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Abstract 

 

 
Genomic selection (GS) is a promising method for animal and plant breeding. Using a model 

relating phenotypes of target traits to marker genotypes, GS enables breeders to predict the 

genotypic potential of selection candidates based on their marker genotypes. Although GS is 

expected to streamline and accelerate plant breeding, studies on GS may not be enough to 

achieve the routine use of GS in breeding programs. In plant breeding, the performance of GS is 

difficult to evaluate generally because it is affected by among-species variations in mating 

systems, ways to propagation, population structures, and conventional breeding strategies. In 

this dissertation, I evaluated the performance of GS through simulation studies and field trials in 

consideration of the among-species variations. In addition, I developed a novel simulation 

language for breeders to evaluate the potential of planned breeding schemes. 

 

1. Simulation study of genomic selection in allogamous plants 

Mass selection is an important method for the breeding of allogamous crops. This method, 

however, has drawback, i.e., low efficiency of genetic improvement, because it requires a 

single-plant evaluation. GS enables higher reliability of a single plant evaluation than 

phenotypic selection (PS) because GS can be performed on marker genotypes. On the other 

hand, GS may not work well in an allogamous species with a large effective population size, 

which results in a low level of linkage disequilibrium (LD), because GS utilizes LD between 

QTLs and markers. In this study, on the assumption that an annual allogamous plant species has 

a very low level (i.e., close to linkage equilibrium) of LD, I conducted breeding simulations for 

two types of target traits, a trait expressed before pollination and a trait expressed after 

pollination. Especially for a trait expressed after pollination, in which pollen parents cannot be 

selected before crossing in PS, GS had a larger genetic gain than PS. For a trait expressed 

before pollination, I compared GS with PS and conventional marker-assisted selection (MAS) 

in the simulations and evaluated the performance of GS under various scenarios. Results 

showed that GS attained higher genetic gain than either PS or MAS. GS with a larger 

population size and more cycles attained higher genetic gain except when the population size 
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was small. The cost efficiency of GS was higher than that of PS only when the genotyping cost 

was lower than about one-fourth of the phenotyping cost. To evaluate the performance of GS in 

a trait expressed after pollination, I compared GS and PS in traits expressed before and after 

pollination. Results show that GS showed almost identical genetic gain genetic gain in both 

traits except when GS was conducted once per year (i.e., same as PS), while PS in a trait 

expressed after pollination showed much lower genetic gain than PS in a trait expressed before 

pollination. High efficiency of GS in a trait expressed after pollination was attributable to the 

high selection accuracy of chromosomes derived from a pollen parent at GS steps immediately 

after model updating steps, at which pollen parents were not selected because model updating 

requires phenotype evaluation. It resulted in increased population size and prevented depletion 

of genetic variation in a breeding population. This study indicated that GS has a great potential 

to improve the efficiency of mass selection of allogamous crops in particular when a target trait 

is expressed after pollination. 

 

2. Simulation evaluation of island-model genomic selection in an autogamous plant 

In the breeding of autogamous crops, population breeding and pedigree method, which utilize 

inbred lines, are commonly used in breeding programs. This situation results in the issue of a 

lack of new combinations of genes in a breeding population. Recurrent selection can be used to 

create recombination in a population, but it requires single-plant evaluation, which is generally 

inaccurate. GS may have high reliability of single-plant evaluation and would be effective in 

recurrent selection of an autogamous species. Additionally, the concept of “island model” 

inspired from population genetics and evolutionally algorithms may be useful to maintain 

genetic variation through the breeding process. I conducted GS simulations using a real marker 

genotypic data of rice cultivars to evaluate the efficiency of recurrent selection and the island 

model in an autogamous species. Results suggested that recurrent selection could attain higher 

gain than a conventional method using inbred lines. In the recurrent selection, an initial 

population derived from multiple bi-parental crosses showed larger genetic gain than a 

population derived from a single bi-parental cross, suggesting the importance of genetic 

variation in an initial population. The island-model GS could attain higher gain than the bulked 

GS in later generations because the island-model GS could maintain larger genetic variation 

than the bulked GS and improve the genetic potential of the whole subpopulations. Because of 

the ability of the bulked GS to attain gain rapidly in early generation, it is suggested that 

breeders should choose a suitable breeding scheme according to their required time. 
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3. Simulation of the impact of mis-labeling on genomic selection in cassava 

In actual plant breeding, humans make mistakes unlike simulations. Especially in GS breeding, 

humans would tend to make mistakes because GS involves more steps than PS does. To 

implement GS breeding in actual, the effect of human mistake should be taken into account to 

consider the level of restriction to prevent human mistakes. In plant breeding, controlling 

mistakes too strictly may not be cost effective if the mistakes do not have a large impact. I 

evaluated the impact of mis-labeling, in which a plant happens to be swapped for another one, 

in cassava breeding using simulation. As simulation results, all scenarios with six levels of 

mis-labeling (5, 10, 20, 30, 40, and 50%) attained a certain genetic gain because of the 

relationship between the genetic variance and the prediction accuracy. The higher mis-labeling 

rate became in a breeding population, the lower selection intensity the breeding population 

experienced at selection cycles. This situation made the genetic variance in a population with 

mis-labeling high, and made the response to selection high. The increased genetic variance 

observed under mis-labeling led to sufficiently improve the accuracy, at least for low 

mis-labeling rate (10% or less). It is suggested that the large scale of mis-labeling should be 

prevented, but that preventing small scale of mis-labeling is not cost effective in plant breeding. 

 

4. Field trial of genomic selection using common buckwheat 

A field experiment of GS breeding was performed with a real breeding population in common 

buckwheat. I compared the efficiency of GS with that of PS for improvement of seed yield per 

unit area in the two years of field trial. To select seed yield per unit area, which cannot 

evaluated in a single plant, I built a selection index that predict performance of each plant in 

seed yield based on other seven traits (main stem length, number of nodes, flowering of the first 

flower, number of flower clusters, number of primary branches, 1000 seed weight, and test 

weight) that can be evaluated in a single plant. This index was used throughout the selection 

cycles. In GS breeding, two selection cycles were conducted in each year, and the prediction 

model was updated every year by using 14,598 to 50,000 markers. In PS breeding, selection 

was conducted once per year. To verify the difference in performance between GS breeding and 

PS breeding, a field test was conducted in 2013 after the two years of breeding. In the test, 48 

plants from each generation were cultivated. The selection index, seven traits composing the 

selection index, the number of seed set of a plant, and the number of secondary branches were 

evaluated in the field test. Through two years of selection, GS breeding attained 49% higher 
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gain in number of flower clusters and number of seed set than the base population. For the 

selection index, which was used in selection directly, GS breeding attained 15% higher value 

than the base population. In PS breeding, selection index increased 4% from the base population, 

while it was not statistically significant. These results show that GS has higher performance 

than PS in the genetic improvement in common buckwheat. I compared two prediction models 

built at the first and second years through the evaluation of their prediction accuracy at the 

second year, and found that the former showed lower accuracy than the latter, suggesting the 

importance of model updating in GS breeding. The superiority of GS over PS might be resulted 

from the effects of accelerating generations using offseason nursery. In the field trial, the 

efficiency of GS based on the selection index was suggested to improve yield related traits 

simultaneously. 

 

5. Development of a simple language to script and simulate breeding schemes: the breeding 

scheme language 

It is difficult for plant breeders to determine the optimal scheme under conditions of a target 

species and target traits because there are a number of possible breeding schemes. Although 

simulation study is useful to help choose a better (or the best) breeding scheme, it is difficult for 

breeders to take the first step in conducting breeding simulation because of the complexity to 

build a simulation platform or even to using a simulation tools. In the present study, I developed 

a simple and flexible simulation platform, breeding scheme language. Users can define their 

target species and breeding schemes by utilizing the language. This language might be useful 

for breeders to evaluate breeding schemes and to choose a breeding scheme among a number of 

possible schemes. 

 

I demonstrated the high potential of GS by using simulations and field trials. Through these 

studies, it is suggested that there are factors that affect on GS gain as well as factors that have 

less effects on GS gain. Update of a prediction model is essential for GS breeding even with a 

cost especially when a breeding population has low levels of LD. The result of the simulations 

was coincided with that of the field trial, suggesting the properness of the simulations 

performed in this study. In the future, the collateral implementation of breeding simulations and 

a field trial might enable us to improve the efficiency of plant breeding by reflecting the current 

situation to the simulations and choosing suitable selection strategy at each step of breeding on 

the basis of the results of the simulations.  
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Chapter 1 
 

Introduction 

 

 
One of the serious problems that humankind faces today is a huge increase in human population. 

The world’s production of wheat (Triticum aestivum L.), rice (Oryza sativa L.) and maize (Zea 

mays L.), which provides half of the world’s diet and two-thirds including feed for livestock and 

poultry, is linearly increasing (Tweeten and Thompson, 2008). To meet the recent estimated 

world’s population in 2050, we need to improve the annual increase of the cereal food supply 

by 38% (i.e., from 32 metric tons per year to 44 metric tons per year) in the next 40 years 

(Tester and Langridge, 2010). In spite of the requirement of the rapid increase of yield in not 

only cereals but also other crops, the amount of land required to provide food for the world’s 

population is decreasing due to the growth of population (Phillips, 2010). Nowadays, in addition 

to the demand of food crops, the demand of biofuels also grows because of renewable energy 

demands, and is competing with food production directly in crops used both for food and fuel, 

and indirectly on the utilization of arable land and other resources (Tilman et al., 2009). The 

demand of biofuel faces the necessity to develop new crop varieties and species for biofuel that 

can grow in unsuitable land for growing food crops. Due to the double demand from food 

supply and biofuel, a rapid increase in the production of crops is strongly required. 

To fulfill the targeted level of improvement in genetic performance of crops, it is 

absolutely necessary to develop and utilize breeding technologies using genomic information 

and tools such as DNA sequencing methods and analysis approach which can handle the data 

obtained from the new technologies. A recent remarkable revolution in genetic knowledge 

enables us to utilize these biological technologies. One of the active technologies using genome 

information is production of genetically modified (GM) crops. GM technologies are used in 

many plant species because of its usefulness owing to the ability to introduce useful genes 

beyond the species. However, the production and development of GM crops caused many 

problems because of the concern about gene drift, herbicide-resistant super-weeds, biodiversity 
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and the unknown long-term consequences (Gaskell et al., 2004). Another method for plant 

breeding is marker-assisted selection (MAS). MAS uses the information derived from the 

linkage mapping and quantitative trait loci (QTL) analysis, i.e., the estimation of positions, 

number and effects of QTL, for the target traits in target species, and uses molecular markers 

that are closely linked to QTL in order to select favorable QTL alleles indirectly (Ukai, 2000). 

With MAS, breeders may be able to develop desired cultivars in short time span because of the 

non-necessity of phenotypic evaluation associating with field trials. As discussed later, however, 

MAS has several drawbacks: extra labor for QTL mapping and development of markers close to 

QTL, and inefficiency in the improvement of traits controlled by a number of genes. Genomic 

selection (GS; Meuwissen et al., 2001) is a method that uses markers distributing over the 

whole genome. In GS, we build a model for predicting genotypic values based on marker 

genotype data by using phenotype and marker genotype data of a number of individuals/lines. 

Then, we use the model for predicting genotypic values of selection candidates based on their 

marker genotype data, and select good individuals/lines based on their predicted genotypic 

values. The use of a large number of high-density markers is one of crucial features of GS so 

that at least one marker is expected to be in linkage disequilibrium (LD) with QTL controlling 

the target trait in the entire target population in the modeling (Desta and Ortiz, 2014). GS has a 

potential to improve genetic ability rapidly in both animal and plant breeding, and has been put 

into practical use in animal breeding. GS is attracting great expectations also in plant breeding, 

but is currently still in the research phase. 

GS is expected to attain higher genetic improvement in a unit time and cost than 

phenotypic selection (PS) (Wong and Bernardo, 2008), especially when one genotype is 

evaluated on the basis of a single plant. Since the dawn of history, PS has been the most 

common breeding strategy. In PS, breeders evaluate each individuals/lines based on their 

phenotypic values. When we evaluate phenotypes based on a single plant and/or a trial in a 

single environment, PS is largely affected by environmental errors and results in inefficiency of 

the selection. GS can predict genotypic values of selection candidates on single plant basis and 

under any environments because the selection is performed on marker genotype data. In PS, it 

takes for years to evaluate the genetic potential of individuals/lines because of field trials over 

multiple environments. Especially, it takes a long time to evaluate genetic performances for 

perennial plant species such as forest and fruit trees. For example, it takes long time to evaluate 

traits relating to fruit quality because trees do not produce fruit in the juvenile phase (Ukai, 

2003). By combining GS with accelerating generations using offseason nursery, breeders can 
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conduct more than one cycle of GS per one cycle of PS. From these factors, GS is expected to 

have a greater potential than PS especially for accelerating the rate of genetic improvement. 

MAS is also the selection method that uses genetic markers. Because MAS requires no 

field trial at the selection step, as is the case of GS, breeders can implement MAS several cycles 

per one ordinal growth cycle by using offseason nursery. Thus, MAS has high potential in 

short-term breeding (Edwards and Page, 1994), and has an advantage especially when it is 

difficult to evaluate phenotype of target trait (Ribaut et al., 1997). However, MAS has two 

major drawbacks: the necessity of QTL mapping and development of markers that are closely 

linked to the QTL, and the difficulty of improvement of traits controlled by a large number of 

genes. The QTL mapping step requires extra materials, time, and labor for breeding. In GS, the 

extra labor is also required to obtain the training data to build a prediction model, but it may be 

possible to use historical breeding records as the training data of GS. In MAS, it might be 

possible to use QTL information that was obtained previously. However, it is reported that QTL 

detected in a mapping population might not be responsible for genetic variation existing in a 

breeding population (Strauss et al., 1992). Overestimated QTL effects (Hoeschele and 

VanRaden, 1993; Lande and Thompson, 1990; Melchinger et al., 1998) and failing to detect 

small-effect QTL might also make MAS inefficient. Although MAS is effective when a target 

trait is controlled by a small number of QTL (Bernardo, 2001), gene pyramiding (i.e., 

aggregation of favorable alleles of QTL) is difficult especially when a trait is controlled by a 

large number of QTL. In general, many quantitative traits of breeding target are controlled by a 

large number of QTL (Hayes and Goddard, 2001; Kearsey and Farquhar, 1998). In gene 

pyramiding, careful planning of crosses are required to obtain an ideal genotype even when the 

target trait is controlled by a small number of QTL (Servin et al., 2004). GS is suitable 

especially for improving a trait dominated by a large number of genes, because GS does not 

hold any threshold to select markers to be incorporated into a prediction model, and thus, all of 

the genetic variation may be captured by whole-genome markers (Hayes et al., 2013). Therefore, 

GS is expected to have possibilities to overcome the limitations of MAS (Heffner et al., 2010). 

GS has the potential to improve the efficiency of plant breeding dramatically because of its 

advantages over other breeding systems mentioned above. However, there are still several 

problems for the practical use of GS in plant breeding. The potential of GS itself is not well 

evaluated in plant breeding in the first place. Additionally, a single breeding program has its 

specific restriction on breeding scheme. This situation requires us to search the most efficient 

breeding scheme under the current restriction each time when we start a breeding program. In 
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plant breeding, we have to improve various plant species, e.g., allogamous species and 

autogamous species. Restrictions for breeding may be largely different between species, 

depending on its breeding system and breeding history. Moreover, there are different types of 

traits to be improved even for a single plant species. We should evaluate the potential of GS and 

search a suitable breeding scheme under various situations. Furthermore, to evaluate the 

potential of GS, empirical studies have been lacking. Empirical evidences are essential to put 

GS to practical use. I proposed to conduct simulation studies and field trials in the present study 

for solving the problems above. These studies would reveal the potential of GS under various 

restrictions imposed in an actual breeding program. It is also important to develop a system that 

enables us to evaluate the potential of GS under the current restriction. In the present study, thus, 

I created a novel system to evaluate easily the potential of GS via simulations. 

Simulation study is one of the best ways to verify the potential of GS and choose a suitable 

breeding scheme on ahead of the real-world GS breeding under the restrictions in a real 

breeding programs. Despite of the great expectations for GS, there are many issues that need to 

be addressed for implementing GS in a real plant-breeding program. GS has various factors to 

affect the efficiency of selection, such as marker density, a structure of training population, and 

a prediction model. Because of the factors, it is difficult for breeders to decide an optimal 

breeding scheme. Moreover, breeders have to decide everything in view of their research budget. 

Simulation is a good tool to find the best design of GS. Hickey et al. (2014) simulated genomic 

prediction to see the difference of prediction accuracy between multiple training population 

designs and genotyping strategies. Iwata and Jannink (2011) also simulated genomic prediction 

to compare statistical methods used for prediction models on the basis of a real marker data of 

barley. These studies, however, try to evaluate the accuracy of GS at the one cycle of selection. 

To evaluate the potential of each breeding scheme from a long-term perspective, simulations of 

whole breeding generations are necessary. Iwata et al. (2011) conducted GS simulations of 60 

years in forest tree species, and discussed about the timing of updating a prediction model. 

Bernardo (2009) suggested that the rank of genetic gain between PS and GS changed during 

some generations. Jannink (2010) evaluated the GS methods in an effort of long-term 

improvement. These simulation studies showed the factors that that are important for long-term 

breeding. It is necessary to conduct simulation studies including several cycles of selection 

ahead of practice of GS breeding with repeated selections and crosses. In plant breeding, 

additionally, differences of mating and reproduction systems remain as unsolved issues. Most of 

cereal crops, supplying a large percentage of the world’s food supply, are autogamous. On 
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another front, there are allogamous plant species that have an important meaning to improve 

genetic ability for food supply and for exploitation of new plant species for biofuels. Suitable 

breeding schemes are different according to the types of cultivars released to market. For 

example, most of autogamous crop species are released as pure lines. Crops that have ability of 

vegetative propagation require only a single good genotype. Vegetables such as tomato require 

a good F1 genotype to release to market. Maize is also released as F1 between two inbred lines 

as a result of heterosis breeding. Common buckwheat and a number of forage crops require a 

genetic improvement as an outcrossing population. Thus, simulation studies should be 

conducted according to mating system, life cycle, and target type of cultivar of each target plant 

species. As for breeding simulations, another problem remains. Generally, breeding simulations 

are conducted assuming that no human mistake happens. However, GS involves many steps in 

both field and laboratory. The more steps the procedure requires, the more human mistakes may 

happen. Ly et al. (2013) reported the possibility of mis-labeling in their training population for 

GS. All events relating to humans have possibility of error and mistakes. Before an actual GS is 

performed, the effects of human mistakes should be evaluated. 

It is essential to verify the potential of GS in field-experimental study because simulation 

studies may have unnoticed pitfalls that cause discrepancy between conditions assumed in 

simulations and ones realized in field trials. Almost all empirical studies of GS just evaluated 

the prediction accuracy in a population. As far as I know, two papers reporting empirical studies 

that evaluated the potential of GS have been published so far. Massman et al. (2013) showed the 

result of three cycles of GS in maize breeding, and suggested the advantage of using all 

available markers instead of using only markers having significant effects. Asoro et al. (2013) 

also showed the results of GS, whose target trait was β-glucan of oat (Avena sativa L.). They 

compared the efficiency of GS with MAS and pedigree-based selection, and showed the 

superiority of GS for selection of the polygenic trait. However, these two studies are specified 

to their target plants (i.e., maize and oat). To verify the efficiency of GS in plant breeding, more 

empirical studies involving breeding process are required. And these empirical studies can be 

compared with the results of simulations assuming the same situations. Breeding simulations 

are conducted on the basis of a number of assumptions (e.g., absence of epistatic and dominance 

effects, number of QTL, size of QTL effects, levels of LD in a breeding population, and same 

fertility in selected parents), to which actual plant breeding might not follow. Comparing 

simulation results with actual breeding results, we can examine the properness of the 

assumptions in simulations, and can discuss the issues that need to be addressed for improving 
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the efficiency of GS in actual breeding programs. 

Breeding simulation is one of the good tools to guess the consequences of different 

breeding schemes. Thus, a system that enables breeders to try different breeding schemes easily 

via simulations will help them to choose a suitable breeding scheme. To implement GS in 

breeding programs, professionals of many field (e.g., breeders for field work, experimenters for 

laboratory work, and statisticians for genomic prediction) should corporate each other for the 

implementation because it is difficult that one person can do and understand all process in GS 

breeding. Brown and Caligari (2008) mentioned that plant breeders would require knowledge in 

many subjects relating plant breeding. However, it is usually quite difficult to get knowledge in 

many topics. Thus, plant breeders tend to be conservative, and do not want to change their 

breeding schemes if they know the traditional one works. This is not only for GS breeding, but 

also for other breeding schemes. If breeders can try their planned breeding schemes by 

computer simulations by themselves, the results help them introduce new breeding schemes. 

However, it is difficult for breeders to learn how to compose breeding simulations. A simple 

and flexible simulation platform is required so that non-professional people can conduct 

breeding simulations. 

In this Ph. D. thesis, I report the researches of GS from some aspects. In Chapter 2, the 

basic information and some previous researches about of GS are introduced. In Chapter 3, I 

conducted GS simulations assuming an annual allogamous crop. There, GS was performed on 

the basis of the strategy of mass selection, in which selection and crossing were repeated based 

on a single plant evaluation. In the simulations, I compared GS with PS and MAS. The effects 

of many factors relating to the outcome of GS were evaluated, such as number of markers, 

mode of inheritance of markers, statistical methods of the prediction model, population size, and 

levels of promoting generations. On the basis of the suitable design, the cost efficiency was 

evaluated according to population size and the number of generations. Additionally, the 

efficiency of genetic improvement in different types of traits, i.e., traits expressed before 

pollination and after pollination, was evaluated under GS and PS breeding. In Chapter 4, I 

conducted GS simulations assuming an autogamous crop by using an actual marker data of rice. 

In breeding of autogamous crops, inbred lines are generally used. In this study, I used 

recombinant inbred lines as a training population and parents of breeding population. An 

important advantage of inbred lines is the possibility of repeated measurements of traits by 

using almost identical genotypes, which increases selection accuracy of the traits. On another 

front, they have a problem in exhaustive use of genetic resource because of their strong linkage 
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brock and limited resources. I evaluated the efficiency of GS in an autogamous crop with 

proposing a new breeding strategy, island model GS. In Chapter 5, GS breeding simulations 

including human error (i.e., mis-labeling) were conducted to evaluate the effect of human 

mistakes, which are unavoidable in plant breeding involving many people. I assumed breeding 

of cassava (Manihot esculenta Crantz) as an example. In this situation, each genotype were 

propagated by using clones and contributed to the training population. The impact of 

mis-labeling was thought to remain over generations in GS. In Chapter 6, on the basis of 

simulation studies in Chapter 3, the result of two-year field trials of GS in common buckwheat 

(Fagopyrum esculentum Moench) is reported. In that program, the target trait was seed yield, 

which was a complex trait and could not be evaluated with a single plant. To implement GS 

efficiently, a selection index with which the seed yield per unit area can be estimated from other 

traits was built and used as a target for the improvement. The efficiency of GS was compared 

with that of PS. By posteriori analysis, the result of the field trial was compared with the 

simulations. The common and different points were examined between them. In Chapter 7, a 

simple computer language that I developed to simulate breeding schemes is introduced. This 

computer language should be useful for plant breeders to use to decide the breeding scheme. As 

a summary, I overview all results in this dissertation, and discussed about the remaining 

problems and future perspective in Chapter 8. 
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Chapter 2 
 

Overview of genomic selection 

 

 
2-1. Basis of genomic selection 

Meuwissen et al. (2001) proposed the idea of GS, selection based on genetic potential predicted 

by using genome-wide markers, for accelerating genetic improvement of quantitative traits 

controlled by a number of genes. Using genome-wide dense markers, we can expect that some 

markers will be close to the QTL and in LD with the QTL (Fig. 2.1), and use such genome-wide 

dense markers to estimate the marker effects in place of true QTL effects that are linked to their 

neighbor markers. The genotypic values are predicted in the breeding population by using the 

estimated marker effects. GS, in which we can predict abilities of selection candidates based on 

their genome-wide DNA marker genotypes, is conducted on the basis of the predicted genotypic 

values instead of phenotypic values. Consequently, the most valuable plants can be selected as 

parents for the next generation without actually testing them in the field. Moreover, rapid 

identification at the seedling stage or even at the seed stage can shorten the breeding cycle by 

obviating the time necessary for field-testing. 

GS is a good method to select quantitative traits controlled by a number of genes, as 

mentioned above. Important traits in plant breeding, such as grain, fruit or tuber yield, biomass 

yield, end-use quality, are sometimes controlled by a large number of genes. Some other traits 

are also influenced by these traits. Benefits from the conventional MAS based on a small 

number of markers are limited especially in such traits controlled by a number of genes. MAS 

might be effective and has been used for the improvement of traits controlled a few genes, such 

as disease resistance (e.g., the traits reviewed by Collard and Mackill (2008)). GS is expected to 

attain higher efficiency than MAS for selection of traits controlled by a number of genes. 

GS is a novel selection method, which enables us to estimate the detailed composition of 

genotypic value of a genotype by estimating marker effects instead of QTL effects. In the past, 

geneticists have been trying to represent genotypic values of candidate genotypes. The recent 
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development of the technology of genotyping has enabled us to do that in detail. Genome-wide 

association study (GWAS) is also a technique utilizing dense markers distributing over the 

whole genome. While both of GS and GWAS are the genomic information based strategies for 

crop improvement, the purposes are different. The purpose of GWAS is to identify DNA marker 

alleles that are associated with a quantitative trait. The purpose of GS is to predict breeding 

value of selection candidates on the basis of marker data, and thus causal loci are not necessarily 

identified in GS (Hamblin et al., 2011). Through GS breeding programs, both phenotype and 

marker genotype data will be accumulated. The accumulated data can be used for genetic 

dissection of complex traits, e.g., gene/QTL discovery. Thus, we will have reward for genetics 

from the GS breeding. 

The main process of GS is calculating genotypic values for selection candidates, which 

have only marker genotype data. By using a prediction model that was trained from individuals 

with both phenotype and genotype data sets, genotypic values are calculated by applying the 

marker genotype of selection candidates to the model (Fig. 2.2; Heffner et al., 2009). The 

population that have both phenotype and genotype data and is used for model building is called 

“training population”. Selection is performed on the basis of the predicted genotypic values 

among selection candidates (i.e., plants in a breeding population). 

To attain high accuracy of prediction, a training population must be representative of a 

population to which selection candidates belong (Heffner et al., 2009). In fact, some empirical 

study suggested that the prediction accuracy was higher when a training population was highly 

related to a breeding population than when a training population was no representative of a 

breeding population (e.g., Albrecht et al., 2011; Legarra et al., 2008; Ly et al., 2013). It might 

be better to use a breeding population directly as a training population and use fitted genetic 

breeding values for selection (i.e., estimate breeding values for selection candidates by using the 

models trained from the selection candidates). Simulation study showed that this method 

attained high selection accuracy (Iwata et al., 2011). However, it is noteworthy that the training 

of a prediction model from a breeding population has time penalty, in which it takes the same 

time as PS to conduct GS because it is the necessary to collect phenotypic data for the training 

(Hickey et al., 2014; Iwata et al., 2011). Figure 2.2 starts from a training population and a 

breeding population, and then, the next generation of breeding population succeeds. It is also 

possible to update the prediction model along with the selection cycles. It is suggested that 

updating of the prediction model is necessary (e.g., Iwata et al., 2011; Jannink, 2010). 

Additionally, the size of a training population is important for GS (Hayes et al., 2009). However, 
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in general, it is difficult to collect data from a large training population that is closely related to 

the breeding population. This problem is obvious when historical records of breeding lines are 

used for the training of a prediction model. The reason is that we cannot control genetic 

structure of a training population included in historical records, whilst we can control genetic 

structure in a purpose-built training population to a certain extent. Nevertheless, some GS 

studies used historically collected information to build a prediction model (Lin et al., 2014). The 

methods to select a suitable set of genotypes for a training population have been developed to 

build a prediction model using existing information (e.g., Rincent et al., 2012). 

Another important matter is the level and range of LD in a training population and a 

breeding population. For GS to work, at least the single markers must have sufficiently high LD 

with QTL controlling the target trait (Hayes et al., 2009). Meuwissen et al. (2001) concluded 

that the marker should be close to QTL so that the level of LD between adjacent markers and 

QTL could be maintained at the level where the product of the effective population size and the 

recombination rate was more than 2. The relationship between genetic and/or physical distances 

on one hand and the degree of LD on the other is different among populations (Hamblin et al., 

2011). Flint-Garcia et al. (2003) reported the large difference of the extension of LD among 

plant species. They mentioned that the mating system of species (e.g., selfing and outcrossing) 

influences pattern of LD strongly. Gupta et al. (2005) reviewed studies that analyzed LD in 

various plant species and showed that the levels of LD were different not only between species 

but also within species. Remington et al. (2001) showed that the range of extension of LD was 

different among genes even in the same population. It is suggested that different plant species 

and populations that have different effective number of independent chromosome segments 

have different levels of prediction accuracy (Lin et al., 2014). Therefore, the levels of LD 

should be taken into account when we conduct GS for the target species (or the target breeding 

population). Heterogeneity of LD within species also decreased the degree of relationship 

between the training population and the breeding population. A training population should be 

similar to the pattern of LD in a breeding population (Nakaya and Isobe, 2012). 

