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Preface 

 

Theoretical study is a fundamental and necessary step towards the full understanding of the 

physical properties of materials. In particular, analyses based on quantum mechanics are 

required to fully disclose electronic properties of materials. Nowadays, along with the great 

advances of quantum chemistry, solid state physics, and computer science, numerical 

calculation of electronic properties is able to provide accurate results without any empirical 

parameter (in first-principles manner). Accordingly, such computational approach, integrating 

experimental studies, is becoming a powerful tool to reveal the microscopic nature of 

materials. 

This thesis summarizes computational studies on semiconductors with enhanced 

photoenergy conversion capability: gallium zinc oxynitride (GaN:ZnO), zinc-blende gallium 

nitride (zb-GaN), and organic-inorganic/inorganic lead halide perovskite (APbI3). Such 

materials are receiving deep attention due to their extremely appealing features in 

photoenergy conversion. Their properties related to photoabsorption and carrier diffusion 

have been investigated by means of state-of-the-art first-principles approaches: density 

functional theory (DFT) and many-body perturbation theory (MBPT). 

The outline of this thesis is as follows: Chapter 1 is the general introduction for this thesis. 

Description of photoenergy conversion systems, i.e., photovoltaics and photocatalysis, and the 
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important physical properties for such photoenergy conversion systems, i.e., bandgap, band 

bending, and carrier lifetime, are presented. Motivations for the adopted computational 

approach are also provided. 

In Chapter 2, theoretical backgrounds of DFT and MBPT are described. DFT is well 

known and widespread in the community of quantum chemistry and solid state physics 

(Walter Kohn and John Pople, Nobel Prize in Chemistry 1998). However, this method is 

applicable only for ground state. Although MBPT is one of the most successful approaches to 

correct DFT shortcomings for calculating excited-state properties, it is still not widely spread 

in the community of theoretical chemistry. In this chapter, I tried to give straightforward 

descriptions of MBPT for readers unfamiliar with this theory. 

In Chapter 3, studies of bandgap and band bending are presented focusing on GaN:ZnO, 

which is an overall water-splitting photocatalytic material with visible-light response. The 

mechanism of bandgap narrowing by alloying GaN and ZnO is studied by calculating 

bandgaps and band edge positions for many alloy structures. Furthermore, band bending on 

the surface of GaN:ZnO due to an electric double layer stemming from donor-rich and 

acceptor-rich layers is predicted. 

In Chapter 4, studies on the effects of electron-phonon interaction on optical absorption 

and carrier lifetime are presented focusing on two semiconductors: zb-GaN and APbI3. For the 

former system, electron-phonon interaction renormalizes bandgap and introduces band 
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broadening, which results in bandgap and optical absorption spectrum perfectly reproducing 

the experimental result. For the latter, the mechanism of relaxation of hot carriers by 

electron-phonon interaction is discussed. My results clearly explain the mechanism of the 

experimentally reported slow hot hole cooling in CH3NH3PbI3, a material with a key role in 

perovskite solar cells. 

In Chapter 5, concluding remarks and future outlooks are presented. 

Here, I would like to show acknowledgements for people supporting my work. At first, I 

thank Professor Koichi Yamashita, my supervisor. Since I joined to his group in 2009, he has 

provided me many opportunities to get in touch with various kinds of scientific communities 

ranging from domestic experimentalists to foreign theoreticians. Such experiences largely 

opened my mind. I also thank Associate Professor Hiroshi Ushiyama for his encouragement 

and cares in my daily life. 

 Most of works in this thesis are joined with Dr. Giacomo Giorgi. Since I was an 

undergraduate student, he always helped me with comprehensive mind. He introduced me to 

international scientific activity. With his great cares, my two visits to Roma in 2011 and 

2012/2013 were really fruitful. It is definitely one of the happiest in my life to have such a 

kind Italian friend sharing the scientific interests with me. I express my immeasurable 

gratitude here. 
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 I thank my colleagues in Yamashita-Ushiyama group. Dr. Mikiya Fujii gave me many 

opportunities to consider physics and a grounding to be a member of society. His great effort 

allowed me to concentrate on scientific activity. Dr. Ryota Jono helped me a lot since I was an 

undergraduate student. His sincerity and philosophy to the science positively affected my 
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Chapter 1.   

General Introduction 

 

 

1-1. Photovoltaics and photocatalysis 

In this 21st century, seven billion of people populating the earth necessitate an ever increasing 

amount of energy. Needless to say, further developments of human society are extremely 

conditioned by the availability of electricity and chemical fuel from heat, light, wind, fossil, 

and nuclear, via safe and clean manufacturing processes. Among the various forms of energy, 

sunlight is most abundant and ubiquitous. Solar energy shining surface of the earth is 

estimated ~25 TJ/km
2
day (in the assumption that photon flux is 1 kW/m

2
 and 7 hours 

sunshine duration in a day). In principle, such huge amount of energy is sufficient to fully 

cover human needs. 

Photovoltaics (hereafter, PVs) and photosynthesis are photoenergy conversion systems 

into electricity and chemical fuels, respectively. Direct photoenergy conversion into electricity 

using PVs is efficient and hence solar cells are widely employed in the world. As well as PVs, 

water-splitting photocatalysis has also received considerable attention as artificial 

photosynthesis of hydrogen. Hydrogen represents a promising clean energy carrier because it 
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does not produce any greenhouse gases or polluting materials when transformed into heat via 

combustion and electricity via fuel cell. One of the main methods for hydrogen production is 

steam reforming of natural gas, which emits carbon dioxides. Therefore photocatalytic water 

splitting is expected to be an alternative clean, viable, and environmentally friendly 

manufacturing process of hydrogen production. In both PVs and photocatalysis, the basic 

processes of photoenergy conversion have been and still are subject of deep analysis in the 

scientific community to achieve higher energy conversion efficiencies. 

Development of PV device and photocatalyst stems from the discovery of the 

photovoltaic effect, which was described by Becquerel for the first time in 1839.
1
 His 

photoelectrochemical experiment demonstrated that a voltage and an electric current are 

produced when a silver chloride electrode is dipped into an electrolyte and illuminated. The 

mechanism of this phenomenon, after called “Becquerel effect”, was not well understood at 

that time. In the first half of twentieth century, quantum mechanics had been developed 

starting from light quantum hypothesis proposed by Einstein and the concept of photon was 

accepted. In the latter half of twentieth century, it was revealed that the mechanism of the 

Becquerel effect is generation of electron-hole pairs in a semiconductor by photon absorption 

and their effective separation due to the electric field formed at the solid-electrolyte interface 

(space charge layer). 
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The first photovoltaic cell was realized in Bell laboratory by Chapin, Fuller, and Pearson 

in 1954,
2
 more than one century after the initial studies of Becquerel. Assembling silicon p-n 

junction cell they observed that electron-hole pairs generated by irradiation are separated and 

make to do work in an external circuit. Nowadays, silicon solar cells using monocrystalline, 

polycrystalline, and amorphous silicon are prevalent.
3
  

For further dissemination of solar cells, breakthroughs to bring reduction of the 

fabrication cost and improvement of the power conversion efficiencies (PCEs) are strongly 

desired. Accordingly, new classes of PVs, e.g., thin-film copper indium gallium selenide 

(CIGS) solar cell, dye-synthesized solar cell (DSSC)
4
, organic PV (OPV)

5
 devices, 

quantum-dot sensitized solar cell
6
, and perovskite solar cell

7
, are emerging and attracting 

attention. Compared with standard silicon solar cells, such new PVs have a number of merits 

from the viewpoint of cost, flexibility, and property tunability. According to diversification of 

the PVs, many kinds of semiconductor materials are potential candidates as photoabsorbers. 

To improve the PCEs and the durability of these new classes of PVs, physical properties of a 

large number of organic molecules, inorganic chemical compounds, inorganic nanoparticles, 

and organic-inorganic hybrid materials have been extensively investigated. 

The first photocatalytic water-splitting reaction was observed in 1972 on 

photoelectrochemical cell using a photoanode of TiO2 and a photocathode of Pt. In this cell, 

TiO2 absorbs photons and then photogenerated holes cause oxygen evolution reaction (OER) 
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on the surface of TiO2. At the same time, photogenerated electrons flow to an external circuit 

and then hydrogen evolution reaction (HER) occurs on the Pt electrode. This is well known as 

Honda-Fujishima effect.
8
 In 1977, Nozik proposed to directly couple the photoanode of 

semiconductor and the photocathode of metal without an electric circuit (Schottky-type 

photochemical diode).
9
 As one form of such photochemical diodes, the composite of powders 

of a semiconductor and nanoparticles of a metal is preferable with respect to the scalability 

and hence widely investigated. In this system, the semiconductor is called the “photocatalyst” 

and the metal is called the “cocatalyst”.
10

 

In the past three decades, many semiconductors have been explored for searching more 

and more efficient water-splitting photocatalysts: oxides of transition metals with empty 

d-orbitals (d
0
-type) such as NaTaO3 and typical metals with filled d-orbitals (d

10
-type) such as 

-Ga2O3.
10

 These metal oxides are, however, not suitable for visible-light absorption due to 

the too wide bandgaps, thus oxide doping and/or their sensitization have been investigated. A 

two-step water-splitting reaction, i.e., Z-scheme, is also attracting much interest. Non-oxide 

such as (oxy)nitride and oxysulfide have also been extensively studied. 

As described above, many semiconducting materials are being explored both for PV 

device and photocatalyst.  
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1-2. Basic processes of photoenergy conversion 

For improving the efficiency of photoenergy conversion, deep understanding of the basic 

mechanism that rules the conversion process becomes mandatory. The initial processes are 

common in both PVs and photocatalysis: the first process is the photoabsorption that 

generates electron-hole pairs in the absorber, while the second is the diffusion of carriers 

towards the interface/surface of the absorber. After the diffusion, the carriers are transferred 

out of the absorber, specifically toward carrier transport layers in the case of PV device, 

toward a cocatalyst metal or liquid in the case of photocatalytic process. 

In this subsection I will describe the details of the initial two processes and introduce the 

important physical properties that rule these processes. 

1) Photoabsorption 

Photoabsorption results in excitation of the absorber. In molecular orbital theory and band 

theory, an excitation is regarded as a transition of electrons lying in the occupied orbitals, i.e., 

valence band, to the unoccupied orbitals, i.e., conduction band. Here, the bandgap (𝐸𝑔) is 

defined as  

 𝐸𝑔 = 𝐸CBM − 𝐸VBM, (1.1)  

where 𝐸CBM and 𝐸VBM are energies of the conduction band minimum (CBM) and of the 

valence band maximum (VBM). 𝐸𝑔  is the “electronic gap” (or “quasiparticle gap”) 

neglecting electron-hole interaction in excited states. When 𝐸𝑔 is narrowed by the exciton 
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binding energy it becomes the “optical gap”, which corresponds to the experimental optical 

absorption edge. However, in the case of inorganic compounds, the electronic gap is still a 

good measurement of photoabsorption since the exciton binding energies are usually small 

due to the screening effect, e.g., Wannier-Mott excitons. 

𝐸𝑔 governs the efficiency of photoenergy conversion from following two main key 

points. The first point is the number of photogenerated carriers. Photogenerated carriers are 

decreased as 𝐸𝑔 becomes larger since no photon is absorbed when the energy of photon ℎ𝜈 

is lower than 𝐸𝑔 (ℎ and 𝜈 are Planck’ constant and frequency of photon, respectively). 

Indeed, the spectrum of the solar radiation has strong intensity in the visible-light range from 

380 nm (~3.3 eV) to 780 nm (~1.6 eV), thus gaps smaller than 3 eV are preferable to gain a 

large number of photogenerated carriers. 

The second is the potential of photogenerated carriers. In the radiation with energies 

larger than the bandgap (ℎ𝜈 > 𝐸𝑔), “hot” carriers, i.e., electrons with higher energy than 

𝐸CBM (hot electron) and holes with lower energy than 𝐸VBM  (hot hole), are generated. 

However, they rapidly decay towards the band edges via scattering with other carriers, 

impurities, and phonons (thermalization). Thus, in general, the potentials of excited electrons 

and holes in photon irradiation are determined by 𝐸CBM and 𝐸VBM. It means that the excess 

energy ∆𝐸 = ℎ𝜈 − 𝐸𝑔 is usually lost in the process of photoenergy conversion. 
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Accordingly, 𝐸𝑔 must be optimized to maximize the number of carriers and minimize 

energy loss ∆𝐸 corresponding to the solar spectrum. In PVs, the electric power is a product 

of an electric current and a voltage, which are determined by the number of photogenerated 

carriers and the potentials of excited electrons and holes in the absorber, respectively. 

Shockley and Queisser suggested optimal 𝐸𝑔  is 1.34 eV in single p-n junction cell to 

maximize the PCE.
11

  

In the case of photocatalyis, the carrier’s potential determines the ability of redox 

reactions: electrons must have more negative potential than the redox potential of the desired 

reduction reaction, and similarly, potentials of holes must be more positive than the redox 

potential of the oxidation reaction. Otherwise, even if a number of carriers are generated, they 

do not result in redox reactions at all. Concerning the water-splitting photocatalyst, the 

minimal requirement is 𝐸𝑔 = 1.23 eV since the redox potential of HER 

 2H+ + 2e− → H2, (1.2)  

is 0 V (vs. NHE) and that of OER 

 2H2O → O2 + 4H+ + 4e−. (1.3)  

is +1.23 V (vs. NHE). In practice, however, gaps wider than 1.23 eV are required in order to 

overcome the activation barrier (overpotential) for charge transfer between the photocatalyst 

and the water molecules.
10

 Hence most of the photocatalysts achieving overall water splitting 

have bandgaps in ultraviolet wavelengths. 
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2) Carrier diffusion 

The carrier diffusion is the process that takes place after the photoabsorption and 

described by the carrier diffusion length, L defined as
12

 

 𝐿 = √𝐷𝜏𝑟𝑒𝑐 , (1.4)  

where D is the diffusion constant and 𝜏𝑟𝑒𝑐  is the carrier lifetime of electron-hole 

recombination. Diffusion lengths of electron and hole are required to be sufficiently long to 

reach the outside of the absorber. Diffusion constant is related with the mobility, μ in the 

Einstein relation as  

 𝐷 =
𝜇𝑘𝐵𝑇

𝑞
, (1.5)  

where 𝑘𝐵 is the Boltzmann constant, T is the temperature, and q is the charge of the carrier. 

Furthermore, μ is defined as  

 𝜇 =
𝑒𝜏𝑐𝑜𝑙𝑙

𝑚∗
, (1.6)  

where e, 𝜏𝑐𝑜𝑙𝑙, and 𝑚∗ are the elementary charge, the carrier collision time, and the carrier 

effective masses. From Eq (1.4), (1.5), and (1.6), L will clearly be prolonged by long 𝜏𝑟𝑒𝑐, 

long 𝜏𝑐𝑜𝑙𝑙, and small 𝑚∗. 

Band bending, as space charge layer at p-n junction, promotes charge separation and 

hence effectively extends recombination lifetime 𝜏𝑟𝑒𝑐. Reducing trap density in the bulk and 

surface of the absorber also results in long 𝜏𝑟𝑒𝑐. Collision lifetime 𝜏𝑐𝑜𝑙𝑙 is determined by 

how often carriers are scattered with electrons, phonons, and impurities. Effective mass 𝑚∗ 
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is related to the wavefunction of valence and conduction bands: 𝑚∗ of hole (electron) is 

smaller as the valence (conduction) band is delocalized. 

From the above discussions, I can conclude that it is mandatory to optimize bandgap, 

band bending, carrier lifetime, localization of band edges, and trap density in an absorber 

material for achieving effective photoenergy conversion. Works in this thesis focus on and 

discuss these properties, especially bandgap, band bending, and carrier lifetime.   
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1-3. Theoretical study on photoenergy conversion process 

To “talor” materials with desired properties of photoabsorption and carrier diffusion, an 

improved knowledge of the relationship between the chemical structures of materials and the 

physical properties is required. The properties mentioned in the previous subsection all 

depend on the electronic structure of absorber materials. Thus, once Schrödinger equation is 

solved on the electronic Hamiltonian constituted by the atomic structures of chemical 

compounds, we can predict the physical properties. However, deriving the exact solution of 

such first-principles Schrödinger equation is impossible for many-body systems, thus some 

approximations must be introduced. 

One of the most widely accepted approximation is Kohn-Sham approach based on 

density functional theory (DFT). The complicated many-body problem turns into an 

accessible self-consistent solution of a set of single-particle equations (Kohn-Sham equations). 

DFT calculations employing local density approximation (LDA) and their derivatives on the 

exchange correlation functional are surprisingly successful, and thus popular, in order to 

describe the electronic properties of atoms, molecules, and solids.  

Despite an undeniable success in the prediction of structural and thermodynamic 

properties of materials, DFT remains a theory for the description of ground-state properties, 

thus not applicable to excited states. In other words, it does not provide correct band energies 

for empty states leading to errors in bandgap predictions. To correct the error, 
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electron-electron interaction must be described in a more accurate formalism. Moreover, as 

DFT is the theory for electronic Hamiltonian, it does not tell us anything about electron-hole 

and electron-phonon interactions, which are important to understand optical bandgap and 

carrier decay process. 

Many-body perturbation theory (MBPT) is one of state-of-the-art theories to overcome 

the DFT drawbacks. In particular, MBPT introduces the interactions not described at DFT 

level such as correct electron-electron and electron-hole interactions, which are necessary to 

describe excited-state properties. Methods to treat electron-electron and electro-hole 

interactions are called GW approximation and Bethe-Salpeter equations, respectively. 

MBPT also provides theoretical treatment of electron-phonon interaction, which is usually 

neglected in the Born-Oppenheimer approximation which separates electronic motions from 

nuclear motions. Considering electron-phonon interaction, it is possible to compute carrier 

lifetimes and discuss the relaxation process. Due to the development of computational 

resources and simulation packages, DFT combined with MBPT is becoming a powerful tool 

in material science.  

Virtue of theoretical study is in the modeling. In computational studies, we can start from 

the simplest ideal model, e.g. pure chemical compounds, single molecules, clean surfaces, and 

then these models can be extend to more complicated ones, e.g. defective crystals, 

supermolecules, solid solutions, amorphous, interfaces, etc. Therefore, we can address the 
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effects of the complicated factors individually, which is opposite to experimental studies that 

directly analyze complicated systems in nature. Combining these opposite approaches, i.e., 

bottom-up computational approach and top-down experimental approach, understanding of 

the electronic processes is deepened from theoretical point of view even in complicated 

systems, e.g. metal oxynitride, organic-inorganic hybrid material.   
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Chapter 2.   

Density-Functional Theory and Many-Body 

Perturbation Theory 

 

 

2-1. Density Functional Theory 

If we assume the Born-Oppenheimer approximation, i.e. nuclear motions negligible compared 

to electronic ones, the electronic Hamiltonian, 𝐻̂ is defined by the number of electrons, N, 

the atomic species, ZI, the number of ions, NI, and the atomic positions, RI, as 

 

𝐻̂ = 𝑇̂ + 𝑈̂ + 𝑉̂ext 

    = −
1

2
∑ ∇𝑖

2

𝑁

𝑖=1

+
1

2
∑ ∑

1

|𝐫𝑖 − 𝐫𝑗|

𝑁

𝑗=1
𝑖≠𝑗

𝑁

𝑖=1

− ∑ ∑
𝑍𝐼

|𝐫𝑖 − 𝐑𝐼|

𝑁𝐼

𝐼=1

𝑁

𝑖=1

 
(2.1)  

where 𝑇̂ is the kinetic energy of electrons, 𝑈̂ is the Coulomb interaction between electrons, 

and 𝑉̂ext is the interaction between electrons and ions. Here atomic unit (𝑚𝑒 = ℏ = 𝑒 = 1) is 

used. Solving the Schrödinger equation 𝐻̂|𝛹⟩ = 𝐸|𝛹⟩ is impossible for many-body systems. 

Density functional theory (DFT) is a theory that enables to solve quantum many-body 

problems for the ground state. Nowadays, DFT represents, de facto, the standard approach to 

calculate electronic structure of atoms, molecules, and solids. In this section, I will briefly 

introduce the basic concept of DFT.
1
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2-1-1. Hohenberg-Kohn theorem 

In 1964, Hohenberg and Kohn formulated the theorems
2
 that define the ground-state energy E  

as a universal functional in terms of ground-state electronic density 𝑛0(𝐫) and the correct 

ground-state energy as a result of 𝐸[𝑛0(𝐫)] minimization. In details, 

 

Theorem 1 

𝑉ext(𝐫) is uniquely determined by the density of the ground state 𝑛0(𝐫) apart from a trivial 

additive constant.  

 

To demonstrate this theorem, we assume there are two external potentials 𝑉𝑒𝑥𝑡
1 (𝐫) and 

𝑉𝑒𝑥𝑡
2 (𝐫)  that provide the ground-state electronic density 𝑛0(𝐫) . Accordingly, two 

Hamiltonians 𝐻̂1 and 𝐻̂2 are determined resulting in two ground states |Ψ0
1⟩ and |Ψ0

2⟩. 

|Ψ0
2⟩ is not the ground state for 𝐻̂1, thus we can see  

 

𝐸1 = ⟨Ψ0
1|𝐻̂1|Ψ0

1⟩ < ⟨Ψ0
2|𝐻̂1|Ψ0

2⟩ 

             = ⟨Ψ0
2|𝐻̂2|Ψ0

2⟩ + ⟨Ψ0
2|𝑉̂𝑒𝑥𝑡

1 − 𝑉̂𝑒𝑥𝑡
2 |Ψ0

2⟩ 

            = 𝐸2 + ∫ 𝑑𝐫[𝑉𝑒𝑥𝑡
1 (𝐫) − 𝑉𝑒𝑥𝑡

2 (𝐫)]𝑛0(𝐫). 

(2.2)  

Similarly, the following relation is also fulfilled 

 𝐸2 < 𝐸1 + ∫ 𝑑𝐫[𝑉𝑒𝑥𝑡
2 (𝐫) − 𝑉𝑒𝑥𝑡

1 (𝐫)]𝑛0(𝐫). (2.3)  

Adding Eq (2.2) to (2.3) leads to the inconsistency,  
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 𝐸1 + 𝐸2 < 𝐸2 + 𝐸1. (2.4)  

Thus, 𝑉ext(𝐫) is uniquely determined by the density of the ground state 𝑛0(𝐫) apart from a 

trivial additive constant. 

Solving the Schrödinger equation with the Hamiltonian including 𝑉̂𝑒𝑥𝑡, the wavefunction 

in the ground state |Ψ0⟩ is uniquely determined in the case of non-degenerate ground state. 

Thus, once 𝑉̂𝑒𝑥𝑡 is given, the electronic density 𝑛0 = ⟨Ψ0|Ψ0⟩ is determined. This theorem 

shows that the ground-state energy E is a unique functional of the electronic density 𝑛0(𝐫), 

𝐸[𝑛0(𝐫)]. 

Since |Ψ0⟩ is functional of the density in the ground-state 𝑛0(𝐫), the ground-state total 

energy is defined as  

 𝐸[𝑛0(𝐫)] = 𝐹[𝑛0(𝐫)] + ∫ 𝑑𝐫𝑉𝑒𝑥𝑡(𝐫)𝑛0(𝐫), (2.5)  

where 𝐹[𝑛0(𝐫)] is an universal functional of the kinetic energy and the Coulomb interaction  

 𝐹[𝑛0(𝐫)] = ⟨Ψ0|𝑇̂ + 𝑈̂|Ψ0⟩. (2.6)  

 

Theorem 2 

The exact ground-state energy is determined as the global minimum value of 𝐸[𝑛0(𝐫)] for 

any particular 𝑉̂𝑒𝑥𝑡 and the density minimizing 𝐸[𝑛0(𝐫)] is the exact ground-state density 

𝑛0
exact(𝐫). 
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To prove this second theorem, we recall that since 𝐸[𝑛0(𝐫)] is uniquely determined by 

the ground-state wavefunction |Ψ0⟩  the variational principle leads to the following relation, 

 𝐸[𝑛0
𝑒𝑥𝑎𝑐𝑡(𝒓)] = ⟨𝛹0

𝑒𝑥𝑎𝑐𝑡|𝐻̂|𝛹0
𝑒𝑥𝑎𝑐𝑡⟩ < ⟨𝛹0

′ |𝐻̂|𝛹0
′⟩ = 𝐸[𝑛0

′ (𝒓)], (2.7)  

thus 𝐸[𝑛0(𝐫)] is minimized when 𝑛0(𝐫) = 𝑛0
exact(𝐫). 

 

The initial proof of Hohenberg and Kohn is restricted to densities that are in the ground 

state under some potential 𝑉̂𝑒𝑥𝑡. Such densities are called “V-representable”. However, it is 

not clarified which conditions are required for densities to satisfy the V-representability.  

Levy and Lieb have extended the Hohenberg-Kohn theorem to “N-representable” densities
3,4

, 

i.e. densities derived from any wavefunctions for N electrons. The conditions that the 

“N-representable” densities should satisfy are: 1) 𝑛0(𝐫) > 0 and 2) ∫|∇𝑛0
1/2|

2
(𝐫) is finite.   
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2-1-2. Kohn-Sham equation 

Although Hohenberg-Kohn theorems offer the proof that the ground-state energy is obtained 

by minimizing 𝐸[𝑛(𝐫)], the exact form of the universal functional 𝐹[𝑛(𝐫)] is not provided. 

The ansatz of Kohn and Sham
5
 is that the density of original interacting particles is equal to 

that of the chosen virtual independent particles;  

 𝑛(𝐫) = ∑ ∑|𝜓𝑖
𝜎(𝐫)|2

𝑁𝜎

𝑖=1𝜎

, (2.8)  

where {𝜓𝑖
𝜎(𝐫)} are wavefunctions of independent particles called Kohn-Sham (KS) orbitals 

and Nσ is the number of electrons with spin σ.  

By introducing the kinetic energy of KS orbitals, 𝑇s, given by 

 𝑇s[𝑛] = −
1

2
∑ ∑⟨𝜓𝑖

𝜎|∇2|𝜓𝑖
𝜎⟩

𝑁𝜎

𝑖=1𝜎

, (2.9)  

and the Hartree term of classical Coulomb interaction 𝐸Hartree defined as  

 𝐸Hartree[𝑛] =
1

2
∫ 𝑑𝐫𝑑𝐫′

𝑛(𝐫)𝑛(𝐫′)

|𝐫 − 𝐫′|
, (2.10)  

the energy functional in Eq (2.5) is reformulated as  

 𝐸KS[𝑛] = 𝑇s[𝑛] + 𝐸Hartree[𝑛] + 𝐸XC[𝑛] + ∫ 𝑑𝐫𝑉ext(𝐫)𝑛(𝐫), (2.11)  

where 𝐸XC[𝑛] is known as the exchange-correlational function which includes all many-body 

effects,  

 𝐸XC[𝑛] = 𝐹[𝑛] − 𝑇s[𝑛] − 𝐸Hartree[𝑛]. (2.12)  

Eq (2.11) indicates that ground-state energies of many-body systems can be obtained once the 
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exact form of 𝐸XC[𝑛] is known. Unfortunately, the exact form of 𝐸XC[𝑛] is unknown, but 

some practical approximate functionals provide successful results. One of such 

approximations is the LDA that will be presented in the following section. 

