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Abstract

We investigate combinatorics of the instanton partition function for the generic four

dimensional toric orbifolds. It is shown that the orbifold projection can be implemented

by taking the inhomogeneous root of unity limit of the q-deformed partition function.
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for a generic β.
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1 Introduction

The instanton counting is extensively applied to various non-perturbative aspects of the

four dimensional gauge theory. In particular Nekrasov partition function [1, 2] plays an

essential role not only in the four dimensional Seiberg-Witten theory [3, 4], but also the two

dimensional conformal field theory. The remarkable connection between the four and two

dimensional theories through the instanton partition function is called AGT relation [5], and

generalized to various situations, for example, the higher rank theory [6, 7], the asymptotic

free theory [8, 9, 10] and also the ALE space [11, 12, 13, 14, 15], etc.

The ALE space is given by resolving the singularity of the orbifold C
2/Γ [16, 17, 18].

The instanton construction [19, 20], the instanton counting [21] and the wall-crossing [22,

23] are considered in this case as well as the Euclidean space R
4 ≃ C

2. Furthermore the

inhomogeneous orbifold theory is discussed in terms of the AGT relation [24]: it is shown

that the instanton counting on the inhomogeneous orbifold C×C/Zr is utilized to describe

the theory in the presence of a generic surface operator. Not only the four dimensional

theory, but also the two dimensional theory with vortices on orbifolds has been recently

investigated [25].

In this paper we develop the previous result [26], and consider a systematic method

to deal with the combinatorial representation of the partition function for the generic four

dimensional toric orbifolds C
2/Γr,s, whose boundary is the generic lens space L(r, s). It

includes the type Ar−1 ALE space as C
2/Γr,r−1 = C

2/Zr. So far N = 4 theories on such

a space, and also Chern-Simons theory on the lens space L(r, s) have been investigated

[27, 28, 29, 30]. Recently further research is done with respect to the index, and its relation

to the three and two dimensional theories [31].

We can obtain the orbifold partition function by performing the orbifold projection for

the standard one. However it is apparently written in a complicated form, we will show

a much simpler method to assign the orbifold projection. To implement that we first lift

it up to the q-deformed theory, and then take the root of unity limit of it, as well as the
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standard orbifold C
2/Zr discussed in Ref. [26]. The similar method is also applied to the

spin Calogero-Sutherland model [32] (see also Ref. [33]).

We also discuss the β-ensemble matrix model for the toric orbifold theories. We suc-

cessfully obtain the multi-matrix model with a generic β by extracting the asymptotics of

the combinatorial partition function [34, 35, 36]. The Ω-background parameter is related to

this parameter as β = −ǫ2/ǫ1, so that it is important to discuss the generic β-ensemble in

order to consider the application to the AGT relation. When we estimate the asymptotic

behavior of the combinatorial part corresponding to the matrix measure, we need the root

of unity limit of the q-deformed Vandermonde determinant, which is the weight function for

the Macdonald polynomial [37]. This suggests that we can obtain a new kind of polynomials

induced from the Macdonald polynomial by taking this limit.

This paper is organized as follows. In section 2 we consider the ADHM construction for

the toric orbifolds C
2/Γr,s, and then obtain the combinatorial expression for the partition

function. We will show that the root of unity limit of the q-deformed partition function is

essential for the orbifold projection, and it is useful to introduce the basis of the fractional

exclusive statistics. Section 3 is devoted to derivation of the matrix models. We obtain the

β-ensemble multi-matrix model by taking the asymptotic limit of the combinatorial partition

function. In section 4 we summarize the results with some discussions.

2 Instanton counting on toric orbifolds

Let us start with the generic four dimensional toric space. It is given by the quotient C2/Γr,s

where Γr,s is a Zr action labeled by the two coprime integers (r, s) with 0 < s < r as

Γr,s : (z1, z2) −→ (ωrz1, ω
s
rz2) (2.1)

where ωr = exp(2πi/r) is the primitive r-th root of unity. This space goes to the lens space

L(r, s) at infinity.