The prediction accuracy also depends on the heritability (Luan et al., 2009) of the target 

trait and the distribution of QTL effects (Hayes et al., 2009). In contrast to the factors 

mentioned in the previous paragraphs, these two factors are not under control. However, we 

may able to manage these two factors by having a large training population size and by 

selecting an optimal statistical method for building a prediction model. For a breeding 

population with low heritability, the larger the training population size is, the higher the 
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prediction accuracy becomes, when the observed heritability and the number of loci involved 

are fixed (Daetwyler et al., 2008). For the distribution of QTL effects, it might be better to 

choose a suitable statistical method according to the number of QTL, the size of QTL effects, 

and the levels of non-additive genetic effect (i.e., dominance effects and epistatic effects). For 

breeding populations with different genetic architecture, a statistical method represented 

different prediction accuracies (e.g., Daetwyler et al., 2013). I mention about the choice of the 

statistical methods in Section 2-2 in this chapter. 
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Figure 2.1. LD between QTL and markers in GS. Colored bars represent chromosome 

segments and different colors represent linkage block derived from different ancestors. 

Dashed lines show the breakpoints of linkage blocks in the population. Red lines 

represent the positions of QTL. Triangles in the bottom were the positions of markers 

used in GS, and orange triangles represent the markers in LD with QTL.  
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Figure 2.2. GS process starting from the training population and breeding population 

(i.e., selection candidates). The prediction model will be used in following generations 

derived from the breeding population shown here. It is also possible to update the 

prediction model along the way of selection cycles. This figure is modified from Heffner 

et al. (2009). 
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2-2. Statistical methods 

The challenge of GS is to estimate a large number of marker effects (i.e., predictor effects, p) 

from a small number of phenotypes (i.e., observations, n), that is known as “large p, small n” 

problem (Lorenz et al., 2011). In this situation, all predictor effects cannot be estimated in 

ordinal least squares estimation. Even if all marker effects can be estimated, the over-fitted 

model will be built because of high multicollinearity among the predictors. Meuwissen et al. 

(2001) proposed best linear unbiased prediction (BLUP) using marker allelic effects and two 

Bayesian methods to solve the “large p, small n” problem, and concluded that these methods 

were effective to estimate marker effects. 

In this section, I introduce some statistical methods that are used in GS. Although there are 

a number of statistical methods used for genomic prediction, I focus mainly on the methods that 

were used in this dissertation. 

 

2-2-1. Ordinal least squares estimation 

The relation between the marker genotype and phenotype has the following form of linear 

regression: 

                                           [2.1] 

where yi denotes the phenotypic value of plant i (i = 1, 2, …, n), 𝜇 stands for the overall mean, 

and αj represents the genetic effect of the marker j (j = 1, 2, …, p). In addition, mij denotes the 

genotype of marker j for plant i.  represents the model residuals assumed to follow N (0, σε2). 

In matrix notation, the equation [2.1] can be expressed as: 

y =Mα +ε                                                    [2.2] 

where y = {yi} is a vector of phenotypes, M = {1, m1, …, mp} is an incidence matrix for the 

vector of regression coefficients, α = (µ, α1, …, αp)’, and ε = {εi} is a vector of residuals. 

The estimated α is obtained by solving the optimization problem to minimize the residual 

sum of squares. The estimated coefficients, , is expressed as: 

                                              [2.3] 

However, when the number of predictors (p) is large relative to the size of observations (n), 

a high degree of multicollinearity among predictors exists, and over-fitted model is produced. 

Moreover, when p > n, all coefficients cannot be estimated enough because M’M is singular. 

Although the equation [2.3] can be solved by using a generalized inverse of M’M, such model 

has a similar problem to the model with large number of predictors. 

yi = µ + mijj
j=1

p

∑ α j +εi

εi

α̂

α̂ = [M 'M ]−1M ' y
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2-2-2. Ridge regression 

Ridge regression (Hoerl and Kennard, 1970) is also known as random regression best linear 

unbiased prediction (RR-BLUP). Ridge regression is one of the shrinkage estimation methods. 

In general, shrinkage estimation involves a penalty term. The optimization problem is expressed 

as: 

                                     [2.4] 

where Ldata(y, α) is the loss function depending on the residuals of data, Lmodel(α) is the 

regularization term that infers the model complexity, and λ is the regularization parameter that 

controls the trade-off between Ldata(y, α) and Lmodel(α). In ridge regression, Ldata(y, α) is the 

residual sum of square as is the case with ordinal least squares estimation, and Lmodel(α) is the 

sum of squares of the regression coefficient. Therefore, the equation [2.4] can be expressed as: 

                                 [2.5] 

By solving this optimization problem, the estimated coefficients is expressed as: 

                                          [2.6] 

where I is an identity matrix. 

To chose a suitable λ, cross-validation is occasionally performed to search λ that produces 

the minimum error of model. Another common method to chose λ is using the ratio of the 

residual variance and the common marker effect variance, λ = σε2 / σα2. This is the equivalent to 

solve BLUP of α assuming that the regression coefficients are independently derived from a 

common normal distribution with mean of zero, αj ~ N (0, σα2). 

By adding the penalty term, the estimated coefficients shrinks toward zero, meaning that 

the estimated coefficients have bias. However, it solves the “large p, small n” problem and 

works better than ordinal least squares estimation. 

 

2-2-3. Least absolute shrinkage and selection operator 

Least absolute shrinkage and selection operator (LASSO; Tibshirani, 1996) is another penalized 

estimator that uses the equation [2.4]. In LASSO, while Ldata(y, α) is the residual sum of square 

in common with ordinal reast squares estimation and ridge regression, Lmodel(α) is the L1 

penalty. Thus, the equation [2.4] can be expressed as: 

α̂
argmin
= Ldata (y,α)+λLmodel (α)

α̂
argmin
= (y−Mα)'(y−Mα)+λα 'α

α̂ = [M 'M +λI ]−1M ' y
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                             [2.7] 

To choose a suitable λ, cross-validation is performed to search λ that produces the minimum 

error of model. 

The estimated coefficients shrinks toward zero like ridge regression. In LASSO, the 

coefficients that are close to zero are estimated as zero, thus LASSO is occasionally used for 

variable selection in high dimensional feature space. However, for the variable selection, the 

bias approximately of size λ might be problematic (Fan and Lv, 2010). 

 

2-2-4. Elastic net 

Elastic net (Zou and Hastie, 2005) is the method that tries combining the good features of ridge 

regression and LASSO. In elastic net, Lmodel(α) possess the weighted average of the L1 and L2 

penalty as: 

                         [2.8] 

for 0 ≦ γ ≦ 1. 

Elastic net can be used for variable selection just like LASSO, but elastic net works better 

than LASSO when p > n owing to the feature of ridge regression. 

 

2-2-5. G-BLUP 

For the form as [2.2], if it is assumed that αj ~ N (0, σα2), α can be solved by maximizing the 

joint probability of y and α. Therefore, the optimization problem can be described as: 

                     [2.9] 

by: 

                                         [2.10] 

If the equation [2.9] is solved, the same solution as [2.6] is obtained. On another front, the joint 

density of y and α is represented as: 

                     [2.11] 

α̂
argmin
= (y−Mα)'(y−Mα)+λ α jj=1

p
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The conditional mean vector of α can be obtained as: 

                     [2.12] 

according to the property of multivariate normal density (e.g., Sorensen and Gianola, 2002). 

Therefore, the BLUP of α is: 

                                    [2.13] 

This solution is equivalent to the solution described in the equation [2.6]. It is noteworthy that n 

× n inverse matrix must be calculated to solve [2.11] although p × p inverse matrix is involved 

in [2.6]. In the context of GS, the dimension of the matrix to calculate inverse is crucial because 

GS occasionally involved several hundreds of thousands of markers despite several hundreds 

samples. 

G-BLUP can be solved in a different form as below in the context of GS: 

y = Xβ + Zu+ε                                                  [2.14] 

where β is a vector of fixed effects, u is a vector of random genotypic values with Var[u] = 

Kσu
2. K represents the realized additive relationship matrix calculated from marker genotypes. 

X and Z represent design matrices for the fixed effects and the random effects, respectively. ε is 

a vector of the error deviations, and its variance is Var[ε] = Iσe
2. This model can be solved in 

similar way to the solution of G-BLUP described in [2.11]. In additional, VanRaden (2008) 

discussed some methods of G-BLUP. 

 

2-2-6. Bayesian methods 

To solve the “large p, small n” problem, the shrinkage estimations are used commonly. In fact, 

in this dissertation, these shrinkage estimation methods were used. On another front, Bayesian 

methods are used in many studies. In Bayesian methods, the levels of shrinkage are controlled 

by the prior distributions that belong to marker effects. In Bayesian ridge regression and 

Bayesian LASSO (Park and Casella, 2008), the prior of marker effects is normal distribution 

and a double-exponential distribution, respectively. In additional, there are other Bayesian 

methods called as Bayesian alphabets, such as Bayes A (Meuwissen et al., 2001), Bayes B 

(Meuwissen et al., 2001), Bayes C and Bayes Cπ (Habier et al., 2011). In later three methods, 

variable selection mechanism is implemented in a Bayesian way. 
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2-2-7. Choice of methods 

There are many statistical methods for GS including the methods that are not mentioned in this 

Chapter. We must choose one statistical model from them according to the condition of target 

plants and traits. 

Ridge regression is well suited to the traits that are controlled by many genes with small 

effects because ridge regression assumes all markers possessing effects. In ridge regression, the 

estimated effects are distributed in whole genome, that is, the effects are scattered overall. So, if 

breeders know on ahead that the target traits are controlled by several genes having relatively 

large effects, it is better to choose LASSO or Bayesian methods with variable selection. Elastic 

net can be used to balance between the shrinkage and variable selection. Reproducing kernel 

Hilbert spaces (RKHS; Gianola et al., 2006) is one of the semi-parametric regression methods, 

which is effective to catch non-additive gene effects (i.e., dominance and epistatic effects) 

because of its flexibility. However, the choice of the kernel is one of the challenges (de los 

Campos et al., 2010). Machine-learning methods, such as random forest, are good for capturing 

the epistatic effects because they can build a non-linear prediction model (Jannink et al., 2010). 

As the methods to reduce dimension of predictors, partial least squares regression (PLSR) and 

principal component regression (PCR) are known. They search the latent variables to represent 

the variation of the original variables and the relationship between variables and response in 

PCR and PLSR, respectively. 

In animal breeding, the pedigree information is recorded in detail especially for beef cattle, 

dairy cattle and horse. Misztal et al. (2009) proposed a prediction method that utilizes pedigree 

information in addition to phenotypic and genomic information. Aguilar et al. (2010) showed 

the efficiency of this method in Holsteins. Chen et al. (2011) suggested the efficiency of this 

method by involving all individuals’ information even when some individuals do not have 

genotypic information. In plant breeding, this method also has a possibility to represent higher 

accuracy than the ordinal ways if the breeding population has their pedigree information. 

There are some studies that compared the efficiency among several statistical methods for 

GS. Moser et al. (2009) compared five methods (i.e., ordinal least squares estimation, ridge 

ridression, Bayes A, support vector regression, and PLSR) for prediction of protein percentage 

and Australian selection index in dairy bulls and showed that least squares estimation worked 

less accurately than the other methods and that support vector regression attained highest 

accuracy among other four methods. Heffner et al. (2011) compared prediction accuracy in 

several models for 13 traits of wheat and showed the similar prediction accuracy among all 
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methods. Heslot et al. (2012) compared several statistical methods in wheat, barley and maize 

data sets and analyzed the resemblance among the methods. They discussed that there are 

differences between these models in the levels of over-fitting and computational times even 

when the prediction accuracy is similar among them. Consequently, they recommended to use 

Bayesian LASSO, weighted Bayesian shrinkage regression (Hayashi and Iwata, 2011), and 

random forest. However, they indicated the efficiency of ridge regression by taking into account 

of general condition. 

In this dissertation, I used ridge regression (G-BLUP) and LASSO. The various statistical 

methods may not cause much difference in selection accuracy as mentioned above, because I 

assumed only additive genetic effects in the simulations. Moreover, I focused on the breeding 

process rather than the evaluation of one cycle of selection in this dissertation. Therefore, I 

chose these methods that are used commonly in GS studies. 
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2-3. Genomic selection in plant breeding 

2-3-1. Current situation 

After the introduction of GS by Meuwissen et al. (2001), the advantages of GS have been 

shown in breeding of livestock, especially in dairy cattle breeding. In dairy cattle breeding, the 

traditional breeding scheme is time consuming and cost intensive because it depends on 

pedigree and phenotypic information of the sire and his relatives, thus the potential of GS was 

investigated in detail shortly after the introduction of GS (Jonas and de Koning, 2013). It is 

shown that GS has a high potential for dairy cattle breeding. Empirical studies suggested that 

GS attained high efficiency even for the selection of complex traits such as protein yield, milk 

yield, fat yield, and selection indices (Hayes et al., 2009; Luan et al., 2009; VanRaden et al., 

2009). For other livestock species, strategies of GS breeding are still being examined, because 

breeding systems differ between livestock animals (Jonas and de Koning, 2013). 

Also for plant breeding, simulation and empirical GS studies have been reported. As I 

mentioned in Chapter 1 of this dissertation, each plant species has a suitable breeding scheme 

according to a large number of factors such as mating and propagation systems and the types of 

cultivars released to market. In this section, I introduce some of the previous simulation studies 

of GS in plant breeding. By reviewing the previous studies, the difference of assumptions about 

breeding populations and breeding schemes according to the targeted plant species will be 

confirmed. 

There are a number of simulation studies that were conducted on the basis of the 

possibility of utilizing inbred lines or pure lines (or doubled haploids). Jannink (2010) simulated 

GS breeding of barley, which is an autogamous species, by using a real marker genotype data. 

This simulation study assumed that an initial breeding population was also used as a training 

population and that a prediction model was updated by using doubled haploids derived from 

individuals in the previous generation. This timing of model updating was based on the 

necessary time to create and evaluate the doubled haploids. This study suggested the necessity 

of updating a prediction model and the difficulty of long-term selection. Bernardo and Yu 

(2007) and Mayor and Bernardo (2009) conducted GS simulation assuming maize breeding. For 

maize, which is an allogamous species, phenotypic selection is generally conducted based on 

testcross between inbred lines and a tester. They followed this basic way. In their simulations, 

two parental inbred lines were assumed at first. After crossing these inbred lines, the simulated 

F2 or doubled haploids are evaluated by testcross. This testcross result was used as a training 

data to build a prediction model. These studies showed that GS was more effective than marker 
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assisted recurrent selection (MARS) that used only significant markers for selection. The 

advantage of GS over MARS was obvious when the number of QTL controlling the target trait 

was large. McClosky et al. (2013) also simulated GS breeding in a bi-parental breeding 

population and evaluated the efficiency of GS. After crossing two parental inbred lines, several 

generations of selfing or creating doubled haploids were simulated. They assumed high levels of 

LD in the breeding population because the population was derived from a bi-parental cross. As 

the result, the breeding population that experienced selfing more times attained higher response 

to selection, because selfing increased the genetic variance in the breeding population. The 

number of selfing that a training population experienced did not affect to the prediction 

accuracy. 

For the allogamous species in which selfing is not assumed, GS simulations followed the 

different types of breeding schemes from the simulations mentioned above. Iwata et al. (2011) 

simulated GS in forest tree species Cryptomeria japonica. They simulated an initial population 

that had a low level of LD to represent the situation of allogamous species with large population 

size. They suggested that GS could attain higher gain than PS in early generations but that 

updating of a prediction model was required to maintain the efficiency of GS. Wong and 

Bernardo (2008) simulated GS in oil palm and suggested the advantage of GS over PS and 

MARS considering the gain per unit time and cost. However, they assumed that the training and 

initial population were derived from inbred lines. This assumption was not realistic for breeding 

of oil palm. In these two simulation studies, the common point was that GS showed superiority 

to PS owing to the possibility of accelerating generations in GS breeding. For tree breeding, one 

of the problems in phenotypic selection is the necessity of a long time to evaluate phenotype 

from the seedling period. 

Most of empirical studies of GS in plant breeding are based on evaluation of prediction 

accuracy through cross-validation. Resende Jr et al. (2012) evaluated the prediction accuracy of 

GS using marker and phenotypic data of Pinus taeda. Their target traits were diameter and 

height, which were evaluated in four environments and at multiple ages. They showed that 

phenotypic data obtained in the different places from the target place worked worse as the 

training population than the data obtained in the identical place, and that the early generation’s 

phenotypic data did not work well to predict breeding values in later generation. They suggested 

the advantage of GS over PS considering the effects of promoting generations in GS. It would 

be possible only if the prediction model could work during selection cycles, but which might be 

difficult. Resende et al. (2012) also evaluated the prediction accuracy of GS in a forest tree 
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species, Eucalyptus, using two unrelated elite breeding populations. They showed that a 

prediction model built using data of one population predicted the ability of individuals in 

another population poorly although the genomic regions explaining trait variation coincided 

between these populations. For fruit tree, Kumar et al. (2012) evaluated the prediction accuracy 

of six fruit quality traits in apple using progenies derived from four female parents and two 

pollen parents. They suggested the superiority of GS breeding over BLUP-based PS breeding 

per unit time considering the effect of accelerating generations in GS, as is the case of Resende 

Jr et al. (2012). For allogamous species other than forest and fruit trees, the efficiency of GS has 

been investigated in empirical studies. de Oliveira et al. (2012) evaluated the prediction 

accuracy of GS using 358 accessions of cassava. They also suggested the importance of 

increasing gain per unit time by accelerating generations in GS, as is the case of tree breeding. 

Ly et al. (2013) also evaluated the prediction accuracy in cassava, and showed the difficulty to 

predict breeding values in a breeding population using a prediction model built using a training 

population that was not closely related to the breeding population. Even in breeding of 

allogamous plant species, the potential to create hybrids is evaluated by testcrosses in maize 

breeding. Thus, in the evaluation of the prediction accuracy of GS, the performance of inbred 

lines was evaluated by testcrosses. Albrecht et al. (2012) evaluated prediction accuracy using 

doubled haploids of maize. Phenotypic values were evaluated by testcrosses for grain dry matter 

yield and grain dry matter content. They suggested the efficiency of GS, but showed that the 

prediction accuracy was lower when the training population was from the same family as the 

breeding population than when these populations were derived from different populations. 

Riedelsheimer et al. (2012) generated 570 testcrosses by crossing the 285 maize inbred lines 

from Dent heterotic pool with two Flint testers, and evaluated the prediction accuracy of GS 

using the phenotype data of the 570 testcrosses marker genotype data of 285 inbred lines. On 

the other hand, Zhao et al. (2012) evaluated the prediction accuracy of GS in maize using six 

subpopulations derived from half-diallel crosses between four Dent inbred lines. GS for 

autogamous species is mainly applied in wheat so far. Crossa et al. (2010) used 599 wheat lines 

and evaluated the prediction accuracy. They showed that a GS model could attain higher 

prediction accuracy than a pedigree-based model. Heffner et al. (2011) compared the prediction 

accuracy of GS with those of PS and MAS for 13 traits in winter wheat. They showed that GS 

could attain slightly higher accuracy than MAS and a little lower accuracy than PS on average 

of the 13 traits, suggesting that GS might increase genetic gain per unit time and cost. Rutkoski 

et al. (2012) compared the prediction accuracy between statistical methods of GS for Fusarium 
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head blight resistance traits in wheat. They suggested that GS was more efficient than MAS for 

most of traits examined in their study, but that selection based on the combination of QTL and 

the information of other traits was more efficient than GS for the content of deoxynivalenon, 

which is toxic to humans and is induced by the fungal pathogen that causes Fusarium head 

blight. 

Only by reviewing the previous studies, the differences in breeding schemes and assumed 

levels of LD in breeding populations are recognized for each targeted plant species. These 

studies suggested that the impact of breeding schemes (e.g., timing of model updating, the 

number of selfing in a breeding population, design of a training population, and the genetic 

relationship between a training population and a breeding population) on the outcomes of GS 

breeding was large. The results underscore the importance of simulation studies to analyze an 

outcome of planned scheme and to find a suitable scheme under the constraints supposed in a 

targeted plant species. The empirical studies suggested that it is important to choose a training 

population and a statistical method to attain high prediction accuracy in GS. 

 

2-3-2. Challenges 

There are some problems to apply GS breeding to an actual breeding program. The efficiency 

and feasibility of GS in plant breeding can be problems in the first place. As pointed out above, 

we should consider the situation of each breeding population and plant species under the 

constraint supposed in the breeding program. It is, however, difficult to verify the efficiency of 

GS in each plant species for supposed target traits and breeding populations via an actual 

breeding program. Even if GS is a promising approach in plant breeding, an efficient breeding 

scheme using GS is not clear. Because GS breeding involves various factors (e.g., number of 

markers, a statistical method used in a prediction model, a generation interval via acceleration 

of generations, and a population size of a breeding population) that may have a large impact on 

the efficiency of GS breeding, it is difficult to choose the most efficient scheme for a supposed 

breeding program. For the feasibility, the cost of genotyping is a major problem under present 

circumstances though it has declined rapidly, suggesting that the evaluation of cost efficiency is 

essential for practical use of GS. On the other hand, the cost of phenotyping remains as a large 

problem, and is increasing due to labor and land-use expenses (Desta and Ortiz, 2014). Thus, 

the size of breeding population, a way for resource allocation in a breeding population, and the 

size and constitution of a training population are important for considering the feasibility. 

The lack of empirical studies of GS breeding involving selection trials is one of the great 
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problems. Even if simulation studies demonstrate the efficiency of GS, there is no absolute 

guarantee of success of GS breeding in a field trial, because simulations are generally conducted 

under the assumption of some simplified processes. Empirical studies are required to verify the 

actual efficiency of GS, and detect new problems that are difficult to be revealed in simulation 

studies. 

The most important thing is the prior decision of the goal of a breeding program. How 

much gain do we expect? How much potential loss can the breeding program absorb? We 

should answer the questions prior to the application of GS to various breeding schemes in plants 

(Jonas and Koning, 2013). To achieve a higher goal with the feasible plan, the advantages and 

disadvantages of GS should be clarified in a knowledgeable way. The knowledge helps breeders 

to set up a feasible goal and to develop a plan to achieve that. It is essential to evaluate the 

potential of GS in plant breeding across various situations in order to put it into practical use. 
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Chapter 3 
 

Simulation study of genomic selection in 

allogamous plants 

 

 
3-1. Introduction 

Mass selection is an important breeding method for open-pollinated plant species especially at 

the initial stage of genetic improvement. Mass selection provides the following attractive 

features: (i) the practical simplicity of the procedure, (ii) selection that is applicable in each 

generation, and (iii) the non-straightforward relationship between a high selection intensity and 

a low effective population size. Mass selection, however, has an important shortcoming, low 

efficiency of genetic improvement (Bos and Caligari, 2008). Single-plant evaluation is one of 

the reasons of the low efficiency of mass selection because of the low accuracy of the 

phenotypic evaluation of a single plant, which is caused by a large environmental error affecting 

on individual plants. Mass selection provides good long-term response but limited short-term 

response for all these factors. The improvement in the accuracy of single-plant selection has 

possibilities that mass selection would become a more efficient and attractive breeding method 

for genetic improvement of allogamous crops. There are many allogamous plant species 

depending on mass selection, such as forage crop species and common buckwheat (Fagopyrum 

esculentum Moench). Genetic improvement of biomass crops, such as Erianthus, Miscanthus, 

switchgrass (Panicum virgatum L.), and Guinea grass [Megathyrsus maximus (Jacq.) B. K. 

Simon & S. W. L. Jacobs], is important as a solution for the world’ energy issue and 

competition of resource with food crops. Most of the biomass crops that have been developed 

recently are also allogamous species, suggesting that mass selection is expected to play an 

important role in biomass crop breeding. Mass selection with improved efficiency will have a 

strong impact on allogamous crop breeding. 
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GS (Meuwissen et al., 2001) may enable us to evaluate a single plant with high accuracy 

because the selection is not influenced by the local environment around the selection candidates. 

The prediction accuracy of GS, the Pearson’s correlation between the selection criterion and the 

true breeding value, depends on the narrow sense heritability, the number of individuals in the 

training population, and the number of independent loci affecting a trait for a continuous 

phenotype (Daetwyler et al., 2008). A large training population can provide high prediction 

accuracy even when the phenotype is measured with single-plant evaluation. These factors 

might raise the mass selection efficiency. Moreover, rapid identification at the seedling stage or 

even at the seed stage can shorten the breeding cycle by obviating the time necessary for 

field-testing. The conventional MAS is also an efficient breeding technology enabling selection 

without field-testing. However, QTL detected in a mapping population might not be responsible 

for variation in a breeding population (Strauss et al., 1992). GS is anticipated as a method that 

might compensate for the weakness of MAS (Heffner et al., 2010), especially for improving a 

trait dominated by a number of QTL. 

GS may be inefficient when the LD between markers and QTL is low. The degree of LD 

in a breeding population is directly related to the GS accuracy. Because the degree of LD in a 

randomly mating population is inversely proportional the population size (Sved, 1971), lower 

LD are expected in an allogamous plant species population with a larger effective population 

size (Auzanneau et al., 2007; Fiil et al., 2011; Isobe et al., 2009; Rafalski and Morgante, 2004). 

This situation may cause less accurate GS in allogamous plant species. For recently developed 

crops, their short history of breeding might also lead to low levels of LD in breeding 

populations (Flint-Garcia et al., 2003; Gupta et al., 2005). Therefore, when evaluating the 

efficiency of mass selection with GS in an allogamous species, breeders should assume low 

levels of LD in an initial breeding population. 

The potential of GS in allogamous crops has been studied mainly in the context of tree 

breeding (Grattapaglia and Resende, 2011; Iwata et al., 2011; Wong and Bernardo, 2008). 

Nevertheless, these studies examined perennial plant breeding. It is necessary to evaluate the 

potential of GS in annual plant breeding. GS has a profound effect on the acceleration of 

selection cycles (Grattapaglia and Resende, 2011; Iwata et al., 2011; Wang and Bernardo, 2008). 

Therefore, the advantage of GS over PS might become much smaller in annual plant breeding 

than in perennial plant breeding. Moreover, for small annual plants such as forage crops and 

buckwheat, many individuals can be tested in experimental fields at low cost every year. Annual 

and perennial plant species have different factors affecting the efficiency of GS in mass 
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selection of allogamous species. Therefore, this study was conducted to clarify the potential of 

GS breeding in annual allogamous crops. 

For GS in allogamous crops, another problem is the time point at which the target trait is 

expressed, i.e, before or after pollination. In selection of traits expressed before pollination (e.g., 

plant height and tiller number), selection can be implemented before pollination by separating 

selected plants from other plants in a breeding population to conduct pollination only among 

selected plants. On the one hand, the efficiency of improvement is lower in selection of traits 

expressed after pollination (e.g., seed yield and seed quality) than in traits expressed before 

pollination. Traits expressed after pollination cannot be evaluated and selected before 

pollination. Therefore, plants have already been pollinated with unselected pollen parents at the 

time of selection. This uncontrolled pollination is insufficient for the selection of traits 

expressed after pollination. For example, the main target traits in breeding of common 

buckwheat are related to the quality and quantity of seeds, which cannot be measured before 

pollination. The selection after pollination limits the genetic improvement in breeding of such 

kind of crops. Progeny testing may avoid this inefficiency, and can be effective for both traits 

expressed before and after pollination (Bos and Caligari, 2008). However, it is difficult to apply 

a progeny test to annual plant species because of their limited capacity to maintain their fertility. 

Moreover, a progeny test diminishes the attractive features of mass selection (i.e., simplicity 

and one-generation selection cycle). GS has a possibility to improve the selection efficiency in 

breeding of traits expressed after pollination. Because the prediction requires only marker 

genotypes when the prediction model has been already built, GS can be done before pollination 

even for the traits expressed after pollination. Consequently, GS may have great potential to 

improve the efficiency of mass selection of traits expressed after pollination. 

GS for traits expressed after pollination, however, has a great concern. Jannink (2010) and 

Iwata et al. (2011) described low prediction accuracy at GS cycles without building a prediction 

model in their simulation study. For this reason, in breeding of small annual plant species in 

which phenotyping can be conducted relatively easily, breeders can assume that the prediction 

model is updated every year by measuring trait phenotypes and marker genotypes of plants in a 

breeding population. The scheme would improve prediction accuracy because the prediction 

model can correspond to a changing LD pattern through repeated selections. However, these 

updating steps require trait-phenotyping processes for which breeders cannot select pollen 

parents for traits expressed after pollination. Therefore, the updating steps possess both benefits 

and shortcomings for improvement of traits expressed after pollination. 
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The present study investigated the potential of GS in mass selection breeding of annual 

allogamous crops by simulations. I simulated two kinds of target traits, one was the trait 

expressed before pollination and another was the trait expressed after pollination. In this study, I 

assumed breeding under the extreme situation of initial linkage equilibrium. I compared the 

efficiency of GS breeding with the efficiency of conventional PS or MAS breeding. For the trait 

expressed before pollination, I evaluated the degree to which the efficiency of GS breeding was 

influenced by each of the following: (1) the number of genome-wide markers, (2) the mode of 

inheritance of markers, (3) statistical model for building a prediction model, (4) the breeding 

population size, (5) the number of selection cycles per year, and (6) cost efficiency. I sought to 

detect the appropriate GS method for mass selection breeding of annual allogamous crops on 

ahead. After that, I compared GS gain between traits expressed before and after pollination, and 

understood the reasons of differences between these traits in GS breeding. 
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3-2. Methods 

3-2-1. Simulated plant species and target traits 

In the simulations, I assumed an annual allogamous plant species that had 10 pairs of 

chromosomes (2n = 20). Each chromosome was 100 cM long. I assumed that the plants were 

complete out-crossers and monoecious (i.e., sex was not considered for selection). 

