8b]

 

 For a catalytic process, a substoichiometric amount of the catalyst is sufficient to 

promote the reaction, due to the regeneration of the catalyst after a series of sequential 

unit reactions. Therefore, chemical reactions promoted by the catalysts rather than 

stoichiometric reagents can be regarded as environmentally friendly procedures due to 

reduced generation or even elimination of wastes. Also, the replacement of traditional 

stoichiometric procedures with their catalytic versions can greatly improve the atom 

efficiency. Hence, the development of novel catalytic processes plays a fatal role for the 

achievement of green and sustainable chemical industries. 

 

1.2.2.2. Classification
[9]

 

 Catalysts are generally classified into two groups, that is, homogeneous and 

heterogeneous catalysts. For homogeneous catalyst systems, the catalysts and the 

reactants reside in the same phase (usually liquid phase). By contrast, the catalysts 
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usually exist in the different phase from the reactants for heterogeneous systems. 

Homogeneous catalysts are soluble, discrete, molecular species; heterogeneous catalysts 

are typically insoluble solid, and the reactants are often in the gas or liquid phase. 

 Homogeneous and heterogeneous catalysts have their own advantages and 

disadvantages. Homogeneous catalysts often show high catalytic activity under milder 

conditions due to the easy accessibility of reactants to active sites. In addition, 

fine-tuning of the steric and electronic properties of ligands allows these catalysts often 

more selective than heterogeneous catalysts. In particular, homogeneous catalysts play 

an irreplaceable role for the highly regio-, stereo-, and enantioselective synthesis of fine 

chemicals, especially natural products and pharmaceuticals. However, separation of the 

catalysts from reaction solutions is often very difficult, and thus the reuse of the 

catalysts is problematic in homogeneous systems. Furthermore, because of the 

difficulties in the catalyst separation, the contamination of the products by the catalysts 

is often problematic for the synthesis of pharmaceuticals. 

 Heterogeneous catalysts are often superior to their homogeneous counterparts in 

terms of high thermostability, simple separation of the catalysts from the products, and 

easy recovery and reuse of expensive catalysts. In addition, ligands that are often the 

most expensive part of homogeneous catalysts are not needed for heterogeneous 

catalysts. However, the fine-control of catalytically active sites is a very difficult task 

for heterogeneous catalysts. Elucidation of the reaction mechanism in a heterogeneous 

system is also extremely challenging largely because of the complicated structure of the 

active sites. In this context, remarkable progress has been made in the last several 

decades,
[10a,b]

 as highlighted by the 2007 Novel Prize in Chemistry awarded to Gerhard 

Ertl for his studies of fundamental chemical processes on the surface of heterogeneous 
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catalysts (especially, the studies of the Haber-Bosch process for the synthesis of 

ammonia, and the oxidation of CO on platinum).
[10c]

 Chemical industries strongly rely 

on heterogeneous catalysts, especially in the field of the production of large scale 

commodity chemicals such as methanol, ammonia, and high octane gasoline from 

petroleum.
[9c]

 

 

1.2.3. Cross-Coupling Reactions 

1.2.3.1. General 

 Since the initial development of the copper-catalyzed Glaser and Ullmann coupling 

reactions,
[11]

 transition metal-catalyzed cross-coupling reactions have emerged as one of 

the most effective methods for the construction of various C–C and C–X (X = 

heteroatom) bonds.
[12,13]

 In particular, developed in the last century, palladium-catalyzed 

cross-couplings between two arene rings (or between an arene ring and an alkene) to 

biaryls (or substituted alkenes), such as Kumada, Suzuki, Negishi, Heck, Stille, and 

Hiyama reactions, have a tremendous impact on the synthesis of natural products, 

medicines, and organic materials, largely because of their high efficiency and reliability 

(Figure 1-2).
[12–17]

 The great success of these cross-coupling reactions is well showcased 

by the 2010 Nobel Prize in Chemistry for “palladium-catalyzed cross-couplings in 

organic synthesis”.
[17]

  

 The revolutionary development and great success of the palladium-catalyzed 

cross-coupling reactions in synthetic organic chemistry have stimulated the discovery of 

various types of cross-coupling reactions, for example, C–X bond coupling, direct 

coupling via C–H activation, and decarboxylative coupling.
[13]

 In addition to palladium, 

other late-transition metals (e.g., Fe, Co, Cu, Ni, Ru, and Rh) have also proved to be 
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versatile for cross-coupling reactions in the last several decades.
[12b]

 Because of the high 

efficiencies of cross-coupling reactions for the rapid construction of complex molecules, 

this type of reactions are still a main topic in synthetic organic chemistry. This highly 

important research area is now directing toward the replacement of the traditional 

cross-couplings with their novel versions having higher synthetic efficiency and more 

environmentally friendly nature. 

 

 

Figure 1-2. Historical development of the metal-catalyzed cross-coupling 

reactions.
[12–17]

 Nu = nucleophile. 

 

1.2.3.2. Classification of Cross-Couplings 

 Cross-couplings can generally be classified into the following three types, 

1900

1910

1920

1930

1940

1950

1960

1970

1980

1990

2000

Fe Pd

Glaser 1869

Cadiot–Chodkiewicz 1955

Castro–Stephens 1963

Eglinton–Galbraith 1956

Hay 1962

Meerwein 1939

Corriu 1972
Kumada and Tamao 1972
Negishi 1976

Cu

Negishi 1976

Sonogashira 1975C–X   +  alkyne

C–X   +  Al–C

Chan–Lam–Evans 1998

Negishi 1977C–X   +  Zn–C

Murahashi 1975C–X   +  Li–C

Mizoroki 1971
Heck 1972

C–X   +  alkene

Tsuji 1965Allyl–X   +  Nu
Trost 1973

Suzuki–Miyaura 1979C–X   +  B–C

Eaborn 1976C–X   +  Sn–C
Migita–Kosugi 1977

Stille 1978

Hiyama 1988C–X   +  Si–C

Miyaura–Ishiyama 1995C–X   +  B–B

Miyaura–Ishiyama–Hartwig
2002

C–H   +  B–B

Fujiwara–Moritani 1967C–H   +  H–C

Buchwald–Hartwig 1994C–X   +  H–N

Ullmann 1901

Ni
Kochi 1971
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according to the substrates (electrophiles or nucleophiles) involved in the reactions; (1) 

cross-coupling of a nucleophile with an electrophile, (2) reductive cross-coupling 

between two electrophiles, and (3) oxidative cross-coupling between two nucleophiles 

(Figure 1-3).  

 

 

Figure 1-3. Classification of cross-couplings. Nu = nucleophile; E = electrophile. 

 

 Cross-Coupling of a Nucleophile with an Electrophile 

 The traditional cross-couplings between organometallic compounds and 

organohalides (or pseudohalides) are the typical reactions which can be regarded as the 

cross-coupling of a nucleophile and an electrophile. The last several decades have 

evidenced the great success of these reactions that have mostly utilized palladium-based 

catalysts, and many excellent name reactions exist in this field.
[12–17]

 Because of the 

advantages (easily-handled, thermally stable, and water and oxygen tolerable) of using 

organoboronic acids instead of other organometallic compounds, one of the most 

successful reactions in both laboratories and industries is the Suzuki–Miyaura 

cross-coupling which employs organoboronic acids and organohalides as the coupling 

(a) Traditional Cross-Coupling

Nu +      E Nu–E

Nu = organometallics, amines, alcohols, thiols, hydrocarbons, etc.

E = halides (pseudohalides)

(b) Reductive Cross-Coupling

E +      E E–E

E = halides (pseudohalides)

(b) Oxidative Cross-Coupling

Nu1 +    Nu2 Nu1–Nu2

Nu = organometallics, amines, alcohols, thiols, hydrocarbons, etc.

reductant

oxidant
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partners.
[7] 

 The catalytic cycles for the palladium-catalyzed cross-couplings of various 

organometallic compounds (organozinc, boron, tin, silicon, etc.) and organohalides 

share common fundamental sequential unit reactions, involving (1) oxidative addition of 

an organohalide to a Pd(0) species, (2) transmetallation of an organometallic compound 

with the oxidative addition intermediate, and (3) reductive elimination to form the final 

product (e.g., biaryls) and to regenerate the Pd(0) species (Scheme 1-1).
[12b]

  

 

 

     Scheme 1-1. Traditional palladium-catalyzed cross-couplings.
[12b]

 

 

 Another important reaction is the palladium-catalyzed cross-coupling of amines 

with arylhalides, known as the Buchwald–Hartwig amination, which has become one of 

LnPd0 R1–X

R2–MMX

R1–R2

Oxidative addition

Transmetallation

Reductive elimination

+R1–X M–R2

[Pd]
R1–R2

X = Cl, Br, I, 

OTf, etc.

X = B   Suzuki–Miyaura

Sn  Migita–Kosugi–Stille

Zn  Negishi

Mg  Kumada–Tamao–Corriu

Si    Hiyama

R1

PdII

R2

Ln
R1

PdII

X
Ln
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the most important methods for the synthesis of arylamines.
[12]

 The amination proceeds 

through a catalytic cycle similar to that of the cross-coupling of organometallics and 

organohalides, except that the coordination of an amine to the palladium center occurs 

after the oxidative addition of an aryl halide.
[12]

 

 

 Reductive Cross-Coupling between Two Electrophiles 

 During the past decade, chemists have aspired to develop more efficient 

cross-coupling reactions that avoid using air and moisture sensitive organometallic 

reagents. Reductive cross-coupling of two electrophiles (organohalides or 

pseudohalides) in the presence of appropriate reductants, such as metallic Zn, Mg, and 

Mn, has been emerging as a versatile and simple synthetic method for selective C–C 

bond formations, because of easy availability of a large variety of electrophiles which 

are more stable and easily handled than their organometallic counterparts.
[18,19]

 Most 

importantly, this kind of reactions can avoid utilizing organometallic compounds which 

are often prepared by metallation of organohalides or pseudohalides, therefore, the high 

overall synthetic efficiency can eventually be achieved. 

 Several late-transition metals such as Co,
[20]

 Ni,
[21]

 Fe,
[22]

 and Pd
[23]

 have been 

known to promote reductive cross-coupling reactions. Two possible catalytic cycles for 

these reactions have been proposed (Scheme 1-2). One of the reaction paths consists of 

(1) oxidative addition of an electrophile to a lower valence metal center, (2) reduction of 

the oxidized metal center by external reductants such as metallic Mg, Zn, and Mn, (3) 

oxidative addition of a second electrophile to the metal center, and (4) reductive 

elimination to give the final product and to regenerate the catalyst (Scheme 1-2, a). The 

other is in situ generation of an organometallic compound from the reductant and one of 
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the electrophiles followed by the cross-coupling of the organometallic compound with 

another electrophile through the reaction path being similar to that of the traditional 

cross-couplings (Scheme 1-2, b).
[18,19] 

 

 

    Scheme 1-2. Reductive cross-couplings.
[18,19]

 

R1–X

M’X2

R1–R2

Oxidative addition

Reduction

Reductive elimination

[M] X

[M] X

X

R1

M’

[M]R1

R2–X

[M]R1

R2

X

Oxidative addition

(a)

(b)

R1–X

M’X2

R1–R2

Oxidative addition

Transmetallation

Reductive elimination

[M] X

[M] X

X

R1

M’

[M]R1

R2

X

R2M’X
catalyst

R2–X

In situ metallation

+R1–X X–R2

[M]
R1–R2

X = Cl, Br, I, OTf, etc.

M’ (reductant) = Mg, Zn, Mn, etc.

[M] = Co, Ni, Fe, Pd, etc.

M’ (reductant)
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 Different from the traditional palladium-catalyzed cross-couplings, reductive 

cross-couplings can proceed through a one-electron transfer process, which is likely the 

reason why the first-row transition metals are widely applied to reductive 

cross-couplings. For example, Weix and co-workers have reported a nickel-catalyzed 

reductive cross-coupling of arylhalides and alkylhalides.
[21i]

 The mechanistic studies 

showed that no organomanganese species was formed, and the reaction was supposed to 

proceed through the Ni
0
, Ni

I
, Ni

II
, and Ni

III
 intermediates formed via a single electron 

transfer process (Scheme 1-3).
[21i]

 

 

 

Scheme 1-3. Nickel-catalyzed reductive cross-coupling of aryl halides and alkyl 

halides.
[21i]

 

 

 The central issue in reductive cross-coupling reactions is how to control the 

selectivity toward the desired cross-coupling product, and to avoid the formation of the 

PhI

Mn

Ni0
N

N

PhCH2R

RCH2I

RCH2·

MnI2

NiII
N

N I

Ph

NiII
N

N I

I

+Ar–X X–Alkyl

NiI2·xH2O

dtbpy, pyridine, o-(Ph2P)2C6H4
Ar–Alkyl

dtbpy = 4,4’-di-tert-butyl-2,2’-bipyridyl

DMPU = N,N’-dimethylpropyleneurea

Mn, DMPU

NiIII
N

N I

Ph

CH2R
NiI

N

N I
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homo-coupling side products. Generally, the high selectivity was achieved by (1) the 

appropriate combination of two electrophiles with different electronic or steric 

properties, (2) the use of excess amounts of one of the coupling partners, (3) fine-tuning 

of the catalyst/reductant combinations, and (4) the design of ligands with suitable 

electronic and steric properties.
[18,19]

 However, no universal methodology exists for the 

achievement of the high selectivity. 

 

 Oxidative Cross-Coupling between Two Nucleophiles 

 With the evolutionary development of cross-coupling chemistry, synthetic chemists 

are seeking more efficient and environmentally benign procedures to meet the needs of 

sustainable development of every aspect of chemical industries. Over the last several 

decades, oxidative cross-coupling between two nucleophiles has become one of the 

most powerful methods for synthesis of a large variety of valuable chemicals, which is 

now one of the most emergently developing fields in synthetic organic chemistry.
[24]

 

Directly using readily available nucleophiles as starting materials, such as aromatics, 

alcohols, and amines, can avoid the pre-activation step(s) to prepare electrophiles or 

organometallic compounds. Therefore, the overall synthetic efficiency should be 

generally higher than the above-mentioned nucleophile–electrophile and 

electrophile–electrophile cross-coupling reactions. 

 Traditionally, a nucleophile is considered to only react with an electrophile. Bond 

formation between two nucleophiles has been realized with the aid of transition metal 

catalysts.
[24]

 In this case, external oxidants are needed to accept two electrons from two 

nucleophilic coupling partners.
[24]

 A typical catalytic cycle for this type of reaction is 

shown in Scheme 1-4, which includes (1) transmetallation (in the case of organometallic 
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compounds) or coordination/deprotonation (or nucleophilic substitution) of one 

nucleophile (in the case of aromatics or other nucleophiles such as alcohols, amines, 

etc.) to the metal center, (2) transmetallation or coordination/deprotonation (or 

nucleophilic substitution) of the other nucleophile to the same metal center, (3) 

reductive elimination to give the final product, and (4) reoxidation of the reduced metal 

center by the external oxidants, for example, metal salts, organic oxidants, hydrogen 

peroxide, and molecular oxygen.
[24,25]

  

 

 Scheme 1-4. Oxidative cross-coupling between two nucleophiles.
[24]

 

 

 Similar to the previously described reductive cross-couplings, the selectivity 

problem is also the central issue in oxidative cross-couplings because of the essential 

side reactions such as homo-coupling of nucleophiles and oxidation of the nucleophiles 

by the external oxidants. Nonetheless, many reports have shown that the high selectivity 

can be achieved by choosing appropriate oxidants and/or fine-tuning of the 

oxidant/catalyst/ligand combinations.
[24,25]
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Nu2

[M]

Nu1

n+

[M]

Nu1

Nu2
n+

[M]
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1.2.3.3. Cross-Dehydrogenative Coupling Reactions 

 The need for the realization of the green and sustainable society is one of the 

inherent driving forces for entire chemical society evolving toward the development of 

more step- and cost-economical synthetic methodologies. In this context, direct 

cross-dehydrogenative couplings of C–H or X–H bonds have several advantages, such 

as use of readily available starting materials, no need of pre-functionalization step(s), 

simple procedures, and drastic reduction of wastes, over either the traditional 

nucleophile–electrophile or electrophile–electrophile cross-couplings. Although such 

reactions have been termed as cross-dehydrogenative coupling reactions by Li in 2004, 

the generation of hydrogen gas is thermodynamically unfavorable, and thus appropriate 

external oxidants are needed.
[25,26]

 Despite the complexities and challenges for such 

transformations, especially the selectivity problems as described in the previous section, 

great progress has been made in recent years. Palladium-based catalysts have mainly 

been utilized for the cross-dehydrogenative coupling reactions among various transition 

metal catalysts such as Cu, Rh, Ru, Pd, etc., especially for cross-dehydrogenative C–C 

bond forming reactions.
[25,26]

 

 The early development of cross-dehydrogenative coupling reactions can date back 

to late 1960s, even before the development of the traditional palladium-catalyzed 

cross-couplings, when Fujiwara and co-workers developed the oxidative cross-coupling 

of unfunctionalized aromatics and alkenes in the presence of Pd(OAc)2 (OAc = acetate) 

using Cu(OAc)2 as the co-oxidant and O2 as the terminal oxidant (the 

Fujiwara–Moritani reaction, Scheme 1-5).
[16c,27]

 Taking the reaction of benzene and 

styrene to trans-stilbene as an example, the reaction proceeds through (1) deprotonative 

palladation of benzene, (2) coordination of styrene to Pd, (3) migratory insertion of 
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styrene to the Pd−aryl bond, (4) β-hydride elimination to afford stilbene, and (5) 

reoxidation of the reduced Pd to close the catalytic cycle.
[16c,27] 

 

   Scheme 1-5. The Fujiwara-Moritani reaction.
[16c,27]

 

 

 The pioneering work by Murai and co-workers on ruthenium-catalyzed 

ortho-alkylation of aromatic ketones (Scheme 1-6) has made the directing group 

assisted-C–H bond activation strategy become one of the most popular research areas 

during the last two decades (selected examples mainly by palladium based-catalysts are 

shown in Schemes 1-7 and 1-8).
[28–31]

 To date, a large number of cross-dehydrogenative 

coupling reactions have successfully been developed based on the directing group 

assisted strategy (Scheme 1-8). For these reactions, the directing groups coordinate to 

the active metal centers to facilitate the activation of the inert C–H bonds (Scheme 1-6). 

Although the great success of the directing-group assisted cross-dehydrogenative 

Oxidation

β-H elimination

Coordination

[O]

Pd(OAc)2

AcOH

PdAcO
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coupling strategy, there is a limitation of the need for the additional 

installation/uninstallation steps of the directing groups. 

 

R1

O

R2 R3
+

R1

O

R2

R3

R2

O

R1

Ru

H

Directing group assisted-

CH bond activation

RuH2(CO)(PPh3)3

toluene, reflux

R3

[Ru]

 

Scheme 1-6. Murai's work on the direct ortho-alkylation of aromatic ketones.
[28] 

 

Sanford et al. (2004)[29] 

N N

AcO

Pd(OAc)2 (1-6 mol%)

CH3CN, 100 oC

PhI(OAc)2 (1.1-1.6 equiv)

 

Daugulis et al. (2005)[30] 

H
N R1

O
R2

+ ArI

Pd(OAc)2 (0.2-5 mol%)

AgOAc (1 equiv)

CF3CO2H

90-130 oC

H
N R1

O
R2

Ar

Ar
H
N R1

O
R2

Ar

Ar

or

 

Yu et al. (2007)[31] 

OH

O

B

O

O
+

Pd(OAc)2 (10 mol%)

benzoquinone (0.5equiv)

Ag2CO3 (1equiv)

tBuOH, 100 oC

K2HCO3 (1.5 equiv)
OH

O  

Scheme 1-7. Selected examples of directing group assisted-cross-coupling reactions of 

various C‒H bonds. 
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van Leeuwen et al. (2002)[32] 

H
N R1

O
R2 R3

Pd(OAc)2 (2 mol%)

benzoquinone (1.1 equiv)

p-TsOH (0.5-1 equiv)

AcOH, toluene

+

H
N R1

O
R2

R3  

Yu et al. (2010)[33] 

R1

CO2H

R2 R3

R4
+

KHCO3 (2 equiv)

t-amylOH

O2 (1 atm), 85 oC

Pd(OAc)2 (5 mol%)

benzoquinone (5 mol%)
R1

CO2H

R2 R3

R4

 

Sanford et al. (2007)[34] 

N

R+
Ag2CO3 (2 equiv)

DMSO (4 equiv)

130 oC

Pd(OAc)2 (10 mol%)

benzoquinone (0.5 equiv) N

R
 

Shi et al. (2008)[35] 

N Ac

R+
EtCOOH

O2 (1 atm), 120 oC

Pd(OAc)2 (10 mol%)

Cu(OTf)2 (0.1-1.0 equiv) N Ac

R 

Dong et al. (2010)[36] 

R1

O N

O
R2+

Na2S2O8 (3 equiv)

70 oC

Pd(OAc)2 (10 mol%)

CF3COOH (5 equiv)
R1

O

N O

R2

 

Chatani et al. (2014)[37] 

N
H

O

N

R2

R1
+ N

H

O

N

R2

R1

Ar

H3C Ar

Ni(OTf)2 (10 mol%)

PPh3 (10 mol%)

Na2CO3 (2 equiv)
iC3F7I (1.2 equiv)

tBu-benzene, 140 oC  

Scheme 1-8. Selected examples of directing group assisted-cross-dehydrogenative 

coupling reactions. 
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 More recently, directing-group free cross-dehydrogenative coupling reactions have 

also been developed (Scheme 1-9). These reactions can be regarded as the ultimate 

dream for synthetic chemists due to the abundance of C–H or X–H bonds. Thus, 

selective activation of C–H or X–H bonds to construct new C–C, C–X, or X–X bonds 

can revolutionize the way by which complex molecules are synthesized from readily 

available starting materials. Because these reactions can be regarded as the oxidative 

cross-coupling of two nucleophiles, the selectivity of such reactions is also mainly 

controlled by employing sterically or electronically different substrates as the coupling 

partners and/or by fine-tuning of the catalyst/oxidant/substrate combinations.
[24,25] 

 

Müller, Dodd, and Dauban et al. (2006)[38] 

R1

H H

S
O NTs

+
Cl2CHCHCl2/MeOH (3:1)

35 oC

Rh2[(S)-nttl]4 (3 mol%)

PhI(OCOt-Bu)2 (1.4 equiv)

p-Tol NH2 R1

H
H
N S

O

p-Tol

NTs

nttl = N-1,8-naphthoyl-tert-leucine; Ts = tosyl  

Fagnou et al. (2007)[39] 

 

 

Nevado et al. (2010)[40] 

 

 

Shi et al. (2014)[41] 

 

 

Scheme 1-9. Selected examples of directing group-free cross-dehydrogenative coupling 

reactions. 

N

Ac

R1 R2+
3-nitropyridine (10-20 mol%)

CsOPiv (40 mol%)

110-140 oC

Pd(CF3COO)2 (10-20 mol%)

Cu(OAc)2 (3 equiv)

N

Ac

R1

R2

R1 H H R2+
PhI(OAc)2 (2 equiv)

CH3CN/1,4-dioxane, 50 oC

dppm(AuBr)2 

phenanthroline (10 mol%)
R1 R2

P

P Ph

Ph

Ph

Ph

dppm =

R1 H R2+
NaHCO3 (1 equiv)

1,2-DCE, 90 oC

Ph3PAuCl (5 mol%)

PhI(OAc)2 (1.5 equiv)
R2

R1
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 For most of the palladium-catalyzed reactions, catalytic or stoichiometric amounts 

of inorganic or organic oxidants are needed to reoxidize the reduced active metal 

center.
[24,25]

 In recent years, aerobic cross-dehydrogenative coupling reactions using 

molecular oxygen as the terminal oxidant have successfully been developed (Scheme 

1-10).
[24,25,42–45]

 These reactions are more environmentally benign compared to the 

previously described cross-couplings, because they use molecular oxygen as the 

terminal oxidant and produce water as the sole byproduct. The catalytic cycle for 

aerobic cross-dehydrogenative coupling reactions often resembles that for oxidative 

cross-couplings between two nucleophiles described in section 1.2.3.2, in which the 

oxidant for the reduced metal center is molecular oxygen (Scheme 1-4). 

 

Li et al. (2010)[42] 

N

R2

R1 R3+
PivOH (2 equiv)

DMSO, O2 (1 atm), 80 oC

K2PdCl4 (10 mol%)

Cs2CO3 (20 mol%)

N

R2

R1 R3

 

Lei et al. (2009)[43] 

R1 H H R2+
TMEDA (20 mol%)

THF, air, rt

NiCl2  6H2O (5 mol%)

CuI (5 mol%)
R1 R2

 

Yu et al. (2009)[44] 

R EWG+
O2 (1 atm), 90 oC

Pd(OAc)2 (10 mol%)

L (20 mol%), Ac2O (1 equiv)

R

EWG

L = N

Bu Et BuEtEWG = electron-withdrawing group

Pihko et al. (2012)[45] 

R1

O O

OR3

R2

AcOH/DCE

O2 (1 atm), 25 oC

Pd(OAc)2 (10 mol%)

(PhO)2P(O)(OH) (50 mol%)

EDG = electron-donating group

EDG+
R1

O O

OR3

R2
EDG

 

Scheme 1-10. Selected examples of aerobic cross-dehydrogenative coupling reactions. 
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1.2.3.4. Copper-Catalyzed Aerobic Cross-Dehydrogenative Coupling Reactions 

 In recent years, copper-catalyzed cross-coupling reactions have drawn much 

attention because of the natural abundance and low cost of copper.
[46,47]

 Copper-based 

catalysts have shown unique activities and efficiencies for various cross-coupling 

reactions, especially for aerobic cross-dehydrogenative coupling reactions, because (1) 

they are easily accessible to Cu
0
, Cu

I
, Cu

II
, and Cu

III
 oxidation states via one or 

two-electron transfer processes, which allows both radical and palladium-like 

two-electron pathways, (2) various functional groups can readily coordinate to them via 

Lewis acidic interactions or π-coordination, and (3) their lower valence states can easily 

be reoxidized by molecular oxygen.
[46]

 These properties of copper catalysts allow their 

chemistry in cross-dehydrogenative coupling reactions extremely rich when using 

abundant and environmentally benign molecular oxygen as the terminal oxidant, in 

contrast to the palladium catalysis for which reoxidation of lower valence palladium 

species by molecular oxygen is relatively difficult. 

 In the context of copper-mediated cross-coupling reactions, an appropriate choice 

of copper sources, bases, ligands, and other additives is very important for the 

improvement of the efficiency of the catalyst system.
[9a,46,47]

 The ligands suitable for the 

generation of active copper catalysts are much different from those for palladium 

catalysts. Because copper is a first-row transition metal, it is harder than the second-row 

palladium, and thus it is more liable to form complexes with nitrogen and oxygen 

ligands than palladium.
[9a]

 Therefore, most of the ligands involved in the 

copper-catalyzed cross-coupling reactions are nitrogen or oxygen containing 

ones.
[9a,46,47]

 At present, there is a lack of mechanistic foundations for the explanation of 

the relative reactivities of copper catalysts containing different ligands. Much of the 
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development of this field has based on empirical evaluation of copper catalysts with 

various ligands. 

 Nevertheless, copper catalysts have turned out to be especially effective for the 

aerobic cross-dehydrogenative coupling of two different nucleophiles having acidic 

C−H or X−H bonds. The Glaser–Hay and Chan–Lam–Evans reactions set the basis for 

today's achievement in this rapidly developing field. 

 

 Glaser–Hay Alkyne Homo-coupling 

 The copper-catalyzed dimerization of alkynes, known as the Glaser–Hay reaction, 

originated from the stoichiometric Cu
I
-mediated homo-coupling of phenylacetylene in 

the presence of ammonia under an air atmosphere in 1869 (Scheme 1-11).
[11a]

 The 

catalytic version of this reaction was developed by Hay in 1962.
[14d]

 To date, a number 

of homogeneous as well as heterogeneous catalyst systems for the Glaser–Hay reaction 

have been developed. Copper salts in combination with nitrogen-based mono- or 

bi-dentate ligands such as pyridine, triethylamine, TMEDA 

(tetramethylethylenediamine) are particularly effective.
[46]

 

 

Glaser (1869)[11a] 

H
CuCl, NH4OH

EtOH
Cu

O2, NH4OH

EtOH  

Hay (1962)[14d] 

R H
CuCl/TMEDA (5 mol%)

O2, acetone
R Ph

TMEDA = tetramethylethylendiamine  

Scheme 1-11. The Glaser–Hay alkyne homo-coupling. 
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 In spite of the great progress in the development of various copper-catalyzed 

systems for the Glaser–Hay reaction, the mechanism for the reaction is still under 

dispute. Several hypotheses exist regarding the oxidation state and the structure of 

active copper species during the reaction. A dimeric copper acetylide 

intermediate-involved catalytic cycle has been proposed based on kinetic data and 

density functional theory (DFT) calculation, in which Cu
II
 acts as a one-electron oxidant 

(Scheme 1-12).
[46,48]

 The reaction was proposed to proceed through successive 

deprotonative coordination of alkynes to the dimeric copper centers, followed by 

reductive elimination to give the diyne products and reoxidation of the reduced copper 

centers by molecular oxygen to regenerate the catalyst.
[46,48]

 Under an O2 atmosphere, 

reoxidation of Cu
I
 species by molecular oxygen was turned out to be a relatively fast 

step in the homogeneous system.
[46–48]

 However, in a heterogeneous 

Cu(OH)x/TiO2-catalyzed system, kinetic studies showed that the reoxidation of Cu
I
 

species was involved in the rate-determining step.
[49a]

 In addition, the UV/Vis spectrum 

of Cu(OH)x/TiO2 treated with phenylacetylene under an Ar atmosphere suggested the 

reduction of Cu
II 

to Cu
I
 by phenylacetylene due to the disappearance of the absorption 

band assignable to the d–d transition of the Cu
II
 species.

[49b]
 

 Lei and co-workers have also provided the direct spectroscopic evidences for the 

reduction of Cu
II 

to Cu
I
 by terminal alkynes, based on in situ analysis of the commonly 

utilized Cu
II
/alkyne/TMEDA system by X-ray absorption spectroscopy (XAS) and 

electron paramagnetic resonance (EPR) under an N2 atmosphere.
[49c]

 Both TMEDA and 

terminal alkynes were essential components for the reduction.
[49c]

 TMEDA was turned 

out to function as both the ligand and the base, and other O and P ligands were not 

effective for the reaction.
[49c]

 In a separate study, kinetic studies on the 
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CuCl2(TMEDA)/phenylacetylene/diisopropylamine system by in situ Raman 

spectroscopy under an N2 atmosphere showed that an induction period was observed, 

and upon addition of a Cu
I
 source, [CuCl(TMEDA)]2, the induction period 

disappeared.
[49d]

 Kinetic studies also showed that the rate-determining step involved the 

reaction of phenylacetylene with [CuCl(TMEDA)]2 but not with CuCl2(TMEDA).
[49d]

 

Although the reaction starting from phenylacetylene was completely suppressed at 

–20 °C, the reaction using lithium phenylacetylide smoothly proceeded even at –70 °C, 

suggesting that the reductive elimination was a relatively fast step compared to the 

copper acetylide formation.
[49d]

 Based on the above experimental evidences, a Cu
II
–Cu

I
 

cooperated activation mode of terminal alkynes has been proposed (Scheme 1-12, 

b).
[49d]

 
 

 

 

Scheme 1-12. The proposed mechanism for the Glaser-Hay alkyne homo-coupling. B: = 

base.
[46,48,49d] 
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 Although the above experimental evidences strongly support the dimeric 

copper-involved mechanism, an alternative monomeric copper species-involved 

palladium-like two electron transfer process, for example, reductive elimination from a 

monomeric Cu
III

 acetylide species, can not be completely excluded at this point. 

 

 Chan–Lam–Evans Reaction 

 Developed independently by Chan, Lam, and Evans, the aerobic oxidative 

cross-coupling of aromatic or alkenyl organometallic compounds with various 

nucleophiles in the presence of copper-based catalysts, known as Chan–Lam–Evans 

reaction, has become a valuable method for the construction of C(sp
2
)–heteroatom 

bonds.
[14f–h,50]

 Initial development of such reactions mainly focused on the 

cross-coupling of aryl boronic acids with alcohols, amines, and thiols. Developed to 

date, the cross-coupling has successfully been applied to C–N, C–O, C–S, C–P, C–C, 

C–Se, C–Te, C–Cl, C–Br, and C–I bond forming reactions (Scheme 1-13).
[50]

 Among 

these reactions, the Chan–Lam–Evans C–N coupling reaction has become a valuable 

complementary to the well known Buchwald-Hartwig amination.
[12]

 The 

Chan–Lam–Evans reaction often proceeds in the presence of appropriate copper-based 

catalysts in combination with amine bases or pyridines using molecular oxygen as the 

terminal oxidant.
[50]

 

 

R1 M + R2 XH
[Cu]

O2
R1 X R2

R1 = aryl, alkenyl
R2 = aryl, alkynyl, alkyl
M = B, Zn, Mg, Sn, Si, etc.
X = N, O, S, P, C, Se, Te  

                Scheme 1-13. The Chan–Lam–Evans reaction.
[50]
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 Similar to the Glaser–Hay alkyne homo-coupling, the mechanism for the 

Chan–Lam–Evans reaction is also a disputable topic among the synthetic organic 

community. However, some mechanistic insights based on experimental results have 

been reported.
[50b]

 Generally, the reaction does not likely proceed through radical 

intermediates, because the presence of a radical scavenger such as 1,1-diphenylethylene 

does not affect the reaction outcome.
[50b]

 

 Systematic studies on the reaction mechanism for the cross-coupling of 

phenylboronic esters and alcohols/amines have been carried out by Stahl and 

co-workers.
[51]

 The stoichiometries of O2/product and Cu
II
/product were 1:2 and 2:1, 

respectively, which suggest that O2 is a four-electron oxidant and Cu
II
 is a one-electron 

oxidant. Kinetic studies showed the first-order dependence on Cu
II
, the saturation 

dependence on ArB(OMe)2, and the zero-order dependence on O2, suggesting the fast 

reoxidation of Cu
I
 by O2 and the rate-determining step of transmetallation of the aryl 

group to the copper center. The EPR spectroscopic analysis of the reaction mixture 

showed that the catalyst resting state consists of Cu
II
 species lack of aryl group, also 

indicating the transmetallation step is the rate-determining step. Additional mechanistic 

studies were carried out using a cyclic Cu
III

 model substrate (2) first reported by Ribas, 

Hedman, Hodgson, Llobet, and Stack, as shown in Scheme 1-14.
[52]

 The Cu
III

 complex 2 

was obtained by the C–H activation of a cyclic amine (1) with a Cu
II
 salt, which resulted 

in the formation of equimolar amount of 2 and a Cu
I
 complex (Scheme 1-14). 

Compound 2 was proposed to be formed by oxidation of a Cu
II
-cyclic amine complex 3 

by another Cu
II
 complex 4. In a separate experiment, 2 was found to readily react with 

methanol to form C–O bonds (Scheme 1-14).
[53]

 These results strongly support the 

involvement of a Cu
III 

species in the Chan–Lam–Evans cross-coupling. 
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N

HH CuII

ClO4


+ N N

N

HH CuII

(ClO4
)2

 HClO4

3                                      4

N N

N

HH CuIII

(ClO4
)2

+ MeOH N N
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Scheme 1-14. Synthesis and reaction of the Cu
III

 species.
[51–53]

 

 

 

Scheme 1-15. Proposed mechanism for the oxidative cross-coupling of an arylboronic 

ester and methanol.
[51]
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 Based on the above mechanistic studies, Stahl and co-workers proposed a plausible 

reaction mechanism for the Chan–Lam–Evans cross-coupling (Scheme 1-15).
[51]

 The 

catalytic cycle was proposed to include the following several key steps; (1) 

rate-determining transmetallation from an arylboronic ester to the Cu
II
 center, (2) 

oxidation of Cu
II
 to Cu

III
, (3) nucleophilic substitution of the Cu

III
 species with methanol 

followed by reductive elimination to afford an aryl ether, and (4) reoxidation of Cu
I
 to 

Cu
II
 species to close the catalytic cycle. Because both one- and two-electron transfer 

processes are included in the catalytic cycle (the Cu
II
–Cu

III
–Cu

I
–Cu

II
 cycle), the 

copper-catalyzed Chan–Lam–Evans reaction is distinct from the traditional 

palladium-catalyzed cross-couplings (the Pd
0
–Pd

II
–Pd

0
 cycle). 

 

 Recent Developments in Copper-Catalyzed Aerobic Cross-Dehydrogenative 

Coupling Reactions 

 Inspired by the above-described Glaser–Hay alkyne homo-coupling and 

Chan–Lam–Evans reaction, dramatic advances in the field of copper catalyzed aerobic 

cross-dehydrogenative coupling reactions have been achieved in recent years.
[54–67]

 The 

coupling partners of these reactions often have acidic C–H or X–H bonds, and these 

reactions have been carried out in the presence of appropriate bases (organic or 

inorganic) and ligands (mainly nitrogen-based ligands) using molecular oxygen as the 

terminal oxidant (Scheme 1-16).  