The orbifold action (2.1) generates a singularity at the origin of C2. We can obtain the

smooth manifold by resolving the singularity, which is called the Hirzebruch-Jung space [38].

After blowing up the singularity there are ℓ two-spheres characterized by the generalized

Cartan matrix

C =




−e1 1 0 · · · 0

1 −e2 1 · · · 0

0 1 −e3 · · · 0
...

...
...

. . .
...

0 0 0 · · · −eℓ




(2.2)

where the self-intersection numbers ei, i = 2, · · · , ℓ are obtained by expanding the rational
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number r/s in a continued fraction form

r

s
= e1 −

1

e2 −
1

e3 −
1

. . . eℓ−1 −
1

eℓ

(2.3)

and e1 is the smallest integer greater than r/s. In the case of the ALE space, namely

s = r−1, we have ei = 2 and ℓ = r−1. Therefore the matrix (2.2) coincides with the Cartan

matrix for the type-Ar−1 Lie algebra.

We then consider the standard ADHM construction for R
4 ≃ C

2 to study instanton

counting before orbifolding. The ADHM equations for k-instanton configuration for SU(n)

theory are given by

EC := [B1, B2] + IJ = 0, (2.4)

ER := [B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0 (2.5)

where the ADHM data (B1, B2, I, J) are interpreted as elements of homomorphisms,

B1, B2 ∈ Hom (V, V ) , I ∈ Hom (W,V ) , J ∈ Hom (V,W ) . (2.6)

The rank of the gauge group and the instanton number are encoded in dimensions of the

vector spaces, dim V = n and dim W = k, respectively. Actually, when we consider SU(n)

theory, we had better deal with U(n) group, and then implement the condition for the

Coulomb moduli
∑n

l=1 al = 0. Note that this procedure is not enough for some cases: we

have to factor out the U(1) contribution when we consider the AGT relation [5].

There is U(k) gauge symmetry for these ADHM data

(B1, B2, I, J) −→
(
gB1g

−1, gB2g
−1, gI, Jg−1

)
, g ∈ U(k), (2.7)

and thus the instanton moduli space is given by

Mn,k = {(B1, B2, I, J)|EC = 0, ER = 0} /U(k). (2.8)

The resolution of singularity of this ADHM moduli space is given by the following quotient

[39],

M̃n,k = {(B1, B2, I, J)|EC = 0, stability cond.} //GL(k,C). (2.9)

The stability condition is interepreted as the irreducibility for the moduli space.

We then consider the action of isometries on C
2 for the ADHM data

(B1, B2, I, J) −→
(
T1B1, T2B2, IT

−1
a , T1T2TaJ

)
(2.10)

where Ta = diag(eia1 , · · · , eian) ∈ U(1)n, Tα = eiǫα ∈ U(1)2. They are the torus actions

coming from the symmetry of U(n) and SO(4), respectively. We have to consider the fixed
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point of these isometries up to gauge transformation g ∈ U(k) to perform the localization

formula. Thus the orbifold action, corresponding to (2.1), on the ADHM data is

Γr,s : (B1, B2, I, J) −→ (ωrB1, ω
s
rB2, I, ω

1+s
r J). (2.11)

Due to the orbifold action we have to introduce decomposed vector spaces with respect to

the irreducible representations of Zr,

W =

r⊕

v=1

Wv, V =

r⊕

v=1

Vv, (2.12)

Here we assign the orbifold action for the gauge group element as eial → ωpl
r eial . It is just a

holonomy, which characterizes the boundary condition of the gauge field. Thus the ADHM

data surviving under the orbifold action can be written as

B1,v ∈ Hom(Vv, Vv+1), B2,v ∈ Hom(Vv, Vv+s), Iv ∈ Hom(Wv, Vv), Jv ∈ Hom(Vv,Wv+1+s),

(2.13)

and thus we have

EC −→ B1,v+sB2,v −B2,v+1B1,v + Iv+1+sJv, (2.14)