As a target trait, I assumed one trait controlled by 300 QTL that had only additive allelic 

effects. No dominant or epistatic effect was simulated in this study because currently it is not 

easy to fix the dominance effects in an open-pollinating population such as a synthetic cultivar 

in most forage crops and buckwheat. Consequently, the heritability described above was that in 

the narrow sense, and genetic variance attributable to dominance effects can be regarded as a 

part of the environmental variance in present simulations. Heritability of the trait (h2) was 

assumed to be 0.5 (only for the trait expressed before pollination) or 0.2.  Unless mentioned 

otherwise, I assumed that h2 = 0.2 throughout this study. The QTL positions were decided 

randomly on the chromosomes. The frequencies of QTL alleles were sampled independently 

from the uniform distribution ranging from 0 to 1. It is noteworthy that the allele frequencies 

were completely independent among all combinations of loci (i.e., marker loci and QTL) 

because linkage equilibrium was assumed in the base population (mentioned later). The effects 

of QTL were sampled from the gamma distribution, of which the shape parameter (k) was 0.4 

and the scale parameter (θ) was 0.13. The parameter setting was based on Meuwisses et al. 

(2001) in which it is suggested to sample QTL effects from a gamma distribution with k = 0.4 

so that QTL were composed of a few QTL with large effects and of many QTL with small 

effects. Each QTL effect (αl: effect of lth QTL; l = 1, 2, …, 300) was sampled from the gamma 

distribution, with mean value of kθ and variance of kθ2. Then, 

                                   [3.1] 

When the allele frequency of a single locus is p, it can be derived that 

E(2p(1 - p)) = 1/3.                                     [3.2] 

Because the genetic variance of a single locus is 

                                     [3.3] 

(Falconer and Mackay, 1996), the expected value of the variance becomes 

.                                 [3.4] 

In the simulations, the overall genetic variance was set to 1.0 in the base population. Because 

E αl
2( ) = kθ 2 + k2θ 2

σ g
2 = 2p(1− p)αl

2

E(σ g
2 ) = kθ 2 (1+ k) / 3
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the expected value of genetic variance of single locus can be derived from dividing overall 

genetic variance by the number of QTL, 

.                                        [3.5] 

Consequently, the scale parameter (θ) was calculated as 

.                                     [3.6] 

The environmental error was calculated as 

var(ε) = 1− h
2

h2
                                     [3.7] 

because the overall genetic variance was set to 1.0 and was assumed to have only additive effect. 

The size of environmental variance was kept throughout breeding cycles. 

In this study, I simulated two types of traits, trait expressed before pollination and trait 

expressed after pollination. The difference between them, however, exists only in breeding 

simulation procedures. 

 

3-2-2. Breeding simulations for trait expressed before pollination 

For the present study, I assumed annual plant species, and simulated six years of three breeding 

procedures: phenotypic selection (PS breeding), genomic selection (GS breeding), and 

marker-assisted selection (MAS breeding). As assumed in a study by Bernardo and Yu (2007), I 

assumed up to three breeding cycles per year by using offseason nursing. The first cycle of each 

year was evaluated during the regular growing season when phenotypic measurements were 

meaningful. The second and third cycles of each year were conducted in a greenhouse or a 

year-round nursery, where phenotypic evaluations were not meaningful. Consequently, GS and 

MAS were conducted up to three cycles per year at a maximum, whereas PS only had one cycle 

per year. The information of each breeding strategy is summarized in Table 3.1 (a). 

In PS breeding, I conducted one breeding cycle per year for the reason described above 

(Fig. 3.1). In each cycle, phenotyping, selection, and crossing were conducted. At the 

phenotyping step, except as otherwise noted, 600 plants were grown and phenotyped in the field. 

At the selection step, the top 10% of the 600 plants were selected according to their phenotypic 

values. At the crossing step, the 60 selected plants were intermated. Then 10 seeds were 

collected from each plant. Plants germinating from the 600 collected seeds served as plants in a 

breeding population (i.e., selection candidates) in the subsequent breeding cycle. 

E(σ g ) =
1
300

θ =
1

10 k(1+ k)
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In GS breeding, I conducted up to three breeding cycles per year (Fig. 3.1). At the first 

cycle of each year, I built a prediction model based on phenotype and marker genotype data of 

all plants in a breeding population. That is, I tested plants in the field once a year also in GS 

breeding. At the first cycle, selection was not performed directly on the phenotypic values of 

plants observed in the field but on the expected breeding values calculated using the prediction 

model obtained at that cycle. At the second and third breeding cycles of each year, I used the 

prediction model obtained in the first cycle of the year for predicting breeding values from 

marker genotypes. In each breeding cycle, I selected the top 10% of plants as parents and 

intermated them to produce the next generation population in the same way as PS. The breeding 

population size was set as 50, 200, or 600. The training population size was equal to that of the 

breeding population. I set the size as less than or equal to the population size in PS to reduce the 

GS population size when the budgets are equal for GS and PS. The number of markers used in 

GS was set 100, 500, or 5000. In the present study, no marker was located at the exact positions 

of QTL. Except as otherwise noted, I performed the simulations under the following setting: the 

breeding population size was set at 200, the number of markers was 500, the mode of 

inheritance of the markers was co-dominant, and the number of breeding cycles per year was 

three. 

In MAS breeding, I assumed that the true positions and true effects of five QTL with the 

largest effects had been known. I therefore assumed that I could know the true genotypic effects 

attributed to the five QTL for every plant exactly when I selected plants. When I selected the 

plants, QTL were weighted according to their effects. In MAS, I had three cycles of selection 

per year. The breeding population size was set to 200. I selected the top 10% of plants as 

parents for PS and GS. 

In all breeding procedures, the base breeding population size was 600, which was identical 

to the population size of PS. To simulate low levels of linkage disequilibrium in an initial 

breeding population, mimicking allogamous crops with a large population size (e.g., 

buckwheat), I performed one cycle of PS on the base population and generated an initial 

breeding population by intermating the selected parents. I then started a breeding program from 

this initial breeding population, which was common among all breeding procedures. When the 

breeding population sizes were set respectively to 50 and 200, 50 and 200 founder plants were 

selected randomly from 600 plants in the initial breeding population. 

I first compared GS breeding with MAS and PS breeding by conducting simulations under 

the basic simulation setting (i.e., the number of markers was 500, the mode of inheritance of 
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markers was co-dominant, the breeding population size was 200, the number of breeding cycles 

per year was three in GS breeding), with two levels of heritability (i.e., h2 = 0.2 or 0.5). Then I 

conducted simulations under various conditions to evaluate the influences of (1) the number of 

markers, (2) the mode of inheritance of markers, (3) statistical methods for building a prediction 

model, (4) the breeding population size, and (5) the number of breeding cycles per year, on the 

efficiency of GS. The simulation was repeated 100 times for each simulation setting. 

 

3-2-3. Breeding simulations for trait expressed after pollination 

For the trait expressed after pollination, I assumed that plants were selected after pollination at 

PS steps and the step of selection based on marker genotypes and phenotypes (genomic and 

phenotypic selection: GPS). At these steps, all plants in a breeding population contributed as 

pollen parents, while only selected plants contributed as seed parents. Actually, GS requires no 

measurement of phenotypic data. Therefore, the plants were assumed to be selected before 

pollination at GS step. Moreover, only selected plants were assumed to contribute to the next 

generation’s population as both pollen and seed parents (Fig. 3.2). In PS breeding, only PS was 

implemented. In GS breeding, GPS and GS were implemented. The information of each 

breeding strategy is tabulated in Table 3.1 (b). 

Almost all the simulation settings for a trait expressed after pollination were similar to 

those for the trait expressed before pollination, which was explained above. To compare GS 

gains between traits requiring different timing of selection, I used one basic set of simulation 

settings and conducted 12 years of simulations. I adopted the following settings as simulations 

to compare gains between two traits expressed at different timings. I assumed that we used 500 

markers in GS and GPS. I produced a base population with 200 plants, assuming that the 

population was in linkage equilibrium between every pair of markers. I built an initial 

population for PS and GS breeding by conducting one cycle of PS on the base population. 

For PS breeding, I conducted PS with one cycle per year because the measurements of the 

target trait were always required for PS. In each cycle, phenotyping, selection, and crossing 

steps were done. At the phenotyping step, 200 plants were grown. Their phenotypes were 

measured in the field. At the selection step, the top 10% of the 200 plants were selected 

according to their phenotypic values. At the crossing step, in the trait expressed before 

pollination, the 20 selected plants were intermated randomly. In the trait expressed after 

pollination, the 20 selected plants were crossed randomly with all 200 plants including 

unselected plants in the population because pollination took place before selection in PS of the 



 33 

trait expressed after pollination. Then, in both traits, 10 seeds were collected from each plant of 

the 20 selected plants. Plants germinating from the 200 collected seeds served as plants in a 

breeding population (i.e. selection candidates) in the subsequent breeding cycle. 

For GS breeding, the breeding population size was 200. GPS was conducted at the first 

cycle of each year to renew a prediction model from phenotype and genotype data. Up to three 

breeding cycles per year were performed. The selection intensity was 10% (20 plants). In the 

trait expressed after pollination, at GPS, I selected the top 10% as seed parents based on the 

expected genotypic values. The selected 20 plants were crossed randomly with all 200 plants 

because of the same reason of PS. In the trait expressed before pollination, the selected 20 

plants were intermated randomly at GPS. For GS, I selected the top 10% of plants based on 

predicted values calculated from marker genotypes with the prediction model renewed at the 

latest GPS. For GS, mating took place randomly only between selected plants in traits of both 

types because GS did not require the phenotyping step. 

 

3-2-4. Prediction model for GS 

I used two statistical methods, ridge regression and LASSO, to estimate the genetic effect 

coefficients β in the equation [2.2]. In ridge regression, I used two procedures to optimize ridge 

ridge penalty parameter λR in the equation [2.5] and [2.6]. One is based on the ratio of estimated 

genetic and environmental variance (i.e., λR = var(ε) var(β) ) (Iwata and Jannink, 2011; 

Piepho, 2009). The other is based on ten-fold cross-validation. Except as otherwise noted, I used 

the former procedure in ridge regression. In LASSO, I optimized lasso penalty parameter λL in 

the equation [2.7] based only on ten-fold cross-validation. In both regression methods, a 

prediction model was obtained using R (R Development Core Team, 2014). To estimate the 

ratio of genetic and environmental variances for optimizing the ridge penalty parameter, I used 

the R package efficient mixed-model association (“emma”) (Kang et al., 2008). To perform 

ridge regression and LASSO with penalty parameters optimized via ten-fold cross-validation, I 

used the R package of “glmnet” (Friedman et al., 2010). Unless mentioned otherwise, I assumed 

that ridge regression was conducted for prediction. 

 

3-2-5. Summarization of simulation results 

At each selection cycle, I calculated the mean genotypic value of plants in a breeding population. 

The values were averaged over 100 simulations performed with a single simulation setting. To 

measure the genetic gain from each breeding procedure, I subtracted the mean genotypic values 
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of the initial breeding population from the mean genotypic values at each selection cycle so that 

the values of the initial breeding population were adjusted to zero. To test the significance of the 

difference in genetic gain between different breeding procedures, I conducted a matched-pairs 

Wilcoxon test by treating 100 simulations as replications. 

To ascertain the efficiency of selection, I also calculated the genetic variance and prediction 

accuracy at each breeding cycle. The genetic variance and selection accuracy were averaged 

over 100 simulations. Selection accuracy was calculated as the Pearson’s correlation coefficient 

between the phenotypic values and the true genotypic values in PS and as the correlation 

coefficient between the expected genotypic values and the true genotypic values in GS. 

To evaluate the prediction accuracy for the genetic potential harbored by chromosomes 

derived separately from the seed parent and the pollen parent, the true genotypic value of 

chromosomes derived from the seed parent was calculated as 

                                             [3.8] 

where  stands for the true effect of QTL l and where zils represents the allele count of QTL l 

in chromosomes derived from the seed parent of plant i. The value of zils can be 1 or 0, 

corresponding to the number of QTL allele harbored by the chromosomes. The predicted 

genotypic value of chromosomes derived from the seed parent was calculated as 

                                         [3.9] 

where  stands for the overall mean of genetic values of all parents,  represents the 

estimated effect of marker j, and xils denotes the allele count of marker j harbored by 

chromosomes derived from the seed parent of plant i. The accuracy of prediction for 

chromosomes derived from the seed parent was therefore calculated as Pearson’s correlation 

coefficient between  and . The accuracy for chromosomes derived from the pollen 

parent was calculated similarly. 

To evaluate the cost efficiency of GS and PS breeding, I calculated the genetic gain per unit 

cost. For the calculation, I assumed that the respective costs of phenotyping and genotyping for 

one plant were equal to 1 and x. Then, the costs of phenotyping Cp and genotyping Cg were 

calculated as 

Cp = npt                                           [3.10] 

and 

Cg = xngt,                                         [3.11] 

gis = zilsαl
l=1

300

∑

αl

ĝis = µ + xijsβ j
j=1

500

∑

µ β j

gis ĝis
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where np stands for the number of plants phenotyped in one year, ng signifies the number of 

plants genotyped in one year, and t denotes the number of years spent for genetic improvement. 

For example, six years of PS with the population size of 600 required phenotyping cost Cp = 

3,600 and genotyping cost Cg = 0 (np = 600, ng = 0, t = 6), and six years of GS selecting 600 

plants per cycle and three cycles per year required phenotyping cost Cp = 3,600 and genotyping 

cost Cg = 10,800x (np = 600, ng = 1,800, t = 6). The genetic gain per cost was calculated as 

,                                          [3.12] 

where  stands for the difference of mean genotypic values between the 0th year (Fig. 3.1) 

and current breeding populations. The cost for breeding increases linearly according to 

increasing population size, whereas the gain might show diminishing returns from the 

increasing population size. Therefore, breeding with smaller population size could be more 

advantageous. Consequently, for evaluation of cost efficiency, I compared GS breeding only to 

PS breeding with identical population size to ensure a fair comparison. The results were 

averaged over 100 simulations. 

To ascertain the change in LD pattern through breeding cycles, I calculated the measure of 

LD, r2, between QTL and their adjacent polymorphic markers. LD (r2) between loci A and B, of 

which the alleles are represented as A, a, B and b, was defined as 

,                           [3.13] 

where PAB was the haplotype frequency of AB, pA and qa respectively denote allele frequencies 

of A and a, and pB and qb respectively represent allele frequencies of B and b (Hartl and Clark, 

2007). I calculated r2 for chromosomes derived separately from seed parents and pollen parents. 

  

G =
Δg

Cp +Cg

Δg

r2 = PAB − pApB( )2 pAqa pBqb( )
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Table 3.1 Information of PS, GS, and MAS breeding in a trait expressed before 

pollination (a) and a trait expressed after pollination (b). 

 

(a) 

 
 

(b) 

 

 

The number in the bracket represents the number used only for comparison of the impacts of the 

difference of these numbers. 
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Figure 3.1. Breeding procedures compared in the simulations. In GS breeding, the 

prediction model built at the first cycle of each year was used in the other cycles of the 

year. PS: phenotypic selection, GS: genomic selection, GPS: genomic and phenotypic 

selection. 
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Figure 3.2. Life cycle of plants (first line) and breeding operations in the breeding 

simulations when the trait is expressed after pollination. PS: phenotypic selection, GS: 

genomic selection, GPS: genomic and phenotypic selection. 
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3-3. Results 

3-3-1. Comparison among breeding strategies 

Figure 3.3 shows the mean genotypic values of plants in a breeding population through six years 

of breeding under different breeding schemes (e.g., GS, MAS, or PS breeding) when h2 = 0.5 

(Fig. 3.3a) and 0.2 (Fig. 3.3b) for the trait expressed before pollination. The relative efficiency 

of different breeding schemes was similar between two different settings of heritability. 

Therefore, I present the results of simulations only under low heritability (i.e. h2 = 0.2), except 

for comparison among GS, MAS, and PS breeding. The conventional MAS performed better 

than GS and PS during the first year but attained lower gain than the others in subsequent years. 

In the initial population, genetic variance explained by the five target QTL in MAS were 38.4±

10.9 (%) and 41.8±12.7 (%) of total genetic variations, in average over the 100 replications of 

the simulation assuming that h2 = 0.2 and 0.5, respectively. 

 

3-3-2. Number of markers for genomic selection 

Figure 3.4 presents the genetic gain of breeding populations for GS breeding using different 

number of markers (i.e., 100, 500, or 5,000 markers) for the trait expressed before pollination. 

GS breeding using the larger number of markers attained higher genetic gain in general. The 

difference between GS based on 500 and 5,000 markers at the sixth year was small but 

significant (p = 0.013). The averaged genetic gain of GS using 100 markers were much lower 

than that of GS using a larger number of markers especially in later breeding cycles. This is 

partly because most of the 100 markers were fixed in the later breeding cycles. Through the first 

six years of GS breeding, all 100 markers were fixed in two cases out of 100 replications of the 

simulation. 

 

3-3-3. Mode of inheritance of markers 

Figure 3.5 presents the genetic gain of breeding populations when I used marker systems with 

different modes of inheritance for GS (i.e., dominant or co-dominant markers) for the trait 

expressed before pollination. The genetic gain attained by GS with dominant markers was lower 

than that with co-dominant markers. The difference between the two marker systems was 

significant (p < 0.01) at the sixth year. The difference between the two marker systems was, 

however, less apparent than the difference between PS and GS breeding, and remained almost 

constant throughout the six years of breeding. 
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3-3-4. Statistical models for prediction 

Figure 3.6 presents the genetic gain of breeding populations across years of selection using 

different statistical methods for building a prediction model for the trait expressed before 

pollination. For ridge regression, I used two different procedures for optimizing the penalty 

parameter λR (i.e., the procedure based on the ratio of estimated genetic and environmental 

variance and the procedure based on the ten-fold cross-validation). The difference in genetic 

gain between the two procedures was not significant at 5% level at the sixth year (p = 0.07). 

LASSO performed worse than ridge regression throughout the six years of breeding, and the 

difference between LASSO and ridge regression based on both procedures was highly 

significant at the sixth year (p < 0.001). 

 

3-3-5. Breeding population size and number of selection cycles per year 

Figures 3.7 shows the genetic gain of breeding populations when I had different breeding 

population sizes (i.e., 50, 200, and 600 plants) in GS breeding for the trait expressed before 

pollination. The figure also represents the gain when I had a different number of GS cycles per 

year. In all situations, a breeding population in PS breeding involved 600 individuals per cycle. 

GS with larger population size attained higher genetic gain throughout six years of breeding. 

However, GS with the population size of 50 attained lower genetic gain than PS in later 

generations of breeding, although it remained almost comparable to PS. In GS with population 

size of 50, all 500 markers were fixed in 11 out of 100 replications through the six years of GS 

breeding. Figure 3.8 (a) shows the change of genetic variance through the six years of breeding 

programs under PS breeding and the different population sizes for GS breeding. The genetic 

variance decreased more rapidly in GS breeding with a smaller population size. Figure 3.9 (a) 

presents the change in prediction accuracy through the six years of breeding programs under PS 

and GS. The prediction accuracy in GS cycles for which I did not build a prediction model was 

much lower than the accuracy at GPS cycles for which I built a prediction model and used fitted 

values for selection. The accuracy decreased more rapidly in GS breeding with smaller 

population size. 

When I had 200 plants in all GS breeding schemes, the difference between the genetic gains 

of GS breeding with three and two cycles per year was not significant at the 1% level (p = 0.03 

at the sixth year) (Fig. 3.7b). Results show that GS breeding with one cycle per year had lower 

genetic gain than GS breeding with more cycles per year, but still attained significantly higher 

genetic gain than PS breeding (p < 0.001) (Fig. 3.7b). Using 600 plants per cycle, GS breeding 
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with a larger number of selection cycles attained higher genetic gain, and GS breeding always 

(i.e., under any number of cycles per year) attained higher genetic gain than PS did (Fig. 3.7c). 

When I had 50 plants per selection cycle, PS breeding and GS breeding with one or three cycles 

per year attained comparable genetic gain in early generations, but GS breeding eventually 

showed lower genetic gain than PS breeding did (p < 0.001), irrespective of the number of GS 

cycles per year (Fig. 3.7a). Figures 3.8 (b) and 3.9 (b) respectively show changes of genetic 

variance and selection accuracy for different numbers (1, 2, or 3) of GS cycles per year when 

the population size was 200. The selection accuracy decreased more rapidly in GS breeding 

with the larger number of cycles per year. As presented in Fig. 3.9 (a), the prediction accuracy 

for GS cycles in which a prediction model was not built was much lower than the accuracy for 

GPS cycles. GS breeding with smaller number of cycles per year tented to maintain higher 

prediction accuracy. 

 

3-3-6. Cost efficiency 

Figure 3.10 shows the cost efficiency of GS breeding relative to PS breeding with the identical 

population size among GS breeding and PS breeding for the trait expressed before pollination. 

When the number of cycles per year was three (Fig. 3.10a), GS breeding with the population 

size of 600 was more cost-effective than GS breeding with population sizes of 200 and 50. The 

genetic gain per unit cost of GS breeding with the population sizes of 600 and 200 was equal to 

that of PS breeding when the genotyping cost was 25 and 16 percent of the phenotyping cost, 

respectively (Fig. 3.10a). GS breeding with the population size of 50 was always surpassed by 

PS breeding in all range of the genotyping cost (Fig. 3.10a). When the population size was 600 

(Fig. 3.10b), GS breeding with three cycles per year was most cost-effective when the 

genotyping cost was less than 17% of the phenotyping cost. GS breeding with two or one cycles 

per year was most cost-effective when the genotyping cost was in the range of 17% to 47% or 

higher than 47% of the phenotyping cost, respectively (Fig. 3.10b). GS breeding with these 

combinations of the population size (i.e., 600) and the number of cycles were most 

cost-effective among GS breeding the other combinations of population sizes (i.e., 200 or 50) 

and the numbers of cycles over all range of genotyping cost (Fig. 3.10c). The genetic gain per 

unit cost of GS breeding surpassed that of PS breeding when the genotyping cost was less than 

27% of the phenotyping cost (Fig. 3.10b). 
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3-3-7. Timing of expression of traits 

In simulations comparing the efficiency of GS for the traits expressed before and after 

pollination, I conducted all breeding simulations by using breeding population size of 200. By 

using this identical population size, I can compare breeding scenarios in an equal status without 

considering breeding budget. 

Figure 3.11 portrays the genetic gain obtained through PS breeding and GS breeding, 

which were averaged over 100 replications of simulations performed for each setting. Black and 

gray lines represent the result of the trait expressed after pollination and the trait expressed 

before pollination, respectively. As expected, GS breeding showed superiority over PS breeding 

in a trait expressed after pollination than in a trait expressed before pollination. In PS breeding, 

the genetic gain was much lower in a trait expressed after pollination than in a trait expressed 

before pollination, depending on the possibility of pollen parent selection. When the number of 

breeding cycles was two or three per year, GS breeding attained almost identical genetic gain 

between a trait expressed after pollination and a trait expressed before pollination. At later 

stages, GS breeding attained higher genetic gain in a trait expressed after pollination than in a 

trait expressed before pollination. In a trait expressed after pollination, GS breeding attained 

more than twice the genetic gain of PS breeding at the end of sixth year. The difference in 

genetic gain between GS breeding with two cycles per year and three cycles per year was small. 

When the breeding cycle occurred once per year, the genetic gain of GS breeding was low. It 

was comparable to that of PS breeding. 

Prediction accuracy of GS breeding in a trait expressed after pollination was high at GPS 

steps, where a prediction model was built. It decreased linearly as running over GS, where 

selection was conducted using the prediction model built at the last GPS (Fig. 3.12b). However, 

the prediction accuracy of GS in a trait expressed before pollination decreased drastically at GS 

immediately after GPS (Fig. 3.12a), similar to the simulations assuming six years breeding (Fig. 

3.9). It is noteworthy that, in a trait expressed after pollination, pollen parents cannot be selected 

even though the prediction accuracy was high at GPS. Figures 3.12 (c) − 3.12 (e) show the 

prediction accuracy of GS breeding for chromosomes derived from a seed parent and a pollen 

parent in a trait expressed after pollination. For GS breeding with two or three cycles per year, 

the prediction accuracy for chromosomes derived from a seed parent decreased drastically at GS 

immediately after GPS, although the accuracy for chromosomes derived from a pollen parent 

was high at GS immediately after GPS (Figs. 3.12c and 3.12d). At the second GS of each year 

in GS breeding with three cycles per year, no difference in the prediction accuracy was found 
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between chromosomes derived from a seed parent and chromosomes derived from a pollen 

parent (Fig. 3.12c). When the breeding cycle occurred once per year, the prediction accuracy 

was invariably lower for chromosomes derived from a pollen parent than for chromosomes 

derived from a seed parent (Fig. 3.12e). 

LD increased rapidly with the increase of breeding cycles (Fig. 3.13). Figure 3.13 (a) shows 

the generational differences of r2 in GS breeding with three cycles per year in a trait expressed 

before selection. The LD was calculated for chromosomes derived separately from a seed parent 

and a pollen parent. GS breeding for a trait expressed before pollination showed no difference in 

LD pattern between those of chromosomes derived from a seed parent and a pollen parent. 

Figures 3.13 (b) − 3.13 (d) show LD of GS breeding for a trait expressed after pollination. 

When the breeding cycles were two or three per year, LD in chromosomes derived from a seed 

parent changed drastically at GS immediately after GPS, although LD in chromosomes derived 

from a pollen parent did not change greatly (Figs. 3.13b and 3.13c). When breeding cycles were 

one per year, LD in chromosomes derived from a seed parent was always higher than LD in 

chromosomes from a pollen parent (Fig. 3.13d) because the number of plants which contributed 

as pollen parents was much larger than those which contributed as seed parents. Given a larger 

population, the levels of LD are lower for the same distances of loci (Hill and Weir, 1988; Sved, 

1971). Consequently, LD was low in chromosomes derived from a seed parent with a smaller 

effective population size. The levels of LD decreased greatly after the average distance between 

QTL and adjacent polymorphic (i.e., unfixed) markers became greater than 10 cM (Fig. 3.14). 

Figure 3.15 (a) shows the proportion of QTL fixed in a breeding population. For a trait 

expressed before pollination, 64.8, 87.1, and 94.7% of QTL were fixed at the end of the twelfth 

year of selection, when the breeding cycles were one, two, and three per year, respectively. 

Among the fixed QTL, 42.0, 43.1, and 44.9% of QTL were fixed to unfavorable alleles (Fig. 

3.15b). For a trait expressed after pollination, the fixation rates of QTL were 14.0, 69.6, and 

87.4%, respectively, in GS breeding with one, two, and three cycles per year. They were lower 

than for a trait expressed before pollination (Fig. 13.5a). Among the fixed QTL, 44.9, 41.8 and 

42.4% of QTL were fixed to an unfavorable allele (Fig. 3.15b). The proportion of the fixed 

markers used for genomic prediction followed the same patterns of fixed QTL (Fig. 3.15c). 

However, the proportion of fixed markers was lower than that of fixed QTL. 
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Figure 3.3. Genetic gain averaged over 100 simulations for three kinds of breeding 

procedures: phenotypic selection (PS), genomic selection (GS) and conventional 

marker-assisted selection (MAS), when h2 = 0.5 (a) and h2 = 0.2 (b). In PS, the breeding 

population size was 600. In GS, the population size was 200, and 500 co-dominant 

markers were used for genomic prediction. In MAS, the population size was 200, and 

the true effects and genotypes of largest five QTL were known.  
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Figure 3.4. Genetic gain averaged over 100 simulations for two kinds of breeding 

procedures: phenotypic selection (PS) and genomic selection (GS) with three cycles per 

year, when the numbers of markers used for GS were 5,000, 500 and 100. The 

heritability of a target trait was 0.2 at the base population.  
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Figure 3.5. Genetic gain averaged over 100 simulations for two kinds of breeding 

procedures: phenotypic selection (PS) and genomic selection (GS), when the numbers 

of markers used for GS had two kinds of modes of inheritance: co-dominant markers or 

dominant markers. The heritability of a target trait was 0.2 at the base population. 
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Figure 3.6. Genetic gain averaged over 100 simulations for two kinds of breeding 

procedures: phenotypic selection (PS) and genomic selection (GS), when the statistical 

methods for GS were ridge regression using the ratio of the estimated genetic and 

environmental variances, ridge regression using 10-fold cross validation (CV), and 

LASSO using 10-fold CV. The heritability of a target trait was 0.2 at the base population. 
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Figure 3.7. Genetic gain averaged over 100 simulations for two kinds of breeding procedures: 

phenotypic selection (PS) and genomic selection (GS), when the sizes of breeding population in 

GS were 50 (a), 200 (b) or 600 (c). GS breeding conducted one, two or three cycles per year. 