 In spite of the significant progress in the development of copper-catalyzed 

cross-dehydrogenative coupling reactions, their fundamental mechanism is currently 

unclear. Most of the reports have only provided plausible reaction mechanisms without 

enough experimental evidences, and the reactions have been supposed to proceed 
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through the paths of typical oxidative cross-coupling of two different nucleophiles, as 

described in section 1.2.3.2 (Scheme 1-4).
[54–67]

 

 

Stahl et al. (2008)[54] 

+ R1 N
H

O

R2
N R

R2

O

R1

 CuCl2 (20 mol%)

pyridine (2.0 equiv)

 Na2CO3 (2.0 equiv)

O2 (1 atm), toluene

      70 oC, 4 h

+ H2OR H + 1/2 O2

 

Han et al. (2009)[55] 

(R'O)2P(O)HH +

CuI (10 mol%) 
base (20 mol%)

DMSO, dry air, 55 oC
R P(O)(OR')2 + H2O+ 1/2 O2R

 

Hong et al. (2010)[56], Miura et al. (2010)[57] 

FF

F

F F

HR H +

FF

F

F F

R+ 1/2 O2 + H2O

 CuCl2 (30 mol%) 
1,10-phenanthroline (30 mol%)

tBuOLi (3 equiv), DDQ (15 mol%)

DMSO, O2 (1 atm), 40 oC  

Qing et al. (2010)[58] 

R + Me3SiCF3 R CF3
100 oC, air (1 atm)

DMF

 CuI (1 equiv), KF (5 equiv)
 1,10-phenanthroline (1 equiv)

H

 

Kesavan et al. (2010)[59] 

+ 1/2 O2 + H2OR1 H R2 H+

 Cu(OAc)2  H2O (10 mol%) 
piperidine (3 equiv)

CH2Cl2, air (1 atm), 25 oC
R1 R2

 

Miura et al. (2010)[60] 

+ 1/2 O2 + H2OR1 H +

 CuCl2  (1 equiv) 
Na2CO3 (2 equiv)

DMAc, O2 (1 atm), 120 oC

N

O

N

R2

N

O

N

R2

R1

 

Mori et al. (2009)[61] 

+R1

N

X

X = O, S, N

+ H2O

 Cu(OAc)2 (20 mol%) 
PPh3 (40 mol%)

xylene, O2 (1 atm), 140 oC
+ 1/2 O2R2

H
N

R3

R1

N

X
N

R2

R3
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Schreiber et al. (2009)[62] 

+R1

N

X

X = O, S, N

+ H2O

 Cu(OAc)2 (20 mol%) 
 Na2CO3 (2.0 equiv)

pyridine (20 equiv), toluene 

O2 (1 atm), 120-140 oC

+ 1/2 O2 R1

N

X
N

R2
R1 N

H

O

R2

O

R1

 

Su et al. (2010)[63] 

+ 1/2 O2 + H2O+

Cu(OAc)2  (20 mol%) 
tBuOK (2.5-4 equiv)

TEMPO (50 mol%), DMF 

O2 (1 atm), 40 oC

Fn

NH2

R Fn

H
N

R

 

Bolm and Miura et al. (2010)[64] 

+ 1/2 O2 + H2O+

N

O

N

R3

N

O

N

R3

NS
OHN

R2R1
S

O

R1 R2

 Cu(OAc)2  H2O (10 mol%) 
K3PO4 (3 equiv)

DMF, air (1 atm), rt

 

Li and Duan et al. (2011)[65] 

+ + H2O

 Cu(OAc)2  H2O (20 mol%) 
AcOH (2 equiv)

CH3CN, O2 (1 atm), 70 oC
+ 1/2 O2

Y

R1

N

X

R2

H
N

R3 Y

R1

N

X
N

R2

R3

X = O, S, N; Y = C, N  

Liu et al. (2011)[66], Huang and Liu et al. (2011)[67] 

+ + H2O

 Cu(OAc)2  H2O (20 mol%) 
CuO (2 equiv)

toluene, air (1 atm), 120 oC
+ 1/2 O2Y

R1

N

X

X = O, S, N; Y = C, N

R2SH
Y

R1

N

X
S

R2

 

Scheme 1-16. Selected examples of copper-catalyzed aerobic cross-dehydrogenative 

coupling reactions. 

 

 Stahl and co-workers have studied the reaction mechanism for the aerobic 

cross-dehydrogenative coupling of the macrocyclic arene (1) and methanol.
[53]

 The 

direct observation of the Cu
III

 species 2 by in situ UV-Vis spectroscopy and the facile 

reaction of 2 with methanol to give an aryl ether strongly indicated the involvement of 2 

in the reaction (Scheme 1-14). Kinetic studies showed that oxidation of Cu
I
 by 

molecular oxygen was faster than other steps. Collective data from kinetic studies, EPR 

analysis, and UV-Vis spectroscopy suggested that the rates of the C–H bond activation 
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and C–O bond formation steps were closely matched. Based on these studies, a catalytic 

cycle containing sequential C–H bond activation/reductive elimination/reoxidation steps 

was proposed, as shown in Scheme 1-17. 

 

 

Scheme 1-17. Proposed reaction mechanism for the aerobic oxidative methoxylation of 

a macrocyclic arene (1).
[53]

 

 

 Although the special macrocyclic arene was employed as the model substrate for 

the aerobic oxidative cross-coupling, it is a good indication that the above-described 

cross-coupling reactions of two acidic C–H or X–H bonds also possibly proceed 

through Cu
III

 species in light of the similarity of these reactions. Apparently, further 

elucidation of the reaction mechanism for copper-catalyzed aerobic 

cross-dehydrogenative coupling reactions is still needed for the development of novel 

reactions or more efficient catalyst systems. 
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1/4 O2 +  HX
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1.2.4. Gold Nanoparticles for Aerobic Oxidative Bond-Forming Reactions 

 Gold has long been recognized as an inert metal against chemical reactions, 

however, discoveries by Haruta
[68]

 and Hutchings
[69]

 have dramatically led chemists to 

reevaluate its potential utility as catalysts in chemical synthesis. Haruta and co-workers 

found that gold nanoparticles supported on metal oxides were able to catalyze oxidation 

of CO even at low temperature (–70 °C).
[68]

 Hutchings discovered that supported gold 

catalysts could promote hydrochlorination of acetylene.
[69]

 Since these pioneering work, 

the great progress in the field of gold catalysis has been achieved either in homogeneous 

or heterogeneous systems.
[70–74]

 

 Supported gold nanoparticles on various metal oxides, for example, Au/Al2O3, 

Au/TiO2, Au/Fe3O4, Au/CeO2, Au/MgO, etc., or on carbonaceous materials (Au/C) are 

typically prepared by incipient wetness impregnation or deposition-precipitation method 

using appropriate gold precursors such as HAuCl4 or NaAuCl4 followed by reduction of 

the Au
III

 species.
[70]

 The supported gold nanoparticles can exist as various oxidation 

states, e.g., Au
0
, Au

δ
 or Au

δ
 (Au

I
 or Au

III
).

[71]
 However, the actual catalytically active 

species is still under debate. The preparative method can strongly affect the particle size 

which is one of the most important parameters to determine the catalytic activity.
[70]

 

Another important factor for the activity is gold nanoparticle-support interaction.
[72]

 An 

appropriate choice of the support for a specific reaction can greatly accelerate the 

reaction.  

 Supported gold nanoparticle catalysts are particularly effective for many oxidation 

reactions, such as low-temperature CO oxidation, olefin epoxidation, the water-gas shift 

reaction, and other related oxidations.
[70]

 Apart from these gas phase reactions, the 

liquid phase oxidations by gold nanoparticles have also rapidly been developed in 
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recent years.
[73]

 The versatility of supported gold nanoparticles in oxidation catalysis 

can partly be attributed to their ability of activation of molecular oxygen. However, the 

identification of the nature of the active oxygen species is a quite complicated problem. 

In addition, the active site of supported gold nanoparticles for oxygen activation and the 

location of the active oxygen species, for example, on the gold nanoparticles, on the 

support surface, and/or at the perimeter of the interface between them, are still 

controversial.
[75]

 Several modes for oxygen activation have been proposed based on 

theoretical and experimental studies (Figure 1-3); (1) weakly adsorbed molecular 

oxygen on gold nanoparticle surface at low temperature indicated by theoretical studies, 

(2) negatively charged oxygen species such as superoxide or peroxide identified by EPR 

and Raman spectroscopy, (3) atomically adsorbed oxygen species indicated by model 

studies, (4) molecular oxygen adsorbed at support vacancies, and (5) lattice oxygen of 

the support, especially for readily reducible oxides, e.g., TiO2, Fe3O4, Co3O4, CeO2, 

MnO2, etc.
[74]

 However, The direct dissociative adsorption of molecular oxygen on gold 

nanoparticles at temperatures lower than 400 °C is strongly inhibited by the high 

dissociation barrier.
[76] 

 

 

 

 

Figure 1-3. Active oxygen species on supported gold nanoparticle catalyts. Vo = oxygen 

vacancy.
[74] 

 

 Gold nanoparticles immobilized on different supports can have different modes for 

oxygen activation. With the reducible oxide supports at relatively higher reaction 

O–O

O

O
O O O

O
O

O
Au

MxOy

(2)

(2)
(3)

(4)

(5)
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temperature for CO oxidation, the active oxygen species are likely located at the lattice 

sites of the oxides, and the reaction occurring at the perimeter of the interface. 

Otherwise, for the non-reducible supports such as Al2O3, the active oxygen species are 

likely located on the nanoparticle surface and CO oxidation also occurs on the 

surface.
[74]

 At relatively lower reaction temperature, for example, lower than room 

temperature, removal of the lattice oxygen is increasingly inhibited, and thus the weakly 

adsorbed molecular oxygen on the nanoparticle surface will dominate the active oxygen 

species.
[74]

 The presence of a trace amount of water can greatly accelerate CO oxidation, 

likely by (1) maintenance of catalytically active cationic gold species, (2) direct 

participation of H2O or OH
–
 species in the reaction, (3) facilitation of oxygen activation, 

and (4) transformation of the carbonate intermediate to the bicarbonate species.
[75]

 

 One of the most extensively studied liquid phase oxidation reactions by the 

supported gold nanoparticle catalysts is aerobic oxidation of alcohols/amines to 

carbonyls/imines.
[73]

 The presence of water also benefits the aerobic oxidation of 

alcohols likely through formation of surface hydroxy species, which can promote 

abstraction of protons from alcohols to form alkoxy species, also can assist subsequent 

β-hydride elimination to give the carbonyl products (Scheme 1-19).
[77]

 By applying the 

ability of gold nanoparticles for aerobic oxidation of alcohols, various novel aerobic 

synthetic procedures for several valuable chemicals such as amides and esters have been 

developed.
[73]

 For example, Kobayashi
[78]

 and Wang
[79]

 independently developed a novel 

efficient synthetic procedure for secondary or tertiary amides starting from readily 

available and easily handled alcohols and amines. The reaction was proposed to proceed 

through the following several sequential reactions; (1) oxidation of an alcohol to an 

aldehyde, (2) nucleophilic addition of an amine to the aldehyde to form a hemiaminal 
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intermediate, and (3) oxidation of the hemiaminal to give an amide as the final product 

(Scheme 1-20). Esters have also successfully been synthesized via the process similar to 

that of the amide synthesis in which amines were replaced by alcohols.
[80]

 In addition to 

these aerobic oxidative functional group transformations, quite recently, Corma and 

co-workers have developed several C–C bond forming reactions (Scheme 1-21).
[81–83]

 

However, these reactions were typically carried out under rather harsh conditions, e.g., 

high temperature and oxygen pressure. 

 

 R1 R2

OH
or

R1

H
N R2

Au/support
+ 1/2 O2

R1 R2

O
or

R1

N R2
+ H2O

 

Scheme 1-18. Aerobic oxidation of alcohols and amines by supported gold 

nanoparticles.
[73]
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Scheme 1-19. Schematic illustration of aerobic oxidation of alcohols promoted by 

surface hydroxy species on gold nanoparticles.
[77]
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    Scheme 1-20. Synthesis of amides by supported gold nanoparticles.
[78–79]
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Corma et al. (2013)[81] 

+ 1/2 O2 + H2O

OMe

MeO OMe

CO2Et

OMe

MeO OMe

CO2Et

+
Au/C (5 mol%)

1,2-dichlorobenzene

O2 (8 equiv), 140 oC

40 h  

Corma et al. (2014)[82] 

+ 1/2 O2R RR
Au/C (2-5 mol%)

O2 (3 equiv)

1,3-dichlorobenzene (0.5 M)

170 oC, 18 h

2 + H2O

 

Corma et al. (2014)[83] 

+ 1/2 O22 + H2O
R Au/TiO2 (2-5 mol%)

O2 (12 atm)

neat, 100-140 oC

R R

 

Scheme 1-21. Supported gold nanoparticle-catalyzed aerobic dehydrogenative C–C 

bond forming reactions. 

 

1.3. Overview of This Thesis 

 A large quantity of waste is often generated in the process of fine chemical 

synthesis, causing significant increase of the environmental burden. With the growth of 

global population, ever-increasing demand of chemicals requires chemists to seek more 

efficient synthetic procedures that can eventually revolutionize future manufacture 

processes. Aerobic cross-dehydrogenative coupling reactions of ubiquitous C–H and/or 

X–H bonds to construct C–C, C–X, or X–X bonds have great potential to change the 

way of synthesizing a large variety of valuable chemicals. These cross-dehydrogenative 

couplings can be regarded as oxidase-type reactions, because the oxidative 

dehydrogenation is accompanied by reduction of molecular oxygen without oxygen 

atom transfer to substrates, and consequently, net electron transfer occurring 

concomitantly between the substrates and molecular oxygen (Figure 1-4).
[84] 
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Figure 1-4. Schematic illustration of electron transfer processes in (a) enzymatic 

oxidase-catalyzed oxidation and (b) aerobic cross-dehydrogenative coupling. Cat = 

catalyst, Enz = Enzyme.
[84]

 

 

 The main purpose of this thesis is to develop novel late-transition metal-catalyzed 

aerobic cross-dehydrogenative coupling reactions. Considering the electron transfer 

processes in aerobic cross-dehydrogenative coupling reactions (Figure 1-4), the key 

factor for the successful employment of molecular oxygen as the terminal oxidant is the 

activation of substrates as well as molecular oxygen through one or multiple electron 

transfer between substrates, catalysts, and molecular oxygen. In this study, copper-based 

catalysts, supported gold nanoparticles, as well as readily reducible metal oxides such as 

manganese oxide based catalysts have mainly been utilized, because of their rich 

oxidation chemistry when using molecular oxygen as the terminal oxidant. Specifically, 

the following several reactions have successfully been developed; (1) copper-catalyzed 

2 H + 1/2 O2 

[Cat]Ox

[Cat]Red

H2OY1–H + Y2–H

Y1–Y2 + 2 H

2 e

2 H + 1/2 O2 

[Enz]Ox

[Enz]Red

H2OSubH2

SubOx + 2 H

2 e

(a) Enzymatic oxidase-catalyzed oxidation (biological synthesis)  

(b) Aerobic cross-dehydrogenative coupling (chemical synthesis)
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cross-coupling of terminal alkynes or H-phosphonates with amides through a sequential 

nucleophilic substitution or coordination-deprotonation/reductive 

elimination/reoxidation pathway (Figure 1-5, strategy 1), (2) heterogeneously 

gold-catalyzed aerobic oxidative amination of α,β-unsaturated aldehydes by a sequential 

nucleophilic addition/aerobic oxidative dehydrogenation pathway (Figure 1-5, strategy 

2), and (3) zinc and OMS-2 (manganese oxide-based octahedral molecular sieves) 

co-catalyzed cross-coupling of terminal alkynes and tertiary amines by a sequential 

oxidation/nucleophilic addition pathway (Figure 1-5, strategy 3). 

 In chapter 2, Cu(OH)2-catalyzed selective aerobic cross-dehydrogenative coupling 

of terminal alkynes and amides to ynamides is described. High yields and selectivities 

to ynamides are achieved even without slow addition of alkynes (56−93% yields). The 

substrate scope with respect to both terminal alkynes and amides is very broad. 

Meanwhile, a novel green synthetic route to imides via the oxidative cross-coupling 

followed by the hydration of ynamides to imides by Sn−W mixed oxide catalysts is also 

developed (80−92% yields). 

 In chapter 3, Cu(OAc)2-catalyzed aerobic cross-dehydrogenative coupling of 

H-phosphonates and amides to N-acylphosphoramidates is described. Cu(OAc)2 in 

combination with an appropriate base is revealed to efficiently promote the oxidative 

cross-coupling of H-phosphonates and amides using air as the terminal oxidant. Various 

dialkyl H-phosphonates can efficiently react with nitrogen nucleophiles, such as 

oxazolidinone, lactam, pyrrolidinone, urea, indole, and sulfonamide derivatives, to give 

the corresponding N-acylphosphoramidates in moderate to high yields (52−99% 

yields). 

 In chapter 4, Au/OMS-2-catalyzed β-amination of α,β-unsaturated aldehydes is 
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described. In the presence of Au/OMS-2 (average particle size of gold: 4.1 nm), the 

aerobic dehydrogenative amination of α,β-unsaturated aldehydes with amines efficiently 

proceeds to give the corresponding enaminals in moderate to high yields (50−97% 

yields). The catalysis is truly heterogeneous, and Au/OMS-2 can be reused several 

times. 

 In chapter 5, ZnBr2 and OMS-2 co-catalyzed aerobic cross-dehydrogenative 

coupling of terminal alkynes and tertiary amines to propargylamines is described. In the 

presence of catalytic amounts of ZnBr2 and OMS-2, various combinations of terminal 

alkynes (aromatic and aliphatic) and tertiary methyl amines selectively give the 

corresponding propargylamines in moderate to high yields under 1 atm of molecular 

oxygen (22−88% yields). 

 In chapter 6, general conclusions and outlooks of this thesis are described. 
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  Figure 1-5. Outline of this study. 
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2-1 Cu(OH)2-Catalyzed Selective Aerobic Cross-Dehydrogenative 

Coupling of Terminal Alkynes and Amides to Ynamides 

 

2-1.1. Introduction 

 Alkyne moiety is one of the most important functionalities that is widely included 

in numerous natural products, bioactive compounds, and organic materials.
[1]

 

N-Substituted alkynes, namely ynamines or ynamides, represent one of the most useful 

alkyne derivatives (Figure 2-1-1). They provide a novel way to introduce nitrogen-based 

functionalities into organic molecules, including natural products and medicines. 

 

R1 N
X
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O

O
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R2

EWG

X = NR2, O or CH2  

          Figure 2-1-1. The structure of ynamides.
[2,3]

 

 

 Despite the potential synthetic utility of ynamines, their uses within the synthetic 

organic community are rather limited, likely because of their difficult preparation, 

handling, and especially, low stability
 
(Figure 2-1-2).

[2,3]
 In recent years, ynamides have 

received considerable attention and become versatile synthons in organic synthesis 

because of their superior stability over ynamines.
[2,3]

 The stability of ynamides derives 

from the electron-withdrawing carbonyl group adjacent to the nitrogen atom (most of 

them are stable towards aqueous workups, silica gel, heating, etc.). The 

electron-withdrawing group partially diminishes electron density of the triple bond 
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through inductive effects, thus providing the enhanced stability of ynamides against 

moisture (Figure 2-1-2). 
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Figure 2-1-2. Hydrolytic stability of ynamines and ynamides.
[2,3]

 

 

 Despite the notable development in the field of ynamide chemistry, the lack of 

general methods to prepare these compounds is still a bottleneck for further progress. To 

date, a number of synthetic procedures for ynamides have been developed.
[4−11]

 Among 

them, cross-coupling of alkynyl halides with amides independently developed by Hsung 

and Danheiser is the most widely utilized procedure.
[4−6]

 Recently, copper-catalyzed 

cross-coupling of other alkyne derivatives such as alkynyl trifuluoroboronates
[7]

, 

carboxylic acids
[8]

, and copper acetylides
[9]

 have also been developed (Scheme 2-1-1). 

However, all these procedures require pre-functionalization of terminal alkynes, and a 

large quantity of waste is generated. The direct catalytic cross-coupling of terminal 

alkynes and amides without the pre-functionalization
[12−14]

 should provide the most 

convenient route to ynamides. Recent progress in copper-mediated cross-coupling 

reactions, as described in chapter 1,
 
suggests that copper catalysts would provide a great 
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opportunity for the achievement of the direct cross-coupling of terminal alkynes and 

amides.
[15,16]

  

 

R1 X

R2

N

O

R3

H+ R1 N

R3

O

R2

X=Br, I, BF3K, COOH, or Cu

R1 H

R2

N

O
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O
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Cu(OH)2

air

+ HX

+ H2O

[Cu] or [Fe]

Mixed in a single step (no slow addition) High selectivity to ynamide

 

    Scheme 2-1-1. Synthesis of ynamides. 

 

 The direct cross-coupling of terminal alkynes and amides to ynamides first reported 

by Stahl and co-workers, could efficiently proceed in the presence of CuCl2 (20 mol%), 

Na2CO3 (2 equiv), and pyridine (2 equiv).
[11]

 As described in chapter 1, copper salts in 

combination with nitrogen-based ligands are also particularly effective for the 

Glaser–Hay alkyne homo-coupling. In order to suppress the alkyne homo-coupling, 

slow addition of terminal alkynes to the reaction mixture containing large excess 

amounts of amides (at least 5 equiv with respect to terminal alkynes) was required in 

Stahl's system.
[11]

 For example, the cross-coupling of phenylacetylene (1 equiv) and 

2-oxazolidinone (5 equiv) in the presence of CuCl2 (2 equiv) and Cs2CO3 (2 equiv) in 

DMSO gave the desired ynamide in 53% yield together with 24% yield of the diyne 

byproduct (Scheme 2-1-2, A). When the slow addition technique was employed, the 

yield of the ynamide increased up to 89% yield with the diyne byproduct produced only 

(a) Classical procedure
[4–11]

 

(b) This work 
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in 4% yield (Scheme 2-1-2, A). Upon reducing the amount of CuCl2 to 0.2 equiv, 

although 2-oxazolidinone was efficiently reacted with phenylacetylene, other nitrogen 

nucleophiles such as sulphonamides, indoles were not the effective substrates (Scheme 

2-1-2, B). The substrate scope for nitrogen nucleophiles was substantially broadened by 

addition of a stoichiometric amount of pyridine (2 equiv); sulphonamides and indoles 

were also reacted well with various electron-rich aliphatic and aromatic alkynes 

(Scheme 2-1-2, C). However, electron-deficient alkynes such as ethyl propiolate and 

4-nitrophenylacetylene were less effective substrates, and gave the corresponding 

ynamides in low yields (typically, ≤ 10% and 35%, respectively) (Scheme 2-1-2, D). 

 The reaction mechanism for the cross-coupling is unclear at this point. Stahl and 

co-workers proposed a catalytic cycle including (1) successive 

coordination/deprotonation of an alkyne and an amide to the copper center, (2) reductive 

elimination to give an ynamide, and (3) reoxidation of the reduced copper species by 

molecular oxygen to close the catalytic cycle (Scheme 2-1-3).
[11]
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Scheme 2-1-2. Reaction conditions and substrate scope for the Stahl's system.
[11]
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Scheme 2-1-3. Stahl's system for the aerobic cross-dehydrogenative coupling of 

terminal alkynes and amides to ynamides.
[11]

 

 In this study, heterogeneous copper hydroxide-based catalysts are considered to be 

suitable for the selective cross-coupling, because (1) hydroxyl groups on the surface 

would facilitate the abstraction of protons from acidic C(sp)−H and N−H bonds and (2) 

they are likely less active for the alkyne homo-coupling compared to homogeneous 

systems (especially in the presence of nitrogen donors). 

 In this chapter, Cu(OH)2 is turned out to selectively promote the aerobic 

cross-dehydrogenative coupling of terminal alkynes and amides to ynamides without 

employing the tedious slow addition technique (Scheme 2-1-1). The present 

Cu(OH)2-catalyzed procedure has several outstanding features in comparison with 

Stahl's system; (1) various kinds of structurally diverse ynamides can selectively be 
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synthesized by simply mixing catalytic amounts of Cu(OH)2 and inorganic bases as well 

as the two coupling partners in a single step (without slow addition), (2) reduced 

amounts of amides are utilized (3 equiv or less), (3) readily available and inexpensive 

Cu(OH)2 is used as the catalyst, (4) ligands are not necessary, (5) catalytic amounts of 

inorganic bases (20 mol% or less) are sufficient to promote the cross-coupling, (6) 

catalyst/product separation is very easy (heterogeneous catalysis), (7) air instead of pure 

molecular oxygen can be used as the terminal oxidant, and (8) water is the sole 

by-product. 

 

2-1.2. Experimental Section 

2-1.2.1. General 

GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped 

with a Rtx-200 capillary column. Mass spectra were recorded on Shimadzu 

GCMS-QP2010 equipped with a TC-5HT capillary column at an ionization voltage of 

70 eV. Liquid-state NMR spectra were recorded on JEOL JNM-EX-270. 
1
H and 

13
C 

NMR spectra were measured at 270 and 67.8 MHz, respectively. UV/Vis spectra were 

recorded on a Jasco V-570 spectrometer. The XRD pattern was recorded on a Rigaku 

Multiflex diffractometer (CuKα, λ = 1.5405 Å, 40 kV−50 mA). Copper salts, bases, 

substrates and solvents were commercially obtained from TCI, Wako, or Aldrich 

(reagent grade), and purified prior to the use, if necessary.
[17]

 Supported copper 

hydroxide catalysts, Cu(OH)x/TiO2 and Cu(OH)x/Al2O3, were prepared according to the 

literature procedure.
[18] 
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2-1.2.2. General Procedure for the Cross-Coupling of Terminal Alkynes and 

Amides 

0.1 mmol scale: Into a Pyrex-glass screw cap vial (volume: ca. 20 mL) were 

successively placed Cu(OH)2 (0.005 mmol, 5 mol% with respect to an alkyne), a base 

(5−20 mol% with respect to an alkyne), an alkyne (0.1 mmol), an amide (2–3 equiv. 

with respect to an alkyne), and mesitylene (1 mL). A Teflon-coated magnetic stir bar 

was added and the reaction mixture was vigorously stirred at 100–120 °C, under 1 atm 

of air. After the reaction was completed, biphenyl was added as an internal standard to 

the reaction mixture. Then, the conversion of the alkyne and the yield of the product 

were analyzed by gas chromatography. As for the isolation of the ynamide product, the 

internal standard was not added and the crude reaction mixture was directly subjected to 

silica gel column chromatography (Silica Gel 60N (63–210 m), Kanto Chemical, 2.5 

cm ID×15 cm length, initial: n-hexane only, after mesitylene, the alkyne and the diyne 

byproduct were eluted: n-hexane/ethyl acetate = 9/1 to 3/2 (v/v)), giving the pure 

ynamide. The isolated products were identified by GC mass and 
1
H and 

13
C NMR. 

10 mmol scale: Into a 300 mL three neck round bottom flask, were successively 

placed Cu(OH)2 (48.8 mg, 0.5 mmol), K2CO3 (34.6 mg, 0.25 mmol), phenylacetylene 

(1.02 g, 10 mmol), 2-oxazolidinone (2.61 g, 30 mmol), and mesitylene (100 mL). A 

Teflon-coated magnetic stir bar was added and the reaction mixture was stirred 

vigorously at 100 °C in oil bath for 11 h, under an open air condition. After the reaction 

was completed, the crude reaction mixture was directly subjected to silica gel column 

chromatography (Silica Gel 60N (63–210 m), Kanto Chemical, 4.0 cm ID×10 cm 

length, initial: n-hexane only, after mesitylene, phenylacetylene and the diyne byproduct 
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were eluted: n-hexane/ethyl acetate = 9/1 to 3/2 (v/v)), giving the ynamide in >99 purity 

(by GC and 
1
H NMR). 

 

2-1.2.3. Spectral Data of Ynamides 

N
O

O

 

3aa  

3-(phenylethynyl)oxazolidin-2-one (3aa): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): δ 

3.98−4.03 (m, 2H), 4.45−4.51 (m, 2H), 7.26−7.35 (m, 3H), 7.41−7.48 (m, 2H). 
13

C{
1
H} 

NMR (67.8 MHz, CDCl3, TMS): δ 47.01, 63.00, 71.16, 78.91, 122.12, 128.17, 128.27, 

131.54, 155.86. MS (EI): m/z (%) : 188 (12), 187 (100) [M
+
], 143 (36), 142 (22), 128 

(66), 117 (20), 116 (30), 115 (84), 114 (20), 89 (15), 88 (22), 77 (17), 64 (11), 63 (14), 

62 (13).  

 

 

3ba 

3-(o-tolylethynyl)oxazolidin-2-one (3ba): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): δ 

2.44 (s, 3H), 3.99−4.05 (m, 2H), 4.46−4.52 (m, 2H), 7.08−7.26 (m, 3H), 7.38−7.41 (m, 

1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 20.69, 47.12, 62.95, 70.12, 82.68, 

121.94, 125.50, 128.12, 129.39, 131.62, 139.90, 155.81. MS (EI): m/z (%) : 201 (57) 

[M
+
], 156 (16), 142 (11), 129 (24), 128 (16), 116 (13), 115 (100), 103 (10), 102 (24), 77 

(10), 58 (10).  

N
O

O

 

3ca 

N
O

O
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3-(m-tolylethynyl)oxazolidin-2-one (3ca): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): δ 

2.32 (s, 3H), 3.97−4.03 (m, 2H), 4.45−4.51 (m, 2H), 7.10−7.27 (m, 4H). 
13

C{
1
H} NMR 

(67.8 MHz, CDCl3, TMS): δ 21.14, 47.02, 62.98, 71.31, 78.58, 121.89, 128.15, 128.52, 

129.04, 132.10, 137.96, 155.88. MS (EI): m/z (%) : 202 (13), 201 (100) [M
+
], 157 (39), 

156 (19), 143 (10), 142 (80), 131 (12), 130 (17), 129 (47), 128 (28), 116 (12), 115 (36), 

103 (23), 102 (33), 101 (10), 91 (11), 78 (14), 77 (18), 76 (13), 70 (10), 63 (11), 51 (11). 

N
O

O

 

3da 

3-(p-tolylethynyl)oxazolidin-2-one (3da): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): δ 

2.34 (s, 3H), 3.96−4.02 (m, 2H), 4.44−4.50 (m, 2H), 7.09−7.13 (m, 2H), 7.32−7.35 (m, 

2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 21.42, 47.05, 62.97, 71.15, 78.23, 

118.95, 129.02, 131.57, 138.37, 155.93. MS (EI): m/z (%) : 202 (13), 201 (100) [M
+
], 

157 (34), 156 (22), 142 (59), 130 (23), 129 (54), 128 (26), 115 (34), 103 (24), 102 (29), 

101 (10), 78 (12), 77 (16), 76 (12), 51 (10). 

N
O

O

F
 

3ea 

3-((4-fluorophenyl)ethynyl)oxazolidin-2-one (3ea): Solid. 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 3.98−4.03 (m, 2H), 4.47−4.53 (m, 2H), 6.96−7.05 (m, 2H), 7.39−7.46 (m, 2H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 46.96, 63.03, 70.13, 78.55, 115.57 (d, J = 

21.7 Hz), 118.15 (d, J = 3.9 Hz), 133.64 (d, J = 8.3 Hz), 155.88, 162.48 (d, J = 249.2 

Hz). MS (EI): m/z (%) : 206 (11), 205 (88) [M
+
], 161 (38), 160 (17), 146 (64), 135 (18), 

134 (30), 133 (100), 132 (22), 126 (13), 107 (14), 106 (17), 57 (10). 
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N
O

O

Cl
 

3fa 

3-((4-chlorophenyl)ethynyl)oxazolidin-2-one (3fa): Solid. 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 3.98−4.04 (m, 2H), 4.49−4.55 (m, 2H), 7.26−7.30 (m, 2H), 7.34−7.40 (m, 2H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 46.93, 63.05, 70.24, 79.78, 120.67, 128.63, 

132.73, 134.19, 155.75. MS (EI): m/z (%) : 223 (33), 222 (13), 221 (100) [M
+
], 179 (11), 

177 (36), 164 (18), 162 (57), 151 (32), 150 (15), 149 (43), 142 (14), 127 (11), 126 (15), 

116 (12), 115 (59), 114 (85), 98 (10), 89 (11), 88 (21), 87 (21), 75 (13), 73 (17), 63 (16), 

62 (10).  

N
O

O

Br
 

3ga 

3-((4-fluorophenyl)ethynyl)oxazolidin-2-one (3ga): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 3.98−4.04 (m, 2H), 4.47−4.53 (m, 2H), 7.27−7.32 (m, 2H), 

7.42−7.7.46 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 46.92, 63.06, 73.34, 

79.97, 121.15, 122.36, 131.55, 132.91, 155.73. MS (EI): m/z (%) : 267 (53), 265 (53) 

[M
+
], 223 (23), 221 (23), 208 (23), 206 (23), 195 (18), 193 (11), 127 (26), 116 (14), 115 

(66), 114 (100), 89 (12), 88 (25), 87 (20), 64 (11), 63 (18), 62 (12).  

N
O

OCl

 

3ha 

3-((3-chlorophenyl)ethynyl)oxazolidin-2-one (3ha): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 3.98−4.04 (m, 2H), 4.47−4.53 (m, 2H), 7.20−7.33 (m, 3H), 7.41−7.43 
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(m, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 46.88, 63.08, 70.10, 80.07, 123.93, 

128.34, 129.49, 129.51, 131.17, 134.07, 155.68. MS (EI): m/z (%) : 223 (33), 222 (13), 

221 (100) [M
+
], 179 (13), 177 (39), 176 (10), 164 (24), 162 (74), 151 (29), 149 (31), 

142 (12), 127 (12), 126 (14), 116 (16), 115 (58), 114 (80), 88 (19), 87 (16), 75 (12), 63 

(14).  

N
O

O

F3C
 

3ia 

3-((4-(trifluoromethyl)phenyl)ethynyl)oxazolidin-2-one (3ia): Solid. 
1
H NMR (270 

MHz, CDCl3, TMS): δ 4.01−4.07 (m, 2H), 4.49−4.55 (m, 2H), 7.50−7.58 (m, 4H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 46.86, 63.14, 70.40, 81.33, 114.14, 117.86, 

121.87, 125.13, 125.18, 125.24, 125.30, 125.87, 125.15, 126.18, 129.03, 129.42, 129.90, 

130.13, 131.32, 137.50, 155.62. MS (EI): m/z (%) : 256 (14), 255 (100) [M
+
], 236 (11), 

211 (58), 210 (15), 197 (12), 196 (96), 185 (17), 183 (41), 176 (12), 163 (13), 145 (10), 

142 (14), 133 (14), 115 (20), 114 (12), 88 (10), 81 (19). 

N
O

OMeO

 

3ja 

3-((3-methoxyphenyl)ethynyl)oxazolidin-2-one (3ja): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 3.79 (s, 3H), 3.98−4.04 (m, 2H), 4.46−4.51 (m, 2H), 6.84−6.88 (m, 

1H), 6.96−6.98 (m, 1H), 7.01−7.05 (m, 1H), 7.18−7.27 (m, 1H). 
13

C{
1
H} NMR (67.8 

MHz, CDCl3, TMS): δ 46.98, 55.25, 63.02, 71.15, 78.75, 114.80, 116.20, 123.13, 

123.95, 129.32, 155.84, 159.26. MS (EI): m/z (%) : 218 (13), 217 (100) [M
+
], 173 (35), 

158 (33), 146 (10), 145 (19), 143 (14), 130 (24), 116 (22), 115 (24), 103 (15), 102 (19), 
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90 (13), 89 (12), 88 (12), 77 (11), 76 (14), 75 (16), 51 (11). 

N
O

O

 

3ka 

3-(naphthalene-1-ylethynyl)oxazolidin-2-one (3ka): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 4.04−4.10 (m, 2H), 4.48−4.53 (m, 2H), 7.38−7.67 (m, 4H), 7.79−7.85 

(m, 2H), 8.33 (dd, J = 8.1 and 0.8 Hz, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

47.07, 63.06, 69.53, 83.59, 119.84, 125.13, 126.06, 126.40, 126.81, 128.20, 128.51, 

129.90, 132.96, 133.10, 155.87. MS (EI): m/z (%) : 238 (16), 237 (100) [M
+
], 193 (19), 

192 (12), 178 (33), 166 (18), 165 (71), 164 (39), 152 (12), 151 (31), 150 (11), 139 (13), 

138 (18), 97 (13), 89 (17), 76 (14).  

N
O

O

S  

3la 

3-(thiophen-3-ylethynyl)oxazolidin-2-one (3la): Solid. 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 3.96−4.02 (m, 2H), 4.45−4.51 (m, 2H), 7.12 (dd, J = 4.9 and 1.1 Hz, 1H), 

7.25−7.28 (m, 1H), 7.46 (dd, J = 3.0 and 1.1 Hz, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, 

TMS): δ 46.98, 63.02, 66.34, 78.32, 120.85, 125.28, 129.15, 130.04, 155.91. MS (EI): 

m/z (%) : 194 (11), 193 (100) [M
+
], 149 (24), 148 (17), 134 (50), 123 (15), 122 (28), 121 

(58), 96 (10), 95 (14), 94 (28), 70 (12), 69 (10), 63 (10).  

N
O

O

 

3ma 
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3-(cyclohexenylethynyl)oxazolidin-2-one (3ma): Oil. 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 1.53−1.69 (m, 4H), 1.99−2.06 (m, 4H), 3.57 (s, 2H), 3.99−4.05 (m, 2H), 

4.38−4.44 (m, 2H), 5.54−5.55 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

21.93, 22.67, 25.24, 28.65, 42.51, 43.32, 61.84, 125.76, 130.92, 153.38, 171.61. MS 

(EI): m/z (%) : 209 (13) [M
+
], 122 (100), 94 (27), 88 (16), 79 (21).