ER −→ B1,v−1B
†
1,v−1 −B†

1,vB1,v + B2,v−sB
†
2,v−s −B†

2,vB2,v + IvI
†
v − JvJ

†
v . (2.15)

They are periodic modulo r as Wr+1 = W1 and so on. Fig. 1 shows quiver diagrams

for orbifolding ADHM data. These conditions are much complicated, and thus the whole

structure of the instanton moduli space is not yet clear. Actually (2.14) and (2.15) take

non-zero value after resolving the singularity. It can concern possibility of the localization

method. Its availability is investigated for the case of the ALE space [21] and more generic

theories [40, 41], but we have to consider this problem more explicitly. Basically we still have

the isometry U(1)2 corresponding to the spatial rotation even for the orbifolds. This might

ensure that we can apply the localization formula to these cases.

We then derive the combinatorial representation of the partition function. Since the

characters of the vector spaces are given by

V =
n∑

l=1

∑

(i,j)∈λ(l)

TalT
1−i
1 T 1−j

2 , W =
n∑

l=1

Tal , (2.16)

the character of the tangent space at the fixed point under the isometries, which is labeled

by n-tuple partition ~λ, turns out to be

χ~λ
= −V ∗V (1 − T1)(1 − T2) + W ∗V + V ∗WT1T2

=

n∑

l,m

∑

(i,j)∈λ(l)

(
Taml

T
λ
(m)
i −j+1

1 T
−λ̌

(l)
j +i

2 + TalmT
−λ

(m)
i +j

1 T
λ̌
(l)
j −i+1

2

)
. (2.17)

4



Figure 1: Quiver diagrams for orbifolding ADHM data: (a) C2/Γ5,4 ( the ALE space C
2/Z5)

and (b) C
2/Γ5,3.

Here we define alm = al − am, Talm = eialm , etc. We can extract the weight, and thus obtain

the partition function in a combinatorial way,

Z~λ
=

n∏

l,m

∏

(i,j)∈λ(l)

1

aml + ǫ1(λ
(m)
i − j + 1) − ǫ2(λ̌

(l)
j − i)

1

alm − ǫ1(λ
(m)
i − j) + ǫ2(λ̌

(l)
j − i + 1)

.

(2.18)

This is the instanton partition function [1]. The two parameters, ǫ1 and ǫ2, are called Ω-

background parameters, which are required for regularizing the singularities in the moduli

space.

We then have the partition function for the orbifold theory by taking into account only

the invariant sector under the orbifold action (2.11). Since each contribution to the character

behaves under the orbifold action as

Γr,s : Taml
T
λ
(m)
i −j+1

1 T
−λ̌

(l)
j +i

2 −→ ω
pml+λ

(m)
i −j+s̄(λ̌

(l)
j −i)+1

r Taml
T
λ
(m)
i −j+1

1 T
−λ̌

(l)
j +i

2 (2.19)

and so on, the Γr,s-invariant sector is different for the first and the second parts in the

product,

1

aml + ǫ1(λ
(m)
i − j + 1) − ǫ2(λ̌

(l)
j − i)

for pl − pm + λ
(m)
i − j + s̄(λ̌

(l)
j − i) + 1 ≡ 0 (mod r),

(2.20)
1

alm − ǫ1(λ
(m)
i − j) + ǫ2(λ̌

(l)
j − i + 1)

for pl − pm + λ
(m)
i − j + s̄(λ̌

(l)
j − i) + s̄ ≡ 0 (mod r),

(2.21)

with s̄ = r− s. Thus the partition function for U(1) theory on the toric orbifold is given by

Zλ;Γr,s
=

∏

Γ̌-inv.⊂λ

1

λi − j + β(λ̌j − i) + 1

∏

Γ̂-inv.⊂λ

1

λi − j + β(λ̌j − i) + β
. (2.22)