The heritability of a target trait was 0.2 at the base population.  
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Figure 3.8. Genetic variance existing in a breeding population when the heritability of a 

target trait was 0.2 at the base population. (a) Comparison of the different breeding 

population size. (b) Comparison of the different number of selection cycles per year.  
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Figure 3.9. Prediction accuracy measured as the Pearson’s correlation coefficient 

between true genotypic values and predicted genotypic values at each selection cycle. 

The heritability of a target trait was 0.2 at the base population. (a) Comparison of the 

different breeding population size. (b) Comparison of the different number of selection 

cycles per year.  
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Figure 3.10. Genetic gain per unit cost at the end of the six-year breeding program for a 

comparison of the population size (a) and a comparison of the number of selection 

cycles per year (b), by using the identical population size among PS and GS. For (a) 

and (b), the number of cycles per year and the population sizes were fixed, respectively, 

at three and 600. For (c), the all kinds of scenarios in this study (i.e., three kinds of 

population sizes and three kinds of cycles per year) were represented. The horizontal 

axis shows how many times greater the cost for genotyping was than that for 

phenotyping. The vertical axis shows the ratio of genetic gain per unit cost of GS to that 

of PS with identical population size to GS. Vertical and horizontal gray lines in the 

figures respectively show the point at which the cost for genotyping equals the cost for 

phenotyping and that at which the genetic gain per unit cost of GS equals that of PS. 

The heritability of a target trait was 0.2 at the base population. 
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Figure 3.10. (Continued)  
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Figure 3.11. Mean genetic gains of plants in a breeding population at each selection 

cycle for various breeding procedures and traits. Black lines show the values of a trait 

expressed after pollination. Gray lines show the values of a trait expressed before 

pollination. Squares represent results of PS breeding. Crosses, triangles, and circles 

respectively represent the result of GS breeding with one, two, and three cycles per 

year. In both PS and GS, the breeding population size was 200. In GS, 500 co-dominant 

markers were used for genomic prediction. The heritability of a target trait was 0.2 at the 

base population.  
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Figure 3.12. Prediction accuracy measured as a correlation coefficient between true genetic 

values and predicted values for a trait expressed before pollination (a) and for a trait expressed 

after pollination (b). Figures (c) − (e) show the prediction accuracy of chromosomes derived from 

seed and pollen parents, separately, in GS breeding of a trait expressed after pollination with 

three, two, and one cycles per year. Only seed parents were selected at GPS.  
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Figure 3.13. Figure (a) portrays the generational change of LD (r2) between QTL and 

their adjacent polymorphic markers in GS breeding with three cycles per year in a trait 

expressing before pollination. Figures (b) − (d) show LD between QTL and their 

adjacent polymorphic markers of GS breeding of a trait expressed after pollination when 

three, two and one selection cycles were held per year. The LD values were calculated 

separately for chromosomes derived from seed and pollen parents.  
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Figure 3.14. The average distance between QTL and the adjacent polymorphic markers 

for a trait expressed before pollination (a) and for a trait expressed after pollination (b). 

Crosses, triangles, and circles respectively represent the result of GS breeding with one, 

two, and three cycles per year.   
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Figure 3.15. Figure (a) represents the proportions of QTL that were fixed in the breeding 

population when the target trait was expressed after pollination (black lines) and when 

the target trait was expressed before pollination (gray lines). Figure (b) represents the 

proportions of QTL that were fixed to the unfavorable allele in the breeding population 

when the target trait was expressed after pollination (black lines) and when the target 

trait was expressed before pollination (gray lines). Figure (c) represents the proportions 

of markers used for genomic prediction that were fixed in the breeding population when 

the target trait was expressed after pollination (black lines) and when the target trait was 

expressed before pollination (gray lines).  
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Figure 3.15. (Continued)  
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3-4. Discussion 

3-4-1. Genomic selection in the context of mass selection 

It was shown that the genetic gain attained by GS is greater than or equal to the gain by PS in all 

simulation settings assessed in this study (Figs. 3.3 – 3.7 and 3.11). GS was able to improve 

especially the short-term response of mass selection, suggesting that GS can compensate for the 

major shortcoming of mass selection (i.e., low efficiency of genetic improvement) and that it 

can improve the efficiency of mass selection in an annual allogamous crop. 

Compared to GS, MAS was able to attain rapid genetic improvement in earlier generations 

(during one year of breeding), but it was unable to yield further improvement in later 

generations because of the fixation of all QTL targeted by MAS (Fig. 3.3). In this study, genetic 

variance explained by the five target QTL in MAS was assumed as around 40% in the initial 

population, which might limit the effectiveness of MAS. Even if I could fix the five QTL 

targeted in MAS, I could treat a part of variation in a breeding population in MAS breeding. For 

simulations, I assumed that I would know true genotypic effects for every plant and that I would 

be able to identify all QTL genotypes exactly with no errors. Actually, however, breeders 

should infer QTL genotypes from the genotypes of closely linked markers in MAS breeding, 

which makes the MAS accuracy lower than that estimated in the present simulations. Bernardo 

and Yu (2007) and Mayor and Bernardo (2009) showed that the efficiency of GS was higher 

than that of marker-assisted recurrent selection (MARS) in their simulation studies. Mayor and 

Bernardo (2009) also reported that the relative efficiency of GS to MARS became higher when 

the number of QTL was larger. The results obtained in the present study agree with their results. 

It is suggested that the accumulation of a number of small-effect or medium-effect QTL is 

necessary to improve quantitative traits, in particular, when the target trait are controlled by 

numerous QTL as is the case in this simulation study. In the present study, I found that GS 

based on a LASSO model was better than MAS (Figs. 3.3b and 3.6). Although LASSO is 

intended to explain the variation in phenotypic values with fewer markers than ridge regression, 

LASSO remained better than MAS. This result suggests that LASSO employed information 

from more numerous QTL in the prediction than MAS by using the genome-wide marker. GS 

breeding based on a LASSO model, however, was less efficient than a ridge regression model 

(Fig. 3.6). It is suggested that the accumulation of small or medium QTL effects, which are 

explainable by ridge regression but not by LASSO, was important to improve quantitative traits 

controlled by a number of QTL. 

It is noteworthy that GS breeding in our simulation was based on a prediction model built 
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based on a single plant phenotype. Therefore, the heritability we assumed for this study (i.e., h2 

= 0.5 or 0.2) might be higher than the heritability expected under a single-plant basis evaluation. 

The relative efficiency of GS and PS when h2 = 0.5 or 0.2 (Fig. 3.3) suggests that GS might 

attain higher gain than PS even when a heritability of a breeding population is much lower than 

the setting of this study. To improve the absolute potential of GS breeding, nevertheless, it is 

important to solve the problem caused by the low heritability of a single-plant-based evaluation. 

The progeny testing can be a solution of the problem, but it may cancel the benefits of mass 

selection (i.e., simplicity and selection that is applicable in each generation) and makes the 

model-updating process time-consuming. 

 

3-4-2. Effective strategies for genomic selection 

It was revealed that genetic gains were not significantly different between GS with 500 markers 

and with 5000 markers (Fig. 3.4). Under the present simulation settings, the number of markers 

necessary for efficient GS was a realistic level even in allogamous crops with low levels of LD. 

This result was consistent with those reported by Iwata et al. (2011), where they conducted 

simulations of GS breeding under low levels of LD in the forest tree conifer (Cryptomeria 

japonica (L. f.) D. Don). However, GS with lower marker density (i.e., with 100 markers in the 

present study) was not efficient, especially in later generations (Fig. 3.4), because many markers 

were going to fixation before the fixation of QTL located nearby. Iwata et al. (2011) and 

Grattapaglia et al. (2011) reported that the accuracy of GS improved when a higher density (e.g. 

larger number) of genetic markers was used in GS. Grattapaglia et al. (2011), however, showed 

that no increase in accuracy occurred when the marker density was rather high and that the 

accuracy of GS came to a plateau with lower marker density when the effective population size 

was smaller (i.e., LD was higher). The results suggest that the optimal marker density for GS 

can be decided according to the range of LD in a breeding population. It suggests that the 

optimal marker density was defined according to the range of LD in the breeding population, 

which indicates that preliminary genotyping of a target breeding population is necessary to 

determine the optimal marker density in practical breeding programs. In the present study, I 

assumed linkage equilibrium in the initial population. Consequently, LD increased only through 

breeding operations. This assumption widened the range of LD and decreased the number of 

markers necessary for GS. If historical LD (LD generated in past demographic history) exists in 

the initial population, then the LD might be narrower in the range than that assumed in the 

simulations. In such a case, the GS accuracy can be improved further using numerous markers. 
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Even when the mode of inheritance of markers is dominant, the efficiency of GS does not 

decrease greatly (Fig. 3.5). This suggests a possibility that many kinds of markers can provide 

high gains in GS, even when the markers are not suited to detect heterogeneous genotypes. 

In the simulations, response to GS reached a plateau in later generations, especially when 

the number of selection cycles per year was large and the breeding population was small, 

whereas PS breeding displayed moderate but consistent long-term improvement (Fig. 3.7). GS 

breeding with a greater number of cycles per year attained higher genetic gain in earlier 

generations of breeding but reached the plateau earlier. GS with a larger number of cycles per 

year caused a rapid decrease in the genetic variance in earlier generations (Fig. 3.8b), mainly 

because of the additional GS cycles. Moreover, selection accuracy was low at GS cycles 

without updating a prediction model (Fig. 3.9b). Low accuracy of GS cycles without building a 

prediction model suggested by Jannink (2010) and Iwata et al. (2011) was also found in the 

present simulations. The rapid decrease of genetic diversity decreased the selection accuracy 

further in later generations. If the genetic diversity declined rapidly, high gain would be attained 

with high prediction accuracy. Consequently, the rapid decrease of genetic diversity and the 

lower accuracy in GS cycles without an updated prediction model would cause this plateau. As 

mentioned by Iwata et al. (2011) and Bernardo (2009), it is suggested in the present study that it 

is important to build (i.e., update) a prediction model periodically to adapt the model to current 

circumstances. In the present simulations, LD of the breeding population was quite low and 

increased only through breeding operations. Consequently, the periodical update of a prediction 

model is prerequisite for GS breeding to fit the model to LD increase. GS breeding with a 

smaller breeding population size reached the plateau earlier (Fig. 3.7). This result was also 

caused by a rapid decrease of genetic variance (Fig. 3.8a). 

GS can be implemented in more cycles per unit time even when the prediction accuracy is 

low, and thereby attain higher genetic gain than PS (Heffner et al., 2010). Results obtained in 

the present study show agreement with results of the previous study. As suggested by Bernardo 

and Yu (2007) and Mayor and Bernardo (2009), the main advantage of selection using genetic 

markers is the gain per unit time rather than gain per cycle. Consequently, technologies for 

shortening generation time engender higher efficiency in GS breeding, as suggested by 

Grattapaglia et al. (2011) and Iwata et al. (2011). 

 

3-4-3. Cost efficiency of genomic selection 

The cost efficiency of GS breeding was lower than that of PS breeding, unless the genotyping 
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cost was lower than 27% of the phenotyping cost (Fig. 3.10). A GS breeding population had to 

be phenotyped at the first cycle of each year to update a prediction model. Therefore, the 

genotyping cost of GS breeding became purely extra cost when the cost of GS breeding was 

compared to that of PS breeding with the identical population size. Under this condition, GS 

breeding must be expected to attain high genetic gain to compensate for the extra genotyping 

cost. Even under such a disadvantageous condition, however, the cost efficiency of GS breeding 

could surpass that of PS breeding when the genotyping cost was lower than about one-fourth 

(i.e., 27%) of the phenotyping cost (Fig. 3.10). When the genotyping cost was low, GS breeding 

with the combination of larger population size and a larger number of cycles per year would be 

more cost-effective. The advantage of GS breeding with larger population size mainly came 

from the fact that GS breeding could attain higher accuracy than PS breeding at the model 

updating steps (Fig. 3.9), because a prediction model built by large population’s information has 

a possibility to attain higher accuracy than PS (Daetwyler et al., 2008). 

In this scenario, I assumed only the genotyping cost as the extra cost of GS breeding 

comparing with PS breeding. It means that GS breeding will become more cost-efficient when 

the genotyping cost becomes cheaper. In fact, the genotyping cost is one of the important 

factors that determine the cost efficiency. However, GS breeding requires additional effort and 

cost for plant breeders to extract DNA from plants, grow plants using offseason nursing. To 

manage the extra work, it is also required to employ additional labors. In this study, I eliminated 

this kind of costs for the sake of simplicity. In the actual breeding, we must consider these extra 

costs to calculate the cost efficiency of GS breeding. 

 

3-4-4. Trait expressed before pollination and after pollination 

The genetic gain of GS breeding was almost equal for a trait expressed before pollination and a 

trait expressed after pollination, except when the breeding cycle occurred once per year (Fig. 

3.11). The genetic gain of PS breeding was much lower for a trait expressed after pollination 

than gain for a trait expressed before pollination (Fig. 3.11). This result of PS breeding gave 

agreements with the selection theory that gain by one cycle of selection with pollen control 

would be twice the gain by one cycle of selection without pollen control (Hallauer and Miranda, 

1981). These results emphasize the high efficiency of GS breeding for a trait expressed after 

pollination via pollen control at GS, even though pollen parents cannot be selected at GPS. 

Results for traits expressed before pollination show that the prediction accuracy of GS after 

GPS was reduced severely (Figs. 3.9 and 3.12a) and that the low accuracy produced only slight 



 63 

genetic improvement at GS (Figs. 3.3 – 3.7; gray lines in Fig. 3.11). In a trait expressed after 

pollination, however, high prediction accuracy at GS immediately after GPS (Fig. 3.12b) raised 

the efficiency of GS breeding even without pollen control at GPS (Fig. 3.11). 

For traits expressed after pollination, the increased efficiency, which results from the 

improved prediction accuracy at GS immediately after GPS, is mainly attributable to the fact 

that the prediction accuracy of chromosomes derived from a pollen parent was high at GS 

immediately after GPS (Figs. 3.12c and 3.12d). The prediction accuracy of chromosomes 

derived from a pollen parent exhibited a small reduction at GS immediately after GPS, although 

that of chromosomes derived from a seed parent decreased greatly (Figs. 3.12c and 3.12d). For 

a trait expressed after pollination, selection occurs only among seed parents at GPS steps 

because of the requirements of phenotyping. In chromosomes derived from a seed parent, 

therefore, the LD pattern changed drastically from GPS to GS immediately after GPS because 

of a genetic bottleneck attributed to the selection among seed parents (Figs. 3.13b and 3.13c). In 

contrast, the LD pattern changed little in chromosomes derived from a pollen parent (Figs. 

3.13b and 3.13c) because these chromosomes did not experience the selection bottleneck at 

GPS. This changing pattern of LD gave the genetic potential of chromosomes derived from a 

pollen parent as quite predictable using the model at GS immediately after GPS. The results 

suggest that GS after GPS is important to raise the efficiency of breeding in the selection of a 

trait expressed after pollination. Although GS immediately after GPS is important to make GS 

breeding effective for the selection of a trait expressed after pollination, the second round of GS 

had only a slight impact because of the low prediction accuracy in that round (Fig. 3.12b). 

Results of this simulation study suggests that one GS step after GPS might be better to avoid 

less efficient selection with less accurate prediction model because of the changing LD pattern 

for a trait expressed after pollination. 

I anticipated the low selection efficiency because of the impossibility of pollen control at 

GPS step, which resulted in low efficiency of selection at GPS step actually. Because of the 

high accuracy of GS step, however, GS breeding for a trait expressed after pollination showed 

high efficiency for the whole selection cycles. Conventionally, mass selection with progeny test 

(i.e., half-sib selection) is used for breeding of allogamous crops (Ukai, 2003). This method 

achieves higher selection accuracy than ordinal mass selection, because it evaluates a half-sib 

population instead of a single plant. On another front of this merit, this method is based on 

maternal-line selection, which is the same situation as PS breeding of a trait expressed after 

pollination simulated in my simulation. In mass selection with progeny test, not only is excess 
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time for progeny test required, but maternal-line selection is also implemented at every cycle. 

GS breeding, in which pollen control and acceleration of breeding cycles are possible, would be 

more effective for breeding of allogamous crops, considering the gain per unit time. 

In GS breeding of both traits expressed before and after pollination, prediction accuracies 

decreased over time (Figs. 3.12a and 3.12b). As shown in simulations assuming a trait 

expressed before pollination to compare many strategies in GS breeding (Figs. 3.7 – 3.9), the 

decline of genetic variance in the breeding population caused a decrease of a selection accuracy, 

resulting in the increase of the ratio of the environmental variance to the genetic variance 

(var(e) / var(g)) at the model-updating cycles, which reduced the accuracy of the prediction 

model. Moreover, the fixation of markers caused the decay of marker–QTL associations. The 

distance between QTL and adjacent polymorphic marker lengthened with selection cycles (Fig. 

3.14). Owing to this situation, the decay in QTL–marker LD started at the later cycle of 

selection (Figs. 3.13a and 3.13b). Jannink (2010) reported that one cause of decreased accuracy 

of GS predictions is the decay of marker–QTL association caused by the fixation of the markers, 

which agrees well with the results in the present study. Although GS is useful especially for the 

genetic improvement of traits expressed after pollination, the appropriate number of selection 

cycles differs according to the LD pattern in the selected population. When a breeding 

population has low levels of LD, the prediction model becomes inaccurate in early generations 

because of a rapid change in the LD pattern (Fig. 3.13). 

 

3-4-5. Long-term selection 

PS breeding showed genetic improvement linearly through selection cycles (Figs. 3.3 and 3.11), 

suggesting that PS breeding (i.e., conventional mass selection) is better at long-term response 

than GS breeding. It revalidated that mass selection is attractive owing to its good long-term 

response. On another front, GS reached a plateau in later generations even though it could 

compensate for the limited short-term response of mass selection. The difficulty of long-term 

improvement using GS has been discussed previously (Goddard, 2009; Jannink, 2010). The 

present study also revealed that the advantage of GS over PS became smaller in later 

generations especially when the target trait is expressed before pollination (Figs. 3.3 – 3.7 and 

Fig. 3.11). Goddard (2009) introduced a new selection criterion by which minor alleles are 

assigned larger weights to prevent the loss of the alleles from a breeding population. This 

approach is expected to enable long-term improvement using GS. Jannink (2010) conducted 

simulations with Goddard’s selection criterion improved to take account of allelic effects and 
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showed that the criterion improved the long-term genetic gain using GS. In the present study, I 

also used the criterion suggested by Jannink (2010) to improve the long-term genetic gain using 

GS in the situation similar to simulations comparing GS strategies for a trait expressed before 

pollination, but it did not improve the long-term gain significantly (data not shown). 

In the present study, GS breeding without pollen control at GPS attained similar levels of 

genetic gain to those of GS breeding with pollen control at GPS. In fact, GS breeding without 

pollen control at GPS eventually produced a higher genetic gain than GS breeding with pollen 

control at GPS at the later stage of selection, except when the breeding cycle occurred once per 

year (Fig. 3.11). It was also apparent that GS breeding without pollen control at GPS reached a 

plateau at a later time than GS breeding with pollen control at GPS steps (Fig. 3.11). When I 

perform selection after pollination, all plants contribute as pollen parents at GPS. This situation 

prevented breeding population from experiencing a severe genetic bottleneck. GS breeding 

without pollen control at GPS can achieve high selection efficiency and can prevent loss of 

genetic diversity. Additionally, maintaining genetic diversity in a breeding population results in 

high accuracy in the breeding scheme I used (i.e., updating a prediction model every year by 

using breeding population data). The results of GS breeding for a trait expressed after 

pollination might provide clues to elucidate long-term GS. 

 

3-4-6. Suggestion for actual breeding 

In this study, I assumed a single target trait for each breeding scheme. Selection on a single trait, 

however, can be regarded as selection on multiple traits summed up with certain weights to a 

selection index, as is often used in practical breeding (e.g., VanRaden et al., 2009). For the 

present study, I simulated a single trait controlled by 300 QTL. Because the number of QTL in 

the simulations was large, it might be justified to consider the simulated trait as a multi-trait 

selection index. Actually, however, selection on multiple traits might be more complicated 

because of the tradeoffs among traits (e.g., negative correlations between yield and quality 

traits; Ivkovich and Koshy, 2002). 

In the simulations, I only assumed additive QTL effects. Actually, however, non-additive 

QTL effects, i.e., dominance and epistatic effects, might contribute significantly to the 

phenotypic variation of quantitative traits. When the non-additive effects of QTL are large, the 

accuracy of GS might decrease greatly because the non-additive effects bias estimated marker 

effects in the GS prediction model, assuming only additive effects. Even when the contribution 

of dominance effects is large, however, it is not easy to fix the dominance effects in an 
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open-pollinating population such as most forage crops and buckwheat. Therefore, only additive 

effects can be used for the genetic improvement of the open-pollinated crop population. 

Results of this study suggests that mass selection with GS has potential to yield benefits in 

practical use that are greater than those of traditional mass selection with PS or mass selection 

with MAS in annual allogamous crops, even when the degree of LD is low in a breeding 

population. The necessary number of markers for mass selection breeding with GS is practical 

even in current situations. Elshire et al. (2011) described that the cost of genotyping one sample 

would become less than $20 using their genotyping-by-sequencing (GBS) technology and that it 

would be reduced further to $5 or less in the near future. When the genotyping cost becomes 

lower, the genetic gain per unit cost became greater in GS breeding than in PS breeding. Even 

when the genetic gain per unit cost of GS breeding is lower than that of PS breeding, however, 

GS breeding might be more advantageous than PS breeding because the reduction of time 

required for developing one variety usually has a large economic impact (Brennan, 1989; 

Morris et al., 2003; Pandey and Rajatasereekul, 1999). Although GS breeding might reach a 

plateau in long-term selection, GS breeding is superior to PS for short-term and medium-term 

selection. Moreover, the scale of GS (the number of markers and the breeding population size, 

etc.) can be chosen according to available budgets and resources in the breeding program. 

Consequently, GS can be an efficient and practical breeding method for allogamous crop 

breeding even when LD is low in an initial population. These points encourage us to use GS in 

the mass selection of annual allogamous crop breeding. 

Iwata et al. (2011) and Bernardo (2009) described the importance of building (i.e., 

updating) a prediction model periodically to adapt the model to current circumstances. Iwata et 

al. (2011) described the sudden decrease of selection accuracy in GS breeding without updating 

a prediction model, although Bernardo (2009) reported that a prediction model of 7 or 8 cycles 

could be used. The difference might derive from the difference of LD patterns in the breeding 

population they simulated. Iwata et al. (2011) assumed extremely low levels of LD in their 

simulation of conifer. However, the maize population used by Bernardo (2009) had a high and 

wide range of LD. These results suggest the importance of updating the prediction model in 

response to the changing LD pattern. They also suggest that the optimal frequency of the 

updating depends strongly on the degree of LD in a breeding population. Updating a prediction 

model costs much money in the current situation, which makes it difficult to update a prediction 

model frequently. However, update of a model is essential to attain enough level of genetic gain 

through GS breeding. Even when the cost of genotyping is high, update of a prediction model 
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should be conducted at the suitable timing according to LD of a breeding population. In the near 

future, the time required for genotyping would become more of problem than the cost of 

genotyping. While the cost of genotyping is decreasing because of the wide spread use of 

high-throughput genotyping system, it is still difficult to complete the genotyping of all 

selection candidates in a breeding population in a short time. This problem has arisen in Chapter 

6 of this dissertation in fact. 

The results of GS simulations without pollen control at GPS are highly suggestive, even in 

the genetic improvement of traits expressed before pollination. Results suggest that it was not 

necessary to select pollen parents at GPS. Even for the improvement of traits expressed before 

pollination, it is possible to conserve effort and to achieve the same levels of genetic gain by 

implementing GS breeding without pollen control at GPS. Even with recent progress in 

genotyping technologies, it might not be easy to determine the genome-wide SNP genotypes of 

numerous plants within a vegetative growth stage at GPS especially in crops with a short 

lifetime (e.g. a few months). In such crops, it might be important to save effort in genotyping 

plants before pollination to select pollen parents at GPS. Not only for genotyping effort, but also 

for labor for control cross, it might be beneficial to perform selection after pollination at GPS. 

The strategy also has effect to conserve genetic diversity in a breeding population. Moreover, 

traits expressed in and after the reproductive phase, such as characteristics of flowers and seeds, 

might be important for producing next-generation seeds. For example, in forage crops, main 

breeding-target traits are herbage production, quality, and resistance to biotic and abiotic 

stresses, but a regular supply of commercial quantities of seeds is also an important trait that is 

necessary to develop a new variety (Wilkins, 1991; Walter et al., 2012). 

As is often the case in forage crops, the selection of target traits, such as yield and 

persistence, usually requires population-based evaluation. For the traits evaluated as a 

population, it is often difficult to improve the genetic potential of a population through selection 

based on single-plant evaluation (Connolly, 2001). Hayes et al. (2013) proposed a breeding 

scheme of GS in breeding of forage plant species to solve this problem. Further studies must be 

conducted to improve the potential of GS breeding in traits evaluated as a population. 
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Chapter 4 
 

Simulation evaluation of island-model genomic 

selection in an autogamous plant 

 

 
4-1. Introduction 

Cereals account for a large proportion of food supply for human (Tweeten and Thompson, 

2008). Maize, rice and wheat dominate the largest amount of production among the cereals 

(FAOSTAT, 2014), suggesting that an increase in yield of these cereals apparently leads to a 

stable supply of food in the world. The progress in the production of total cereals is stable in 

these 20 years. To meet the huge increase in human population, more rapid improvement is 

required than the ongoing progress rate. 

In this Chapter, I evaluated the efficiency of genomic selection in rice. Rice occupies the 

second largest production among cereals in the world (FAOSTAT, 2014). In autogamous cereal 

plants such as rice, wheat and barley, population breeding and pedigree method are commonly 

used in breeding programs. In population breeding, cultivation is conducted in bulk with 

repeated self-pollination until F5. After that, selection based on a single plant evaluation is 

conducted at F6 generation, and then, selection based on a single line is conducted after F6 

generation. In pedigree method, selection based on single-plant evaluation is conducted at F2 

generation, and then, a number of single plants are selected from better lines that are selected 

based on single-line evaluation after F2 generation. The selection is performed based on a single 

plant, preliminary yield trials or comparative yield trials (Brown and Caligari, 2008; Ukai, 

2003). These methods can raise the selection accuracy by using the averaged value of plants that 

belong to a single line, while large environmental effects make it difficult to evaluate the 

genetic ability accurately only according to phenotype of a single plant. In addition, for 

selection of traits that cannot be evaluated with a single plant, such as yield per unit area, the 

measurement of a group of plants that belong to a single line is required. In these methods, 
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because we repeat selfing of each line, the size of linkage blocks tends to maintain larger than 

one expected in a random mating, which results in the low ability to generate new combinations 

of genes in a breeding population. The expected levels of breakup of initial linkage blocks 

through infinite times of self-pollination are the same level of two to three cycles of random 

mating (Hanson, 1959). Recurrent selection, in which selection and crossing of selected 

individuals are performed repeatedly, has been proposed to solve this issue (e.g., Fujimaki 

1979), but it has also some extra issues, one of which is low selection accuracy in single plant 

evaluation, in its realization. The problem of recurrent selection may be solved effectively by 

using GS that enables breeders to evaluate plants according to their marker genotypes at the 

single plant basis. Rutkoski et al. (2011) mentioned about the efficiency of recurrent selection 

using GS in stem rust resistance in wheat. They emphasized that the increase of recombination 

events facilitates combining favorable alleles, and that it would make greater gain than 

conventional bulk breeding methods. GS based on recurrent selection should be efficient for 

autogamous plants breeding. Moreover, GS enables us to skip phenotyping at each selection 

cycle and thus to implement rapid-cycle genetic improvement by accelerating generation 

advancement. In this study, I evaluated the efficiency of recurrent selection using GS in 

autogamous plant breeding with a simulation study. GS may break through the restrictions of 

conventional PS, and allow us to realize more flexible styles of plant breeding than 

conventional breeding. 

In the present study, I propose “island-model GS” as a new breeding strategy for 

autogamous plants. The term “island model” is originally derived from the field of population 

genetics, meaning that a large population is split into multiple subpopulations and that each 

subpopulation receives migrants from the others. In a natural population, individuals undergo 

selection to adapt themselves to their local environment using various loci and alleles. Wright 

(1932) considered the case of a widely distributed species that is subdivided into many small 

local races. While selection is taken place within each race, crossbreeding occasionally happens 

between races. The selection strategy derived from this kind of consideration is called island 

model. Migration among subpopulations tends to counteract the dispersion of allele frequency 

(Hartl and Clark, 2007). 