Solution of Eq (2.11) is given by the Lagrange multiplier method with the 

orthonormalization constraints on KS orbitals ⟨𝜓𝑖
𝜎|𝜓𝑗

𝜎′⟩ = 𝛿𝑖,𝑗𝛿𝜎,𝜎′; 

 
δ

δ𝜓𝑖
𝜎∗(𝐫)

[𝐸KS[𝑛] − ∑ 𝜀𝑗
𝜎′(⟨𝜓𝑗

𝜎′
|𝜓𝑗

𝜎′
⟩ − 1)

𝑗,𝜎′

] = 0, (2.13)  

where 𝜀𝑗
𝜎′ is a multiplier. In the four terms in the right-hand sides of Eq (2.11), only Ts is 

explicitly expressed as a functional of KS orbitals. Thus, using the chain rule, Eq (2.13) can 

be written as  

 

    −
1

2
∇2𝜓𝑖

𝜎(𝐫) + [
δ𝐸Hartree[𝑛]

δ𝑛(𝐫)
+

δ𝐸XC[𝑛]

δ𝑛(𝐫)
+ 𝑉ext(𝐫)]

δ𝑛(𝐫)

δ𝜓𝑖
𝜎∗  

= [−
1

2
∇2 + 𝑉eff(𝐫)] 𝜓𝑖

𝜎(𝐫) = 𝜀𝑖
𝜎𝜓𝑖

𝜎(𝐫). 

(2.14)  

This Schrödinger-like set of equations is known as the Kohn-Sham (KS) equations. The 

effective potential 𝑉eff(𝐫) depends on the density 𝑛(𝐫′),  

 𝑉eff(𝐫) =
1

2
∫ 𝑑𝐫′

𝑛(𝐫′)

|𝐫 − 𝐫′|
+

δ𝐸XC[𝑛]

δ𝑛(𝐫)
+ 𝑉ext(𝐫), (2.15)  

thus, Eq (2.8), (2.14) and (2.15) must be solved self-consistently.  
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2-1-3. Local Density Approximation 

The relevance of KS approach is that the kinetic energies of independent particles and the 

long-range Hartree terms are clearly separated from the universal functional 𝐹[𝑛]. We can 

assume that the remaining exchange-correlational functional 𝐸𝑋𝐶[𝑛]  can be reasonably 

approximated as a local or nearly local functional of the density as 

 𝐸XC
LDA[𝑛] = ∫ 𝑑𝐫 𝑛(𝐫)𝜀XC([𝑛], 𝐫), (2.16)  

where 𝜖XC([𝑛], 𝐫) is the exchange-correlation energy per electron at r, which is determined 

by the density 𝑛(𝐫) close to r. This is the local density approximation (LDA). LDA is exact 

in a homogeneous electron gas since the exchange and correlation energies are characterized 

by the constant density. Since 𝐸XC[𝑛] is universal, the exact form of 𝜀XC([𝑛], 𝐫) can be 

obtained by calculating a homogeneous electron gas. 

The exact exchange energy of a homogeneous electron gas provided by the Hartree-Fock 

approximation is known as  

 𝜀X[𝑛] = −
3

4
(

3𝑛

𝜋
)

1/3

, (2.17)  

in the unpolarized system. It is straightforward to expand Eq (2.17) to the polarized case. By 

the total density 𝑛 = 𝑛↑ + 𝑛↓ and the fractional polarization, 

 𝜉 =
𝑛↑ − 𝑛↓

𝑛
 , (2.18)  

the exchange part in a polarized system 𝜀X[𝑛, 𝜉] is written as  

 𝜀X[𝑛, 𝜉] = 𝜀X[𝑛, 0] + [𝜀X[𝑛, 1] − 𝜀X[𝑛, 0]]𝑓x(𝜉), (2.19)  
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where 𝑓x(𝜉) is defined as follows,  

 𝑓x(𝜉) =
1

2

(1 + 𝜉)4/3 + (1 − 𝜉)4/3 − 2

21/3 − 1
 . (2.20)  

In contrast to the case of exchange, the analytic form is not obtained for the correlation 

functional 𝜀C[𝑛]. Thus the functional is constructed by fitting the numerically calculated 

correlation energies by quantum Monte Carlo methods over a wide range of densities. The 

forms of the functional and its parameterization are shown in, for example, Ref [6,7]. 

Starting from LDA, generalized gradient approximation (GGA) has been developed to 

include inhomogeneous density.
8,9

 This functional also depends on the derivatives of density 

as  

 𝐸XC
GGA[𝑛] = ∫ 𝑑𝐫 𝑛(𝐫)𝜀XC(𝑛(𝐫), |∇𝑛(𝐫)|). (2.21)  

The advent of GGA has boosted the use of DFT in quantum chemistry. In particular, GGA 

functional parameterized by Perdew-Burke-Ernzerhof (PBE)
10

 is one of the most widely used. 

 As further improvement, hybrid functional combining Hartree-Fock (HF) exchange with 

explicit density functional have been shown to better reproduce many structural/electronic 

properties of several chemical systems. PBE0 functional is constituted by the correlation 

energy of PBE and the exchange of HF with 25% and that of PBE with 75%.
11

 Heyd, Scuseria, 

and Ernzerhof (HSE) also have introduced functional similar to PBE0, which has exchange of 

HF with 25% only in the short range (screened exchange).
12,13

  



Chapter 2  Density-Functional Theory and Many-Body Perturbation Theory 

22 

 

2-2. Many-Body Perturbation Theory 

KS-DFT along with LDA/GGA functional provides successful results for the ground-state 

property description for atoms, molecules, and solids in terms of their electronic structures 

and geometry by the Hellman-Feynman forces. However, it might fail to describe bandgaps 

because the effective potentials of LDA/GGA do not satisfactorily reproduce the response to 

change of electronic distribution under excitation processes. 

Many-body perturbation theory (MBPT) takes advantage of the usage of technique based 

on the Green’s function in order to consider many-body interaction as a perturbation to 

non-interacting systems. Once we consider the electron-electron interaction as a perturbation, 

dynamical and non-local effective potential, i.e., the self-energy, is obtained by GW 

approximation (Sec 2-3). As a result, a quasiparticles band structure comparable with that 

resulting from photoemission spectroscopy is obtained. 

Furthermore, a perturbation scheme of polarizability is also formulated. Bethe-Salpeter 

equation (BSE) is one of the approximations for polarizability, which provides excitonic states 

that includes electron-hole (e-h) interactions (Sec 2-4). It enables us to consider excited states 

so that computational results can be compared with photoabsorption experiments. 

In this section, theoretical background of MBPT, which is fundamental in order to 

understand GW approximation and BSE, is summarized based on the descriptions in Ref [14–

17].  
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2-2-1. Green’s function 

To treat interactions as a perturbation on non-interacting system, Hamiltonian 𝐻̂ is separated 

into non-interacting Hamiltonian 𝐻̂0 and an interaction 𝑉̂, 

 𝐻̂ = 𝐻̂0 + 𝑉̂. (2.22)  

In the case of electronic total Hamiltonian shown in Eq (2.1), electron-electron interaction is 

regarded as a perturbation 𝑉̂ = 𝑈̂ into non-interacting system 𝐻̂0 = 𝑇̂ + 𝑉̂ext. 

In second quantization the field operators 𝜓̂(𝑥) and 𝜓̂†(𝑥) are defined as  

 𝜓̂(𝑥) = ∑ 𝜑𝜆(𝑥)𝑐𝜆

𝜆

,      𝜓̂†(𝑥) = ∑ 𝜑𝜆(𝑥)𝑐𝜆
†

𝜆

  (2.23)  

where 𝑐𝜆 and 𝑐𝜆
†
 are Fermion’s creation and annihilation operators, respectively, on state λ 

with wavefunction 𝜑𝜆(𝑥). These operators satisfy anticommutator rule as  

 {𝑐𝜆, 𝑐
𝜆′
† } = 𝑐𝜆𝑐

𝜆′
† + 𝑐

𝜆′
† 𝑐𝜆 = 𝛿𝜆,𝜆′ , (2.24)  

 {𝑐𝜆
†, 𝑐

𝜆′
† } = {𝑐𝜆, 𝑐𝜆′} = 0. (2.25)  

and similarly, field operators satisfy the rule 

 {𝜓̂(𝑥), 𝜓̂†(𝑥′)} = 𝛿(𝑥 − 𝑥′), (2.26)  

 {𝜓̂†(𝑥), 𝜓̂†(𝑥′)} = {𝜓̂(𝑥), 𝜓̂(𝑥′)} = 0. (2.27)  

A time-ordered Green’s function at zero temperature is defined as 

 𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) = −𝑖
⟨𝛹0|𝑇{𝜓̂H(𝑥, 𝑡)𝜓̂H

†(𝑥′, 𝑡′)}|𝛹0⟩

⟨𝛹0|𝛹0⟩
, (2.28)  

where 𝜓̂H(𝑥, 𝑡) = 𝑒𝑖𝐻𝑡𝜓̂(𝑥, 0)𝑒−𝑖𝐻𝑡  and 𝜓̂H
†(𝑥′, 𝑡′) = 𝑒𝑖𝐻𝑡′

 𝜓̂†(𝑥′, 0)𝑒−𝑖𝐻𝑡′
. Subscript H 

indicates that the operator is represented in the Heisenberg picture. |𝛹0⟩ is the ground-state 
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of the interacting system 𝐻̂|𝛹0⟩ = 𝐸|𝛹0⟩. 𝑇{⋯ } is the time-ordering operator (T-product) 

which moves the operator in earlier time to the right; 

 𝑇{𝐴(𝑡)𝐵(𝑡′)} = 𝜃(𝑡 − 𝑡′)𝐴(𝑡)𝐵(𝑡′) ∓ 𝜃(𝑡′ − 𝑡)𝐵(𝑡′)𝐴(𝑡). (2.29)  

The sign of the second term on the right-hand side is determined by the number of Fermion 

operators in 𝐴(𝑡) and 𝐵(𝑡′). Due to the anticommutation rule shown in Eq (2.26), the sign 

is negative when 𝐴(𝑡) = 𝜓̂H(𝑥, 𝑡) and 𝐵(𝑡′) = 𝜓̂H
†(𝑥′, 𝑡′). 

If one differentiates 𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) with respect to the time t, the equation of motion  

 𝑖
𝜕

𝜕𝑡
𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) = 𝛿(𝑡 − 𝑡′)𝛿(𝑥 − 𝑥′) − 𝑖

⟨𝛹0|𝑇 {𝑖
𝜕
𝜕𝑡

𝜓̂H(𝑥, 𝑡)𝜓̂H
†(𝑥′, 𝑡′)} |𝛹0⟩

⟨𝛹0|𝛹0⟩
, (2.30)  

is obtained. The first term on the right-hand side is obtained by the derivative of the Heaviside 

functions in Eq (2.29) and the relation of Eq (2.26). For example, single-particle system with 

the Hamiltonian 𝐻̂ = 𝐻̂0 provides 𝑖
𝜕

𝜕𝑡
𝜓̂H(𝑥, 𝑡) = {𝜓̂H(𝑥, 𝑡), 𝐻̂0} = 𝐻0(𝑥)𝜓̂H(𝑥, 𝑡), thus Eq 

(2.30) can be written as  

 [𝑖
𝜕

𝜕𝑡
− 𝐻0(𝑥)] 𝐺0(𝑥, 𝑡; 𝑥′, 𝑡′) = 𝛿(𝑡 − 𝑡′)𝛿(𝑥 − 𝑥′), (2.31)  

where 𝐺0(𝑥, 𝑡; 𝑥′, 𝑡′) is the non-interacting Green’s function. Eq (2.31) clearly shows that 

𝐺0(𝑥, 𝑡; 𝑥′, 𝑡′) is Green’s function for time-dependent Schrödinger equation. 

To solve the many-body problem, the Green’s function for fully interacting Hamiltonian 

is required. Such fully interacting Green’s function is obtained as perturbations to the 

non-interacting Green’s function G0. 
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Non-interacting Green’s function can be calculated as follows. 

 

     𝐺0
𝐩σ(𝑡, 𝑡′) 

= −𝑖 ∑⟨𝛷0|𝑇{𝑐𝐩σ(𝑡)𝑐𝐩σ
† (𝑡′)}|𝛷0⟩

𝐩,σ

 

= −𝑖 ∑{𝜃(𝑡 − 𝑡′)⟨𝛷0|𝑐𝐩σ(𝑡)𝑐𝐩σ
† (𝑡′)|𝛷0⟩ − 𝜃(𝑡′ − 𝑡)⟨𝛷0|𝑐𝐩σ

† (𝑡′)𝑐𝐩σ(𝑡)|𝛷0⟩}

𝐩,σ

, 

(2.32)  

where |𝛷0⟩ is the ground state of the non-interacting system, i.e., 𝐻̂0|𝛷0⟩ = 𝐸|𝛷0⟩. Here 

state λ is defined by momentum and spin index λ = (𝐩, 𝜎).  

𝑐𝐩σ(𝑡) = 𝑒𝑖𝐻0𝑡𝑐𝐩σ𝑒−𝑖𝐻0𝑡 is transformed by Taylor expansion as  

 𝑐𝐩σ(𝑡) = 𝑐𝐩σ + [𝑖𝐻0𝑡, 𝑐𝐩σ] +
1

2!
[𝑖𝐻0, [𝑖𝐻0𝑡, 𝑐𝐩σ]] + ⋯. (2.33)  

Since [𝑖𝐻0, 𝑐𝐩σ] = −𝑖𝐻0𝑐𝐩σ  for non-interacting Hamiltonian, the previous equation is 

transformed into 

 

𝑐𝐩σ(𝑡) = 𝑐𝐩σ − 𝑖𝐻0𝑡𝑐𝐩σ +
1

2!
(−𝑖𝐻0𝑡)2𝑐𝐩σ + ⋯ 

             = e−𝑖𝜀𝐩σ𝑡𝑐𝐩σ, 

(2.34)  

where 𝐻0 = ∑ 𝜀𝐩σ𝐩σ 𝑐𝐩σ
† 𝑐𝐩σ. Similarly, we can also derive 

 𝑐𝐩σ
† (𝑡) = e𝑖𝜀𝐩σ𝑡𝑐𝐩σ

†
. (2.35)  

In the ground state, the occupancy of state λ = (𝐩, 𝜎)  is ruled by the Fermi-Dirac 

distribution function 𝑓𝐩σ, 

 

⟨𝛷0|𝑐𝐩σ
† 𝑐𝐩σ|𝛷0⟩ = 𝑓𝐩σ 

⟨𝛷0|𝑐𝐩σ𝑐𝐩σ
† |𝛷0⟩ = 1 − 𝑓𝐩σ. 

(2.36)  
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Substituting Eq (2.34), (2.35), and (2.36) into Eq (2.32),  

 𝐺0
𝐩,σ(𝑡 − 𝑡′) = −𝑖e−𝑖𝜀𝐩σ(𝑡−𝑡′){𝜃(𝑡 − 𝑡′)(1 − 𝑓𝐩σ) − 𝜃(𝑡′ − 𝑡)𝑓𝐩σ}. (2.37)  

The Fourier transform of 𝐺0
𝐩,σ(𝑡) provides  

 

𝐺0
𝐩,σ(𝜔) = −𝑖 [∫ 𝑑𝑡e𝑖(𝜔−𝜀𝐩σ+𝑖𝛿)𝑡(1 − 𝑓𝐩σ)

∞

0

− ∫ 𝑑𝑡e𝑖(𝜔−𝜀𝐩σ−𝑖𝛿)𝑡𝑓𝐩σ

0

−∞

] 

                =
1 − 𝑓𝐩σ

𝜔 − 𝜀𝐩σ + 𝑖𝛿
+

𝑓𝐩σ

𝜔 − 𝜀𝐩σ − 𝑖𝛿
, 

(2.38)  

where the infinitesimal quantity 𝛿 is introduced to get the integral convergence. 
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2-2-2. Perturbative expansion of the Green’s function 

In the definition of G in Eq (2.28), the exact ground state of interacting system |𝛹0⟩ is 

included, but yet unknown. To treat G in a perturbative way, we have to link |𝛹0⟩ with the 

ground state of non-interacting system |𝛷0⟩. This is obtained rewriting Eq (2.28) in the 

interaction picture.  

 

Three representation pictures of quantum mechanics are summarized below.  

1) Schrödinger picture 

The wavefunctions are time-dependent: 𝜓(𝑡) = 𝑒−𝑖𝐻𝑡𝜓(0) ;the operators are 

time-independent. 

2) Heisenberg picture 

The wavefunctions are time-independent; the operators are time-dependent: 𝐴̂(𝑡) =

𝑒𝑖𝐻𝑡𝐴̂(0)𝑒−𝑖𝐻𝑡. 

3) Interaction pictures 

The wavefunctions are developed under perturbative interaction in the Hamiltonian 

𝐻̂(𝑡) = 𝐻̂0(𝑡) + 𝑉̂ : 𝜓(𝑡) = 𝑒𝑖𝐻0𝑡𝑒−𝑖𝐻𝑡𝜓(0) ; the operators developed under 

non-interacting Hamiltonian: 𝐴̂(𝑡) = 𝑒𝑖𝐻0𝑡𝐴̂(0)𝑒−𝑖𝐻0𝑡. 
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At first, we define U-matrix as below; 

 𝑈(𝑡) = 𝑒𝑖𝐻0𝑡𝑒−𝑖𝐻𝑡,     𝜓̂(𝑡) = 𝑈(𝑡)𝜓̂(0). (2.39)  

Note that we assume the case of [𝐻̂0, 𝑉̂] ≠ 0, thus 𝑈(𝑡) ≠ 𝑒−𝑖𝑉𝑡. Equation of motion of 

𝑈(𝑡) is written as  

 

𝜕

𝜕𝑡
𝑈(𝑡) = 𝑖[𝑒𝑖𝐻̂0𝑡𝐻̂0𝑒−𝑖𝐻̂𝑡 − 𝑒𝑖𝐻̂0𝑡𝐻̂𝑒−𝑖𝐻̂𝑡] 

               = 𝑖𝑒𝑖𝐻̂0𝑡(𝐻̂0 − 𝐻̂)𝑒−𝑖𝐻̂𝑡 

               = −𝑖𝑒𝑖𝐻̂0𝑡𝑉̂𝑒−𝑖𝐻̂𝑡 

               = −𝑖𝑒𝑖𝐻̂0𝑡𝑉̂𝑒−𝑖𝐻̂0𝑡𝑈(𝑡) 

               = −𝑖𝑉̂(𝑡)𝑈(𝑡), 

(2.40)  

then we get 

 𝑈(𝑡) − 𝑈(0) = −𝑖 ∫ d𝑡1𝑉̂(𝑡1)𝑈(𝑡1)
𝑡

0

. (2.41)  

Rearranging it with 𝑈(0) = 1 gives  

 𝑈(𝑡) = 1 − 𝑖 ∫ d𝑡1𝑉̂(𝑡1)𝑈(𝑡1)
𝑡

0

, (2.42)  

and by iteratively substituting this equation into U on the right-hand side, we get  

 𝑈(𝑡) = 1 + ∑(−𝑖)𝑛 ∫ d𝑡1 ∫ d𝑡2 ⋯ ∫ d𝑡𝑛𝑉̂(𝑡1)𝑉̂(𝑡2) ⋯ 𝑉̂(𝑡𝑛)
𝑡𝑛−1

0

𝑡1

0

𝑡

0

∞

𝑛=1

. (2.43)  

Furthermore, this equation can be rewritten using T-product introduced by Eq (2.29) as  

 

𝑈(𝑡) = 1 + ∑
(−𝑖)𝑛

𝑛!
∫ d𝑡1 ∫ d𝑡2 ⋯ ∫ d𝑡𝑛𝑇{𝑉̂(𝑡1)𝑉̂(𝑡2) ⋯ 𝑉̂(𝑡𝑛)}

𝑡

0

𝑡

0

𝑡

0

∞

𝑛=1

 

         = 𝑇exp (−𝑖 ∫ d𝑡1𝑉̂(𝑡1)
𝑡

0

). 

(2.44)  
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This relation is easily confirmed by checking the case of n = 2. 

From U-matrix, S-matrix can be defined as  

 𝑆(𝑡, 𝑡′) = 𝑈(𝑡)𝑈†(𝑡′)    𝜓̂(𝑡) = 𝑆(𝑡, 𝑡′)𝜓̂(𝑡′), (2.45)  

and the solution is also written in the same manner as Eq (2.44); 

 𝑆(𝑡, 𝑡′) = 𝑇exp (−𝑖 ∫ d𝑡1𝑉̂(𝑡1)
𝑡

𝑡′

) (2.46)  

The development of wavefunction in interaction picture is written using S-matrix as 

𝜓(𝑡) = 𝑆(𝑡, 0)𝜓(0). Due to the relation of 𝑆(0, 𝑡)𝑆(𝑡, 0) = 1, it is evident that 

 𝜓(0) = 𝑆(0, 𝑡)𝜓(𝑡). (2.47)  

If we assume that the system feels no interaction at 𝑡 → −∞ and the interaction is introduced 

moving toward 𝑡 = 0  adiabatically, the exact ground states 𝜓(0)  and those in 

non-interacting system 𝛷0 are related as 

 𝜓(0) = 𝑆(0, −∞)𝛷0. (2.48)  

This relationship is known as Gell-Mann and Low theorem. The wavefunctions in Heisenberg 

picture |𝛹0⟩ is identical with one in the interaction picture at 𝑡 = 0, thus  

 |𝛹0⟩ = 𝑆(0, −∞)|𝛷0⟩. (2.49)  

By assuming that the system feels no interaction at 𝑡 → +∞, the wavefunction is also 

non-interacting ground state |𝛷0⟩ except for a phase factor 𝑒𝑖𝐿. Thus  

 𝑒𝑖𝐿|𝛷0⟩ = 𝑆(+∞, 0)|𝛹0⟩ = 𝑆(+∞, −∞)|𝛷0⟩. (2.50)  
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From this relation, we can see 

 

⟨𝛹0| = ⟨𝛷0|𝑆(−∞, 0) = ⟨𝛷0|𝑆(−∞, +∞)𝑆(+∞, 0) 

         = 𝑒−𝑖𝐿⟨𝛷0|𝑆(+∞, 0). 

(2.51)  

The field operators 𝜓̂H(𝑥, 𝑡) and 𝜓̂H
† (𝑥, 𝑡) can be also converted into ones in the interaction 

representation as 

 

𝜓̂H(𝑥, 𝑡) = 𝑒𝑖𝐻𝑡𝑒−𝑖𝐻0𝑡𝑒𝑖𝐻0𝑡𝜓̂(𝑥, 0)𝑒−𝑖𝐻0𝑡𝑒𝑖𝐻0𝑡𝑒−𝑖𝐻𝑡 

                 = 𝑒𝑖𝐻𝑡𝑒−𝑖𝐻0𝑡𝜓̂(𝑥, 𝑡)𝑒𝑖𝐻0𝑡𝑒−𝑖𝐻𝑡 

                 =  𝑆(0, 𝑡)𝜓̂(𝑥, 𝑡)𝑆(𝑡, 0), 

(2.52)  

and  

 𝜓̂H
† (𝑥, 𝑡) =  𝑆(0, 𝑡)𝜓̂†(𝑥, 𝑡)𝑆(𝑡, 0). (2.53)  

Substituting Eq (2.49), (2.51), (2.52), and (2.53) into Eq (2.28), the Green’s function can be 

represented when 𝑡 > 𝑡′ as  

 

𝐺(𝑥, 𝑡; 𝑥′, 𝑡′)

= −𝑖
⟨𝛷0|𝑆(+∞, 0)𝑆(0, 𝑡)𝜓̂(𝑥, 𝑡)𝑆(𝑡, 0)𝑆(0, 𝑡′)𝜓̂†(𝑥′, 𝑡′)𝑆(𝑡′, 0)𝑆(0, −∞)|𝛷0⟩

⟨𝛷0|𝑆(+∞, −∞)|𝛷0⟩
 

= −𝑖
⟨𝛷0|𝑆(+∞, 𝑡)𝜓̂(𝑥, 𝑡)𝑆(𝑡, 𝑡′)𝜓̂†(𝑥′, 𝑡′)𝑆(𝑡′, −∞)|𝛷0⟩

⟨𝛷0|𝑆(+∞, −∞)|𝛷0⟩
, 

(2.54)  

and similarly in the case of 𝑡′ ≥ 𝑡 it is written as  

 

𝐺(𝑥, 𝑡; 𝑥′, 𝑡′)

= 𝑖
⟨𝛷0|𝑆(+∞, 0)𝑆(0, 𝑡′)𝜓̂†(𝑥′, 𝑡′)𝑆(𝑡′, 0)𝑆(0, 𝑡)𝜓̂(𝑥, 𝑡)𝑆(𝑡, 0)𝑆(0, −∞)|𝛷0⟩

⟨𝛷0|𝑆(+∞, −∞)|𝛷0⟩
 

= 𝑖
⟨𝛷0|𝑆(+∞, 𝑡)𝜓̂†(𝑥′, 𝑡′)𝑆(𝑡′, 𝑡)𝜓̂(𝑥, 𝑡)𝑆(𝑡, −∞)|𝛷0⟩

⟨𝛷0|𝑆(+∞, −∞)|𝛷0⟩
. 

(2.55)  
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Combining Eq (2.54) and (2.55), we obtain the following relation regardless of the 

time-ordering 

 𝑖𝐺(𝑥, 𝑡; 𝑥′, 𝑡′) =
⟨𝛷0|𝑇{𝑆(+∞, −∞)𝜓̂(𝑥, 𝑡)𝜓̂†(𝑥′, 𝑡′)}|𝛷0⟩

⟨𝛷0|𝑆(+∞, −∞)|𝛷0⟩
. (2.56)  

Here the factor i is put on the left-hand side to simplify the complicated terms in the 

right-hand side. 

In Eq (2.56), all of the effects of interaction 𝑉̂ are gathered in 𝑆(+∞, −∞). According 

to Eq (2.46), it can be represented as follows 

 

𝑆(+∞, −∞) = 𝑇exp (−𝑖 ∫ d𝑡1𝑉̂(𝑡1)
+∞

−∞

) 

= 1 + ∑
(−𝑖)𝑛

𝑛!
∫ d𝑡1 ∫ d𝑡2 ⋯ ∫ d𝑡𝑛𝑇{𝑉̂(𝑡1)𝑉̂(𝑡2) ⋯ 𝑉̂(𝑡𝑛)}

+∞

−∞

+∞

−∞

+∞

−∞

∞

𝑛=1

. 

(2.57)  

Now, once the interaction 𝑉̂  is selected, the fully interacting Green’s function can be 

obtained in chosen order of expansion n in Eq (2.57). 

 

2-2-3. Wick’s theorem 

As example of pertubative expansion, we will see the first order expansion of 

electron-electron (e-e) interaction. In second quantization, the interaction 𝑉̂𝑒−𝑒 is written as 

 𝑉̂𝑒−𝑒 =
1

2
∑ 𝑣𝐪

𝐪

∑ 𝑐𝐤+𝐪σ1
† 𝑐

𝐤′−𝐪σ2
† 𝑐𝐤′σ2𝑐𝐤σ1

𝐤,𝐤′,𝜎,𝜎′

, (2.58)  

where 𝑣𝐪 is Fourier transform of Coulomb interaction 𝑣𝐪 =
4𝜋  

|𝐪|2. Thus the first-expansion 

term of Eq (2.57), 𝑆(1)(+∞, −∞) is written as 
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     𝑆(1)(+∞, −∞) 

= −
𝑖

2
∫ d𝑡1

+∞

−∞

∑ 𝑣𝐪

𝐪

∑ 𝑐𝐤+𝐪σ1
† (𝑡1)𝑐

𝐤′−𝐪σ2
† (𝑡1)𝑐𝐤′σ2(𝑡1)𝑐𝐤σ1(𝑡1)

𝐤,𝐤′,𝜎,𝜎′

. 