We introduce another parameter defined as β = −ǫ2/ǫ1. Here Γ̌- and Γ̂-invariant sectors

stand for the conditions shown in (2.20) and (2.21), respectively. It can be easily extended

to SU(n) gauge theory.
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These conditions to extract the Γr,s-invariant sectors are apparently complicated, but

there is a simple way to implement the orbifold projection [26, 32]. To implement the

orbifold projection, let us start with the standard partition function before orbifolding, and

then lift it to the q-deformed partition function, which is interpreted as the five dimensional

function,

Zq
λ =

∏

(i,j)∈λ

1

1 − qλi−j+1tλ̌j−i

1

1 − q−λi+jt−λ̌j+i−1
. (2.23)

These q and t are related to the Ω-background parameters as q = eǫ1 , t = e−ǫ2 = qβ. Of

course we obtain the original four dimensional function by taking the usual q → 1 limit. On

the other hand, by taking the root of unity limit of the q-deformed function, the orbifolded

partition function (2.22) is automatically obtained up to constants. In this case we assign

the following parametrization,

q −→ ωrq, t −→ ω−s
r qβ = ωs̄

rq
β (2.24)

and then take the limit q → 1. To regularize the singular behavior at q → 1, we now take

into account the adjoint matter contribution whose mass parameter is given by m. Thus the

weight function yields, for example,

1 − ω
λi−j+s̄(λ̌j−i)+1
r qλi−j+1+mtλ̌j−i

1 − ω
λi−j+s̄(λ̌j−i)+1
r qλi−j+1tλ̌j−i

−→





λi−j+β(λ̌j−i)+1+m

λi−j+β(λ̌j−i)+1
if λi − j + s̄(λ̌j − i) + 1 ≡ 0 (mod r)

1 if λi − j + s̄(λ̌j − i) + 1 6≡ 0 (mod r)
. (2.25)

If we want to extract only the contribution of the vector multiplet, we have to take the

decoupling limit m → ∞.

The q-partition function for SU(n) theory can be written with the cut off parameter N (l)

for the number of entries of the partitions as follows,

Zq
~λ

=
∏

(l,i)6=(m,j)

(Qlmqλ
(l)
i −λ

(m)
j tj−i; q)∞

(Qlmqλ
(l)
i

−λ
(m)
j tj−i+1; q)∞

n∏

l,m

N(l)∏

i=1

(Qlmqλ
(l)
i tN

(m)−i+1; q)∞

(Qmlq
−λ

(l)
i t−N(m)+i; q)∞

. (2.26)

Here (x; q)n =
∏n−1

m=0(1 − xqm) is the q-Pochhammer symbol, and the Coulomb moduli

is denoted as Qlm = ealm = qblm . Note that this q-partition function includes the infinite

product, so that we have to take care of its radius of convergence. Therefore we first consider

the parametrization (2.24), and then take the limit q → 1. This orbifold projecting procedure

is quite useful, for example, to investigate asymptotic behavior of the orbifold partition

function because it can be simply given by studying asymptotics of the q-partition function

in a usual way, and taking its root of unity limit at last.

We now comment on the relation to the explicit expressions for OP1(−r), etc, which is

shown in Refs. [27, 41]. They are written down in terms of the local coordinates of the re-

solved space. For example, in the case of OP1(−r), they are given by (z
(1)
1 , z

(1)
2 ) = (zr1, z

−1
1 z2)
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Figure 2: Decomposition of the partition λ = (5, 2, 2, 1) for C
2/Γ3,1. A rectangular box is

required for obtaining the correspondence between the partition and the particle description

with the repulsion parameter s̄ = r − s.

and (z
(2)
1 , z

(2)
2 ) = (z1z

−1
2 , zr2), which are invariant under (z1, z2) → (ωrz1, ωrz2). Thus we

have the instanton partition function, which is manifestly invariant under the orbifold ac-

tion. This manipulation gives rise to redefinition of the partitions: if we consider U(1) theory

for simplicity, we have λi → λ
(1)
I , λ

(2)
I , which satisfy λi = rλ

(1)
I + I with i = I or λi = λ

(2)
I

with i = λ
(2)
I + rI. Here the superscript labels the local patch of the resolved space. The ex-

pressions for OP1(−r) can be obtained by these redefined variables. Anyway this connection

is still complicated, thus it should be investigated in detail for further study.