The concept of island model described above has inspired global optimization problems in 

the computational science research field. In the optimization problem, an objective function (i.e., 

function to be optimized) sometimes has a large number of parameters. When the objective 

function is non-linear and non-differentiable, it is difficult to search global optimum because of 
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the existence of a number of local optima. Evolutionary algorithms (EAs) are frequently used to 

solve the issue. EAs are heuristic algorithms that use a system of natural selection in their 

system to find the optimal solution. In EAs, individuals are constructed by the parameters in 

question, which are assumed as genes of living organisms, and selection and crossing are 

repeated like selection in a natural population. The concept of island model is utilized in the 

field of EAs. That is, in the island model of EA, individuals are split into subpopulations, and 

selection and crossing are repeated between subpopulations. Whitley et al. (1998) reported that 

the island model showed better search performance than a single population model in some 

cases. One reason of this efficiency is that various islands (i.e., subpopulations) maintain some 

degree of independence and thus explore different regions of the parameter space. The success 

of the island model of EA suggests that the concept of island model can be effective not only in 

natural selection but also in artificial selection. 

The concept of island model may also be efficient in plant breeding. As mentioned above, 

recurrent selection might be efficient for genetic improvement of autogamous plants. For 

selection strategies, it is important not only to select candidates harboring good genetic ability 

accurately, but also to maintain genetic variation in a breeding population (Chapter 3 in this 

dissertation). Especially for an autogamous plant population, which has large linkage blocks, it 

is difficult to maintain genetic variation in a breeding population with selection even if recurrent 

selection is conducted. Moreover, when among-cultivar diversity is large as is often the case in 

autogamous crops, genetic difference among segregating families becomes large. When we 

consider segregating families as islands, the islands maintain some degree of independence and 

can be considered to explore different regions of the parameter space for “optimizing QTL 

genotypes”. The concept of island model might work effectively in this kind of breeding 

populations. 

However, it has some risks to consider that the algorithms in EAs are also effective in 

plant breeding just because of the resemblances between EAs and plant breeding. There are 

some differences between EAs and plant breeding. First, mutations occur frequently in EAs 

while they were quite limited in a breeding population because of the time scale of a breeding 

program. Second, EAs generally simulates a large population, while the size of a breeding 

population is limited in plant breeding. Third, EAs can gain high ability through a number of 

selection cycles in short time by using computers, while plant breeding requires long time to 

evaluate and select plants. Although O’Hagan et al. (2012) conducted breeding simulations by 

using some concepts in EAs, they assumed large population size and high mutation rate 
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expecting radiation dose. It was not realistic for implementing their algorithms directly in a real 

plant breeding program. To examine the more empirical potential of the algorithms in EAs, it is 

required to take into account the restrictions in a real plant breeding program and evaluate the 

efficiency of the algorithms under the restriction. 

In this study, I conducted breeding simulations with a real marker genotype data of 

cultivars in Asian cultivated rice, Oryza sativa L. To take advantage of existing materials and 

their information, I assumed to use recombinant inbred lines (RILs) derived from crosses 

between the existing cultivars as a training population and as an initial breeding population. I 

focused on the following three points in the simulations. The first is the efficiency of recurrent 

selection in an autogamous plant. To evaluate the efficiency, I compared genetic values attained 

by recurrent GS with those attained by RILs that were used as a breeding population. Second is 

the suitable constituent of an initial breeding population. I compared genetic gains from 

recurrent GS between initial populations derived from a single bi-parental cross and derived 

from multiple bi-parental crosses. Third is the efficiency of the island-model GS, which is 

proposed for plant breeding in this study. I evaluated genetic gains for “island-model GS”, in 

which the initial breeding population were divided into subpopulations, and GS starting from a 

single population that was composed of the same genotypes as the initial population of the 

island-model GS. 

  



 72 

4-2. Materials and methods 

4-2-1. Marker data and position estimation 

The dataset consisting of marker genotype of 3,102 loci in 112 rice cultivars (Table 4.1) was 

used to implement breeding simulation. The 112 cultivars represented a geographical and 

historical diversity of rice cultivars developed mainly in Japan. The marker genotype data was 

offered by Dr. Yamasaki (Food Resources Education and Research Center, Graduate School of 

Agricultural Science, Kobe University) and Dr. Ebana (National Institute of Agrobiological 

Sciences). Among 3,102 markers, 3,071 were single nucleotide polymorphism (SNP) markers 

developed from the sequence of Japanese cultivars (Nagasaki et al., 2010; Yamamoto et al., 

2010), 31 were simple sequence repeat (SSR) markers (Yamasaki and Ideta, 2013). The 

physical map positions were detected in rice genome build 4. The marker positions on the 

linkage map were necessary to simulate recombination process that occurred in meiosis. The 

estimation of genetic map position was done by a polynomial regression of the genetic position 

on the physical position by using the information of rice genetic linkage map among F2 plants 

derived from a single cross between the japonica variety Nipponbare and the indica variety 

Kasalath (Kurata et al., 1994; Harushima et al., 1998 and its updated information (Cheng et al., 

2001). Imputation of missing marker genotypes was held using fastPHASE version 1.3 (Scheet 

and Stephens, 2006). Alleles at each imputed locus were imputed alternatively as one of two 

homozygous genotypes according to the proportion among 100 times replications of 

imputations. 

 

4-2-2. Simulation settings 

The 100 markers out of 3,102 markers were assumed as QTL controlling a target trait in each 

simulation trial. The proportion of phenotypic variance explained by each QTL (i.e., the 

heritability of each QTL) was set to follow the equation proposed by Lande and Thompson 

(1990) in the population constructing of the 112 cultivars. The effective number of QTL was set 

as 40. The sum of heritability of all QTL was set as 0.6. The genetic variation was explained 

only in additive way (i.e., no dominance and no epistatic effects affected the trait). Genotypic 

values were simulated using these simulated QTL effects. Phenotypic values were calculated by 

adding simulated environmental deviations into those genotypic values. Phenotypic variance of 

population composed of the 112 cultivars was standardized to be 1.0. 100 replications of 

simulation were implemented for each breeding procedure. 
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4-2-3. Breeding schemes 

First, seven varieties, Koshihikari, Yumeakari, Hitomebore, Hatsushimo, Hinohikari, 

Nanatsuboshi, and Asahinoyume, were selected from 112 rice cultivars. They represent the 

genetic diversity in the 112 cultivars well. Second, six F1 lines derived from six bi-parental 

crosses were made. Koshihikari, which was a predominant variety in Japan, was used as a 

common parent for the six bi-parental crosses. Starting from the six F1 lines, six F6 populations 

were simulated with the repeated selfing and the single seed decent (SSD) procedure. These 

simulated populations were used as initial populations for GS breeding and as training 

population for building a GS prediction model. Each F6 population was constructed of 180 lines 

(i.e., 1,080 F6 lines in total). 

In all GS breeding schemes, 20 cycles of GS were conducted. A prediction model was 

built from phenotypic values and marker genotypes of the initial populations (i.e., six F6 

populations constructed 1,080 lines) and used throughout the 20 cycles. Selection intensity was 

set as 10%. Instead of random mating, I employed a single-round robin (Verhoeven et al., 2006), 

in which crosses were conducted as a chain, i.e., plant1 × plant2, plant2 × plant3, …, plant S × 

plant1 among S plants, as a rule for crossing selected plants for the next generation because of 

the difficulty of random mating in rice (i.e., autogamous species) population. This GS scheme 

used G-BLUP by R package “rrBLUP” (Endelman, 2011) for genomic prediction. This 

statistical method was introduced in the section 2-2-5 in this dissertation. In this simulation 

study, X was a vector of 1’s as the intercept of the model with the length of the number of 

observation, and Z was a matrix that an identity matrix (number of observations × number of 

observations) was combined with 0’s matrix (number of observation × number of prediction) by 

columns. Each marker genotype is defined as 1, 0, or -1 when the number of the considered 

allele contained is two, one, or zero, respectively. 

First, to evaluate the efficiency of recurrent selection, I compared the outcomes of GS 

breeding with those of RILs by using the same breeding population derived from a single 

bi-parental cross. Second, to evaluate the impact of genetic architecture of a breeding population 

in GS breeding, two types of breeding populations were compared: (a) six breeding populations 

each of which was derived from a single bi-parental cross (discrete GS; Fig. 4.1a), and (b) a 

breeding population derived from multiple bi-parental crosses (bulked GS; Fig. 4.1b). For the 

former, one breeding population was constructed of 180 plants derived from one bi-parental 

cross. For the latter, six F6 populations were gathered to construct one breeding population, in 

which 30 lines were came from each population. In the discrete GS, six breeding populations 
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with 180 genotypes, which were derived from a single bi-parental cross, experienced GS. The 

one population that showed the best outcome was selected as the result (Fig. 4.1a). In the bulked 

GS, only one breeding population with 180 genotypes, which were derived from multiple 

bi-parental crosses, was created and experienced GS (Fig. 4.1b). Third, to evaluate the 

efficiency of the island-model GS breeding, I compared two types of GS designs: (1) the bulked 

GS and (2) the island-model GS. In the bulked GS, GS was performed on a single breeding 

population derived from multiple bi-parental crosses (Fig. 4.1b). In the island-model GS (Fig. 

4.1c), breeding was conducted based on six equal-sized subpopulations that connected to each 

other with a small amount of migration. The initial state of each subpopulation was F6 

population derived from a single bi-parental cross. To make genetic migration between 

subpopulations, one of selected plants was exchanged between subpopulations every cycle, and 

mating was held after exchange among each subpopulation. All simulations were done using R 

(R Development Core Team, 2014). 

 

4-2-4. Summarization of results 

From RILs composing the initial breeding population of GS breeding, the best line (i.e., a line 

with the highest genotypic value) was selected. The genotypic value of the best line was used as 

a standard for comparing the efficiency of recurrent selection with that of breeding utilizing 

inbred lines. 

In GS breeding, an attained genotypic value was represented as the maximum of the true 

genotypic values among selected plants (i.e., upper 10% of plants selected based on predicted 

values) at each selection cycle. Here, I assumed a breeder could detect the best plant from the 

selected plants through field trials prior to variety release. The average breeding values of plants 

belonging to a single population and the distribution of breeding values are examined just to 

compare attained genotypic values (i.e., the maximum of the true genotypic values among 

selected plants) with the population mean. 

The accuracy of genomic prediction was measured by Pearson’s correlation coefficient 

between predicted values and true genotypic values. 

The proportion of fixed loci (QTL + markers) was calculated as [number of fixed loci] / 

[total number of loci]. Figures were shown as the averaged value of 100 simulations in each 

breeding procedure.  
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Table 4.1. Rice cultivars used in the simulation 
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Figure 4.1. The GS breeding scheme: (a) discrete GS, which improves six breeding 

populations each of which is derived from a single bi-parental cross, (b) bulked GS, 

which improves a breeding population derived from multiple bi-parental crosses, and (c) 

island-model GS, which improves six breeding populations connected each other. Each 

of six populations is derived from multiple bi-parental crosses. 
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Figure 4.1. (Continued) 
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Figure 4.1. (Continued) 
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4-3. Results 

4-3-1. Cultivars in the simulation 

Figure 4.2 shows the result of cluster analysis of the 112 rice cultivars by 3,102 markers. The 

distance matrix was calculated as the Euclidean distance, in which two SNP genotypes are 

treated as 0 or 1. Because the cultivars are all homozygous, they have homozygous genotype for 

all SNPs. The cluster was made by Ward’s method. The identical cultivar for bi-parental cross, 

Koshihikari, was in the bottom left of the figure. The remaining cultivars used in my breeding 

simulation were selected to cover the genetic diversity of the 112 cultivars well. 

 

4-3-2. GS breeding designs 

Figure 4.3 (a) shows the attained genetic value in the discrete GS. The dashed line shows the 

maximum value of genotypic values in F6 population derived from a single cross. Black lines 

represent the result of Koshihikari × Hatsushimo population, which attained the highest 

genotypic value among the six breeding populations on average (52 out of 100 replications of 

simulation in GS breeding). Gray lines represent the mean value of the best population in each 

simulation. The discrete GS attained higher genotypic value than the maximum of F6 population. 

For the result of Koshihikari × Hatsushimo population, the discrete GS exceed the maximum of 

F6 in the 85 out of 100 trials after two cycles of selection, then attained higher genotypic value 

than the maximum of F6 in all 100 trials after six cycles of selection. It suggests the superiority 

of GS breeding to the conventional methods using inbred lines. The discrete GS reached plateau 

after 7 – 8 cycles of selection. 

Figure 4.3 (b) shows the genotypic values through selection cycles of the discrete GS and 

the bulked GS. The bulked GS, in which the breeding population derived from multiple 

bi-parental crosses, attained higher genotypic values than the discrete GS using the population 

derived from a single bi-parental cross. The bulked GS showed rapid genetic improvement 

during the early cycles and reached plateau after 12 – 13 cycles, while the discrete GS reached 

the plateau after 8 – 9 cycles of selection. 

I implemented the simulation of the island model GS only for the population derived from 

multiple bi-parental crosses because the population derived from multiple bi-parental crosses 

might have higher potential than the population derived from a single bi-parental cross (Fig. 

4.3b). Figure 4.3 (c) showed the genotypic value of the island-model GS using six 

subpopulations. The island-model GS attained lower genotypic values than the bulked GS until 

seventh cycle of selection for the averaged value over 100 trials (Fig. 4.3c). At the end of sixth 
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cycle of selection, however, the island-model GS exceed the bulked GS in 57 out of 100 

simulation replications. In the later selection cycles, the island-model GS attained higher 

genotypic values than the bulked GS. The island-model GS exceed the bulked GS in 83 out of 

100 simulation replications after 12 cycles of selection. The island-model GS did not seem to 

reach a plateau in my GS cycles (i.e., 20 cycles). Through the 20 cycles of selection, genetic 

ability of all subpopulations converged to the same level even though the initial ability was 

different from each subpopulation. 

In the island-model GS simulation, I generally assumed that (i) the number of migration 

individuals was set to 1 in each subpopulation, (ii) the exchange interval was one (i.e., breeder 

should exchange selected individuals every cycle), and (iii) one population derived from a 

single bi-parental cross constructed one subpopulation. These assumptions attained better 

results than the other assumptions, as derived below. That is, the island-model GS simulation, in 

which two individuals were exchanged from each subpopulation, resulted in the similar genetic 

ability to the island-model GS with one individuals’ exchange (Fig. 4.4a). The simulation with 

different migration intervals (i.e., exchanging event was conducted every 2 – 5 cycles) resulted 

in lower genetic gain than the island-model GS in which individuals were exchanged every 

cycle (Figs. 4.4b – 4.4e). The simulation with randomly separated initial population represented 

lower gain than the simulation with the initial population separated according to their parents 

(Fig. 4.4f). 

In all GS breeding, decreases of the genotypic values were observed after the first 

selection cycle (Fig. 4.3). Figure 4.5 shows an example of simulations during the first three 

cycles of bulked GS in the population derived from multiple bi-parental crosses. The 

distribution of genotypic values of breeding population showed the improvement of average 

genotypic values through the selection cycles. 

 

4-3-3. Genetic variance and prediction accuracy 

The all GS breeding schemes show the similar trends in the genetic variance (Fig. 4.6). The 

variance decreased after the first selection and increased a little after the second selection in all 

three kinds of GS breeding. Then, after the third selection, the genetic variance decreased 

gradually. For the discrete GS and the bulked GS, although both breeding strategies showed 

similar levels of decline of variance at the first selection, the level of increase was larger in the 

bulked GS than in the discrete GS at the second selection. Because of this difference of 

increment of variance, the breeding population of the bulked GS maintained higher variance 



 81 

than another in early generations (Figs. 4.6a and 4.6b). The island-model GS showed different 

levels of genetic variances among the initial subpopulations. At the first selection, the 

island-model GS showed the lower variance than the others, and increased variance more 

largely than the others. The subpopulations in island-model GS did not converge until the 5th 

selection cycles, while they almost converged after the 6th selection cycle (Fig. 4.6c). 

In the bulked GS, almost all loci (99.03% on average) were homozygous in the initial 

population (Fig. 4.7a). In the next generation, breeding population had many heterozygous loci 

(23.98%). The proportion of fixed loci increased rapidly with repeated selections. Figure 4.7 (b) 

shows the proportion of fixed loci of the bulked GS. It was 19.63% in the initial population. 

And, the proportion increased to 60.48%, 75.25%, 85.90% and 92.36% in fifth, tenth, fifteenth 

and twentieth generation, respectively. 

The prediction accuracy represented the same trend as that of genetic variance in the all 

GS breeding schemes (Fig. 4.8). The first selection, at which the training population included 

the predicted candidates, attained the highest prediction accuracy. Then, it decreased at the first 

selection and increased a little at the second selection. From the third selection, the prediction 

accuracy declined gradually. The decline of accuracy at the first selection was smaller in the 

bulked GS than in the discrete GS (Figs. 4.8a and 4.8b). The island-model GS showed much 

smaller decrease of accuracy at the first selection than the others. The prediction accuracy 

varied among subpopulations over the 20 selection cycles (Fig. 4.8c). 
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Figure 4.2. Cluster analysis of the 112 rice cultivars by 3,102 markers. 
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Figure 4.3. Genotypic value attained through selection cycles. (a) The solid lines show 

the results of the discrete GS breeding. The dashed lines represent the largest 

genotypic values of lines in the six RILs populations used as a breeding population. 

Black and gray lines represent the results of Koshihikari × Hatsushimo and the results of 

the best population in each simulation trial, respectively. (b) Black line shows the result 

of the bulked GS. Gray line represents the result of the discrete GS that is the same as 

a gray line in (a). (c) Black lines represent the results of the each subpopulation in the 

island-model GS in which the exchange interval was 1 and the number of exchanged 

individual was 1 in each subpopulation. Gray line shows the result of the bulked GS.  
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Figure 4.4. Genotypic values attained through selection cycles in the island-model GS. 

Gray lines represent the genotypic values attained when the migration interval was 1 

and the number of exchanged individual was 1. Black lines show the results of following 

settings: (a) the migration interval was 1 and the number of exchanged individual was 2, 

(b) the migration interval was 2 and the number of exchanged individual was 1, (c) the 

migration interval was 3 and the number of exchanged individual was 1, (d) the 

migration was 4 and the number of exchanged individual was 1, (e) the migration 

interval was 5 and the number of exchanged individual was 1, and (f) the migration 

interval was 1 and the number of exchanged individual was 1 while the initial 

subpopulations were constructed randomly regardless of their parents. 
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Figure 4.4. (Continued) 
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Figure 4.5. The distribution of genotypic values at one simulation trial in the bulked GS. 

Red, greed and blue distribution show the values of the initial population, the population 

experienced one selection cycle, and the population experienced two selection cycles, 

respectively. 
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Figure 4.6. Genetic variance shown through selection cycles. (a) The results of the 

discrete GS in a population derived from a single bi-parental cross between Koshihikari 

and Hatsushimo. (b) the result of the bulked GS. (c) The results of the each 

subpopulation in the island model GS. 
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Figure 4.7. (a) The proportion of heterozygous loci among the all SNPs in the bulked GS. 

(b) The proportion of fixed loci among the all SNPs in the bulked GS. 
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Figure 4.8. Prediction accuracy attained through selection cycles. (a) The results of the 

discrete GS in a population derived from single cross between Koshihikari and 

Hatsushimo. (b) the result of the bulked GS. (c) The results of the each subpopulation in 

the island-model GS. 
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4-4. Discussion 

4-4-1. Structure of breeding population 

This study performed GS simulations in rice, which is an autogamous crop. By using a real 

marker data of rice varieties, population structure existing among the rice varieties could be 

involved in the simulations. First, I compared the potential of GS breeding with the maximum 

potential of RILs (Fig. 4.3a). The superiority of GS breeding suggested the efficiency of 

recurrent selection, in which selection and cross are repeated, even if the target crop was an 

autogamous crop and single-round robin was applied instead of random mating. This suggested 

that recurrent selection with repeated selections and crosses can make various combinations of 

genes in the breeding population and gradually fix favorite alleles through selection. 

The reason of the decline of genotypic values at cycle 1 (Fig. 4.3) was the relationship 

between genetic variance and heterozygosity. It is well known that self-fertilization increases 

genetic variance between lines (Falconer and Mackay 1996). The initial population for GS 

breeding was F6 population, which experienced repeating self-fertilization and harbored a large 

number of homozygous loci. After the first selection cycle, the proportion of heterozygous loci 

increased because of outcrossing (Fig. 4.7a). It resulted in the rapid decrease of genetic variance 

(Fig. 4.6b). This explained why the genotypic values of good plants in the second generation 

were lower than those of the initial population (Fig. 4.3) while the mean of breeding population 

improved (e.g., Fig. 4.5). 

For recurrent selection involving GS, the initial population should have high genetic 

variation because of its ability to contribute to genetic improvement. It is natural that a breeding 

population derived from multiple bi-parental crosses is more efficient than a population derived 

from a single superior bi-parental cross when we assume the same breeding population size. 

The comparison between these breeding populations (i.e., comparison between the discrete GS 

and the bulked GS) proved that a breeding population derived from multiple bi-parental crosses 

could attain higher genotypic values than that derived from a single bi-parental cross, while the 

population size was same between the two populations (Fig. 4.3b). In the discrete GS, however, 

I selected one best population out of six breeding populations as the outcome. It means that the 

size of the initial breeding population was 1,080 in total in the discrete GS, which was six times 

lager than that in the bulked GS. This result suggests the importance of mixing a large genetic 

diversity in one population to create new combinations of genes. A population derived from 

multiple bi-parental crosses had higher genetic diversity in one initial population, and showed 

more moderate decline of genetic variance than a population derived from a single bi-parental 
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cross (Figs. 4.6a and 4.6b), resulting in more rapid genetic improvement and slower attainment 

to a plateau in the bulked GS (Fig. 4.3b). Higher genetic variance among the breeding 

population contributed to higher potential of GS owing to higher potential for genetic 

improvement involving a large number of related loci. And, as mentioned above, the genetic 

variation should be mixed via crossing among genotypes. From the result of the comparison of 

the discrete GS with the bulked GS, it is suggested that population derived from multiple 

bi-parental crosses can involve a large amount of genetic variation in an initial population, 

resulted in large improvement of genetic ability through GS breeding. 

 

4-4-2. Island-model GS 

In the present study, I proposed the island-model GS that was inspired by the island model in 

EAs, and evaluated the efficiency of the island-model GS by using computer simulation 

reflecting the situation of plant breeding. The island-model GS was first proposed by the present 

study. The island-model GS had uncertainty about its success because of some differences 

between plant breeding and EAs: (i) mutations occur frequently in EAs while they are limited in 

an actual plant population, (ii) EAs generally simulates a large population although the size of 

breeding population is limited in plant breeding, and (iii) EAs can gain high ability through a 

large number of selection cycles in short time by using computer although plant breeding 

requires much time to evaluate and select individuals. The present study conducted simulations 

reflecting actual rice breeding situation to evaluate the efficiency of the island-model GS in 

autogamous plant breeding. I used a population derived from multiple bi-parental crosses as an 

initial breeding population in the simulation of the island-model GS. In the simulation, the 

island-model GS showed a good performance particularly in the later cycles (Fig. 4.3c). The 

result suggests that the small population size (i.e., 180 individuals in this study) is enough to 

implement the island-model GS in actual breeding. Single-round robin was applied as a rule for 

making crossing because of the difficulty of random mating in autogamous species, causing no 

problem in implementing the island-model GS. These results suggest that the island-model GS 

is efficient as a selection strategy even though there are differences between actual breeding and 

EAs. In plant breeding, however, the time for breeding is limited. Thus, breeders should select a 

proper breeding scheme according to their purpose. If we can conduct only a few cycles of 

selection, we should select the bulked GS. On the other hand, if we have several years and can 

have a larger number of GS cycles by accelerating generations, we should select the 

island-model GS. 
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It is important for all breeding program to maintain genetic diversity in a breeding 

population. For the bulked GS, because the initial breeding population was composed of 

multiple families derived from a single bi-parental cross, a particular family might be preferably 

selected at the first selection cycle. Actually, in 99 out of 100 simulation trials, one or more 

family disappeared at the first selection cycle. For 75 out of 100 trials, the selected plants 

showed the selection bias (chi-square test showed significant gaps from the equal proportion for 

each family; p-value < 0.05). In the island-model GS, the selection bias was prevented by 

assuming that each family derived from a single bi-parental cross as an initial subpopulation. 

That is, it was important to separate each family into an initial subpopulation. The island-model 

GS attained lower gain when the initial subpopulations were separated randomly regardless of 

their parents than when the initial subpopulations were separated according to their parents in 

later generations (Fig. 4.4f). This result also suggests the importance of separating each family 

into an initial subpopulation. Thus, the genetic heterogeneity among subpopulations is an 

important factor that makes the island-model GS advantageous over the bulked GS. Moreover, 

the island-model GS reached a plateau slower than the bulked GS (Fig. 4.3c). Improvement in 

the bulked GS was rapid in the initial cycles (Fig. 4.3a) because selection bias at the first cycle 

favored populations derived from a specific cross with high ability. This also led the decline of 

genetic variance and fast plateau of improvement in the bulked GS. In the island-model GS, 

different genetic variations were conserved in each subpopulation, resulting in maintenance of 

genetic diversity in a whole population. Migration of genes that was attained by exchanging 

parents (i.e., selected plants) between subpopulations conserved genetic diversity in 

subpopulations and improved the genetic potential of the whole subpopulations. The issue of 

maintenance of genetic diversity in a breeding population also related to migration rates. In the 

present study, I assumed migration size as one, which seemed a limit when the selected size was 

three in each subpopulation. This migration size worked as efficient migrations in the 

simulations. When the migration size was two, the attained genotypic value was not much 

different, but the characters of subpopulations were unified earlier (Fig. 4.4a). It is because the 

large number of exchanged parents resulted in the early assimilation between subpopulations, 

then the same situation as when the initial subpopulations were made randomly. The 

island-model GS with the migration interval one (i.e., migration occurred every generation) 

represented the best results among the intervals of 1 – 5 cycles with same size of exchanged 

individuals in the simulation (Figs. 4.4b – 4.4e). In the simulations of the island-model GS, 

small population size and strong selection intensity were assumed. Selecting only three plants in 
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one subpopulation occurred a severe genetic bottleneck in the subpopulation. Because of the 

severe bottleneck, genetic variance in each subpopulation decreased drastically in two or three 

cycles of selection without migration. Although the drastic decline of genetic variation in each 

subpopulation resulted in the lower genetic gain through 20 selection cycles of the island-model 

GS with longer migration intervals, they did not show the tendency to reach a plateau through 

the 20 cycles (Fig. 4.4). The reason for this may be the maintenance of different genetic 

variations in subpopulations. Wright (1943) mentioned that random differentiation has a 

tendency to cause different adaptive trends and different process of selection in different 

subpopulations even under uniform environmental conditions. My simulations of the 

island-model GS, in which I imposed selection to the identical direction for all subpopulations, 

might follow this situation. The island-model GS with longer migration intervals promotes the 

utilization of large genetic variations in a whole population. In a breeding program, it might be 

better to conduct the island-model GS with the shorter migration interval because of the demand 

of release of new cultivars in a shorter period of time. However, if breeders can spend much 

time or hope long-term selection, the migration interval should be decided on the basis of the 

balance between the pace of improvement and the pace of reaching a plateau. 

 

4-4-3. Suggestion for breeding of autogamous plants 

The potential of the island-model GS in the breeding of an autogamous species was 

demonstrated by breeding simulations. For the actual plant breeding, distinctness, uniformity 

and stability are required to release of new cultivars (Brown and Caligari 2008). In autogamous 

crop species, pure lines are made as a new cultivar to realize its uniformity and stability. In 

general, cultivars in market experienced from 6 to 7 cycles of selfing (Broun and Caligari, 

2008). Considering the rapid fixation of alleles in recurrent selection (Fig. 4.7), it might be 

required to perform a few cycles of self-pollination after the genetic improvement reached a 

plateau. 

GS method in this paper focused on maintenance of genetic variation in a breeding 

population to select autogamous species. On the other hand, McClosky et al. (2013) suggested 

the GS process with selecting more homozygous individuals. They showed that a large genetic 

variance caused by self-fertilization (Falconer and Mackay, 1996) resulted in the improvement 

of genetic ability in GS. In their process, however, few new combinations of genes would 

appear in a breeding population. As suggested by the present study, GS with recurrent selection 

is a good strategy especially for a long span. 
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In the present study, GS was conducted to evaluate a single plant accurately. However, the 

prediction accuracy declined with repeated selection cycles. The main reason for the decline 

should be the increasing genetic distance between the training and breeding populations. In the 

simulation study of GS in barley (Jannink, 2010), prediction model was updated every cycle by 

making DHs after selection. In the present simulation, a prediction model was built based on 

1,080 F6 lines, and the prediction model was used throughout a breeding program. Selection 

accuracy decreased with repeated selections (Fig. 6.8). If the prediction model can be updated, 

selection accuracy would be improved (e.g., Iwata et al. 2011; Jannink 2010; Chapter 3 in this 

dissertation). Updating prediction model, however, requires much efforts and time. The present 

results show the potential to use one prediction model for a long time. Moreover, in the 

simulations, I assumed the prediction model was trained by using F6 lines derived from multiple 

bi-parental crosses. The phenotype and marker genotype data of recombinant inbred lines and 

backcross inbred lines are usually collected in public and private sectors, suggesting that 

breeders can use existing data to build a prediction model. The optimal updating time of a 

prediction model should be considered based on time, cost, and effort for preparing a new 

training population as well as the accuracy of the updated model. 