(2.59)  

After substituting Eq (2.23) and Eq (2.59) into Eq (2.56), the diagonal term with λ = (𝐩, 𝜎) 

of the numerator in the right-hand side is written as 

    ⟨𝛷0|𝑇{𝑆(1)(+∞, −∞)𝑐𝐩σ(𝑡)𝑐𝐩σ
† (𝑡′)}|𝛷0⟩ 

= −
𝑖

2
∫ d𝑡1

+∞

−∞

∑ ∑ 𝑣𝐪

𝐤,𝐤′,𝜎1,𝜎2𝐪

× 

    ⟨𝛷0|𝑇 {𝑐𝐤+𝐪σ1
† (𝑡1)𝑐

𝐤′−𝐪σ2
† (𝑡1)𝑐𝐤′σ2(𝑡1)𝑐𝐤σ1(𝑡1)𝑐𝐩σ(𝑡)𝑐𝐩σ

† (𝑡′)} |𝛷0⟩, 

(2.60)  

thus now what we have to calculate is the T-product of six Fermion operators. In the 

following we provide the treatment for solving such T-product. 

Expectation value of collection of creation and annihilation operators is nonzero only 

when all the states created by 𝑐𝑛
†
 are destructed by annihilation operators 𝑐𝑚. Thus, the 

number of creation operators must be the same as that of annihilation operators, and each 

creation operator must be paired to a corresponding annihilation operator. When N creation 

and N annihilation operators exist, the number of possible parings is N!. For example, 

⟨𝛷0|𝑇{𝑐𝛼(𝑡1)𝑐𝛽
†(𝑡1)𝑐𝛾(𝑡)𝑐𝛿

†(𝑡′)}|𝛷0⟩ has two creation and two annihilation operators, thus 

2!=2 parings are possible, i.e., (𝛼 = 𝛽, 𝛾 = 𝛿) or (𝛼 = 𝛿, 𝛾 = 𝛽). 

T-product of more than two creation and annihilation operators can be simplified based 

on the “Wick’s theorem”. This theorem states that T-product can be decomposed into more 
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than one term consisting of multiples of time-ordering pairs such as 

⟨𝛷0|𝑇{𝑐𝐩σ(𝑡)𝑐𝐩σ
† (𝑡′)}|𝛷0⟩ or ⟨𝛷0|𝑇{𝑐𝐩σ

† (𝑡)𝑐𝐩σ(𝑡)}|𝛷0⟩. The number of terms is the number 

of possible pairings N!. Signs of the terms depend on how many interchanges of neighboring 

Fermion operators are required to obtain the aimed ordering: an odd number of interchanges 

gives a negative sign. This theorem is proven using the anticommutator rule and also using 

the fact that the expectation value is zero in normal ordering of creation and annihilation 

operators.
18

 

In decomposing T-product by Wick’s theorem, we have to take account of the order of 

𝑐𝑛(𝑡) and 𝑐𝑛
†(𝑡′) in time-ordering pairs. 

i) 𝑡 ≠ 𝑡′ 

𝑐𝑛(𝑡)  is on the left side of 𝑐𝑛
†(𝑡′)  to be consistent with the definition of 

non-interacting Green’s function 𝑖𝐺0
𝑛(𝑡 − 𝑡1) = ⟨𝛷0|𝑇{𝑐𝑛(𝑡)𝑐𝑛

†(𝑡′)}|𝛷0⟩ as shown in 

Eq (2.32). 

ii) 𝑡 = 𝑡′ 

𝑐𝑛(𝑡)𝑐𝑛
†(𝑡) becomes a time-independent operator 𝑐𝑛𝑐𝑛

†
. In this case, 𝑐𝑛(𝑡) is on the 

right side of 𝑐𝑛
†(𝑡′)  to be consistent with Fermi-Dirac distribution function 

𝑓𝑛 = ⟨𝛷0|𝑐𝑛
†𝑐𝑛|𝛷0⟩ (see Eq (2.36)). 

For example, ⟨𝛷0|𝑇{𝑐𝛼(𝑡1)𝑐𝛽
†(𝑡1)𝑐𝛾(𝑡)𝑐𝛿

†(𝑡′)}|𝛷0⟩  is decomposed into two terms 

consisting of multiples of two time-ordering pairs as 
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    ⟨𝛷0|𝑇{𝑐𝛼(𝑡1)𝑐𝛽
†(𝑡1)𝑐𝛾(𝑡)𝑐𝛿

†(𝑡′)}|𝛷0⟩

= −𝛿𝛼,𝛽𝛿𝛾,𝛿⟨𝛷0|𝑇{𝑐𝛼
†(𝑡1)𝑐𝛼(𝑡1)}|𝛷0⟩⟨𝛷0|𝑇{𝑐𝛾(𝑡)𝑐𝛾

†(𝑡′)}|𝛷0⟩ 

                                −𝛿𝛼,𝛿𝛿𝛽,𝛾⟨𝛷0|𝑇{𝑐𝛼(𝑡1)𝑐𝛼
†(𝑡′)}|𝛷0⟩⟨𝛷0|𝑇{𝑐𝛾(𝑡)𝑐𝛾

†(𝑡1)}|𝛷0⟩

= −𝛿𝛼,𝛽𝛿𝛾,𝛿[𝑓𝑎𝑖𝐺0
𝛾(𝑡 − 𝑡′)] − 𝛿𝛼,𝛿𝛿𝛽,𝛾[𝑖𝐺0

𝛼(𝑡1 − 𝑡′)𝑖𝐺0
𝛾(𝑡 − 𝑡1)] 

where the negative sign in the first term derives from one interchange to gain 

𝑐𝛽
†(𝑡1)𝑐𝛼(𝑡1)𝑐𝛾(𝑡)𝑐𝛿

†(𝑡′) from 𝑐𝛼(𝑡1)𝑐𝛽
†(𝑡1)𝑐𝛾(𝑡)𝑐𝛿

†(𝑡′). Similarly, the negative sign in the 

second term derives from three interchanges to get 𝑐𝛼(𝑡1)𝑐𝛿
†(𝑡′)𝑐𝛾(𝑡)𝑐𝛽

†(𝑡1). 

In the case of the T-product in Eq (2.60), it is decomposed into 3! = 6 terms consisting of 

three time-ordering pairs. The indexes of momentum (𝐤, 𝐤′, 𝐪, 𝐩) and spin (σ1, σ2, σ) should 

be determined to make pairs of creation and annihilation operators. Following the same 

procedure as the previous example, it can be decomposed as, 

 

⟨𝛷0|𝑇 {𝑐𝐤+𝐪σ1
† (𝑡1)𝑐

𝐤′−𝐪σ2
† (𝑡1)𝑐𝐤′σ2(𝑡1)𝑐𝐤σ1(𝑡1)𝑐𝐩σ(𝑡)𝑐𝐩σ

† (𝑡′)} |𝛷0⟩ 

= ⟨𝛷0|𝑇 {𝑐𝐤+𝐪σ1
† (𝑡1)𝑐𝐤′σ2(𝑡1)𝑐

𝐤′−𝐪σ2
† (𝑡1)𝑐𝐤σ1(𝑡1)𝑐𝐩σ

† (𝑡′)𝑐𝐩σ(𝑡)} |𝛷0⟩ 

= +𝛿𝐤,𝐩𝛿𝐪,0𝛿σ1,σ[𝑓𝐤′,σ2𝑖𝐺0
𝐩σ(𝑡 − 𝑡1)𝑖𝐺0

𝐩σ(𝑡1 − 𝑡′)] 

     −𝛿𝐤,𝐩−𝐪𝛿𝐤′,𝐩𝛿σ1,σ𝛿σ2,σ[𝑓𝐩−𝐪,σ𝑖𝐺0
𝐩σ(𝑡 − 𝑡1)𝑖𝐺0

𝐩σ(𝑡1 − 𝑡′)] 

     +𝛿𝐪,0[𝑓𝐤,σ1𝑓𝐤′,σ2𝑖𝐺0
𝐩σ(𝑡 − 𝑡′)] 

     +𝛿𝐤′,𝐩𝛿𝐪,0𝛿σ2,σ[𝑓𝐤,σ1𝑖𝐺0
𝐩σ(𝑡 − 𝑡1)𝑖𝐺0

𝐩σ(𝑡1 − 𝑡′)] 

     −𝛿𝐤,𝐩𝛿𝐤′,𝐩+𝐪𝛿σ1,σ𝛿σ2,σ[𝑓𝐩+𝐪,σ𝑖𝐺0
𝐩σ(𝑡 − 𝑡1)𝑖𝐺0

𝐩σ(𝑡1 − 𝑡′)] 

         −𝛿𝐤′,𝐤+𝐪𝛿σ1,σ2[𝑓𝐤,σ1𝑓𝐤+𝐪,σ1𝑖𝐺0
𝐩σ(𝑡 − 𝑡′)]. 

(2.61)  

a        a’        b         b’       c     c’ 
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Once we assign indexes of a, b, and c for creation operators and a’, b’, and c’ for annihilation 

operators, as shown in Eq (2.61), the pairing of these six terms are represented as (a=c', b=a’, 

c=b’), (a=c', b=b’, c=a’), (a=b', b=a’, c=c’), (a=b', b=c’, c=a’), (a=a', b=c’, c=b’), and (a=a', 

b=b’, c=c’) in the order of Eq (2.61). Substituting Eq (2.61) into Eq (2.60), finally we obtain 

six first-order perturbation terms, from 𝑖𝐺𝐩σ (1A) to 𝑖𝐺𝐩σ (1F). 

𝑖𝐺𝐩σ (1A) and 𝑖𝐺𝐩σ (1D) are identical and their summation represents the “Hartree” term 

as  

 

𝑖𝐺(Hartree)
𝐩σ (𝑡 − 𝑡′) = 𝑖𝐺𝐩σ (1A)(𝑡 − 𝑡′) + 𝑖𝐺𝐩σ (1D)(𝑡 − 𝑡′) 

                                  = −𝑖 ∫ d𝑡1

+∞

−∞

∑[𝑣𝐪=0𝑓𝐤,σ1𝑖𝐺0
𝐩σ(𝑡 − 𝑡1)𝑖𝐺0

𝐩σ(𝑡1 − 𝑡′)]

𝐤,𝜎1

, 

(2.62)  

and similarly, 𝑖𝐺𝐩σ (1B) + 𝑖𝐺𝐩σ (1E) represents the “Fock” term as  

 

𝑖𝐺(Fock)
𝐩σ (𝑡 − 𝑡′) = 𝑖𝐺𝐩σ (1B)(𝑡 − 𝑡′) + 𝑖𝐺𝐩σ (1E)(𝑡 − 𝑡′) 

                              = 𝑖 ∫ d𝑡1

+∞

−∞

∑[𝑣𝐪𝑓𝐩−𝐪,σ𝑖𝐺0
𝐩σ(𝑡 − 𝑡1)𝑖𝐺0

𝐩σ(𝑡1 − 𝑡′)]

𝐪

. 

(2.63)  

𝑖𝐺𝐩σ (1C) and 𝑖𝐺𝐩σ (1F) are so called disconnected terms including 𝑖𝐺0
𝐩σ(𝑡 − 𝑡′) as 

 𝑖𝐺𝐩σ (1C)(𝑡 − 𝑡′) = −
𝑖

2
∫ d𝑡1

+∞

−∞

∑ [𝑣𝐪=0𝑓𝐤,σ1𝑓𝐤′,σ2𝑖𝐺0
𝐩σ(𝑡 − 𝑡′)]

𝐤,𝐤′,𝜎1,𝜎2

 (2.64)  

 𝑖𝐺𝐩σ (1F)(𝑡 − 𝑡′) =
𝑖

2
∫ d𝑡1

+∞

−∞

∑ ∑[𝑣𝐪𝑓𝐤,σ1𝑓𝐤+𝐪,σ1𝑖𝐺0
𝐩σ(𝑡 − 𝑡′)]

𝐤,𝜎1𝐪

. (2.65)  
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 Feynman introduced the idea of a pictorial representation of these perturbation terms. 

These drawings, called Feynman diagrams, are extremely useful for providing an insight into 

the physical process which these terms represent. These diagrams can be drawn using 

connection of the ingredients 𝑖𝐺0, 𝑓, and 𝑣𝐪. 𝐺0 can be drawn in both time-space (k, t) and 

energy-space (k, ω).  

 

 The main rules for constructing such diagrams are:  

1) Each ingredient is assigned to the drawing as below. 

 

2) Time is advanced from left to right: lines of 𝑣𝐪 and 𝑓 are drawn vertically since they are 

time-independent. 

3) A factor of -1 is added for each loop of solid lines (Fermion loop). 

4) The momentum and spin (and also frequency in (k, ω)-space) of entering and leaving 

lines must be consistent at each vertex. 

5) Each intermediate variables must be integrated as Σ𝐤, Σσ, and ∫ d𝑡
+∞

−∞
 (in (k, t)-space) 

or ∫
d𝜔

2𝜋

+∞

−∞
 (in (k, ω)-space). 

 

The resulting diagrams of six perturbation terms are shown in Fig 2-1. These diagrams are 

consistent with the six terms in Eq (2.62), (2.63), (2.64), and (2.65).  
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Figure 2-1. Feynman diagrams of first-order perturbation terms from e-e interaction. 

 

2-2-4. Dyson’s equation 

Considering higher-order expansion, the number of terms to be considered rapidly increases, 

e.g., second-order terms 5!=120, and third-order terms 7!=5040. However, not every term is 

physically meaningful thus their reduction is possible according to the following procedure. 

First step of simplification is to neglect disconnected terms. The denominator of Eq 

(2.56) can also be expanded by Wick’s theorem. In the first-order, the denominator has two 

creation and two annihilation operators, thus it can be decomposed 2!=2 terms as below: 

     ⟨𝛷0|𝑇 {𝑐𝐤+𝐪σ1
† (𝑡1)𝑐

𝐤′−𝐪σ2
† (𝑡1)𝑐𝐤′σ2(𝑡1)𝑐𝐤σ1(𝑡1)} |𝛷0⟩ 

= 𝛿𝐪,0[𝑓𝐤,σ1𝑓𝐤′,σ2] − 𝛿𝐤′,𝐤+𝐪𝛿σ1,σ2[𝑓𝐤,σ1𝑓𝐤+𝐪,σ1]. 

(2.66)  

Substituting Eq (2.66) into Eq (2.56), the denominator is represented as  
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  ⟨𝛷0|𝑆(1)(+∞, −∞)|𝛷0⟩ 

= −
𝑖

2
∫ d𝑡1

+∞

−∞

∑ ∑ 𝑣𝐪

𝐤,𝐤′,𝜎1,𝜎2𝐪

⟨𝛷0|𝑇 {𝑐𝐤+𝐪σ1
† (𝑡1)𝑐

𝐤′−𝐪σ2
† (𝑡1)𝑐𝐤′σ2(𝑡1)𝑐𝐤σ1(𝑡1)} |𝛷0⟩ 

= −
𝑖

2
∫ d𝑡1

+∞

−∞

∑ [𝑣𝐪=0𝑓𝐤,σ1𝑓𝐤′,σ2]

𝐤,𝐤′,𝜎1,𝜎2

+
𝑖

2
∫ d𝑡1

+∞

−∞

∑ ∑ 𝑣𝐪

𝐤,𝜎1

[𝑓𝐤,σ1𝑓𝐤+𝐪,σ1]

𝐪

. 

(2.67)  

The terms in the series for ⟨𝛷0|𝑆(+∞, −∞)|𝛷0⟩ are called vacuum polarization terms. 

Comparing Eq (2.67) with disconnected terms in Eq (2.64) and Eq (2.65), we notice that 

𝑖𝐺𝐩σ (1C) and 𝑖𝐺𝐩σ (1F) can be represented using the vacuum polarization terms as  

 𝑖𝐺𝐩σ (1C)(𝑡 − 𝑡′) + 𝑖𝐺𝐩σ (1F)(𝑡 − 𝑡′) =  𝑖𝐺0
𝐩σ(𝑡 − 𝑡′)⟨𝛷0|𝑆(1)(+∞, −∞)|𝛷0⟩. (2.68)  

The first-order Green’s function iG
(1)

 is drawn in the Feynman diagram (Fig 2-2). According 

to Eq (2.68), disconnected diagrams are shown as a product of 𝑖𝐺0 and vacuum polarization 

diagrams. Once we consider higher-order perturbation, the nth-order disconnected terms 

represent as a product of the (n-m)th-order vacuum polarization terms and the mth-order 

connected diagrams (0 ≤ 𝑚 ≤ 𝑛 − 1). Finally, vacuum polarization terms are completely 

canceled out in the infinite order and only connected diagrams are now available. This is 

known as “linked cluster theorem”. 
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Figure 2-2. Schematic representation of linked cluster theorem  

 

Thus Eq (2.56) is rewritten as below.  

 

𝑖𝐺𝐩,σ(𝑡 − 𝑡′) = 𝑖𝐺0
𝐩,σ(𝑡 − 𝑡′) + ∑

(−𝑖)𝑛

𝑛!
∫ d𝑡1 ⋯ ∫ d𝑡𝑛

+∞

−∞

+∞

−∞

∞

𝑛=1

× 

    ⟨𝛷0|𝑇{𝑉̂(𝑡1) ⋯ 𝑉̂(𝑡𝑛)𝑐𝐩σ(𝑡)𝑐𝐩σ
† (𝑡′)}|𝛷0⟩  (connected) 

(2.69)  

As shown above, 1/2 factor in Eq (2.58) is absent in both Hartree and Fock self-energies 

because there are two identical terms. The factor 2 derives from the fact that intermediate 

states (𝐤, σ1) and (𝐤′, σ2) are independent. Similarly, we can get rid of the 1/n! factor in Eq 

(2.57) in nth-order expansion because there are just n! terms exactly identical in the nth-order 

T-product. As a result, further simplification is achieved. 

 

𝑖𝐺𝐩,σ(𝑡 − 𝑡′) = 𝑖𝐺0
𝐩,σ(𝑡 − 𝑡′) + ∑(−𝑖)𝑛 ∫ d𝑡1 ⋯ ∫ d𝑡𝑛

+∞

−∞

+∞

−∞

∞

𝑛=1

× 

    ⟨𝛷0|𝑇{𝑉̂(𝑡1) ⋯ 𝑉̂(𝑡𝑛)𝑐𝐩σ(𝑡)𝑐𝐩σ
† (𝑡′)}|𝛷0⟩, (different connected) 

(2.70)  

Accordingly, first-order Green’s function, iG
(1)

 is represented by Hartree and Fock terms; 

𝑖𝐺𝐩,σ(1)(𝑡 − 𝑡′) = 𝑖𝐺0
𝐩,σ(𝑡 − 𝑡′) + 𝑖𝐺Hartree

𝐩σ (𝑡 − 𝑡′) + 𝑖𝐺Fock
𝐩σ (𝑡 − 𝑡′). 
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For connected terms the self-energy, Σ, is defined as the remaining part from incoming 

and outgoing propagators; 

𝑖𝐺𝐩,σ(𝑡 − 𝑡′) = ∫ ∫ 𝑑𝑡1𝑑𝑡2[𝑖𝐺0
𝐩,σ(𝑡 − 𝑡1)][−𝑖Σ𝐩,𝜎(𝑡1 − 𝑡2)][𝑖𝐺0

𝐩,σ(𝑡2 − 𝑡′)]
∞

−∞

∞

−∞

. 

Accordingly, the self-energies of Hartree and Fock terms are defined as  

 ΣHartree
𝐩,𝜎 (𝑡 = 0) = ∑ 𝑣𝐪=0𝑓𝐤𝜎1

𝐤,𝜎1

, (2.71)  

 ΣFock
𝐩,𝜎 (𝑡 = 0) = − ∑ 𝑣𝐪𝑓𝐩−𝐪σ

𝐪

. (2.72)  

Notice that these self-energies are time-independent because 𝑡1  is equal to 𝑡2  in the 

first-order case.  

 Final procedure to reduce considered perturbation terms is to avoid higher-order diagrams 

consisting of the lower order self-energies and zeroth-order Green’s functions. For example, 

in the second-order terms there are diagrams as: 

 

These terms are called improper or reducible diagrams. In the infinite-order, such improper 

diagrams can be factorized as  

     𝐺 = 𝐺0 + 𝐺0Σ𝐺0 + 𝐺0Σ𝐺0Σ𝐺0 + 𝐺0Σ𝐺0Σ𝐺0Σ𝐺0 + ⋯ 

= 𝐺0 + 𝐺0Σ[𝐺0 + 𝐺0Σ𝐺0 + 𝐺0Σ𝐺0Σ𝐺0 + ⋯ ] 

= 𝐺0 + 𝐺0Σ𝐺. 
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Finally, the expansion of Green’s function results in Dyson’s equation; 

 

𝑖𝐺𝐩,𝜎(𝑡 − 𝑡′) = 𝑖𝐺0
𝐩,σ(𝑡 − 𝑡′)

+ ∫ ∫ 𝑑𝑡1𝑑𝑡2[𝑖𝐺0
𝐩,σ(𝑡 − 𝑡1)][−𝑖Σ𝐩,𝜎(𝑡1 − 𝑡2)][𝑖𝐺𝐩,𝜎(𝑡2 − 𝑡′)]

∞

−∞

∞

−∞

, 

(2.73)  

where only proper self-energies, which are not factorized into the lower-order terms, are 

considered. The schematic representation of Dyson’s equation is shown in Fig. 2-3.  

 

Figure 2-3. Schematic representation of Dyson’s equation. 

 

By Fourier transformation of Eq (2.73), Dyson’s equation in energy-space is obtained; 

 𝐺𝐩,𝜎(𝜔) = 𝐺0
𝐩,σ(𝜔) + 𝐺0

𝐩,σ(𝜔)Σ𝐩,𝜎(𝜔)𝐺𝐩,𝜎(𝜔). (2.74)  

From Eq (2.38), Dyson’s equation can be also written as  

 𝐺𝐩,𝜎(𝜔) =
1

[𝐺0
𝐩,σ(𝜔)]

−1
− Σ𝐩,𝜎(𝜔)

=
1

𝜔 − 𝜀𝐩σ ± 𝑖𝛿 − Σ𝐩,𝜎(𝜔)
, (2.75)  

where the sign of 𝑖𝛿 is positive (negative) for unoccupied (occupied) states. Using this 

equation, interacting Green’s function is determined once we define the self-energy.   
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2-2-5. Quasi-particle approximation 

Once we know the interacting Green’s function, quasiparticle (QP) energy, 𝜀λ
QP

 is 

determined as a root of the right-hand side of Eq (2.75),  

 𝜀λ
QP − 𝜀λ

0 − Σλ(𝜀λ
QP) = 0. (2.76)  

By means of a Taylor expansion of Σλ(𝜔) around 𝜔 = 𝜀λ
0 to the first order, Σλ(𝜀λ

QP) is 

approximated as  

 Σλ(𝜀λ
QP) ≈ Σλ(𝜀λ

0) +
𝜕Σλ

𝜕𝜔
|

𝜔=𝜀λ
0

(𝜀λ
QP − 𝜀λ

0). (2.77)  

Substituting Eq (2.77) into Eq (2.76), we finally obtain 

 𝜀λ
QP = 𝜀λ

0 + 𝑍λΣλ(𝜀λ
0), (2.78)  

where 𝑍λ = (1 −
𝜕Σλ

𝜕𝜔
|

𝜔=𝜀λ
0
)

−1

 is the renormalization factor. This procedure is called 

quasiparticle approximation (QPA). 

 For example, using Eq (2.71) and (2.72), QP energy in the first-order expansion is 

represented as  

 

𝜀𝐩,𝜎
HF = 𝜀𝐩,𝜎

0 + ΣHartree
𝐩,𝜎

+ ΣFock
𝐩,𝜎

 

        = 𝜀𝐩,𝜎
0 + ∑ 𝑣𝐪=0𝑓𝐤𝜎1

𝐤,𝜎1

− ∑ 𝑣𝐪𝑓𝐩−𝐪σ

𝐪

. 
(2.79)  

This single-particle energy is the solution of Hartree-Fock approximation (HFA). In HFA the 

self-energies are static, thus 𝑍𝐩,𝜎 = 1. Dynamical correlation interaction, which is required 

for accurate calculation of bandgap, is considered in the higher-order expansions in the next 

section.   
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2-3. GW approximation 

The first-order perturbation, i.e., HFA, is not satisfactory to calculate bandgaps since the 

self-energy includes no electron-electron correlation effect. In this section, GW approximation, 

a powerful approach to calculate bandgaps, is explained. In the GW approximation dynamical 

correlation interaction is considered by partial summation of “ring”-shaped self-energy 

diagrams up to the infinite order.  

 

2-3-1. Self-energy in GW approximation 

The lowest self-energy of the ring diagram, which is one of the second order terms, is 

shown in Fig. 2-4. This self-energy, Σring
𝐩 (𝜔) is formulated as 

 −𝑖Σring
𝐩 (𝜔) = ∑ ∫

𝑑𝜔′

2𝜋
(−𝑖𝑣𝐪)

2
[𝑖𝐺0

𝐩−𝐪
(𝜔 − 𝜔′)][𝑖𝑃0

𝐪
(𝜔′)] ,

𝐪

 (2.80)  

where 𝑃0
𝐪(𝜔′) is the ring part of the diagram in Fig 2-4 representing polarizability of free 

electron and defined as  

 

    𝑖𝑃0
𝐪(𝜔′) = (−1) × 2 ∑ ∫

𝑑𝜀

2𝜋
[𝑖𝐺0

𝐪+𝐪′

(𝜔′ + 𝜀)] [𝑖𝐺0
𝐪′

(𝜀)]

𝐪′

 

                    = 2𝑖 ∑ [
𝑓𝐪′(1 − 𝑓𝐪+𝐪′)

𝜔′ − 𝜀𝐪+𝐪′ + 𝜀𝐪′ + 𝑖𝛿
−

𝑓𝐪+𝐪′(1 − 𝑓𝐪′)

𝜔′ − 𝜀𝐪+𝐪′ + 𝜀𝐪′ − 𝑖𝛿
]

𝐪′

, 

(2.81)  

where the factor -1 comes from the Fermion loop and the factor 2 is from up and down spins. 

The final representation is derived by substituting Eq (2.38) and residue theorem for 

integration of 𝜀.
17
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Figure 2-4. Lowest self-energy of the ring diagram. 

 

The polarizability introduces dynamical screening effects to the bare electron-electron 

interaction due to the surrounding electrons. This self-energy is, however, divergent at 𝐪 → 0 

due to the denominator of 𝑣𝐪 =
4𝜋  

|𝐪|2. Such issue is fixed via the partial summation of the ring 

diagrams up to the infinite order.
17

  

 

Figure 2-5. Self-energy of GW approximation and screened interaction 



Chapter 2  Density-Functional Theory and Many-Body Perturbation Theory 

45 

 

As shown in Fig. 2-5, the partial summation of ring diagrams with Fock term results in 

self-energy of GW approximation written as  

 −𝑖ΣGW
𝐩 (𝜔) =

1

2𝜋
∑ ∫ 𝑑𝜔′ [𝑖𝐺0

𝐩−𝐪(𝜔 − 𝜔′)][−𝑖𝑊𝐪(𝜔′)]

𝐪

, (2.82)  

where the wiggle, 𝑊𝐪(𝜔′) is the screened Coulomb interaction in the “random phase 

approximation” (RPA) defined as  

 −𝑖𝑊𝐪(𝜔′) =
−𝑖𝑣𝐪

𝜀RPA
𝐪

(𝜔′)
. (2.83)  

𝜀RPA
𝐪 (𝜔′) is the dielectric function in RPA; 

 𝜀RPA
𝐪 (𝜔′) = 1 − 𝑣𝐪𝑃0

𝐪(𝜔′). (2.84)  

The “GW” approximation assumes its name by this formula as product of “G” and “W”. 