To treat the orbifold partition function more conveniently, we then try to decompose the

partitions. In this case we introduce a slightly different way of decomposition [42, 26],

r(λ
(l,v)
i + N (l,v) − i + p(l,v)) + v ≡ λ

(l)
j + s̄(N (l) − j) + pl, j = c

(l,v)
i (2.27)

where c
(l,v)
i stands for the mapping from the index of the divided nr-partition to that of the

original n-partition. Fig. 2 shows an example for the case with the orbifold C
2/Γ3,1, namely

s̄ = 2.

This decomposition is based on the particle description obeying the fractional exclu-

sive statistics [43], which is deeply related to Calogero-Sutherland model (see, for example,

Ref. [33]). The parameter s̄ stands for the strength of the repulsion between particles, and

this generalized statistics goes back to the usual fermionic one in the case of the ALE space,

s̄ = 1. It is useful to introduce a rectangular box to obtain the correspondence between the

partition and the particle description due to the repulsion parameter s̄.

Introducing another set of variables defined as

ℓ
(l,v)
i ≡ r(λ

(l,v)
i + N (l,v) − i + p(l,v)) + bl − pl + v, (2.28)

we finally obtain r-tuple partition by blending nr-tuple one,

ℓ
(v)

i=1,···,
∑n

l=1 N
(l,v) =

(
ℓ
(n,v)
1 , · · · , ℓ

(n,v)

N(n,v) , · · · , ℓ
(1,v)
1 , · · · , ℓ

(1,v)

N(1,v)

)
. (2.29)

We now assume N (l) = N and N (l,v) = N for simplicity. Thus the partition function is
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rewritten in terms of r-tuple partition,

Zq
~λ

=
∏

(v,i)6=(w,j)

(ωv−w
r qℓ

(v)
i −ℓ

(w)
j +(β−s̄)(c

(w)
j −c

(v)
i );ωrq)∞

(ωv−w+s̄
r qℓ

(v)
i −ℓ

(w)
j +(β−s̄)(c

(w)
j −c

(v)
i )+β ;ωrq)∞

×
n∏

l=1

r−1∏

v=0

nN∏

i=1

(ωr−pl+s̄qℓ
(v)
i −bl+(β−s̄)(N−c

(v)
i )+β ;ωrq)∞

(ω−r+plq−(ℓ
(v)
i −bl+(β−s̄)(N−c

(v)
i ));ωrq)∞

(2.30)

Let c
(v)
i stand for the mapping of the index from r-tuple to nr-tuple partition as before.

3 Matrix model description

We then derive matrix model description by taking asymptotic limit of the combinatorial

representation of the partition function (2.30). Such an integral representation would be

useful to extract the gauge theory consequences by performing the large N limit analysis:

the Seiberg-Witten curve is obtained from the spectral curve of the matrix model [44, 34, 26].

We now consider the following function to study the asymptotics of the partition function,

fq,t(x) =
(x; q)∞
(tx; q)∞

. (3.1)

The asymptotics of this function is almost given by the limit of |q| → 1 because, when x = ey,

we have

fq,t(x) =

∞∏

n=0

1 − ey+nǫ1

1 − ey+(n+β)ǫ1
. (3.2)

Therefore the condition y ≫ ǫ1 corresponds to the limit q → 1. This function is investigated

in detail in appendix A.