 

N
O

O

N

 

3na 

3-(3-(dimethylamino)prop-1-ynyl)oxazolidin-2-one (3na): Oil. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 2.30 (s, 6H), 3.39 (s, 2H), 3.89−3.95 (m, 2H), 4.42−4.47 (m, 2H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 44.05, 46.85, 47.83, 62.86, 66.24, 74.66, 

156.29. MS (EI): m/z (%) : 168 (76) [M
+
], 167 (79), 125 (14), 124 (30), 123 (10), 96 

(38), 95 (16), 82 (56), 81 (90), 80 (94), 68 (13), 67 (21), 66 (14), 58 (37), 56 (17), 55 

(15), 54 (59), 53 (100), 52 (45). 

N
O

O

Cl

4  

3oa 

3-(6-chlorohex-1-ynyl)oxazolidin-2-one (3oa): Oil.
 1

H NMR (270 MHz, CDCl3, 

TMS): δ 1.64−1.75 (m, 2H), 1.85−1.95 (m, 2H), 2.37 (t, J = 7.0 Hz, 2H), 3.57 (t, J = 6.6 

Hz, 2H), 3.85−3.91 (m, 2H), 4.39−4.45 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, 

TMS): δ 17.70, 25.84, 31.46, 44.49, 46.91, 62.79, 70.22, 70.60, 156.55. MS (EI): m/z 

(%) : 201 (2) [M
+
], 167 (10), 166 (98), 164 (23), 138 (11), 130 (14), 126 (13), 124 (11), 

122 (41), 120 (16), 106 (12), 94 (25), 93 (17), 88 (13), 81 (31), 80 (70), 79 (60), 78 (13), 

77 (18), 69 (13), 68 (13), 67 (47), 66 (33), 65 (21), 55 (13), 54 (44), 53 (100), 52 (40), 
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51 (13). 

n-C6H13 N
O

O

 

3pa 

3-(oct-1-ynyl)oxazolidin-2-one (3pa): Oil.
 1

H NMR (270 MHz, CDCl3, TMS): δ 0.89 

(t, J = 6.9 Hz, 3H), 1.21−1.44 (m, 6H), 1.47−1.58 (m, 2H), 2.30 (t, J = 7.0 Hz, 2H), 

3.85−3.90 (m, 2H), 4.39−4.44 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

13.98, 18.34, 22.47, 28.47, 28.70, 31.26, 47.00, 62.74, 69.94, 71.19, 156.62. MS (EI): 

m/z (%) : 195 (1) [M
+
], 167 (14), 166 (20), 152 (24), 139 (16), 138 (12), 136 (17), 127 

(12), 126 (100), 124 (38), 122 (47), 109 (14), 108 (76), 107 (11), 106 (13), 97 (19), 95 

(21), 94 (34), 93 (38), 91 (12), 88 (44), 82 (23), 81 (48), 80 (69), 79 (49), 78 (14), 77 

(10), 69 (15), 68 (27), 67 (78), 66 (22), 65 (19), 56 (13), 55 (69), 54 (60), 53 (96), 52 

(43). 

N

O

 

3ac 

3-(phenylethynyl)-1,3-oxazetidin-2-one (3ac): Solid. 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 3.91 (t, J = 4.9 Hz, 2H), 3.72 (t, J = 4.7 Hz, 2H), 7.26−7.35 (m, 3H), 7.38−7.45 

(m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 37.96, 43.13, 69.86, 78.68, 122.17, 

128.10, 128.29, 131.44, 166.65. MS (EI): m/z (%) : 171 (24) [M
+
], 144 (10), 143 (100), 

129 (46), 128 (29), 115 (61), 114 (11), 103 (14), 102 (34), 89 (11), 88 (14), 78 (13), 77 

(10), 63 (14), 62 (11). 
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2-1.3. Results and Discussion 

2-1.3.1. Characterization of Cu(OH)2 

The XRD pattern and crystal structure of Cu(OH)2 are shown in Figure 2-1-3. The 

XRD pattern is in a good agreement with orthorhombic Cu(OH)2 (JCPDS No 13-420) 

(Figure 2-1-3, a). Cu(OH)2 has the structure containing corrugated layers of distorted 

Cu(OH)6 octahedron (Figure 2-1-3, b). Copper(II) is actually surrounded pentahedrally 

by five OH
 

ions, and the sixth OH
 

ion is located too long distance to be involved in the 

copper octahedron.
[19,20]

 

 

 

 

 

Figure 2-1-3. (a) XRD pattern and (b) crystal structure of Cu(OH)2. Red, blue, and 

light-red balls represent oxygen, copper, and hydrogen atoms, respectively. 
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2-1.3.2. Optimization of the Reaction Conditions 

 At the beginning of the study, various kinds of copper-based catalysts were 

examined for the cross-coupling of ethynylbenzene (1a) and 2-oxazolidinone (2a) to 

produce 3-(phenylethynyl)oxazolidin-2-one (3aa) in 1 atm air (Table 2-1-1). Under the 

reaction conditions described in Table 2-1-1, no reaction proceeded in the absence of 

catalysts. Among various copper catalysts applied, such as Cu(OH)2, Cu(OH)2·CuCO3, 

CuO, Cu(acac)2 (acac = acetylacetonate), Cu(OTf)2 (OTf = triflate), Cu(OAc)2·H2O 

(OAc = acetate), CuI, CuCl2, and CuSO4·5H2O, Cu(OH)2 was the most effective 

catalyst in terms of the activity and selectivity. Cu2O showed almost the same activity 

and selectivity as Cu(OH)2. Although Cu(OH)2·CuCO3, Cu(acac)2, and CuSO4·5H2O 

showed the high selectivities to 3aa, the activities of these catalysts were lower than that 

of Cu(OH)2. No reaction proceeded in the presence of CuO. Supported copper(II) 

hydroxide catalysts such as Cu(OH)x/TiO2 and Cu(OH)x/Al2O3
[18]

 were not effective for 

the cross-coupling. 

 The cross-coupling was efficiently proceeded in the presence of catalytic amounts 

of Cu(OH)2 (5 mol% with respect to 1a) and KHCO3 (10 mol%). In this case, 3aa was 

obtained in 92% yield with 99% selectivity upon simply mixing the two coupling 

partners in a single step without the slow addition procedure (Table 2-1-1). In a separate 

experiment, it is revealed that Cu(OH)2 was inactive for the Glaser–hay alkyne 

homo-coupling, which is likely the key point to attain the high selectivity. 
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Table 2-1-1. Cross-coupling of phenylacetylene (1a) and 2-oxazolidinone (2a) by 

various catalysts.
[a]

 

OHN

O

+
catalysts

    100 oC, air (1 atm)

mesitylene (1 mL), 2.0 h

N
O

O

+

1a 2a 43aa

[a] Reaction conditions: Catalyst (Cu: 5 mol%), 1a (0.1 mmol), 2a (0.3 mmol), KHCO3 (10 

mol %), mesitylene (1 mL), 100 °C, under air (1 atm), 2.0 h. [b] Conversion and yields were 

determined by GC analysis. nd = not detected.  

 

 Different bases were also examined for the cross-coupling of 1a and 2a using 

Cu(OH)2 as the catalyst (Table 2-1-2). Among various bases examined, such as Na2CO3, 

K2CO3, Cs2CO3, NaHCO3, KHCO3 K3PO4·nH2O, triethylamine (Et3N), and 

1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), K2CO3 was the most suitable base. 

Inorganic bases were turned out to be superior to organic bases. Generally, at least 

stoichiometric amounts of bases are required for the cross-coupling of alkynyl 

halides
[4−6]

 or terminal alkynes
[11]

 with amides. In the present Cu(OH)2-catalyzed 

Entry Catalyst Conv. of 1 [%]
[b]

 
Yield [%]

[b]
 

3aa 4 

1 Cu(OH)2 93 92 1 

2 Cu2O 94 91 2 

3 Cu(OH)2·CuCO3 80 77 2 

4 CuO <1 nd nd 

5 Cu(acac)2 57 53 2 

6 Cu(OTf)2 60 8 48 

7 Cu(OAc)2·H2O 95 75 20 

8 CuI 83 51 31 

9 CuCl2 86 61 24 

10 CuSO4·5H2O 27 18 2 

11 Cu(OH)x/TiO2 13 10 2 

12 Cu(OH)x/Al2O3 <1 nd nd 

13 none <1 nd nd 



 

74 

 

system, 5 mol% of K2CO3 was sufficient to effectively promote the cross-coupling of 

1a and 2a (Table 2-1-3).  

 

 

Table 2-1-2. Cross-coupling of phenylacetylene (1a) and 2-oxazolidinone (2a) with 

different bases.
[a] 

OHN

O

+
    100 oC, air (1 atm)

mesitylene (1 mL), 0.5 h

N
O

O

+

1a 2a 43aa

Cu(OH)2

[a] Reaction conditions: Cu(OH)2 (5 mol%), 1a (0.1 mmol), 2a (0.3 mmol), base (10 mol %), 

mesitylene (1 mL), 100 °C, under air (1 atm), 0.5 h. [b] Conversion and yields were determined 

by GC analysis. nd = not detected. 

 

 

 

 

 

 

 

 

 

 

 

Entry Base Conv. of 1 [%]
[b]

 
Yield [%]

[b]
 

3 4 

1 Na2CO3 15 13 <1 

2 K2CO3 75 73 1 

3 Cs2CO3 26 17 2 

4 NaHCO3 28 25 <1 

5 KHCO3 67 65 1 

6 K3PO4·nH2O 46 42 2 

7 Et3N <1 nd nd 

8 DBU 27 16 8 

9 none <1 nd nd 
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Table 2-1-3. Cross-coupling of phenylacetylene (1a) and 2-oxazolidinone (2a) with 

different amount of K2CO3.
[a] 

OHN

O

+ N
O

O

+

1a 2a 43aa

  100 oC, air (1 atm)

mesitylene (1 mL), 0.5 h

            K2CO3

Cu(OH)2

 

Entry K2CO3 (mol %) Conv. of 1 [%]
[b]

 
Yield [%]

[b]
 

3aa 4 

1 2.5 48 47 1 

2 5 76 75 1 

3 10 75 73 1 

[a] Reaction conditions: Cu(OH)2 (5 mol%), 1a (0.1 mmol), 2a (0.3 mmol), mesitylene (1 mL), 

100 °C, under air (1 atm), 0.5 h. [b] Conversion and yields were determined by GC analysis. 

 

 

 Examination of various solvents showed that mesitylene was the best one, and the 

reaction hardly proceeded in polar solvents such as dimethylformamide (DMF), 

dimethylsulfoxide (DMSO), acetonitrile, 2-propanol, ethyl acetate, and 1,4-dioxane 

(Table 2-1-4). 3 Equiv of 2a were optimal for the high yield of 3aa (Table 2-1-5). 

 For the Cu(OH)2-catalyzed cross-coupling, no further conversions of substrates 

were observed upon removal of the catalyst by hot filtration during the reaction. 

Therefore, the contribution to the observed catalysis from leached copper species can be 

ruled out, and the catalysis is truly heterogeneous. 
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Table 2-1-4. Solvent screening.
[a] 

OHN

O

+ N
O

O

+

1a 2a 43aa

  100 oC, air (1 atm)

solvent (1 mL), 0.5 h

    K2CO3 (5 mol%)

Cu(OH)2

 

Entry Solvent Conv. of 1 [%]
[b]

 
Yield [%]

[b]
 

3aa 4 

1 mesitylene 76 75 1 

2
[c]

 mesitylene 65 52 1 

3
[d]

 mesitylene 5 nd nd 

4 1,2-dichloroethane <1 nd nd 

5 1,4-dioxane <1 nd nd 

6 ethylacetate <1 nd nd 

7 2-propanol <1 nd nd 

8 acetonitrile <1 nd nd 

9 dimethylsulfoxide 1 nd 1 

10 dimethylformamide 6 2 nd 

[a] Reaction conditions: Cu(OH)2 (5 mol%), 1a (0.1 mmol), 2a (0.3 mmol), solvent (1 mL), 

K2CO3 (5 mol%), 100 °C, under air (1 atm), 0.5 h. [b] Conversion and yields were determined 

by GC analysis. [c] O2 (1 atm). [d] Ar (1 atm). nd = not detected. 

 

 

Table 2-1-5. Cross-coupling with different amount of 2-oxazolidinone (2a).
[a]

 

OHN

O

+ N
O

O

+

1a 2a 43aa

  100 oC, air (1 atm)

mesitylene (1 mL), 2 h

    K2CO3 (5 mol%)

Cu(OH)2 (5 mol%)

 

Entry 2a (equiv) Conv. of 1 [%]
[b]

 
Yield [%]

[b]
 

3aa 4 

1 1  22 11 nd 

2 2 40 29 2 

3 3 94 92 1 

4 4 96 72 3 

[a] Reaction conditions: Cu(OH)2 (5 mol%), 1a (0.1 mmol), 2a (0.3 mmol), mesitylene (1 mL), 

100 °C, under air (1 atm), 2 h. [b] Conversion and yields were determined by GC analysis. nd = 

not detected. 
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2-1.3.3. Substrate Scope 

 The substrate scope for the aerobic cross-dehydrogenative coupling of terminal 

alkynes and amides was investigated. The suitable reaction conditions were variable 

according to the substrates employed. By using the present Cu(OH)2-catalyzed system, 

various kinds of structurally diverse ynamides could be synthesized using air as the 

terminal oxidant (Scheme 2-1-4). After the cross-coupling, the insoluble Cu(OH)2 and 

bases were separated by simple filtration, and the ynamide products were easily purified 

by directly loading the filtrate onto a short silica gel column. 

 Aromatic alkynes with electron-donating as well as electron-withdrawing 

substituents were all good substrates. It is noticeable that the cross-coupling worked 

well with aromatic alkynes containing electron-withdrawing substituents such as p-F, 

p-Cl, p-Br, and p-CF3, which are likely poor substrates in Stahl's and other related 

systems.
[4−8,11]

 2-, 3-, and 4-Ethynyltoluenes all reacted well with 2a and almost equal 

yields of the corresponding ynamides were obtained, suggesting that the steric effect of 

substituents on aromatic rings is negligible. For halo-substituted aromatic alkynes, the 

corresponding ynamides were obtained in high yields without dehalogenation. Thus, it 

would be possible to further functionalize the ynamide products by utilizing these 

halo-substituents. Alkynes containing heteroatoms such as 3-ethynylthiophene and 

N,N-dimethylpropargylamine also efficiently reacted with 2a. An enynamide could also 

be synthesized by the reaction of an enyne and 2a. Apart from aromatic alkynes, 

aliphatic ones were also good coupling partners. In this case, the amount of 2a could be 

reduced to 2 equiv with respect to the alkyne coupling partner without the deterioration 

of the high selectivity to the corresponding ynamides. As for nitrogen nucleophiles, 

oxazolidinone, azetidinone, and sulfonamide derivatives could be utilized as coupling 
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partners in the present Cu(OH)2-catalyzed system. However, pyrrolidone was not the 

effective substrate for the present cross-coupling. 

 In addition, a gram scale synthesis of 3aa was also carried out (100-fold scale up, 

Eq. 1). In this case, 1.23 g (66% yield based on 1a) of 3aa was obtained. This result 

further demonstrates the potential utility and practicability of the present cross-coupling. 

 

 

 

(1) OHN

O

N
O

O

+

Cu(OH)2 (5 mol%)

 K2CO3 (2.5 mol%)

100  oC, air (1 atm), 11 h

   mesitylene (100 mL)
1a (1.02 g) 2a 3aa (1.23 g)

H

66% yield
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O
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O
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O
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O
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O

O
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O
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O
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O

N

S
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     3aa, 91%
condition A, 2 h

     3ba, 88%
condition A, 4 h

     3ca, 91%
condition A, 4 h

     3da, 93%
condition A, 4 h

     3ea, 88%
condition A, 2 h

     3fa, 86%
condition A, 2 h

     3ga, 89%
condition A, 2 h

     3ha, 90%[a]

 condition A, 2 h

      3ia, 84%
 condition B, 1 h

     3ja, 90%
 condition A, 2 h

     3ka, 89%
 condition A, 3 h

      3la, 93%
 condition A, 1 h

      3ma, 91%
 condition C, 1 h

      3na, 87%[c]

 condition C, 1 h
      3oa, 84%
 condition C, 1 h

      3pa, 91%
 condition C, 4 h

      3ab, 63%[b,c]

 condition B, 1 h

      3ac, 56%[c]

 condition D, 2 h

      3ad, 57%[c]

 condition E, 3 h

R1 H N

R3

O

R2

N
O

O

Bn

H + 1/2 O2

O

R2

Cl

4

N

O

      3ae, nd
 condition A, 2 h

Scheme 2-1-4. Oxidative cross-coupling of terminal alkynes and amides. The isolated 

yields (based on 1) are reported (unless otherwise noted). Conditions B‒E are consistant 

with condition A unless otherwise noted. Reaction conditions: A: 1 (0.1 mmol), 2 (0.3 

mmol), Cu(OH)2 (0.5 mg, 5 mol%), K2CO3 (5 mol%), mesitylene (1 mL), 100 °C, under 

air (1 atm). B: Cu(OH)2 (1.0 mg, 10 mol%), Cs2CO3 (5 mol%). C: 1 (0.2 mmol), 2 (0.4 

mmol), Cu(OH)2 (1.0 mg, 10 mol%), Cs2CO3 (5 mol%), 110 °C. D: Cu(OH)2 (1.0 mg, 

10 mol%), CsOH (5 mol%), 110 °C. E: Cu2O (1.4 mg, 20 mol%), Cs2CO3 (20 mol%), 

120 °C. [a] Cu(OH)2 (1.0 mg, 10 mol%). [b] 110 °C. [c] Yields were determined by GC 

using biphenyl as an internal standard. nd = not detected. 
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2-1.3.4. Reaction Mechanism 

 An H/D exchange reaction of [D1]ethynylbenzene (1a') in the presence of 1 equiv 

of Cu(OH)2 and K2CO3 at 20 °C for 6 h in [D8]toluene resulted in a 47% decrease of the 

deuterium content (determined by 
1
H NMR analysis) (Table 2-1-6). In contrast, K2CO3 

alone resulted in only 10% decrease of the deuterium content, and 13% decrease was 

observed in the presence of Cu(OH)2 alone (Table 2-1-6). These results suggest a 

copper(II) acetylide species is likely formed through cooperative activation of alkynes 

by Cu(OH)2 and a base. 

 

Table 2-1-6. H/D exchange experiments under different reaction conditions. 

 

 

 

Entry Cu(OH)2 [mmol] K2CO3 [mmol] 
Yield of 1a [%] 

1 0.1 0.1 47 

2 0.1 - 13 

3 - 0.1 10 

4 - - 0 

[a] Reaction conditions: 1a' (0.1 mmol), [D8]toluene (1 mL), 20 
o
C, under air (1 atm), 6 h. [b] 

Yields were determined by 
1
H NMR analysis. 

 

 The possible involvement of the copper(II) acetylide species was further confirmed 

by UV/Vis spectrum of the catalyst. After the Cu(OH)2 catalyst (5 mol% with respect to 

1a) was treated with 1a in the presence of 5 mol% K2CO3 in mesitylene at 100 °C for 1 

h under an air atmosphere, the UV/Vis spectrum of the retrieved catalyst was measured 

(Figure 2-1-4). A new broad absorption band around 450 nm attributed possibly to 

ligand to metal charge transfer (LMCT)
[21]

 of the copper acetylide species was observed. 

D



H CuII   OD+

CuII   OH
1a1a'

CuII
+ HDO

base

CuII
+ base  DOH

+  baseor
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In addition, the intensity of the absorption band around 650 nm assignable to the d-d 

transition of copper(II) species
[22]

 almost unchanged compared to the fresh Cu(OH)2 

catalyst. These results suggest that the valence state of the copper acetylide species is 

possibly +2. 

 

 

 

 

 

 

 

 

 

 

Figure 2-1-4. The UV/Vis spectra of fresh Cu(OH)2 catalyst (spectrum A), the catalyst 

retrieved after the treatment with 1a (spectrum B), and the difference spectrum between 

A and B (spectrum C). 

 

 A stoichiometric reaction of copper(I) phenylacetylide (1a'') with 2a efficiently 

proceeded to give 3aa in a high yield and selectivity (Figure 2-1-5). This result suggests 

that a copper(I) acetylide species is also a possible intermediate in the present 

cross-coupling. In addition, this reaction was promoted greatly by the presence of 5 

mol% of K2CO3, indicating the essential role of the base to facilitate deprotonative 

coordination of 2a to the active copper center (Figure 2-1-5). The presence of the 

catalytic amount of K2CO3 also resulted in the higher selectivity to 3aa, likely because 
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of the facile deprotonative coordination of 2a to the copper center to suppress the 

Glaser–Hay homo-coupling of 1a" (Figure 2-1-5). 

 

 K2CO3 (5 mol%)

100 oC, air (1 atm)

mesitylene (1 mL)

1a'' (0.1 mmol) 43aa

Cu

2a (0.3 mmol)

OHN

O

+ N
O

O

+

 

 

 

 

 

 

 

 

 

 

Figure 2-1-5. Reaction profiles for the stoichiometric reaction of copper(I) 

phenylacetylide (1a") and 2-oxazolidinone (2a) in the presence or absence of K2CO3. 

Yields were determined by GC analysis using biphenyl as an internal standard. 

 

 Furthermore, the reaction of 1a" and 2a did not proceed at all under 1 atm Ar. 

Upon introducing 1 atm of air to the reaction system, however, the reaction proceeded 

well to give 3aa in a good yield and selectivity (Figure 2-1-6). These results suggest 

that the C–N bond forming reductive elimination takes place from a higher valence 

copper species.
[23]
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Figure 2-1-6. Reaction profiles for the stoichiometric reaction of copper(I) 

phenylacetylide (1a'') and 2-oxazolidinone (2a) under different atmospheric conditions. 

Yields were determined by GC analysis using biphenyl as an internal standard. 

 

 Based on the above results and literature reports
[23]

 on copper-catalyzed aerobic 

oxidative coupling reactions (see also section 1.2.3.4), a plausible reaction mechanism 

is depicted in Scheme 2-1-5. This reaction likely proceeds through sequential 

coordination/deprotonation of an alkyne and an amide to the active copper center, 

followed by reductive elimination of C−N bond from the copper(III) species. 

Reoxidation of the resulting copper(I) species by air can regenerate the active copper 

catalyst. The high selectivity for the present catalyst system can be attributed to the 

inertness of Cu(OH)2 for the Glaser-Hay alkyne homo-coupling. The pKa value of the 

substrates might be an important factor for the effectiveness of different nitrogen 
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nucleophiles in the present cross-coupling, because the deprotonative coordination of an 

amide to the active copper center promoted by a base plays a vital role for the 

achievement of both the high yield and selectivity. 

 

 

 

 

 

 

 

 

 

 

Scheme 2-1-5. The proposed reaction mechanism for the present cross-coupling. B: = 

base. 

 

2-1.4. Conclusion 

In conclusion, the Cu(OH)2-catalyzed selective aerobic oxidative cross-coupling of 

terminal alkynes and amides to ynamides has successfully been developed. The 

substrate scope for the present procedure is quite broad with respect to both terminal 

alkynes and amides, and various kinds of structurally diverse ynamides can be 

synthesized in moderate to high yields (56−93% yields) even upon simply mixing the 

two coupling partners in a single step. The procedure is simple, efficient and practicable, 

providing an easy access to ynamides.  
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2-2 One-pot Synthesis of Imides by the Oxidative Cross-coupling to 

Ynamides Followed by Their Successive Hydration  

 

2-2.1. Introduction 

 Imides are very important key motifs in many pharmaceuticals and natural products 

and play a huge role in modern organic chemistry.
[1]

 They have generally been 

synthesized by “non-green” two-step procedures of deprotonation of amides with strong 

bases such as n-butyllithium followed by acylation with acyl halides (Scheme 2-2-1, 

a).
[1]

 However, in the classical procedure, generation of stoichiometric amounts of 

wastes such as n-butane and inorganic halides is inevitable. Hence, the development of 

more environmentally-friendly routes to these important compounds is highly desirable. 

 

R2 N
H

O

R3+n-BuLi

n-C4H10

R2 N
Li

O

R +

O

X

LiX

+
R2 N

H

O

R3 N R1

R3

O
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R1

High atom efficiency (theoretically 100%)

 

    Scheme 2-2-1. Synthesis of imides. 

In the previous section, the Cu(OH)2-catalyzed highly selective 

cross-dehydrogenative coupling of terminal alkynes and amides to ynamides has been 

described. The nitrogen atom in the ynamides strongly polarizes the triple bonds due to 

its electron-donating ability, which allows an exceptionally high level of reactivity 

together with a strong differentiation of the two sp-hybridized carbon atoms (Scheme 

(a) Classical procedure
[1]

 

(b) This work 
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2-2-2).
[2,3]

 The substitution of amide functionalities to terminal alkynes to form 

ynamides can allow the formal “umpolung” reactivities of the triple bonds compared to 

terminal alkynes. These unique reactivities of ynamides have allowed various highly 

regio- and stereo-selective transformations to be realized in the past decades 
[4−17]

.  

 

 

 

 

After the successful development of the aerobic cross-dehydrogenative coupling of 

terminal alkynes and amides, a novel one-pot synthetic procedure for imides by the 

successive regioselective hydration of ynamides was considered (Scheme 2-2-1, b). The 

hydration of alkynes can be promoted by acidic reagents, which possesses long history, 

dating back to Kucherov’s observation in 1881.
[18]

 However, the acid-mediated 

hydration generally requires a large quantity of acidic reagents (typically ≥100 mol%) 

and/or highly toxic mercury(II) salts/oxide additives.
[18]

  

Several homogeneous transition-metal salts or complexes-mediated catalytic 

hydration procedures have recently been developed.
[18,19]

 However, these systems have 

several shortcomings, such as difficulties in the recovery and reuse of the (expensive) 

catalysts and/or the requirement of large amounts of acidic reagents as co-catalysts. 

Therefore, the development of easily recoverable and recyclable heterogeneous catalysts 

for the hydration of alkynes has received a particular research interest.
[20]

 To date, a 

number of mercury-free
[21] 

hydration using heterogeneous catalysts, for example, metal 

cation-exchanged acidic resins (M-resins; M = Cu(II), Pd(II), and Ru(III)),
[22]

 

Au(I)-containing mesoporous silica (Au(I)-MS),
[23]

 and polystyrene-supported sulfonic 

R1 N

R2

EWG

N

R2

EWG

R1
Nu E N

R2

EWG

R1

E

Nu

 

 Scheme 2-2-2. The reactivity of ynamides. EWG = electron-withdrawing group.
[2,3]
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acid (PS-SO3H) have been developed (Table 2-2-1).
[24]

 These heterogeneous systems, 

however, have several drawbacks, such as low activity or narrow substrate scope. 

Therefore, the development of efficient and widely applicable heterogeneous hydration 

systems without any additives is still a challenging subject. 

 

Table 2-2-1. Previously reported hydration of alkynes by mercury-free heterogeneous 

catalysts.
[22–24]

 

R H + H2O
R

Ocatalyst

R = alkyl, aryl  

Catalyst Additives Temp [
o
C] Time [h] Yield [%] Ref. 

M-resins
[a]

 - 80 117-238 49-98 [22] 

Au(I)-MS
[b]

 H2SO4 (10 mol%) 100 7 91 [23] 

PS-SO3H
[c]

 - 100 48 81 [24] 

[a] Metal-cation-exchange-acidic resins (M = Cu
II
, Pd

II
, and Ru

III
). [b] Polystyrene-supported 

sulfonic acid. [c] Au
I
-containing mesoporous silica.  

 

In the present study, the Sn–W mixed oxide catalyst, which is known to be an 

efficient Brønsted acid catalyst for various C−C bond-forming reactions, has 

successfully been applied to the hydration of alkynes (Scheme 2-2-3).
[25]

 The catalysis 

is truly heterogeneous, and the retrieved Sn–W oxide catalyst after the hydration can be 

reused at least three times without an appreciable loss of its high catalytic performance. 

These characteristics feature the present catalyst system as the environmentally benign 

hydration. 

Finally, by the combination of the Cu(OH)2-catalyzed aerobic 

cross-dehydrogenative coupling and the Sn–W mixed oxide catalyzed hydration, the 

one-pot synthetic procedure for imides has successfully been developed (Scheme 2-2-1, 

b). This procedure generates no wastes and the atom efficiency is theoretically 100%. 
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2-2.2. Experimental Section 

2-2.2.1. General 

 GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped 

with a DB-WAX ETR or an Rtx-200 capillary column. Mass spectra were recorded on 

Shimadzu GCMS-QP2010 equipped with a TC-5HT capillary column at an ionization 

voltage of 70 eV. Liquid-state NMR spectra were recorded on JEOL JNM-EX-270. 
1
H 

and 
13

C NMR spectra were measured at 270 and 67.8 MHz, respectively. The ICP-AES 

analyses were performed with Shimadzu ICPS-8100.  

 H-MOR (JRC-Z-HM15, SiO2/Al2O3 = 14.9) and SO4
2–

/ZrO2 (JRC-SZ-1) were 

supplied from the Catalysis Society of Japan. H-Y (CBV400, SiO2/Al2O3 = 5.1) was 

supplied from Zeolist. Nafion (Nafion® NR-50) and Amberlyst-15 were purchased 

from Wako and ORGANO, respectively. Substrates and solvents were commercially 

obtained from TCI, Wako, or Aldrich (reagent grade), and purified prior to the use if 

necessary.
[26] 

 

R1 R2

O

R1 OSiMe3

R2
CN

Me3SiCN+
SnW oxide

1,2-dichloroethane, r.t.

O OH

SnW oxide

dichloromethane, 20 oC

R2

R1 R3

R4

R1

R2

R3

R4

SnW oxide

dichloromethane, 20 oC
+

Scheme 2-2-3. The Sn–W mixed oxide-catalyzed C–C bond forming reactions.
[25]
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2.2.2.2. General Procedure for the Preparation of the Sn–W Mixed Oxides 

The Sn–W mixed oxide catalysts were prepared according to the following 

procedure.
[25]

 First, the Sn–W mixed hydroxide precursors (Sn/W molar ratio of 2 as an 

example) were prepared by the following co-precipitation method. In deionized water 

(15 mL), Na2WO4∙2H2O (2.47 g, 7.5 mmol) was dissolved, followed by addition of 

SnCl4∙5H2O (5.26 g, 15 mmol) in a single step. After stirring the solution for 1 h at 

room temperature (ca. 22–23 °C), deionized water (60 mL) was added to the solution in 

a single step, and the colorless solution gradually became white slurry. After stirring the 

white slurry for 24 h at room temperature, the resulting white precipitate of the Sn–W 

hydroxide was filtered off, washed with a large amount of deionized water (ca. 2.0 L), 

and dried in vacuo to afford the Sn–W hydroxide precursor as a white powder (4.5 g). 

The contents of Sn and W were 38.3 and 33.6 wt%, respectively (the Sn/W molar ratio 

of 1.8). The elemental analysis indicated that the Sn/W molar ratio of the hydroxide was 

in good agreement with that of the starting metal solution. Five kinds of Sn–W 

hydroxides with different Sn/W molar ratios (Sn/W = 1, 1.5, 2, 5, and 10) were prepared 

by changing the molar ratios of the starting metal solutions. By the calcination of the 

corresponding hydroxide precursors at different temperatures (400–1000 °C) for 3 h 

under an air atmosphere, eight kinds of Sn–W oxide catalysts were prepared. The 

properties of Sn–W oxide catalysts are summarized in Table 2-2-2. 

 

2-2.2.3 General Procedure for the Catalytic Alkyne Hydration 

In this study, the Sn–W oxide prepared by the calcination of the hydroxide 

precursor with Sn/W molar ratio of 2 at 800 °C, denoted as SnW2-800, was mainly used 

for the hydration. The catalytic reactions were carried out as follows. Into a Pyrex-glass 
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screw cap vial (volume: ca. 20 mL) were successively placed the Sn–W oxide catalyst 

(50–100 mg), an alkyne (0.5 mmol), water (1–20 equiv with respect to an alkyne), and 

cyclooctane (2 mL). A Teflon-coated magnetic stir bar was added and the reaction 

mixture was vigorously stirred at 100–120 °C. After the reaction was completed, the 

catalyst was separated by filtration. Then, an internal standard (biphenyl) was added to 

the filtrate and analyzed by GC. As for the isolation of the products (ketones), the 

internal standard was not added and the crude filtrate was directly subjected to column 

chromatography on silica gel (Silica Gel 60N (63–210 m), Kanto Chemical, 2.5 cm ID

×20 cm length, initial: n-hexane only, after cyclooctane and an alkyne were eluted: 

n-hexane/diethyl ether = 1/1 (v/v)). The isolated products were identified by GC-MS 

and 
1
H and 

13
C NMR analyses. The retrieved catalyst was washed with a small portion 

of acetone, and dried in vacuo prior to reuse. 

 

Table 2-2-2. Properties of the Sn–W oxide catalysts.
[25]

 

Catalyst Sn/W 

ratio 

Calcination BET
[a]

 Amount of 

acidic sites
[b]

 

Ratio of Brønsted acid 

sites 

  temp. [°C] [m
2
 g

–1
] [mol g

–1
] / Lewis acid sites

[c]
 

SnW2-400 2 400 143 290 43/57 

SnW2-600 2 600 118 189 54/46 

SnW1-800 1 800 35.8 73 58/42 

SnW1.5-800 1.5 800 77.4 124 66/34 

SnW2-800 2 800 73.6 134 73/27 

SnW5-800 5 800 68.8 78 –
[d]

 

SnW10-800 10 800 49.4 55 –
[d]

 

SnW2-1000 2 1000 29.5 27 –
[d]

 

[a] From the N2 adsorption isotherm. [b] Amounts of total acidic sites were determined by 

NH3–TPD measurements. The values contain ca. 10% experimental errors. [c] The ratios were 

determined by IR spectra of pyridine adsorbed on the Sn–W oxides. [d] IR spectra of pyridine 

adsorbed on these Sn–W oxides could not be measured because of the low transmittance 

(nearly 0%). 
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2-2.2.4 General Procedure for the Synthesis of Imides 

 After the completion of the cross-coupling of a terminal alkyne with 

2-oxazolidinone (see section 2-1.2.2 for the detailed procedures), Cu(OH)2, bases, and 

the remaining 2-oxazolidinone are filtered off. Then, the filtrate was added to a 

Pyrex-glass screw cap vial (volume: ca. 20 mL) containing Sn−W oxide (50 mg) and 

water (0.3 mmol). A Teflon-coated magnetic stir bar was added and the reaction 

mixture was vigorously stirred at 100 °C. After the reaction was completed, the crude 

reaction mixture was directly subjected to column chromatography on silica gel (Silica 

Gel 60N (63–210 m), Kanto Chemical, 2.5 cm ID×15 cm length, initial: n-hexane 

only, after mesitylene, an alkyne and a diyne byproduct were eluted: n-hexane/ethyl 

acetate = 9/1 to 2/3 (v/v)), giving the pure imide. The isolated products were identified 

by GC-MS and 
1
H and 

13
C NMR. 

 

2-2.2.5. Spectral Data of Imides 

O

N
O

O

 

4aa 

3-(2-phenylacetyl)oxazolidin-2-one (4aa): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): δ 

3.98−4.04 (m, 2H), 4.28 (s, 2H), 4.36−4.42 (m, 2H), 7.23−7.38 (m, 5H). 
13

C{
1
H} NMR 

(67.8 MHz, CDCl3, TMS): δ 41.04, 42.67, 61.94, 127.15, 128.51, 129.69, 133.51, 

153.45, 171.25. MS (EI): m/z (%) : 205 (25) [M
+
], 119 (10), 118 (100), 91 (41), 90 (32), 

65 (13). 
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O

N
O

O

 

4ba 

3-(2-o-tolylacetyl)oxazolidin-2-one (4ba): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): δ 

2.28 (s, 3H), 4.01−4.07 (m, 2H), 4.28 (s, 2H), 4.39−4.45 (m, 2H), 7.13−7.21 (m, 4H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 19.57, 39.38, 42.65, 62.06, 126.03, 127.44, 

130.08, 130.30, 132.32, 137.13, 153.64, 171.01. MS (EI): m/z (%) : 219 (21) [M
+
], 133 

(10), 132 (100), 105 (31), 104 (39), 103 (13), 79 (10), 78 (10), 77 (15). 

O

N
O

O

 

4ca 

3-(2-m-tolylacetyl)oxazolidin-2-one (4ca): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): 

δ 2.34 (s, 3H), 3.98−4.04 (m, 2H), 4.25 (s, 2H), 4.36−4.42 (m, 2H), 7.07−7.26 (m, 4H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 21.34, 40.94, 42.67, 61.93, 126.71, 127.96, 

128.41, 130.41, 133.36, 138.17, 153.45, 171.39. MS (EI): m/z (%) : 219 (20) [M
+
], 133 

(10), 132 (100), 105 (23), 104 (25), 103 (10), 77 (13). 

O

N
O

O

 

4da 

3-(2-p-tolylacetyl)oxazolidin-2-one (4da): Solid. 
1
H NMR (270 MHz, CDCl3, TMS): δ 

2.33 (s, 3H), 3.98−4.04 (m, 2H), 4.24 (s, 2H), 4.35−4.41 (m, 2H), 7.11−7.26 (m, 4H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 21.06, 40.65, 42.67, 61.93, 129.23, 129.56, 
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130.40, 136.83, 153.46, 171.48. MS (EI): m/z (%) : 219 (20) [M
+
], 133 (10), 132 (100), 

105 (27), 104 (31), 103 (10), 77 (13). 