 

GW approximation is also derived as the simplest approximation to the Hedin’s equation 

(Schwinger’s functional derivative method).
19

 Hedin’s equations relate five quantities: 

polarizability 𝑃, screening interaction 𝑊, self-energy Σ, Green’s function 𝐺, and vertex 

function Γ;   

 𝐺(12) = 𝐺0(12) + ∫ 𝐺0(13)Σ(34)𝐺(42) 𝑑(34), (2.85)  

 Γ(123) = 𝛿(12)𝛿(13) + ∫
𝛿Σ(12)

𝛿𝐺(45)
𝐺(46)𝐺(75)Γ(673)𝑑(4567), (2.86)  

 𝑃(12) = −𝑖 ∫ 𝐺(13)𝐺(41) Γ(342)𝑑(34), (2.87)  

 𝑊(12) = 𝑣(12) + ∫ 𝑣(13)𝑃(34) 𝑊(42)𝑑(34), (2.88)  

 Σ(12) = 𝑖 ∫ 𝐺(13)Γ(324)𝑊(41) 𝑑(34), (2.89)  



Chapter 2  Density-Functional Theory and Many-Body Perturbation Theory 

46 

 

where space, time, and spin coordinates are indicated in a concise form with numbers, i.e., 

1 = (𝐫1, 𝑡1, 𝜎1). Eq (2.85) is the Dyson’s equation itself. Derivation of the Hedin’s equations 

is, for instance, found in Ref [19]. 

The simplest approximation on these five equations is to assume the second term in the 

right-hand side of Eq (2.86) is zero: 

 Γ(123) = 𝛿(12)𝛿(13), (2.90)  

which corresponds to neglect the vertex corrections. Accordingly, Eqs (2.87) and (2.89) are 

extremely simplified as  

 𝑃(12) = −𝑖𝐺(12)𝐺(21), (2.91)  

 Σ(12) = 𝑖𝐺(12)𝑊(21). (2.92)  

After the Fourier transform from t-space to ω-space, these representations are exactly the 

same as Eqs (2.81) and (2.82). The screened interaction in Eq (2.88) also turns to be the same 

form as Eqs (2.83) and (2.84). 
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2-3-2. Practical calculation 

In practice, the zeroth-order Green’s function is constituted by Bloch states computed at the 

KS-DFT level with energies {𝜀𝑛𝐤
KS} and wavefunctions {𝜓𝑛𝐤

KS(r)};  

𝐺0(𝐫, 𝑡; 𝐫′, 𝑡′) = −𝑖 ∑ 𝜓𝑛𝐤
KS(𝐫)𝜓𝑛𝐤

KS∗(𝐫′)⟨𝛷KS|𝑇{𝑐𝑛𝐤(𝑡)𝑐𝑛𝐤
† (𝑡′)}|𝛷KS⟩

𝑛,𝐤

 

After the Fourier-transform, it is represented in the ω-space as  

 

𝐺0(𝐫, 𝐫′, 𝜔) = ∑ 𝜓𝑛𝐤
KS(𝐫)𝜓𝑛𝐤

KS∗(𝐫′)

𝑛,𝐤

[
1 − 𝑓𝑛𝐤

𝜔 − 𝜀𝑛𝐤
KS + 𝑖𝛿

+
𝑓𝑛𝐤

𝜔 − 𝜀𝑛𝐤
KS − 𝑖𝛿

] 

                      = ∑
𝜓𝑛𝐤

KS(𝐫)𝜓𝑛𝐤
KS∗(𝐫′)

𝜔 − 𝜀𝑛𝐤
KS + 𝑖𝛿sgn[𝜀𝑛𝐤

KS − 𝜇]
𝑛,𝐤

, 

(2.93)  

where 𝜇 is the Fermi energy.
20

 

Polarization in RPA, 𝑃0(𝐫, 𝐫′, 𝜔) is obtained from Eqs (2.81) and (2.93) as follows;  

 

     𝑃0(𝐫, 𝐫′, 𝜔) 

= −2𝑖 ∫
𝑑𝜀

2𝜋
𝐺0(𝐫, 𝐫′, 𝜔 + 𝜀)𝐺0(𝐫′, 𝐫, 𝜀) 

= 2 ∑ ∑ 𝜓𝑛𝐤
KS(𝐫)𝜓𝑛𝐤

KS∗(𝐫′)𝜓𝑛′𝐤′
KS (𝐫′)𝜓𝑛′𝐤′

KS∗ (𝐫) ×

𝑛′𝐤′𝑛𝐤

 

                      [
𝑓𝑛′𝐤′(1 − 𝑓𝑛𝐤)

𝜔 − 𝜀𝑛𝐤
KS + 𝜀𝑛′𝐤′

KS + 𝑖𝛿
−

𝑓𝑛𝐤(1 − 𝑓𝑛′𝐤′)

𝜔 − 𝜀𝑛𝐤
KS + 𝜀𝑛′𝐤′

KS − 𝑖𝛿
] 

= 2 ∑ ∑ 𝜓𝑛𝐤
KS(𝐫)𝜓𝑛𝐤

KS∗(𝐫′)𝜓𝑛′𝐤′
KS (𝐫′)𝜓𝑛′𝐤′

KS∗ (𝐫) ×

occ

𝑛′𝐤′

unocc

𝑛𝐤

 

                        [
1

𝜔 − 𝜀𝑛𝐤
KS + 𝜀𝑛′𝐤′

KS + 𝑖𝛿
−

1

𝜔 + 𝜀𝑛𝐤
KS − 𝜀𝑛′𝐤′

KS − 𝑖𝛿
]. 

(2.94)  

 

Noting that 𝑃0(𝐫 + 𝐓, 𝐫′ + 𝐓) = 𝑃0(𝐫, 𝐫′), 𝑃0 can be expanded in Bloch basis functions as
19

  



Chapter 2  Density-Functional Theory and Many-Body Perturbation Theory 

48 

 

 𝑃0(𝐫, 𝐫′, 𝜔) =
1

Ω
∑ 𝑒𝑖(𝐪+𝐆)𝐫𝑒−𝑖(𝐪+𝐆′)𝐫′

𝐪,𝐆,𝐆′

𝑃0
𝐆,𝐆′

(𝐪, 𝜔), (2.95)  

where Ω is the unit cell volume. Here 𝑃0
𝐆,𝐆′

(𝐪, 𝜔) is represented as:  

 

𝑃0
𝐆,𝐆′

(𝐪, 𝜔) = ∬ 𝑑𝐫𝑑𝐫′ 𝑒−𝑖(𝐪+𝐆)𝐫𝑒𝑖(𝐪+𝐆′)𝐫′
𝑃0(𝐫, 𝐫′, 𝜔) 

= 2 ∑ ∑ ∑ ⟨𝜓𝑛′𝐤−𝐪
KS |𝑒−𝑖(𝐪+𝐆)𝐫|𝜓𝑛𝐤

KS⟩ ⟨𝜓𝑛𝐤
KS|𝑒𝑖(𝐪+𝐆′)𝐫′

|𝜓𝑛′𝐤−𝐪
KS ⟩

occ

𝑛′

unocc

𝑛𝐤

× [
1

𝜔 − 𝜀𝑛𝐤
KS + 𝜀𝑛′𝐤−𝐪

KS + 𝑖𝛿
−

1

𝜔 + 𝜀𝑛𝐤
KS − 𝜀𝑛′𝐤−𝐪

KS − 𝑖𝛿
]. 

(2.96)  

In real space, the dielectric function 𝜀(𝐫, 𝐫′, 𝜔) is defined as  

 𝜀(𝐫, 𝐫′, 𝜔) = 𝛿(𝐫 − 𝐫′) − ∫ 𝑑𝐫′′𝑣(𝐫 − 𝐫′′)𝑃(𝐫′′, 𝐫′), (2.97)  

and it can be also expanded in Bloch basis functions as   

 

𝜀𝐆,𝐆′
(𝐪, 𝜔) = ∬ 𝑑𝐫𝑑𝐫′ 𝑒−𝑖(𝐪+𝐆)𝐫𝑒𝑖(𝐪+𝐆′)𝐫′

𝜀(𝐫, 𝐫′, 𝜔) 

                     = 𝛿𝐆,𝐆′ −
4π

|𝐪 + 𝐆||𝐪 + 𝐆′|
𝑃0

𝐆,𝐆′
(𝐪, 𝜔), 

(2.98)  

which can be calculated by substituting Eq (2.96) into 𝑃0
𝐆,𝐆′

(𝐪, 𝜔).  

Once 𝜀𝐆,𝐆′
(𝐪, 𝜔) is obtained, the screened interaction 𝑊(𝐫, 𝐫′, 𝜔) can be calculated 

through 

 𝑊(𝐫, 𝐫′, 𝜔) =
1

Ω
∑ 𝑒𝑖(𝐪+𝐆)𝐫𝑒−𝑖(𝐪+𝐆′)𝐫′

𝐪,𝐆,𝐆′

𝑊𝐆,𝐆′
(𝐪, 𝜔), (2.99)  

and  

 𝑊𝐆,𝐆′
(𝐪, 𝜔) = 4π

1

|𝐪 + 𝐆|
[𝜀−1(𝐪, 𝜔)]𝐆,𝐆′ 1

|𝐪 + 𝐆′|
, (2.100)  

where 𝜀−1 is the inverse of dielectric matrix (Eq (2.98)). 
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Using Eqs (2.93) and (2.99), self-energy in GW approximation is represented as  

 

     ΣGW(𝐫, 𝐫′, 𝜔) 

=
𝑖

2𝜋
∫ 𝑑𝜔′

+∞

−∞

𝐺0(𝐫, 𝐫′, 𝜔 − 𝜔′)𝑊(𝐫, 𝐫′, 𝜔′) 

=
𝑖

2𝜋
∫ 𝑑𝜔′

+∞

−∞

[∑
𝜓𝑛′𝐤′

KS (𝐫)𝜓𝑛′𝐤′
KS∗ (𝐫′)

𝜔 − 𝜔′ − 𝜀𝑛′𝐤′
KS + 𝑖𝛿sgn[𝜀𝑛′𝐤′

KS − 𝜇]
𝑛′,𝐤′

]

× [
1

Ω
∑ 𝑒𝑖(𝐪+𝐆)𝐫𝑒−𝑖(𝐪+𝐆′)𝐫′

𝐪,𝐆,𝐆′

𝑊𝐆,𝐆′
(𝐪, 𝜔′)], 

(2.101)  

thus ΣGW(𝐫, 𝐫′, 𝜔) is calculated once 𝑊𝐆,𝐆′
(𝐪, 𝜔) is obtained. Finally, the matrix element 

of the state (n, k) is obtained by the following equation 

 

    Σ𝑛𝐤
GW(𝜔) 

= ∬ 𝑑𝐫𝑑𝐫′ 𝜓𝑛𝐤
KS∗(𝐫)𝜓𝑛𝐤

KS(𝐫′)ΣGW(𝐫, 𝐫′, 𝜔) 

= 𝑖 ∑ ∫
𝑑𝜔′

2𝜋Ω
𝑊𝐆,𝐆′

(𝐪, 𝜔′)
⟨𝜓𝑛𝐤

KS|𝑒𝑖(𝐪+𝐆)𝐫|𝜓𝑛′𝐤−𝐪
KS ⟩ ⟨𝜓𝑛′𝐤−𝐪

KS |𝑒−𝑖(𝐪+𝐆′)𝐫′|𝜓𝑛𝐤
KS⟩

𝜔 − 𝜔′ − 𝜀𝑛′𝐤−𝐪
KS + 𝑖𝛿sgn[𝜀𝑛′𝐤−𝐪

KS − 𝜇]

+∞

−∞𝑛′,𝐪,𝐆,𝐆′

. 

(2.102)  

 

One of the major computational efforts in self-energy calculations is to compute 

𝑊𝐆,𝐆′
(𝐪, 𝜔′) on 𝜔′  grids. One of the methods to reduce the computational burden is 

represented by the so-called plasmon pole approximation (PPA). In PPA, the inverse of 

dielectric function in Eq (2.100) is approximated with a single pole function
21

  

 [𝜀−1(𝐪, 𝜔)]𝐆,𝐆′
≈ 𝛿𝐆,𝐆′ + [

𝑅𝐆,𝐆′
(𝐪)

𝜔 − 𝛺𝐆𝐆′(𝐪) + 𝑖𝛿
−

𝑅𝐆,𝐆′
(𝐪)

𝜔 + 𝛺𝐆𝐆′(𝐪) − 𝑖𝛿
], (2.103)  

and the residuals 𝑅𝐆,𝐆′
 and energies 𝛺𝐆𝐆′ are found by imposing the PPA to reproduce the 

exact 𝜀−1 function. 
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Once that Σ𝑛𝐤
GW(𝜔) is calculated, the quasiparticle energies 𝜀𝑛𝐤

GW are obtained in QPA 

according to Eq (2.78). 

 𝜀𝑛𝐤
GW = 𝜀𝑛𝐤

KS + 𝑍𝑛𝐤[Σ𝑛𝐤
GW(𝜀𝑛𝐤

KS) − 𝑉𝑛𝐤
XC], (2.104)  

where 𝑉𝑛𝐤
XC is the exchange-correlation potential for KS orbital (n,k). Its subtraction is 

required in order to avoid the double count of the exchange correlation interactions. 

 Using 𝜀𝑛𝐤
GW in Eq (2.104), one can update 𝐺0(𝐫, 𝐫′, 𝜔) in Eq (2.93) and 𝑃0(𝐫, 𝐫′, 𝜔) in 

Eq (2.94) and calculate the self-energy and the quasiparticle energy iteratively until 𝜀𝑛𝐤
GW is 

converged. Such self-consistent GW calculation, however, is known to overestimate 

bandwidths and bandgaps.
22

 Practically, 𝜀𝑛𝐤
GW with one single update of Eq (2.104), i.e., 

“one-shot” G0W0, or those obtained via self-consistent procedure of only the Green’s function 

but not the screened interaction, i.e., GW0, show better agreement with experiment. 

 As summarized in Ref [23], the best degree of self-consistency depends on the choice of 

exchange correlation functional in KS-DFT. For example, bandgaps at LDA+G0W0 level are 

known to be still underestimated while PBE0+G0W0 ones result overestimated. Both 

GGA+GW0 and HSE03+G0W0 provide bandgaps close to experiment with similar accuracy.  
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2-4. Bethe-Salpeter Equation 

GW approximation provides accurate quasiparticle gaps comparable with photoemission 

experiments. In photoabsorption experiment we have to consider e-h interaction since the 

number of electrons is fixed in the system. BSE is one of the approaches to treat such 

excited-state property. In this section theory of optical absorption and derivation of BSE from 

Hedin’s equations are described. 

 

2-4-1. Optical absorption spectrum 

In solids, the optical absorption spectrum is defined as the imaginary part of the macroscopic 

dielectric function Im[𝜀M(𝜔)]. Using microscopic dielectric function defined in Eq (2.98), 

𝜀M(𝜔) is expressed in the long wavelength limit as  

 𝜀M(𝜔) = lim
𝐪→0

1

[𝜀−1(𝐪, 𝜔)]𝐆=0,𝐆′=0(𝐪, 𝜔)
, (2.105)  

Note that 𝜀M(𝜔) is not same as lim𝐪→0 𝜀𝐆=0,𝐆′=0(𝐪, 𝜔) unless 𝜀 is a diagonal matrix. The 

difference 𝜀M(𝜔) − lim𝐪→0 𝜀𝐆=0,𝐆′=0(𝐪, 𝜔) is known as local field effect, which is not 

negligible in the inhomogeneous system. By inversion of 𝜀(𝐪, 𝜔), Eq (2.105) can be 

rewritten as 

 𝜀M(𝜔) = 1 − lim
𝐪→0

𝑣0(𝐪) ∬ 𝑑𝐫𝑑𝐫′e−i𝐪(𝐫−𝐫′)𝑃̅(𝐫, 𝐫′; 𝜔) (2.106)  

with 𝑣𝐆(𝐪) =
4𝜋

|𝐪+𝐆|2 being the Fourier transformed Coulomb potential and 𝑃̅(𝐫, 𝐫′; 𝜔) the 

modified polarizability. 𝑃̅ is obtained through Dyson-like equation
14

, 
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 𝑃̅ = 𝑃 + 𝑃𝑣̅𝑃̅, (2.107)  

where 𝑣̅ is the modified Coulomb interaction 𝑣̅𝐆(𝐪) expressed as   

 𝑣̅𝐆(𝐪) = {

      0           𝐆 = 0
4𝜋

|𝐪 + 𝐆|2
   𝐆 ≠ 0 . (2.108)  

From Eq (2.106) and (2.107) it is straightforward that the optical absorption can be calculated 

once polarizability 𝑃 is obtained. 

 

2-4-2. Polarizability by Bethe-Salpeter equation 

We already know that RPA is the approximation of 𝑃 = 𝑃0. Optical absorption spectrum at 

RPA level stems from the collection of independent-particle excitations, thus RPA is also 

called independent-particle (IP) approximation. In this approximation, only exchange e-h 

interaction is included through local field effect. Furthermore, attractive e-h interaction is 

introduced by solving BSE. 

As shown in subsection 2-3-1, the simplest approximation on Hedin’s equations from Eq 

(2.85) to (2.89) is GW approximation. BSE is obtained as the second iteration of Hedin’s 

equations. Substituting Eq (2.89) into Eq (2.86), we obtained an updated vertex function,  

 Γ(123) = 𝛿(12)𝛿(13) + 𝑖𝑊(12) ∫ 𝐺(16)𝐺(72)Γ(673) 𝑑(67), (2.109)  

where we have assumed the approximation 
𝛿Σ(12)

𝛿𝐺(45)
≈ 𝑖𝑊(12)𝛿(45). 

Once we define three-point polarizability as follows 
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𝑃3 (123) = −𝑖 ∫ 𝐺(16)𝐺(72)Γ(673) 𝑑(67), 

𝑃3
0(123) = −𝑖𝐺(13)𝐺(32), 

(2.110)  

by multiplying −𝑖𝐺(41)𝐺(25) on the left side of Eq (2.109) and integrating over 𝑑(12), we 

get an integral equation of polarizability, 

 𝑃3 (453) = 𝑃3
0(453) + 𝑖 ∫ 𝐺(41)𝐺(25)𝑊(12) 𝑃3 (123) 𝑑(12). (2.111)  

Furthermore, a general four-point polarization is introduced as follows, 

 𝑃4
0(1234) = −𝑖𝐺(13)𝐺(42), (2.112)  

thus three-point polarization is rewritten as 𝑃3
0(123) = −𝑖𝐺(13)𝐺(32) = 𝑃4

0(1233) . 

Using the four-point form, finally Eq (2.111) can be extended to  

 𝑃4 (1234) = 𝑃4
0(1234) − ∫ 𝑃4

0(1256)𝑊(56) 𝑃4 (5634) 𝑑(56). (2.113)  

Similarly, Eq (2.107) in two-point form can be also extended to four-point form;  

    𝑃̅4 (1234) = 𝑃4 (1234) + ∫ 𝑃4 (1255)𝑣̅(56) 𝑃̅4 (6634) 𝑑(56). (2.114)  

Combining Eq (2.113) and (2.114), finally we obtain  

 

     𝑃̅4 (1234) 

= 𝑃4
0(1234) + ∫ 𝑃4

0(1256)𝐾(5678) 𝑃4 (7834) 𝑑(5678), 

(2.115)  

where the kernel K contains both exchange and attraction interactions as  

 𝐾(5678) = 𝑣̅(57)𝛿(56)𝛿(78) − 𝑊(56)𝛿(57)𝛿(68). (2.116)  

Eq (2.115) is BSE for the polarizability. In Fig. 2-6, BSE is represented using Feynman 

diagram. 
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Figure 2-6. Feynman diagram of BSE 

 

2-4-3. Practical calculation 

The BSE for the polarizability can be expanded by introducing a single-particle Bloch basis 

set ({𝜓𝑛𝐤}); 

 

𝑃̅(𝐫1, 𝐫2, 𝐫3, 𝐫4; 𝜔) = 2 ∑ ∑ ∑ ∑ 𝜓𝑛1𝐤1
(𝐫1)𝜓𝑛3𝐤3

∗ (𝐫3)𝜓𝑛4𝐤4
(𝐫4)𝜓𝑛2𝐤2

∗ (𝐫2)

𝑛4𝐤4𝑛3𝐤3𝑛2𝐤2𝑛1𝐤1

 

                                    × 𝑃̅(𝑛1𝐤1𝑛2𝐤2)(𝑛3𝐤3𝑛4𝐤4)(𝜔) 

(2.117)  

We have interest in the case of 𝐫1 = 𝐫2 = 𝐫 and 𝐫3 = 𝐫4 = 𝐫′. In analogy with Eq (2.94) 

𝑃̅(𝑛1𝐤1𝑛2𝐤2)(𝑛3𝐤3𝑛4𝐤4)(𝜔) is physically meaningful only when both (𝑛1𝑛2) and (𝑛3𝑛4) are 

pairs containing one conduction and one valence Bloch states.
14

 In Tamm-Dancoff 

approximation, the coupling parts (𝑛1𝑛2𝑛3𝑛4) = {𝑣𝑐𝑐′𝑣′} and (𝑛1𝑛2𝑛3𝑛4) = {𝑐𝑣𝑣′𝑐′} are 

neglected. Finally, we only consider the resonant part (𝑛1𝑛2𝑛3𝑛4) = {𝑣𝑐𝑣′𝑐′}.  

In this basis, 𝑃̅ is rewritten as  
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𝑃̅(𝐫, 𝐫′; 𝜔) = −2𝑖 ∑ ∑ ∑ ∑ 𝜓𝑣1𝐤1
(𝐫)𝜓𝑣2𝐤3

∗ (𝐫′)𝜓𝑐2𝐤4
(𝐫′)𝜓𝑐1𝐤2

∗ (𝐫)

𝑐2𝐤4𝑣2𝐤3𝑐1𝐤2𝑣1𝐤1

  

                          × 𝐿(𝑣1𝐤1𝑐1𝐤2)(𝑣2𝐤3𝑐2𝐤4)(𝜔), 

(2.118)  

where 𝐿 = 𝑖𝑃̅ is electron-hole (two-particle) Green’s function. From Eq (2.106) and (2.118), 

optical absorption spectrum is represented as  

 

    Im[𝜀M(𝜔)] = 2 lim
𝐪→0

𝑣(𝐪) × 

∑ ∑⟨𝜓𝑣1𝐤1
|𝑒−𝑖𝐪𝐫|𝜓𝑐1𝐤1+𝐪⟩⟨𝜓𝑐2𝐤2+𝐪|𝑒𝑖𝐪𝐫′|𝜓𝑣2𝐤2

⟩Re[𝐿𝐊1𝐊2
(𝜔)]

𝐊2𝐊1

, 
(2.119)  

thus now the remaining observable to calculate is the interacting electron-hole Green’s 

function 𝐿𝐊1𝐊2
(𝜔). Here K represents the general conduction-valence pairs, 𝐊𝑖 = (𝑐𝑖, 𝑣𝑖 , 𝐤𝑖). 

From BSE for the polarizability (Eq (2.115)), we can redefine BSE for 𝐿𝐊1𝐊2
(𝜔): 

 𝐿𝐊1𝐊2
(𝜔) = 𝐿𝐊1𝐊2

0 (𝜔) (𝛿𝐊1𝐊2
+ ∑ Ξ𝐊1𝐊3

(𝜔)𝐿𝐊3𝐊2
(𝜔)

𝐊3

), (2.120)  

where the Bethe-Salpeter kernel Ξ = −𝑖𝐾 is defined as Ξ𝐊1𝐊2
= −𝑖𝑣̅𝐊1𝐊2

+ 𝑖𝑊𝐊1𝐊2
. BSE 

results similar to Dyson’s equation for one-particle Green’s function (Eq (2.73)).  

 

𝐿𝐊1𝐊2

0 (𝜔) is the free electron-hole Green’s function represented as  

 𝐿𝐊1𝐊2

0 (𝜔) = 𝑖 [
1

𝜔 − 𝜀𝑐1𝐤1
+ 𝜀𝑣1𝐤1

+ 𝑖𝛿
−

1

𝜔 + 𝜀𝑐1𝐤1
− 𝜀𝑣1𝐤1

− 𝑖𝛿
] 𝛿𝐊1𝐊2

. (2.121)  

The exchange interaction 𝑣̅𝐊1𝐊2
 is defined as  

𝑣̅𝐊1𝐊2
=

1

Ω
∑⟨𝜓𝑐2𝐤2

|𝑒𝑖𝐆𝐫|𝜓𝑣2𝐤2
⟩⟨𝜓𝑣1𝐤1

|𝑒−𝑖𝐆𝐫′|𝜓𝑐1𝐤1
⟩𝑣𝐆

𝐆≠0

. (2.122)  

Similarly, direct electron-electron scattering term 𝑊𝐊1𝐊2
 is written as follows 
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    𝑊𝐊1𝐊2
(𝜔)

=
1

Ω
∑⟨𝜓𝑐2𝐤2

|𝑒𝑖(𝐤2−𝐤1+𝐆)𝐫|𝜓𝑐1𝐤1
⟩⟨𝜓𝑣1𝐤1

|𝑒−𝑖(𝐤2−𝐤1+𝐆′)𝐫′|𝜓𝑣2𝐤2
⟩𝑊𝐆,𝐆′

(𝐪, 𝜔)

𝐆,𝐆′

. 
(2.123)  

The dynamical screened interaction 𝑊  is often approximated to be static 𝜔 = 0. It is 

justified since the plasma frequency of the investigated system is usually larger than the 

excitonic binding energies.
14

 

Using Eq (2.121), (2.122), and (2.123), BSE can be solved. After some algebraic 

transformations, BSE in Eq (2.120) can be also represented as 

 −𝑖𝐿𝐊1𝐊2
(𝜔) = [𝐻𝑒𝑥𝑐 − 𝐼𝜔]𝐊1𝐊2

−1 , (2.124)  

where 𝐼 = 𝛿𝐊1𝐊2
 and two-particle excitonic Hamiltonian, 𝐻𝐊1𝐊2

𝑒𝑥𝑐  is defined as  

 𝐻𝐊1𝐊2

𝑒𝑥𝑐 = (𝜀𝑐1𝐤1
− 𝜀𝑣1𝐤1

)𝛿𝐊1𝐊2
− 𝑖Ξ𝐊1𝐊2

. (2.125)  

Now, diagonalization of 𝐻𝐊1𝐊2

𝑒𝑥𝑐  provides excitonic states stemming from mixing of 

independent-particle excitations. Using the eigenvalues 𝐸𝜆  and eigenvectrors |λ⟩ =

∑ 𝐴λ
𝐊𝑖

𝑖 𝜓𝑣𝑖𝐤𝑖
(𝐫)𝜓𝑐𝑖𝐤𝑖

∗ (𝐫′), Eq (2.124) is transformed into the spectral representation as  

 −𝑖𝐿𝐊1𝐊2
(𝜔) = ∑

𝐴λ
𝐊1𝐴λ

∗𝐊2

𝐸𝜆 − 𝜔 + 𝑖𝛿
λ

. (2.126)  

Finally, the optical absorption spectrum in Eq (2.119) is represented as follows. 