The present study assumed the initial population consisting of six families derived from 

six combinations of bi-parental cross. The seven varieties used as parents of the initial breeding 

and training population were selected to represent the genetic diversity in the 112 cultivars well 

on the basis of their marker genotypes. It may also be possible to choose parental varieties on 

the basis of phenotypic variation of target traits. We often conduct a breeding program under a 

certain restriction (e.g., a lower limit of quality of seed or fruit). In this case, it may be efficient 

to choose parents according to the phenotypic values, although we cannot incorporate the whole 

genetic diversity in parental candidates. 

For island-model GS, it is possible that some public or private sectors of plant breeding 

work together to create a new cultivar. A breeding population has been selected according to the 

local adaptation and maintains different genetic diversity from other populations. We can utilize 

this situation in the island-model GS by assuming a breeding population in each region as a 

subpopulation. In each region, breeders can conduct their breeding programs by using their own 

population. They can occasionally exchange a part of their cultivars for cultivars of other 

regions to introduce new genetic variation into their population. In that case, the estimation of 

the suitable migration interval might be important. 
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Chapter 5 
 

Simulation of the impact of mis-labeling on 

genomic selection in cassava 

 

 
5-1. Introduction 

Since the development of GS as a replacement for conventional MAS by Meuwissen et al. 

(2001), a number of simulation studies have been conducted to evaluate its efficiency for plant 

breeding. These simulation studies suggested that GS is effective for breeding (e.g., Bernardo 

and Yu, 2007; Heffner et al. 2010; Iwata and Jannink, 2011). The efficiency of GS is expected 

to be greatest for tree breeding, which requires long time per cycle for phenotypic selection, 

considering gain per unit time (Wong and Bernardo, 2008; Grattapaglia and Resende, 2011, 

Iwata et al., 2011). Such simulation results have created interest among breeders to realize GS. 

The revolution in sequencing technologies has enabled fast sequencing and inexpensive genome 

information (e.g., Elshire et al., 2011). This revolution makes it possible for breeders to conduct 

GS in actual breeding. Recently, some results of field trials of genomic selection have also been 

reported in the field of plant breeding (e.g., Asoro et al., 2013; Massman et al., 2013). It is 

believed that more and more results from field testing of genomic selection will be reported in 

the next few years. 

Actual plant breeding in the field may differ in one important respect from simulations: 

humans make mistakes, and that should be taken into account. In PS, labeling errors may to 

some extent be self-correcting because breeders evaluate phenotype of candidate plants and 

select them according to the observations. Even when breeders happen to swap a selected plant 

for another one, this error would only persist to the next generation, when the inferior progenies 

in the generation would be removed by selection. In GS, however, mis-labeling may not be 

corrected so easily. If the connection of phenotype data and marker genotype data is wrong in 

the training population used to build a prediction model, the error may reduce the accuracy of 
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genomic prediction and will continue affecting selection until a new prediction model is built 

without the erroneous data. Switching or mis-labeling genotypes may happen in a number of 

ways. It is possible to extract DNA from wrong plants, swap the samples for wrong ones during 

transportation to the laboratory, misplace the DNA samples during laboratory work, or store the 

wrong marker genotypes or phenotypic values in the data sheet. The more steps the breeding 

scheme requires, the more mistakes opportunities there are for error. Moreover, it is difficult for 

breeders to notice these kinds of mistakes in GS because they cannot verify the selection results 

by looking at plants at the time of crossing. Ly et al. (2013) reported that they detected 

mis-labeling when they built a prediction model when they conducted GS in cassava (Manihot 

esculenta Crantz). They used historical phenotypic evaluation data for the training population to 

build a prediction model, and identified the potential of labeling error in 23 clones out of 626 

clones. They mentioned the potential of the remaining clones to also be mis-labeling in ways 

that were not detected. 

It is difficult to detect and prevent mis-labeling errors. This is not only for plant breeding 

but also for other fields. For example, mistakes by nurses are a critical problem in medical 

treatments. To prevent mistakes in nursing, many systems including education has been 

proposed (Philipsen, 2011). It costs money, time and effort to detect and prevent mistakes by 

humans. The cost may be beneficial for nursing, where mistakes can have direct consequences 

for patient health. In plant breeding, however, controlling mistakes too strictly may not be cost 

effective if the mis-labeling does not have a large impact. To determine the levels of control of 

mis-labeling, it is necessary to evaluate the impact of mis-labeling. 

In the present study, I evaluated the impact of mis-labeling in cassava breeding using 

simulations. Cassava is produced mainly in Africa, and is the most produced crop there 

(FAOSTAT, 2014). In spite of the importance of cassava for the world’s food supply, scientific 

research on cassava started later than for other crops because of its unfamiliarity outside the 

tropical and subtropical regions where it grows (Ceballos et al., 2004). Because the phenotypic 

selection cycle in cassava is lengthy, GS may be quite useful for this crop. However, once 

mis-labeling has happened in a breeding population or a training population in cassava breeding, 

it will have large impact on outcomes of GS breeding. Because genotypes are propagated 

vegetatively in cassava, wrong marker genotypes caused by mis-labeling are used continuously 

over generations even when prediction models are updated with new phenotypic data collected 

with the propagated clones. The simulation study of GS in cassava including mis-labeling may 

be useful to decide the levels of control the mis-labeling. Here, I assumed two types of 
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mis-labeling, in which marker genotypes and phenotypic values were mismatched. First, I 

assumed an excess of candidate progeny (e.g., backup for a breeding population) that may be 

genotyped instead of selection candidate mistakenly. Second, I assumed a breeding population 

and switching genotype data among selection candidates. To evaluate the impact of the levels of 

mis-labeling, I compared gain from selection, selection accuracies, and changes in genetic 

variance in scenarios with differing levels of mis-labeling. 
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5-2. Methods 

5-2-1. Simulation settings 

The simulated species had 18 pairs of chromosomes (2n = 36) of 110 cM length each. The 

genotypes of the founder individuals in the base population were simulated by coalescent 

simulation using GENOME (Liang et al., 2007). In this coalescent simulation, one population 

was assumed whose population size and effective population size were 100. Recombination 

rates were set according to their genetic distances, and chromosomes were assumed divided into 

11,000 segments each. All SNPs were defined to have minor allele frequencies of greater than 

or equal to 0.01. I simulated one polygenetic trait controlled by 100 causal QTL such as yield 

and retained 2,500 SNP markers for genomic prediction. I assumed only additive effects (i.e., 

no dominance or epistatic loci) for simplicity to discuss the impacts of breeding schemes and 

mis-labeling. These effects were sampled from a normal distribution with the mean of 0.0 and 

the variance of 1.0. Once created, the effect sizes were adjusted to make the initial genetic 

variance equal to 1.0. All genotypic and phenotypic values were calculated from these QTL 

effects in the simulations. 

 

5-2-2. Breeding schemes 

I simulated a scheme of cassava genomic selection with four cycles of selection (Fig. 5.1). The 

breeding program started from historical phenotypic evaluation data of 200 existing clones. 

Then, 40 individuals were selected on the basis of their predicted genotypic values using a 

prediction model built from the existing data. After random cross among the selected 

individuals, 600 seedlings were obtained. If seedling data was used to build the prediction 

model, the prediction model was updated with the historical data and the seedling data that was 

phenotyped before selection. If seedling data was not used to update the prediction model, the 

prediction model was not updated at the second selection. 40 seedlings were selected based on 

the predicted values by using the existing prediction model. After the second selection, the 

prediction model was updated at every cycle by using all available phenotypic data. The size of 

breeding population was 600, and 40 seedlings were selected every cycle. The seedlings that 

constituted a breeding population were separated into two parts, selected individuals and 

non-selected individuals. The non-selected individuals were propagated in a clonal evaluation 

trial (CET) to update the prediction model in the next generation. The selected individuals were 

propagated to a crossing nursery to create the next generation, which is why they were not 

included in the CET. All clones were subsequently propagated to a preliminary yield trial (PYT) 
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to update the prediction models after the next generation. 

The error variance was 1.0 in the historical data so that the clone-mean heritability was 0.5. 

This low error variance reflected the assumption that founder clones would have been 

repeatedly evaluated in the past and would therefore be well-characterized. The error variances 

were 36.0, 16.0 and 9.0 for traits measured in seedling trials, CET and PYT, respectively. 

Breeders can evaluate only a single plant at the seedling stage, so I assumed a large error 

variance at this stage, consistent with a heritability lower than 3%. About 20 and 5 plants are 

commonly evaluated for each clone in PYT and CET, respectively, justifying lower error 

variances for these trials. Note that, for all types of trials, the error variance is inflated by GxE 

variance that cannot be statistically removed from a single-location trial. In the present 

simulation, I performed two types of selection: (i) using seedlings, and (ii) not using seedlings 

to build a prediction model. Seedlings were considered not to contribute to precise estimate or 

prediction because of their large error variances. If I could prove that seedlings were useless to 

predict the abilities of genotypes, breeders can cut off their effort and time to evaluate seedlings. 

Therefore, I conducted and compared the two types of breeding schemes in the simulation. 

Each simulation scheme was repeated 100 times. All simulations were performed in R, 

version 3.1 (R Development Core Team, 2014). 

 

5-2-3. Genomic prediction model 

GBLUP, as implemented in the R package “rrBLUP” (Endelman, 2011), was used to estimate 

and predict the breeding values of accessions. I assumed different error variances at each 

phenotyping stage (i.e., historical data, seedlings, CET, and PYT). To take this situation into 

account, the function “kin.blup” in package rrBLUP was modified (Jeffrey B. Endelman, pers. 

Comm. 27 May 2014), and used the modified function for genomic selection. The equation 

[2.12] represents the simplest original expression to solve G-BLUP. In the situation that is 

considered here, the original equation is 

                                   [5.1] 

 
, 

where y is the phenotypic values, and β and u represent the fixed effects and random effects, 

respectively. X is a full-rank design matrix for β, and Z is the design matrix for u. The residual 

is shown as ε. K is a positive semi-definite matrix (i.e., kinship matrix calculated by pedigree or 

marker genotype), and R is a diagonal matrix proportional to the error variances of the 

y = Xβ + Zu+ε

u ~ N(0,Kσ u
2 )

ε ~ N(0,Rσ e
2 )
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observations, y. The usual mixed model assumes that observations are distributed with constant 

variance, but the R matrix allows this assumption to be relaxed. To solve the problem, the 

equation was multiplied by R-1/2 before solving the mixed model: 

                                    [5.2] 

 

, 

where , , , and . This modified mixed model can 

be solved in the ordinary way. 

In this study, I made the R matrix by using the error variance values that were used in 

simulations. In an actual field trial, however, these values are not known. Thus, users should 

decide variance values a priori when they use this prediction model. 

 

5-2-4. Mis-labeling 

I considered two types of mis-labeling. First, I assumed an excess of candidate progeny that 

may enter the breeding population. The mis-labeling consisted of sampling DNA from one 

progeny for genotyping but mistakenly taking a different progeny, under the same label, for 

phenotyping (Fig. 5.2a). In this way, the genotyped individual did not enter the breeding 

population though its marker profile was analyzed under the label of different progeny and 

associated with the latter’s phenotypes. Second, I assumed a fixed set of candidate progeny 

entering the breeding population. The mis-labeling consisted, in pairs of individuals, of 

associating the phenotype of one with the genotype of the other and vice versa (Fig. 5.2b). I 

assumed that breeders would perform marker genotyping only once per individual, thus the 

wrong genotypes would be used throughout the selection cycles and repeated model updating. 

Further, I assumed that if a mis-labeled individual was selected to become a parent of the next 

generation, the individual that was phenotyped was planted in the crossing nursery, rather than 

the individual that was genotyped. 

 

5-2-5. Post-simulation analysis 

The results were shown as the averaged value over 100 simulation replications in each scenario. 

Genotypic values were represented as the improvement of population mean from 

Population 0 (i.e., an initial breeding population), thus the values at Population 0 were set to 0.0 

!y = !Xβ + !Zu+ !ε

u ~ N(0,Kσ u
2 )

!ε ~ N(0, Iσ e
2 )

!y = R−12y !X = R−12X !Z = R−12Z !ε = R−12ε
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in all breeding schemes. The genotypic values were compared in the last populations using the 

pairwise t-test with Bonferroni correction. Genetic variance was calculated as the variance of 

genotypic value in a breeding population. Prediction accuracy was calculated as Pearson’s 

correlation coefficient between the true genotypic values and the predicted genotypic values in a 

breeding population. In scenarios with mis-labeling, the prediction accuracy was calculated only 

among individuals that were correctly labeled. 

I considered the response to selection. In phenotypic selection, the response to selection is 

represented as 

                                          [5.3] 

where R is the response to selection, i is the selection intensity, h is square root of the 

narrow-sense heritability, and σA is square root of the variance of the additive genetic variance 

(Bulmer, 1980). In GS, it can be represented as 

                                           [5.4] 

where r is the prediction accuracy of GS model (i.e., correlation between true and predicted 

genotypic values). I used the true genotypic value to calculate R. When the breeding scenario 

included mis-labeling, mis-labeled individuals are selected at random such that the response 

among them is expected to be zero. Therefore, under mis-labeling, the response to selection 

should be 

                                      [5.5] 

where e is the rate of mis-labeling in the training population. 

  

R = ihσ A

R = irσ A

R = (1− e)irσ A
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Figure 5.1. Breeding scheme of genomic selection in cassava. CET: clonal evaluation 

trial, PYT: preliminary yield trial.  
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Figure 5.2. Mis-labeling in the training population. Swapping marker genotypes in the 

training population for wrong ones outside the population (a) and inside the population 

(b).  
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5-3. Results 

5-3-1. Genetic gain 

I evaluated genetic gain (i.e., improvement of genotypic values from an initial population) 

according to the population mean. Figure 5.3 shows the genetic gain through four selection 

cycles. In all scenarios, the first selection generated high genetic improvement, after-which 

stable though lower improvement was shown. The higher the rate of mis-labeling became, the 

lower genetic gain attained. When mis-labelings happened between populations, all 

mis-labeling rates showed significant (p-value < 0.05) difference in the process including the 

seedling data in training, while 0% and 5% mis-labeling rate did not show significant difference 

in the process excluding seedling data from training. When mis-labeling happened inside a 

population, 0%, 5% and 10% of mis-labeling rates did not showed significant differences at the 

last cycle. For both types of mis-labeling, the scheme in which the training population included 

seedling data attained higher gain than the scheme in which seedlings were excluded from the 

training population. 

Figure 5.4 shows the coefficient of variation (c.v.) of population mean among 100 times of 

simulation trials in each breeding scenario. The higher the mis-labeling rate became, the higher 

the c.v. tended to attain. The c.v. increased with selection cycles. In many cases, the breeding 

scheme including seedlings to build a prediction model showed less variation than the breeding 

scheme excluding seedlings compared between the results of the same mis-labeling rate and 

selection stage. 

 

5-3-2. Factors relating genetic gain 

The results of the breeding scenario in which marker genotype data were swapped among 

selection candidates were similar to the results of the scenario in which genotype data were 

swapped between a breeding population and another population. Thus, here, I will show only 

the results of the scenario in which genotype data were swapped between populations. 

Figure 5.5 shows the genetic variance through four cycles of selection. The decline of 

variance was more rapid in the scheme using seedlings for training than the other especially 

when the mis-labeling rate was low. The scenarios with higher error rates tented to maintain 

higher genetic variance in both breeding schemes. I can see the trend that the higher error rates 

made the higher genetic variance in all generations. 

Figure 5.6 represents the prediction accuracy at four times of selections. At the first 

selection, the prediction accuracy decreased with the increase of mis-labeling rate. Prediction 
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accuracy declined drastically from the first selection to the second, as is the case in genetic 

variance. The accuracy in the strategy using seedlings for training was higher than another. 

Until the second selection, the scenario with higher mis-labeling rate tended to attain lower 

prediction accuracy. After that, however, the rank of accuracy changed among the scenarios 

with different rates of mis-labeling. Figure 5.7 represents the relationship between the 

prediction accuracy and the rate of mis-labeling from the second to the fourth selection. At the 

second selection (i.e., selection in cycle 1), the scenarios with higher mis-labeling rate showed 

lower prediction accuracy. After the second cycles, I cannot see any strong tendency in 

prediction accuracy to depend on the error rate. 

I considered the observed and expected response to selection. The observed response to 

selection was calculated as the slope of genetic improvement (i.e., slope of Fig. 5.3). The 

expected response to selection was calculated as equation [5.5] by using the realized error rate, e, 

prediction accuracy, r, and square root of the genetic variance, σA. Figure 5.8 shows the 

proportion of the observed response to selection with mis-labeling assuming that the slope 

without the mis-labeling was 100%. Here, I calculated the observed response to selection from 

Cycle 2 to Cycle 4 by using the mean increment from Population 1 to Population 4 because the 

slope was stable enough to calculate as a whole (Fig. 5.3) and because the selection intensity 

was identical in the span of selection. The more the mis-labeling happened, the more the 

proportion moved away from the line whose slope was –1 and intercept was 100 (dashed line in 

Fig. 5.8). For 5 or 10% mis-labeling, the scenario using seedlings for training attained lower 

proportion than the other. For the higher mis-labeling, it was the opposite. Figure 5.9 shows the 

relationship between the observed and expected response to selection from Population 1 to 

Population 4 (i.e., from Cycle 2 to Cycle 4). Points seemed to follow the line that represented 

the same values in observed and expected response. At the Cycle 2 (i.e., selection at the 

Population 1), the observed response was higher than the expected response in all mis-labeling 

rates and both types of training population. And, the expected response became higher than the 

observed response in the later selection cycles. 
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Figure 5.3. Genetic gain through four cycles of selection. (a) marker genotypes were switched 

between populations, and the training population included seedlings phenotypic data, (b) marker 

genotypes were switched between populations, and the training population excluded seedlings 

phenotypic data, (c) marker genotypes were switched inside the breeding population, and the 

training population included seedlings phenotypic data, (d) marker genotypes were switched 

inside the breeding population, and the training population excluded seedlings phenotypic data.  
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Figure 5.3. (Continued) 
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Figure 5.4. Coefficient of variation of genetic gain among 100 trials of simulation in each 

breeding scenario. (a) marker genotypes were switched between populations, and (b) 

marker genotypes were switched inside the breeding population.  
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Figure 5.5. Genetic variance through four cycles of selection in the breeding scheme assuming 

that marker genotypes were switched between populations. (a) the training population included 

seedlings phenotypic data, and (b) the training population excluded seedlings phenotypic data.
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Figure 5.6. Prediction accuracy at four times of selections in the breeding scheme assuming that 

marker genotypes were switched between populations. (a) the training population included 

seedlings phenotypic data, and (b) the training population excluded seedlings phenotypic data.  
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Figure 5.7. Relationship between prediction accuracy and human error from the second 

to the fourth selection in the breeding scheme assuming that marker genotypes were 

switched between populations.  
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Figure 5.8. Observed response to selection from Cycle 2 to Cycle 4 in the breeding 

scheme assuming that marker genotypes were switched between populations. The 

vertical axis represents the percentage of the value of slope when the slope without 

human error was 100 % in each breeding scheme (i.e., the scheme using seedlings for 

training or not). The dashed line has the slope of –1 and the intercept of 100. 
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Figure 5.9. Relationship between the expected and observed response to selection 

from Cycle 2 to Cycle 4 in the breeding scheme assuming that marker genotypes were 

switched between populations. The vertical axis represents the observed response to 

selection, and the horizontal axis represents the expected response to selection. 

Observed response to selection is shown for each selection stage separately. The black 

line shows the slope of 1 and the intercept of 0. 
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5-4. Discussion 

5-4-1. Breeding scheme 

We compared two types of breeding schemes: collecting data on seedlings or not to build the 

prediction model. Simulation results show that the breeding scheme utilizing seedling data 

attained higher genetic gain compared among the simulations without (Fig. 5.3). This suggests 

that seedling data was useful to predict the genetic value of plants despite the low repeatability 

associated with data (i.e., the error variance was 36 times greater than the genetic variance). 

Thus, using a prediction model that can account for differences among trial types in the size of 

the error variance could work effectively our cassava breeding schemes. We verified that a 

prediction model able to account for differences in error variance was needed by comparing this 

model to a standard homogeneous variance model. The heterogeneous model indeed generated 

higher prediction accuracies (data not shown). In the present study, we assumed four types of 

phenotypic data, historical data, seedling data, CET data, and PYT data. 

Note that the selection schemes presented, we assumed that seedling data was available to 

the breeder before the breeder needed to select among those seedlings. Thus, seedling data 

contributed to the training model prior to prediction. This data increased the prediction accuracy 

between 5% and 10% overall selection cycles and mis-labeling rates (Fig. 5.7). Furthermore, the 

variation in gain across repeated simulations was lower when seedling data was included than 

when it was not (Fig. 5.4). Ly et al. (2013) suggested that the training population with close 

relatives to the selection candidates attained high prediction accuracy in their study using real 

phenotypic and marker genotype data of cassava. The recommendation to update the prediction 

model during selection cycles, which was suggested in simulation studies (Iwata et al., 2011; 

Chapter 3), is also based on the idea to use the individuals close to the selection candidates as 

the training population. In the present simulations, seedlings were the selection candidates, thus 

they also work to improve the prediction accuracy even though they had large error variance. 

Moreover, using seedling data had a potential to maintain the level of genetic improvement 

when the mis-labeling happened (Fig. 5.8). 

The superiority of using seedling data was shown in Fig. 5.3 in which the result was 

represented according to the selection cycles. Collecting seedling data, however, is not free. 

Thus, as for many choices breeders face, there is a tradeoff between greater gain from using 

seedling data versus lower cost from not using it. Breeders can choose their favorite strategy 

according to their required time and budget. 
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5-4-2. Mis-labeling 

The first selection event generated greater gain than all future selection events across all 

simulation scenarios (Fig. 5.3). The reasons for the high prediction accuracy of this first 

selection event were the high genetic diversity in the breeding population (Fig. 5.5), high 

selection intensity and the usage of precise phenotypic data (i.e., historical phenotypic data) for 

training (Fig. 5.1). After the first selection step (i.e., steps from Cycle 2 to Cycle 4), the realized 

response to selection was lower but stable across cycles. In the present study, prediction models 

were updated each cycle, helping to maintain this stable gain. 

To attain high genetic gain, considering the response to selection is crucial. The response 

to selection can be observed after selection by calculating the change from the parent generation 

to the offspring generation. It can be predicted at the parent generation by using information 

about the breeding population and selection (Falconer and Mackay, 1996). It depends on the 

selection intensity, prediction accuracy, and the square root of the additive genetic variance in 

the breeding population for GS. If mis-labeling happened, the response to selection may be 

reduced according to the rate of mis-labeling. Thus, the response to selection may be reduced by 

two factors, incomplete selection intensity and low prediction accuracy, when the mis-labeling 

is assumed. In the present study, we assumed two types of human mistakes, switching marker 

genotypes between populations or inside a population. The difference of types of mistakes 

resulted in the similar results (Fig. 5.3). It is because the mechanism to reduce the response to 

selection did not change among these mistakes. In both scenarios of human mistake, the mistake 

happened inside the same generations of progenies derived from the same parents. This 

situation caused a little difference of selection accuracy and genetic variance between these 

human mistakes. 

Through the all selection cycles, all scenarios with six levels of mis-labeling attained a 

certain genetic gain (Fig. 5.3). The reason is the relationship between the genetic variance and 

the prediction accuracy. Among the breeding population having the same genetic variance, the 

prediction accuracy was depended just on the rates of mis-labeling (i.e., the accuracy at the first 

selection in Fig. 5.6). If the breeding population has different levels of genetic variance, 

however, the prediction accuracy depends not only on the mis-labeling but also on the genetic 

variance because a large genetic variance causes a high heritability. The higher the heritability is, 

the higher the prediction accuracy becomes in GS (Grattapaglia and Resende, 2011;Lorenz, 

2013). The scenarios including higher rates of mis-labeling tended to maintain higher genetic 

variance in the breeding populations (Fig. 5.5) owing to weak genetic bottleneck caused by 
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incomplete selection. The prediction accuracy at the second selection (i.e., at the Cycle 2) 

declined with the increase of the rate of mis-labeling (Fig. 5.7). We updated prediction models 

at each selection, and included all available phenotypic data in the training population. The 

prediction model at the second selection largely depended historical phenotypic data. If the 

seedling data was used, it has only small effect to the prediction model because the model was 

adjusted by scale of environmental error variance. Therefore, the accuracy at the second 

selection depends mainly on the mis-labeling rate. At the third and fourth selections, however, 

the prediction accuracy was distributed in the same level especially when the mis-labeling was 

lower than 40% (Fig. 5.7). At these selection cycles, the prediction model included a number of 

individuals, which were in the low diversity populations. And these training data included CET 

and PYT data, which affected largely to the prediction models. It is suggested that the genetic 

improvement from Population 1 to Population 4 in the scenario with mis-labeling was realized 

by the trade-off between the mis-labeling and the genetic variance maintained in the breeding 

population. The observed response to selection showed that the genetic improvement with 

mis-labeling declined just following the mis-labeling rates when the mis-labeling was from 5 to 

30% and seedling data was used (Fig. 5.8), suggesting that the effects of prediction accuracy 

and genetic variance got balanced out. When the mis-labeling was 40 or 50%, the observed 

response to selection was affected by the low prediction accuracy (Figs. 5.7 and 5.8). 

Comparing the observed response to selection with the predicted response to selection 

calculated by equation [5.5], the observed response was higher than predicted response at the 

second selection (i.e., at the Cycle 2) in all mis-labeling rates (Fig. 5.9). The observed response 

moved to lower than expected one with selection cycles. The equation [5.5] was derived the 

idea that the individuals whose marker genotypes were swapped had prediction accuracy of 0. 

In the present study, however, we switched the marker genotypes, thus the phenotypic values 

were correct. This situation sometimes causes the non-zero accuracy in the individuals with 

wrong combinations of data, resulted in the high observed response at the second selection. 

 

5-4-3. Suggestion for breeding 

In the present study, we assumed cassava breeding by using genomic selection. Cassava is an 

allogamous species and propagated by using clones. Thus, the impact of mis-labeling is 

expected to be larger in cassava breeding than in other allogamous crops breeding, in which 

clonal propagation cannot be used, considering the continuing error in an existing genotype. 

The same situation will happen in breeding of autogamous plant species, in which inbred or 
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pure lines are used, because marker genotype data of lines tends to continue to be used. 

Although the breeding schemes in my simulations depended on the assumptions of cassava 

breeding, the results can be applied to the other plant species because the system of mis-labeling, 

prediction, and selection depends on more or less the same basis among plant species. 

The mis-labeling caused the increase of genetic variance through selection cycles, resulted 

in the moderate scale of reduction of genetic gain. However, the reduction of gain was large 

when the rate of mis-labeling became large, suggesting that the large scale of mis-labeling 

would cause terrible reduction of genetic gain. At the outset of this study, I assumed that 

mis-labeling would cause decreases in gain through two mechanisms. First, for plants that are 

mis-labeled, selection occurs at random because the genotype selected does not correspond to 

the individual that will later be crossed. Thus, for these plants, the selection differential is zero. 

Second, the mis-labeled plants introduce error into the training population, which in turn will 

cause prediction accuracy to decrease. Thus, even for those plants that are not mis-labeled, 

response to selection will decrease. In fact, both plants (i.e., plants that were mis-labeled and 

plants that were not mis-labeled) were selected at each selection cycle in my simulations (data 

not shown). I did not anticipate the favorable effect of mis-labeling on genetic variance in the 

population. The increased genetic variance observed under mis-labeling led to sufficiently 

improve the accuracy that, at least for low mis-labeling rate (10% or less), accuracy was hardly 

affected (Figs. 5.6 and 5.7). It is suggested that the large scale of mis-labeling should be 

prevented, but that preventing small scale of mis-labeling is not cost effective in plant breeding. 

Careful statistical analysis to detect mis-labeling (e.g., detecting genotypes with extremely large 

prediction errors, i.e., discordance between phenotypes and marker genotypes, and excluding 

genotypes representing large difference between the genetic relationship matrix based on the 

marker data and the numerator relationship matrix based on the pedigree, i.e., discordance 

between marker genotypes and pedigree records) may be enough for preventing mis-labeling 

under these levels. 
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Chapter 6 
 

Field trial of genomic selection using common 

buckwheat 

 

 
6-1. Introduction 

GS is highly expected to contribute to efficient and high-speed plant breeding (Heffner et al., 

2009). The potential of GS in plant breeding has been mainly demonstrated via simulation 

studies. Most of empirical studies of GS in plant breeding were based on the verification of the 

accuracy of GS under various situations by cross validations (reviewed in Lin et al., 2014). 

Although the importance of field trials has been indicated, it is important to clarify the optimal 

design of a field trial of GS breeding to verify the efficiency of GS on ahead of implementing 

the field trial because field trials require much time and cost. By simulation studies in this 

dissertation in addition to the studies reported previously (e.g., Bernardo and Yu, 2007; Iwata et 

al., 2011; Jannink, 2010), it is suggested GS is efficient in plant breeding. It is required to 

implement field trials of GS breeding on the basis of the results from simulation studies, then to 

verify the efficiency and issues of GS in plant breeding through the field trials. 

In general, simulation studies are performed on the basis of some simplified assumptions. 