O

N
O

O

F
 

4ea 

3-(2-(4-fluorophenyl)acetyl)oxazolidin-2-one (4ea): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 4.00−4.06 (m, 2H), 4.25 (s, 2H), 4.39−4.45 (m, 2H), 6.97−7.05 (m, 

2H), 7.24−7.31 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 40.25, 42.65, 

62.01, 115.38 (d, J = 21.8 Hz), 129.12 (d, J = 3.3 Hz), 131.29 (d, J = 7.8 Hz), 153.46, 

162.08 (d, J = 245.3 Hz), 171.12. MS (EI): m/z (%) : 223 (16) [M
+
], 136 (100), 109 (49), 

108 (40), 107 (10), 83 (15). 

O

N
O

O

Cl
 

4fa 

3-(2-(4-chlorophenyl)acetyl)oxazolidin-2-one (4fa): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 3.99−4.05 (m, 2H), 4.25 (s, 2H), 4.38−4.44 (m, 2H), 7.23−7.31 (m, 

4H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 40.44, 42.64, 62.02, 128.67, 131.09, 

131.89, 133.19, 153.43, 170.83. MS (EI): m/z (%) : 239 (18) [M
+
], 154 (32), 152 (100), 

125 (30), 124 (22), 89 (25).  

O

N
O

O

Br
 

4ga 
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3-(2-(4-bromophenyl)acetyl)oxazolidin-2-one (4ga): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 4.00−4.06 (m, 2H), 4.24 (s, 2H), 4.39−4.45 (m, 2H), 7.18−7.21 (m, 

2H), 7.43−7.48 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 40.52, 42.65, 

62.02, 121.32, 131.47, 131.64, 132.41, 153.42, 170.71. MS (EI): m/z (%) : 285 (20), 283 

(21) [M
+
], 198 (99), 196 (100), 171 (26), 170 (17), 169 (27), 168 (16), 90 (41), 89 (77), 

88 (13), 63 (21). 

O

N
O

O

Cl

 

4ha 

3-(2-(3-chlorophenyl)acetyl)oxazolidin-2-one (4ha): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 4.00−4.06 (m, 2H), 4.26 (s, 2H), 4.39−4.45 (m, 2H), 7.17−7.27 (m, 

3H), 7.28−7.32 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 40.67, 42.63, 

62.02, 127.45, 128.00, 129.72, 129.80, 134.26, 135.33, 153.42, 170.57. MS (EI): m/z 

(%) : 239 (19) [M
+
], 154 (32), 152 (100), 125 (29), 124 (17), 89 (29), 88 (12). 

 

 

4ia 

3-(2-(4-(trifluoromethyl)phenyl)acetyl)oxazolidin-2-one (4ia): Solid. 
1
H NMR (270 

MHz, CDCl3, TMS): δ 4.01−4.07 (m, 2H), 4.35 (s, 2H), 4.40−4.46 (m, 2H), 7.43 (d, J = 

7.8 Hz, 2H), 7.59 (d, J = 8.1 Hz, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 40.92, 

42.63, 62.07, 122.11, 125.35, 125.41, 125.46, 125.51, 126.11, 129.30, 130.13, 137.44, 

O

N
O

O

F3C
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153.44, 170.41. MS (EI): m/z (%) : 273 (22) [M
+
], 187 (11), 186 (100), 159 (37), 158 

(37), 109 (17), 88 (29). 

O

N
O

O

MeO

 

4ja 

3-(2-(3-methoxyphenyl)acetyl)oxazolidin-2-one (4ja): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 3.80 (s, 3H), 3.99−4.06 (m, 2H), 4.26 (s, 2H), 4.37−4.43 (m, 2H), 

6.79−6.92 (m, 3H), 7.21−7.27 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

41.03, 42.67, 55.17, 61.93, 112.82, 115.25, 122.03, 129.47, 134.91, 153.42, 159.65, 

171.10. MS (EI): m/z (%) : 235 (21) [M
+
], 149 (11), 148 (100), 121 (15), 91 (17). 

O

N
O

O

 

4ka 

3-(2-(naphthalen-1-yl)acetyl)oxazolidin-2-one (4ka): Solid. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 4.03−4.09 (m, 2H), 4.42−4.48 (m, 2H), 4.74 (s, 2H), 7.26−7.56 (m, 

4H), 7.78−7.95 (m, 3H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 38.82, 42.74, 

62.11, 123.82, 125.43, 125.71, 126.30, 128.19, 128.24, 128.74, 130.14, 132.31, 133.82, 

153.75, 171.06. MS (EI): m/z (%) : 255 (21) [M
+
], 169 (13), 168 (100), 141 (33), 140 

(39), 139 (19), 115 (21). 

O

N
O

O

S  
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4la 

3-(2-(thiophen-3-yl)acetyl)oxazolidin-2-one (4la): Solid. 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 4.00−4.06 (m, 2H), 4.31 (s, 2H), 4.38−4.44 (m, 2H), 7.12 (dd, J = 5.1 and 1.4 

Hz, 1H), 7.21−7.23 (m, 1H), 7.26−7.30 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, 

TMS): δ 35.83, 42.61, 61.97, 123.61, 125.54, 128.75, 132.95, 153.42, 170.71. MS (EI): 

m/z (%) : 211 (25) [M
+
], 124 (100), 97 (39), 96 (26).  

O

N
O

O

 

4ma 

3-(2-cyclohexenylacetyl)oxazolidin-2-one (4ma): Oil. 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 1.46−1.62 (m, 4H), 1.92−1.99 (m, 4H), 3.50 (s, 2H), 3.92−3.98 (m, 2H), 

4.31−4.37 (m, 2H), 5.47−5.48 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

21.93, 22.67, 25.24, 28.65, 42.51, 43.32, 61.84, 125.76, 130.92, 153.38, 171.61. MS 

(EI): m/z (%) : 209 (13) [M
+
], 122 (100), 94 (27), 88 (16), 79 (21).

 

N
O

OO

Cl

 

4oa 

3-(6-chlorohexanoyl)oxazolidin-2-one (4oa): Oil. 
1
H NMR (270 MHz, CDCl3, TMS): 

δ 1.46−1.57 (m, 2H), 1.65−1.87 (m, 4H), 2.94 (t, J = 7.3 Hz, 2H), 3.55 (t, J = 6.8 Hz, 

2H), 3.99−4.05 (m, 2H), 4.39−4.45 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): 

δ 23.37, 26.25, 32.18, 34.80, 42.43, 44.72, 61.98, 153.48, 173.08. MS (EI): m/z (%) : 

220 (0.1) [M
+
], 184 (18), 142 (48), 135 (10), 133 (30), 129 (100), 101 (26), 88 (47), 70 

(11), 69 (78), 55 (29). 
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N
O

OO

 

4pa 

3-octanoyloxazolidin-2-one (4pa): Oil. 
1
H NMR (270 MHz, CDCl3, TMS): δ 0.88 (t, J 

= 6.8 Hz, 3H), 1.28−1.43 (m, 8H), 1.66 (quin, J = 7.4 Hz, 2H), 2.91 (t, J = 7.4 Hz, 2H), 

3.99−4.05 (m, 2H), 4.38−4.44 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

14.01, 22.54, 24.20, 28.96, 29.02, 31.61, 35.04, 42.47, 61.94, 153.51, 173.57. MS (EI): 

m/z (%) : 213 (0.4) [M
+
], 142 (69), 129 (100), 127 (24), 101 (38), 88 (61), 57 (66), 55 

(37). 

 

2-2.3. Results and Discussion 

2-2.3.1. Optimization of the Reaction Conditions 

 Initially, optimization of the reaction conditions for the hydration of a simple 

terminal alkyne using various solid acid catalysts was carried out in order to evaluate 

the activity of these catalysts for the hydration, and thus, to find the most suitable 

catalyst for the hydration of ynamides. The Sn–W mixed oxide catalyst with a Sn/W 

molar ratio of x prepared by calcination of its hydroxide precursor at T °C is denoted as 

SnWx-T (Table 2-2-2). These Sn–W mixed oxide catalysts were applied to the hydration 

of ethynylbenzene (1a) to acetophenone (2a). The results shown in Figure 2-2-1 

indicate that the catalytic activity is largely dependent on the calcination temperature 

and the Sn/W molar ratio. The reaction rate with SnWx-T increased with an increase in 

x and T, reached a maximum at x = 2 and T = 800 °C, and then decreased (Figure 2-2-4). 
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Thus, SnW2-800 was the most active catalyst for the hydration. The high catalytic 

activity of SnW2-800 for the hydration can be attributed to the strong Brønsted acid 

sites generated on the aggregated polytungstate species in the Sn–W mixed oxide.
[25]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2-1. Effects of (a) calcination temperatures (Sn–W hydroxide with Sn/W 

molar ratio of 2 calcined at T [°C], SnW2-T) and (b) Sn/W molar ratios (Sn–W 

hydroxides with Sn/W molar ratio of x calcined at 800 °C, SnWx-800) on the Hydration 

of 1a to 2a. Reaction conditions: catalyst (50 mg), 1a (0.5 mmol), water (2.5 mmol), 

cyclooctane (2 mL), 100 °C, 15 min. Yields were determined by GC using diphenyl as 

an internal standard. 

 

 Studies on the solvent effects showed that non-polar and non-aromatic solvents 

such as cyclooctane and n-octane were suitable for the hydration (≥96% selectivities) 

(Table 2-2-3, entries 1 and 2). Due to the Friedel–Crafts-type vinylation (~18%) of 
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toluene with 1a, the hydration in toluene gave 2a in 80% yield (Table 2-2-3, entry 3). 

Protic or polar solvents, such as ethanol, acetonitrile, 1,4-dioxane, and 

N,N-dimethylformamide, were not effective likely because of the strong coordination of 

these solvents to the active site(s) (Table 2-2-3, entries 4–7). The amount of water used 

up to 5 equiv had no significant effect on the reaction rate (Table 2-2-3, entries 1, 8, and 

9). However, upon the addition of a large amount of water (≥10 equiv with respect to 

1a), the hydration was completely inhibited (Table 2-2-3, entries 11 and 12). 

 

Table 2-2-3. Optimization of reaction conditions for the hydration of 1a to 2a.
[a] 

1a 2a

O
SnW2-800

+   H2O

 

Entry Water/1a Solvent Conv. of 1a [%] Yield of 2a [%] 

1 5/1 cyclooctane 98 94 

2 5/1 n-octane 49 49 

3
[b]

 5/1 toluene >99 80
[c]

 

4 5/1 ethanol <1 nd 

5 5/1 acetonitrile <1 nd 

6 5/1 1,4-dioxane 1 1 

7 5/1 N,N-dimethylformamide <1 nd 

8 1/1 cyclooctane 98 90 

9 2/1 cyclooctane 97 92 

10 7/1 cyclooctane 40 38 

11 10/1 cyclooctane <1 nd 

12 20/1 cyclooctane <1 nd 

 

 

 

 

 Among various acid catalysts examined for the hydration of 1a to 2a, SnW2-800 

showed the highest catalytic activity (Table 2-2-4, entry 1). Notably, when the amount 

[a] Reaction conditions: SnW2-800 (50 mg), 1a (0.5 mmol), water (0.5–10 mmol), cyclooctane 

(2 mL), 100 °C, 30 min. Yields were determined by GC using biphenyl as an internal standard. 

nd = not detected. [b] 20 min. [c] The Friedel–Crafts-type vinylation of toluene with 1a 

proceeded to some extent (~18%). 
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of SnW2-800 was reduced from 50 to 5 mg (0.13 mol% acidic sites and 9.8 mass% with 

respect to 1a), the reaction also proceeded efficiently. In this case, the hydration of 1a 

(0.5 mmol) carried out at 100 °C for 6 h gave 2a in 88% yield (in this case, 0.1 mmol of 

water was added to the reaction mixture every 30 min). The hydration of 1a did not 

proceed in the absence of a catalyst (Table 2-2-4, entry 15). No hydration occurred in 

the presence of SnO2, WO3, H2WO4, or a physical mixture of SnO2 and WO3 (Table 

2-2-4, entries 2–5). SnW2-800 was more active than its Sn–W hydroxide precursor 

(Table 2-2-4, entry 6). 

 

Table 2-2-4. Hydration of 1a to 2a with various catalysts.
[a] 

1a 2a

O
catalyst

+   H2O

 

Entry Catalyst Conv. of 1a [%] Yield of 2a [%] 

1 SnW2-800 80 79 

2 SnO2 <1 nd 

3 WO3 <1 nd 

4 H2WO4 1 nd 

5
[b]

 SnO2 + WO3 4 nd 

6
[c]

 Sn–W hydroxide
[c]

 22 22 

7 H-mordenite 6 6 

8 H-Y 33 12 

9 SO4
2–

/ZrO2 29 27 

10 Nafion 6 1 

11
[d]

 Amberlyst-15 <1 nd 

12
[d]

 H2SO4 1 nd 

13
[d]

 p-TsOH 2 nd 

14
[d]

 H3PW12O40 3 nd 

15 none <1 nd 

 

 

 

[a] Reaction conditions: catalyst (50 mg), 1a (0.5 mmol), water (2.5 mmol), cyclooctane (2 mL), 

100 °C, 15 min. Yields were determined by GC using biphenyl as an internal standard. nd = not 

detected. [b] A mixture of SnO2 (25 mg) and WO3 (25 mg). [c] The precursor of Sn–W oxide. [d] 

Catalyst (H
+
: 1.3 mol% with respect to 1a). The amount was the same as that of the acid sites in 

the Sn–W oxide used in entry 1. 
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 When SnW2-800 was employed as the catalyst, the turnover frequency (TOF) 

reached up to 246 h
–1

 (based on the amount of acidic sites, 1.3 mol% with respect to 1a), 

which is much higher than those of the previously reported (mercury-free) 

heterogeneous catalysts: M-resins (0.12–0.36 h
–1

),
[22]

 Au(I)-MS (4.1–6.7 h
–1

),
[23]

 and 

PS-SO3H (0.17 h
–1

) (Table 2-2-5).
[24]

 

 

Table 2-2-5. Comparison of catalytic activity. 

 

Catalyst Additives 
Temp 

[°C] 

Time 

[h] 

Yield 

[%] 

TOF 

[h
−1

] 
Ref. 

Sn−W oxide - 100 0.5 92 246 This work 

M-resins
[a]

 - 80 117-238 49-98 0.1−0.4 [22] 

Au(I)-MS
[b]

 H2SO4 (10 mol%) 100 7 91 0.2 [23] 

PS-SO3H
[c]

 - 100 48 81 4.1−6.7 [24] 

[a] Metal-cation-exchange-acidic resins (M = Cu
II
, Pd

II
, and Ru

III
). [b] Polystyrene-supported 

sulfonic acid. [c] Au
I
-containing mesoporous silica.  

 

 It is noticeable that SnW2-800 was much more active than commonly utilized 

heterogeneous acid catalysts, such as zeolites (H-mordenite and H-Y), SO4
2–

/ZrO2, 

Nafion, and Amberlyst-15 (Table 2-2-4, entries 7–11). The hydration did not proceed in 

the presence of catalytic amounts (H
+
: 1.3 mol%) of H2SO4, p-toluenesulfonic acid, and 

H3PW12O40 (Table 2-2-4, entries 12–14). The hydration has typically been carried out 

using alcohol or cyclic ether as the solvent.
[18]

 However, no hydration proceeded in 

ethanol at reflux or 1,4-dioxane at 100 °C using catalytic amounts (H
+
: 1.3 mol%) of 

H2SO4, p-toluenesulfonic acid, or H3PW12O40. The catalytic activity of SnW2-800 was 

much higher than that of pure Brønsted acid catalysts such as the heteropoly acid 

(H3PW12O40) and sulfuric acid (Table 2-2-4). The higher catalytic activity of SnW2-800 

R H + H2O
R

Ocatalyst

R = alkyl, aryl
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is possibly due to the Lewis acid sites on the catalyst to activate water molecule to form 

more nucleophilic hydroxo species. 

 

2-2.3.2. Substrate Scope 

 The substrate scope of the SnW2-800-catalyzed hydration of alkynes to ketones 

was investigated. The hydration of various structurally diverse terminal and internal 

alkynes, such as aromatic, aliphatic, and double bond-containing ones efficiently 

proceeded to give the corresponding ketones in moderate to high yields (Scheme 2-2-4). 

The hydration of terminal alkynes gave ketones (Markovnikov hydration) as the final 

product without formation of the corresponding aldehydes (anti-Markovnikov 

hydration
[27]

). Ethynylbenzene derivatives with electron-donating or 

electron-withdrawing substituents were efficiently hydrated to give the corresponding 

acetophenone derivatives in moderate to high yields (Scheme 2-2-4, 2a–2k). Aromatic 

alkynes with electron-donating substituents (‒CH3 and ‒OCH3) were hydrated faster 

than those with electron-withdrawing substituents (‒Cl and ‒CF3), indicating the 

electrophilic nature of the present hydration. Aromatic alkynes with reactive functional 

groups, such as amino and nitro groups, also reacted well (Scheme 2-2-4, 2j and 2k). 

1,4-diethynylbenzene was also a good substrate, giving exclusively 1,4-diacetylbenzene 

(2l). Internal aromatic alkynes were also efficiently hydrated (Scheme 2-2-4, 2m and 

2n), although longer reaction times were required in this case compared to terminal 

alkynes. It is noticeable that the hydration of methylphenylacetylene exclusively gave 

propiophenone (2n). The stabilization of a transitory formed vinyl cation through 

conjugation with the -electrons of the aromatic ring is likely responsible for the high 

regioselectivity. The hydration of aliphatic terminal and internal alkynes can also 
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efficiently proceed to give the corresponding ketones (Scheme 2-2-4, 2o–2t). The 

hydration of an enyne chemoselectively occurred at the alkyne functionality with the 

double bond remained intact (Scheme 2-2-4, 2r). 
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93(91)%
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2e, 0.6 h
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H3CO

2f, 0.5 h
98(95)%

Cl

2g, 2 h
87(80)%

2h, 1.5 h
97(91)%

2i, 1 h

88%[b,c]

2j, 0.3 h
94(72)%

2k, 24 h

43%[b,c]

2l, 6 h

>99(83)%[b,c]

2m, 8 h
94(79)%

2n, 2 h
93(85)%

2o, 10.5 h

88%[c,d]

2p, 2.5 h

90(84)%[c,d]

2q, 4 h

76%[c,d]

2r, 1 h

>99%[e]

2o, 17 h

41%[b,c,d]

2s, 17 h

39%[b,c,d]

2t, 12 h

82(78)%[b,c,d]

 

Scheme 2-2-4. Hydration of various alkynes with SnW2-800. Reaction conditions: 

SnW2-800 (50 mg), alkyne (0.5 mmol), water (2.5 mmol), cyclooctane (2 mL), 100 °C. Yields 

were determined by GC using biphenyl as an internal standard. Values in the parentheses are the 

isolated yields. [a] Water (1 mmol). [b] SnW2-800 (100 mg). [c] 120 °C. [d] Water (1.5 mmol). 

[e] Toluene (2 mL). 
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2-2.3.3. Sn−W Mixed Oxide-Catalyzed Rupe and Meyer–Schuster Rearrangements 

 For the hydration of propargylic alcohols with SnW2-800, the main products were 

α,β-unsaturated carbonyl compounds. Specifically, 1-ethynylcyclphexanol (1u) was 

hydrated to give the corresponding enone (2r), likely via the hydration of an enyne 

formed by the dehydration of 1u (Rupe rearrangement) (Scheme 2-2-5, a).
[28]

 Similarly, 

the hydration of 1-phenyl-2-propyn-1-ol mainly gave the corresponding α,β-unsaturated 

aldehyde (2v), likely via the formation of an allenyl cation, followed by hydration 

(Meyer–Schuster rearrangement) (Scheme 2-2-5, b).
[28]

 

 

1u (0.5 mmol)

O

2r (70% yield)

SnW2-800 (50 mg)

H2O (5 equiv)

cyclooctane (2 mL)

 100 oC, 3 h

OH

1v (0.5 mmol) 2v (72% yield)

OH

O

SnW2-800 (50 mg)

H2O (5 equiv)

cyclooctane (2 mL)

 120 oC, 1 h
 

Scheme 2-2-5. SnW2-800-catalyzed Rupe and Meyer–Schuster Rearrangements. 

 

2-2.3.4. Recyclability and Heterogeneous Catalysis of the Sn−W Mixed Oxide 

Catalyst 

 In order to verify whether the observed catalysis is intrinsically heterogeneous, 

SnW2-800 was separated by hot filtration, and the reaction was carried out with the 

filtrate under the same conditions. The hydration was completely stopped by removal of 

the catalyst (Figure 2-2-6). Furthermore, it was confirmed by the inductively coupled 

plasma atomic emission spectroscopy (ICP-AES) analysis that both Sn and W species 

(a) Rupe rearrangement 

(b) Meyer–Schuster rearrangement 
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were hardly detected in the filtrate (under detection limit: Sn: <0.0013%; W: <0.0015%). 

These results indicate that the nature of the observed catalysis is intrinsically 

heterogeneous.
[29]

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2-2. The effect of removal of the SnW2-800 catalyst. The reaction conditions 

are the same as those described in Scheme 2-2-4. 

 

 In addition, the catalyst can easily be retrieved by simple filtration, and can be 

reused at least three times without an appreciable loss of its high catalytic activity 

(Table 2-2-7). 

Table 2-2-7. Recycling of SnW2-800 for the hydration of 1a to 2a. The reaction 

conditions are the same as those described in Scheme 2-2-4. 

1a 2a

O
Sn-W oxide (50 mg)

+   H2O
cyclooctane (2 mL)

    100 oC, 0.5 h  

Run Yield of 2a [%] 

1 (fresh) 92 

2 92 

3 90 

4 88 
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2-2.3.5. Reaction Mechanism 

 The hydration of 1a in the presence of 2,6-lutidine, which is well known to 

selectively interact with Brønsted acid sites in the presence of Lewis acid sites due to 

the steric hindrance of methyl groups, was carried out to clarify the active sites of 

SnW2-800.
[30]

 The hydration of 1a was almost completely suppressed by an equimolar 

amount of 2,6-lutidine with respect to that of the Brønsted acid sites, indicating that the 

hydration is mainly promoted by the Brønsted acid sites in the SnW2-800 catalyst 

(Figure 2-2-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2-3. The dependence of the reaction rate on the amount of 2,6-lutidine added 

to the SnW2-800-catalyzed hydration of 1a. The red bar in the x axis indicates the 

amount of Brønsted acid sites in the SnW2-800 catalyst (indicated with an experimental 

error). Reaction conditions: SnW2-800 (15 mg), 1a (0.5 mmol), water (0.5 mmol), 

2,6-lutidine, cyclooctane (2 mL), 100 °C. 

 

 The SnW2-800-catalyzed competitive hydration reactions of p- and m-substituted 

ethynylbenzene derivatives show that the reactivity order is as follows: p-OCH3 (kX/kH 

= 85.7) > p-CH3 (5.9) > m-CH3 (1.4) > p-H (1.0) > p-Cl (0.44) > m-Cl (0.11) > p-CF3 
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(0.067). In addition, a linear relationship between log(kX/kH) and Brown–Okamoto + 
is 

observed, and the slope (Hammett +
 value) is –2.31 (Figure 2-2-4).

[31]
 The large 

negative value of + 
indicates an electrophilic nature of the present hydration, in which 

the hydration likely proceeds through a positively charged transition state, for example, 

a vinyl cation.
[32]

 

 

 

 

 

 

 

 

 

 

 

Figure 2-2-4. Hammett plot for the competitive hydration of p- and m-substituted 

ethynylbenzene derivatives (X = p-OCH3, p-CH3, m-CH3, p-H, p-Cl, m-Cl, and p-CF3); 

log(kX/kH) vs. Brown–Okamoto +
 plot. Reaction conditions: SnW2-800 (100 mg), 

ethynylbenzene (0.5 mmol), substituted ethynylbenzene (0.5 mmol), water (1 mmol), 

cyclooctane (2 mL), 100 °C. Slope (Hammett + value) = –2.31 (R
2
 =0.99). 

 

 The reaction of 1a with p-xylene in the presence of SnW2-800 gave a 

Friedel–Crafts-type vinylation product, 1,4-dimethyl-2-(1-phenylethenyl)benzene, 

under dehydrated conditions, which also indicates the formation of the vinyl cation 

intermediate (Scheme 2-2-6).
[33]
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1a (0.25 mmol)

+

29% yield(3 mL)

SnW2-800 (500 mg)

120 oC, 1 h

 

Scheme 2-2-6. The Friedel–Crafts-type vinylation of 1a with p-xylene in the presence 

of SnW2-800. 

 

 The above experimental results strongly support that the present 

SnW2-800-catalyzed hydration proceeds through (1) protonation of an alkyne to a vinyl 

cation (Scheme 2-2-7, step 1), (2) nucleophilic attack of water to the transitory formed 

vinyl cation to generate a vinylic alcohol (Scheme 2-2-7, step 2), and (3) 

tautomerization of the vinylic alcohol to give the corresponding ketone as the final 

product (Scheme 2-2-7, step 3). 
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Scheme 2-2-7. A plausible reaction mechanism for the present hydration. 

 

2-2.3.6. New Green Synthetic Procedure for Imides 

 The one-pot synthesis of imides from terminal alkynes and amides was carried out. 

Initially, the SnW2-800-catalyzed hydration of 3-(phenylethynyl)oxazolidin-2-one 

(3aa) was carried out. In this case, the regioselectivity for the hydration of 3aa was 

completely opposite to that for a terminal alkyne 1a, and the hydration of 3aa 
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regioselectively gave 3-(2-phenylacetyl)oxazolidin-2-one (4aa) in >99% yield (Scheme 

2-2-8). 

 

 

 

 

 

 

 

Scheme 2-2-8. The SnW2-800-catalyzed hydration of 1a and 3aa. Yields were 

determined by gas chromatography using biphenyl as an internal standard. Reaction 

conditions for 3aa: 3aa (0.1 mmol), SnW2-800 (50 mg), H2O (0.3 mmol), mesitylene (1 

ml), 100 °C, under air (1 atm). Reaction conditions for 1a: 1a (0.5 mmol), Sn−W mixed 

oxide (50 mg), H2O (1.0 mmol), cyclooctane (2 mL), 100 °C, under air (1 atm). 

 

 Next, the one-pot synthesis of imides was carried out through the 

Cu(OH)2-catalyzed cross-coupling of terminal alkynes and amides to ynamides 

followed by the SnW2-800-catalyzed regioselective hydration (Scheme 2-2-9). 

Intrinsically no waste is generated from this new synthetic route, and the procedure is 

very simple. After the cross-coupling, Cu(OH)2, bases, and the remaining amides were 

filtered off, then the filtrate was added to the same reactor charged with SnW2-800 and 

water. Therefore, an additional isolation procedure of ynamides after the cross-coupling 

is not required for the present system. Various structurally diverse imides can 

successfully be synthesized by this new green synthetic procedure (Scheme 2-2-9). 
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Scheme 2-2-9. The sequential synthesis of imides. The isolated yields (based on 1) are 

reported. Reaction conditions for the cross-coupling step, see Scheme 2-1-4, and for the 

hydration step, Sn−W oxide (50 mg), H2O (0.3 mmol), 100 °C, 1 h. [a] 3 h. [b] 5 h. [c] 

24 h. [d] 2 h. 
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2-2.4. Conclusion 

The Sn–W mixed oxides, especially SnW2-800, can act as an efficient 

heterogeneous catalyst for the hydration of various structurally diverse alkynes, 

including aromatic, aliphatic, and double bond-containing ones. As for the hydration of 

propargylic alcohols, Rupe or Meyer–Schuster rearrangements proceeded to give the 

corresponding α,β-unsaturated carbonyl compounds. The catalytic activity of SnW2-800 

was much higher than those of previously reported heterogeneous catalysts including 

M-resins, Au(I)-MS, PS-SO3H, and commonly utilized acid catalysts. The catalysis was 

truly heterogeneous, and SnW2-800 could be reused several times without a significant 

loss of its high catalytic performance. 

 In addition, a new green synthetic procedure for imides has successfully been 

developed. Various structurally diverse imides were synthesized in high yields through 

the cross-coupling of terminal alkynes and amides followed by the hydration of 

ynamides. This new procedure is environmentally benign, and atom efficiency is 

theoretically 100%. The procedure is also very simple because the isolation of ynamide 

intermediates is not required. 
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3.1. Introduction 

 In continuation of chapter 2 on the copper-catalyzed cross-coupling of terminal 

alkynes and amides, a novel synthetic procedure for N-acylphosphoramidates via the 

aerobic cross-dehydrogenative coupling of H-phosphonates and amides was 

successfully developed by applying the copper-catalyzed aerobic cross-dehydrogenative 

coupling strategy. 

 

 

 

 

 

 

 

 

 

 

Figure 3-1. Several biologically active compounds containing N-acylphosphoramidate 

units.
[1–4]

 

 

 N-Acylphosphoramidates are very important compounds that have been found in a 

large variety of natural products and pharmaceuticals such as Agrocin 84,
[1]

 

Microcin C7,
[2]

 Phosmidosin,
[3]

 and Fosaprepitant,
[4]

 which are known to have 

antifungal, antitumor, and antiemetic activities (Figure 3-1). The synthesis of 

N-acylphosphoramidates often employs multi-step non-green procedures. For example, 

one of the most generally utilized procedures is nucleophilic substitution of 
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chlorophosphonates with amides in the presence of strong bases, such as n-BuLi 

(Scheme 3-1, A).
[5]

 Nucleophilic substitution of acyl chlorides or mixed anhydrides with 

phosphoramides is also developed for the synthesis of N-acylphosphoramidates. 

(Scheme 3-1, B).
[6]

 Che and co-workers have reported phosphoramidation of 

aldehydes with phosphoryl azides by a ruthenium(IV) porphyrine complex (Scheme 

3-1, C).
[7]

 However, all of these procedures utilize chlorophosphonates as starting 

materials, which are generally prepared by chlorination of H-phosphonates or 

phosphates using hazardous reagents, such as Cl2, COCl2, or SO2Cl2.
[8]

 Subsequently, 

the procedures developed to date possess several drawbacks, which include tedious 

multi-step procedures, handling of toxic reagents, production of a large amount of waste 

during both phosphorylation and chlorination steps. Therefore, the development of 

novel green synthetic procedures for N-acylphosphoramidates directly from 

H-phosphonates is highly desirable, because they are more readily available and 

easy-to-handle compared to chlorophosphonates, and more importantly,  

pre-functionalization of H-phosphonates is not required, which results in the great 

improvement of the overall synthetic efficiency of N-acylphosphoramidates. 

 The starting point of the research described in this chapter is that the C(sp)–H, N–H, 

and P(O)–H bonds in alkynes, amides and H-phosphonates, respectively, are all 

activated and readily dissociated by the assistance of transition metals and bases.
[9–11]

 To 

date, there is remarkable progress in the development of P–C
[9]

 and P–X
[10]

 bond 

forming reactions via direct activation of the P–H bond. Because of the effectiveness of 

copper catalysts for the cross-coupling of two activated nucleophiles to construct C–C 

and C–X bonds (including P–C and N–C bonds),
[11]

 as described in chapter 1, copper 

catalysts were considered to be able to promote the aerobic cross-dehydrogenative 
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coupling of H-phosphonates and amides. 

 In this study, Cu(OAc)2 (OAc = acetate) was turned out to be a suitable catalyst for 

the synthesis of N-acylphosphoramidates directly from H-phosphonates and amides. 

The present catalyst system employs air as the terminal oxidant and produces water as a 

sole byproduct, providing a quite simple, efficient, and green synthetic route to highly 

important N-acylphosphoramidates (Scheme 3-1, b). The present work is the first 

example of the metal-catalyzed aerobic cross-dehydrogenative coupling of phosphorus 

and nitrogen nucleophiles to form P–N bonds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3-1. Synthesis of N-acylphosphoramidates. 

(a) Typical procedures
[5–8]
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3.2. Experimental Section 

3.2.1. General 

 GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped 

with an Rtx-200 capillary column. Mass spectra were recorded on Shimadzu 

GCMS-QP2010 equipped with a TC-5HT capillary column at an ionization voltage of 

70 eV. Liquid-state NMR spectra were recorded on JEOL JNM-EX-270. 
1
H and 

13
C NMR spectra were measured at 270 and 67.8 MHz, respectively, using 

tetramethylsilane (TMS) as an internal reference. 
31

P NMR spectra were measured at 

109.3 MHz, using 85% H3PO4 in D2O as an external reference. Copper salts, bases, 

substrates, and solvents were commercially obtained from TCI, Wako, or Across 

(reagent grade), and purified prior to use, if necessary.
[12]

 Molecular sieves 4A (MS 4A) 

was pretreated at 350 °C in vacuo prior to use. 

 

3.2.2. General Procedure for the Cross-Coupling of H-Phosphonates and 

Amides 

 The cross-coupling was carried out via the following procedure. Into a Pyrex glass 

test tube (volume: ca. 20 mL) were successively placed Cu(OAc)2 (10 mol % with 

respect to a H-phosphonate 1), a base (1–4 equiv. with respect to 1), an amide (2, 

3 equiv with respect to 1), MS 4 A (100 mg), toluene (1 mL), and a Teflon-coated 

magnetic stir bar. After stirring the reaction mixture for 5 min, a toluene solution of 1 

(0.2 M, 1 mL) was added to the reaction mixture over 30 min by a syringe pump at 

80 °C, and the reaction mixture was stirred for further 10–60 min at 80 °C under an 

open air condition. After the reaction was completed, an internal standard (naphthalene) 

was added to the reaction mixture, and the conversion of 1 and the yield of the product 
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were determined by GC analysis. As for the isolation of N-acylphosphoramidates, the 

internal standard was not added. After the reaction, the base and MS 4 A were filtered 

off, and then the filtrate was concentrated by evaporation of toluene. The crude product 

was subjected to column chromatography on silica gel (Silica Gel 60N (63–210 m), 

Kanto Chemical, 2.5 cm ID×15 cm length, typically chloroform/acetone = 5:1 (v/v); 

diethylether/n-hexane = 2:1 (v/v) for 3ab, 3am, and 3ao; chloroform/acetone = 10:1 

(v/v) for 3an and 3ap), giving the pure N-acylphosphoramidates. The products were 

identified by GC-MS and NMR (
1
H, 

13
C, and 

31
P) analyses. 

 

3.2.3. Spectral Data of N-Acylphosphoramidates 

P

O

O

O N
O

O

 

3aa  

diisopropyl(2-oxooxazolidin-3-yl)phosphonate (3aa): Colorless oil. 
1
H NMR (270 

MHz, CDCl3, TMS): δ 1.36−1.41 (m, 12H), 3.95 (t, J = 8.0 Hz, 2H), 4.41 (t, J = 8.0 Hz, 

2H), 4.69−4.87 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 23.48 (d, J = 5.0 

Hz), 23.62 (d, J = 5.0 Hz), 45.04 (d, J = 4.5 Hz), 63.45 (d, J = 8.9 Hz), 73.76 (d, J = 6.1 

Hz), 155.45 (d, J = 8.9 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −5.55 (t, J = 7.2 Hz). MS 

(EI): m/z (%) : 251 (0.1) [M
+
], 209 (13), 194 (42), 168 (100), 151 (34), 150 (29), 123 

(28), 106 (10), 88 (52).  

P

O

O

O N
O

O

 

3ab 
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diisopropyl(2-oxobenzo[d]oxazol-3(2H)-yl)phosphonate (3ab): Colorless oil. 
1
H 

NMR (270 MHz, CDCl3, TMS): δ 1.35 (d, J = 6.2 Hz, 6H), 1.44 (d, J = 6.2 Hz, 6H), 

4.79−4.96 (m, 2H), 7.15−7.28 (m, 3H), 7.73−7.79 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, 

CDCl3, TMS): δ 23.42 (d, J = 5.0 Hz), 23.64 (d, J = 5.6 Hz), 75.10 (d, J = 6.1 Hz), 

109.81, 113.98 (d, J = 1.2 Hz), 123.98, 124.34, 129.82 (d, J = 6.7 Hz). 143.31 (d, J = 

11.1 Hz), 152.4 (d, J = 7.3 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −9.72 (t, J = 7.0 Hz). 

MS (EI): m/z (%) : 299 (24) [M
+
], 257 (12), 242 (16), 216 (11), 215 (85), 171 (24), 136 

(12), 135 (100), 106 (10). 

P

O

O

O N
O

O

Cl

 

3ac  

diisopropyl(5-chloromethyl)-2-oxooxazolidin-3-yl)phosphonate (3ac): 
1
H NMR (270 

MHz, CDCl3, TMS): δ 1.36−1.41 (m, 12H), 3.67−4.08 (m, 4H), 4.70−4.90 (m, 3H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 23.41, 23.49, 23.56, 23.62, 23.64, 23.69, 

44.67, 47.61 (d, J = 4.5 Hz), 73.95 (q, J = 6.1 Hz), 154.23 (d, J = 8.3 Hz). 
31

P NMR 

(109.3 MHz, CDCl3): δ −6.21 (t, J = 7.3 Hz). MS (EI): m/z (%) : 299 (0.1) [M
+
], 257 

(12), 244 (14), 242 (42), 218 (33), 216 (100), 201 (12), 199 (37), 198 (11), 178 (15), 

166 (13), 162 (11), 136 (49), 123 (11), 99 (36), 86 (17), 75 (10), 56 (15). 