 

Im[𝜀M(𝜔)] = 2 lim
𝐪→0

𝑣(𝐪) × 

∑ ∑ ∑⟨𝜓𝑣1𝐤1
|𝑒−𝑖𝐪𝐫|𝜓𝑐1𝐤1+𝐪⟩⟨𝜓𝑐2𝐤2+𝐪|𝑒𝑖𝐪𝐫′|𝜓𝑣2𝐤2

⟩𝐴λ
𝐊1𝐴λ

∗𝐊2𝛿(𝜔 − 𝐸𝜆)

λ𝐊2𝐊1

. 
(2.127)  
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 Diagonalization of 𝐻𝐊1𝐊2

𝑒𝑥𝑐  is computationally demanding with respect to the storage in 

memory and the calculation time due to the large size of excitonic Hamiltonian (𝑁𝑣 × 𝑁𝑐 ×

𝑁𝐤). One of the approaches to solve the problem is Lanczos-Haydock recursion method. For 

the detailed description, see Ref [21].  
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Chapter 3.  

Bandgap and Band Bending of Water-splitting 

Photocatalyst GaN:ZnO 

 

 

3-1. Introduction to GaN:ZnO 

 

3-1-1. Experimental facts 

A more performing, clean, and sustainable sun-to-energy production of hydrogen requires 

improved efficiencies of water-splitting photocatalyst. After the discovery of 

Honda-Fujishima effect,
1
 many metal oxides have been suggested as promising 

water-splitting photocatalysts.
2
 However, the absorption edges of most of them lie in the 

ultraviolet-light wavelengths, thus only a few part of solar spectrum is converted into 

chemical energy. Accordingly, (oxy)nitrides have been widely investigated in recent years 

because the higher potential energy of N 2p orbital than O 2p ones leads to higher valence top, 

which results in narrower bandgaps in visible light absorption.
3,4

 

Maeda and Domen reported gallium zinc oxynitride (GaN:ZnO) as the first successful 

example of overall water-splitting photocatalyst.
5–7

 GaN:ZnO with the Zn concentration less 

than 22 % absorbs visible light at wavelengths in the range 400-500 nm. Moreover, the band 
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edge position meets thermodynamic requirement for overall water splitting reaction: the 

potential of conduction band minimum (CBM) is more negative than the redox potential of 

H
+
/H2 and that of the valence band maximum (VBM) is more positive than that of O2/H2O.

8
 

Satisfying this ideal electronic requirement, GaN-rich solid solutions enable water-splitting 

reaction under visible-light irradiation. The quantum efficiency has been reached to about 

5.9 % at 420-440 nm modified with Rh-Cr mixed oxide cocatalyst.
9
 More recently, long-time 

operation test showed that the solid solution remains active for 3 months without noticeable 

degradation.
10

 Owing to the combination of visible-light response, high activity, and high 

durability, GaN:ZnO is undoubtedly one of the most promising water splitting photocatalysts 

for massive hydrogen production. 

GaN:ZnO has wurtzite structure (P63mc) same as pure GaN and ZnO parental 

compounds. Energy dispersive X-ray spectroscopy (EDX) indicates the atomic ratio of Ga to 

N and Zn to O is close to 1.
7
 Thus, this solid solution is regarded as a pseudo binary 

III-V/II-VI alloy, i.e., (Ga1-xZnx)(N1-xOx) with the concentration of ZnO x. There is no report 

that pure compounds GaN and ZnO are good water-splitting photocatalysts. Although the 

band edge positions of GaN and ZnO also satisfy the thermodynamic requirement,
8,11,12

 their 

bandgaps are too wide to absorb visible light, i.e., 3.4 eV and 3.2 eV, respectively. Under UV 

irradiation, pure GaN with high crystallinity is reported to have photocatalytic activity, but the 
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quantum efficiency is lower than that of GaN:ZnO.
13

 These facts indicate GaN:ZnO has 

several advantages due to the chemical alloying between GaN and ZnO. 

In the works by Maeda and Domen, the solid solutions have been intensively studied in 

GaN-rich regime because their synthetic method, the nitridation of the mixture of β-Ga2O3 

and ZnO under NH3 flow, is limited to GaN-rich case with x < 0.42.
6,7

 First report of synthesis 

of ZnO-rich alloys is the solid-state reaction between ZnO and GaN powder under high 

pressure and high temperature (HPHT).
14

 This method enables to synthesize wide range of 

compositions from GaN-rich to ZnO-rich solid solutions. The ZnO-rich sample from this 

method showed an absorption edge longer than 500 nm i.e., the bandgap is less than 2.5 eV. 

The bandgap is clearly narrower than those of GaN-rich ones (~ 500 nm) in the range x = 

0.03-0.13.
5
 Similarly, ZnO-rich samples obtained via the solution combustion method,

15
 the 

nitridation of layered double hydroxides (LDHs),
16

 and the nitridation of the mixture of 

ZnO/ZnGa2O4 nanocrystals
17

 also showed band gap less than 2.5 eV for x > 0.8.  

From these reports, ZnO-rich GaN:ZnO is expected to be more promising than GaN-rich 

ones with respect to the visible-light response. Nevertheless, there is still no report to show 

overall water-splitting reaction on ZnO-rich samples. Anyway, the origin of such larger 

bandgap lowering in ZnO-rich alloys has not been revealed yet and hence further 

investigation is still required.   
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3-1-2. Issues to investigate chemical alloying effect 

The mechanism of bandgap narrowing by chemical alloying is still a controversial issue. 

Previous theoretical and experimental works suggested the mechanism of bandgap lowering is 

N 2p-Zn 3d repulsion that shifts the VBM upward.
18–21

 On the other hand, photoluminescence 

spectroscopy and first-principles calculation by Yoshida et al.
22

 proposed an impurity-like 

picture where the visible-light absorption is attributed to the transition from Zn acceptor 

levels to CBM of GaN. In contrast, soft X-ray spectroscopic studies attributed the bandgap 

reduction in the solid solution with x = 0.42 to the repulsion of CB edges of GaN phase and 

ZnO phase.
23

 

Although much literature focuses on (Ga1-xZnx)(N1-xOx) from the theoretical point of view 

by means of first-principles calculations, the mechanism of bandgap lowering has not been 

clarified due to many complicated factors. The main three issues involved are presented in the 

following. 

 

1. Atomic configuration 

The first and the most difficult to tackle is the modellization of atomic configuration in the 

crystal, i.e., randomness or short/long-range ordering. The XRD analyses in all of the 

experimental reports indicate these solid solutions form single wurtzite phase. However, the 

distribution of ions in the parental lattice sites is still unclear and it is likely to depend on the 

synthetic conditions. Such atomic configuration has striking effect because it determines the 
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character of local chemical bonding, which is important in materials with covalent character. 

(Ga1-xZnx)(N1-xOx) is one of non-isovalent alloys,
24,25

 where the octet rule violation exists 

inevitably due to the mismatch of valence electrons, i.e., GaN is III-V compound and ZnO is 

II-VI compound. Such non-isovalent character requires a careful treatment of the alloying 

structure modellization, even for fixed ZnO concentration regime. 

In the first theoretical works of GaN:ZnO, the alloying structures have been modelized by 

means of special quasirandom structure (SQS) approach in the assumption that the alloy is a 

random solution.
18

 Afterward, however, Monte Carlo (MC) simulations showed that there is 

strong short-range order (SRO), which leads to clustering of the dilute compound in the 

matrix of the rich compound.
26,27

 DFT calculations on the MC modelized structures at x = 0.2, 

0.5, and 0.8 at T = 1200K predict symmetric bandgap, which is incompatible with the 

dramatic bandgap reduction shown in experiments for ZnO-rich samples.
14–17

 It indicates 

thermodynamically stable configuration is not experimentally achieved in the ZnO-rich solid 

solutions. Therefore, further detailed investigation on the atomic configurations is required to 

describe the mechanism of bandgap reduction in GaN:ZnO. 

 

2. Band edge position 

The second issue is that exact energies of valence and conduction band edges vs vacuum level, 

i.e., band edge positions, are not obtained from standard bulk calculations employing periodic 
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boundary conditions. This is due to the contribution of zero momentum components of 

pseudopotentials.
28,29

 As a result, calculations on bulk systems can describe bandgap change 

by chemical alloying, but not the band edge shift. It hinders us to ascribe the origin of 

bandgap narrowing to VBM raising or CBM lowering. 

One of the methods to solve this problem is to calculate electrostatic potentials on the slab 

models, which has 2-dimensional periodic surface with thick vacuum region, or 

heterostructure having interface with a different compound.
30,31

 Some literatures reported on 

calculations of slab models of (Ga1-xZnx)(N1-xOx),
32,33

 however, their discussions are still not 

satisfactory to reveal the mechanism of bandgap narrowing. This is because the impact of the 

atomic configuration is not considered carefully, thus there is still need for further 

investigation. 

 

3. Accuracy of bandgap calculation 

The third is the accuracy of DFT calculations in predicting bandgaps. Although LDA and 

GGA are the common techniques for Kohn-Sham DFT calculations for condensed matter, 

these approximations fail to describe strongly correlated electronic systems properly. Thus 

DFT calculations show errors on (Ga1-xZnx)(N1-xOx), in particular on ZnO-rich alloys since 

shallow Zn 3d level plays a crucial role in the valence band.
34

 On the other hand, calculation 

on GaN-rich one is not so problematic since the impact of deep Ga 3d level is not significant 
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on the character of frontier orbitals. To overcome this problem, DFT+U approach,
35

 which 

adds onsite Coulomb interactions on d electrons,
18

 and hybrid exchange correlation (XC) 

functional as B3LYP or HSE
21,33

 have been employed. Nevertheless, the accuracy of bandgap 

is still biased due to the fact that DFT is a theory for ground state. Empirical LDA+C
26

 and 

composition-dependent adjustments
27

 were also employed but the quantitative reliability have 

to be considered carefully. Therefore, more rigorous ab initio approach is desired for the 

quantitative comparison with the experimental results.  

MBPT scheme based on GW approximation for quasi-particle gaps and Bethe-Sapleter 

equation (BSE) for the electron-hole interactions have been revealed to be a powerful tool 

over the last decades.
36

 Previous literature reported a combined GW+BSE calculation on 

(Ga1-xZnx)(N1-xOx) systems, but their discussion on the mechanism of the visible-light 

response was still not satisfactory for discussing the mechanism of bandgap narrowing.
37
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3-1-3. Objective of this work 

In the following sections, I tackle the three issues described in subsection 3-1-2. In Sec 3-2, at 

first, different levels of calculations, LDA, LDA+U, and GW approximation, are checked for 

pure GaN and ZnO in terms of the accuracies for ground-state electronic structures and 

bandgaps. I will show that GW approximation perfectly reproduces the bandgaps of both GaN 

and ZnO. For GaN, LDA+U level of theory is also a feasible and reliable approach.  

In Sec 3-3, GaN-rich slab models are investigated by means of LDA+U to reveal the 

band edge position shifts of VBM and CBM caused by ZnO doping. The impact of the atomic 

configurations on the band edge positions is discussed. As secondary product, I found the 

band bending at the surface stemming from the electric field by the opposite charges on donor 

O and accepter Zn. 

In Sec 3-4, my focus moves on the accuracy and comparison with experiment. GW 

approximation is employed to obtain accurate bandgaps. Moreover, absorbance is also 

computed by solving BSE, which can be directly compared with the experimental UV-Vis 

diffuse reflectance spectra (DRS). From the agreement with experiment I suggest that 

metastable structure with large number of Zn-N bonds is expected in ZnO-rich alloys.  
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3-2. Preliminary calculations for pure GaN and ZnO 

As preliminary calculations, bandgaps of both pure GaN and ZnO bulks are calculated at 

LDA+U, PBE+G0W0, and HSE06+G0W0 levels and their results are compared to check the 

accuracy of calculations. At first, the geometries are optimized by LDA calculations. Grids of 

-centered k-points sampling were set to 10  10  10. Structural optimization was terminated 

when the forces on all of the atoms were smaller than 10 meV/Å. The resulting lattice 

parameters of GaN (ZnO) are a = 3.14 (3.17) Å and c = 5.11 (5.12) Å, which are in 

agreement with the experimental values a = 3.19 (3.25) Å and c = 5.19 (5.21)
 
Å.

38,39
 Then, on 

the relaxed structures, LDA+U,
35

 PBE+G0W0,
40

 and HSE06+G0W0
41

 calculations were 

performed to obtain an improved description of the electronic properties. Tab. 3-1 shows the 

resulting bandgaps Eg and the positions of cation 3d bands from the top of valence bands.  

 

Table 3-1. Bandgaps and levels of d bands of GaN and ZnO 

 

As well known, LDA calculations underestimate bandgaps due to the self-interaction 

error
46,47

 and derivative discontinuity of the XC energy.
48,49

 To remove the self-interaction 

  LDA LDA+U PBE+G0W0 HSE06+G0W0 Exp 

GaN 
Eg /eV 2.23 3.02 3.48 4.05 3.507

38
 

d band /eV 13.2 17.1 16.2 16.9 17.1
42

 

ZnO 
Eg /eV 0.84 1.84 2.55 3.41 3.44

43
 

d band /eV 4.6 7.1 6.0 6.5 6.95
44

, 7.4
45
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error, LDA+U calculations with on-site Coulomb interactions Ueff of 8.5 eV and 8.0 eV for 3d 

orbitals of Ga and Zn respectively are applied. These values provide good agreement between 

theoretically calculated and experimentally reported 3d bands of Ga (Zn) in GaN
42

 (ZnO
44,45

). 

Thus the resulting electronic structures of the ground states are largely improved. Despite an 

improvement in the description of d bands, band gaps Eg by LDA+U are still underestimated 

in particular for ZnO. As mentioned above, such severer error comes from the fact that 

shallow Zn 3d level plays a crucial role in the valence band.
34

  

Strictly speaking, bandgaps measured by experimental techniques involving electronic 

excitations are quasiparticle gaps, therefore Kohn-Sham (KS) gaps from DFT calculations for 

ground states are not comparable. Quasiparticle gaps can be addressed by GW approximation 

which takes dynamical screening potential into account. I employ "one-shot" GW scheme 

(G0W0),
40,41

 being the resulting bandgaps governed from the initial KS orbitals. Two XC 

functionals, the GGA functional of Perdew-Burke-Ernzerhof (PBE)
50

 and the hybrid 

functional by Heyd-Scuseria-Ernzerhof (HSE),
51,52

 are employed. 

The calculation at the PBE+G0W0 level of theory reproduces the experimentally 

measured bandgap of GaN well, while it still underestimates that of ZnO. On the other hand, 

HSE06+G0W0 calculations show good agreement with the experimental data for the bandgap 

of ZnO, but open the gap of GaN too much. Consistently with my calculations, an 
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overestimated value was also reported for GaN by HSE06+G0W0 in previous literature
53

. My 

HSE06+G0W0 calculations give excellent agreement with the experiment for ZnO, but is 

slightly larger than the previous reported value 3.21 eV by HSE03+G0W0.
54

 This is ascribed 

to the fact that the bandgap in the literature is calculated on top of the GGA optimized 

geometry, where overestimation of the lattice parameter occurs, resulting in a smaller 

bandgap. The results in Table 3-1 indicate different approaches should be applied for 

GaN:ZnO solid solutions depending on the ratio of GaN to ZnO: PBE+G0W0 suitable for 

GaN-rich alloys, while HSE06+G0W0 is suitable for ZnO-rich ones. 

Although GW approximation provides accurate bandgaps, the computational burden is 

quite larger than ones of DFT calculations, thus its usage in large systems with more than 

one-hundred atoms results undoable. On the other hand, the computational cost of LDA+U is 

almost same as normal LDA calculation, thus it is easily applied to large systems. As shown 

in Tab. 3-1, LDA+U gives meaningful results with reduced efforts in the case of GaN. From 

this preliminary analysis, in the following I opted for two approaches, i.e.: 1) slab models 

with more than one hundred atoms for GaN-rich solid solution (x = 0.0345) by LDA+U (Sec 

3-3), and 2) smaller bulk models for both GaN-rich and ZnO-rich models (x = 0.125 and 

0.875) by GW approximation and BSE (Sec 3-4).  
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3-3. Band-edge character of ZnO-doped GaN 

 

3-3-1. Computational details 

As mentioned in Sec 3-1, the exact band positions are not obtained from calculations on bulk 

models. Due to the contribution of zero momentum components of pseudopotentials, the 

reference of eigenvalues is not the vacuum level anymore.
28,29

 Slab model calculation solves 

this problem since it provides an electrostatic potential of vacuum region, thus subtracting the 

potential energy from the band energies, band edge positions vs vacuum level are obtained. 

In this section, I investigate the band-edge character and band bending of (Ga1–xZnx)(N1–

xOx). As my slab systems have more than one hundred atoms, GW scheme results in the 

difficult applicability. Hence my choice is to study GaN-rich alloys by means of LDA+U 

approach. Here, only small ZnO concentrations less than 10% are considered. I employed 

Vienna Ab initio Simulation Package (VASP).
55

 The projector-augmented wave (PAW) 

method with LDA was used with a cutoff energy of 550 eV. 

I tested two nonpolar facets (112̅0) and (11̅00). In this work, polar (0001) and (0001̅) 

facets were not considered because the complicated reconstruction of such surfaces is not 

suitable to focus on the effect of ZnO doping. My (112̅0) and (11̅00) models include the 29 

and 16 (116 and 64 atoms) unit layers, respectively, to get comparable thicknesses for the two 

slabs. The thickness of the vacuum region is 10 Å. The lattice parameters are a = 5.43 Å, b = 
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5.11 Å, and c = 53.48 Å for the (112̅0) model and a = 3.14 Å, b = 5.11 Å, and c = 51.46 Å for 

the (11̅00) model. Grids of -centered k-points sampling were set to 5  5  1 and 8  5  1, 

respectively. Structural optimization was terminated when the forces on all of the atoms were 

smaller than 50 meV/Å. All atoms were relaxed with fixed lattice constants. 

The LDA+U calculated band plots are shown in Fig. 3-1. Red lines indicate the bands of 

surface states. Avoiding these bands, we can define the band-edge positions in the bulk region 

(blue dashed lines). My results show that the band-edge positions are identical in the two 

facets. The CBM and VBM of the (112̅0) ((11̅00)) facet are at –6.54 (–6.55) eV and –3.46 (–

3.48) eV from the vacuum level and the bandgaps have similar values to the bulk value (3.02 

eV). This means both slab models are converged to reproduce the bulk’s electronic structure 

and thus appropriate for use in investigating the band-edge position of (Ga1–xZnx)(N1–xOx). 

It should be noted that the LDA+U-calculated bandgap still underestimates the 

experimental value of 3.507 eV.
38

 Compared with previous first-principles calculations of 

band alignment,
56

 the VBM is higher by about 0.17 eV and the CBM is lower by about 0.22 

eV. This means that my calculation provides the correct center of the bandgap even though 

the bandgap is underestimated. It is consistent with the findings of a previous study,
28,48

 thus 

offering a valuable starting point for my discussion.  
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Figure 3-1. Band plots of (112̅0) (upper) and (11̅00) (lower) surfaces of GaN. Red lines are 

bands of surface states. Blue dashed lines show the band-edge positions of the bulk regions. 

 

In this work, I analyze the ZnO-doping effect in GaN (112̅0), a facet that is characterized 

by the ABAB… stacking pattern. Its structure is shown in Fig. 3-2. I define the positions of 
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Zn and O dopant atoms by indexing the planes from 0 to 14, as shown in the top panel of Fig. 

3-2. To avoid any net dipole vertical to the surface plane, Zn and O symmetrically dope both 

sides of the slab. Thus the indexes are symmetric. I only consider substitution of Ga and N 

with Zn and O, respectively. In the wurtzite structure, each cation and anion has four chemical 

bonds: three short equatorial bonds (1.918 Å, blue in Fig. 3-2) and one longer axial bond 

(1.924 Å, red in Fig. 3-2). Such anisotropic character affects the ZnO doping effect, as shown 

below. 

Because (Ga1-xZnx)(N1-xOx) belongs to the class of non-isovalent III-V/II-VI alloys, 

non-isovalent bonds (chemical bond breaking the octet-rule with ±1 electron) like Ga-O 

(III-VI) or Zn-N (II-V) inevitably occur. There also could be other bonds with ±2 or ±3 

electrons like Ga-Ga or O-N: I neglect them due to their larger thermodynamic instability. In 

addition, the experimentally reported nonstoichiometry, e.g. excess O element over N,
5
 is also 

out of scope in this work. 
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Figure 3-2. Slab model of the GaN (112̅0) facet. Upper picture is viewed from the a-axis 

direction with the indexes of planes. The lower clearly shows that each N and Ga has one 

axial and three equatorial bonds.  
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3-3-2. Band-edge position  

When discussing the band-edge character in the bulk region, effects of surface state should be 

in principle avoided. Therefore, the Zn and O atoms will dope deep layers far from the surface 

dangling bond. Moreover, doping different planes with Zn and O atoms induces a surface 

dipole as it will be shown in the next subsection; thus, in this subsection I only consider the 

case that the Zn and O atoms dope the same plane. 

Fig. 3-3(a) shows the density of states projected on each plane (pDOSs) plotted along the 

plane-normal direction. These plots clearly show that the dangling-bond states lie at the 

surfaces (circled parts) and it is possible to define the band-edge positions of the bulk regions. 

Here, I compare GaN (112̅0) and the ZnO-doped system where one Ga–N pair bonded axially 

in plane 9 is replaced by a Zn–O pair. This system is named “PairA-9”. 
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Figure 3-3. (a) pDOS plots along the plane-normal direction of GaN (112̅0) (left) and PairA-9 

without and with structural relaxation (center and right). Surface states are circled and the 

bandgaps of the bulk regions are depicted. (b) Band-edge positions of the bulk region of GaN, 

PairE-9, PairA-9, and Iso-(5,11) models (CBM: blue, VBM: red). Dashed lines are redox 

potentials of H
+
/H2 (blue) and O2/H2O (red). 

 

First, the unrelaxed PairA-9 model (Fig. 3-3(a) center) is compared with GaN (Fig. 3-3(a) 

left) to evaluate the bare substitution chemical effect. Obviously, the bandgap narrowing is 

caused by both CBM lowering and VBM raising. In particular the VBM raising is large. As 

reported in previous literature, such VBM raising is due to the anti-bonding orbital by the 

coupling of N 2p and Zn 3d orbitals, i.e. p–d repulsion.
7,34

 Therefore, the pDOS of the valence 

band is clearly localized around plane 9 including substituted Zn (indicated by arrows). On 
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the other hand, the CBM is delocalized over the bulk region. This band is mainly constituted 

by N 3s, Ga 4s, and O 3s orbitals, while the CBM of GaN is mainly formed by N 3s and Ga 

4s. The additional mixing of the O 3s orbital enhances the bonding character, resulting in the 

lower band-edge position compared with that of the pristine undoped GaN (112̅0) surface. 

However, such a noticeable VBM raising is less evident after structural relaxation (Fig. 

3-3(a) right). This is clearly explained in terms of increase in the Zn–N bond length in the 

relaxed structure (from 1.925 Å to 1.956 Å). Such structural expansion is induced by the 

octet-rule violation of Zn–N and Ga–O bonds. Longer Zn–N bonds decrease the coupling 

between N 2p and Zn 3d, weakening the p–d repulsion and pushing the VBM down. On the 

other hand, such a trend is not observed on the CBM. The local structural expansion does not 

impact on the spatially delocalized CBM, as testified by its position which remains almost 

unaltered after the relaxation. 

In Fig. 3-3(b), the band-edge positions of other ZnO-doped models are also compared. In 

this case, all of the considered structures are relaxed. The concentration of ZnO, x, is identical 

among these models (x = 0.0345), and hence the differences derive only from the atomic 

configuration of Zn and O. 

As with the PairA-9 model, “PairE-9” has one Zn–O pair in plane 9, but the Zn–O pair 

forms an equatorial bond which is shorter than an axial one. Compared with PairA-9, the 
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CBM position is consistent while the VBM position is pushed down. As a result, the VBM 

positions of PairE-9 and GaN are almost the same, with the bandgap narrowing only ascribed 

to the CBM lowering. The VBM of PairE-9 lower than that of PairA-9 is similarly explained 

as I did from the comparison between unrelaxed and relaxed PairA-9 models. Namely, when 

Zn–O pair in the PairE-9 is equatorially bonded, the three remaining Zn–N bonds are one long 

axial and two short equatorial bonds. The axial Zn-N bond, which is 1.971 Å (the equatorial 

bonds are 1.956 Å), causes decreased p–d repulsion and lowering the VBM. 

In the “Iso-(5,11)” model, the Zn and O do not form pairs and are isolated. To avoid Zn–

O bonding, the unit cell was doubled along the a-direction and two planes (5 and 11) were 

doped to make the ZnO concentration x consistent with the other models. Iso-(5,11) is 

characterized by the most marked VBM raising in the three considered models. Again, this is 

explained by the Zn 3d –N 2p interaction. Zn atoms in Iso-(5,11) have four Zn–N bonds, 

while PairE-9 and PairA-9 have only three Zn–N bonds. The increased number of Zn–N 

bonds causes further p–d repulsion. This is the reason for the noticeable VBM raising. As 

expected, the CBM position does not differ from the other two ZnO-doped models because of 

its delocalized character again. 

As mentioned, my calculations overestimate (underestimate) the VBM (CBM) position 

because of the well-known DFT shortcomings in predicting semiconductor bandgaps; 
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nevertheless, all models meet the requirement that the VBM (CBM) is lower (higher) than the 

redox potential of O2/H2O (H
+
/H2). This result shows that the (Ga1–xZnx)(N1–xOx) system is 

suitable for the overall water splitting, as is experimentally known. 

Although the VBM raising of (Ga1–xZnx)(N1–xOx) enhances visible-light absorption, the 

orbital is localized around Zn–N bonds as shown in Fig. 3-3(a). Thus photogenerated holes 

will be trapped around Zn–N bonds, possibly resulting in the hole mobility reduction with 

suppression of subsequent oxygen evolution reaction (OER). This point will be discussed in 

subsection 3-3-4. 

In summary, it is found that 1) bandgap lowering comes from both VBM raising and 

CBM lowering and 2) the impact of local atomic configuration is mainly on the VBM in 

GaN-rich compounds (x = 0.0345).   
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3-3-3. Band bending at the surface 

Next, models where the Zn and O atoms dope different planes were studied. A previous X-ray 

photoelectron spectroscopy analysis has shown the high degree of oxidation of the (Ga1–

xZnx)(N1–xOx) surface: the atomic ratio O/Ga was higher than Zn/Ga at the surface.
7
 

Accordingly, I investigated the impact of surface oxidation on the spatial band behavior by 

means of a pDOS and macroscopic averaged electrostatic potential
31

 combined analysis. 

Here, three oxidized surface models are considered. One is (Ga1–xZnx)(N1–xOx) with O 

doping the outermost layer (“PairE-5 & O-0”). The second is (Ga1–xZnx)(N1–xOx) with Zn 

doping the deeper ninth layer (“PairE-5 & Zn-9”), whose surface is relatively O-rich 

compared with the bulk region. The third is characterized by the presence of both surface O 

and bulk Zn dopants (“PairE-5 & O-0 & Zn-9”). Their structures, pDOSs, and macroscopic 

averaged electrostatic potentials are shown in Fig. 3-4. 



Chapter 3  Bandgap and Band Bending of Water-splitting Photocatalyst GaN:ZnO 

82 

 

 

Figure 3-4. Top panel: Structures of PairE-5 & O-0 (left), PairE-5 & Zn-9 (center), and 

PairE-5 & O-0 & Zn-9 (right) shown from the b-axis direction. Middle panel: pDOS plots 

along the plane-normal direction. Red lines are the band-edge positions. The black dashed line 

is that of PairE-5. Bottom panel: Macroscopic averaged electrostatic potentials (red lines). 

The black dashed line is that of PairE-5. 

 

PairE-5 & O-0 shows band-edge lowering of both the CBM and VBM compared with 

PairE-5. Similar energy shifts of the two band edges result in little change of the bandgap. 