Thus we now apply the result for the double root of unity limit (A.13) to the combina-

torially represented partition function. Introducing the following variables

x
(v)
i =

ℓ
(v)
i

ǫ1
, (3.3)

and taking the limit ǫ1 → 0, we then obtain the matrix model representation which captures

the asymptotics of the combinatorial partition function. For the orbifold C
2/Γr,s, we have

the r-matrix model,

Z =

∫
D ~X e

− 1
ǫ1

∑r−1
v=0

∑N
i=1 V (x

(v)
i )

, (3.4)

D ~X =
r−1∏

v=0

N∏

i=1

dx
(v)
i

2π
∆2(x). (3.5)

Note that we have to replace the summation over the partition with the integral of the

continuous variables. This is done by inserting an auxiliary function, which has a simple

pole at all integer values of the argument [34, 35, 36]. This affects on the matrix integral as

just a linear shift of the matrix potential in the large N limit, which can be absorbed by the

counting parameter.
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Let us now discuss the matrix measure and the potential function. According to (A.13),

asymptotics of the first part in (2.30), which will go to the measure part of the matrix model,

yields

∏

(v,i)6=(w,j)

fq,t

(
ωv−w
r qℓ

(v)
i −ℓ

(w)
j +(β−s̄)(c

(w)
j −c

(v)
i )

)

≃
∏

(v,i)6=(w,j)

[(
1 − er(x

(v)
i −x

(w)
j )

)(β−s̄)/r s̄−1∏

k=0

(
1 − ωv−w+k

r ex
(v)
i −x

(w)
j

)]
. (3.6)

This coincides with the following matrix measure, up to the overall factor,

∆2(x) =
r−1∏

v=0

N∏

i<j

[(
2 sinh

r

2

(
x
(v)
i − x

(v)
j

))2(β−s̄)/r
s̄−1∏

k=0

(
2 sinh

1

2

(
x
(v)
i − x

(v)
j +

2πi

r
k

))2s̄
]

×
r−1∏

v<w

N∏

i,j

[(
2 sinh

r

2

(
x
(v)
i − x

(w)
j

))2(β−s̄)/r
s̄−1∏

k=0

(
2 sinh

1

2

(
x
(v)
i − x

(w)
j +

2πi

r
(v − w + k)

))2
]
.

(3.7)

We redefine the matrix size as nN → N for convenience. We ramark that β can take a

generic value, thus (3.7) is interpreted as the measure part of the β-ensemble matrix model

for the generic toric orbifold.

The corresponding four dimensional limit is given by

∆2(x) →
r−1∏

v=0

N∏

i<j

(
x
(v)
i − x

(v)
j

)2(β−s̄)/r+2s̄
r−1∏

v<w

N∏

i,j

(
x
(v)
i − x

(w)
j

)2(β−s̄)/r+2Ns̄(v−w)
,(3.8)

where we define Ns̄(x) = #{k|x + k ≡ 0 (mod r), k = 0, · · · , s̄ − 1}.

We can easily obtain important examples from this generic result. For the case of s̄ = 1,

corresponding to the orbifold C
2/Zr, we have

∆2(x) =

r−1∏

v=0

N∏

i<j

[(
2 sinh

r

2

(
x
(v)
i − x

(v)
j

))2(β−1)/r
(

2 sinh
1

2

(
x
(v)
i − x

(v)
j

))2
]

×
r−1∏

v<w

N∏

i,j

[(
2 sinh

r

2

(
x
(v)
i − x

(w)
j

))2(β−1)/r
(

2 sinh
1

2

(
x
(v)
i − x

(w)
j +

2πi

r
(v − w)

))2
]
.

(3.9)

This is consistent with the previous result [26]. In this time this formula is available even for

generic β while only the specific case β = rγ+1 ≡ 1 (mod r), γ = 0, 1, 2, · · ·, is investigated in

the previous paper. This generalization is quite important because, in terms of AGT relation,

the parameter β plays a crucial role in both of the four dimensional and two dimensional

theories.

The second is the case s̄ = r, corresponding to the orbifold C× C/Zr,

∆2(x) =
∏

(v,i)6=(w,j)

(
2 sinh

r

2

(
x
(v)
i − x

(w)
j

))2β/r
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→
∏

(v,i)6=(w,j)

(
x
(v)
i − x

(w)
j

)2β/r
. (3.10)

This case is also important to study the instanton counting in presence of the generic surface

operators as discussed in Ref. [24].