P

O

O

O N

O

 

3ad  

diisopropyl(2-oxoazetidin-1-yl)phosphonate (3ad): Colorless oil. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 1.37 (d, J = 3.0 Hz, 6H), 1.38 (d, J = 2.7 Hz, 6H), 3.10−3.15 (m, 2H), 
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3.53−3.56 (m, 2H), 4.66−4.82 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

23.56 (d, J = 5.0 Hz), 23.72 (d, J = 5.0 Hz), 38.10 (d, J = 9.5 Hz), 38.50, 73.09 (d, J = 

6.2 Hz), 166.82 (d, J = 4.5 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −10.952− −10.739 

(m). MS (EI): m/z (%) : 235 (0.1) [M
+
], 178 (12), 152 (16), 151 (36), 136 (10), 124 

(100). 

P

O

O

O N

O

 

3ae  

diisopropyl(2-oxopyrrolidin-1-yl)phosphonate (3ae): Colorless oil. 
1
H NMR (270 

MHz, CDCl3, TMS): δ 1.34 (d, J = 6.2 Hz, 6H), 1.37 (d, J = 5.9 Hz, 6H), 2.04−2.14 (m, 

2H), 2.46 (t, J = 8.0 Hz, 2H), 3.74 (t, J = 7.0 Hz, 2H), 4.68−4.84 (m, 2H). 
13

C{
1
H} 

NMR (67.8 MHz, CDCl3, TMS): δ 20.14 (d, J = 8.4 Hz), 23.47 (d, J = 5.0 Hz), 23.67 (d, 

J = 5.0 Hz), 32.55 (d, J = 9.5 Hz), 47.84 (d, J = 4.5 Hz), 72.90 (d, J = 6.2 Hz), 177.66 (d, 

J = 1.6 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −4.20 (t, J = 7.3 Hz). MS (EI): m/z (%) : 

249 (0.7) [M
+
], 208 (13), 207 (15), 192 (27), 166 (100), 165 (55), 149 (82), 148 (45), 

124 (24), 110 (13), 86 (43), 85 (26), 84 (53), 56 (27).  

P

O

O

O N

O

 

3af 

diisopropyl(2-oxopiperidin-1-yl)phosphonate (3af): 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 1.32 (d, J = 6.5 Hz, 6H), 1.36 (d, J = 6.2 Hz, 6H), 1.80−1.83 (m, 4H), 

2.43−2.48 (m, 2H), 3.64−3.70 (m, 2H), 4.69−4.86 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, 

CDCl3, TMS): δ 20.17, 22.86 (d, J = 5.6 Hz), 23.40 (d, J = 5.0 Hz), 23.67 (d, J = 5.6 
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Hz), 33.33 (d, J = 6.2 Hz), 46.52 (d, J = 2.2 Hz), 72.80 (d, J = 6.2 Hz), 173.57 (d, J = 

1.7 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −0.615 (brs). MS (EI): m/z (%) : 263 (7) [M
+
], 

221 (15), 180 (49), 179 (100), 178 (11), 163 (40), 162 (59), 124 (26), 123 (20), 110 (27), 

99 (59), 98 (39), 82 (59), 81 (36), 55 (35).  

P

O

O

O N

O

 

3ag 

diisopropyl(2-oxoazepan-1-yl)phosphonate (3ag): 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 1.31 (d, J = 6.2 Hz, 6H), 1.36 (d, J = 6.5 Hz, 6H), 1.743 (brs, 6H), 2.60−2.62 

(br, 2H), 3.76−3.79 (br, 2H), 4.64−4.81 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, 

TMS): δ 23.31, 23.51 (d, J = 5.0 Hz), 23.68 (d, J = 5.0 Hz), 29.39, 29.85 (d, J = 1.7 Hz), 

38.73 (d, J = 7.8 Hz), 46.67 (d, J = 2.8 Hz), 72.61 (d, J = 6.2 Hz), 178.38. 
31

P NMR 

(109.3 MHz, CDCl3): δ 0.281 (quint, J = 9.3 Hz). MS (EI): m/z (%) : 277 (11) [M
+
], 236 

(11), 235 (11), 194 (22), 193 (45), 177 (13), 176 (38), 152 (24), 137 (11), 136 (15), 124 

(53), 123 (12), 110 (91), 99 (15), 96 (100), 95 (53), 84 (17), 69 (10), 67 (11), 56 (13), 55 

(37).  

P

O

O

O N

O

 

3ah 

diisopropyl(3-oxo-2-azaspiro[4,5]decan-2-yl)phosphonate (3ah): Colorless oil. 
1
H 

NMR (270 MHz, CDCl3, TMS): δ 1.34 (d, J = 6.2 Hz, 6H), 1.37 (d, J = 6.2 Hz, 6H), 

1.45−1.51 (br, 10H), 2.32 (s, 2H), 3.49 (s, 2H), 4.66−4.82 (m, 2H). 
13

C{
1
H} NMR (67.8 

MHz, CDCl3, TMS): δ 22.61, 23.54 (d, J = 5.0 Hz), 23.68 (d, J = 5.0 Hz), 25.49, 35.93, 
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37.77 (d, J = 6.7 Hz), 45.08 (d, J = 8.9 Hz), 58.48 (d, J = 2.2 Hz), 72.84 (d, J = 6.1 Hz), 

176.82 (d, J = 1.1 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −4.42 (t, J = 7.3 Hz). MS (EI): 

m/z (%) : 317 (4) [M
+
], 276 (16), 275 (12), 260 (19), 235 (11), 234 (100), 233 (65), 232 

(15), 217 (75), 216 (21), 177 (18), 154 (14), 153 (28), 152 (50), 135 (13), 124 (16), 110 

(70), 95 (21), 94 (13), 81 (17), 67 (20), 55 (11). 

P

O

O

O N

O

 

3ai 

diisopropyl(2-methyl-5-oxopyrrolidin-1-yl)phosphonate (3ai): Colorless oil. 
1
H 

NMR (270 MHz, CDCl3, TMS): δ 1.31−1.41 (m, 15H), 1.70−1.78 (m, 1H), 2.23−2.66 

(m, 3H), 4.21−4.26 (m, 1H), 4.69−4.83 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, 

TMS): δ 21.75, 23.39, 23.46, 23.53, 23.60, 23.69, 23.77, 27.62 (d, J = 8.9 Hz), 30.96 (d, 

J = 9.5 Hz), 55.87 (d, J = 4.5 Hz), 72.70 (t, J = 6.1 Hz), 177.50 (d, J = 2.2 Hz). 
31

P 

NMR (109.3 MHz, CDCl3): δ −4.30 (t, J = 7.5 Hz). MS (EI): m/z (%): 263 (2) [M
+
], 248 

(12), 222 (12), 206 (40), 180 (49), 179 (35), 164 (100), 163 (31), 162 (29), 124 (53), 

100 (11), 99 (15), 98 (41), 84 (50), 82 (13), 81 (10), 56 (10), 55 (25). 

P

O

O

O N

O

 

3aj 

diisopropyl(3-oxo-2-azabicyclo[2.2.1]hept-5-en-2-yl)phosphonate (3aj): Colorless 

oil. 
1
H NMR (270 MHz, CDCl3, TMS): δ 1.24 (d, J = 6.2 Hz, 3H), 1.30−1.38 (m, 9H), 

2.18−2.23 (m, 1H), 2.40−2.43 (m, 1H), 3.39 (s, 1H), 4.46−4.59 (m, 1H), 4.63−4.78 (m, 

1H), 4.93 (s, 1H), 6.67−6.70 (m, 1H), 6.93−6.96 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, 
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CDCl3, TMS): δ 23.33, 23.41, 23.49, 23.63, 23.67, 23.69, 23.73, 54.56 (d, J = 7.8 Hz), 

58.02 (d, J = 5.6 Hz), 64.96 (d, J = 3.3 Hz), 72.35, 72.44, 72.67, 72.76, 137.69, 140.82, 

179.91 (d, J = 1.1 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −4.23 (t, J = 7.2 Hz). MS (EI): 

150 (35), 124 (100), 66 (35), 65 (13). 

P

O

O

O N
N

O
Me

 

3ak 

diisopropyl(3-methyl-2-oxoimidazolidin-1-yl)phosphonate (3ak): 
1
H NMR (270 

MHz, CDCl3, TMS): δ 1.33−1.38 (m, 12H), 2.82 (s, 3H), 3.42 (t, J = 8.0 Hz, 2H), 3.74 

(t, J = 8.0 Hz, 2H), 4.66−4.85 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 

23.53 (d, J = 5.0 Hz), 23.67 (d, J = 5.0 Hz), 30.59, 41.58 (d, J = 3.4 Hz), 45.44 (d, J = 

7.8 Hz), 72.60 (d, J = 6.1 Hz), 157.35 (d, J = 7.9 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ 

−3.17 (t, J = 7.3 Hz). MS (EI): m/z (%) : 264 (7) [M
+
], 222 (10), 207 (13), 181 (37), 180 

(53), 179 (21), 164 (20), 163 (53), 124 (22), 101 (38), 100 (94), 99 (100), 58 (10), 57 

(98), 56 (14). 

P

O

O

O N
N

O O

 

3al 

diisopropyl(3-acetyl-2-oxoimidazolidin-1-yl)phosphonate (3al): 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 1.36−1.41 (m, 12H), 2.51 (s, 3H), 3.72−3.81 (m, 2H), 3.83−3.91 (m, 

2H), 4.72−4.88 (m, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 23.56 (d, J = 5.0 

Hz), 23.67 (d, J = 4.5 Hz), 40.65, 40.77 (d, J = 2.8 Hz), 40.84, 73.55 (d, J = 6.1 Hz), 

153.46 (d, J = 8.9 Hz), 170.79. 
31

P NMR (109.3 MHz, CDCl3): δ −4.77 (t, J = 7.3 Hz). 
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MS (EI): m/z (%) : 292 (2) [M
+
], 251 (14), 250 (32), 235 (18), 209 (41), 208 (78), 193 

(17), 192 (23), 191 (13), 180 (19), 167 (57), 166 (100), 165 (16), 149 (38), 129 (11), 

128 (11), 124 (10), 123 (32), 110 (91), 87 (15), 85 (30), 68 (10).  

P

O

O

O N

 

3am 

diisopropyl-1H-indol-1-ylphosphonate (3am): Yellow oil. 
1
H NMR (270 MHz, 

CDCl3, TMS): δ 1.10 (d, J = 6.2 Hz, 6H), 1.41 (d, J = 6.2 Hz, 6H), 4.58−4.70 (m, 2H), 

6.62−6.64 (m, 1H), 7.18−7.30 (m, 2H), 7.46−7.48 (m, 1H), 7.59−7.62 (m, 1H), 

7.74−7.77 (m, 1H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 23.25 (d, J = 5.0 Hz), 

23.82 (d, J = 5.0 Hz), 73.12 (d, J = 5.0 Hz), 106.91 (d, J = 8.3 Hz), 113.88, 120.86 (d, J 

= 1.1 Hz), 121.89, 123.19, 128.82 (d, J = 7.3 Hz), 130.98 (d, J = 10.0 Hz), 136.95 (d, J 

= 5.0 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −4.69. MS (EI): m/z (%) : 281 (16) [M
+
], 

198 (10), 197 (100), 179 (21), 117 (17), 116 (19), 89 (11). 

P

O

O

O N

COOMe

 

3an 

methyl-1-(diisopropoxyphosphoryl)-1H-indole-3-carboxylate (3an): 
1
H NMR (270 

MHz, CDCl3, TMS): δ 1.11 (d, J = 6.2 Hz, 6H), 1.43 (d, J = 5.9 Hz, 6H), 3.93 (s, 3H), 

4.61−4.77 (m, 2H), 7.27−7.37 (m, 2H), 7.71−7.78 (m, 1H), 8.15−8.22 (m, 2H). 
13

C{
1
H} 

NMR (67.8 MHz, CDCl3, TMS): δ 23.22 (d, J = 5.0 Hz), 23.76 (d, J = 5.0 Hz), 51.28, 

74.01 (d, J = 5.6 Hz), 112.33 (d, J = 8.3 Hz), 113.97, 121.70 (d, J = 1.2 Hz), 123.40, 

124.21, 128.14 (d, J = 8.9 Hz), 135.60 (d, J = 7.3 Hz), 137.12 (d, J = 4.5 Hz), 164.67 (d, 
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J = 1.2 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −5.93 (d, J = 6.9 Hz). MS (EI): m/z (%) : 

339 (17) [M
+
], 256 (12), 255 (100), 224 (46), 206 (12), 144 (10). 

P

O

O

O N

Me

 

3ao 

diisopropyl(3-methyl-1H-indol-1-yl)phosphonate (3ao): 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 1.10 (d, J = 6.2 Hz, 6H), 1.40 (d, J = 6.2 Hz, 6H), 2.29 (d, J = 1.1 Hz, 3H), 

4.56−4.68 (m, 2H), 7.20−7.30 (m, 3H), 7.51−7.54 (m, 1H), 7.71−7.74 (m, 1H). 
13

C{
1
H} 

NMR (67.8 MHz, CDCl3, TMS): δ 9.57, 23.32 (d, J = 5.0 Hz), 23.83 (d, J = 5.0 Hz), 

72.87 (d, J = 5.0 Hz), 113.87, 115.93 (d, J = 8.9 Hz), 118.93 (d, J = 1.2 Hz), 121.44, 

123.16, 125.58 (d, J = 7.3 Hz), 131.77 (d, J = 10.0 Hz), 137.33. 
31

P NMR (109.3 MHz, 

CDCl3): δ −4.44 (d, J = 7.0 Hz). MS (EI): m/z (%) : 295 (16) [M
+
], 212 (11), 211 (100), 

193 (12), 130 (38).  

S
N

O O

PO

O

O

 

3ap 

diisopropylmethyl(tosyl)phosphoramidate (3ap): 
1
H NMR (270 MHz, CDCl3, TMS): 

δ 1.32 (d, J = 6.2 Hz, 6H), 1.40 (d, J = 6.2 Hz, 6H), 2.43 (s, 3H), 3.03 (d, J = 8.1 Hz, 

3H), 4.63−4.79 (m, 2H), 7.27−7.33 (m, 2H), 7.85−7.90 (m, 2H). 
13

C{
1
H} NMR (67.8 

MHz, CDCl3, TMS): δ 21.53, 23.46 (d, J = 5.0 Hz), 23.61 (d, J = 5.0 Hz), 34.51 (d, J = 

2.2 Hz), 73.39 (d, J = 6.1 Hz), 127.97, 129.34, 136.06, 144.07. 
31

P NMR (109.3 MHz, 

CDCl3): δ −2.81 (sext, J = 7.6 Hz). MS (EI): m/z (%) : 285 (10), 248 (14), 243 (19), 201 

(100), 202 (14), 155 (12), 120 (14), 119 (21), 110 (11), 108 (28), 91 (36), 65 (11). 
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P

O

O

O N
O

O

 

3ba 

dimethyl(2-oxooxazolidin-3-yl)phosphonate (3ba): 
1
H NMR (270 MHz, CDCl3, 

TMS): δ 3.90 (d, J = 11.3 Hz, 6H), 3.97 (t, J = 8.0 Hz, 2H), 4.45 (t, J = 8.0 Hz, 2H). 

13
C{

1
H} NMR (67.8 MHz, CDCl3, TMS): δ 44.78 (d, J = 4.5 Hz), 54.68 (d, J = 6.2 Hz), 

63.74 (d, J = 8.9 Hz), 155.50 (d, J = 9.4 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −0.30 

(sep, J = 11.7 Hz). MS (EI): m/z (%) : 195 (0.7) [M
+
], 151 (39), 136 (32), 110 (95), 109 

(100), 80 (17), 79 (47), 56 (17). 

P

O

O

O N
O

O

 

3ca 

diethyl(2-oxooxazolidin-3-yl)phosphonate (3ca): 
1
H NMR (270 MHz, CDCl3, TMS): 

δ 1.36−1.42 (m, 6H), 3.96 (t, J = 8.0 Hz, 2H), 4.15−4.35 (m, 4H), 4.43 (t, J = 8.0 Hz, 

2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, TMS): δ 15.95 (d, J = 6.7 Hz), 44.90 (d, J = 4.5 

Hz), 63.58 (d, J = 8.5 Hz), 64.61 (d, J = 6.1 Hz), 155.47 (d, J = 8.9 Hz). 
31

P NMR 

(109.3 MHz, CDCl3): δ −3.24 (quint, J = 8.0 Hz). MS (EI): m/z (%) : 196 (58), 180 (12), 

179 (47), 168 (70), 164 (19), 152 (12), 151 (67), 150 (55), 138 (50), 136 (25), 124 (26), 

123 (52), 111 (17), 110 (25), 109 (43), 107 (14), 106 (30), 93 (13), 91 (22), 88 (100), 87 

(36), 86 (19), 82 (44), 81 (67), 80 (13), 79 (18), 70 (17), 65 (23), 56 (14). 

 

P

O

O

O N
O

O

 

3da 
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dibutyl(2-oxooxazolidin-3-yl)phosphonate (3da): 
1
H NMR (270 MHz, CDCl3, TMS): 

δ 0.94 (t, J = 7.4 Hz, 6H), 1.36−1.50 (m, 4H), 1.65−1.76 (m, 4H), 3.95 (t, J = 8.0 Hz, 

2H), 4.09−4.26 (m, 4H), 4.43 (t, J = 8.0 Hz, 2H). 
13

C{
1
H} NMR (67.8 MHz, CDCl3, 

TMS): δ 13.44, 18.50, 32.08 (d, J = 7.3 Hz), 44.98 (d, J = 4.5 Hz), 63.57 (d, J = 8.9 Hz), 

68.26 (d, J = 6.6 Hz), 155.45 (d, J = 8.9 Hz). 
31

P NMR (109.3 MHz, CDCl3): δ −3.03 

(quint, J = 7.4 Hz). MS (EI): m/z (%) : 224 (13), 194 (12), 168 (100), 150 (10), 88 (30). 

 

3.3. Results and Discussion 

3.3.1. Optimization of the Reaction Conditions 

 The optimization of the reaction conditions by using Cu(OAc)2 (10 mol %) as the 

catalyst for the cross-coupling of diisopropylphosphonate (1a) and 2-oxazolidinone (2a) 

to diisopropyl(2-oxooxazolidin-3-yl)phosphonate (3aa) was carried out. The 

cross-coupling of 1a and 2a (1:2, mixed in a single step) in the presence of Cu(OAc)2 

and triethylamine (Et3N) in 1 atm of air gave 3aa in 17% yield (Table 3-1, entry 1). In 

this case, a low yield of 3aa was obtained due to the decomposition of 1a to 

unidentified byproducts. Upon the addition of molecular sieves 4 A (MS 4 A) to the 

reaction mixture, the yield of 3aa increased up to 51% together with a trace amount of a 

pyrophosphate (4aa) formed by the oxygenative dimerization of 1a (Table 3-1, entry 2). 

By the slow addition of 1a to the reaction mixture containing Cu(OAc)2, Et3N, and 

MS 4 A under open air conditions, the yield of 3aa improved up to 81% (Table 3-1, 

entry 3). The steady increase of the yield of 3aa could be attributed to the successful 

suppression of the hydrolytic decomposition of 1a by the use of MS 4 A and the slow 

addition of 1a. Further increase of the yield of 3aa up to 90% was achieved by changing 

the molar ratio of 1a to 2a from 1:2 to 1:3, (Table 3-1, entry 4). The amount of 
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Cu(OAc)2 could be reduced to 5 mol % with only a slight decrease in the yield of 3aa 

(Table 3-1, entry 5). When the amount of 2a was increased to 5 equiv, no further 

improvement of the yield of 3aa was observed (Table 2-2-1, entry 6). When 1 equiv of 

2a with respect to 1a was employed, the cross-coupling also proceeded, giving 3aa in a 

moderate yield (Table 3-1, entry 7). 

 Among various copper catalysts examined, such as Cu(OAc)2, Cu(OTf)2 (OTf = 

triflate), [Cu(μ-OH)(tmen)]2Cl2 (tmen = N,N,N',N'-tetramethylethylendiamine), CuCl2, 

Cu(acac)2, CuI, CuSO4·5H2O, Cu(OH)2, and Cu2O, Cu(OAc)2 showed the highest 

activity and selectivity for the cross-coupling of 1a and 2a (Table 3-1, entry 4, 8–15). 

Cu(OTf)2 showed as high activity and selectivity as Cu(OAc)2 (Table 3-1, entry 8). 

Other copper catalysts, such as [Cu(μ-OH)(tmen)]2Cl2, CuCl2, Cu(acac)2, CuI, and 

CuSO4·5H2O, showed lower activities and/or selectivities than those of Cu(OAc)2 

(Table 3-1, entries 9–13). Cu(OH)2 and Cu2O, which have shown high activity for the 

cross-coupling of terminal alkynes and amides (see chapter 2), were not effective for the 

present cross-coupling (Table 3-1, entries 14 and 15). Other metal acetates, such as 

Ni(OAc)2·4H2O, Co(OAc)2·4H2O, Fe(OAc)2, Mn(OAc)2·4H2O, and Pd(OAc)2 were not 

able to promote the present cross-coupling (Table 3-1, entries 16–20). 

 Both inorganic and organic bases could effectively promote the cross-coupling, 

giving 3aa in high yields (Table 3-2). Among various bases examined, such as Et3N, 

Na2CO3, K2CO3, Cs2CO3, NaHCO3, KHCO3, K3PO4·nH2O, pyridine, and DBU 

(1,8-diazabicyclo[5.4.0]undec-7-ene), K2CO3 was the most suitable base for the 

cross-coupling of 1a and 2a, giving 3aa in an almost quantitative yield (Table 3-2, 

entry 4). The yield of 3aa significantly decreased in the absence of bases (Table 3-2, 

entry 12). 
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Table 3-1. Oxidative cross-coupling of diisopropylphosphonate (1a) and 

2-oxazolidinone (2a) under various conditions.
[a] 

P

O

O

O H + P

O

O

O N
O

O

ON

O

H + P

O

O

O
O

P

O

O

O

1a 2a 3aa 4aa  

[a] Reaction conditions: 1a (0.2 mmol), catalyst (10 mol %), Et3N (0.2 mmol), MS 4 A (100 mg), 

toluene (2 mL), 80 °C, under air (1 atm). A toluene solution of 1a (1 mL, 0.2 M) was added to 

the reaction mixture over 30 min by a syringe pump, and the reaction mixture was stirred for an 

additional 10 min. Conversion and yield were determined by GC analysis. nd = not detected 

(<1%) [b] Mixed in a single step, without MS 4 A, 40 min. [c] Mixed in a single step, MS 4 A 

(100 mg), 40 min. [d] Cu(OAc)2 (5 mol %). 

Entry Catalyst 1a/2a 
Conv. of  

1a [%] 

Yield [%] 

3aa 4aa 

 1
[b]

 Cu(OAc)2  1/2 82 17 1 

 2
[c]

 Cu(OAc)2  1/2 93 51 1 

3 Cu(OAc)2  1/2 99 81 1 

4 Cu(OAc)2  1/3 99 90 1 

 5
[d]

 Cu(OAc)2  1/3 93 84 1 

6 Cu(OAc)2  1/5 >99 89 1 

7 Cu(OAc)2 1     93 68 6 

8 Cu(OTf)2  1/3 97 89 1 

9 [Cu(μ-OH)(tmen)]2Cl2  1/3 >99 62 38 

10 CuCl2  1/3 >99 63 37 

11 Cu(acac)2  1/3 2 1 nd 

12 CuI  1/3 12 1 6 

13 CuSO4·5H2O  1/3 44 25 2 

14 Cu(OH)2  1/3 3 nd nd 

15 Cu2O  1/3 <1 nd nd 

16 Ni(OAc)2·4H2O  1/3 <1 nd nd 

17 Co(OAc)2·4H2O  1/3 <1 nd nd 

18 Fe(OAc)2  1/3 <1 nd nd 

19 Mn(OAc)2·4H2O  1/3 <1 nd nd 

20 Pd(OAc)2  1/3 7 nd nd 

21 none  1/3 <1 nd nd 
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Table 3-2. Screening of bases for the cross-coupling of diisopropylphosphonate (1a) 

and 2-oxazolidinone (2a).
[a] 

P

O

O

O H + P

O

O

O N
O

O

ON

O

H + P

O

O

O
O

P

O

O

O

1a 2a 3aa 4aa

Cu(OAc)2

base

 

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), Cu(OAc)2 (10 mol%), MS4A (100 mg), 

toluene (2 mL), 80
 
°C, under air (1 atm), 40 min. A toluene solution of 1a (1 mL, 0.2 M) was 

added to the reaction mixture over 30 min by a syringe pump, and the reaction mixture was 

stirred for an additional 10 min. Conversion and yield were determined by GC analysis. nd = 

not detected (<1%). 

 

 

 

 

 

 

 

 

Entry Base [equiv] Conv. of 1a [%] 
Yield [%] 

3aa 4aa 

1 Et3N (1) 99 90 1 

2 Et3N (0.5) 95 75 1 

3 Na2CO3 (1) 79 67 1 

4 K2CO3 (1) >99 >99 nd 

5 K2CO3 (0.5) >99 97 nd 

6 Cs2CO3 (1) >99 53 nd 

7 NaHCO3 (1) 65 51 2 

8 KHCO3 (1) 97 85 1 

9 K3PO4·nH2O (1) >99 88 nd 

10 pyridine (1) 79 61 2 

11 DBU (1) >99 77 4 

12 none 57 39 2 
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Table 3-3. Screening of solvents for the cross-coupling of diisopropylphosphonate (1a) 

and 2-oxazolidinone (2a).
[a]

 

P

O

O

O H + P

O

O

O N
O

O

ON

O

H +

1a 2a 3aa

Cu(OAc)2

K2CO3 

solvent

P

O

O

O

5aa

P

O

O

O

  

[a] Reaction conditions: 1a (0.2 mmol), 2a (0.6 mmol), Cu(OAc)2 (10 mol%), Et3N (0.2 mmol), 

MS4A (100 mg), solvent (2 mL), 80
 
°C, under air (1 atm), 40 min. Toluene solution of 1a (1 mL, 

0.2 M) was added to the reaction mixture over 30 min by a syringe pump, and the reaction 

mixture was stirred for an additional 10 min. Conversion and yields were determined by GC 

analysis. nd = not detected (<1%). [b] 4aa was detected by GC (1%). [c] 4aa was hardly 

detected by GC (<1%). [d] The reaction was carried out under Ar atmosphere. 

 

 Studies on the solvent effects showed that toluene was the best one. Other solvents, 

such as 1,2-dichloroethane, 1,4-dioxane, 2-propanol, acetonitrile, dimethylformamide 

(DMF), and dimethylsulfoxide (DMSO), were not as effective as toluene (Table 3-3). The 

cross-coupling of 1a and 2a under an Ar atmosphere gave only a stoichiometric amount 

of 3aa with respect to Cu(OAc)2 (Table 3-3, entry 2). This result suggests that the 

reoxidation of the reduced copper species by O2 (air) is necessary for the present 

cross-coupling (Scheme 3-3). 

Entry Solvent Conv. of 1a [%] 
Yield [%] 

3aa 5aa 

1
[b]

 toluene >99 >99 nd 

2
[c,d]

 toluene 9 9 nd 

3
[c]

 1,2-dichloroethane 22 20 2 

4
[c]

 1,4-dioxane >99 53 17 

5
[c]

 2-propanol 27 15 4 

6
[c]

 acetonitrile 60 24 24 

7
[c]

 dimethylsulfoxide 75 17 13 

8
[c]

 dimethylformamide >99 29 21 
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3.3.2. Substrate Scope 

 The scope of the present Cu(OAc)2-catalyzed aerobic cross-dehydrogenative 

coupling of H-phosphonates and amides to N-acylphosphoramidates was investigated 

using air as the terminal oxidant. The conditions suitable for the cross-coupling, 

especially bases, were largely dependent on the types of substrates. The isolation of 

N-acylphosphoramidates was very simple (section 3.2.2), and the isolated yields are 

summarized in Scheme 3-2. 

 The cross-coupling of benzooxazolidinone and 1a efficiently proceeded by using 

4-methylpyridine as a base instead of K2CO3, giving a good yield of the corresponding 

N-acylphosphoramidate (Scheme 3-2, 3ab, and Table 3-4). A 5-substituted 

oxazolidinone was also a good coupling partner of 1a (Scheme 3-2, 3ac). 4-, 5-, 6-, and 

7-Membered lactams were efficiently reacted with 1a to afford the corresponding 

N-acylphosphoramidates in high to excellent yields (Scheme 3-2, 3ad–3ag). 4- and 

5-Substituted pyrrolidinones also reacted well with 1a (Scheme 3-2, 3ah and 3ai). A 

bicyclic lactam, 2-azabicyclo[2.2.1]hept-5-en-3-one, was also applicable to the present 

cross-coupling (Scheme 3-2, 3aj). Apart from the above cyclic carbamates and lactams, 

cyclic urea derivatives also reacted well with 1a (Scheme 3-2, 3ak and 3al). In addition, 

indole and sulfonamide derivatives were also suitable nitrogen nucleophiles for the 

cross-coupling (Scheme 3-2, 3am–3ap). Other nitrogen nucleophiles, such as acyclic 

secondary amide and carbamate, pyrrole, and primary sulphonamide were not effective 

substrates for the present cross-coupling (Scheme 3-2, 3aq–3at). With regard to the 

H-phosphonate coupling partner, various dialkyl phosphonates could be utilized, giving 

the corresponding N-acylphosphoramidates in high yields (Scheme 3-2, 3aa–3da). 

Diphenylphosphine oxide was not the effective coupling partner (Scheme 3-2, 3ea). 
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Scheme 3-2. Aerobic cross-dehydrogenative coupling of H-phosphonates and nitrogen 

nucleophiles. Reaction conditions: 1 (0.2 mmol), 2 (0.6 mmol), Cu(OAc)2 (10 mol %), 

K2CO3 (0.2 mmol), MS 4 A (100 mg), toluene (2 mL), 80 °C, under air (1 atm). A 

toluene solution of 1 (1 mL, 0.2 M) was added to the reaction mixture over 30 min by a 

syringe pump, and the reaction mixture was stirred for an additional 10 min (unless 

otherwise noted). The isolated yields (based on 1) are reported. [a] 4-methylpyridine 

(0.8 mmol) instead of K2CO3 (0.2 mmol). [b] 1.5 h. [c] 2,2'-bipyridyl (20 mol %). [d] 

6,6'-dimethylbipyridyl (20 mol %). [e] 1 h. nd = not detected. 
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Table 3-4. Screening of bases for the cross-coupling of 1a and 2b
[a]

 

P

O

O

O H P

O

O

O N
O

O

+ON

O

H P

O

O

O
O

P

O

O

O

Cu(OAc)2
+

1a 2b 3ab 4aa  

Entry  Base [equiv.]  Conv. of 1a [%] 
Yield [%] 

3aa 4 

1 K2CO3 (1)  33 2 nd 

2 K2CO3 (4) 28 6 nd 

3 N
 (4) 

>99 45 26 

4 
NN (4) 

46 33 1 

5 

NN (4) 

22 7 4 

6 NN
(4) 

98 52 23 

7 N
(4) 

>99 56 15 

8 N
(4) 

>99 64 10 

9 NMeO
(4) 

99 42 18 

10
[b]

 N
(4) 

>99 55 1 
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Table 3-4. (Continued) 

Entry  Base [equiv.]  Conv. of 1a [%] 
Yield [%] 

3aa 4 

11 N
(2) 

99 42 4 

[a] Reaction conditions: 1a (0.2 mmol), 2b (0.6 mmol), Cu(OAc)2  (10 mol%), toluene (2 mL), 

MS4A (100 mg), 80  
°
C, under air (1 atm), 40 min. Toluene solution of 1a (1 mL, 0.2 M) was 

added to the reaction mixture over 30 min by a syringe pump, and the reaction mixture was 

stirred for an additional 10 min. Conversion and yields were determined by GC analysis. nd = 

not detected (<1%). [b] Cu formate (10 mol%) . 

 

3.3.3. Reaction mechanism 

 A possible reaction mechanism is shown in Scheme 3-3. The proposed catalytic cycle 

consists of (1) coordination of amidate and phosphite species to the copper center to 

afford a Cu(phosphite)(amidate) intermediate (6), (2) subsequent reductive elimination to 

generate the corresponding N-acylphosphoramidates, and (3) reoxidation of the reduced 

copper species by O2 (air) to regenerate the active copper species (Scheme 3-3). Bases 

likely play two important roles; (1) abstract N–H protons of amides, and (2) increase 

concentration of phosphite forms (1') or directly deprotonate 1 to coordinate to the active 

copper center.  
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Scheme 3-3. A possible reaction mechanism for the copper-catalyzed oxidative 

cross-coupling of H-phosphonates and amides (L = acetate, B: = base). 

 

 

3.4. Conclusion 

 In summary, the Cu(OAc)2-catalyzed aerobic oxidative cross-coupling of 

H-phosphonates and amides to N-acylphosphoramidates has successfully been 

developed. Various dialkyl H-phosphonates can efficiently react with nitrogen 

nucleophiles (including oxazolidinone, lactam, pyrrolidinone, urea, indole, and 

sulfonamide derivatives), giving the corresponding P–N coupling products. The present 

cross-coupling completely avoids the utilization of (hazardous) stoichiometric reagents 

(e.g., chlorophosphonates, Cl2, COCl2, SO2Cl2, n-BuLi, and/or NaN3 in conventional 

procedures, Scheme 3-1) and the formation of vast amounts of byproducts, providing a 

green, and practical synthetic route to N-acylphosphoramidates. 
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Aerobic Dehydrogenative Amination of 

α,β-Unsaturated Aldehydes 
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4.1. Introduction 

 As a very important class of compounds, enaminals (β-enaminals) have been 

utilized for the synthesis of a large variety of heterocyclic compounds such as furans, 

pyrans, pyrroles, pyridines, pyrazoles, isothiazoles, and isoxazoles.
[1,2]

 They have also 

been applied to the synthesis of several bioactive compounds, such as noeuromycin, 

AKT (protein kinase B) inhibitor-IV, and AZD4877 (a kinesin spindle protein inhibitor 

and potential anticancer agent) (Figure 4-1).
[1,2]

  

 

                 

 

 

 

Figure 4-1. Several biologically active compounds using enaminals as starting 

materials.
[1–4]

 

 

 Several procedures are available for the synthesis of enaminals.
[2,3]

 The most widely 

utilized procedures are (1) dehydrative condensation of amines with 1,3-dicarbonyl 

compounds (Scheme 4-1, a) and (2) hydroamination of propargylic aldehydes 

(Scheme 4-1, b). The dehydrative condensation with in situ generated malondialdehyde 

is only applicable to the synthesis of β-aminoacroleins. Meanwhile, the condensation 

with ketoaldehydes could not selectively give β-substituted enaminals due to the higher 

reactivity of aldehyde functionalities toward the condensation, consequently giving 

enaminones as the major products.
[3e]

 Although a wide variety of enaminals can be 

synthesized by hydroamination of propargylic aldehydes, the development of alternative 

synthetic procedures for enaminals would be very desirable considering the limitation in 
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availability and/or synthesis of starting propargylic aldehydes. In this context, direct 

dehydrogenative amination of readily available α,β-unsaturated aldehydes would 

provide a promising method for the selective synthesis of enaminals (Scheme 4-1) 
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Scheme 4-1. Synthesis of enaminals. 

 

 As a valuable method for the construction of C(sp
2
)−N bonds, dehydrogenative 

amination or amidation of alkenes, namely aza-Wacker-type oxidation, has generally 

been efficiently promoted by palladium-based catalysts, and both intra- and 

inter-molecular reactions have been developed.
[4‒6]

 These reactions are supposed to 

This work 

Classical procedures 

(a) 

(b) 
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proceed through the following several steps: (1) coordination of an alkene to a 

palladium catalyst, (2) nucleophilic attack of a nitrogen nucleophile to the palladium 

alkene complex, (3) β-H elimination to afford an enamine or an enamide, and (4) 

reoxidation of the reduced metal center to regenerate the initial Pd
II
 species (Scheme 

4-2).
[4] 

 

 

           Scheme 4-2. Palladium-catalyzed aza-Wacker oxidation. 

 

 To date, the palladium-catalyzed aza-Wacker oxidation using less-basic amides, 

such as sulfonamides, carbamates, and lactams, has been developed.
[4]

 Amination of 

alkenes using simple amines is relatively less-developed,
[5,6]

 likely due to the severe 

deactivation of homogeneous metal-based catalysts by the strong coordination of 

amines. 

Oxidation

β-H elimination

Nucleophilic attack

[O] PdIIX2

Pd0

2 X
Coordination

R1

PdIIX2

R1

HN
R2

R3

or

R1

N
R2 R3

R1

N
R3

R2
or

HX

PdIIX

R1

N
R3

R2 N

R1

R2 R3

PdII X

HPdIIX

HX

+
[Pd]

+
oxidant

R1 HN
R2

R3 R1

N
R2 R3

R1

N
R3

R2



 

149 

 

 Recently, Ishii
[5e,h]

 and Ying
[5g]

 have reported excellent palladium-catalyzed 

procedures for the amination of α,β-unsaturated carbonyl compounds. However, these 

systems are limited to the amination of α,β-unsaturated esters and ketones with aniline 

derivatives.
[5e,g,h,7]

 Therefore, the dehydrogenative amination of α,β-unsaturated 

aldehydes with a large variety of amines has never been developed to date. 