These shifts are due to the lowered electrostatic potential in the bulk region, as shown in the 

bottom panel. Such a potential drop is associated with the donor character of O in GaN. To 

maintain the octet rule, donor O releases one valence electron, becoming slightly positive 
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compared with N. My Bader analysis shows ‒1.21e on O and ‒1.45e on N in the bulk GaN, 

and thus 𝛿O
+ is +0.24e. Such positive character reduces the surface dipole, causing a drop of 

the electrostatic potential in the bulk region. 

On the other hand, PairE-5 & Zn-9 model shows raising of both the CBM and VBM, and 

correspondingly the electrostatic potential rises. This case is reversed compared with PairE-5 

& O-0; Zn is more negative than Ga because it acts as an acceptor in GaN. The Bader charge 

of Zn is +0.99e while for Ga it is +1.45e, and thus 𝛿Zn
−  is ‒0.46e. Such negative character 

enhances electron–electron repulsion, leading to the rise of the potential and the band edges. 

Here a further VBM upward shift is also observed due to the p–d repulsion on the Zn-N 

bonds. 

Surprisingly, PairE-5 & O-0 & Zn-9 shows a quite different behavior from the other two 

models. The band edges and electrostatic potential are largely pushed up in the bulk region as 

a consequence of the downward band bending at the surface. The bending observed between 

plane 0 including O and plane 9 including Zn enhances e–h separation, i.e., electrons and 

holes diffuse to the surface and bulk directions, respectively. Such noticeable bending derives 

from the electric field caused by the positive O-rich layer (𝛿O
+ = +0.25𝑒) and negative 

Zn-rich layer (𝛿Zn
− = −0.49𝑒). In other words, the donor and acceptor layers form local p-n 
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junction. The potential difference between bulk and surface, V, is represented by the 

Helmholtz equation
57–59

 as 

 ∆𝑉 =
12π𝜇𝑁dipole

𝜀
 (3.1) 

where , Ndipole, and  are the dipole moment (Debye), surface density of dipoles (dipoles/Å
2
), 

and dielectric constant of the medium, respectively. Assuming 𝜇 = 𝛿O
+𝑑O−0,Zn−9, where 

𝑑O−0,Zn−9  is the O-0‒Zn-9 distance along the z-direction (14.16 Å), and using the 

experimental value of 9.5 for 𝜀GaN
⊥ ,

60
 I obtain V = 2.48 V. This value agrees very well with 

the calculated difference of electrostatic potentials from ones of PairE-5 (2.6 eV as shown in 

Fig. 3-4). The band bending we observed is quite large because of the high Ndipole associated 

with the limited size of my model. Although the presence of such a downward bending is not 

confirmed in real systems, my following discussion about photocatalytic properties holds 

regardless of the band bending extent. 
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3-3-4. Discussion: carrier dynamics in non-equilibrium condition 

Experimentally, it is reported that using silver nitrate, which is a sacrificial electron acceptor, 

the quantum efficiency for O2 evolution becomes markedly higher than that for overall water 

splitting.
6,61

 It is also reported only loading H2 evolution cocatalysts such as Rh–Cr mixed 

oxide enhance both H2 and O2 evolution, while no activity is shown by loading just an O2 

evolution cocatalyst such as Mn3O4.
62,63

 These findings indicate that, in order to initiate OER, 

hole accumulation prior electron consumption is more crucial than the presence of oxidation 

reaction sites. My result shown in the subsection 3-3-2 supports such a hypothesis. The reason 

that high mandatory hole accumulation is that they are trapped on the valence states localized 

around the Zn-N bonds. In other words, pushing the quasi-Fermi level down allows the holes 

to escape from such trap states. 

Since powdered semiconductors in a real photocatalytic system have contacts with both a 

cocatalyst metal and aqueous solution, the picture of band bending in photocatalysis is not 

perfectly described in my calculations. However, although previous photoelectrochemical 

measurements showed (Ga1–xZnx)(N1–xOx) was an n-type semiconductor,
8,61

 expected upward 

band bending due to the electron transfer to aqueous solution has not been confirmed in the 

powders. Indeed, it is believed that such upward bending decreases in small particles because 

of the low donor concentration and the size effect.
64,65

 On the other hand, the bending we 

found is not due to the the electron transfer at an interface. It arises regardless of the particle 
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sizes. Such bending is peculiar to co-doped systems including both donor and acceptor 

dopants, thus this band bending could be one possible explanation why (Ga1–xZnx)(N1–xOx) 

has higher photocatalytic activity compared with pure GaN and ZnO
5
. 

The bending we found is opposite to the upward bending usually occurred at the interface 

with an n-type semiconductor and liquid. As far as I know there is no direct measurement of 

band bending of (Ga1–xZnx)(N1–xOx), thus it is still controversial issue. If I assume that (Ga1–

xZnx)(N1–xOx) has downward bending, it enhances electron ejection out of the surface, and 

hence the H2 evolution is achieved with a suitable reaction site. In contrast, the OER is still a 

difficult process even with an O2 evolution cocatalyst because the bending prohibits hole 

diffusion toward the surface. Therefore, in addition to the finding of a low hole mobility 

associated with the localized VBM nature, this could explain the experimentally reported 

difficulty to initiate the OER.  
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3-4. Bandgap and photoabsorption properties of GaN-rich 

and ZnO-rich alloys 

 

3-4-1. Computational details 

In Sec 3-3, we found that the number and the orientation of Zn-N bonds are correlated with 

the VBM positions in GaN-rich compounds. In this section, I will confirm this relation by 

means of GW approximation giving accurate bandgaps for both GaN-rich (x = 0.125) and 

ZnO-rich (x = 0.875) cases. Here bulk models are employed. 

I systematically investigate tens of solid solution models by examining the local atomic 

configuration. Figure 3-5 shows the ten configurations of ZnO segment embedded in the 

GaN-rich materials (x = 0.125). The morphology generated here can be classified into three 

groups: Group A "impurity" models, Group B "anion-cation pair" models, and Group C 

"tetramer cluster" models. Group A and B are (2×2×1) supercells of 4-atom wurtzite 

primitive cell (16 atoms) and group C is (2×2×2) ones (32 atoms). 

In Group A Zn and O atoms are not neighbored while they are neighbored in Group B. 

A1 and B1 have the Zn and O atoms in the same ab-plane while they lie in different planes in 

A2 and B2. In Group C tetramer clusters consisting of two Zn and two O atoms are formed. 

The six models have different tetramer conformations. I also generate ten ZnO-rich material 

(x = 0.875) by replacing Ga, N, Zn, and O atoms with Zn, O, Ga, N atoms, respectively. 
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The amount of non-isovalent bonds (Zn-N and Ga-O) is associated with the size of 

domains since these bonds lies on the interfaces of domains of GaN and ZnO, i.e., larger 

domain sizes causes more non-isovalent bonds. Therefore, each group in my models has the 

same number of non-isovalent bonds: group A, B, and C have both Zn-N and Ga-O bonds of 

12.5, 9.375, and 7.8125 % respectively. 

 

 

Figure 3-5. Structures of (Ga1-xZnx)(N1-xOx) models in GaN-rich case (x = 0.125). Gray and 

red atoms represent Zn and O. To exaggerate the conformations of the ZnO domains, Ga and 

N are represented as thin green and blue lines. Group A and B have (2x2x1) super cells and 

group C has (2x2x2) ones.  
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My calculations are divided into two main sections: one concerns the electronic structures 

and the other the optical properties. For the calculations of electronic structures, i.e., DFT and 

GW approximation, I employed PAW scheme using VASP code.
55,66

 The cutoff energy of the 

plane wave basis set in DFT calculations is set to 500 eV. 10/Nx × 10/Ny × 10/Nz k-grid is 

sampled by Monkhorst-pack scheme for Nx × Ny × Nz super cells. The 3d-electrons are treated 

as valence electrons for both Ga and Zn. In GW calculations Monkhorst-pack sampling is 

reduced to 6/Nx × 6/Ny × 6/Nz. The cutoff energy for the response function is set to 90 eV. 200 

empty bands and 48 frequency points on real axis are used. 

To calculate the optical properties, the independent-particle (IP) approximation is a 

computationally feasible way but the lack of electron-hole interaction is inadequate to 

compare the theoretical results with experimental absorption spectra.
20,33,37

 Therefore complex 

dielectric functions are obtained by solving BSE with the YAMBO code.
67

 KS orbitals for 

YAMBO are derived from DFT calculations by PWscf,
68

 which agree well with the VASP 

calculated ones. The cutoff energies of exchange and screened Coulomb interaction are set to 

40 and 3 Rydberg respectively. For comparison with experimental results, a sufficiently dense 

k-point is required to get smooth optical spectra. Therefore I employ the double-grid method
69

 

which ensures converged optical spectra with moderate computational costs. 
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3-4-2. Bandgaps and formation energies 

The ratio of Zn-N bonds, lattice parameters, bandgaps (Eg), and formation energies (Eform) of 

all alloy models are summarized in Tab. 3-2. Their structures are optimized at LDA level. 

Both a and c lattice constants are larger than pure GaN and ZnO showing the deviation from 

Vegard's law. This is consistent with previous reports.
18,27

 The lattice parameters clearly 

depend on the  ZnO/GaN ratio, whereas the impact of the local atomic configuration is 

almost negligible. 

As mentioned in Sec 3-2, bandgaps of GaN and ZnO are reproduced by PBE+G0W0 and 

HSE06+G0W0, respectively. Therefore in this work the bandgaps of GaN-rich and ZnO-rich 

alloys are calculated at PBE+G0W0 and HSE06+G0W0 levels. All the systems have direct 

bandgaps on -point. Eform are calculated at PBE and HSE06 levels for GaN-rich and 

ZnO-rich models, respectively, as the total energy differences from the pure constituents  

             𝐸form(𝑥) = 𝐸alloy − ((1 − 𝑥)𝐸GaN + 𝑥𝐸ZnO).         (3.2) 

Eg and Eform are remarkably changed in ten different structures at both GaN-rich and ZnO-rich 

models. Comparing model A2 with model C2, for instance, the differences are 0.78 eV and 

0.90 eV in GaN-rich and ZnO-rich cases, respectively. Such large variation even at same 

atomic ratio has also been reported by a previous paper based on B3LYP calculations.
21

 It 

clearly indicates the relevant role played by the atomic configuration as shown in Sec 3-3.   
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Table 3-2. Bandgaps, formation energies, and lattice constants of all alloy models 

 

 

 

     Lattice constant /Å 

  Zn-N bonds /% Eg /eV Eform /meV atom
-1

 a c 

GaN-rich 

A1 
12.5 

2.48 37.3 3.17 5.15 

A2 2.29 36.9 3.17 5.15 

B1 
9.375 

2.81 5.9 3.16 5.15 

B2 2.67 13.2 3.16 5.15 

C1 

7.8125 

2.99 -0.2 3.16 5.15 

C2 3.07 -0.7 3.16 5.15 

C3 2.49 8.0 3.16 5.15 

C4 2.61 5.9 3.17 5.15 

C5 2.94 3.8 3.17 5.15 

C6 2.64 7.5 3.16 5.15 

ZnO-rich 

A1 
12.5 

2.25 61.4 3.20 5.17 

A2 2.05 59.8 3.20 5.17 

B1 
9.375 

2.73 22.5 3.20 5.16 

B2 2.58 30.7 3.19 5.17 

C1 

7.8125 

2.91 16.0 3.19 5.16 

C2 2.95 15.5 3.19 5.17 

C3 2.43 24.4 3.20 5.15 

C4 2.31 21.8 3.20 5.15 

C5 2.62 21.7 3.20 5.17 

C6 2.64 24.7 3.20 5.17 
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The impact of atomic configurations on both Eform and Eg is explained by the amount of 

non-isovalent bonds Ga-O and Zn-N; a lot of non-isovalent bonds result in higher formation 

energies and narrower bandgaps. The relation between bandgaps and Zn-N bonds is 

consistent with the results in Sec 3-3: an increased number of Zn-N bonds causes VBM 

upward shift and bandgap lowering. Correlation with Eform is also clear consequence of the 

fact that the mismatch of the valence electrons causes instability of the covalent bonds. Such 

relationship also holds for the case of another non-isovalent alloy (GaAs)1-x(Ge2)x.
70,71

 

For further discussing my results, Eg are plotted with the Eform in Fig.3-6. Dashed and 

solid lines are fitted by least squares method with all of GaN-rich and ZnO-rich models, 

respectively. The clear negative trend indicates the bandgaps are related to the stability of 

valence electrons, which confirms the results in subsection 3-3-2 that the impact of atomic 

configuration is mainly from the VBM positions. The trends in GaN-rich and ZnO-rich ones 

are similar. Hence, in both GaN-rich and ZnO-rich cases, the bandgap reduction is explained 

in terms of the number and the orientation of Zn-N bonds.  
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Figure 3-6. Bandgaps plotted with the formation energies of GaN-rich (empty) and ZnO-rich 

(filled) models. Circles, triangles, diamonds are group A, B, and C models. Dashed and solid 

lines are fitted with GaN-rich and ZnO-rich models respectively. 

 

Fig. 3-7 shows VBM charge densities |𝜑VBM(𝐫)|2  of GaN-rich group C models 

characterized by the Zn2O2 tetramer cluster presence. Zn and O atoms and Zn-N and Zn-O 

bonds are shown while Ga and N atoms and Ga-N and Ga-O bonds are hidden for visual aid. 

We observe that the resulting charge densities are localized on N atoms bonded with Zn. This 

character confirms the picture that VBMs of (Ga1-xZnx)(N1-xOx) are derived from the 

anti-bonding orbital of N 2p and Zn 3d.
18–21
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Figure 3-7. Charge densities of VBMs of GaN-rich models with tetramer Zn2O2 cluster. Zn 

(O) atoms are shown gray (red) and all Ga and N atoms are hidden for the visual aid. The 

Zn-O and Zn-N bonds are shown. 
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The two zinc atoms in Zn2O2 tetramer clusters are not equivalent; indeed, one is bound to 

three nitrogen atoms and one oxygen atom (ZnN3O) and the other bound to two nitrogen 

atoms and two oxygen atoms (ZnN2O2). Hereafter I will call the former “Zn-a” and the 

latter ”Zn-b”. Fig. 3-7 clearly shows that the charge densities are localized on N atoms bound 

to Zn-a. Such localization stems from the fact that the uppermost valence orbital originates 

from the most electronically coupled Zn and N atom orbitals. In C5 and C6, the charge 

density also resides in the N atom nearest neighbor of Zn-b. This is because those N atoms are 

also bound to the Zn-a in the next periodic cell.  

This trend of the VBM localization is supposed to cause the hole mobility reduction, as 

discussed in Sec 3-3. In ZnO-rich models, the charge distribution of the VBM is different 

from the GaN-rich case since the contribution of N 2p and Zn 3d orbitals is not equivalent. 

However, similar trend of charge localization is observed.   
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3-4-3. Optical properties 

Bandgaps comparable with experiment are obtained by GW approximation in the previous 

section. However, in order to compare the experimental photoabsorption properties, direct 

calculations of absorption spectra, not just absorption edges, are preferable. It is of paramount 

relevance in the case of GaN:ZnO because the experimental absorption spectra shows very 

broad peak leading to unclear absorption edges. 

Complex dielectric function 𝜀(𝜔) = 𝜀1(𝜔) + 𝑖𝜀2(𝜔)  (Eq. (2.106)) including 

electron-hole interaction was computed by solving BSE. The calculations were performed on 

top of the KS orbitals by LDA+U calculations with scissors shift to match the bandgaps from 

GW approximation shown in Table 3-2. Fig. 3-8 shows the absorption coefficient,  

                   𝛼(𝜔) = √2𝜔/𝑐(∣∣𝜀(𝜔)∣∣ − 𝜀1(𝜔))1 2⁄ ,           (3.3) 

comparing with the experimental absorbance from UV-Vis DRS.
14,16,17,22

 Double grid method 

for k-point sampling enables to obtain converged absorption spectra, thus direct comparison 

with experimental spectra is allowed .  
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Figure 3-8. Absorption coefficients calculated by BSE with double grid method. Left panel: 

pure GaN and GaN-rich A1, B1, and C1 alloys, Right panel: pure ZnO and ZnO-rich A1, B1, 

and C1 alloys. Experimental results of pure GaN and ZnO are from Ref [14] and Ref [16]. 

(Ga1-xZnx)(N1-xOx) of x = 0.11 and x = 0.87 from Ref [22] and Ref [17] respectively. 

 

My results for pure, parental GaN and ZnO show excellent agreement in the absorption 

edge positions with the experiment due to the inclusion of excitonic effects. The sharpness of 

the edges is, however, not completely reproduced as shown in other theoretical papers.
54,72

 

This can be ascribable to the absence of band stretching correction on the band structures. 

However, such problem is not pronounced in the case of solid solution models because their 

band dispersion is quite small due to the localization of the wave function, as shown in Fig. 

3-7. 

For comparison with the experimental absorbance, A1, B1, and C1 models are chosen for 

the optical property calculations. All of solid-solution models show gradual absorption edges, 

deriving from the small overlap of wave functions of the VB and the CB, i.e., the VBs of 



Chapter 3  Bandgap and Band Bending of Water-splitting Photocatalyst GaN:ZnO 

98 

 

these alloys are mainly localized on the N atoms bonding with Zn atoms while the CBs are 

delocalized in overall the crystals, as shown in Fig. 3-3 and 3-7. In both GaN-rich and 

ZnO-rich cases, the model A1 has the strongest intensity as the consequence of the highest 

amount of Zn-N bonds that maximizes the overlap of the VB and the CB.  

All my models are still regarded as impurity-like system introducing deep N 2p-Zn 3d 

coupled acceptor levels with the compensating donors (O in GaN-rich case and Ga in 

ZnO-rich case, respectively). Such a picture is consistent with both the p-d repulsion
18–21

 and 

the impurity-like picture
22

 previously argued. 

In three different atomic configurations, GaN-rich C1 model (Zn-N bonds of 7.8125 %) 

and ZnO-rich A1 model (Zn-N bonds of 12.5 %) exhibit the best agreement with 

experimental spectra. This result suggests the possibility that different atomic configurations 

are achieved in GaN-rich and ZnO-rich solid solutions: there are more Zn-N bonds in 

ZnO-rich case than that in GaN-rich case. In other words, we can say that Zn and O atoms 

partially clusterize in GaN matrix in GaN-rich compounds while, in ZnO-rich compounds, Ga 

and N atoms tend to be separately embedded in ZnO matrix. The origin of such different 

atomic configuration is ascribed to the experimentally available methodology of synthesis and 

will be discussed in the next subsection.  
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3-4-4. Discussion: synthetic method and optical gap 

Here, I will discuss the origin of the different atomic configuration in GaN-rich and ZnO-rich 

cases as suggested in Fig. 3-8. 

Maeda’s traditional method to synthesize GaN-rich alloys, which was picked up for the 

comparison with my theoretical absorbance (x = 0.11 in Fig. 3-8), consists in the nitridation of 

mixtures of β-Ga2O3 and ZnO at T = 1123 K for 10 h.
22

 In situ time-resolved XRD study 

shows that the wurtzite (Ga1-xZnx)(N1-xOx) is formed after the formation of the spinel 

ZnGa2O4 intermediated phase,
73

 indicating that the important step to form final solid solution 

is the migration of nitrogen atoms into metal oxide. Accordingly, we can give a rational 

explanation from the stochastic point of view: migrating N atoms are likely to bond with Ga 

since ZnGa2O4 consists in a larger amount of Ga than Zn. Furthermore, Zn-O pairing is also 

thermodynamically favorable in the wurtzite lattice as reported by MC simulations.
26,27

 Hence 

ZnO clusters are preferably formed, which leads to the subsequent reduction of Zn-N bond. 

This is consistent with my C1 model which reproduced the experiment in Fig. 3-8. 

On the other hand, the synthesis method of ZnO-rich case by Lee et al. (experiment of x 

= 0.87 in Fig. 3-8) is the nitridation of mixtures of ZnGa2O4 and ZnO nanocrystals under T = 

923 K for 10 h.
17

 In this case, in contrast with Maeda’s method, the precursor includes much 

Zn, thus migrating N atoms are likely to form bonds with Zn even though Ga-N bond is 

thermodynamically preferred. In order to achieve Ga-N pairing formation in the solid 



Chapter 3  Bandgap and Band Bending of Water-splitting Photocatalyst GaN:ZnO 

100 

 

solutions, sufficiently high kinetic energies for atoms to diffuse freely and overcome the 

activation barriers are required. However, in order to prevent Zn evaporation, the temperature 

of this method is much lower than the traditional method, thus the kinetic energies might be 

insufficient. Thus the Ga and N atoms could be distributed independently as in my 

impurity-like A1 model which reproduced the experiment in Fig. 3-8. Other ways to 

synthesize ZnO-rich alloys by solution combustion method
15

 or nitridation of LDHs
16

 also 

have largely red-shifted absorption edges (~2.2 eV at x = 0.88 and 2.37 eV at x = 0.81, 

respectively), which are explained in a similar manner because the precursors in these 

reactions also include much more Zn than Ga. Actually, certain amount of Zn-N bonds was 

confirmed from the Raman spectra and secondary ion mass spectrometry in the samples by 

solution combustion method.
15

 In the case of LDHs nitridation the temperature is relatively 

high (T = 1073 K), but in this case the incompleteness of the equilibration can be ascribed to 

the short reaction time, just 30 min. 

Previous experimental study has associated the gap narrowing to the poor crystallinity in 

low-temperature synthetic regime.
74

 My finding seems related to such result because a large 

number of Zn-N bonds also causes structural disorder, thus the crystallinity of the sample 

result poor. I have not considered the impact of non-stoichiometry, which also worsens the 

crystallinity. It will be addressed in further future investigations. 
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Finally, I comment on the mechanism of bandgap reduction at intermediate 

concentrations (x ~ 0.5). I believe the mechanism of bandgap reduction is different in dilute 

and intermediate concentrations. Previous soft XAS study
23

 for GaN-rich solid solutions 

indicates that a sizable fraction of ZnO remains in GaN host at x = 0.18 and 0.42, but not at x 

= 0.06 (Fig 5 of Ref [23]), which indicates that Zn and O start to aggregate between x = 0.06 

and 0.18. At low ZnO concentration before the aggregation starts, amount of Zn-N bonds 

increases as function of x. However, after the aggregation starts for intermediate 

concentrations, the Zn-O network prevents the amount of Zn-N bond to increase, therefore the 

bandgap reduction due to VBM raising is inhibited. In such intermediate concentration 

regions, the bandgap change with x can be mainly attributed to the CB repulsion as stressed 

by McDermott et al.
23
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3-5. Conclusion 

In this chapter, I have investigated the mechanism of visible light response in 

(Ga1-xZnx)(N1-xOx) by means of first-principles calculations focusing, in particular, on the 

impact of local atomic configuration. 

In Sec 3-2, I demonstrated test of bandgap calculations by LDA, LDA+U, and GW 

approximation for pure GaN and ZnO. As widely reported, LDA predicted underestimated 

bandgaps compared with the experiment. LDA+U corrects the positions of cation d bands, 

resulting in improved bandgaps although still not satisfactorily in the case of ZnO. I 

confirmed that PBE+G0W0 and HSE+G0W0 provide good agreement for GaN and ZnO, 

respectively. The problem of GW approximation is the heavy computational cost, hence I 

have opted for feasible LDA+U for slab models with more than one hundred atoms for the 

GaN-rich case. GW approximation is employed to calculate accurate bandgap of smaller 

systems. 

In Sec 3-3, LDA+U calculations for GaN-rich slab models (x=0.0345) with (112̅0) facets 

were reported. Calculations revealed that the bandgap lowering by chemical alloying stems 

from both VBM raising and CBM lowering. Only the position of VBMs strongly depends on 

the atomic configuration, that is, the number and orientation of Zn-N bonds, while that of 

CBMs results not influenced. I also found that the hole mobility is reduced since the VBM 

orbital is localized around the Zn-N bonds. Furthermore, I observed downward band bending 
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at the O-rich GaN:ZnO surface due to the electric field induced by opposite charges of donor 

O and acceptor Zn (local p-n junction). These results seem related to the fact that GaN:ZnO 

requires high hole accumulation for water-splitting reaction. 

In Sec 3-4, by means of the GW approximation, I have investigated several bulk models 

of both GaN-rich and ZnO-rich concentrations (x = 0.125 and 0.875). The trend reported in 

Sec 3-3, i.e., an increased number of Zn-N bonds that induces bandgap narrowing, is 

confirmed also in the case of ZnO-rich alloys. The comparison of absorption spectra 

computed by BSE with experiments indicates that the atomic configuration is different in 

GaN-rich and ZnO-rich cases; ZnO-rich solid solutions have larger number of Zn-N bonds 

compared with GaN-rich ones. Such difference can be ascribed to the different methodologies 

of synthesis.   
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Chapter 4.  

Electron-phonon Coupling Effects on Optical 

Absorption and Carrier Lifetime 

 

 

As described in Sec 1-2, carrier “collision” lifetime 𝜏𝑐𝑜𝑙𝑙 is governed by scattering processes 

with electrons, phonons, and impurities. In this chapter, electron-phonon (e-ph) interaction is 

considered in the MBPT scheme. MBPT calculations provide band broadenings due to e-ph 

interaction, which is the inverse of 𝜏𝑐𝑜𝑙𝑙 itself.  

In Sec 4-1, theoretical background of e-ph MBPT is presented. In Sec 4-2, e-ph MBPT 

calculation is applied to zinc-blende GaN to demonstrate the impact of e-ph interactions on 

the electronic and optical properties. In Sec 4-3, e-ph MBPT is applied to investigate hot 

carriers in APbI3, which is a promising material in perovskite solar cells. 

 

4-1. Electron-phonon interaction in MBPT scheme 

In Chapter 2, MBPT scheme for the electron-electron (e-e) and electron-hole (e-h) 

interactions are presented. In a similar way to the treatment of e-e interaction, we can consider 

e-ph interaction once we consider nuclear motions as a perturbation 𝑉̂ in Eq (2.22). In this 
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scheme, the quasiparticle is so-called polaron. In this section the derivation of the 

self-energies from e-ph interaction is briefly described. More detailed derivation can be found 

in Ref [1]. 

Here we consider the total Hamiltonian of the coupled electron-nuclei system 𝐻̂ with 

two interactions, 

 𝐻̂ = 𝐻̂0 + 𝐻̂1 + 𝐻̂2 (4.1)  

where 𝐻̂0 is the electronic Hamiltonian corresponding to the case where the atoms are frozen 

at their equilibrium positions R0. Here, we employ KS-DFT to represent the electronic part; 

 𝐻̂0 = ∑ [−
1

2

𝜕2

𝜕𝐫𝑖̂
2 + 𝑉̂scf(𝐫𝑖, 𝐑)|

𝐑=𝐑𝟎
]

𝑖

, (4.2)  

with the electronic effective potential 𝑉̂scf = 𝑉̂ion + 𝑉̂H + 𝑉̂xc. 