For example, Wong and Bernardo (2008) assumed to use inbred lines in breeding of oil palm, 

which is an unrealistic situation. In most of simulation studies, non-additive genetic effects (i.e., 

dominance effects and epistatic effects) are not assumed (e.g., Bernardo and Yu, 2007; Iwata et 

al., 2011; Jannink, 2010). Also in simulation studies reported in Chapters 3, 4, and 5 of this 

dissertation, only additive effects are assumed as QTL effects. Because these unrealistic 

assumptions are not always suitable to an actual breeding in the field, it is thought that the 

results of field trials are not same as those of simulations. In field trials, factors that are not 

assumed in simulation studies will affect to the outcomes. In this case, it is important to 

compare the results of simulations and field trials to explain the reason of the differences 
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between them. By using the knowledge obtained from this comparison between simulations and 

field trials, an efficient way of GS breeding should be searched. 

In this Chapter, a field trial was performed in common buckwheat, Fagopyrum esculentum 

Moench (2n = 2x = 16) to evaluate the efficiency of GS breeding in an annual allogamous plant, 

by comparing GS breeding with PS breeding over the two years of selection. It is relatively easy 

to grow common buckwheat because of its small size and the short generation time (i.e., 2 – 3 

months per generation). These features are suitable for the model crop to verify the efficiency of 

GS breeding. The target trait was seed yield per unit area. It is not easy to improve this trait with 

mass selection because the trait cannot be evaluated on the single plant basis and is controlled 

by a number of genes. The scheme of this field trial was decided partly based on the results in 

simulation study in Chapter 3. Due to some restrictions on an actual field trial (e.g., time, cost, 

and labor), the breeding scheme could not follow the correct procedure recommended in 

Chapter3. 

There were two main objectives in this study. The first is to evaluate the efficiency of GS 

via a field trial. I compared genetic gains of GS breeding with those of PS breeding to verify the 

advantages of GS, which has been suggested in my simulation study (Chapter 3). The second is 

to clarify important factors that affect the efficiency of GS breeding by comparing this field trial 

study with the simulation study described in Chapter 3. The breeding scheme employed in this 

field trial study was following a scheme simulated in Chapter 3, as mentioned above. However, 

there is some discordance between the empirical and simulation studies owing to the simplified 

assumptions of the simulation study. In Chapter 3, I simulated only additive effects (i.e., no 

dominant and epistatic effects) for QTL, which may not be realistic for an actual breeding 

population. The existence of non-additive effects may have a considerable impact on the 

prediction accuracy of GS model, which assumed only additive effects, and eventually on the 

genetic gains attained by GS breeding. As the mating system, random mating was assumed in 

simulation study of Chapter 3. Common buckwheat is a self-incompatible species that has 

heterostylous flowers, for which fertilization can be held only between flowers of different 

morphological types. The heterostyly is controlled by one gene, that is, S-locus (reviewed in 

Lewis and Jones, 1992). On the one hand, thrum-type flower occurs when the genotype of the 

S-locus is heterozygous (i.e., S/s); on the other hand pin-type flower occurs when the genotype 

is homozygous (i.e., s/s). Thus, the progenies with two types of flowers result from the mating 

at approximately the same frequency. Therefore, the influence from the discordance of mating 

system between the simulations and the field trial, i.e., random mating and outcrossing with 
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self-incompatibility, respectively, should be evaluated. It was necessary to verify that GS 

breeding could work well in reality as did in the simulation study. Discordance in the levels and 

range of LD in an initial breeding population may also affect the efficiency of GS through the 

impact on prediction accuracy. I assumed linkage equilibrium in the base population in Chapter 

3 to reflect the low levels of LD in an allogamous plant with a large effective population size. In 

reality, however, because historical LD (LD generated in past demographic history) exists in a 

breeding population of common buckwheat, the LD might be higher and narrower than one 

assumed in the simulations. The high and narrow LD is more suitable to GS breeding than 

linkage equilibrium, suggesting the possibility of improvement of the prediction accuracy in the 

field trial. To confirm the levels of LD in the breeding population, I estimated between-marker 

LDs in the actual initial breeding population and compared them with genetic distance on the 

linkage map. In Chapter 3, the simulations underscored the importance of updating a prediction 

model. I verified if the importance of model updating was also suggested in the field trial study 

by an ex-post analysis of the accuracy of prediction models developed at different generations. 

Serious discordance between the simulation study and a field trial study may clarify factors that 

should be included in breeding simulations and that can improve the efficiency of GS in the 

real-world breeding. 
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6-2. Materials and methods 

6-2-1. Linkage and QTL mapping in mapping population 

92FE1-F4, a population produced by bulk crossing among ‘Tempest’, ‘Kitawasesoba’, 

‘Natsusoba’, and ‘Shinanonatsusoba’, was employed. These cultivars are classified into a single 

agroecotype: summer type. A mapping population consisting of 178 F1 progeny derived from a 

cross between P1 and P2 were developed. P1 and P2 were selected from 92FE1-F4 to make 

them represent large variations. Common buckwheat is a heteromorphic, self-incompatible 

species that has heterostylous flowers controlled by the S-locus (reviewed in Lewis and Jones, 

1992). In the present study, P1 had thrum-type flowers and P2 had pin-type flowers, meaning 

that the genotype of the S-locus was heterozygous (i.e., S/s) in P1, and recessive homozygous 

(s/s) in P2. The F1 progeny were sowed at a density of one seed per plastic pot (diameter, 24 cm; 

height, 24 cm) on 6th August 2012 and cultivated under natural conditions in an isolation 

chamber (L × W × H, 630 × 540 × 230 cm) at the University of Tsukuba (36°06′N, 140°05′E). 

Main stem length was measured as the trait for QTL mapping after harvesting on 9th October 

2012. In this study, the main purpose of the QTL mapping was to evaluate the reliability and 

utility of the constructed linkage map. Therefore, I conducted the QTL mapping only for main 

stem length as one of the major traits relating to yield. These materials were provided by Dr. 

Takashi Hara and Professor Ryo Ohsawa in the University of Tsukuba. Total genomic DNA 

from both parental individuals and the F1 progeny was extracted, and further was prepared from 

the mapping parents (P1 and P2) and from 40 plants of the 92FE1-F4 population (hereafter 

referred to as the 40-mix population). The procedure for the processing of row reads and the 

design of probes was similar to one provided in Iehisa (2014), in which the same genotyping 

system was applied to the linkage mapping of common wheat. All probes from P1, P2 and 

40mix and control probes were synthesized in triplicate on a NimbleGen HD-2 135K × 12plex 

microarray (Roche Diagnostics, Madison, WI). Thereafter, genotypes of the parental plants, P1 

and P2, and their 178 F1 progeny were determined by using HD-2 135K × 12plex microarrays. 

DNA polymorphisms genotyped with this system were used as dominant markers. The DNA 

extraction and genotyping was conducted by by Ms. Mariko Ueno and Dr. Tasui Yasui in 

Graduate School of Agriculture, Kyoto University, Dr. Hiroyuki Enoki, Mr. Tatsuro Kimura, 

and Dr. Satoru Nishimura in Future Project Division, TOYOTA MOTOR CORPORATION on 

the basis of Enoki et al. (2012). 

Linkage map of P1 and P2 were constructed by using the pseudo-testcross strategy 

(Grattapaglia and Sederoff, 1994). First, the deviation from the Mendelian segregation ratio was 



 122 

tested for each marker by using the Chi-square test (p < 0.01; statistically significance). Markers 

segregating in a 1:1 ratio were used to construct the linkage map of P1 and P2. Markers were 

assigned to linkage groups by setting the recombination rate threshold at 0.3 and the threshold 

for the minimum number of markers at 3. Locus ordering was performed by using AntMap 

software (Iwata and Ninomiya, 2006) with a 50-run of an optimization process (i.e., 

maximization of the log-likelihood). The Kosambi mapping function (Kosambi, 1943) was used 

to calculate map distances. To connect linkage groups constructed in the P1 and P2 linkage map, 

recombination rates between markers segregating in a 3:1 ratio and markers represented in the 

P1 and P2 map were calculated. Among the markers segregating in a 3:1 ratio, those that had 

low recombination rates (<0.02) with both markers on the P1 and P2 map were used as “bridges” 

between the P1 and P2 map. When multiple markers on the P1 or P2 map had recombination 

rates <0.02 and were segregated in a 3:1 ratio, the centers of gravity of these multiple markers 

were connected by a bridge. 

For the QTL analysis, 171 plants for which both marker data and phenotypic data (i.e., 

scores of main stem length [cm]) were available were used. Composite interval mapping (Zeng, 

1993; Zeng, 1994) was performed by using the QTL Cartographer software ver. 1.17 (Basten et 

al. 2003). To analyze the pseudo-testcross data, I employed a model for inbred backcross design. 

In the analysis, I adopted the linkage phase estimated at the step of linkage map construction. A 

permutation test with 100 replicates was performed for each trait to estimate the empirical 

threshold value corresponding to the 5% significance level. The proportion of total (i.e., 

phenotypic) variance explained by each of detected QTL was calculated as ([residual variance 

under the null hypothesis] – [residual variance under the alternative hypothesis]) / [phenotypic 

variance]. 

 

6-2-2. Selection index 

A target trait in this breeding experiment was seed yield per unit area (kg/10a). However, in 

mass selection, breeders cannot observe this target trait because it should be evaluated with 

multiple plants (i.e., plant population) grown in unit area. Because common buckwheat is an 

allogamous crop, there is genetic heterogeneity in the population and it is difficult to associate 

this target trait with genome-wide marker genotypes. In this study, I created a selection index 

that can be represent the yield per unit area, using the relationship between other yield related 

traits, which can be evaluated in each individual, and the target trait (i.e., yield per unit area). 
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Selection of good common buckwheat plants (i.e., genotypes) was conducted on the basis of 

magnitude of the selection index (i.e., larger is better). 

Selection index was created based on the field trial data of 11 cultivars in 1993. The 11 

cultivars are classified into a single agroecotype: summer type, which is the same agroecotype 

as the mapping population and breeding population. These cultivars were evaluated in a 

randomized block design with three replications. They were sowed at a density of 100 

individuals per square meter (distance between rows, 60 cm; length of row, 3 m) on 25th 

August 1993. Fertilization was N:P:K = 5:20:20 and nitrogen was 4kg/10a. The yield and yield 

related traits were evaluated as population mean. These field trial data were provided by 

Professor Ryo Ohsawa. 

The nine traits, seed yield, main stem length (cm), number of nodes, flowering of the first 

flower, number of flower clusters, number of primary branches, number of seed set in a plant, 

1000 seed weight (g / 1000 seeds) and test weight (g / l), were used in the analysis. I used 

principal component regression (PCR) to build a multi variate regression model, in which seed 

yield was treated as the independent variable and other traits were treated as explanatory 

variables. R package “pls” (Mevik and Wehrens, 2007) was used for the analysis. To choose a 

number of principal components included into the regression model, I evaluated the root mean 

squared error of prediction (RMSEP) on the basis of leave-one-out cross-validation. To balance 

the number of principal components (i.e., complexity of regression model) with RMSEP (i.e., 

prediction accuracy), I selected the number of components that realized the smallest RMSEP in 

the cross-validation. The maximum number of components was set as seven. Because I used 

data of only 11 cultivars to create the selection index, the selection index may be inappropriate 

(inaccurate) to predict seed yield per unit area for the target breeding population. However, I 

decided to use the criterion as the breeding target and evaluated the efficiency of GS breeding 

by verifying whether GS could improve multiple traits simultaneously based on a selection 

index. 

 

6-2-3. Genomic selection and phenotypic selection 

The base population for breeding was set to a population produced by bulk crossing among 

‘Tempest’, ‘Kitawasesoba’, ‘Natsusoba’, and ‘Shinanonatsusoba’, which was similar to the 

mapping population used in linkage and QTL mapping. This population was considered to have 

low and wide-ranging LD. To increase the level of LD of this base population, one cycle of 

random mating among 40 individuals was performed. With this cycle, the population 
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experienced genetic bottleneck and is expected to have increased LD. After this cycle, the 

population was used as the first generation of breeding population for both PS breeding and GS 

breeding. Two cycles of PS breeding and four cycles of GS breeding were conducted over the 

period of two years.  

PS was conducted once per year in the regular growing season of summer type common 

buckwheat when phenotypic measurements were meaningful (Fig. 6.1). It was performed in 

August 2011 and 2012. The size of breeding population was 192, and 12 individuals were 

selected based on their observed values of selection index. These 12 individuals were crossed 

together by insect pollination of bee flies in a net to contribute the next generation. 

GS was conducted twice per year (Fig. 6.1). At the selection in August (i.e., the regular 

growing season of summer type common buckwheat), phenotype was evaluated, and the 

prediction model was built (i.e., updated) with observed phenotypic values at these cycles (i.e., 

GS1 and GS3 in Fig. 6.1). Selection was conducted by applying the marker genotype data to the 

prediction model made of their own data in these cycles. The second cycle was conducted by 

using offseason nursing, where phenotypic evaluations were not meaningful (i.e., GS2 and GS4 

in Fig. 6.1). Therefore, the prediction was conducted by using the model built at the previous 

cycle. Selection was done based on the predicted values of selection index. At the selection 

where the prediction model was built, the population size was 192, and 12 individuals were 

selected. On another hand, at the selection where the model was not built, 48 plants were grown 

and 12 plants were selected according to the predicted values. Fewer plants were grown in these 

cycles than when the prediction model was built to save time and effort. To conduct GS, 

G-BLUP was used by R package “rrBLUP” (Endelman, 2011). The prediction model was built 

for each trait included in the selection index. Prediction was conducted for each trait, and the 

predicted values of all the traits were summed up in the predicted selection index by using the 

weights of each trait for selection index. 

GS breeding was conducted in parallel with making a selection of appropriate markers for 

GS. In addition, after the first selection, some individuals selected in the previous selection 

cycle were genotyped with the current breeding population to evaluate the reliability of marker 

genotype. At the first selection cycle (i.e., GS1 in Fig. 6.1), 274,303 candidate markers were 

genotyped. I selected 50,000 out of 274,303 markers according to their polymorphism, clarity, 

MAF, and linkage with other markers. GS1 was conducted on the basis of the prediction model 

built with the 50,000 markers. At the second selection (i.e., GS2 in Fig. 6.1), 45,000 candidate 

markers were genotyped, and 11,480 markers were selected according to their polymorphism, 
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linkage with other markers, and the degree of coincidence with marker genotype in GS1. At 

GS2, an adjusted prediction model was built with the 11,480 markers by using phenotype and 

marker genotype data of GS1. This adjusted prediction model was used at GS2. At the third and 

forth cycles (i.e., GS3 and GS4 in Fig. 6.1), 14,598 markers were genotyped. 6,373 and 6,225 

markers were selected at GS3 and GS4, respectively, according to their polymorphism, linkage 

with other markers, and the degree of coincidence with marker genotype in the previous cycle. 

All cultivation was conducted at the University of Tsukuba (36°06′N, 140°05′E) by Dr. 

Takashi Hara and Professor Ryo Ohsawa. The extraction of genomic DNA and genotyping were 

conducted by Ms. Mariko Ueno, Dr. Yasuo Yasui, Dr. Hiroyuki Enoki, Mr. Tatsuro Kimura, 

and Dr. Satoru Nishimura. 

 

6-2-4. Linkage disequilibrium analysis 

The levels of LD were evaluated in the breeding population. As a measure of LD, r2 was 

calculated as equation 3.13. For the markers mapped on the linkage map, the pairs of markers 

within 50cM were selected in each linkage group. Marker haplotypes were unknown, and r2 

could not be calculated directly. To estimate r2, I used the EM algorism proposed by Li et al. 

(2007) for the situation that genotyped markers were all dominant. The EM steps were repeated 

until the difference between the consecutive two estimated values attained smaller than 0.0001. 

To estimate the effective population size of the breeding population and the expected r2, I used 

the method proposed by Weir and Hill (1986) and Hill and Weir (1988): 

          [6.1] 

where N is the effective population size, c is the recombination fraction between sites, and n 

represents the sample size. 

 

6-2-5. Evaluation of breeding schemes 

All generations of breeding populations that underwent PS breeding and GS breeding were 

evaluated in the field trial in August 2013. 48 seeds were sown from each population. Because 

the number of seeds of the initial population was not enough for the field trial, the seeds of base 

population (i.e., the population created by mixing four cultivars of summer type common 

buckwheat) were sown and evaluated instead. Nine traits (main stem length, number of nodes, 

flowering of the first flower, number of flower clusters, number of primary branches, number of 

seed set in a plant, 1000 seed weight, test weight, and number of secondary branches) were 
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evaluated at the harvest time. The field trial was conducted at the University of Tsukuba 

(36°06′N, 140°05′E) by Dr. Takashi Hara and Professor Ryo Ohsawa. 

For the generations of GS1 and GS3, I performed leave-one-out cross-validation to 

calculate prediction accuracy of GS prediction model. The accuracy was measured with the 

Pearson’s correlation coefficient between predicted values on one hand and expected values, 

which were obtained by fitting a prediction model to marker genotype data in a training data set 

(i.e., dataset used for model building) as well as observed values on one hand. Because we 

measured a single plant to get observed values, the values were affected by large environmental 

variation. Thus, I employed the correlation between predicted and expected values because the 

expected values were less affected by environmental variation than observed values. I also 

evaluated the levels and directions of changes in each trait and selection index throuout the 

breeding process. To compare generations derived from GS and PS breeding, Tukey test and 

Mann-Whitney U test with Bonferroni correlation for traits that had equal variances and unequal 

variances, respectively. The equality of variance was examined by Bartlett’s test at the 10% 

significance level. The level was chosen to make type II error (i.e., error that fails to detect traits 

with unequal variance) smaller. 
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Figure 6.1. Breeding schemes for genomic selection (GS) and phenotypic selection 

(PS) in common buckwheat. 
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6-3. Results 

6-3-1. Linkage and QTL mapping 

DNA microarray genotyping was performed for 44,836 markers. From those markers, I used 

16,841 markers that were heterozygous in one or both parents for further analysis. In the F1 

population of 178 plants, the numbers of markers segregating in 1:1 and 3:1 were 14,442 (P1: 

6,875 markers; P2: 7,567 markers) and 2,399, respectively. A segregation ratio of 1:1 is 

expected when one parent has a heterozygous genotype and the other has a recessive 

homozygous genotype. A segregation ratio of 3:1 is expected when both parents have a 

heterozygous genotype. Of the markers with segregation ratio of 1:1 and 3:1, 9,112 (P1: 4,325 

markers; P2: 4,787 markers) and 1,701 markers, respectively, showed a clear distinction 

between the two genotypes. Of all 10,813 markers, 1,339 markers contained one or more 

missing values. Of these, 824 contained missing values for less than four plants, and 106 

contained missing values for more than 17 (10%) plants. Markers derived from an identical 

contig with the same segregation type (i.e., P1 or P2 markers with a 1:1 segregation ratio or 

bridging markers with a 3:1 segregation ratio) were expected to reflect genotypes at the location 

of the contig because of the close linkage between the markers. I therefore collected markers 

from a single contig to make consensus genotypes. The missing genotypes of the collected 

markers were imputed on the basis of the consensus genotypes. In a few cases, two or three 

patterns of marker genotypes were observed in one contig. In those cases, I treated the groups of 

markers having different genotypes as separate contigs (sep-contigs). When sep-contigs derived 

from a single contig belonged to different segregation types, I excluded them from the 

subsequent analysis. Sep-contigs from a single contig showing a low level of consensus (i.e., 

genotypes were discordant in more than 30% of plants) were also excluded. I used flower 

morphology (i.e., pin or thrum) controlled by the S-locus as the phenotypic marker. The marker 

was located on the P1 map because P1 was heterozygous (i.e., S/s) at the locus. In total, I had 

1,455, 1,631, and 869 contigs for P1, P2, and bridging markers, respectively. Next, to analyze 

the pseudo-testcross data, I inverted the genotype data by duplicating and converting all of the 

contigs (i.e., homozygous genotypes were converted into heterozygous genotypes and vice 

versa). I grouped contigs that had an identical genotype into a single marker group and then 

separated those marker groups into three marker types—P1 markers, P2 markers, and bridging 

markers. Marker groups were grouped into two and four clusters for P1 and P2 type, 

respectively, via a single-linkage cluster analysis based on Manhattan distances among marker 

groups. The distances were calculated based on the genotypes of marker groups, which were 
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scored with 0 and 1. I used single-linkage clustering because the method is similar to the one 

used in the linkage grouping. In total, I attained 346, 410, and 360 marker groups, respectively, 

for P1, P2, and bridging markers. The genotypes of these marker groups were used to construct 

the linkage map. 

By using a pseudo-testcross strategy, I constructed linkage map for P1 and P2, and 

connected them with bridging markers (Fig. 6.2). I mapped 346 loci on the P1 map, and 410 

loci on the P2 map (Table 6.2). I used 283 groups segregating 3:1 (bridging markers), which 

represented small recombination rates (i.e., <0.02) with loci in both the P1 and P2 map, to 

combine the loci in the P1 and P2 linkage map. I used markers segregating 3:1 only for the P1 

and P2 map bridging, not for mapping on the linkage map. Because the precision of the 

estimation of recombination rates between markers segregating 3:1 and between markers 

segregating 1:1 and 3:1 was low (Ritter et al., 1990), the inclusion of 3:1 markers in the linkage 

map was thought to affect the estimation of the linkage map positions of 1:1 markers. Thus, as 

shown in Fig. 6.2, I used bridging markers only to connect the linkage groups between the P1 

and P2 linkage map. The phenotypic marker, flower morphology, was located on linkage group 

P1_3 (“S” in Fig. 6.2). After connecting the P1 and P2 linkage map, the number of linkage 

groups converged to eight, which is the basic chromosome number of common buckwheat. The 

eighth linkage group was divided into two groups of short length in the P1 map. The P1 and P2 

linkage map covered 773.8 and 800.4 cM, and contained 1,455 and 1,631 contigs, consisting of 

4,227 and 4,657 markers, respectively (Table 6.1). The means of the intervals between adjacent 

positions were 2.30 and 1.99 cM (Table 6.1) and the medians were 1.68 and 1.15 cM in the P1 

and P2 linkage map, respectively (Fig. 6.3). Most (90%) adjacent positions had intervals shorter 

than 5.07 cM (Fig. 6.3). On the linkage map, one position (i.e., a single marker group) harbored 

a number of contigs, and one contig consisted of a number of markers. Figure 6.4 shows the 

number of contigs per loci (a) and the number of markers per contig (b). Among the 756 loci on 

the map, 555 loci consisted of more than one contig, and 492 loci consisted of less than 10 

contigs. Among the 3,086 contigs, 1,140 contigs consisted of more than one marker, and among 

those, 1,036 contigs consisted of less than 15 markers and 13 contigs consisted of more than 35 

markers. 

I performed QTL analysis of main stem length to confirm the application of the linkage 

map constructed above. Phenotypic values for main stem length observed in the mapping 

population had a unimodal, continuous distribution (Fig. 6.5), suggesting that main stem length 

is controlled by multiple QTL and is influenced by environmental effects. For main stem length, 
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significant QTL were detected at map positions 9.3 cM on the P1-1 group, 49.0 cM on the P1-2 

group, 9.0 cM on the P1-5 group, and 16.9 cM on the P2-4 group (Fig. 6.6 and Table 6.2). The 

four QTL accounted for 5.64% to 8.51% of the phenotypic variance observed in main stem 

length (Table 6.2). 
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Figure 6.3. Distances between adjust loci on the linkage map of P1 (a) and P2 (b). Red 

lines represent the mean values of distances in each of maps.  
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Figure 6.4. Distribution of the number of contigs per map position (a) and the number of 

markers per contig (b).  
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Figure 6.5. Distribution of phenotypic value for main stem length. 
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Table 6.2. Positions, logarithm of the odds (LOD) scores, additive effects and explained 

phenotypic variations of the quantitative trait loci detected for main stem length. 

 

 

  

 1 

Linkage group Position (cM) LOD Additive effect Explained phenotypic 

     variance (%) 

P1-1 9.3 3.55 −7.48 6.62 

P1-2 49.0 3.08 −6.85 5.64 

P1-5 9.0 4.59 −8.45 8.51 

P2-4 16.9 4.39 8.29 8.18 

 2 
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6-3-2. Genomic selection and phenotypic selection 

Green lines on the linkage map of common buckwheat in Fig. 6.2 represent the loci that were 

also genotyped in the breeding population at GS1 (i.e., in the initial population for PS breeding 

and GS breeding). In total, 1,484 markers on the linkage map were genotyped in GS breeding, 

and the markers were groups in 565 loci (P1: 265 loci; P2: 300 loci) on the linkage map. I 

plotted the degree of LD, r2, against map distance for all markers combinations that co-located 

within 50cM (Fig. 6.7). In the initial population, the levels of LD between most pairs of markers 

were low over all range of distance while some pairs of close markers showed high levels of LD. 

The expected effective population size, which was calculated from the estimated r2 in all the 

linkage groups, was 340.7, suggesting the large effective population size of the initial 

population. 

I had scheduled to use all eight traits that were evaluated in both the breeding population 

and the agronomic trait evaluation data (i.e., main stem length, number of nodes, flowering of 

the first flower, number of flower clusters, number of primary branches, number of seed set in a 

plant, 1000 seed weight, and test weight) to create a selection index. However, at the first 

generation (i.e., GS1 and PS1), the seed shuttering rate was high, and phenotypic values of the 

number of seed set in a plant was not credible. Thus, I used seven traits, except the number of 

seed set, to use the selection index in PS breeding and GS breeding. As weights for the seven 

traits, I used the regression coefficients of PCR based on the first two principal components, 

which represented the smallest RMSEP (i.e., 13.3 by leave-one-out cross-validation among 11 

varieties). The second-smallest RMSEP was 15.0 when I used the first three principal 

components. Table 6.3 shows the regression coefficients for the seven traits in the selection 

index. When these coefficients were used, the correlation coefficient between the observed yield 

and the predicted selection index was 0.73 in leave-one-out cross-validation in the 11 cultivars 

used in the agronomic trait evaluation data. Table 6.4 shows the correlation coefficients among 

seed yield and the seven traits used in the selection index for the agronomic trait evaluation data 

(above the diagonal) and the initial breeding population (below the diagonal). The traits 

representing high correlations with seed yield tended to obtain large coefficients in the selection 

index. The similar relationship among seven traits in both the agronomic trait evaluation data 

and the initial breeding population encouraged me to use the created selection index in the field 

trial. In the later breeding procedures, I used the coefficients shown in Table 6.3 to calculate the 

selection index. 
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Figure 6.8 shows the relationship between observed and expected (fitted) values of 

selection index at GS1 (a) and GS3 (b). At GS1, the correlation coefficient between observed 

and expected values was 0.92. On another hand, at GS3, the correlation coefficient was 0.71 and 

the heavy shrinkage of expected values to the mean value was shown. 

Table 6.5 shows the prediction accuracy of the prediction model built at GS1 and GS3 in 

leave-one-out cross-validation. At GS1, the lowest prediction accuracy was 0.49 (flowering of 

the first flower) and the highest accuracy was 0.67 (test weight) among traits consisting of 

selection index. The prediction accuracy of selection index at GS1 was 0.71. At GS3, although 

the highest accuracy was 0.77 in flowering of the first flower, the lowest accuracy was –0.49 in 

test weight, suggesting that GS3 prediction model could not predict test weight at all. However, 

because there is no large variation in the expected values of test weight, it did not affect the rank 

of the expected selection index at GS3. Thus, I included test weight in the selection index at 

GS3. The prediction accuracy of selection index at GS3 was 0.67. 

To evaluate whether a prediction model could keep accuracy in later generations, I 

conducted two types of analysis. First, I compared the prediction accuracies when the prediction 

model built at GS1 was used to predict genetic values at GS1 (i.e., the same way conducted in 

two years field trial) with when the prediction model built at GS1 was used to predict genetic 

values at GS3 (i.e., the way assuming that the prediction model was not updated at GS3). Blue 

bars in Fig, 6.9 shows the prediction accuracy at GS1, and red bars shows the prediction 

accuracy at GS3 in seven traits consisting of the selection index when the prediction model built 

at GS1 was used. The prediction accuracy at GS3 was lower than that at GS1 in all the traits. 

When the model built at GS1 was used to predict plants at GS3, the lowest accuracy was –0.07 

in flowering of the first flower, and the highest accuracy was 0.54 in number of primary 

branches. Second, I compared the selected plants at GS3 based on the predicted values of the 

selection index when the prediction model built at GS3 was used (i.e., the same way conducted 

in two years field trial) with when the prediction model built at GS1 was used (i.e., the way 

assuming that the prediction model was not updated at GS3). Figure 6.10 represents the 

relationship the expected (i.e., values calculated using the updated model built at GS3) and 

predicted values (i.e., values calculated using the non-updated model built at GS1) of selection 

candidates at GS3. Only one plant (i.e., genotype) was selected by both prediction models, 

while the other 11 selected plants were different in the two situations, suggesting that the 

different genotypes would have contributed to the next generation if the prediction model had 

not been updated. 
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Figure 6.11 shows the change of population mean in nine traits through selection cycles of 

PS breeding and GS breeding, which was obtained from the field testing for comparison of 

populations. Note that the base population was not identical to the initial breeding population. 

For PS breeding, number of nodes showed the significant increase from the base population to 

the population that experienced two cycles of PS (p-value < 0.05 in pairwise Wilcoxon test). 