 To develop the β-amination of α,β-unsaturated aldehydes, a reaction pathway, 

including (1) nucleophilic addition of an amine to an α,β-unsaturated aldehyde to 

generate a β-amino aldehyde intermediate and (2) selective dehydrogenative oxidation 

of the β-amino aldehyde, is proposed in this study (Scheme 4-1). In order to realize the 

proposed reaction pathway, the design of catalysts to promote the dehydrogenation of 

saturated C−C single bonds would be the key for the achievement of the amination. This 

study is especially focused on supported gold nanoparticles to promote the 

dehydrogenation. The last several decades have witnessed the great success of 

supported gold nanoparticles for aerobic oxidative dehydrogenation reactions through 

activation of molecular oxygen, as described in chapter 1.
 
In addition, they can easily be 

separated and reused, and are highly durable against strong coordination of nitrogen 

nucleophiles. These properties of supported gold nanoparticles are envisioned to 

promote the dehydrogenation of various saturated C−C single bonds. 

 Described in this chapter is a supported gold nanoparticle-catalyzed 

dehydrogenative amination of α,β-unsaturated aldehydes to enaminals using air 

(molecular oxygen) as the sole oxidant (Scheme 4-1, this work). In the presence of gold 

nanoparticles supported on manganese oxide-based octahedral molecular sieves 

OMS-2
[8]

 (Au/OMS-2), the amination of various α,β-unsaturated aldehydes with a wide 

range of amines proceeded efficiently, affording the corresponding enaminals in 
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moderate to high yields (50−97 %). OMS-2 (KMn8O16) has the 2 × 2 hollandite type 

structure with a one-dimensional pore (Figure 4-2), which has been utilized as supports 

or oxidation catalysts and shown versatile oxidation catalysis for organic 

transformations.
[8]

 The catalysis in the present amination was intrinsically 

heterogeneous, and the Au/OMS-2 catalyst could be reused at least five times without a 

loss of its high catalytic performance. The present Au/OMS-2-catalysed amination of 

α,β-unsaturated aldehydes provides a highly efficient synthetic procedure for enaminals 

and reveals new oxidation catalysis of gold nanoparticles.
[9,10] 

 

 

               Figure 4-2. The structure of OMS-2.
[8]

 

 

4.2. Experimental Section 

4.2.1. General 

 GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped 

with an Rxi-5 Sil MS capillary column. GC-MS spectra were recorded on Shimadzu 

GCMS-QP2010 equipped with an InertCap 5 capillary column at an ionization voltage 

of 70 eV. Liquid-state NMR spectra were recorded on JEOL JNM-ECA-500. 
1
H and 

13
C NMR spectra were measured at 495.1 and 124.5 MHz, respectively, using 

K

MnO6 unit



 

151 

 

tetramethylsilane (TMS) as an internal reference ( = 0 ppm). ICP-AES analyses were 

performed on Shimadzu ICPS-8100. XRD patterns were recorded on a Rigaku 

SmartLab diffractometer (CuKα, λ = 1.5405 Å, 45 kV−200 mA). TEM measurements 

were performed on JEOL JEM-2010HC. OMS-2 (BET surface area: 90 m
2 

g
–1

)
[11]

 and 

Co3O4 (BET: 182 m
2 

g
–1

)
[12]

 were prepared according to the literature procedures. CeO2 

(BET: 111 m
2 

g
–1

, Cat. No. 544841-25G, Aldrich), Al2O3 (BET: 160 m
2 
g

–1
, Cat. No. 

KHS-24, Sumitomo Chemical), and TiO2 (BET: 316 m
2 

g
–1

, Cat. No. ST-01, Ishihara 

Sangyo Kaisya) were commercially available. Various supported metal catalysts 

(Pd/Al2O3, Cu/Al2O3, Ru/Al2O3, and Rh/Al2O3 for Table 3-1) were prepared according 

to the literature procedures.
[13]

 Solvents and substrates were obtained from Kanto 

Chemical, TCI, Wako, or Aldrich (reagent grade), and purified prior to use, if 

necessary.
[14] 

 

4.2.2. Preparation of Supported Gold Nanoparticle Catalysts 

 Au/OMS-2: An aqueous solution of HAuCl4·4H2O (8.3 mM, 60 mL) containing 

OMS-2 (2.0 g) was vigorously stirred at room temperature. After 15 min, the pH of the 

solution was quickly adjusted to 10 by addition of an aqueous solution of NaOH 

(1.0 M), and the resulting slurry was further stirred for 24 h. The solid was then filtered 

off, washed with a large amount of water (4 L), and dried in vacuo to afford the 

supported hydroxide catalyst precursor. Then, the hydroxide precursor was calcined at 

300 °C for 2 h, giving Au/OMS-2 as a dark brown powder (Au content: 3.6 wt %).  

 Au/Al2O3, Au/TiO2, and Au/Co3O4: An aqueous solution of HAuCl4·4H2O 

(8.3 mM, 60 mL) containing Al2O3, TiO2, or Co3O4 (2.0 g) was vigorously stirred at 

room temperature. After 15 min, the pH of the solution was quickly adjusted to 10 by 
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addition of an aqueous solution of NaOH (1.0 M), and the resulting slurry was further 

stirred for 24 h. The solid was then filtered off, washed with a large amount of water (4 

L), and dried in vacuo to afford the supported hydroxide catalyst precursors. Then, the 

hydroxide precursors were calcined at 400 °C for 2 h, giving Au/Al2O3 (Au content: 

3.8 wt %), Au/TiO2 (Au content: 3.6 wt %), and Au/Co3O4 (Au content: 4.0 wt %) as 

wine red, purple, and dark black powders, respectively. 

 

4.2.3. Typical Procedure for the Dehydrogenative Amination 

 Into a Pyrex glass reactor (volume: ca. 20 mL) were successively placed 

Au/OMS-2 (3.6 mol %, 100 mg), an α,β-unsaturated aldehyde (1) (0.5 mmol), an amide 

(2) (1.0 mmol), THF (1.9 mL), H2O (0.1 mL), and a Teflon-coated magnetic stir bar, 

and the reaction mixture was vigorously stirred at 50 °C, in 1 atm of air. After the 

reaction was completed, an internal standard (diphenyl) was added to the reaction 

mixture, and the conversion of 1 and the product yield were determined by GC analyses. 

As for the isolation of enaminal products, the internal standard was not added. After the 

reaction, the catalyst was filtered off (>97 % recovery), and then the filtrate was 

concentrated by evaporation of THF. The crude product was subjected to column 

chromatography on silica gel (typically using diethylether/acetone as an eluent), giving 

the pure enaminals. The products were identified by GC-MS and NMR (
1
H and 

13
C) 

analyses. The retrieved catalyst was washed with ethanol and acetone, and calcined at 

300 °C for 2 h before being used for the reuse experiment. 
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4.2.4. Spectral Data of Enaminals and Enaminones 

O

N H

 

3aa 

3-phenyl-3-(1-pyrrolidinyl)-2-propenal (3aa): 
1
H NMR (495.1 MHz, DMSO-d6, 

TMS): δ 1.77 (quin, J = 6.8 Hz, 2H), 1.97 (quin, J = 6.8 Hz, 2H), 2.99 (t, J = 6.8 Hz, 

2H), 3.33 (t, J = 6.8 Hz, 2H), 5.15 (d, J = 8.8 Hz, 1H), 7.32−7.35 (m, 2H), 7.48−7.52 (m, 

3H), 8.50 (d, J = 8.8 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 24.48, 

24.88, 48.14, 49.75, 102.04, 128.43, 128.50, 128.63, 129.12, 134.48, 164.75, 187.15. 

MS (EI): m/z (%) : 201 (41) [M
+
], 200 (23), 185 (14), 184 (100), 172 (23), 144 (32), 104 

(16), 103 (32), 102 (21), 77 (29), 70 (39). 

O

N

MeO

H

 

3ba 

3-(4-methoxyphenyl)-3-(pyrrolidin-1-yl)acrylaldehyde (3ba): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): δ 1.77 (quin, J = 6.8 Hz, 2H), 1.97 (quin, J = 6.8 Hz, 2H), 3.02 (t, J = 

6.8 Hz, 2H), 3.30 (t, J = 6.8 Hz, 2H), 3.81 (s, 3H), 5.13 (d, J = 8.5 Hz, 1H), 7.02−7.05 

(m, 2H), 7.26−7.29 (m, 2H), 8.56 (d, J = 8.8 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, 

DMSO-d6, TMS): δ 24.54, 24.88, 48.13, 49.77, 55.20, 102.24, 113.79, 126.56, 129.99, 

159.67, 164.70, 187.29. MS (EI): m/z (%) : 231 (43) [M
+
], 230 (17), 215 (16), 214 (100), 

202 (15), 174 (22), 134 (16), 133 (36), 132 (13), 95 (12), 89 (12), 77 (12), 70 (30). 
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O

N

Cl

H

 

3ca 

3-(4-chlorophenyl)-3-(pyrrolidin-1-yl)acrylaldehyde (3ca): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): δ 1.78 (quin, J = 6.8 Hz, 2H), 1.97 (quin, J = 6.8 Hz, 2H), 3.00 (t, J = 

6.7 Hz, 2H), 3.32 (t, J = 6.8 Hz, 2H), 5.16 (d, J = 8.8 Hz, 1H), 7.38−7.41 (m, 2H), 

7.55−7.58 (m, 2H), 8.52 (d, J = 8.8 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, 

TMS): δ 24.46, 24.90, 48.24, 49.73, 102.23, 128.59, 130.43, 133.21, 133.96, 163.40, 

186.86. MS (EI): m/z (%) : 236 (11) [M
+
], 237 (12), 235 (37), 234 (17), 220 (32), 219 

(17), 218 (100), 206 (20), 180 (10), 178 (23), 143 (11), 138 (17), 137 (18), 136 (16), 

102 (26), 101 (26), 95 (11), 75 (16), 70 (49).  

O

N

O2N

H

 

3da 

3-(4-nitrophenyl)-3-(pyrrolidin-1-yl)acrylaldehyde (3da): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): δ 1.81 (quin, J = 6.8 Hz, 2H), 2.00 (quin, J = 6.8 Hz, 2H), 3.00 (t, J = 

6.8 Hz, 2H), 3.37 (t, J = 7.1 Hz, 2H), 5.21 (d, J = 8.8 Hz, 1H), 7.68−7.70 (m, 2H), 

8.34−8.36 (m, 2H), 8.49 (d, J = 8.8 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, 

TMS): δ 24.40, 24.97, 48.42, 49.77, 102.22 123.67, 130.18, 140.85, 147.80, 162.43, 

186.56. MS (EI): m/z (%) : 246 (38) [M
+
], 245 (16), 230 (15), 229 (100), 217 (14), 199 

(!4), 189 (17), 183 (11), 171 (10), 143 (15), 102 (19), 70 (36).  
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O

NO H

 

3ea 

3-(2-methoxyphenyl)-3-(pyrrolidin-1-yl)acrylaldehyde (3ea): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): δ 1.77 (quin, J = 6.7 Hz, 2H), 1.90−2.02 (m, 2H), 2.92−2.99 (m, 2H), 

3.31 (t, J = 7.1 Hz, 2H), 5.09 (d, J = 8.8 Hz, 1H), 7.03−7.06 (m, 1H), 7.15−7.17 (m, 2H), 

7.45−7.48 (m, 1H), 8.50 (d, J = 8.8 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, 

TMS): δ 24.52, 24.71, 47.93, 48.79, 55.62, 101.55, 111.67, 120.37, 123.05, 129.99, 

130.88, 155.86, 162.14, 186.83. MS (EI): m/z (%) : 231 (62) [M
+
], 232 (10), 230 (14), 

215 (16), 214 (100), 213 (17), 212 (14), 202 (16), 200 (30), 188 (15), 187 (18), 186 (13), 

174 (21), 172 (10), 133 (16), 132 (16), 131 (30), 119 (14), 118 (12), 115 (11), 105 (31), 

103 (19), 95 (28), 91 (20), 90 (12), 89 (18), 79 (11), 77 (30), 70 (86), 63 (11), 55 (10). 

H

O

N

 

3fa 

3-(pyrrolidin-1-yl)oct-2-enal (3fa): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 0.88 (t, 

J = 7.1 Hz, 3H), 1.28−1.39 (m, 4H), 1.50 (quin, J = 7.6 Hz, 2H), 1.86−1.91 (m, 4H), 

2.64 (t, J = 7.8 Hz, 2H), 3.15 (t, J = 6.2 Hz, 2H), 3.48 (t, J = 6.1 Hz, 2H), 4.77 (d, J = 

8.5 Hz, 1H), 9.35 (d, J = 4.3 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 

13.87, 21.81, 24.24, 24.92, 28.60, 28.76, 31.11, 47.31, 48.21, 99.61, 165.18, 184.59.  

MS (EI): m/z (%) : 195 (34) [M
+
], 178 (21), 166 (23), 153 (11), 152 (69), 139 (46), 138 

(19), 136 (14), 124 (36), 122 (26), 120 (14), 111 (79), 110 (38), 108 (12), 96 (23), 83 

(58), 82 (15), 71 (11), 70 (100), 69 (13), 68 (22), 67 (11), 55 (24), 54 (11). 
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H

ON

 

3ga 

3-(pyrrolidin-1-yl)acrylaldehyde (3ga): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 

1.84 (quin, J = 6.6 Hz, 2H), 1.93 (quin, J = 6.9 Hz, 2H), 3.11 (t, J = 7.1 Hz, 2H), 3.50 (t, 

J = 6.7 Hz, 2H), 4.89 (dd, J = 12.6 and 8.6 Hz, 1H), 7.53 (d, J = 12.8 Hz, 1H), 8.92 (d, J 

= 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 24.66, 24.83, 46.74, 

51.74, 101.24, 156.56, 187.31. MS (EI): m/z (%) : 125 (100) [M
+
], 124 (17), 108 (32), 

106 (16), 96 (26), 82 (12), 79 (15), 70 (18), 69 (44), 68 (44), 55 (14), 54 (17). 

O

N

 

3ha 

3-(pyrrolidin-1-yl)cyclopent-2-enone (3ha): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): 

δ 1.86−1.95 (m, 4H), 2.16−2.18 (m, 2H), 2.60−2.62 (m, 2H), 3.20 (t, J = 6.7 Hz, 2H), 

3.43 (t, J = 6.5 Hz, 2H), 4.72 (s, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 

24.65, 24.99, 27.14, 33.80, 47.32, 48.92, 98.54, 174.58, 200.68. MS (EI): m/z (%) : 151 

(85) [M
+
], 123 (16), 122 (100), 108 (31), 95 (45), 94 (26), 81 (11), 70 (13), 68 (16), 67 

(18), 55 (11), 53 (21). 

O

N

 

3ia 

3-(pyrrolidin-1-yl)cyclohex-2-enone (3ia): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 
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1.80−1.90 (m, 6H), 2.04 (t, J = 6.5 Hz, 2H), 2.46 (t, J = 6.2 Hz, 2H), 3.12 (t, J = 6.2 Hz, 

2H), 3.43 (t, J = 6.2 Hz, 2H), 4.75 (s, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, 

TMS): δ 21.76, 24.35, 24.88, 27.18, 35.86, 47.46, 47.51, 97.15, 162.90, 193.45. MS 

(EI): m/z (%): 165 (70) [M
+
], 137 (42), 136 (17), 109 (100), 108 (37), 94 (17), 81 (16), 

70 (13), 68 (33), 67 (15). 

H

ON

 

3gb 

3-(indolin-1-yl)acrylaldehyde (3gb): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 3.20 

(t, J = 8.5 Hz, 2H), 3.83 (t, J = 8.5 Hz, 2H), 5.31 (dd, J = 12.8 and 8.2 Hz, 1H), 6.98 (td, 

J = 7.5 and 0.8 Hz, 1H), 7.20−7.26 (m, 2H), 7.35 (d, J = 8.0 Hz, 1H), 8.22 (d, J = 13.1 

Hz, 1H), 9.27 (d, J = 8.2 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 

26.98, 47.80, 105.04, 109.24, 123.01, 125.68, 127.61, 131.50, 143.32, 148.59, 189.23. 

MS (EI): m/z (%) : 173 (100) [M
+
], 174 (12), 172 (30), 156 (26), 154 (11), 145 (15), 144 

(64), 143 (26), 130 (38), 119 (11), 118 (24), 117 (50), 115 (18), 104 (16), 91 (25), 90 

(15), 89 (17), 77 (18), 65 (13), 63 (11), 55 (17). 

H

ON

 

3gc 

2-(piperidin-1-yl)acrylaldehyde (3gc): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 

1.52−1.62 (m, 6H), 3.23 (brs, 2H), 3.38 (brs, 2H), 5.11 (dd, J = 12.8 and 8.2 Hz, 1H), 

7.28 (d, J = 12.7 Hz, 1H), 8.94 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, 

DMSO-d6, TMS): δ 23.47, 24.52, 26.10, 45.51, 53.71, 99.85, 159.72, 187.98. MS (EI): 
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m/z (%) : 139 (64) [M
+
], 138 (19), 122 (100), 110 (24), 96 (10), 94 (11), 84 (13), 83 (15), 

82 (26), 80 (15), 70 (!4), 56 (13), 55 (32), 54 (18). 

H

ON

 

3gd 

3-(3,4-dihydroquinolin-1(2H)-yl)acrylaldehyde (3gd): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): δ 1.93 (quin, J = 6.2 Hz, 2H), 2.72 (t, J = 6.1 Hz, 2H), 3.52 (d, J = 

6.4 Hz, 2H), 5.49 (dd, J = 13.0 and 8.2 Hz, 1H), 7.01 (td, J = 7.5 and 1.6 Hz, 1H), 

7.16−7.17 (m, 1H), 7.22−7.25 (m, 1H), 7.42 (d, J = 8.2 Hz, 1H), 8.14 (d, J = 13.0 Hz, 

1H), 9.31 (d, J = 8.2 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 21.69, 

26.65, 45.90, 105.66, 116.13, 122.89, 127.46, 128.54, 129.04, 139.35, 153.55, 190.46. 

MS (EI): m/z (%) : 187 (70) [M
+
], 188 (10), 186 (13), 171 (15), 170 (100), 158 (40), 143 

(11), 131 (10), 130 (61), 117 (26), 115 (13), 103 (12), 91 (12), 77 (20). 

H

ON

 

3ge 

3-(3,4-dihydroisoquinolin-2(1H)-yl)acrylaldehyde (3ge, trans:cis = 3:1): 
1
H NMR 

(495.1 MHz, DMSO-d6, TMS): for trans-isomer: δ 2.89 (brs, 2H), 3.67 (brs, 2H), 4.41 

(s, 2H), 5.19−5.23 (m, 1H), 7.20−7.21 (m, 4H), 7.54 (d, J = 12.8 Hz, 1H), 9.02 (d, J = 

8.2 Hz, 1H); for cis-isomer: δ 2.89 (brs, 2H), 3.45 (brs, 2H), 4.62 (s, 2H), 5.19−5.23 (m, 

1H), 7.20−7.21 (m, 4H), 7.54 (d, J = 12.8 Hz, 1H), 9.02 (d, J = 8.2 Hz, 1H). 
13

C{
1
H} 

NMR (124.5 MHz, DMSO-d6, TMS): for the mixture of cis and trans isomers: δ 26.86, 

28.99, 43.15, 46.67, 49.70, 53.40, 100.36, 100.94, 125.67, 126.35, 126.51, 127.00, 

128.19, 128.60, 131.66, 134.03, 134.62, 159.25, 159.73, 188.08. MS (EI): m/z (%) : 187 
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(100) [M
+
], 188 (13), 186 (28), 170 (39), 168 (10), 158 (26), 132 (12), 131 (24), 130 

(33), 129 (10), 117 (63), 116 (27), 115 (40), 105 (16), 104 (41), 103 (30), 91 (17), 78 

(25), 77 (23). 

H

ON

O  

3gf 

3-morpholinoacrylaldehyde (3gf): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 3.29 

(brs, 2H), 3.41 (brs, 2H), 3.62 (brs, 4H), 5.18 (dd, J = 12.9 and 8.4 Hz, 1H), 7.33 (d, J = 

12.8 Hz, 1H), 8.99 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 

45.17, 52.04, 65.14, 66.30, 100.61, 159.82, 188.26. MS (EI): m/z (%) : 141 (100) [M
+
], 

124 (93), 112 (18), 111 (12), 96 (12), 94 (28), 84 (36), 83 (32), 82 (34), 68 (13), 57 (10), 

56 (19), 55 (92), 54 (50). 

H

ON

 

3gg 

3-(diethylamino)acrylaldehyde (3gg): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 1.07 

(t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.2 Hz, 3H), 3.21 (q, J = 7.1 Hz, 2H), 3.33 (q, J = 7.1 Hz, 

2H), 5.02 (dd, J = 12.7 and 8.5 Hz, 1H), 7.32 (d, J = 12.7 Hz, 1H), 8.94 (d, J = 8.5 Hz, 

1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 11.31, 14.51, 42.02, 49.40, 

100.15, 159.17, 187.82. MS (EI): m/z (%) : 127 (100) [M
+
], 112 (12), 110 (80), 98 (33), 

94 (19), 84 (11), 82 (20), 80 (34), 71 (11), 70 (32), 68 (15), 58 (16), 56 (70), 55 (16), 54 

(11). 
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H

ON
 

3gh 

3-(butyl(methyl)amino)acrylaldehyde (3gh, trans:cis = 3:1): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): for trans-isomer: δ 0.90 (t, J = 7.4 Hz, 3H), 1.20−1.26 (m, 2H), 

1.46−1.54 (m, 2H), 2.78 (s, 3H), 3.31 (t, J = 6.9 Hz, 2H), 4.96 (dd, J = 12.5 and 8.5 Hz, 

1H), 7.40 (d, J = 12.5 Hz, 1H), 8.95 (d, J = 8.5 Hz, 1H); for cis-isomer: δ 0.90 (t, J = 7.4 

Hz, 3H), 1.26−1.31 (m, 2H), 1.46−1.54 (m, 2H), 3.08 (s, 3H), 3.14 (t, J = 7.4 Hz, 2H), 

5.02 (dd, J = 12.8 and 8.5 Hz, 1H), 7.30 (d, J = 12.8 Hz, 1H), 8.92 (d, J = 8.5 Hz, 1H). 

13
C{

1
H} NMR (124.5 MHz, DMSO-d6, TMS): for trans-isomer: δ 13.56, 19.04, 30.04, 

34.91, 56.50, 100.34, 160.55, 187.65; for cis-isomer: δ 13.70, 19.50, 27.24, 42.36, 49.09, 

100.12, 160.71, 187.65. MS (EI): m/z (%) : 141 (48) [M
+
], 124 (10), 112 (16), 99 (13), 

98 (100), 97 (13), 84 (16), 82 (19), 70 (34), 68 (11), 57 (22), 55 (21). 

H

ON
n-C4H9

n-C4H9  

3gi 

3-(dibutylamino)acrylaldehyde (3gi): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 0.90 

(t, J = 7.4 Hz, 6H), 1.22−1.33 (m, 4H), 1.45−1.55 (m, 4H), 3.13 (t, J = 7.6 Hz, 2H), 3.29 

(t, J = 7.1 Hz, 2H), 5.00 (dd, J = 12.8 and 8.5 Hz, 1H), 7.32 (d, J = 13.0 Hz, 1H), 8.93 

(d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 13.59, 13.69, 

19.13, 19.58, 27.93, 30.62, 47.40, 54.82, 100.17, 160.03, 187.80. MS (EI): m/z (%) : 

183 (47) [M
+
], 166 (43), 154 (22), 140 (73), 126 (13), 112 (27), 99 (17), 98 (100), 97 

(11), 84 (73), 82 (13), 70 (36), 68 (11), 57 (47), 56 (39), 55 (21). 
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H

ON
n-C8H17

n-C8H17  

3gj 

3-(dioctylamino)acrylaldehyde (3gj): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 0.86 

(t, J = 6.9 Hz, 6H), 1.26−1.31 (m, 20H), 1.49−1.56 (m, 4H), 3.11 (t, J = 7.5 Hz, 2H), 

3.27 (t, J = 7.1 Hz, 2H), 4.99 (dd, J = 12.9 and 8.4 Hz, 1H), 7.30 (d, J = 12.8 Hz, 1H), 

8.93 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 13.88, 22.09, 

25.83, 25.86, 26.31, 28.54, 28.67, 28.75, 31.24, 47.67, 55.11, 100.19, 159.91, 187.71. 

MS (EI): m/z (%) : 295 (7) [M
+
], 266 (13), 253 (19), 252 (100), 210 (11), 196 (61), 168 

(24), 154 (33), 140 (32), 126 (10), 98 (43), 84 (15), 70 (19), 69 (12), 57 (18), 56 (14), 55 

(17). 

H

ON

 

3gk 

3-(benzyl(methyl)amino)acrylaldehyde (3gk, trans:cis = 3:1): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): for trans-isomer: δ 2.72 (s, 3H), 4.53 (s, 2H), 5.05 (dd, J = 12.7 and 

8.5 Hz, 1H), 7.23−7.41 (m, 5H), 7.68 (d, J = 12.5 Hz, 1H), 9.04 (d, J = 8.2 Hz, 1H); for 

cis-isomer: δ 3.12 (s, 3H), 4.41 (s, 2H), 5.15 (dd, J = 12.5 and 8.5 Hz, 1H), 7.23−7.41 

(m, 5H), 7.47 (d, J = 12.7 Hz, 1H), 8.97 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, 

DMSO-d6, TMS): for trans-isomer: δ 35.07, 60.03, 101.11, 127.21, 127.54, 128.74, 

136.83, 160.89, 188.02; for cis-isomer: δ 42.76, 52.77, 101.11, 127.40, 127.77, 128.67, 

135.78, 161.22, 188.02. MS (EI): m/z (%) : 175 (27) [M
+
], 158 (31), 91 (100), 84 (16), 

65 (21). 
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H

ON

 

3gl 

3-(dibenzylamino)acrylaldehyde (3gl): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 

4.35 (s, 2H), 4.59 (s, 2H), 5.15 (dd, J = 13.1 and 8.5 Hz, 1H), 7.19−7.41 (m, 10H), 7.77 

(d, J = 13.0 Hz, 1H), 9.06 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, 

TMS): δ 50.85, 58.56, 102.07, 127.08, 127.32, 127.90, 128.60, 128.77, 135.75, 136.77, 

160.88, 188.46. MS (EI): m/z (%) : 251 (8) [M
+
], 160 (41), 91 (100), 65 (15). 

H

ON
 

3gm 

3-(methyl(phenyl)amino)acrylaldehyde (3gm): 
1
H NMR (495.1 MHz, DMSO-d6, 

TMS): δ 3.29 (s, 3H), 5.41−5.45 (m, 1H), 7.18−7.21 (m, 1H), 7.35−7.37 (m, 2H), 

7.40−7.44 (m, 2H), 7.90 (d, J = 13.0 Hz, 1H), 9.25 (d, J = 8.2 Hz, 1H). 
13

C{
1
H} NMR 

(124.5 MHz, DMSO-d6, TMS): δ 36.41, 105.59, 119.82, 124.56, 129.45, 145.64, 156.38, 

190.03. MS (EI): m/z (%) : 161 (54) [M
+
], 160 (26), 145 (15), 144 (100), 132 (40), 130 

(10), 118 (11), 117 (50), 107 (10), 104 (18), 91 (30), 77 (47), 65 (10), 51 (20). 

H

ON

Cl

 

3gn 

3-((4-chlorophenyl)(ethyl)amino)acrylaldehyde (3gn): 
1
H NMR (495.1 MHz, 

DMSO-d6, TMS): δ 1.13 (t, J = 7.1 Hz, 3H), 3.77 (q, J = 7.2 Hz, 2H), 5.42 (brs, 1H), 

7.35−7.38 (m, 2H), 7.44−7.47 (m, 2H), 7.77 (d, J = 13.3 Hz, 1H), 9.23 (d, J = 8.2 Hz, 
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1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 11.65, 43.93, 105.51, 122.32, 

128.92, 129.40, 142.94, 155.30, 190.22. MS (EI): m/z (%) : 210 (14) [M
+
], 211 (24), 209 

(73), 208 (13), 194 (45), 193 (14), 192 (100), 182 (14), 180 (45), 154 (15), 153 (19), 

152 (31), 151 (13), 145 (24), 140 (22), 139 (19), 138 (39), 131 (16), 130 (27), 127 (11), 

125 (14), 118 (10), 117 (36), 116 (11), 113 (15), 111 (46), 103 (10), 90 (11), 89 (16), 82 

(15), 77 (10), 75 (34). 

H

ON

 

3go 

3-(diallylamino)acrylaldehyde (3go): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 3.79 

(d, J = 4.8 Hz, 2H), 3.94 (d, J = 5.7 Hz, 2H), 5.07 (dd, J = 12.8 and 8.5 Hz, 1H), 

5.16−5.25 (m, 4H), 5.70−5.77 (m, 1H), 5.83−5.90 (m, 1H), 7.40 (d, J = 13.1 Hz, 1H), 

8.96 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 50.05, 57.35, 

101.57, 117.39, 118.38, 131.28, 133.80, 160.11, 188.20. MS (EI): m/z (%) : 151 (11) 

[M
+
], 124 (11), 123 (94), 122 (64), 120 (13), 110 (34), 108 (100), 96 (10), 94 (19), 93 

(11), 82 (63), 81 (31), 80 (93), 79 (10), 70 (27), 68 (53), 67 (42), 65 (10), 56 (14), 55 

(57), 54 (36), 53 (21). 

H

ON

O  

3gp 

3-((furan-2-ylmethyl)(methyl)amino)acrylaldehyde (3gp, trans:cis = 3:1): 
1
H NMR 

(495.1 MHz, DMSO-d6, TMS): for trans-isomer: δ 2.75 (s, 3H), 4.53 (s, 2H), 5.04 (dd, 

J = 12.8 and 8.5 Hz, 1H), 6.44−6.45 (m, 2H), 7.56 (d, J = 12.7 Hz, 1H), 7.66 (s, 1H), 

9.02 (d, J = 8.2 Hz, 1H); for cis-isomer: δ 3.10 (s, 3H), 4.38 (s, 2H), 5.28 (dd, J = 11.9 
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and 8.8 Hz, 1H), 6.44−6.45 (m, 2H), 7.34 (d, J = 12.5 Hz, 1H), 7.64 (s, 1H), 8.96 (d, J = 

7.9 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): for trans-isomer: δ 34.91, 

52.70, 101.46, 109.02, 110.63, 143.42, 150.03, 160.57, 188.09; for cis-isomer: δ 42.39, 

45.74, 101.46, 109.02, 110.51, 143.07, 149.27, 160.73, 188.22. MS (EI): m/z (%) : 165 

(29) [M
+
], 136 (15), 81 (100), 53 (29). 

H

ON

N  

3gq 

3-(ethyl(pyridin-3-ylmethyl)amino)acrylaldehyde (3gq, trans:cis = 1.2:1): 
1
H NMR 

(495.1 MHz, DMSO-d6, TMS): for trans-isomer: δ 1.17 (t, J = 7.1 Hz, 3H), 3.46 (q, J = 

7.0 Hz, 2H), 4.51 (s, 2H), 4.92 (dd, J = 12.5 and 8.5 Hz, 1H), 7.22−7.30 (m, 2H), 7.58 

(d, J = 12.5 Hz, 1H), 8.53−8.58 (m, 2H), 8.98 (d, J = 8.2 Hz, 1H); for cis-isomer: δ 1.00 

(t, J = 6.8 Hz, 3H), 3.17 (q, J = 6.7 Hz, 2H), 4.59 (s, 2H), 5.17 (dd, J = 12.7 and 8.7 Hz, 

1H), 7.22−7.30 (m, 2H), 7.56 (d, J = 12.7 Hz, 1H), 8.53−8.58 (m, 2H), 9.03 (d, J = 8.2 

Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): for the mixture of cis and trans 

isomers: δ 10.89, 14.37, 42.73, 49.95, 50.70, 56.51, 101.15, 101.87, 121.92, 122.50, 

145.62, 146.52, 149.79, 149.97, 160.16, 160.38, 188.25, 188.39. MS (EI): m/z (%) : 190 

(59) [M
+
], 173 (58), 161 (34), 133 (13), 132 (10), 106 (21), 98 (51), 93 (62), 92 (100), 

80 (25), 70 (13), 65 (54), 56 (20). 

H

ON

O

O

 

3gr 

ethyl 2-(benzyl(3-oxoprop-1-en-1-yl)amino)acetate (3gr, trans:cis = 1:0.9): 
1
H NMR 



 

165 

 

(495.1 MHz, DMSO-d6, TMS): for trans-isomer: δ 1.15 (t, J = 7.2 Hz, 3H), 4.00 (s, 2H), 

4.07 (q, J = 7.1 Hz, 2H), 4.57 (s, 2H), 4.41 (s, 2H), 5.02 (dd, J = 12.7 and 8.5 Hz, 1H), 

7.26−7.38 (m, 5H), 7.67 (d, J = 13.0 Hz, 1H), 9.04 (d, J = 8.0 Hz, 1H); for cis-isomer: δ 

1.19 (t, J = 7.1 Hz, 3H), 4.12 (q, J = 6.9 Hz, 2H), 4.28 (s, 2H), 4.46 (s, 2H), 5.16 (dd, J 

= 12.5 and 8.2 Hz, 1H), 7.26−7.38 (m, 5H), 7.47 (d, J = 13.0 Hz, 1H), 8.99 (d, J = 8.2 

Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): for the mixture of cis and trans 

isomers: δ 14.01, 49.18, 52.58, 55.84, 59.01, 60.87, 60.93, 102.20, 102.87, 127.40, 

127.92, 128.13, 128.57, 128.66, 135.76, 136.37, 160.83, 161.51, 167.84, 169.45, 188.60. 

MS (EI): m/z (%) : 247 (12) [M
+
], 174 (21), 91 (100), 65 (12). 

H

ON

N

O  

3gs 

3-(4-benzoylpiperazin-1-yl)acrylaldehyde (3gs): 
1
H NMR (495.1 MHz, DMSO-d6, 

TMS): δ 3.38 (brs, 6H), 3.68 (brs, 2H), 5.19 (brs, 1H), 7.39 (d, J = 12.8 Hz, 1H), 

7.43−7.50 (m, 5H), 9.01 (d, J = 8.2 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, 

TMS): δ 40.51, 41.96, 44.68, 45.85, 47.34, 51.98, 101.01, 127.03, 128.51, 129.76, 

135.52, 159.73, 169.31, 188.38. MS (EI): m/z (%) : 190 (13), 134 (22), 122 (14), 105 

(94), 85 (48), 77 (54), 69 (100), 58 (14), 57 (10), 56 (69), 51 (17). 

H

ON

(CH2)6OH  

3gt 

3-(benzyl(6-hydroxyhexyl)amino)acrylaldehyde (3gt, trans:cis = 1:1): 
1
H NMR 

(495.1 MHz, DMSO-d6, TMS): for trans-isomer: δ 1.22−1.31 (m, 4H), 1.34−1.45 (m, 
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4H), 3.34−3.38 (m, 4H), 4.36−4.37 (brs, 1H), 4.53 (s, 2H), 5.05 (dd, J = 12.8 and 8.5 

Hz, 1H), 7.23−7.40 (m, 5H), 7.60 (d, J = 12.7 Hz, 1H), 9.01 (d, J = 8.5 Hz, 1H); for 

cis-isomer: δ 1.22−1.31 (m, 4H), 1.34−1.45 (m, 2H), 1.56 (quin, J = 7.1 Hz, 2H), 3.06 (t, 

J = 7.5 Hz, 2H), 3.34−3.38 (m, 2H), 4.36−4.37 (brs, 1H), 4.44 (s, 2H), 5.10 (dd, J = 

13.0 and 8.5 Hz, 1H), 7.23−7.40 (m, 5H), 7.51 (d, J = 12.8 Hz, 1H), 8.97 (d, J = 8.5 Hz, 

1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): for the mixture of cis and trans 

isomers: δ 25.19, 25.48, 25.81, 26.12, 28.44, 32.41, 47.54, 51.01, 55.44, 58.38, 60.59, 

100.73, 101.44, 127.00, 127.27, 127.79, 128.61, 128.72, 136.33, 137.13, 160.59, 160.70, 

188.21. MS (EI): m/z (%) : 261 (6) [M
+
], 218 (12), 91 (100), 65 (10). 

H

O

N

 

3ah 

3-(butyl(methyl)amino)-3-phenylacrylaldehyde (3ah, cis:trans = 2.8:1): 
1
H NMR 

(495.1 MHz, DMSO-d6, TMS): for cis-isomer: δ 0.67 (brs, 2H), 0.99−1.00 (brs, 2H), 

1.38 (brs, 3H), 2.94−2.98 (m, 5H), 5.20 (d, J = 7.6 Hz, 1H), 7.30 (brs, 2H), 7.48−7.52 

(m, 3H), 8.41 (d, J = 8.5 Hz, 1H); for trans-isomer: δ 0.67 (brs, 2H), 0.99−1.00 (brs, 

2H), 1.62 (brs, 3H), 2.64 (brs, 5H), 5.28 (brs, 1H), 7.30 (brs, 2H), 7.48−7.52 (m, 3H), 

8.41 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): for the mixture 

of cis and trans isomers: δ 13.40, 13.78, 19.06, 19.58, 27.27, 30.00, 37.15, 51.04, 51.68, 

101.60, 102.23, 128.40, 128.80, 129.07, 129.21, 133.70, 134.14, 166.97, 167.44, 188.31. 