𝐻̂1 and 𝐻̂2 represent the first and second term in the Taylor expansion of 𝐻̂0 when the 

atomic positions {R} are expanded around the equilibrium positions {R0}: 

 𝐻̂1 = ∑
𝜕𝑉̂scf(𝐫, 𝐑)

𝜕𝑅𝐼𝑠𝛼
|

𝐑=𝐑𝟎

𝑢̂𝐼𝑠𝑎

𝐼𝑠𝛼

, (4.3)  

 𝐻̂2 =
1

2
∑ ∑

𝜕2𝑉̂scf(𝐫, 𝐑)

𝜕𝑅𝐼𝑠𝛼𝜕𝑅𝐽𝑠′𝛽
|

𝐑=𝐑𝟎

𝑢̂𝐼𝑠𝑎

𝐽𝑠′𝛽

𝑢̂𝐽𝑠′𝛽

𝐼𝑠𝛼

, (4.4)  

where 𝑢̂𝐼𝑠𝑎 represents lattice displacement of atom s in lattice I along with the Cartesian 

coordinate α. In the second quantization, the lattice displacement can be represented in the 

space of the canonical lattice vibrations as follows, 
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 𝑢̂𝐼𝑠𝑎 = ∑(2𝑁𝐪𝑀𝑠𝜔𝐪𝜆)
−

1
2𝜉𝛼(𝐪𝜆|𝑠)𝑒𝑖𝐪∙(𝐑𝐼+𝝉𝑠)(𝑏†

−𝐪𝜆 + 𝑏𝐪𝜆)

𝐪𝜆

, (4.5)  

where 𝑁𝐪 is the number of cells used in the simulations and 𝑀𝑠 is the atomic mass whose 

position is 𝝉𝑠  in the unit cell. 𝜔𝐪𝜆  and 𝜉𝛼(𝐪𝜆|𝑠)  are phonon energy and phonon 

polarization vectors relative to the mode λ and transferred momentum q. 𝑏†
−𝐪𝜆 and 𝑏𝐪𝜆 are 

the bosonic creation and annihilation operators. Substituting Eq (4.5) into Eq (4.3), the matrix 

elements of 𝐻̂1 expanded by Bloch states can be represented as follows 

 

⟨𝑛𝐤|𝐻̂1|𝑛′𝐤′⟩ 

= ∑ ∑(2𝑁𝐪𝑀𝑠𝜔𝐪𝜆)
−

1
2𝜉𝛼(𝐪𝜆|𝑠)𝑒𝑖𝐪∙𝝉𝑠

𝐪𝜆𝑠𝛼

 

      × ∑ ⟨𝑛𝐤|𝑒𝑖𝐪∙𝐑𝐼
𝜕𝑉̂scf(𝐫)

𝜕𝑅𝐼𝑠𝛼
|𝑛′𝐤′⟩ (𝑏†

−𝐪𝜆 + 𝑏𝐪𝜆)

𝐼

 

= (𝑁𝐪)
−

1
2 ∑ 𝑔

𝑛𝑛′𝐤

𝐪𝜆

𝐪𝜆

𝛿𝐤′,𝐤−𝐪(𝑏†
−𝐪𝜆 + 𝑏𝐪𝜆), 

(4.6)  

where 𝑔
𝑛𝑛′𝐤

𝐪𝜆
 is the electron-phonon matrix element defined as 

 𝑔
𝑛𝑛′𝐤

𝐪𝜆
= ∑

𝜉𝛼(𝐪𝜆|𝑠)

(2𝑀𝑠𝜔𝐪𝜆)
1
2

𝑒𝑖𝐪∙𝝉𝑠⟨𝑛𝐤 |
𝜕𝑉̂scf(𝐫)

𝜕𝑅𝑠𝛼
| 𝑛′𝐤 − 𝐪⟩

𝑠𝛼

, (4.7)  

with 𝑅𝑠𝛼 = 𝑅𝐼𝑠𝛼|𝐼=0. In the case of second derivative, we employ the approximation to 

neglect the nondiagonal terms 𝐼 ≠ 𝐽 and 𝑠 ≠ 𝑠′ as  

𝜕2𝑉̂scf(𝐫, 𝐑)

𝜕𝑅𝐼𝑠𝛼𝜕𝑅𝐽𝑠′𝛽
≈ 𝛿𝐼𝐽𝛿𝑠𝑠′

𝜕2𝑉̂scf(𝐫, 𝐑)

𝜕𝑅𝐼𝑠𝛼𝜕𝑅𝐼𝑠𝛽
. (4.8)  

Then, similarly, substituting Eq (4.5) into Eq (4.4), the matrix elements of 𝐻̂2 is written 

  



Chapter 4  Electron-phonon Coupling Effects on Optical Absorption and Carrier Lifetime 

 

112 

 

    ⟨𝑛𝐤|𝐻̂2|𝑛′𝐤′⟩ 

=
1

2
∑ ∑ ∑(2𝑁𝐪𝑀𝑠)

−1
(𝜔𝐪𝜆𝜔𝐪′𝜆′)

−
1
2𝜉𝛼

∗ (𝐪𝜆|𝑠)𝜉𝛽(𝐪′𝜆′|𝑠)𝑒𝑖(𝐪+𝐪′)∙𝝉𝑠

𝐪′𝜆′𝐪𝜆𝑠𝛼𝛽

 

     × ∑ ⟨𝑛𝐤|𝑒𝑖(𝐪+𝐪′)∙𝐑𝐼
𝜕2𝑉̂scf(𝐫)

𝜕𝑅𝐼𝑠𝛼𝜕𝑅𝐼𝑠𝛽
|𝑛′𝐤′⟩ (𝑏†

−𝐪𝜆 + 𝑏𝐪𝜆)(𝑏†
−𝐪′𝜆′ + 𝑏𝐪′𝜆′)

𝐼

 

= ∑ ∑(𝑁𝐪)
−1

𝐪′𝜆′

Λ
𝑛𝑛′𝐤

𝐪𝜆,𝐪′𝜆′

𝐪𝜆

𝛿𝐤′,𝐤−𝐪−𝐪′(𝑏†
−𝐪𝜆 + 𝑏𝐪𝜆)(𝑏†

−𝐪′𝜆′ + 𝑏𝐪′𝜆′), 

(4.9)  

where Λ𝑛𝑛𝐤
𝐪𝜆,−𝐪𝜆

 is a second-order electron-phonon matrix element: 

Λ
𝑛𝑛′𝐤

𝐪𝜆,𝐪′𝜆′

=
1

2
∑

𝜉𝛼
∗ (𝐪𝜆|𝑠)𝜉𝛽(𝐪′𝜆′|𝑠)

2𝑀𝑠(𝜔𝐪𝜆𝜔𝐪′𝜆′)
1
2

𝑒𝑖(𝐪+𝐪′)∙𝝉𝑠⟨𝑛𝐤 |
𝜕2𝑉̂scf(𝐫)

𝜕𝑅𝑠𝛼𝜕𝑅𝑠𝛽
| 𝑛′𝐤 − 𝐪 − 𝐪′⟩

𝑠𝛼𝛽

. (4.10)  

As a result, 𝐻̂1 and 𝐻̂2 are rewritten as  

 

𝐻̂1 = ∑ ∑⟨𝑛𝐤|𝐻̂1|𝑛′𝐤′⟩

𝑛′𝐤′𝑛𝐤

𝑐𝑛𝐤
† 𝑐𝑛′𝐤′ 

      = (𝑁𝐪)
−

1
2 ∑ ∑ 𝑔

𝑛𝑛′𝐤

𝐪𝜆

𝐪𝜆

𝑐𝑛𝐤
† 𝑐𝑛′𝐤−𝐪(𝑏†

−𝐪𝜆 + 𝑏𝐪𝜆)

𝑛𝑛′𝐤

, 

(4.11)  

and 

 

𝐻̂2 = ∑ ∑⟨𝑛𝐤|𝐻̂2|𝑛′𝐤′⟩

𝑛′𝐤′𝑛𝐤

𝑐𝑛𝐤
† 𝑐𝑛′𝐤′ 

      = (𝑁𝐪)
−1

∑ ∑ ∑ Λ
𝑛𝑛′𝐤

𝐪𝜆,𝐪′𝜆′

𝐪′𝜆′𝐪𝜆

𝑐𝑛𝐤
† 𝑐𝑛′𝐤−𝐪−𝐪′(𝑏†

−𝐪𝜆 + 𝑏𝐪𝜆)(𝑏†
−𝐪′𝜆′ + 𝑏𝐪′𝜆′)

𝑛𝑛′𝐤

, 
(4.12)  

respectively. The derivatives of 𝑉̂scf with respect to the atomic coordinates R and phonons 

with energies {𝜔𝐪𝜆} and polarization vectors {𝜉𝛼(𝐪𝜆|𝑠)} in Eqs (4.7) and (4.10) can be 

calculated by using density-functional perturbation theory (DFPT)
2
. 

Now we can start to take perturbations using Wick’s theorem as the case of e-e 

interaction shown in subsection 2-2-3. For 𝐻̂1 , pairing of the bosonic creation and 
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annihilation operators can be achieved only in the even-order perturbations. Thus the lowest 

order perturbation is the second. Since expectation values of the electronic and phonon parts 

are separately calculated, what we have to calculate is the following:  

 

〈𝑇{𝑐𝑛1𝐤1

† (𝑡1)𝑐𝑛1
′ 𝐤1−𝐪(𝑡1)𝑐𝑛2𝐤2

† (𝑡2)𝑐𝑛2
′ 𝐤2−𝐪′(𝑡2)𝑐𝑛𝐤(𝑡)𝑐𝑛𝐤

† (𝑡′)}〉 

× 〈𝑇 {(𝑏†
−𝐪𝜆(𝑡1) + 𝑏𝐪𝜆(𝑡1)) (𝑏†

−𝐪′𝜆′(𝑡2) + 𝑏𝐪′𝜆′(𝑡2))}〉 

(4.13)  

T-product of phonon part in Eq (4.13) is written as follows: 

〈𝑇 {(𝑏†
−𝐪𝜆(𝑡1) + 𝑏𝐪𝜆(𝑡1)) (𝑏†

−𝐪′𝜆′(𝑡2) + 𝑏𝐪′𝜆′(𝑡2))}〉 

= 𝛿𝐪,−𝐪′𝛿𝜆,𝜆′[〈𝑇{𝑏†
−𝐪𝜆(𝑡1)𝑏−𝐪𝜆(𝑡2)}〉 + 〈𝑇{𝑏𝐪𝜆(𝑡1)𝑏†

𝐪𝜆(𝑡2)}〉] 

= 𝛿𝐪,−𝐪′𝛿𝜆,𝜆′ [[𝜃(𝑡1 − 𝑡2)e𝑖𝜔𝐪𝜆(𝑡1−𝑡2)𝑁−𝐪𝜆(𝑇)

+ 𝜃(𝑡2 − 𝑡1)e𝑖𝜔𝐪𝜆(𝑡1−𝑡2)(𝑁−𝐪𝜆(𝑇) + 1)]

+ 𝜃(𝑡1 − 𝑡2)e−𝑖𝜔𝐪𝜆(𝑡1−𝑡2)(𝑁𝐪𝜆(𝑇) + 1)

+ 𝜃(𝑡2 − 𝑡1)e−𝑖𝜔𝐪𝜆(𝑡1−𝑡2)𝑁𝐪𝜆(𝑇)] 

≡ 𝛿𝐪,−𝐪′𝛿𝜆,𝜆′𝑖𝐷0
𝐪𝜆

(𝑡1 − 𝑡2, 𝑇). 

(4.14)  

where 𝑁𝐪𝜆(𝑇) is the Bose-Einstein distribution function of the phonon mode (q, λ) at 

temperature T. 𝐷0
𝐪𝜆

(𝑡1 − 𝑡2, 𝑇) is defined as free phonon Green’s function. Now we focus on 

the case of zero-temperature:  

𝑖𝐷0
𝐪𝜆(𝑡1 − 𝑡2, 𝑇 = 0 K) = 𝜃(𝑡2 − 𝑡1)e𝑖𝜔𝐪𝜆(𝑡1−𝑡2) + 𝜃(𝑡1 − 𝑡2)e−𝑖𝜔𝐪𝜆(𝑡1−𝑡2). 

T-product of the electronic part in Eq (4.13) is similar to that of the first-order 

perturbation of e-e interaction (Eq (2.61)). Self-energy corresponding to the Fock self-energy 
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represented in Eq (2.72) is called “Fan” self-energy: 

Σ𝑛𝐤
Fan(𝑡1 − 𝑡2, 𝑇 = 0 K) = 𝑖 ∑

|𝑔
𝑛𝑛′𝐤

𝐪𝜆
|

2

𝑁𝑞
[𝐷0

𝐪𝜆(𝑡1 − 𝑡2, 𝑇 = 0 K)𝐺0
𝑛′𝐤−𝐪(𝑡1 − 𝑡2)]

𝑛′𝐪𝜆

. (4.15)  

After the Fourier-transform, this self-energy can be written in energy-space as follows, 

 

     Σ𝑛𝐤
Fan(𝜔, 𝑇 = 0 K) 

= ∑
|𝑔

𝑛𝑛′𝐤

𝐪𝜆
|

2

𝑁𝑞
[

1 − 𝑓𝑛′𝐤−𝐪

𝜔 − 𝜀𝑛′𝐤−𝐪
KS − 𝜔𝐪𝜆 + 𝑖0+

+
𝑓𝑛′𝐤−𝐪

𝜔 − 𝜀𝑛′𝐤−𝐪
KS + 𝜔𝐪𝜆 − 𝑖0+

]

𝑛′𝐪𝜆

, 

(4.16)  

where 𝜀𝑛′𝐤−𝐪
KS  is Kohn-Sham energy of the n’th band at the point k−q in the Brillouin zone. 

𝑓𝑛′𝐤−𝐪 is the occupation number of the bare electronic state at (𝑛′, k−q). Using Matsubara 

Green’s function,
1
 the Fan self-energy can be defined in finite-temperature case: 

 

     Σ𝑛𝐤
Fan(𝜔, 𝑇) 

= ∑
|𝑔

𝑛𝑛′𝐤

𝐪𝜆
|

2

𝑁𝑞
[

𝑁𝐪𝜆(𝑇) + 1 − 𝑓𝑛′𝐤−𝐪

𝜔 − 𝜀𝑛′𝐤−𝐪
KS − 𝜔𝐪𝜆 − 𝑖0+

+
𝑁𝐪𝜆(𝑇) + 𝑓𝑛′𝐤−𝐪

𝜔 − 𝜀𝑛′𝐤−𝐪
KS + 𝜔𝐪𝜆 − 𝑖0+

]

𝑛′𝐪𝜆

. 

(4.17)  

Similarly, the Debye-Waller (DW) self-energy arises from the first-order term in the 

perturbative expansion in powers of 𝐻̂2,  

 Σ𝑛𝐤
DW(𝑇) =

1

𝑁𝑞
∑ Λ𝑛𝑛𝐤

𝐪𝜆,−𝐪𝜆
(2𝑁𝐪𝜆(𝑇) + 1)

𝐪𝜆

. (4.18)  

Explicitly both self-energies depend on the temperature T via the 𝑁𝐪𝜆(𝑇) factor. The Fan and 

DW self-energies are complex and real functions, respectively; thus the former gives both an 

e-ph-induced energy shift and broadening while the latter contributes only with a constant 

energy shift. 
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Using two self-energies, the fully interacting Green’s function 𝐺𝑛𝑘(𝜔, 𝑇) can be written 

as  

 𝐺𝑛𝐤(𝜔, 𝑇) =
1

𝜔 − 𝜀𝑛𝐤
KS − Σ𝑛𝐤

Fan(𝜔, 𝑇) − Σ𝑛𝐤
DW(𝑇)

. (4.19)  

In the QPA described in subsection 2-2-5, the energy of quasiparticle, 𝐸𝑛𝐤(𝑇), is written as  

 𝐸𝑛𝐤(𝑇) = 𝜀𝑛𝐤
KS + 𝑍𝑛𝐤(𝑇)[Σ𝑛𝐤

Fan(𝜀𝑛𝐤
KS, 𝑇) + Σ𝑛𝐤

DW(𝑇)]. (4.20)  

The on-mass shell (OMS) approximation represents the static limit of the QPA, obtained by 

assuming Σ𝑛𝐤
Fan(𝜔, 𝑇) ≈ Σ𝑛𝐤

Fan(𝜔, 𝑇)|
𝜔=𝜀𝑛𝐤

KS , which is equivalent to assume 𝑍𝑛𝐤(𝑇) = 1 in Eq 

(4.20). 

The key importance of considering dynamical effect has been recently discovered.
3
 For 

instance, diamond has been shown to have large dynamical EP effects, which explains the 

subgap states observed experimentally in the absorption spectrum. Similarly, carbon polymer 

systems like trans-polyacetylene and polyethylene, show a severe breakdown of the QP 

picture induced by the EP interaction. In such cases, Eq (4.20) based on the QPA is not 

correct.  
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4-2. Finite-temperature electron-phonon correlation effects 

on the electronic and optical properties of zinc-blende GaN 

 

4-2-1. Introduction to zinc-blende GaN 

The group III-nitride semiconductors, i.e., GaN, AlN, InN, and their alloys are materials with 

many applications in the field of optoelectronics. These include, among others, light emitting 

diodes (LEDs), laser diodes (LDs), and heterojuction field-effect transistors (HFETs).
4–8

 This 

class of compounds is widely used, being characterized by the most stable wurtzite structure. 

They have built-in electric fields arising from the spontaneous and piezoelectric polarization 

along the c axis. These fields are, however, undesirable in the application of the 

heterostructures as quantum wells (QWs) or superlattices since they complicate the design 

and worsen the sample malleability. One of the approaches to eliminate these internal fields is 

the use of metastable nonpolar zinc-blende (zb) structures. It has also been reported that zb 

group III nitrides have a quantum confined Stark effect in low-dimensional heterostructures,
9
 

high p-type conductivity in (Ga,Mn)N thin films,
10

 and negative differential resistance (NDR) 

at the resonant tunneling diode of the cubic Al(Ga)N/GaN.
11,12

 Consequently a lot of interest 

is constantly attracted by this family of materials. 

In the last few years zb-GaN with high phase-purity and crystalline quality has been 

fabricated as a nearly strain-free epitaxial layer on 3C-SiC(001)/Si pseudosubstrates by 
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plasma assisted molecular beam epitaxy.
9,12–14

 This experimental achievement boosted the 

interest on fundamental optical properties such as photoluminescence, photoreflectance, and 

ellipsometry with particular attention on their temperature dependence. In contrast to such 

abundance of experimental results the agreement with the state-of-the-art calculations of the 

optical properties of zb-GaN is still not satisfactory. In these approaches the absorption 

spectrum is calculated
15

 by including electron-hole interaction by solving the Bethe-Salpeter 

equation (BSE) derived within the MBPT.
16

 Nevertheless, the main peak position is strongly 

underestimated when compared to the experimental result. Also the complex temperature 

dependence observed experimentally is not captured at all. Similarly, the band structure of 

zb-GaN has been deeply investigated by using the most up-to-date theoretical approaches. In 

this case electron-electron correlation only has been included, by means of the well-known 

GW approximation.
17

 The corresponding quasiparticle (QP) gap, calculated by using the 

one-shot GW approximation on top of Kohn-Sham (KS) Heyd-Scuseria-Ernzerhof (HSE)
18

 

hybrid orbital (HSE+G0W0), is 3.427 eV,
19

 which overestimates the experimental value of 

3.295 eV.
9
  

In this work I calculate the electronic and optical properties of zb-GaN by including the 

e-ph and e-e interactions. My results show a remarkable impact of e-ph interaction even at 

zero temperature which corrects the overestimation of the QP gap obtained within the 

HSE+G0W0 method. At the same time I prove that only by treating on the same level e-e and 
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e-ph interactions is it possible to obtain an unprecedented agreement with experiment results, 

both at zero temperature and at finite temperature. 

 

4-2-2. Renormalization of single-particle energy levels 

zb-GaN is a polar material and, as a consequence, large static e-ph effects are expected.
20

 As 

mentioned above, a strong e-ph coupling might eventually induce the breakdown of the QPA. 

A clear and simple way to test the QPA validity is to calculate the renormalization factors 

𝑍𝑛𝐤(𝑇). Indeed, within the QPA, the Green’s function G can be written as  

 𝐺𝑛𝑘
QP(𝜔, 𝑇) =

𝑍𝑛𝐤(𝑇)

𝜔 − 𝐸𝑛𝐤(𝑇)
, (4.21)  

with 𝐸𝑛𝐤(𝑇) evaluated by means of Eq. (4.20). The imaginary part of the Green’s function 

𝐴𝑛𝐤(𝜔, 𝑇) ≡ 𝜋−1|Im[𝐺𝑛𝐤(𝜔, 𝑇)]| gives the electronic spectral function (SF). In the OMS 

approximation (𝑍𝑛𝐤 = 1), the SF reduces to a Lorentzian function with a pole at 𝜔 =

Re[𝐸𝑛𝐤(𝑇)] and width Γ𝑛𝐤(𝑇) = Im[𝐸𝑛𝐤(𝑇)]. Thus, the 𝑍𝑛𝐤 values measure the strength of 

the QP pole; i.e., the QP picture is well motivated when the SF can be well approximated with 

a single Lorentzian-like function. 

In my e-ph calculations the optimized geometry and the electronic state are obtained by 

using the PWscf code.
21

 EP calculations are performed with the YAMBO code
22

 by using the 

phonons frequencies and 𝑔
𝑛𝑛′𝐤

𝐪𝜆
 matrix elements calculated with PWscf within DFPT. An 

energy cutoff on the plane-wave expansion of 80 Ry and a uniform k-point sampling of 8 × 8 
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× 8 are used in the ground-state and DFPT calculations. In order to obtain converged e-ph 

self-energies, a large number of q-points and unoccupied bands are required. Therefore I used 

400 bands to evaluate the energy shift (related to Re[𝐸𝑛𝐤(𝑇)]) and 700 randomly generated 

q-points for the broadening (linked to the Im[𝐸𝑛𝐤(𝑇)]), respectively. As a result of my 

simulations the majority of the states that contribute to the optical absorption are well 

described by Lorentzian-like SF, as shown in Fig. 4-1. In addition most of the states show 

values of 𝑍𝑛𝐤 very close to 1. For example, the states corresponding to the valence band 

maximum and the conduction band minimum at the point have 𝑍𝑛𝐤 = 0.91 and 𝑍𝑛𝐤 = 0.98, 

respectively.  
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Figure 4-1. Spectral function of a valence band state. This well represents the general trend of 

the majority of spectral functions covering the energy range involved in the absorption 

process, as discussed in the text. The blue line with dots is the calculated SF. This is compared 

with two Lorentzian functions corresponding to the OMS (red solid line) and to the QPA 

(black dashed line). Both approximations reproduce the calculated SF quite well and the use 

of the OMS is, therefore, well motivated. 

 

 

This indicates that, in zb-GaN, the OMS approximation is well motivated and most of the 

weight can be safely assumed to be in one single peak. There is, however, another and more 

stringent motivation in favor of OMS as far as the calculation of the optical properties is 

concerned. A 𝑍𝑛𝐤 factor smaller than 1 is known to reduce the intensity of the absorption 

spectrum. At the same time, however, it is well known that such reduction is compensated by 
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the dynamical electron-hole interactions.
23,24

 As far as these dynamical effects are neglected 

(as is commonly done in the state-of-the-art implementation of the BSE used in this work) the 

OMS assumption of 𝑍𝑛𝐤 = 1 is well motivated also from a purely theoretical point of view. 

In order to describe the impact of the e-ph interaction on the electronic states I consider 

the energies corresponding to the lowest transitions at several high-symmetry points. These 

energies are compared with the experimental results in Table 4-1. DFT is well known to 

underestimate the band gaps by about 40%. In fact, my DFT calculation [performed with the 

local density approximation (LDA)] yields 2.231 eV as the band gap of zb-GaN. This is 

clearly less than the experimental value, that is 3.295 eV at 10 K.
9
 My LDA+G0W0 

calculation within the plasmon-pole approximation
17

 opens the gap to 3.239 eV, which well 

agrees with the experiment. Still, however, the LDA+G0W0 largely underestimates the 

transition energies at L and X. In my G0W0 calculation the energy cutoff in the Fourier 

expansion of the response function is 13 Ry and 80 bands are included. This underestimation 

can be traced back to the local treatment of e-e correlation effects in the self-consistent 

DFT-LDA calculation. This limitation can be overcome by using the AM05 functional
25

 to 

calculate the optimized geometry and the HSE functional
18

 for the start point of the G0W0 

calculation, as previously reported.
19

  

 

 



Chapter 4  Electron-phonon Coupling Effects on Optical Absorption and Carrier Lifetime 

 

122 

 

Table 4-1. Lowest transition energies at high-symmetry points in the Brillouin zone of 

zb-GaN. The values obtained from LDA, LDA+G0W0, HSE+ G0W0,
19

 and HSE+G0W0+OMS 

calculations are compared with the experimental values.
9
 All values are in eV. 

  L X 

LDA 2.231 5.952 6.034 

LDA+G0W0 3.239 7.117 7.105 

HSE+G0W0 3.427 7.707 7.755 

HSE+G0W0+OMS 3.300 7.517 7.624 

Exp (T = 10K) 3.295 7.33 7.62 

a
 Excitation peak positions including the electron-hole binding energies. 

 

From Table 4-1 it is evident that HSE+G0W0 opens the band gaps further and overestimates 

the transition energies at all three high-symmetry points
19

. However, the combination of e-ph 

interaction with HSE+G0W0 greatly compensates this overestimation leading to an excellent 

agreement with the experimental results. My calculation at the OMS level gives a gap 

correction of −0.127 eV at, which reduces the HSE+G0W0 gap to 3.300 eV, in agreement with 

the experiment. Similarly, at the L and X points, the EP-induced corrections are −0.190 and 

−0.132 eV, resulting in transition energies of 7.517 and 7.624 eV, again in very good 

agreement with the experiment. Such moderate e-ph corrections result from the large 

cancellation between the Fan and the DW contributions to the total self-energy. For instance, 

the gap correction −0.127 eV at the point is decomposed into a Fan contribution (+2.101 eV) 
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and a DW contribution (−2.228 eV). This large cancellation clearly points to the importance 

of including, at the same time, both contributions to the total self-energy. Moreover, my result 

indicates the significance of the EP correction in zb-GaN, pointing to similar and potentially 

important corrections in the whole III-nitrides group of materials.  

 

4-2-3. Finite-temperature optical absorption spectra 

The optical absorption spectrum is defined as the imaginary part of the macroscopic dielectric 

function Im[𝜀M(𝜔)]. This can be easily expressed, in the long wavelength limit, as 

 𝜀M(𝜔) = 1 − lim
𝐪→0

𝑣0(𝐪) ∫ 𝑑𝐫𝑑𝐫′e−i𝐪(𝐫−𝐫′)𝑃̅(𝐫, 𝐫′; 𝜔) (4.22)  

with 𝑣𝐆(𝐪) =
4𝜋

|𝐆+𝐪|2  being the Coulomb potential and 𝑃̅(𝐫, 𝐫′; 𝜔)  the two-point 

polarizability. The equation of motion for the polarizability
16

 can be rewritten by introducing 

a single-particle basis set ({𝜓𝑛,𝐤}) to expand the density operator. This is equivalent to define 

the electron-hole probability functions Φ𝐊(𝐫) = 𝜓𝑐𝐤(𝐫)𝜓𝑣𝐤
∗ (𝐫) . Here K represents the 

general conduction-valence pairs, 𝐊 = (𝑐, 𝑣, 𝐤). In this basis 𝑃̅ is 

 𝑃̅(𝐫, 𝐫′; 𝜔) = − (
𝑖

Ω𝑁
) ∑ Φ𝐊1

∗ (𝐫)𝐿𝐊1𝐊2
(𝜔)Φ𝐊2

(𝐫′)

𝐊1𝐊2

 (4.23)  

Eq (4.23) introduces the electron-hole Green’s function 𝐿𝐊1𝐊2
(𝜔) that satisfies the BSE 

equation
16

: 

 𝐿𝐊1𝐊2
(𝜔) = 𝐿𝐊1𝐊2

0 (𝜔) + 𝐿𝐊1𝐊3

0 (𝜔)Ξ𝐊3𝐊4
(𝜔)𝐿𝐊4𝐊2

(𝜔) (4.24)  

The Bethe-Salpeter kernel Ξ is defined as Ξ = −𝑖𝑉 + 𝑖𝑊, with V and W being the exchange 
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and the screened Coulomb interactions, respectively. 𝐿𝐊1𝐊2

0 (𝜔), in Eq. (4.24), is the free 

electron-hole Green’s function. 