We then consider the potential part for the matrix model. It is useful to discuss the

quantum dilogarithm function [45] for deriving the matrix potential,

g(z; q) =

∞∏

p=1

(
1 −

1

z
qp
)
. (3.11)

In particular, when we parametrize q = eǫ1 , the asymptotic behavior at the root of unity [26]

is given by

log g(z;ωrq) =
1

ǫ1

[
1

r2
Li2

(
1

zr

)
+ O(ǫ1)

]
(3.12)

where Li2(x) =
∑∞

p=1 z
p/p2 is the dilogarithm function. Thus the second part in (2.30) leads

to the matrix potential,

n∏

l=1

r−1∏

v=0

nN∏

i=1

(ωr−pl+s̄qℓ
(v)
i −bl+(β−s̄)(N−c

(v)
i )+β;ωrq)∞

(ω−r+plq−(ℓ
(v)
i −bl+(β−s̄)(N−c

(v)
i ));ωrq)∞

≡ exp

r−1∑

v=0

nN∑

i=1

−
1

ǫ1
V (x

(v)
i ), (3.13)

V (x) = −
1

r2

n∑

l=1

[
Li2(er(x−al)) − Li2(e

−r(x−al))
]

+ O(ǫ1). (3.14)

This potential function is completely the same as the previous result [26]. It depends on

only r, but s̄ nor β. The corresponding four dimensional limit is given by

V (x) −→
2

r

n∑

l=1

[(x− al) log(x− al) − (x− al)] . (3.15)

In this paper we concentrate on the case without the matter fields, but it is expected that

we can obtain the same matrix potential to the homogeneous orbifolds C
2/Zr as well as the

vector multiplet.

4 Summary and discussion

In this paper we have extended the previous results [26] to the toric orbifolds C
/Γr,s with a

generic deformation parameter β. The instanton counting on such an inhomogeneous orbifold

would play an essential role on the AGT relation in presence of the surface operator [24].

Furthermore, since this parameter β is directly related to the Ω-background parameter as

β = −ǫ2/ǫ1, it is important to assign a generic value for the application to the AGT relation.

We have considered the ADHM construction for the toric orbifolds C
2/Γr,s, and derived

the instanton partition function for such a space. We have shown that the root of unity limit

is useful to implement the orbifold projection. It has been also shown that the partition

10



function is well described by the particles obeying the fractional exclusive statistics for the

generic case.

Based on such a combinatorial description, we have obtained the corresponding β-

ensemble multi-matrix models by considering its asymptotic behavior. The matrix measure

is directly related to the root of unity limit of the q-deformed Vandermonde determinant,

and reflecting the structure of the orbifolds C2/Γr,s. On the other hand, the matrix potential

depends on only r, but s.

We concentrate on obtaining the matrix model description in this paper, but we do not

deal with the matrix model itself in detail. Actually the matrix model, which we have

derived, has an apparently complicated expression. However, this matrix model is obtained

by the non-standard reduction of the q-deformed theory, which should be integrable because

it can be represented in terms of the q-free boson fields. Thus it is expected that there is an

integrable structure even for our matrix model. In the large N limit we could perform the

standard treatment of the matrix model as well as the generic lens space matrix model [29],

and obtain the corresponding Seiberg-Witten curve as the spectral curve. Furthermore, the

relation between the model discussed in this paper and another kind of matrix model, i.e.

Dijkgraaf-Vafa’s model [44], is worth studying in detail, because the latter plays an essential

role in the AGT relation. It is one of the possibilities of further study beyond this work.

It is also interesting to discuss the corresponding two dimensional conformal field the-

ory to the generic toric orbifold theory. Since the inhomogeneous orbifold theory is utilized

to study the instanton partition function in presence of a surface operator [24], it is ex-

pected to obtain a similar structure for the generic toric orbifold theory, corresponding to

the para-Liouville/Toda theory [12]. It would provide a novel perspective to explore an

exotic conformal field theory.
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A Reduction of the q-Vandermonde determinant

The function (3.1) is directly related to the weight function of the Macdonald polynomial

[37], namely the q-deformed Vandermonde determinant,

∆2
q,t(x) =

∏

i 6=j

(xi/xj ; q)∞
(txi/xj ; q)∞

=
∏

i 6=j

fq,t(xi/xj). (A.1)

According to the q-binomial theorem we have

f−1
q,t (x) =

∞∑

n=0

(t; q)n
(q; q)n

xn. (A.2)

11



In this appendix we investigate several kinds of reduction of the q-deformed Vandermonde

determinant.