MS (EI): m/z (%) : 217 (52) [M
+
], 216 (35), 201 (11), 200 (74), 188 (45), 175 (48), 174 

(54), 160 (35), 158 (44), 156 (11), 146 (30), 144 (20), 133 ("1), 132 (98), 130 (10), 118 

(78), 117 (18), 116 (10), 115 (13), 105 (14), 104 (22), 103 (100), 102 (24), 91 (29), 86 

(15), 77 (74), 72 (40), 58 (12), 55 (10), 51 (14). 
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H

O

NPh

 

3ak 

3-(benzyl(methyl)amino)-3-phenylacrylaldehyde (3ak, cis:trans = 3:1): 
1
H NMR 

(495.1 MHz, DMSO-d6, TMS): for cis-isomer: δ 2.92 (s, 3H), 4.22 (s, 2H), 5.33 (d, J = 

7.4 Hz, 1H), 7.11−7.47 (m, 10H), 8.52 (brs, 1H); for trans-isomer: δ 2.75 (s, 3H), 4.67 

(s, 2H), 5.33 (d, J = 7.4 Hz, 1H), 7.11−7.47 (m, 10H), 8.52 (brs, 1H). 
13

C{
1
H} NMR 

(124.5 MHz, DMSO-d6, TMS): for cis-isomer: δ 37.45, 55.13, 102.83, 126.71, 127.34, 

128.55, 128.70, 129.08, 129.43, 133.52, 136.95, 167.61, 188.81; for trans-isomer: 37.45, 

54.67, 102.83, 126.71, 127.34, 128.55, 128.70, 129.08, 129.43, 133.52, 136.95, 167.61, 

188.81. MS (EI): m/z (%) : 251 (32) [M
+
], 250 (22), 235 (18), 234 (93), 222 (21), 160 

(26), 118 (88), 103 (25), 91 (100), 77 (24), 65 (25). 

O

N

 

5aa 

1-phenyl-3-(pyrrolidin-1-yl)prop-2-en-1-one (5aa): 
1
H NMR (495.1 MHz, DMSO-d6, 

TMS): δ 1.84 (quin, J = 6.6 Hz, 2H), 1.95 (quin, J = 6.8 Hz, 2H), 3.25 (t, J = 6.8 Hz, 

2H), 3.56 (t, J = 6.7 Hz, 2H), 5.73 (d, J = 12.2 Hz, 1H), 7.41−7.44 (m, 2H), 7.46−7.49 

(m, 1H), 7.85−7.89 (m, 3H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 24.70, 

24.82, 46.87, 51.97, 91.86, 127.15, 128.17, 130.73, 140.29, 149.79, 185.58. MS (EI): 

m/z (%) : 201 (100) [M
+
], 202 (15), 200 (17), 184 (22), 172 (55), 132 (27), 131 (19), 

124 (34), 106 (16), 105 (41), 96 (68), 82 (12), 79 (11), 78 (10), 77 (48), 70 (59), 68 (21), 

55 (12), 51 (16). 
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O

N

 

5fa 

1-(pyrrolidin-1-yl)oct-1-en-3-one (5fa): 
1
H NMR (495.1 MHz, DMSO-d6, TMS): δ 

0.85 (t, J = 7.1 Hz, 3H), 1.18−1.31 (m, 4H), 1.48 (quin, J = 7.4 Hz, 2H), 1.82−1.90 (m, 

4H), 2.22 (t, J = 7.4 Hz, 2H), 3.06 (brs, 2H), 3.46 (brs, 2H), 4.87 (d, J = 12.8 Hz, 1H), 

7.65 (d, J = 12.7 Hz, 1H). 
13

C{
1
H} NMR (124.5 MHz, DMSO-d6, TMS): δ 13.89, 22.07, 

24.75, 25.00, 31.25, 46.32, 51.55, 96.46, 147.85, 195.18. MS (EI): m/z (%) : 195 (17) 

[M
+
], 139 (23), 124 (100), 106 (13), 97 (20), 96 (14). 

 

4.3. Results and Discussion 

4.3.1. Characterization of Au/OMS-2 Catalyst 

 Comparison of the XRD patterns of OMS-2 and Au/OMS-2, as shown in Figure 4-3, 

reveals that the structure of OMS-2 remained unchanged after immobilization of gold 

nanoparticles according to the procedure described in section 4.2.2. From the TEM 

images of Au/OMS-2, the average gold particle size was 4.1 nm (Figure 4-4). 

 

Figure 4-3. XRD patterns of (a) Au/OMS-2 and (b) OMS-2. 
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Figure 4-4. TEM image and Au particle size distribution of Au/OMS-2 (average: 4.1 

nm, σ: 1.2 nm). The size distribution was determined using 400 particles. 

 

4.3.2. Optimization of the Reaction Conditions 

 Various supported metal catalysts (such as gold, palladium, ruthenium, rhodium, 

and copper on various supports; given in the format: metal/support) were initially 

subjected to the dehydrogenative amination of cinnamaldehyde (1a) with pyrrolidine 

(2a) to 3-phenyl-3-(1-pyrrolidinyl)-2-propenal (3aa) at 50 ºC in 1 atm of air (Table 4-1). 

No amination proceeded in the absence of catalysts or in the presence of Pd/Al2O3, 

Cu/Al2O3, Ru/Al2O3, and Rh/Al2O3 (Table 4-1, entries 1−4 and 13). Confirmed by a 

separate experiment, the homogeneous palladium-catalyzed system developed by Ishii 

and co-workers was turned out to be inefficient for the amination of α,β-unsaturated 

aldehydes.
[5e,f]

 Specifically, when the amination of 1a with 2a was carried out using a 

combined catalyst of PdCl2(CH3CN)2 (5 mol%)/H5PV2Mo10O40 (1 mol%)/hydroquinone 

system (20 mol%)
[5e,f]

 under the conditions described in Table 4-1 (dimethylformamide 

was used as a solvent instead of THF), 1a was mostly decomposed to benzaldehyde 

(retro-aldol reaction; 18 % yield) and other unidentified byproducts.
[7]

 In contrast, when 
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using Au/Al2O3 as the catalyst, 44 % yield of 3aa was obtained. Among various 

supports examined, such as Al2O3, TiO2, Co3O4, and OMS-2, OMS-2 showed the best 

performance. In this case, the yield of 3aa increased up to 83 % (Table 4-1, entry 8).
[15]

 

When the reaction was carried out under an Ar atmosphere in the presence of 

Au/OMS-2, 52% yield of 3aa was obtained (Table 4-1, entry 9). In sharp contrast, only 

a trace amount of 3aa was obtained when using Au/TiO2 as the catalyst under an Ar 

atmosphere (Table 4-1, entry 10). These results indicate that OMS-2 could function as 

not only a support for gold nanoparticles but also an oxidant for the present amination. 

The oxidation ability of OMS-2 is likely responsible for the high performance of 

OMS-2.
[8]

 A physical mixture of Au/TiO2 and OMS-2 afforded almost the same yield of 

3aa as Au/TiO2 (Table 4-1, entry 11). OMS-2 alone was not effective for the amination 

(Table 4-1, entry 12). Therefore, highly dispersed gold nanoparticles on OMS-2 likely 

play an important role for the present amination.
[16]
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Table 4-1. The amination of cinnamaldehyde (1a) with pyrrolidine (2a) in the presence 

of various catalysts.
[a]

 

 

 

 

Entry  Catalysts  Conv. of 1a [%]  
Yield [%]  

3aa 4aa 

1 Pd/Al2O3 80 <1 1 

2 Cu/Al2O3 85 <1 <1 

3 Ru/Al2O3 78 <1 <1 

4 Rh/Al2O3 80 <1 <1 

5 Au/Al2O3  90 44 1 

6 Au/TiO2  90 41 2 

7 Au/Co3O4  97 69 2 

8 Au/OMS-2  >99 83 4 

9
[b]

 Au/OMS-2 98 52 6 

10
[b]

 Au/TiO2 92 3 4 

11
[c]

 Au/TiO2 + OMS-2 92 37 2 

12 OMS-2 83 <1 <1 

13 None 83 <1 <1 

[a] Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), catalyst (metal: 3.6 mol%), THF (1.9 

mL), H2O (0.1 mL), 50 °C, 1.5 h, air (1 atm). Conversion and yield were determined by GC 

analysis. [b] Ar (1 atm). [c] A physical mixture of Au/TiO2 (3.6 mol%) and OMS-2 (100 mg). 

 

 The presence of small amounts of water could significantly promote the amination. 

However, in the presence of large amounts of water, the corresponding amidation 

byproduct 4aa largely increased (Table 4-2). 
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Table 4-2. Effect of amounts of water on the amination of cinnamaldehyde (1a) with 

pyrrolidine (2a).
[a]

  

 

 

 

[a] Reaction conditions: 1a (0.5 mmol), 2a (2.0 mmol), Au/OMS-2 (Au: 3.6 mol%), 50
 
°C, 1.5 h, 

air (1 atm). [b] 2 h. Conversion and yield were determined by GC analysis. 

 To obtain a high yield of 3aa, at least 2 equiv of 2a were required (Table 4-3). No 

significant improvement of the yield of 3aa was observed even if the amount of 2a was 

increased to 2 equiv with respect to 1a. 

 

Table 4-3. Effect of amounts of pyrrolidine (2a) on the amination of cinnamaldehyde 

(1a) with (2a).
[a] 

 

 

Entry  Amount of 2a [mmol]  Conv. of 1a [%]  
Yield [%]  

3aa 4aa 

1 0.5 78 59 2 

2 1 >99 83 4 

3 1.5 >99 77 3 

4 2 >99 82 2 

[a] Reaction conditions: 1a (0.5 mmol), Au/OMS-2 (Au: 3.6 mol%), THF (1.9 mL), H2O (0.1 

mL), 50
 
°C, 1.5 h, air (1 atm). Conversion and yield were determined by GC analysis. 

Entry  
THF/H2O   

Conv. of 1a [%]  
Yield [%]  

(v/v = mL/mL)  3aa 4aa 

1 2:0 >99 31 Trace 

2 1.95:0.05  99 73 1 

3 1.9:0.1  >99 82 2 

4 1.8:0.2  >99 80 5 

5 1.6:0.4  >99 58 17 

6
[b]

 0:2 >99 21 41 

H

O

H

NH+

1a 2a

Au/OMS-2 (3.6 mol%)

THF (1.9 mL), H2O (0.1 mL)

air (1 atm), 50 oC

1.5 h

O

N H

O

H N

+

3aa 4aa

H

O

H

NH O

N H

O

H N

+ +

1a 2a 3aa 4aa

Au/OMS-2 (3.6 mol%)

THF/H2O

air (1 atm), 50 oC

1.5 h
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 A broad range of solvents could be utilized for the present amination. Among 

various solvents examined, such as tetrahydrofuran (THF), acetonitrile, 

N,N-dimethylformamide (DMF), toluene, dimethylsulfoxide (DMSO), 

N-methylpyrrolidone (NMP), N,N-dimethylacetamide (DMA), 1,4-dioxane, ethanol, 

ethyl acetate, dimethylcarbonate, and 1,2-dichloroethane, tetrahydrofuran (THF) was 

the most effective solvent (Table 4-4). 

 

Table 4-4. Effect of solvents on the amination of cinnamaldehyde (1a) with (2a).
[a] 

 

 

 

Entry  Solvent  Conv. of 1a [%]  
Yield [%]  

3aa 4aa 

1 tetrahydrofuran  >99 83 4 

2 acetonitrile  >99 18 2 

3 N,N-dimethylformamide  >99 73 3 

4
[b]

  toluene  >99 85 1 

5 dimethylsulfoxide  97 48 2 

6 N-methylpyrrolidone  96 72 2 

7 N,N-dimethylacetamide  99 68 3 

8 1,4-dioxane  99 61 1 

9 ethanol  >99 34 8 

10 ethyl acetate  >99 68 6 

11 dimethylcarbonate  >99 66 3 

12 1,2-dichloroethane  >99 54 3 

13
[c]

  tetrahydrofuran  >99 85 8 

[a] Reaction conditions: 1a (0.5 mmol), 2a (1.0 mmol), Au/OMS-2 (Au: 3.6 mol%), solvent (1.9 

mL), H2O (0.1 mL), 50
 
°C, 1.5 h, air (1 atm). Conversion and yields were determined by GC 

analysis. [b] Without addition of H2O, 6 h. [c] 60 °C. 
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4.3.3. Substrate Scope 

 The scope of the present Au/OMS-2-catalyzed amination was investigated using air 

as the terminal oxidant. Under the optimized reaction conditions, a large variety of 

structurally diverse enaminals could be synthesized by using Au/OMS-2 as the catalyst 

(Scheme 4-3). The isolation of the desired enaminal product is very simple (see section 

4-2-3), and the isolated yields are summarized in Scheme 4-3. 

 The amination of various substituted cinnamaldehydes with 2a was efficiently 

proceeded to give the corresponding enaminals (Scheme 4-3, entries 1–5). An aliphatic 

α,β-unsaturated aldehyde also reacted smoothly with 2a, affording 3fa together with a 

moderate yield of an enaminone (5fa) (Scheme 4-3, entry 6). Acrolein, which is 

unstable and readily polymerized or oxidized, could efficiently react with 2a to afford 

the corresponding β-aminoacrolein in a high yield (Scheme 4-3, entry 7). 

α,β-Unsaturated ketones were also good substrates for the present amination, affording 

the corresponding enaminones (Scheme 4-3, entries 8 and 9). 

 Considering the importance of β-aminoacroleins in synthetic organic chemistry,
[1,2]

 

acrolein was mainly employed as a coupling partner for the examination of the scope of 

amines. The amination of acrolein with various aliphatic amines efficiently proceeded to 

give the corresponding β-aminoacroleins (Scheme 4-3, entries 10–18). Benzylic amines 

and aniline derivatives also smoothly reacted with acrolein (Scheme 4-3, entries 19–22). 

The allyl group remained intact when diallyamine was subjected to the present 

amination (Scheme 4-3, entry 23). Amines containing heterocycles, such as furan and 

pyridine, were also excellent amination reagents for acrolein 

(Scheme 4-3, entries 24 and 25). Functionalized amines with ester and amide groups 

were also compatible with the present amination (Scheme 4-3, entries 26 and 27). The 
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amination of acrolein with a secondary amine containing an alcohol functionality also 

proceeded efficiently (Scheme 4-3, entry 28). The combination of 1a with various 

secondary amines also gave the corresponding enaminals (Scheme 4-3, 

entries 29 and 30). 

 It is noticeable that 3aa could also successfully be synthesized in 67% yield starting 

from cinnamylalcohol (6a) by a one-pot sequential procedure of oxidation of 6a 

followed by amination with 2a (Scheme 4-4). In this case, Au/OMS-2 could promote 

both the oxidative dehydrogenation of alcohols and the amination of α,β-unsaturated 

aldehydes. 

 As described above, in the case of the amination of 2-octenal (1f) with 2a, the 

corresponding enaminone 5fa was obtained as a byproduct, which can be regarded as a 

Wacker-type oxidation product. By simply adding amines and water to the reaction 

solution after the Au/OMS-2-catalyzed amination completed, the enaminone products 

were obtained in high yields starting from α,β-unsaturated aldehydes and pyrrolidine. 

Specifically, from the one-pot reaction of 1a and 1f with pyrrolidine, enaminones 5aa 

and 5fa could efficiently be synthesized (Scheme 4-5). This one-pot procedure 

represents the first example of formal Wacker-type oxidation of α,β-unsaturated 

aldehydes.
[15]
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3gm, 88%, 8 h

Entry 13
3ge, 91%, 2 h

Entry 20
3gl, 93%, 2 h

Entry 12
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Entry 14
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3gc, 79%, 2 h

Entry 17
3gi, 77%, 1 h

Entry 18
3gj, 77%, 1 h

Entry 15
3gg, 56%, 4 h

Entry 23
3go, 88%, 14 h

Entry 30[f,h]

3ak, 66%, 5 h
Entry 29[f,g]

3ah, 50%, 5 h
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3gp, 96%, 2.5 h
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Entry 1
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3da, 71%, 1.5 h
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Scheme 4-3. Aerobic dehydrogenative amination of α,β-unsaturated aldehydes. 

Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), Au/OMS-2 (3.6 mol%), THF (1.9 mL), 

H2O (0.1 mL), 50 ºC, air (1 atm). Yields (based on 1) of isolated products are shown. 

Major byproducts were amidation products 4 (<5 % yield, except for 4ea). See section 

4.2.4 for the E/Z ratios of products. [a] 4ea was obtained as an amination byproduct 

(24 % yield). [b] THF (2 mL), without addition of H2O. [c] 5fa (see Scheme 4-5) was 

obtained as a byproduct (28 % yield). [d] 2 (2.0 mmol), THF (1.8 mL), H2O (0.2 mL). 

[e] THF (1.8 mL), H2O (0.2 mL). [f] Toluene (2 mL). [g] 60 ºC. [h] 70 ºC. 
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OH
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i)

3aa, 67% yield

ii)
O

H

 

Scheme 4-4. One-pot synthesis of 3aa from 6a and 2a. Reaction conditions: i) 6a 

(0.5 mmol), Au/OMS-2 (3.6 mol%), toluene (2 mL), 100 ºC, 1 h, O2 (1 atm). Then, 

ii) 2a (1.0 mmol) was added to the reaction mixture followed by stirring at 50 ºC for an 

additional 6 h. Yield was determined by GC analysis. 

 

 

O H
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5fa, 92% yield

5aa, 73% yield

 

Scheme 4-5. One-pot synthesis of enaminones from α,β-unsaturated aldehydes and 2a. 

Reaction conditions: 1 (0.5 mmol), 2a (1.0 mmol), Au/OMS-2 (3.6 mol%), THF 

(1.9 mL), H2O (0.1 mL), 50 ºC, 1.5 h, air (1 atm). Then, the catalyst was filtered off, 

followed by the addition of 2a (2.0 mmol) and H2O (0.1 mL) to the filtrate. For 1a, the 

filtrate was stirred at 60 ºC for an additional 24 h. For 1f, 50 ºC for an additional 3 h. 

Yields (based on 1) of isolated products are shown. 
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4.3.4. Recyclability and Heterogeneous Catalysis of Au/OMS-2 

 In order to verify whether the observed catalysis was truly heterogeneous or not, the 

Au/OMS-2 catalyst was separated by hot filtration, and the reaction was carried out 

with the filtrate under the same reaction conditions described in Table 4-1. In this case, 

the amination of 1a with 2a was completely stopped by removal of the catalyst 

(Figure 4-4, a). In addition, gold and manganese species were barely detected in the 

filtrate (under detection limit: Au: <0.002 %, Mn: <0.00001 %) by inductively coupled 

plasma atomic emission spectroscopic (ICP-AES) analysis. These results indicate that 

the observed catalysis for the present amination is intrinsically heterogeneous.
[16]

  

 After the amination of 1a with 2a, the Au/OMS-2 catalyst could easily be retrieved 

by simple filtration with >97 % recovery, and the retrieved catalyst could be reused at 

least five times for the same reaction without a significant loss of its high catalytic 

performance. Although slight decreases in the reaction rates, for example, 0.20 mM h
−1

 

for the fifth reuse experiment vs. 0.27 mM h
−1

 for the first run with the fresh catalyst, 

were observed, 76 % yield of 3aa was still obtained for 1.5 h even at the fifth reuse 

experiment (Figure 4-4, b, 83% yield for the first run). The average particle size of gold 

was grown to 7.5 nm after the fifth reuse experiment with a wider size distribution (σ = 

3.5 nm) in comparison with fresh Au/OMS-2 (average: 4.1 nm, σ: 1.2 nm) (Figure 4-5). 

In addition, the structure of OMS-2 support was unchanged after the fifth reuse 

experiment (Figure 4-6). Therefore, the slight decrease in the reaction rate and the final 

yield of 3aa is likely due to the growth of the gold nanoparticle size. 
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Figure 4-4. Verification of heterogeneous catalysis and reuse of Au/OMS-2. (a) The 

effect of removal of the Au/OMS-2 catalyst, and (b) the reaction profiles for the catalyst 

reuse experiment. The reaction conditions were the same as those described in Table 3-1. 

GC yields are shown here. 
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Figure 4-5. TEM image and Au particle size distribution of Au/OMS-2 after the fifth 

reuse (average: 7.5 nm, σ: 3.5 nm). The size distribution was determined using 400 

particles. 

 

 

 

 

Figure 4-6. XRD patterns of Au/OMS-2 and OMS-2. (a) Au/OMS-2 after fifth reuse, 

(b) fresh Au/OMS-2, and (c) OMS-2. 
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4.3.5. Reaction Mechanism 

 In the presence of stoichiometric amounts of radical scavengers such as 

2,6-di-tert-butyl-4-methylphenol (BHT) or 2,2,6,6-tetramethylpiperidine 1-oxyl 

(TEMPO), the reaction rate as well as the final yield of 3aa for the amination of 1a with 

2a were almost unchanged (Figure 4-7). This result suggests that radical intermediates 

are not involved in the present amination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7. Effect of radical scavengers on the amination of cinnamaldehyde (1a) with 

pyrrolidine (2a). The reaction conditions were the same as those described in Table 4-1. 

GC yields are shown here. 
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 The 
1
H NMR spectra of 1a and 2a under various conditions are shown in Figure 

4-8. Upon mixing 1a (0.25 M) and 2a (0.5 M) in THF-d8/D2O (19:1), 

1,1'-(3-phenyl-1-propene-1,3-diyl)bis-pyrrolidine derived from 1,2- and 1,4-addition of 

2a to 1a was formed in 87% yield in 10 min.
[18]

 In addition, the amination was 

efficiently proceeded when 1a and 2a had been stirred at room temperature for 0.5 h 

before Au/OMS-2 was added to the reaction solution (Scheme 4-6). These results 

indicate that a diamination intermediate is likely involved in the present amination. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-8. 
1
H NMR spectra of (a) 1a (0.25 M) and 2a (0.5 M) in THF-d8/D2O (19:1), 

(b) 1a (0.25 M) in THF-d8, and (c) 2a (0.5 M) in THF-d8. 
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Scheme 4-6. Sequential synthesis of 3aa from 1a and 2a. 

 

 The reaction profile for the present Au/OMS-2-catalyzed amination indicates that 

the amination proceeds through a β-aminoaldehyde intermediate (aza-Michael addition 

product) (Figure 4-9). In addition, a β-aminoketone, 1-methyl-4-piperidone, can be 

dehydrogenated to afford the corresponding enaminone by using Au/OMS-2 

(Scheme 4-7). Even under Ar atmosphere, the amination can be promoted by 

Au/OMS-2, indicating OMS-2 can facilitate step 2 in Scheme 4-8.
[8b] 
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Figure 4-9. Reaction profile for the reaction of 1g and 2m. The reaction conditions 

were the same as those described in Table 4-1. GC yields are shown here. 
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N

O

Au/OMS-2 (3.6 mol%)

THF (1.9 mL), H2O (0.1 mL)

50 oC, air  (1 atm)

24 h

N

O

Conv.: 44%                                                      Yield: 42% 

Scheme 4-7. Dehydrogenation of 1-methyl-4-piperidone  to 

1-methyl-2,3-dihydropyridin-4(1H)-one  by Au/OMS-2. Reaction conditions: 

1-methyl-4-piperidone (0.5 mmol), Au/OMS-2 (Au: 3.6 mol%), THF (1.9 mL), H2O 

(0.1 mL), 50
 
ºC, 24 h, air (1 atm). Conversion and yield were determined by GC 

analysis. 

 

 The above experimental results suggest that the present Au/OMS-2-catalyzed 

amination of α,β-unsaturated aldehydes likely proceeds via the following several 

sequential reactions; (1) 1,2-addition of a secondary amine to α,β-unsaturated aldehyde 

to give a hemiaminal intermediate A (Scheme 4-8, step 1), (2) dehydration of A to form 

an iminium intermediate B (Scheme 4-8, step 2), (3) 1,4-addition of the secondary 

amine to B to give an enamine intermediate C (Scheme 4-8, step 3) followed by 

isomerization of C to an iminium intermediate D (Scheme 4-8, step 4), and (4) 

oxidative dehydrogenation of D to give an α,β-unsaturated iminium intermediate E 

(Scheme 4-8, step 5) followed by the kinetically favored hydrolytic decomposition of E 

to generate the corresponding enaminal. An alternative pathway, including  (1) 

hydrolytic decomposition of D to a β-aminoaldehyde (Scheme 4-8, step 7) and (2) 

oxidative dehydrogenation of the β-aminoaldehyde promoted by Au/OMS-2 to afford 

the corresponding enaminal (Scheme 4-8, step 8), is also possible. The reaction 

mechanism for the present amination is completely different from that for the traditional 

palladium-catalyzed aza-Wacker oxidation, which is supposed to proceed through 
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migratory insertion of an amine into the palladium-alkene complex, followed by 

β-hydride elimination (Scheme 4-2).
[5e,g,h]

 

 When large amounts of an amine exist in the reaction mixture, the equilibrium in 

step 6 can shift toward E, and resonance between E and E'  (Scheme 4-8, step 9) 

followed by hydrolytic decomposition of E' affords the corresponding enaminone as the 

final thermodynamically favored Wacker-type oxidation product (Scheme 4-8, step 10). 

 The amidation by-product, such as 4aa, can be generated by oxidative 

dehydrogenation of A by Au/OMS-2 (Scheme 4-8, step 11). Upon increasing the 

amount of water, the equilibrium in step 2 can shift to A, which is likely responsible for 

the increase in the amount of the amidation by-product. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4-8. Proposed reaction path for the present Au/OMS-2-catalyzed 

dehydrogenative amination of α,β-unsaturated aldehydes and formal Wacker-type 

oxidation. 
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4.4. Conclusion 

 In summary, the novel synthetic procedure for enaminals by the 

Au/OMS-2-catalyzed heterogeneous dehydrogenative amination of α,β-unsaturated 

aldehydes has successfully been developed. The substrate scope for the present 

amination was very broad with respect to both α,β-unsaturated aldehydes and amines. 

α,β-unsaturated ketones were also good substrates, affording the corresponding 

enaminones. In addition, the first formal Wacker-type oxidation of α,β-unsaturated 

aldehydes has successfully been developed. The present amination provides a 

convenient procedure for synthetically important enaminals and enaminones from the 

readily available starting materials. 
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Chapter 5 
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 and OMS-2 Co-catalyzed Aerobic 

Cross-Dehydrogenative Coupling of 

Terminal Alkynes and Tertiary Amines 
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5.1. Introduction  

 Propargylamines represent a very important class of compounds that have been key 

structural motifs in a number of bioactive compounds.
[1] 

 In addition, they have been 

utilized for the synthesis of nitrogen-containing compounds such as pyrazines, oxazoles, 

and pyrroles.
[2] 
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Scheme 5-1.  Synthesis of propargylamines (X = Cl, Br; M = Li, Mg; LG = leaving 

group).
[3–7]

 

 

 Various synthetic procedures for propargyl amines have been developed, and the 

most widely utilized procedures are (1) nucleophilic substitution of propargyl halides 

with amines (Scheme 5-1, a)
[3]

 or of α-substituted tertiary amines with metal acetylide 

reagents (Scheme 5-1, b),
[4]

 (2) metal-catalyzed nucleophilic addition of terminal 

alkynes to iminium species generated in situ by dehydrative condensation of aldehydes 

and amines (Scheme 5-1, c),
[5]

 and (3) cross-dehydrogenative coupling
[6]

 of terminal 
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alkynes and tertiary amines (Scheme 5-1, d).
[7]

 Among them, procedure (d), which 

proceeds through C–H bond activation and subsequent C–C bond formation, has 

become promising for the synthesis of propargylamines due to its high synthetic 

efficiency and environmentally benign nature. 

 To date, various copper-,
[7a–i]

 iron-,
[7j,k]

 or silver-catalyzed
[7l]

 systems for procedure 

(d) have been developed. However, these systems have a drawback of the requirement 

of at least stoichiometric amounts of organic oxidants such as t-BuOOH, (t-BuO)2, 

N-bromosuccinimide, and diethyl azodicarboxylate, which results in the generation of a 

large amount of wastes during the reaction. Photoredox systems have also been applied 

to this type of reaction and shown high catalytic performance. For these systems, 

however, the scope of amines is typically limited to only tetrahydroisoquinoline 

derivatives.
[7m–o]

 Therefore, the development of new catalyst systems for the 

cross-dehydrogenative coupling of terminal alkynes and tertiary amines, which have a 

wide substrate scope and utilize naturally abundant and environmentally benign 

molecular oxygen as the terminal oxidant, is highly desirable. 

 In line with the resarch on the aerobic cross-dehydrogenative couplings described in 

the previous chapters, the target of this chapter is the development of a novel catalyst 

system for the synthesis of propargylamines by employing the cross-dehydrogenative 

coupling strategy using molecular oxygen as the terminal oxidant. The strategy to achieve 

the target reaction is (1) to find a catalyst which can form a metal acetylide species from a 

terminal alkyne, and (2) to discover an oxidant that can promote the formation of an 

electrophilic iminium species from a tertiary amine and that can readily be reoxidized by 

molecular oxygen. Recently, an OMS-2-promoted aerobic oxidative α-cyanation of 

tertiary amines has successfully been developed by Mizuno and co-workers.
[8] 

This 
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reaction possibly proceeds through the formation of iminium intermediates by the 

step-by-step two-electron oxidation of tertiary amines by OMS-2.
[8]

 Thus, it is envisioned 

that an appropriate metal source, which can generate metal acetylide species as described 

above, in combination with OMS-2 would promote the cross-dehydrogenative coupling of 

terminal alkynes and tertiary amines through nucleophilic addition of the metal acetylide 

species to the iminium intermediates. 

 In this chapter, the aerobic cross-dehydrogenative coupling of terminal alkynes and 

tertiary amines to propargylamines co-catalyzed by ZnBr2 and OMS-2 (Scheme 5-1, e) 

is described. Zinc-based catalysts are versatile in nucleophilic addition of alkynes to 

various electrophiles, such as aldehydes and nitrons (Scheme 5-2).
[9]

 By using the 

present ZnBr2 and OMS-2 co-catalyzed system, various kinds of propargylamines can 

successfully be synthesized. In this reaction, molecular oxygen can be used as the 

terminal oxidant, and OMS-2 can be reused several times. 
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Scheme 5-2.  Zinc-catalyzed nucleophilic addition of alkynes to electrophiles.
[9]
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5.2. Experimental Section 

5.2.1. General 

 GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped 

with an Rxi-5 Sil capillary column. GC-MS spectra were recorded on Shimadzu 

GCMS-QP2010 equipped with an InertCap 5 capillary column at an ionization voltage of 

70 eV. Liquid-state NMR spectra were recorded on JEOL JNM-ECA-500. 
1
H and 

13
C NMR spectra were measured at 500.2 and 125.8 MHz, respectively, using 

tetramethylsilane (TMS) as an internal reference (δ = 0 ppm). OMS-2 (BET surface area: 

90 m
2 
g

–1
) was prepared according to the literature procedures.

[10]
 Activated MnO2 (Cat. 

No. 217646-5G, for organic oxidations, Aldrich), β-MnO2 (BET surface area: 36 m
2
g

–1
, 

Cat. No. 133-09681, Wako) were commercially available. Solvents and substrates were 

obtained from Kanto Chemical, TCI, Wako, or Aldrich (reagent grade), and purified prior 

to the use (if required).
[11]

 

 

5.2.2. Typical Procedure for the Cross-Coupling of Terminal Alkynes and 

Tertiary Amines 

 Into a Pyrex glass reactor (volume: ca. 20 mL) were successively placed ZnBr2 

(11.3 mg, 0.05 mmol), OMS-2 (100 mg), an alkyne (1) (1 mmol), a tertiary amine (2) 

(2 mmol), cyclopentylmethylether (CPME) (2 mL), and a Teflon-coated magnetic stir 

bar, and the reaction mixture was purged with oxygen gas, and then vigorously stirred at 

100 °C. After the reaction was completed, an internal standard (diphenyl) was added to 

the reaction mixture, and the conversion of 1 and 2 and the product yield were 

determined by GC analysis. As for isolation of the propargylamine product, the internal 

standard was not added. After the reaction, OMS-2 was filtered off (>97 % recovery), 
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and then the filtrate was concentrated by evaporation of CPME. The crude product was 

subjected to column chromatography on silica gel (typically using n-hexane/diethylether 

as the eluent), giving the pure propargylamines. The products were identified by 

GC-MS and NMR (
1
H and 

13
C) analyses.  

 

5.2.3. Reuse Experiment of OMS-2 

 The cross-coupling of phenylacetylene (1a) and N,N-dimethylcyclohexylamine (2a) 

to N-methyl-N-(3-phenylprop-2-yn-1-yl)cyclohexylamine (3aa) was carried out with 

fresh OMS-2 as the above-described experimental procedure. After the reaction, OMS 

was retrieved by filtration, washed with acetone and water, and then calcined at 300 °C 

for 2 h. Into a Pyrex glass reactor (volume: ca. 20 mL) were successively placed ZnBr2 

(11.3 mg, 0.05 mmol), the retrieved OMS-2 (100 mg), 1a (1 mmol), 2a (2 mmol), 

CPME (2 mL), and a Teflon-coated magnetic stir bar, and the reaction mixture was 

purged with oxygen gas, and then vigorously stirred at 100 °C for 8 h. After the reaction 

was completed, the internal standard (diphenyl) was added to the reaction mixture, and 

the conversion of 1a and 2a and the yield of 3aa were determined by GC analysis. The 

reuse experiments were repeated 3 times. 

 

5.2.4. Spectral Data of Propargylamines 

N

 

3aa 

N-methyl-N-(3-phenylprop-2-yn-1-yl)cyclohexanamine (3aa): 
1
H NMR (500.2 MHz, 

CDCl3, TMS): δ 1.09−1.32 (m, 5H), 1.60−1.64 (m, 1H), 1.78−1.81 (m, 2H), 1.95−1.98 

(m, 2H), 2.41−2.46 (m, 4H), 3.63 (s, 2H), 7.27−7.31 (m, 3H), 7.41−7.44 (m, 2H). 
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13
C{

1
H} NMR (125.8 MHz, CDCl3, TMS): δ 25.67, 26.23, 29.96, 38.68, 43.82, 61.16, 

84.92, 85.80, 123.58, 127.98, 128.32, 131.78. MS (EI): m/z (%) : 227 (11) [M
+
], 184 

(19), 171 (29), 170 (35), 116 (33), 115 (100), 94 (43), 89 (11), 82 (10), 70 (21), 68 (27), 

55 (18).  

N

 

3ba 

N-methyl-N-(3-(o-tolyl)prop-2-yn-1-yl)cyclohexanamine (3ba): 
1
H NMR (500.2 

MHz, CDCl3, TMS): δ 1.10−1.31 (m, 5H), 1.60−1.63 (m, 1H), 1.78−1.80 (m, 2H), 

1.98−2.00 (m, 2H), 2.43−2.48 (m, 7H), 3.70 (s, 2H), 7.10−7.14 (m, 1H), 7.17−7.21 (m, 

2H), 7.39 (t, J = 7.5 Hz, 1H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 21.02, 25.63, 

26.22, 30.16, 38.90, 44.00, 60.92, 83.91, 89.48, 123.42, 125.58, 127.99, 129.46, 132.12, 

140.10. MS (EI): m/z (%) : 241 (29) [M
+
], 240 (12), 199 (11), 198 (42), 185 (63), 184 

(64), 170 (16), 158 (11), 150 (15), 130 (18), 129 (100), 128 (95), 127 (38), 115 (19), 

104 (25), 94 (68), 77 (11), 68 (15), 55 (17). 

N

 

3ca 

N-methyl-N-(3-(m-tolyl)prop-2-yn-1-yl)cyclohexanamine (3ca): 
1
H NMR (500.2 

MHz, CDCl3, TMS): δ 1.09−1.32 (m, 5H), 1.60−1.64 (m, 1H), 1.77−1.81 (m, 2H), 

1.95−1.97 (m, 2H), 2.32 (s, 3H), 2.40−2.46 (m, 4H), 3.63 (s, 2H), 7.09 (d, J = 7.5 Hz, 

1H), 7.18 (t, J = 7.5 Hz, 1H), 7.22−7.26 (m, 2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, 

TMS): δ 21.30, 25.65, 26.23, 29.98, 38.68, 43.81, 61.10, 85.08, 85.34, 123.37, 128.22, 

128.84, 128.86, 132.35, 137.96. MS (EI): m/z (%) : 241 (24) [M
+
], 198 (31), 185 (52), 
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184 (61), 158 (11), 150 (12), 130 (22), 129 (100), 128 (35), 127 (16), 115 (18), 94 (76), 

68 (14), 55 (13). 

 

N

 

3da 

N-methyl-N-(3-(p-tolyl)prop-2-yn-1-yl)cyclohexanamine (3da): 
1
H NMR (500.2 

MHz, CDCl3, TMS): δ 1.09−1.31 (m, 5H), 1.60−1.63 (m, 1H), 1.77−1.80 (m, 2H), 

1.95−1.97 (m, 2H), 2.33 (s, 3H), 2.40−2.46 (m, 4H), 3.61 (s, 2H), 7.09 (d, J = 8.0 Hz, 

2H), 7.31 (d, J = 8.0 Hz, 2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 21.50, 25.66, 

26.22, 29.93, 38.64, 43.82, 61.13, 84.95, 84.98, 120.49, 129.05, 131.63, 137.98. MS 

(EI): m/z (%) : 241 (23) [M
+
], 198 (26), 185 (46), 184 (56), 170 (10), 158 (11), 150 (10), 

130 (19), 129 (100), 128 (36), 127 (16), 115 (14), 94 (70), 68 (11), 55 (12). 