As previously described by Marini
26

 it is possible to include the finite-temperature effect 

in the BSE by using as reference the single-particle energies and the temperature-dependent 

and complex QP energies 𝐸𝑛𝐤(𝑇). In this way the free electron-hole Green’s function 

𝐿𝐊1𝐊2

0 (𝜔, 𝑇) depends explicitly on the temperature:  

 𝐿𝐊1𝐊2

0 (𝜔, 𝑇) = 𝑖 [
𝑓𝑐1𝐤1

− 𝑓𝑣1𝐤1

𝜔 − 𝐸𝑐1𝐤1
(𝑇) + 𝐸𝑣1𝐤1

(𝑇) + 𝑖0+
] 𝛿𝐊1𝐊2

 (4.25)  

Eq (4.25) ensures that also the fully interacting electron-hole Green’s function and the 

absorption spectra depend explicitly on the temperature, thanks to Eqs (4.22) and (4.23).  

In order to solve the BSE I adopt two standard approximations. The first is the 

Tamm-Dancoff approximation which corresponds to neglecting the coupling between the 

resonant and the antiresonant part of the BSE kernel. The second is the use of the statically 

screened electron-hole potential W. 

In Fig. 4-2 I show the calculated absorption spectrum. In addition to the G0W0 corrections, 

I include e-ph effects at the OMS level. To obtain converged absorption spectra I employed 

the random-integration method (RIM)
22

 by selecting around 30,000 random k points in the 

whole Brillouin zone. The energy cutoffs for the exchange and screened Coulomb interactions 

are set to 60 and 3 Ry, respectively. The artificial damping parameter 0+ in Eq. (4.25), which 

is introduced only for numerical reasons, is 10 meV. The resulting spectrum (thick black line) 
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is compared to the previous calculation of Benedict and Shirley
15

 (dashed red line) which is 

performed in a LDA basis without including the e-ph interaction. The BSE spectrum, 

obtained by including only the HSE+G0W0 correction, is also shown (blue line). 

 

 

Figure. 4-2. Theoretical and experimental absorption spectra of zb-GaN at T = 10 K. The 

spectrum obtained by solving the BSE including both HSE+G0W0 and e-ph corrections (thick 

black line) is in excellent agreement with the experimental results
9
 (bold dashed green line). 

Compared to the state-of-the-art calculation of Benedict and Shirley
15

 (dashed red line), the 

agreement is largely improved. A blue line shows the BSE spectrum only with the 

HSE+G0W0 correction. 
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I notice, indeed, that, compared to the Benedict’s calculation, the calculated position and 

width of the main peak are in very good agreement with the experimental spectrum at T = 10 

K
9
 (bold dashed green line). This pronounced peak, located at around 7.62 eV in the 

experiment, is due to interband transitions in a region of the Brillouin zone near the X point. 

These transitions extend over regions where the valence and conduction bands are parallel 

with a similar energy distance.
9
 Therefore the present improvement is largely due to the 

correction from HSE+G0W0 that induces a large stretching of the bands. In the BSE spectrum 

only with HSE+G0W0, the peak position is clearly shifted to higher energies and it is much 

less energetically wide. 

Indeed, one of the most significant effects of the EP interaction is the broadening of the 

QP states that fully dictates the smooth energy dependence of the absorption spectrum. I use a 

very small artificial damping (10 meV) in Eq. (4.25) that leads, when the EP interaction is 

neglected, to a very spiky absorption spectrum. To avoid this unphysical behavior an arbitrary 

200 meV broadening is chosen in the previous BSE calculations. In the present case, instead, 

the effect of the e-ph interaction correctly describes both the main peak and the steep 

absorption edge. Finally I investigate how the optical spectrum evolves as the temperature is 

increased. 

In Fig. 4-3 I show the calculated absorption spectra at T = 0, 300, and 600 K. In the first 

two cases the numerical simulation is compared with the available experimental results.
9
 The 
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agreement is fairly good and confirms that the present approach is able to correctly capture 

the finite-temperature effects. The energy shifts of the first excitation peaks due to 

electron-hole transitions occurring at , L, and X are experimentally −63, −100, and −110 

meV, respectively, when the temperature is increased from 10 to 295 K.
9
 My calculations give 

−83, −144, and −106 meV, respectively, which show a quantitative agreement with 

experiment. Also the general trend observed experimentally that the peak shift is larger at 

critical points with higher transition energy is reproduced. 

 

 

Figure 4-3. Absorption spectra of zb-GaN at T = 0, 300, and 600 K. Red circles are 

experimental results at 10 and 295 K.
9
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On the other hand, from Fig. 4-3 I deduce that the broadening of the main peak at the X 

point is slightly overestimated at T = 300 K compared to the experiment. In order to 

understand the source of this overestimation I notice that, in the QP picture, the e-ph-induced 

broadening of the valence band top and the conduction band bottom at the X point is 121.8 

and 12.1 meV, respectively, at T = 300 K. In the independent particle approximation (where 

𝐿𝐊1𝐊2
≈ 𝐿𝐊1𝐊2

0 𝛿𝐊1𝐊2
) the electron-hole broadening is simply the sum of the two. Now, as also 

in the case where electron-hole attraction is included, the main absorption peak originates 

from the lowest transitions concentrated around X. Thus I deduce that the overestimation is 

due to too large broadening of the underlying QP states. In the experimental work by 

Logothetidis et al.
27

 the broadening at the main absorption peak is described by a 

phenomenological model,  

 Γ(𝑇) = Γ1 + Γ0 [1 +
2

exp(Θ/𝑇) − 1
] (4.26)  

with Γ1 = 27 meV, Γ0 = 44 meV, and Θ = 522 K. The first term in Γ1 is ascribed to a 

temperature-independent mechanism, such as surface scattering; thus I set it to 0 to be 

compared with my theoretical results. Equation (4.26), indeed, predicts 

Γ(𝑇 = 300 K)~62.7 meV that is half of the value of my results. 

A reasonable explanation of this deviation is in the underlying unperturbed band structure. 

The band curvature has a large impact on the EP-induced broadening through the 

denominator of Eq. (4.17), especially by the dominant intraband-scattering terms with 
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𝜔 = 𝜀𝑛𝐤
KS, n’= n, and small q. Since my e-ph self-energies are calculated on top of Kohn-Sham 

states from the LDA, the resulted band widths are too small. As shown in previous 

calculations
19

 the valence band at the X point is characterized by a large curvature that is 

underestimated by the LDA calculations. I expect that the broadening would be improved by 

e-ph calculations performed on top of the HSE+G0W0 band structure, but it is prohibitively 

expensive from the computational point of view. Nevertheless my approach, based on the 

LDA, gives excellent results especially at the low temperature. 

 

4-2-4 Conclusion 

In this work I study the zero- and finite-temperature electronic and optical properties of 

zb-GaN. The effect of e-ph interaction, treated in a fully dynamical approach based on the 

MBPT, shows that the simple on-the-mass-shell approximation to the QP energies and widths 

is well motivated for the low-energy states involved in the absorption spectrum.  

By including, in an ab initio manner, the combined effect of the e-e interaction and the 

e-ph interaction I obtain an excellent agreement with the experimental fundamental band gaps. 

The solution of the BSE calculated on top of the HSE + G0W0 band structure including e-ph 

effects leads to an excellent agreement also for the optical absorption spectrum measured on 

high phase-purity samples. Both the position and the broadening of the most intense 

absorption peak are correctly reproduced in the low-temperature regime. In the 
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room-temperature case, instead, the red-shift of the main peak position is well described while 

the broadening is slightly overestimated. Despite this overestimation the present results still 

represent a major improvement with respect to the state-of-the-art simulations. 

My results clearly point to the crucial importance of including at the same time 

electron-electron and electron-phonon correlation effects for a comprehensive and 

quantitative understanding of the electronic and optical properties of group III nitrides.  
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4-3. The mechanism of slow hot-hole cooling in lead-iodide 

perovskite 

 

 

4-3-1. Introduction to photovoltaic material organic-inorganic halide 

perovskite 

Over the last five years, a new class of photovoltaic (PV) cells based on organic–inorganic 

mixed halide perovskites (ABX3, where A = alkali/organic cation, B = Sn, Ge, Pb, and X = 

halide anion) has emerged as solar harvesters. Moving on from the first report by Kojima et al. 

in 2009, where liquid electrolyte-based dye-sensitized solar cells (DSSCs) employing 

CH3NH3PbI3 and CH3NH3PbBr3 were characterized as having a power conversion efficiency 

(PCE) of about 3%,
28

 perovskite solar cells have improved rapidly and nowadays the PCE 

exceeds 15% in solid state solar cell architectures.
29–31

 

Achieving both good photoabsorption properties and a high carrier mobility is a difficult 

task in solution-processed PVs, organic PVs, DSSCs, and colloidal quantum dot solar cells 

because of the poor crystallinity of these absorbers.
32

 One of the main advantages of organic–

inorganic halide perovskite materials stems from the high mobility of both their electrons and 

their holes (i.e., their ambipolar character
33–40

), which can be advantageously coupled with 

their low-cost manufacturing for PV applications. Recent studies on their photoluminescence 

(PL) and time-resolved transient absorption spectra (TAS) have focused on the carrier 
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lifetimes and diffusion lengths of CH3NH3PbI3.
35,36

 TAS measurements by Xing et al. on 

CH3NH3PbI3 have revealed that the diffusion lengths of the electrons and holes are 130 and 

110 nm, respectively.
35

 

A long hot-hole lifetime in CH3NH3PbI3 was reported as a secondary product of the TAS 

analysis. The UV–Vis absorbance spectrum of CH3NH3PbI3 shows two absorption peaks 

occurring at 760 nm and 480 nm. The former peak was attributed to the direct excitation from 

the valence band maximum (VBM), which Xing et al. denoted as VB1, to the conduction 

band minimum (CBM). The latter peak was attributed to the transition from a band (VB2) 

situated 0.9 eV below VB1 to the CBM.
35

 Xing et al. reported that the hot-hole cooling from 

VB2 to VB1 was a very slow process (with a lifetime of ~0.4 ps). A suggested scheme of the 

experimentally observed carrier dynamics is shown in Fig. 4-4. The lifetime of this process is 

much longer than that typically seen in most organic semiconductors (~100 fs). As Xing et al. 

proposed, these hot-hole energies can be efficiently extracted through optimizing the device 

configuration, and may pave the way to further improvements in conversion efficiency. 
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Figure 4-4. A schematic diagram showing hot-hole cooling in CH3NH3PbI3 as reported in Ref. 

[35]. 

 

This study aims to reveal the origin of slow hot-hole cooling using first-principles 

calculations from the comparison of two lead iodide perovskite materials CH3NH3PbI3, 

CsPbI3, and the charged semiconductor network, PbI3
–
. In semiconductors, the most relevant 

mechanism of intraband carrier relaxation is thermalization coupled with lattice vibrations, 

i.e., e-ph interactions. As shown in the previous sections, this is what we can calculate in 

MBPT scheme. Using ab initio calculations, I have investigated the e-ph lifetimes 𝜏𝑛𝐤 

defined as  

 𝜏𝑛𝐤
−1 ≡ 2Im𝐸𝑛𝐤 ≈ 2ImΣ𝑛𝐤

Fan(𝜀𝑛𝐤
KS) (4.27)  

for lead iodide perovskite materials. 
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4-3-2. Band structure and phonon band 

My initial structural optimizations were performed using a DFT approach, as implemented in 

the PWscf code in the Quantum ESPRESSO software package.
21

 The local density 

approximation (LDA) with the parameterization given by Perdew and Zunger
41

 was used for 

the exchange correlation functional. Norm-conserving pseudopotentials, along with the plane 

wave basis set, were used. The cutoff energies for CH3NH3PbI3, CsPbI3, and PbI3
–
 were set to 

80, 60, and 40 Ry, respectively. In all the systems, the Brillouin zone was sampled using 

-centered 6  6  6 k point meshes employing the Monkhorst–Pack scheme.
42 

The optimized structures of the CH3NH3PbI3, CsPbI3, and PbI3
–
 systems are shown in Fig. 

4-5. Both CsPbI3 and PbI3
–
 retained their cubic structure, while the geometry of CH3NH3PbI3 

was distorted because of the anisotropic character of the CH3NH3
+
 cation. The lattice 

constants and band gaps of these compounds are summarized in Table 4-2.  

 

 

Figure 4-5. Optimized structures of (a) CH3NH3PbI3, (b) CsPbI3, and (c) PbI3
–
. Key: black = 

Pb, purple = I, pink = H, brown = C, light blue = N, and green = Cs. 
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Table 4-2. The lattice constants and band gaps of lead iodide perovskites optimized using 

LDA calculations. 

 

The lattice constants of CH3NH3PbI3 and CsPbI3 were similar, and were smaller than 

those of PbI3
–
. Consistent with our previous results,

38
 the absence of any Coulomb 

interactions resulting from the removal of the A-site cation resulted in an expansion of the cell 

volume. 

The expansion of the cell size of PbI3
–
 markedly altered the band structure. Fig. 4-6 

shows the band structure and density of states (DOS) of the three systems. The band 

structures of CH3NH3PbI3 and CsPbI3 are almost identical, although a distortion in 

CH3NH3PbI3 resolves the degeneracy. This is because the valence band and conduction band 

are mainly derived from the I 5p, Pb 6s, and Pb 6p orbitals in these lead halide perovskite 

systems.
37,38

 Thus, different A-site cations only marginally impact on the electronic structure. 

Fig. 4-6(a) and (b) show large band dispersions for both the VBM and the CBM, resulting 

in light effective masses of both electrons and holes in the CBM and VBM, which agrees with 

the experimentally reported ambipolar nature of CH3NH3PbI3. However, PbI3
–
 differs 

markedly from the two cases discussed above, as the band dispersion in the VBM is 

 CH3NH3PbI3 CsPbI3 PbI3
-
 

Lattice constant /Å 
a=5.989, b=6.018, c=5.986 

=86.52, =90.96, =86.54) 
6.133 6.721 

Band gap /eV 0.926 0.894 1.509 
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manifestly reduced, inducing a heavier hole effective mass. This is because the antibonding 

coupling between the Pb 6s and I 5p orbitals is reduced in the expanded cell.
38,43

 As a result, 

the DOS of CH3NH3PbI3 and CsPbI3 is smakk in the –1 eV < E–EVBM < 0 eV region 

(encircled area), while the DOS of PbI3
–
 shows a noticeably high peak. I will show below how 

this difference has a marked impact on the e-ph lifetimes. 

Since the computational burden of the phonon and e-ph calculations of CH3NH3PbI3 is 

sensitively higher than that for CsPbI3 and PbI3
-
 according to the larger size (CH3NH3PbI3, 

CsPbI3, and PbI3
-
 have 12, 5, and 4 atoms in the unit cell.), in this work I report the e-ph 

lifetimes of CsPbI3 and PbI3
–
. Through a comparison of the e-ph lifetimes of CsPbI3 and PbI3

–
, 

I was able to demonstrate that the origin of the slow hot-hole cooling was almost entirely 

from the characteristic electronic structure. Thus, my results for CsPbI3 could be easily 

transferred to CH3NH3PbI3. 
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Figure 4-6. Bandplots (left) and DOS (right) of (a) CH3NH3PbI3, (b) CsPbI3, and (c) PbI3
–
. 

The red dotted lines show the VBM and CBM. 

 



Chapter 4  Electron-phonon Coupling Effects on Optical Absorption and Carrier Lifetime 

 

138 

 

The phonons of CsPbI3 and PbI3
– 

were calculated using the DFPT scheme (Fig. 4-7). I 

checked the phonon bands and found that the Debye frequencies of these two systems are 138 

and 77 cm
–1

 for CsPbI3 and PbI3
–
, respectively, corresponding to very small energies 

compared with the magnitude of the electronic energy scale (~1 eV). The number of real 

phonon bands was 9 and 10 for CsPbI3 and PbI3
–
, respectively, while the number of all 

phonon modes was 15 and 12, respectively. The imaginary modes arise from the fact that the 

cubic structure is not the most stable phase in these systems: the most stable phase of CsPbI3 

is the -phase exhibiting an orthorhombic crystal system.
44

 However, the number of atoms in 

the unit cell of the -phase is 20, which is four times that of the cubic phase. To the best of my 

knowledge, there have been no reports on ab initio calculations on the e-ph lifetimes in such a 

large system due to the computational overhead. Thus, at first, I here focus on the cubic 

polymorph discussing in the following the effect of imaginary phonon modes on the e-ph 

lifetimes. 

 

 

Figure 4-7. Phonon bands of (a) CsPbI3 and (b) PbI3
- 
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4-3-3. Carrier lifetimes 

The resulting e-ph lifetimes of CsPbI3 and PbI3
–
 are plotted in Fig. 4-8, along with the KS 

energies. I also used the Phonon software package to calculate the e-ph coupling matrix. Then, 

MBPT calculations were performed to obtain the self-energies and the lifetimes employing 

the YAMBO code.
22

 Here, the k-points were sampled in 8  8  8 grids and 30 bands were 

included in the self-energy calculations. The temperature was set to T = 0 K for simplicity. 

 

 

Figure 4-8. The e-ph lifetimes of (a) CsPbI3 and (b) PbI3
–
. The black solid, red dashed, blue 

dashed, and pink dotted lines are from different calculation settings, as shown at the bottom of 

the figure. 

 

The number of q points, Nq and damping parameter, 0
+
 were crucial parameters that 

needed to be checked carefully in the convergence test procedure. The black solid lines in Fig. 
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4-8 correspond to the set of data with Nq = 400, 0
+
 = 5 meV, and N = 9 and 10 for CsPbI3 and 

PbI3
–
, respectively, i.e., without the imaginary phonon bands. The blue crosses and the pink 

dot lines in Fig. 4, in variance, represent the set of data with a reduced number of q points (Nq 

= 375) and an increased damping parameter (0
+
 = 10 meV), respectively. Since the plots are 

almost identical for both CsPbI3 and PbI3
–
, I concluded that convergence was achieved when 

Nq = 400 and 0
+
 = 5 meV. To validate my choice of excluding the imaginary phonon bands, 

the calculated lifetimes including the imaginary phonon bands are also shown in Fig. 4-8 (red 

dashed lines). The phonon frequencies were temporarily set to zero. We can see that the 

imaginary phonon bands have also no effect on my discussion concerning the trend in the 

carrier lifetimes. 

From Fig. 4-8 (a), we can clearly see that the lifetime of the holes in the VB begins to 

increase at E–EVBM ~ –0.9 eV for all calculation settings. Because of the enhancement in the 

lifetime, the relaxation of the hot holes from the lower valence bands is suppressed at E–EVBM 

~ –0.9 eV. Such expected dynamics agree exactly with the TAS measurements, which show 

slow hot-hole cooling in VB2 at ~0.9 eV below the VBM.
35

 My calculations reproduce the 

experimental findings concerning CH3NH3PbI3 perfectly. 

The long-lifetime region shown in Fig. 4-8(a) is consistent with the small DOS region 

shown in Fig. 4-6(b). This is understandable, because a smaller DOS offers a reduced number 

of carrier relaxation paths leading to longer carrier lifetimes, and vice versa. A similar strong 
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relationship between the DOS and the e-ph scattering rate has been also reported for other 

semiconductors, e.g., silicon.
45–47

 As expected, a longer-hole-lifetime region was not observed 

in PbI3
–
 because it does not have a small DOS in the valence band. This correspondence 

between the electronic character and the carrier lifetime confirms my proposal that the 

hot-hole cooling mechanism can be explained mainly in terms of the characteristic electronic 

structure. 

To discuss the carrier decay paths in detail, I examined the generalized Eliashberg 

functions of the Fan contribution 

 g𝐹𝑛𝒌
2 (𝜔)|

Fan
=

1

𝑁𝑞
∑

|𝑔
𝑛𝑛′𝐤

𝐪𝜆
|

2

𝜀𝑛𝐤 − 𝜀𝑛′𝐤+𝐪
[2𝑁𝐪𝜆(𝑇) + 1]

𝑛′𝐪𝜆

𝛿(𝜔 − 𝜔𝐪𝜆) (4.28)  

This function revealed which phonon modes contributed to the carrier relaxation. 

Fig. 4-9(a) shows the generalized Eliashberg functions of the two valence states shown in 

the inset band plot. In both plots, the highest peaks (b) were in the range 130 to 140 cm
–1

. The 

hot holes are mainly thermalized through the phonon modes in this energy range. These 

phonon modes are longitudinal optical (LO) modes of the iodide ion vibration, which is the 

highest phonon band. The atomic motion of a phonon at (, q) = (15, (0, 0, 0.5)), which lies in 

the LO phonon band, is shown in Fig. 4-9 (b). It was also shown that the strength of peak (b) 

in the A state was lower than that in the B state, while the strength of the broad peak (c) 

ranging from 90 to 120 cm
–1

 increased at variance. The atomic motion of one of the phonon 
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modes in peak (c), which occurred at (, q) = (14, (0.25, 0.25, 0.25)), is also shown in Fig. 

4-9(c). In this mode, not only the iodide ions but also the lead ions are active. 

 

 

 

Figure 4-9. (a) Generalized Eliashberg functions of CsPbI3 for the A and B valence states. 

Their positions are indicated in the inset band plot. (b), (c) Atomic motions of the phonon 

modes for (, q) = (15, (0, 0, 0.5)) and (, q) = (14, (0.25, 0.25, 0.25)), respectively. The black, 

purple, and green atoms denote Pb, I, and Cs, respectively. 

 

In general, a single electronic state strongly couples with the phonon modes in which the 

atoms comprising the orbital are active. Thus, the strong e-ph interaction with the iodide ion 

vibrations can be ascribed to the fact that the valence band composition is mainly from I 5p 
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orbital. A similar explanation holds for the pronounced peak (c) in the A state as the highly 

dispersed valence band, where the A state lies, has a Pb 6s orbital contribution in addition to 

the I 5p orbital character as shown in our previous paper.
38

 

Despite the enhancement of the peak (c) strength in the A state, it does not compensate 

for the reduction in the peak (b), and the overall e-ph coupling is weaker than that of the B 

state. This is ascribed to the fact that, at variance with the B states, the A state lying in the 

small DOS region has a reduced number of relaxation paths. This result clearly confirms my 

prediction that the electronic structure is the most relevant factor responsible for the e-ph 

lifetimes in lead halide perovskite materials. 

As shown in Fig. 4-9, the vibrational modes coupled with the valence states of CsPbI3 are 

ascribed to the motions of only I and Pb ions, not of Cs. This indicates that the replacement of 

the perovskite A-site cation does not impact on the mechanism of decay. Moreover, as shown 

in Fig. 4-6, the electronic structures of CsPbI3 and CH3NH3PbI3 are almost identical and the 

characteristically small DOS in the valence band is present in both CsPbI3 and CH3NH3PbI3. 

Therefore, my results about CsPbI3 are easily extended to explain the experimental data 

concerning CH3NH3PbI3. 

The difference in the phonon properties of CsPbI3 and CH3NH3PbI3 is worth mentioning. 

In previous experimental and theoretical studies on the Raman spectrum of CH3NH3PbI3, it 

was shown that the I–Pb–I bending and Pb–I stretching modes are coupled with librations of 
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CH3NH3PbI3 in the wave-number range 60 to 100 cm
–1

.
48

 I predict that such coupled 

vibrations would still work as the relaxation paths of holes as long as the iodide ions are 

active. The torsional modes of CH3NH3
+
 in the higher range 200–390 cm

–1
 are also coupled 

with the motion of the iodide ions through hydrogen bonds,
48

 which may provide additional 

relaxation paths. However, the difference of wave-number range is assumed not to have a 

marked impact on the relaxation mechanism since the phonon energy scale is small compared 

with the energy scale for the electrons. 

 

4-3-4. Conclusion 

In conclusion, motivated by the experimental reports of slow hot-hole cooling from TAS 

measurements, I investigated the carrier e-ph lifetimes of lead iodide perovskites using 

first-principles calculations. My results show that holes in CsPbI3 have longer lifetimes, 

particularly in the valence band region up to energy of 0.9 eV below the top of the valence 

band, where the DOS is characteristically small. On the other hand, such long hole lifetimes 

were not observed in PbI3
–
, which has a sharp DOS peak at the top of the valence band. 

Comparing these two results, I propose the origin of the slow hot-hole cooling to be the small 

DOS in the valence band, which is responsible for the reduced number of relaxation paths. 

My analysis of the generalized Eliashberg functions revealed that the holes decay via the 

motion of I and Pb ions, and not the motion of the A-site cation. I also predict that different 
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A-site cations do not impact on the carrier decay mechanism. A small DOS is indeed 

observed in the valence band of CH3NH3PbI3, and thus the description of the fully inorganic 

halide perovskite CsPbI3 can be easily extended to its organic–inorganic counterpart, 

CH3NH3PbI3.  
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Chapter 5.   

Concluding Remark 

 

 

In this thesis, three semiconductors with enhanced photoenergy conversion capability were 

investigated using first-principles calculations using DFT and MBPT. The physical properties 

related to photoabsorption and carrier diffusion, i.e., bandgap, band bending, and carrier 

lifetime, were extensively discussed.  

For overall water-splitting photocatalyst GaN:ZnO, I focused on the bandgap and band 

bending. The mechanism of bandgap reduction by chemical alloying of GaN and ZnO was 

investigated from two different approaches: slab model calculations to consider band edge 

positions and bulk model calculations to apply accurate but computationally demanding 

MBPT scheme. As a result, it was discovered that the bandgap reduction in GaN-rich alloys is 

ascribed to both VBM raising and CBM lowering. In particular, I found that the VBM 

position is governed by the local atomic configuration, i.e., the number and orientation of 

Zn-N bonds, while that of the CBM is not. Comparing computed absorption spectra with 

experiment, it is suggested that ZnO-rich solid solutions have larger number of Zn-N bonds 

than GaN-rich ones, which could be attributed to the low-temperature synthesis. Furthermore, 
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my result offered the possibility that downward band bending, which is opposite to upward 

bending usually occurred in n-type semiconductors, emerges at the surface of GaN-rich 

alloys. 

Next, I focused on the effect of e-ph coupling in MBPT scheme to discuss carrier 

lifetimes. At first, this scheme was applied to zb-GaN. Collecting all MBPT schemes of GW 

approximation, BSE, and e-ph interaction, complete agreement of absorption spectrum with 

experiment was obtained. This result clearly demonstrated the importance of e-ph interaction 

on the electronic structure. Finally, the lifetime of hot carriers was investigated focusing on 

APbI3, which is a promising material for perovskite solar cell. My result showed that CsPbI3 

has characteristic long lifetimes of the holes. The mechanism of such long lifetime was 

explained from the electronic point of view, i.e., characteristic small DOS. Thus such long 

lifetime is common trend in the other APbI3 as far as small DOS is presented. It explains 

experimentally reported slow hot-hole cooling in CH3NH3PbI3. 

My works have demonstrated that the state-of-the-art first-principles calculations 

contribute the development of photoenergy conversion systems through quantitatively reliable 

analyses of bandgap, band bending, and carrier lifetimes. As a future outlook, impact of trap 

sites on recombination lifetime 𝜏𝑟𝑒𝑐 must be addressed. Moreover, band bending in more 

realistic situation, i.e., solid-electrolyte interface, has to be considered for water-splitting 

photocatalyst. Such studies will complete understanding of photoenergy conversion process. 
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