The first example is given by the following parametrization,

t = qβ, q −→ 1. (A.3)

Because the coefficient becomes

(t; q)n
(q; q)n

−→ (−1)n

(
−β

n

)
, (A.4)

we have

f−1
q,t (x) −→

∞∑

n=0

(−x)n

(
−β

n

)
= (1 − x)−β . (A.5)

This corresponds to the Jack limit of the Macdonald polynomial since the q-Vandermonde

is reduced to

∆2
q,t(x) −→

∏

i 6=j

(
1 −

xi
xj

)β

∼
∏

i<j

(xi − xj)
2β . (A.6)

The same kind of reduction is found for the q-Virasoro algebra [46], which leads to the usual

Virasoro algebra with the central charge c = 1 − 6(β − 1)2/β.

The next is the single root of unity limit, which is used to study the instanton counting

on the orbifold C
2/Zr [26], and corresponds to the parametrization proposed in [32],

q −→ ωrq, t −→ ωrq
β, q −→ 1. (A.7)

The expansion coefficient in (A.2) is given by

(t; q)n
(q; q)n

=
n∏

m=1

1 − ωm
r tqm−1

1 − ωm
r qm

−→

[n/r]∏

m=1

β + rm− 1

rm

= (−1)[n/k]


 −

(
β−1
r + 1

)

[n/r]


 . (A.8)

Here [x] denotes the largest integer not greater than x. Therefore we have

f−1
q,t (x) −→

∞∑

n=0

(−xr)n


 −

(
β−1
r + 1

)

n


(1 + x + · · · + xr−1

)

= (1 − x)−1 (1 − xr)−(β−1)/r . (A.9)

As a result, the q-Vandermonde is reduced as

∆2
q,t(x) −→

∏

i 6=j

(
1 −

xi
xj

)(
1 −

xri
xrj

)(β−1)/r

∼
∏

i<j

(xi − xj)
2
(
xri − xrj

)2(β−1)/r
. (A.10)
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This is consistent with the previous result [32, 26]. Note that this reduction is available for

generic positive β while only the specific case β = rγ + 1 ≡ 1 (mod r) has been investigated

so far.

The last is the double root of unity limit. We now consider the following parametrization,

q −→ ωrq, t −→ ωs̄
rq

β, q −→ 1. (A.11)

The coefficient in (A.2) becomes

(t; q)n
(q; q)n

−→
s̄−1∏

m=1

1 − ωn+m
r

1 − ωm
r

[n/r]∏

m=1

(β − s̄)/r + m

m

= (−1)[n/r]


 −

(
β−s̄
r + 1

)

[n/r]




s̄−1∏

m=1

1 − ωn+m
r

1 − ωm
r

. (A.12)

Note that this coefficient vanishes as (t; q)n/(q; q)n = 0 when n ≡ r− s̄+1, · · · , r−1 (mod r).

Thus we have a similar result,

f−1
q,t (x) −→ (1 − xr)−(β−s̄)/r

s̄−1∏

k=0

(1 − ωk
rx)−1. (A.13)

This corresponds to the following reduction of the q-Vandermonde,

∆2
q,t(x) −→

∏

i 6=j

(
1 −

xri
xrj

)(β−s̄)/r s̄−1∏

k=0

(
1 − ωk

r

xi
xj

)
. (A.14)

Especially, when s̄ = r, corresponding to the orbifold C × C/Zr, which is well investigated

in [24], it becomes

∆2
q,t(x) −→

∏

i 6=j

(
1 −

xri
xrj

)β/r

∼
∏

i<j

(xri − xrj)
2β/r. (A.15)
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