N

MeO

 

3ea 

N-(3-(3-methoxyphenyl)prop-2-yn-1-yl)-N-methylcyclohexanamine (3ea): 
1
H NMR 

(500.2 MHz, CDCl3, TMS): δ 1.09−1.32 (m, 5H), 1.60−1.64 (m, 1H), 1.78−1.81 (m, 

2H), 1.95−1.97 (m, 2H), 2.40−2.46 (m, 4H), 3.62 (s, 2H), 3.79 (s, 3H), 6.85 (ddd, J = 

8.5, 2.5 and 1.0 Hz, 1H), 6.96 (dd, J = 2.5 and 1.5 Hz, 1H), 7.02 (dt, J = 7.5 and 1.0 Hz, 

1H), 7.20 (t, J = 8.0 Hz, 1H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 25.66, 26.22, 

29.94, 38.68, 43.80, 55.34, 61.18, 84.81, 85.72, 114.47, 116.74, 124.32, 124.57, 129.37, 

159.37. MS (EI): m/z (%) : 257 (37) [M
+
], 256 (12), 215 (10), 214 (34), 201 (66), 200 

(68), 174 (12), 150 (16), 146 (27), 145 (98), 115 (24), 107 (10), 103 (15), 102 (25), 95 

(10), 94 (100), 77 (10), 68 (18), 55 (17). 
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N

F
 

3fa 

N-(3-(4-fluorophenyl)prop-2-yn-1-yl)-N-methylcyclohexanamine (3fa): 
1
H NMR 

(500.2 MHz, CDCl3, TMS): δ 1.09−1.32 (m, 5H), 1.59−1.64 (m, 1H), 1.78−1.81 (m, 

2H), 1.94−1.96 (m, 2H), 2.39−2.45 (m, 4H), 3.61 (s, 2H), 6.98 (tt, J = 8.5 and 2.0 Hz, 

2H), 7.37−7.41 (m, 2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 25.65, 26.22, 

29.91, 38.63, 43.76, 61.23, 83.79, 85.54, 115.53 (d, J = 21.6 Hz), 119.64 (d, J = 3.5 Hz), 

133.58 (d, J = 8.3 Hz), 162.37 (d, J = 249.6 Hz). MS (EI): m/z (%) : 245 (16) [M
+
], 202 

(22), 189 (37), 188 (46), 134 (20), 133 (100), 94 (51), 68 (12), 55 (11). 

N

Cl
 

3ga 

N-(3-(4-chlorophenyl)prop-2-yn-1-yl)-N-methylcyclohexanamine (3ga): 
1
H NMR 

(500.2 MHz, CDCl3, TMS): δ 1.09−1.31 (m, 5H), 1.60−1.63 (m, 1H), 1.78−1.81 (m, 

2H), 1.93−1.95 (m, 2H), 2.39−2.44 (m, 4H), 3.61 (s, 2H), 7.26 (dt, J = 8.5 and 2.0 Hz, 

2H), 7.34 (dt, J = 9.0 and 2.0 Hz, 2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 

25.63, 26.20, 29.89, 38.64, 43.78, 61.24, 83.77, 86.98, 122.04, 128.62, 132.97, 133.95. 

MS (EI): m/z (%) : 261 (21) [M
+
], 220 (11), 218 (32), 207 (18), 206 (26), 205 (52), 204 

(62), 178 (10), 170 (14), 152 (10), 151 (35), 150 (33), 149 (100), 115 (27), 114 (27), 

113 (13), 94 (100), 68 (17), 55 (20).  

N

Br
 

3ha 

N-(3-(4-bromophenyl)prop-2-yn-1-yl)-N-methylcyclohexanamine (3ha): 
1
H NMR 

(500.2 MHz, CDCl3, TMS): δ 1.09−1.31 (m, 5H), 1.60−1.64 (m, 1H), 1.78−1.81 (m, 
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2H), 1.93−1.95 (m, 2H), 2.38−2.44 (m, 4H), 3.60 (s, 2H), 7.27 (dt, J = 8.5 and 2.0 Hz, 

2H), 7.42 (dt, J = 9.0 and 2.0 Hz, 2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 

25.64, 26.21, 29.90, 38.65, 43.80, 61.26, 83.85, 87.22, 122.14, 122.52, 131.56, 133.23. 

MS (EI): m/z (%) : 307 (19), 306 (9) [M
+
], 305 (20), 264 (23), 262 (23), 251 (45), 250 

(52), 249 (47), 248 (48), 196 (16), 195 (53), 194 (15), 193 (53), 183 (10), 182 (12), 170 

(17), 169 (12), 150 (18), 115 (36), 114 (42), 113 (16), 94 (100), 88 (12), 70 (10), 68 (22), 

55 (20). 

N

 

3ia 

N-methyl-N-(3-(naphthalen-1-yl)prop-2-yn-1-yl)cyclohexanamine (3ia): 
1
H NMR 

(500.2 MHz, CDCl3, TMS): δ 1.11−1.34 (m, 5H), 1.61−1.64 (m, 1H), 1.79−1.82 (m, 

2H), 2.02−2.04 (m, 2H), 2.50−2.56 (m, 4H), 3.80 (s, 2H), 7.38−7.41 (m, 1H), 7.47−7.51 

(m, 1H), 7.53−7.57 (m, 1H), 7.65 (dd, J = 7.0 and 1.0 Hz, 1H), 7.78 (d, J = 8.5 Hz, 1H), 

7.82 (d, J = 8.0 Hz, 1H), 8.35 (d, J = 8.5 Hz, 1H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, 

TMS): δ 25.63, 26.22, 30.16, 39.00, 44.14, 61.08, 83.06, 90.65, 121.28, 125.30, 126.35, 

126.38, 126.69, 128.33, 128.42, 130.48, 133.28, 133.53. MS (EI): m/z (%) : 277 (20) 

[M
+
], 234 (18), 221 (31), 220 (38), 166 (19), 165 (100), 164 (20), 163 (14), 94 (41), 68 

(11). 

N

F3C
 

3ja 

N-methyl-N-(3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)cyclohexanamine (3ja): 

1
H NMR (500.2 MHz, CDCl3, TMS): δ 1.10−1.32 (m, 5H), 1.61−1.64 (m, 1H), 
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1.79−1.82 (m, 2H), 1.94−1.97 (m, 2H), 2.40−2.46 (m, 4H), 3.64 (s, 2H), 7.51−7.56 (m, 

4H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 25.65, 26.20, 29.92, 38.68, 43.79, 

61.35, 83.69, 88.77, 124.07 (q, J = 272.0 Hz), 125.26 (q, J = 4.8 Hz), 127.41, 129.79 (q, 

J = 98.5 Hz), 132.01. MS (EI): m/z (%) : 295 (26) [M
+
], 253 (13), 252 (52), 240 (11), 

239 (83), 238 (90), 212 (12), 184 (16), 183 (97), 182 (13), 150 (15), 133 (19), 115 (12), 

94 (100), 68 (12), 55 (17). 

N

N  

3ka 

N-methyl-N-(3-(pyridin-3-yl)prop-2-yn-1-yl)cyclohexanamine (3ka): 
1
H NMR 

(500.2 MHz, CDCl3, TMS): δ 1.10−1.32 (m, 5H), 1.61−1.64 (m, 1H), 1.79−1.82 (m, 

2H), 1.94−1.96 (m, 2H), 2.40−2.46 (m, 4H), 3.64 (s, 2H), 7.21−7.24 (m, 1H), 7.70 (dt, J 

= 8.0 and 2.0 Hz, 1H), 8.50 (dd, J = 5.0 and 2.0 Hz, 1H), 8.66 (d, J = 1.5 Hz, 1H). 

13
C{

1
H} NMR (125.8 MHz, CDCl3, TMS): δ 25.58, 26.14, 29.85, 38.62, 43.75, 61.26, 

81.56, 89.55, 120.62, 122.95, 138.57, 148.35, 152.48. MS (EI): m/z (%) : 228 (25) [M
+
], 

186 (12), 185 (53), 173 (11), 172 (82), 171 (89), 150 (17), 145 (14), 144 (10), 130 (12), 

119 (10), 117 (35), 116 (100), 94 (100), 90 (13), 89 (46), 82 (11), 70 (15), 68 (31), 63 

(28), 55 (28). 

N
S

 

3la 

N-methyl-N-(3-(thiophen-3-yl)prop-2-yn-1-yl)cyclohexanamine (3la): 
1
H NMR 

(500.2 MHz, CDCl3, TMS): δ 1.09−1.31 (m, 5H), 1.60−1.63 (m, 1H), 1.77−1.81 (m, 

2H), 1.93−1.96 (m, 2H), 2.39−2.45 (m, 4H), 3.60 (s, 2H), 7.09 (dd, J = 5.0 and 1.0 Hz, 

1H), 7.23 (dd, J = 5.0 and 2.8 Hz, 1H), 7.39 (d, J = 3.0 Hz, 1H). 
13

C{
1
H} NMR (125.8 



 

202 

 

MHz, CDCl3, TMS): δ 25.65, 26.23, 29.90, 38.63, 43.81, 61.16, 79.87, 85.42, 122.55, 

125.16, 128.28, 130.13. MS (EI): m/z (%) : 233 (20) [M
+
], 190 (25), 177 (45), 176 (60), 

150 (17), 122 (29), 121 (100), 94 (45), 82 (10), 77 (19), 70 (12), 68 (25), 55 (20). 

N

 

3ma 

N-(3-(cyclohex-1-en-1-yl)prop-2-yn-1-yl)-N-methylcyclohexanamine (3ma): 
1
H 

NMR (500.2 MHz, CDCl3, TMS): δ 1.08−1.30 (m, 5H), 1.55−1.65 (m, 5H), 1.75−1.79 

(m, 2H), 1.90−1.93 (m, 2H), 2.06−2.13 (m, 4H), 2.33−2.39 (m, 4H), 3.51 (s, 2H), 

6.04−6.06 (m, 1H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 21.62, 22.41, 25.60, 

26.18, 29.53, 29.89, 38.49, 43.68, 60.93, 82.62, 86.70, 120.77, 133.90. MS (EI): m/z 

(%) : 232 (10), 231 (61) [M
+
], 230 (16), 202 (10), 189 (20), 188 (69), 176 (14), 175 (97), 

174 (72), 160 (34), 150 (18), 148 (22), 147 (22), 146 (37), 134 (12), 133 (12), 132 (29), 

120 (30), 119 (35), 118 (12), 117 (22), 115 (15), 112 (10), 108 (16), 107 (11), 105 (15), 

104 (10), 103 (12), 95 (15), 94 (79), 93 (13), 92 (22), 91 (100), 87 (10), 82 (19), 81 (48), 

79 (33), 78 (15), 77 (31), 70 (36), 68 (33), 67 (12), 65 (24), 57 (10), 55 (35), 53 (12), 51 

(11). 

N

Cl

 

3na 

N-(7-chlorohept-2-yn-1-yl)-N-methylcyclohexanamine (3na): 
1
H NMR (500.2 MHz, 

CDCl3, TMS): δ 1.07−1.29 (m, 5H), 1.59−1.69 (m, 3H), 1.76−1.79 (m, 2H), 1.88−1.93 

(m, 4H), 2.25 (tt, J = 7.0 and 2.0 Hz, 2H), 2.31−2.37 (m, 4H), 3.36 (t, J = 2.0 Hz, 2H), 

3.56 (t, J = 7.0 Hz, 2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 18.16, 25.67, 

26.13, 26.22, 29.79, 31.69, 38.45, 43.33, 44.63, 60.97, 76.65, 83.88. MS (EI): m/z (%) : 
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241 (15) [M
+
], 206 (14), 200 (14), 198 (42), 185 (11), 184 (23), 164 (40), 150 (45), 148 

(20), 122 (10), 120 (11), 109 (12), 108 (100), 107 (15), 95 (22), 94 (35), 91 (12), 82 (26), 

81 (13), 79 (12), 77 (14), 70 (17), 68 (25), 67 (17), 65 (11), 55 (29), 54 (14), 53 (15). 

N

 

3ab 

N-benzyl-N-methyl-3-phenylprop-2-yn-1-amine (3ab): 
1
H NMR (500.2 MHz, CDCl3, 

TMS): δ 2.40 (s, 3H), 3.51 (s, 2H), 3.64 (s, 2H), 7.26 (tt, J = 7.0 and 2.0 Hz, 1H), 

7.28−7.33 (m, 5H), 7.36−7.38 (m, 2H), 7.45−7.48 (m, 2H). 
13

C{
1
H} NMR (125.8 MHz, 

CDCl3, TMS): δ 42.12, 45.89, 60.40, 84.60, 85.81, 123.46, 127.32, 128.12, 128.39, 

128.44, 129.35, 131.85, 138.62. MS (EI): m/z (%) : 235 (25) [M
+
], 234 (31), 158 (43), 

144 (26), 118 (10), 116 (15), 115 (100), 92 (10), 91 (60), 89 (12), 65 (16). 

N n-Bu

 

3ac 

N-methyl-N-(3-phenylprop-2-yn-1-yl)butan-1-amine (3ac): 
1
H NMR (500.2 MHz, 

CDCl3, TMS): δ 0.93 (t, J = 7.3 Hz, 3H), 1.36 (sext, J = 7.4 Hz, 2H), 1.45−1.51 (m, 2H), 

2.36 (s, 3H), 2.45−2.49 (m, 2H), 3.54 (s, 2H), 7.26−7.31 (m, 3H), 7.41−7.45 (m, 2H). 

13
C{

1
H} NMR (125.8 MHz, CDCl3, TMS): δ 14.11, 20.70, 29.91, 42.08, 46.52, 55.83, 

84.74, 85.27, 123.45, 127.98, 128.29, 131.76. MS (EI): m/z (%) : 201 (3) [M
+
], 158 (54), 

116 (11), 115 (100). 

N n-Oct

 

3ad 
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N-methyl-N-(3-phenylprop-2-yn-1-yl)octan-1-amine (3ad): 
1
H NMR (500.2 MHz, 

CDCl3, TMS): δ 0.88 (t, J = 7.0 Hz, 3H), 1.27−1.31 (m, 10H), 1.49 (quin, J = 7.3 Hz, 

2H), 2.36 (s, 3H), 2.45−2.48 (m, 2H), 3.54 (s, 2H), 7.27−7.30 (m, 3H), 7.41−7.45 (m, 

2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 14.21, 22.77, 27.62, 27.80, 29.39, 

29.67, 31.97, 42.13, 46.54, 56.21, 84.77, 85.31, 123.49, 128.02, 128.31, 131.81. MS 

(EI): m/z (%) : 257 (3) [M
+
], 159 (11), 158 (86), 116 (11), 115 (100). 

N

 

3ae 

N,N-diisopropyl-3-phenylprop-2-yn-1-amine (3ae): 
1
H NMR (500.2 MHz, CDCl3, 

TMS): δ 1.15 (d, J = 6.5 Hz, 12H), 3.25 (sep, J = 6.5 Hz, 2H), 3.65 (s, 2H), 7.24−7.29 

(m, 3H), 7.37−7.42 (m, 2H). 
13

C{
1
H} NMR (125.8 MHz, CDCl3, TMS): δ 20.79, 34.91, 

48.62, 83.57, 89.20, 123.95, 127.78, 128.28, 131.53. MS (EI): m/z (%) : 215 (5) [M
+
], 

200 (50), 116 (16), 115 (100). 

N

 

3af 

N-methyl-N-(3-phenylprop-2-yn-1-yl)aniline (3af): MS (EI): m/z (%) : 222 (14), 221 

(81) [M
+
], 220 (69), 144 (22), 116 (12), 115 (100), 106 (11), 104 (18), 89 (15), 77 (32), 

63 (10), 51 (12). 

 

5.3. Results and Discussion 

5.3.1. Optimization of the Reaction Conditions 

 Initially, the optimization of the reaction conditions for the cross-dehydrogenative 

coupling of phenylacetylene (1a) and N,N-dimethylcyclohexylamine (2a) to 
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N-methyl-N-(3-phenylprop-2-yn-1-yl)cyclohexanamine (3aa) was carried out using 1 

atm of molecular oxygen as the terminal oxidant. Among various zinc catalysts 

examined, such as ZnCl2, Zn(OTf)2 (OTf = triflate), ZnF2, ZnI2, and ZnBr2 in toluene 

(Table 5-1, entries 1–5), ZnBr2 in combination with OMS-2 most effectively promoted 

the reaction, giving 3aa in 59 % yield (Table 5-1, entry 5). In this case, 2a was 

exclusively alkynylated at the methyl position without the methine alkynylation. The 

cross-coupling with other metal catalysts, such as InCl3, NiCl2·6H2O, FeCl3, 

CuCl2·2H2O, CoCl2, and MgCl2, gave lower yields of 3aa (Table 5-1, entries 6–11). 

In the case of CuCl2·2H2O as the catalyst, a significant amount of 

1,4-diphenylbutadiyne derived from the Glaser–Hay homo-coupling of 1a was 

generated as a byproduct (Table 5-1, entry 9, see also chapter 1). When the solvent was 

changed from toluene to cyclopentylmethylether (CPME), the yield of 3aa increased to 

85% (Table 5-1, entry 12, Table 5-2). Both ZnBr2 and OMS-2 were indispensible for the 

present cross-coupling. The reaction hardly proceeded in the absence of ZnBr2 or 

OMS-2 (Table 5-1, entries 14 and 16). The cross-coupling under 1 atm of Ar gave only 

16% yield of 3aa, which suggests that molecular oxygen is the terminal oxidant 

(Table 5-1, entry 13). The present cross-coupling was significantly suppressed by a 

radical scavenger, dibutylhydroxytoluene (BHT), which indicates that the reaction 

proceeds through radical intermediates (Table 5-1, entry 15). 

 Examination on the solvent effects showed that CPME was superior to other 

solvents, such as trifluorotoluene, N-methylpyrrolidone, dimethylformamide, 

dimethylacetamide, 1,4-dioxane, dimethylsulfoxide, and diethylcarbonate (Table 5-2). 

 OMS-2 was more active than the commercially available activated MnO2 and 

β-MnO2 (Table 5-3, entries 1–3). t-BuOOH was not effective for the present 
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cross-coupling (Table 5-3, entry 4). 

 

Table 5-1. The cross-dehydrogenative coupling of phenylacetylene (1a) and 

N,N-dimethylcyclohexylamine (2a) with various metal catalysts.
[a] 

 

 

 

Entry Catalyst 
Conv. [%] 

Yield of 3aa [%] 
1a 2a 

1 ZnCl2 61 36 51 

2 Zn(OTf)2 24 32 8 

3 ZnF2 12 23 1 

4 ZnI2 29 29 4 

5 ZnBr2 72 43 59 

6 InCl3 37 29 24 

7 NiCl2·6H2O 21 22 7 

8 FeCl3 23 28 8 

9
[b]

 CuCl2·2H2O 98 41 37 

10 CoCl2 58 37 43 

11 MgCl2 23 28 7 

12
[c]

 ZnBr2 95 56 85 

13
[c,d]

 ZnBr2 28 8 16 

14
[c,e]

 ZnBr2 8 2 1 

15
[c,f]

 ZnBr2 68 11 14 

16
[c]

 none 10 23 <1 

[a] Reaction conditions: catalyst (metal: 5 mol%), OMS-2 (100 mg), 1a (1.0 mmol), 2a (2.0 

mmol), toluene (2 mL), 100 °C, O2 (1 atm), 4.5 h. Conversion and yield were determined by GC 

analysis. [b] 1,4-Diphenylbutadiyne was formed in 43% yield. [c] CPME (2 mL), 8 h. [d] Ar (1 

atm). [e] Without OMS-2. [f] BHT (2.0 mmol). 

 

 

 

 

 

N
H

N
+ + H2O

1a (1.0 mmol)               2a (2 equiv)                                                     3aa

O2 (1 atm)

catalyst, OMS-2
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Table 5-2.  Effect of solvents on the cross-dehydrogenative coupling of phenylacetylene 

(1a) and N,N-dimethylcyclohexylamine (2a).
[a]

 

 

 

 

Entry Solvent 
Conv. [%] 

Yield of 3aa [%] 
1a 2a 

1 toluene 87 54 68 

2 PhCF3 93 55 76 

3 N-methylpyrrolidone 71 74 44 

4 N,N-dimethylformamide 77 75 49 

5 N,N-dimethylacetamide 79 63 58 

6 1,4-dioxane 54 37 39 

7 dimethylsulfoxide 81 77 48 

8 cyclopentylmethylether 95 56 85 

9 diethylcarbonate 92 67 73 

[a] Reaction conditions: ZnBr2 (5 mol%), OMS-2 (100 mg), 1a (1.0 mmol), 2a (2.0 mmol), 

solvent (2 mL), 100 °C, O2 (1 atm), 8 h. Conversion and yield were determined by GC analysis. 

 

Table 5-3.  Effect of oxidants on the cross-dehydrogenative coupling of 

phenylacetylene (1a) and N,N-dimethylcyclohexylamine (2a).
[a]

 

 

 

 

Entry Oxidant 
Conv. [%] 

Yield of 3aa [%] 
1a 2a 

1 OMS-2/O2 95 56 85 

2 Activated MnO2
[b]

/O2 6 <1 1 

3 β-MnO2/O2 48 26 38 

4 TBHP
[c]

/O2 6 15 1 

[a] Reaction conditions: ZnBr2 (5 mol%), oxidant (100 mg), 1a (1.0 mmol), 2a (2.0 mmol), 

CPME (2 mL), 100 °C, O2 (1 atm), 8 h. Conversion and yield were determined by GC analysis. 

[b] Commercially available. [c] 1.0 mmol of 70 % TBHP in water was utilized. 

N
H

N
+ + H2O

1a (1.0 mmol)               2a (2 equiv)                                                     3aa

solvent

ZnBr2, OMS-2

N
H

N
+ + H2O

1a (1.0 mmol)               2a (2 equiv)                                                     3aa

oxidant

ZnBr2
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5.3.2. Substrate Scope 

 The substrate scope for the present ZnBr2 and OMS-2 co-catalyzed 

cross-dehydrogenative coupling of terminal alkynes and tertiary amines was 

investigated using molecular oxygen as the terminal oxidant. Various structurally 

diverse propargylamines could be synthesized from terminal alkynes and tertiary amines 

by employing the present catalyst system (Scheme 5-3). The isolation of the 

propargylamine products was very simple, and the isolated yields are summarized in 

Scheme 5-3. 

 Aromatic alkynes with electron-donating or -withdrawing substituents were all 

good coupling partners of 2a to afford the corresponding propargylamines (Scheme 5-3, 

entries 1–10). The cross-couplings of 2-, 3-, and 4-ethynyltoluenes with 2a were almost 

equally effective, which indicates that the steric effect of substituents on aromatic rings 

is negligible in the present system (Scheme 5-3, entries 2–4). Halo-substituted aromatic 

alkynes also reacted smoothly with 2a without dehalogenation, which allows further 

derivatization of these propargylamines using halo-functionalities (Scheme 5-3, 

entries 6–8). Alkynes containing heterocycles, such as 3-ethynylthiophene and 

3-ethynylpyridine, were also applicable to the present cross-coupling (Scheme 5-3, 

entries 11 and 12). In addition, an enyne could efficiently react with 2a to give the 

corresponding propargylamines (Scheme 5-3, entry 13). Apart from aromatic alkynes, 

an aliphatic one could also act as the coupling partner, although the desired product was 

obtained in a low yield (Scheme 5-3, entry 14). With regard to amine coupling partners, 

various aliphatic tertiary amines could be utilized. In all these cases, the alkynylation 

occurred exclusively at the methyl positions without the methylene and the methine 

alkynylation (Scheme 5-3, entries 15–18). This selectivity can be attributed to a 
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stereoelectronically controlled deprotonation of amine cation radicals (step 2 in 

Scheme 5-4).
[12]

 For the stereoelectronically controlled deprotonation, the transition 

state requires overlap between the half-vacant nitrogen p orbital and the incipient carbon 

radical p orbital.
[12]

 Lower energy of the conformation of the proposed transition state 

necessary for deprotonation of the methyl group (Figure 5-1), due to the steric repulsion, 

results in the kinetically favored deprotonation of the less substituted α-C–H bond 

(methyl > methylene > methine).
[12] 

It is, however, possible that a relatively small 

stereoelectronic effect results in the thermodynamically favored formation of the more 

substituted free radical.
[12]

 In the present cross-coupling, the kinetic factor is likely 

dominant in the deprotonation step. 

 

      

        

 

Figure 5-1.  Conformations of the proposed transition states for the stereoelectronically 

controlled deprotonation of tertiary amine radicals. 

 The cross-coupling of 1a with an aniline derivative, N,N-dimethylaniline, did not 

proceed under the conditions described in Scheme 5-3. Upon the addition of a 

stoichiometric amount of triethylamine as a base, the corresponding propargylamine 

could be obtained in 6% yield for 24 h. In this case, the cross-coupling of triethylamine 

and 1a did not proceed. These results suggest that the basicity of amines (for 

deprotonation of terminal alkynes) and the steric effect of substituents of amines 

(stereoelectronic effect) are two very significant factors for the present 

cross-dehydrogenative coupling reaction. 

N
CH3

CH3

+
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H
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HH

+
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Scheme 5-3.  Scope of the present cross-dehydrogenative coupling of terminal alkynes 

and tertiary amines. Reaction conditions: 1 (1.0 mmol), 2 (2.0 mmol), ZnBr2 (5 mol%), 

OMS-2 (100 mg), CPME (2 mL), 100 °C, under O2 (1 atm). Yields (based on 1) of 

isolated products are shown. [a] ZnBr2 (20 mol%). 

 

 

 

 

N
CH3

R2

R1 H + + H2O
ZnBr2, OMS-2

R1
N R3

R2

1                     2                                                     3

N

Entry 1
3aa, 8 h, 83%

N

N N

N N
F

N
Cl

N
Br

N
F3C

N

N

N

NS

N N
Cl

N n-Bu N n-Oct
N

Entry 2
3ba, 10 h, 82%

Entry 3
3ca, 8 h, 82%

Entry 4
3da, 12 h, 79%

Entry 5
3ea, 10 h, 75%

Entry 6
3fa, 10 h, 87%

Entry 7
3ga, 10 h, 85%

Entry 8
3ha, 10 h, 85%

Entry 9
3ia, 11 h, 73%

Entry 10
3ja, 10 h, 76%

Entry 11
3ka, 10 h, 55%

Entry 12
3la, 10 h, 76%

Entry 13
3ma, 8 h, 41%

Entry 14a

3na, 10 h, 22%

Entry 16
3ac, 24 h, 61%

Entry 17
3ad, 10 h, 58%

Entry 18[a]

3ae, 24 h, 37%

O2

N

Entry 15
3ab, 15 h, 88%

MeO

R3
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5.3.3. Recyclability of OMS-2 

 The recyclability of OMS-2 for the present cross-dehydrogenative coupling was 

examined (for the detailed experimental procedures, see section 5.2.3). After the 

cross-coupling of 1a and 2a, OMS-2 could easily be retrieved from the reaction mixture 

by simple filtration with >97 % recovery. The retrieved OMS-2 could be reused at least 

three times for the cross-coupling, although its performance gradually decreased (fresh: 

85 % yield of 3aa for 8 h, the 1st reuse: 87 %, the 2nd reuse: 75 %, and the 3rd reuse: 

72 %, Figure 5-2). 

 

 

H + + H2O
ZnBr2 (5 mol%), OMS-2 (100 mg)

O2 (1 atm), 100 oC

CPME (2 mL)
1a (1 mmol)           2a (2 mmol)                                                                              3aa

N N

 

 

 

 

 

 

 

 

 

 

Figure 5-2.  The reaction profiles for the reuse experiments. The reaction conditions 

were the same as those described in Table 5-1. 
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5.3.4. Reaction Mechanism 

 The plausible reaction mechanism for the present ZnBr2 and OMS-2 co-catalyzed 

cross-dehydrogenative coupling of terminal alkynes and tertiary amines is shown in 

Scheme 5-4. The reaction likely proceeds through (1) single-electron transfer (SET) 

from a tertiary amine to OMS-2 to give an amine cation radical species A (step 1), (2) 

successive deprotonation of the cation radical species A (step 2) and second SET to 

generate an iminium intermediate B (step 3), and (3) nucleophilic attack of a zinc 

acetylide species C to the iminium intermediate B to give the corresponding 

propargylamines as the final product (step 5). As mentioned in 5.3.2, the 

stereoelectronic effect also supports this mechanism. The iminium species B has been 

detected during the reaction of the tertiary amine in the presence of OMS-2 and LiBF4 

by NMR analysis.
[10]

 The zinc acetylide species C can be formed from a terminal alkyne 

in the assistance of the tertiary amine as a base (step 4).
[9]

 The reduced OMS-2 can be 

reoxidized by molecular oxygen.
[13]

 

 

HR1

ZnBr2 +

ZnBrR1

N
CH2

R2

R1
N R3

R2+

ZnBr2

amine

amine HBr

Br

N
CH3

R2
OMS-2

N
CH3

R2

SET

deprotonation
N

CH2

R2

SET
OMS-2

A

B

C

N
CH3

R2

R1 H +
R1

N R3
R2

ZnBr2, OMS-2
+    1/2O2 +    H2O

(step 1) (step 2)

(step 3)

(step 4) (step 5)

Overall

R3R3R3

R3

R3

 

Scheme 5-4. A plausible reaction mechanism for the present cross-dehydrogenative 

coupling of terminal alkynes and tertiary amines. 
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5.4. Conclusion 

 In summary, the ZnBr2 and OMS-2 co-catalyzed cross-dehydrogenative coupling of 

terminal alkynes and tertiary amines to propargylamines has successfully been 

developed. Various structurally diverse propargylamines can be synthesized by 

employing the present catalyst system. The present cross-coupling can utilize molecular 

oxygen as the terminal oxidant, providing a green synthetic procedure for 

propargylamines. 
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General Conclusions 
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 This thesis has demonstrated the successful developments in several late transition 

metal catalyzed novel aerobic cross-dehydrogenative coupling reactions between two 

nucleophiles or between nucleophiles and electrophiles by employing different 

strategies and metal catalysts depending on the coupling partners involved. Specifically, 

(1) copper catalysts have been found to be viable catalysts for the selective 

cross-coupling of two different nucleophiles which have acidic C–H or X–H bonds 

(Chapters 2 and 3); (2) supported gold nanoparticles have turned out to be effective for 

the β-amination of α,β-unsaturated aldehydes (or ketones) due to their ability of the 

selective dehydrogenative oxidation of C–C single bonds to C–C double bonds even in 

the presence of aldehyde functionalities (Chapter 4); (3) OMS-2 has turned out to be a 

powerful oxidant for the oxidation of tertiary amines to iminium species, which are 

susceptible to nucleophilic attack by acetylide species generated by the cooperation of 

zinc catalysts with amine bases (Chapter 5). 

 Chapter 2 describes the simple heterogeneous Cu(OH)2 catalyst in combination 

with an appropriate base can efficiently promote the selective cross-dehydrogenative 

coupling of terminal alkynes and amides in 1 atm of air (Scheme 6-1). The 

cross-coupling shows high selectivity even without relying on the slow addition 

technique, which is often required to suppress the Glaser–Hay alkyne homo-coupling 

when using homogeneous copper catalysts. Such high selectivities to the desired 

cross-coupling are achieved for the first time when the two coupling partners are mixed 

in a single step. The scope of the present procedure is very broad with respect to both 

terminal alkynes and amides, and various kinds of structurally diverse ynamides can be 

synthesized in moderate to high yields (56–93% yields). A novel green synthetic route 

to imides via the combination of the oxidative cross-coupling and the hydration of 
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ynamides by the Sn−W mixed oxide catalyst has also been developed. The theoretical 

atom efficiency is 100% for the one-pot imide synthesis. 
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Scheme 6-1. Cu(OH)2-catalyzed selective cross-dehydrogenative coupling of terminal 

alkynes and amides using air as the terminal oxidant. 

 

 In Chapter 3, the novel Cu(OAc)2-catalyzed cross-dehydrogenative coupling of 

H-phosphonates and amides using air as the terminal oxidant has successfully been 

developed (Scheme 6-2). Cu(OAc)2 in combination with an appropriate base has been 

turned out to be an efficient catalyst system for the cross-coupling. The substrate scope 

for the cross-coupling is broad, and various dialkyl H-phosphonates can efficiently react 

with nitrogen nucleophiles, such as oxazolidinone, lactam, pyrrolidinone, urea, indole, 

and sulfonamide derivatives, to give the corresponding N-acylphosphoramidates in 

moderate to high yields (52−99% yields). Overall, this cross-coupling procedure 

provides a straightforward route to synthesize the valuable N-acylphosphoramidates 

from readily available H-phosphonates and amides. 
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Scheme 6-2. Cu(OAc)2-catalyzed cross-dehydrogenative coupling of H-phosphonates 

and amides using air as the terminal oxidant. 

 In Chapter 4, gold nanoparticles supported on OMS-2 (Au/OMS-2, average particle 
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size of gold: 4.1 nm) has been found to efficiently catalyze the β-amination of 

α,β-unsaturated aldehydes to enaminals (Scheme 6-3). Various kinds of α,β-unsaturated 

aldehydes can smoothly react with a large variety of secondary amines to afford the 

corresponding enaminals in moderate to high yields using air as the terminal oxidant 

(50−97% yields). In addition, the catalysis is intrinsically heterogeneous, and the 

catalyst can be reused at least 5 times without a significant loss of its high catalytic 

performance. The reaction proceeds through the aza-Michael addition of amines to 

α,β-unsaturated aldehydes to give β-aminoaldehydes followed by the oxidation of the 

β-aminoaldehydes to enaminals. In particular, the key step for the amination, that is, the 

selective dehydrogenative oxidation of a saturated C–C single bond to the 

corresponding C–C double bond even in the presence of an easily oxidizable aldehyde 

functionality using the supported gold nanoparticle catalyst, rather than palladium-based 

catalysts, has been achieved for the first time. 
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Scheme 6-3. Au/OMS-2-catalyzed selective β-amination of α,β-unsaturated aldehydes 

using air as the terminal oxidant. 

 

 In Chapter 5, the ZnBr2 and OMS-2 co-catalyzed cross-dehydrogenative coupling 

of terminal alkynes and tertiary amines using molecular oxygen as the terminal oxidant 

has successfully been developed. Various kinds of terminal alkynes can efficiently react 

with tertiary methyl amines to give the corresponding propargylamines in moderate to 

high yields. The reaction proceeds through the OMS-2 promoted oxidation of tertiary 

amines to the corresponding iminium intermediates, to which zinc acetylide species 
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attack nucleophilically. 
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Scheme 6-4. ZnBr2 and OMS-2 co-catalyzed cross-dehydrogenative coupling of 

terminal alkynes and tertiary amines using molecular oxygen as the terminal oxidant. 

 

 The aerobic cross-dehydrogenative coupling reactions developed in this thesis 

avoid using pre-functionalized substrates as well as hazardous reagents, providing 

simple and efficient alternatives to the existing synthetic procedures for several 

synthetically important compounds, such as ynamides, imides, N-acylphosphoramidates, 

enaminals, and propargylamines. In addition, these reactions can be regarded as green 

synthetic procedures due to their use of molecular oxygen as the terminal oxidant and 

generation of water as the sole by-product. 

 Aerobic cross-dehydrogenative coupling reactions are without doubt one of the 

most fascinating synthetic tools due to its high efficiency and environmentally benign 

nature. Theoretically, any complex compounds could be synthesized by simply 

connecting different C–H or X–H bonds, which is a long-chased dream for synthetic 

chemists. However many challenges still exist for further developments in this area. The 

outlooks of this rapidly expanding area will be briefly described as follows. 

 

1. Homogeneous catalysts have been the main stream when developing new 

cross-dehydrogenative coupling reactions. The studies in this thesis have shown 

that heterogeneous catalysts such as metal oxides and nanoparticles can also be 

promising candidates considering their properties of easy separation and reuse, 
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most importantly, their rich oxidation chemistry. Especially, when a reaction 

involves strongly coordinating compounds which might be problematic in 

homogeneous systems, heterogeneous systems can be considered alternatively. In 

addition, the development of efficient heterogeneously catalyzed functional group 

transformations which show low selectivities in homogeneous systems is expected 

to be achieved by employing the potential of the heterogeneous catalysts. 

 

2. For the copper-mediated cross-coupling reactions, their detailed reaction 

mechanisms are currently still unclear. Most of the current researches are based on 

the empirical evaluation in terms of metal source, ligands, and bases. Therefore, 

more knowledges about the insights of the reactions are urgently needed to break 

the bottleneck in this field. For example, in the Cu(OH)2-catalyzed cross-coupling 

reaction, why such a high selectivity can be achieved and how to explain the higher 

activity of bulky Cu(OH)2 than highly dispersed supported copper hydroxide 

catalysts are two main unsolved problems. The solutions to these problems may be 

very important for the development of more efficient catalysts. 

 

3. More sophisticated design of heterogeneous nanoparticle catalysts by fine control 

of their components (for multimetallic particles), sizes, morphologies, and/or 

supports, is needed to explore their full potential use in fine chemical synthesis. 

Multifunctional catalysts can be developed by integrating versatile acid-base and 

redox properties, which would allow the development of new organic 

transformations. 
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