For GS breeding, significant increase through two years selection (i.e., four times of GS) was 

shown in main stem length (p-value < 0.01 in Tukey test), number of nodes (p-value < 0.05 in 

pairwise Wilcoxon test), flowering of the first flower (p-value < 0.01 in pairwise Wilcoxon test), 

number of flower clusters (p-value < 0.05 in pairwise Wilcoxon test), and number of seed set in 

a plant (p-value < 0.05 in Tukey test). In main stem length and number of flower clusters, GS 

breeding attained higher values than PS breeding significantly (p-value < 0.05 in Tukey test and 

pairwise Wilcoxon test, respectively). 

Figure 6.12 represents the change of population mean of the selection index through two 

years of PS breeding and GS breeding. The population that experienced two years GS breeding 

attained 14.9% higher value than the base population (p-value < 0.01 in Tukey test). On the 

other hand, the population after PS breeding did not show the significant differences from any 

other populations while it attained 3.6% higher value than the base population. 
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Figure 6.7. Linkage disequilibrium (r2) in breeding population. The horizontal axis is the 

genetic distance between two candidate markers. The vertical axis is r2. Orange line 

represents the expected r2. 
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Table 6.3. The coefficients for calculation of the selection index. 

 

  

Trait� Coefficient�

main.stem.length.� +0.550�

number.of.nodes.� +0.053�

flowering.of.the.first.flower.� +0.011�

number.of.flower.clusters.� +0.728�

number.of.primary.branches.� +0.015�

1000.seed.weight.� D0.001�

test.weight.� +0.306�
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Figure 6.8. Relationship between observed and expected values of selection index at 

GS1 (a) and GS3 (b). Red points represent the individuals that were selected at the 

selection.  
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Table 6.5. Prediction accuracy at GS1 and GS3. The accuracy was calculated as 

Pearson’s correlation coefficient between fitted values and predicted values in 

leave-one-out cross-validation. 
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Figure 6.9. Prediction accuracy at GS1 and GS3 when the prediction model built at GS1 

was used. The accuracy at GS1 was obtained by leave-one-out cross-validation. 
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Figure 6.10. Expected values and predicted values at GS3. Expected values were 

calculated by using the prediction model built at GS3. Predicted values were calculated 

by using the model built at GS1. Greed points show the 12 individuals that were 

selected at GS3 in actual. Red line represents the value that should be the threshold for 

selection if the model built at GS1 was used. 
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Figure 6.11. Change of population mean of nine yield relating traits through two years of 

PS breeding (gray) and GS breeding (black) for main stem length (cm: a), number of 

nodes (b), flowering of the first flower (days: c), number of flower clusters (d), number of 

primary branches (e), 1000 seed weight (g/1000 seeds: f), test weight (g/l: g), number of 

seed set in a plant (h), and number of secondary branches (i). The values were 

obtained in the field trial for comparison of breeding schemes.  
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Figure 6.11. (Continued) 

  

Ba
se
.

po
pu

la
Ko

n�

Ye
ar
.1
�

Ye
ar
.2
�

●
●

●

● ●

1 2 3 4 5

20
40

60
80

10
0

12
0

14
0

Nu
m
be
rO
fF
low

er
Cl
us
te
rs

●
●

●

●

●
●

●

●

1 2 3 4 5

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

Nu
m
be
rO
fP
rim

ar
yB
ra
nc
he
s

●

●

●

●
●

●

●

●

1 2 3 4 5

22
24

26
28

30
32

X1
00
0S
ee
dW

ei
gh
t

●
●

●

(d)�

(e)�

(f)�

N
um

be
r.o

f.fl
ow

er
.c
lu
st
er
s�

N
um

be
r.o

f.p
rim

ar
y.
br
an
ch
es
�

10
00
.se

ed
.w
ei
gh
t.

(g
./.
10

00
.se

ed
s)
�



 150 

 

Figure 6.11. (Continued) 
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Figure 6.12. Change of population mean of selection index through two years of PS 

breeding (gray) and GS breeding (black). The values were obtained in the field trial for 

comparison of breeding schemes. 
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6-4. Discussion 

6-4-1. Comparison of breeding schemes 

I constructed a high-density linkage map for common buckwheat. The number of linkage 

groups converged to eight, which is the basic number of chromosomes in common buckwheat. 

The size of the linkage groups in the P1 and P2 linkage map were 773.8 and 800.4 cM, 

respectively (Fig. 6.2 and Table 6.1). Some linkage maps have previously been developed for 

common buckwheat by Hara et al. (2011), Konishi and Ohnishi (2006), Pan and Chen (2010), 

and Yasui et al. (2004). Compared with the previously constructed map, the map constructed in 

the present study had the largest number of markers on one side (i.e., P1 map or P2 map), and 

the average interval of adjacent markers was 2.13 cM, which is the smallest interval reported 

previously. Moreover, the map constructed in the present study converged to eight linkage 

groups including all markers used in the mapping analysis, whereas the others did not. Together, 

these results show that the map constructed in the present study will be suitable for use as a 

basic linkage map in the future studies of common buckwheat. The linkage map constructed in 

the present study had 756 independent loci and 8,884 markers (Fig. 6.2 and Table 6.1). Thus, 

the map harbored multiple markers at a single position (Fig. 6.4). This characteristic may 

contribute to the versatility of the linkage map. Common buckwheat has a high level of genetic 

variation; therefore, genetic composition differs by population. This high level of genetic 

variation makes it difficult to apply markers detected in one population to another population. 

However, if a single position has multiple markers, at least one of the markers may be 

polymorphic in a different target population. This allows the linkage-mapping step to be 

skipped for new target populations because the positions of the co-located polymorphic markers 

are already known. In actual, 1,484 polymorphic markers that represented 565 loci on the 

linkage map were detected in the breeding population of common buckwheat (Fig. 6.2). It 

suggests the usefulness of the linkage map constructed in the present study. 

QTL were detected for main stem length (Fig. 6.6 and Table 6.2). QTL detected on the P1 

map were not detected on the P2 map, suggesting that the QTL detected in one population (i.e., 

the loci heterozygous in one or both parents) may not be detected in another population. That is, 

QTL efficient in one population may not totally explain the genetic variation of the target trait 

in another population. This suggests that MAS may not be a suitable method for use in common 

buckwheat populations. This suggestion agrees with the previous study by Strauss et al. (1992), 

in which they suggested that QTL detected in a mapping population might not be responsible 

for variation in a breeding population. The result of QTL analysis implies the more 
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effectiveness of GS than MAS in plant breeding, in particular, when the target species is 

considered to have large variation in the population. 

For the breeding population of common buckwheat in the present study, I calculated the 

level of LD among the pairs of polymorphic markers on the identical linkage group. The level 

of LD was low over the chromosome (i.e., linkage group), and the estimated effective 

population size was large (Fig. 6.7). It is suggested that the prediction accuracy of GS decreases 

in the population with large effective population size because the accuracy depends on the 

levels of LD (Resende et al., 2014). Calus et al. (2008) showed the dramatic improvement of 

prediction accuracy when the average r2 of adjacent markers changed from 0.1 to 0.2 in their 

simulation study. Hayes et al. (2009) mentioned that r2 should be greater than or equal to 0.2 on 

the basis of the previous studies. In the initial population of the present breeding program, 

although the expected r2 was lower than 0.2 even between close markers, many pairs of markers 

represented the r2 that were higher than 0.2 (Fig. 6.7). In the simulations in Chapter 3, 

additionally, I assumed an extreme situation, linkage equilibrium in the base population, and 

showed that GS breeding could work better than PS breeding even for such a breeding 

population with low levels of LD. From the information, it is inferred that GS breeding would 

work in the common buckwheat population under the field trial in the present Chapter. 

In the field trial to compare GS breeding with PS breeding using common buckwheat, the 

target trait was seed yield per unit area, which it is required to evaluate with multiple plants. If 

measurements with multiple plants are performed, there is genetic heterogeneity in the common 

buckwheat population, and it is difficult to associate this target trait with genome-wide marker 

genotypes. To perform selection according to this target trait (i.e., yield per unit area), I created 

the selection index that can be represent the yield per unit area, using the relationship between 

other yield related traits, which can be evaluated in each individual, and the target trait (i.e., 

yield per unit area) (Table 6.3). All the selection steps were performed on the basis of this 

selection index. In GS breeding, the population mean of the selection index increased 

significantly by 14.9% from the mean of the base population through two years (four cycles) of 

selection. In PS breeding, this value increased 3.6% from the base population, while the 

increment was not significant (Fig. 6.12). This difference in improvement of the selection index 

between by GS breeding and by PS breeding suggests the advantage of GS breeding to improve 

genetic ability than PS breeding in common buckwheat. At the first GS and PS steps, the 

observed and expected values of the selection index showed high correlation, thus the selected 

12 individuals (i.e., genotypes) were almost identical (Fig. 6.8a). And, the response to one cycle 
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of selection in GS breeding was similar to that of PS (Fig. 6.12). This suggests the efficiency of 

GS in the offseason nurseries that enable two selection cycles per year, which agree with the 

suggestion by the previous simulations in Chapter 3. In Chapter 3, GS breeding with three 

cycles of selection per year attained higher gain than GS with one or two cycles in short-term 

breeding program. In the field trial of this Chapter, my colleagues and I conducted GS breeding 

with only two cycles per year because of the speed of genotyping and analysis for GS. At the 

step where a prediction model was updated (i.e., GS1 and GS3), it was not necessary to 

complete three tasks, i.e., genotyping, phenotyping, and updating a prediction model, prior to 

flowering of the breeding population. At GS2 and GS4, however, we had to complete 

genotyping and selection of parents within a period from budding to flowering in the breeding 

population (i.e., about 40 days). Because of this tough labor, we have decided to conduct GS 

twice per year in this breeding program of common buckwheat. More cycles of GS would 

improve the efficiency of GS breeding in two years if we could do that. In this field trial, the 

selection index was observed only after pollination, thus the pollen parents were not controlled 

at all generations in PS breeding and at GS1 and GS3 (i.e., generations where the prediction 

model updated) in GS breeding. In GS breeding, however, pollen parents could be selected at 

GS2 and GS4 because only marker genotype data were used in selection at these generations. In 

Chapter 3, the efficiency of pollen control in GS breeding was suggested. In the field trial in the 

present Chapter, the possibility of the pollen control in GS breeding might work. 

For the seven traits that consisted of the selection index, I observed the trend that traits 

weighted largely in the selection index were improved largely in GS breeding (Table 6.3 and 

Fig. 6.11). In GS breeding, number of seed set in a plant, which was not included in the 

selection index but is much important for yield per unit area, increased by 49.4% from the base 

population. Number of primary branches and 1000 seed weight, which had a small positive and 

a negative weight in the selection index, respectively, slightly decreased through two years of 

GS breeding. Although it is known that number of seed set in a plant and test weight show 

trade-off relationship, the trade-off was not shown in the field trial. Therefore, the selection 

index is thought to be effective to improve yield per unit area with keeping the balance between 

traits included in the index. 

This field trial was conducted in the similar way to simulations in Chapter 3. The result of 

this field trial study was similar to that of the simulations in Chapter 3. In this study, I could not 

find the factors that caused serious discordance between the empirical study and the simulation 

study. I evaluated the selection accuracy to compare the result of the field trial with that of the 
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simulations. In the present study, the potential of the base population was evaluated instead of 

the potential of the initial breeding population. The base population is thought not to represent 

the genetic condition of the initial population because the initial population experienced a 

genetic bottleneck after the base population. Therefore, I could not analyze the effect of the 

prediction accuracy of GS to the degree of genetic improvement in this study. The prediction 

accuracy of GS3 was lower than that of GS1 for the selection index (Table 6.5). The reason of 

this decrease of the accuracy is the lower heritability at GS3 than at GS1 because the genetic 

variance became lower at GS3 than at GS1 trough selection. The prediction accuracy depends 

on the heritability with the assumption that the phenotypic variance is constant, and low 

heritability results in the low prediction accuracy (Daetwyler et al., 2008). In this field trial, the 

genetic improvement of the breeding population appeared to be lower than that expected in 

simulations. The reason might be the small breeding population size in the field trial, which 

resulted in strong genetic bottleneck in the breeding population. I, however, could not be 

convinced of this hypothesis, because the data of the initial population could not be used in this 

study. Moreover, the simulation result represented the mean value of 100 trials while the result 

of the present field trial was just one trial. To verify the difference between simulations and 

field trials and to clarify the reason behind it, further field trials and their detailed analysis might 

be required. In Chapter 3, the importance of updating a prediction model was suggested. It is 

true especially when a breeding population has low levels of LD because of the rapid change of 

patterns of LD in the breeding population through selection cycles. In the present study, the 

prediction model built at GS1 showed lower accuracy at GS3 than at GS1 (Fig. 6.9). If this 

previous model had been used at GS3, different individuals were selected from the individuals 

that were selected at GS3 actually. These results suggest that it is important to update the 

prediction model with selection cycles in GS breeding of an allogamous plant population with 

low levels of LD, as is the case of simulation study in Chapter 3. 

 

6-4-2. Conclusion 

GS was effective to improve the genetic ability of the breeding population in common 

buckwheat. This result can be applied to the other plant species because of the fundamentality 

of mass selection used in this study. The advantage of GS breeding over PS breeding was 

suggested in the field trial. The advantage of GS over MAS was implied by QTL analysis, in 

which it is suggested that QTL efficient in one population may not totally explain the genetic 

variation of the target trait in another population. The usage of a selection index might be 
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effective when it is difficult to evaluate the target trait in a single plant. In breeding of 

allogamous crops with low levels of LD, updating the prediction model is important to maintain 

the accuracy of GS, especially when selection and crossing are repeated among the selected 

plants (i.e. genotypes) as mass selection conducted in this field trial. The efficiency of GS 

mainly comes from the acceleration of generations by offseason nursing and the possibility of 

pollen control. In the current situation, however, the limiting factor of GS breeding with 

acceleration of generations might be the speed of genotyping, in particular, when the target 

species has a short generation time. To put GS into practical use, a cheap and rapid 

high-throughput genotyping system is required. 
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Chapter 7 
 

Development of a simple language to script and 

simulate breeding schemes: the breeding scheme 

language 

 

 
7-1. Introduction 

The use of optimal breeding schemes is critical in plant breeding. Generally, however, there are 

a number of possible breeding schemes, and it is not easy to determine the optimal scheme 

under conditions of a target species and target traits. Plant breeders face the difficulty to decide 

a detailed breeding scheme. This situation makes an increased need for a system that helps 

breeders to find an optimal breeding strategy. 

The difficulty of choosing a breeding scheme makes breeders conservative to try a new 

one. A new breeding strategy possesses the possibility of critical problems even if it looks like a 

good scheme because plant breeding is involving many systems to work. Once they are sure that 

a conventional breeding scheme works, they do not want to change their breeding scheme at a 

risk of failure. Thus, a system that helps breeders to try some breeding strategies is also 

necessary. 

Simulation study is useful to help choose a better (or the best) breeding scheme. Wang et 

al. (2003) conducted a simulation study to compare the two breeding strategies in wheat, in 

which inbreeding were conducted. They chose one scheme according to the simulation results 

including genetic improvement and cost efficiency. They also evaluated the impact of genetic 

architecture. Yano et al. (2000) tried optimizing some factors in mass selection of outcrossing 

species by simulations. The above studies assumed PS, which included a lot of factors and 

systems in breeding. GS, in particular, more factors may affect to the outcome than PS because 

GS involves more factors than PS such as marker density, relationship between a training 



 158 

population and a breeding population, LD patterns in these populations, and so on. Lorenz 

(2013) suggested the importance of resource allocation in training population in GS and 

evaluated the difference between different numbers of replications and population sizes by 

using simulations assuming maize. Hickey et al. (2014) also conducted simulations to decide 

training population designs and suggested that the best training population design depended on 

the marker density. As suggested by Hickey et al. (2014), simulation study is useful to detect 

unexpected outcomes before they perform an actual field trial. For example, Bernardo and Yu 

(2007) conducted simulation study to evaluate the prediction accuracy and the response to GS in 

maize. Massman et al. (2013) reported an actual field trial result, in which the breeding scheme 

was similar to that assumed in Bernardo and Yu (2007). The simulations showed GS has 18 to 

43% larger gain than marker assisted recurrent selection when the target traits were controlled 

by 20, 40, and 100 QTL under the heritability heritability of 0.2, 0.5, and 0.8. This results were 

consistent with the field trials where GS showed 14 to 50% larger gain than marker assisted 

recurrent selection. 

Some simulation platforms were created to evaluate and compare several breeding 

schemes or parameters (Sun et al., 2011). For GS, Riedelsheimer and Melchinger (2013) 

developed a calculation tool to optimize the allocation of resources in one cycle for biparental 

population. However, breeders should consider about the genetic improvement through the all 

selection cycles. It is difficult for breeders to take the first step in conducting breeding 

simulation because of the complexity to build a simulation platform or even to using a 

simulation tools. A simple and flexible simulation plat form is necessary for breeders to 

evaluate their planned breeding schemes. 

In the present study, I created a breeding scheme language as a novel simulation platform 

by using R (R Development Core Team, 2014). Breeders can apply their planned genetic 

architecture and breeding schemes flexibly in the system. Moreover, it can be used as an 

education tool of breeding simulation because users can try various parameters and breeding 

schemes by themselves and understand how these parameters and schemes affect the results of 

the breeding simulation. 
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7-2. Description 

The breeding scheme language is composed of some functions describing about founder, 

breeding, mating, and simulation result. The functions utilize the style of R function, thus users 

write the function name and describe parameters in the parenthesis after the function name. 

Users can simulate their planned breeding scheme by writing functions in order of 

implementation. Each function has the default inputs, and the default inputs are adopted when 

users describe no input in the function. The breeding scheme language is written in R (R 

Development Core Team, 2014). 

 

Founder functions 

To make an initial population for breeding, two functions are provided: 

l defineSpecies(win = F, loadData = F, nSim = 1, nCore = 1, nChr = 7, lengthChr = 150, 

effPopSize = 100, nMarkers = 1000, nQTL = 50, propDomi = 0, nEpiLoci = 0) 

l initializePopulation(nPop = 100, gVariance = 1) 

where the parameters in the parenthesis represent the default inputs. 

The function “defineSpecies” defines and creates species data. Each parameter means: 

win             PC is Windows or not 

loadData         load the last simulated species data or not 

nSim            the number of simulation trials 

nCore           simulation processed in parallel over this number of cores (If 

“win=T”, this parameter is neglected and “nCore=1” is used.) 

nChr            the number of chromosomes 

lengthChr        the length of each chromosome in cM 

effPopSize       the effective population size in the base population 

nMarkers        the number of markers to use in GS 

nQTL          the number of QTL controlling the target trait 

probDomi       the probability of dominant QTL among the all QTL 

nEpiLoci        the expected number of epistatic loci for each effect 

To create species data, the function utilizes the software GENOME (Liang et al., 2007) in 

the present conditions. This software is unsupported by Windows, thus Windows users need 

to bring species data from another computer. And, I utilize R package “parallel” (Urbanek, 

2013) to parallelize calculations, which is not supported in Windows. When the parameter 

“win” is TRUE, the parameter “nCore” is inputted as 1 automatically. By adopting 
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loadData=T, users can compare some breeding schemes by using the same data simulated in 

the platform. 

The function “initializePopulation” creates an initial population for breeding. 

Parameters represent: 

nPop           population size 

gVariance       genetic variance in the initial population 

The genetic variance is important when phenotyping is implemented (mentioned later) 

because it depends on the scale of heritability. 

 

Breeding functions 

Four functions are provided to implement actions in plant breeding: 

l phenotype(errorVar = 1, popID = NULL) 

l genotype() 

l predict(popID = NULL, trainingPopID = NULL) 

l select(nSelect = 40, random = F, popID = NULL) 

where the parameters in the parenthesis represent the default inputs. 

The function “phenotype” implements phenotyping of individuals in specified 

population. The parameters mean: 

errorVar         environmental error variance 

popID           population ID to be evaluated (Default is the latest population) 

The function “genotype” implements acquires marker genotypes of all genotype 

included in the breeding scheme. It has no input. 

The function “predict” performed genomic prediction by using phenotype data and 

genotype data obtained previously. Each parameter means: 

popID           population ID to be predicted (Default is the latest population) 

trainingPopID           population ID to be used to train a prediction model (Default 

is the all populations having phenotype data) 

This function utilizes R package “rrBLUP” (Endelman, 2011). 

The function “select” conducts selection in the defined population. 

nSelect          the number of selected individuals 

random          assuming random selection or selection according to their features 
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popID           population ID to be selected (Default is the latest population when 

random=T. When random=F, default is the last evaluated 

population.) 

This function can be used not only for selection of favorite genotype, but also for random 

selection. This is useful when breeders try producing genetic bottleneck or evaluating a 

portion of individuals among a population. 

 

Mating functions 

Three functions are provided for mating among parents and producing progenies: 

l cross(nProgeny = 100, equalContribution = F, popID = NULL) 

l selfFertilize(nProgenyPerInd = 1, popID = NULL) 

l doubledHaploid(nProgeny = 100, popID = NULL) 

where the parameters in the parenthesis represent the default inputs. 

The “cross” function conducts random mating among parents. The function 

“selfFertilize” implements inbreeding, and the “doubledHaploid” function makes doubled 

haploids from assigned population. Parameters mean: 

nProgeny             the number of progenies 

nProgenyPerInd       the number of progenies derived from one parent 

equalContribution      If TRUE, all individuals are used the same number of times as 

parents. If FALSE, individuals are chosen at random to be parents. 

popID               population ID to be used as parents (Default is the latest 

population.) 

In the function “cross”, the number of progenies should be larger than the number of parents 

when users choose equalContribution=T. 

 

Results functions 

Two functions are provided to show and save the results of breeding: 

l plotData(ymax = NULL, add = F) 

l outputResults(summarize = T, directory = NULL) 

where the parameters in the parenthesis represent the default inputs. 

The function “plotData” shows the genotypic value trough generations of breeding in a 

figure. The figure shows population means of each simulation replication and the averaged 

value over simulation replications. By assigning the parameter “ymax”, users can define the 
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maximum value of genotypic values in the figure. If user write add=T, the result obtained in 

the previous simulations were also drawn in the figure. 

The function “outputResults” saves the results. If summarize=T, the results averaged 

over the all simulation replications are saved. If summarize=F, the data used in breeding 

simulations are saved directly. Users can assign the directory in which the data is saved. This 

parameter is useful especially when summarize=F because the data is too large to save in the 

current directory. 

 

Population ID 

In many functions mentioned above, the parameter “popID” is used. The population ID starts 

from 0 in the initial population. After the initial population, the population ID is updated 

when the following functions are represented in code: 

1. select 

2. cross 

3. selfFertilize 

4. doubledHaploid 

The results are shown according to the population ID in the figure. However, the selected 

individuals belong to the previous population ID (i.e., population ID they belonged to before 

they were selected) in the result figure. 

 

User-friendly tool 

The whole simulation code was written in R. I used a package “shiny” (RStudio, Inc., 2014), 

which is a web application framework developed by RStudio, to create a user-friendly tool. 

By using a package “shinyAce” (Trestle Technology, LLC., 2013), users can describe their 

planned breeding scheme and look result in one screen (Fig. 7.1). 
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7-3. Computational problems and future plans 

In the present conditions, the breeding scheme language creates an initial population ahead of 

breeding simulation. Moreover, the adopted software GENOME is not supported in Windows. 

In the future, I can rewrite the function to create an initial population by the other software and 

to import genome data users possess. It is useful that breeders import their data and conduct 

breeding simulation. In many cases, breeders want to try evaluating the efficiency of breeding 

schemes on the basis of the actual initial population data. 
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7-4. Examples 

7-2-1. Example 1 

As an example, I show the result of comparison PS with GS. At first, I conducted three times of 

simulation replications in which three times of PS were conducted (Fig. 7.2a). The executed 

code was: 

defineSpecies(nSim = 3) 

initializePopulation() 

phenotype() 

select() 

cross() 

phenotype() 

select() 

cross() 

phenotype() 

select() 

cross() 

plotData() 

The obtained result was shown in Figure 7.3 (a). Gray lines represent results of each simulation 

replication, and black line represents the averaged value over all simulations. Then, the GS, in 

which the prediction model was updated each selection by using all available phenotypic data, 

was conducted (Fig. 7.2b). The implemented code was: 

defineSpecies(nSim = 3, loadData = T) 

initializePopulation() 

phenotype() 

genotype() 

predict() 

select() 

cross() 

phenotype() 

genotype() 

predict() 

select() 

cross() 
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phenotype() 

genotype() 

predict() 

select() 

cross() 

plotData(add = T) 

Here, I used the same initial population as the previous simulations of PS. And the result should 

be drawn with the previous one. Figure 7.3 (b) is the obtained result. Solid lines represent the 

result of GS, and dotted lines show those of PS. I can see that GS attained a little higher genetic 

gain than PS in the three simulation replications. After that, I tried GS in which the prediction 

model was not updated (Fig. 7.2c). The code was: 

defineSpecies(nSim = 3, loadData = T) 

initializePopulation() 

phenotype() 

genotype() 

predict() 

select() 

cross() 

genotype() 

predict() 

select() 

cross() 

genotype() 

predict() 

select() 

cross() 

plotData(add = T) 

Figure 7.3 (c) shows the results of three kinds of breeding schemes mentioned above. Solid 

lines represent the result of GS without updating the prediction model. Dotted lines represent 

the GS with update of prediction models, and dashed lines represent the PS, which were 

implemented on ahead. Comparing in the selection cycles regardless the time necessary for 

breeding, GS without update the prediction model attained lower genetic gain than others. 

However, I need more replications of simulations to evaluate the potential of breeding schemes. 
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7-4-2. Example 2 

I simulated the breeding schemes assumed in cassava breeding, which were similar to those 

simulated in Chapter 5. Here, however, I considered the time to implement the breeding 

schemes. Additionally, I took account of the cost and effort to propagate and evaluate genotypes. 

I assumed four years of breeding scheme after the first selection using the historical phenotypic 

data. The breeding scheme using seedlings assumed to take two years for one cycle because of 

the effort of evaluation seedlings. The scheme discarding seedling data takes one year for one 

selection cycle. Thus, the scheme using seedling data can implement two selection cycles after 

the first selection, while the other scheme implements four cycles. I selected 50 genotypes 

randomly to propagate for preliminary yield trials because it requires a lot of effort and land. 

The simulation of breeding scheme discarding seedling data (Fig. 7.4a) was written as: 

defineSpecies(nSim = 6, nCore = 1, nChr = 18, lengthChr = 110, effPopSize = 100, 

nMarkers = 2000, nQTL = 100, propDomi = 0, nEpiLoci = 0) 

initializePopulation(nPop = 200, gVariance = 1)     # 0 

phenotype(errorVar = 1, popID = NULL) 

genotype() 

predict(trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 1 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 2 

genotype() 

predict(trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 3 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 4 

phenotype(errorVar = 16, popID = 2) 

genotype() 

predict(trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 5 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 6 

phenotype(errorVar = 16, popID = 4) 

select(nSelect = 50, popID = 2, random = T)     # 7 

phenotype(errorVar = 9, popID = c(3, 7)) 

genotype() 
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predict(popID = 6, trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 8 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 9 

phenotype(errorVar = 16, popID = 6) 

select(nSelect = 50, popID = 4, random = T)     # 10 

phenotype(errorVar = 9, popID = c(5, 10)) 

genotype() 

predict(popID = 9, trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 11 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 12 

plotData() 

The number written after “#” is the population ID corresponding to the population derived by 

the function. The simulation of scheme using seedlings (Fig. 7.4b) was written as: 

defineSpecies(loadData = T) 

initializePopulation(nPop = 200, gVariance = 1)     # 0 

phenotype(errorVar = 1, popID = NULL) 

genotype() 

predict(trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 1 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 2 

phenotype(errorVar = 36, popID = NULL) 

genotype() 

predict(trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 3 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 4 

phenotype(errorVar = 36, popID = NULL) 

phenotype(errorVar = 16, popID = 2) 

select(nSelect = 50, popID = 2, random = T)     # 5 

phenotype(errorVar = 9, popID = c(3, 5)) 

genotype() 

predict(popID = 4, trainingPopID = NULL) 

select(nSelect = 40, popID = NULL, random = F)     # 6 

cross(nProgeny = 600, equalContribution = F, popID = NULL)     # 7 
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plotData(add = T) 

where the same initial populations as the previous simulations were used. Figure 7.5 shows the 

results of simulations described above. Solid lines represent the result of breeding scheme using 

seedling data, while dotted lines represent the other one. It suggests that both breeding schemes 

attained the same level of genetic gain in four years. I conducted six replications of simulations 

by using same initial populations for both of the breeding schemes. The expected genetic gain 

after the first selection was same in both schemes because the first selection used only historical 

data that was identical in both schemes. However, the results were different between these 

schemes because of the fluctuation in mating, suggesting the large fraction of each simulation 

replication. More simulation replications are required to evaluate the potential of breeding 

scheme. 
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Figure 7.2 Breeding schemes evaluated in the example 1. Nnumbers in parenthesis are 

population IDs. Breeding scheme for PS (a), GS with model updates (b), and GS 

without model update (c). 
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Figure 7.3 Comparison of genetic gains among three breeding schemes. Black lines 

represent the averaged genetic gain over the simulation replications. Gray lines show 

each simulation replication’s genetic gain. (a) PS. (b) PS (dotted lines) and GS with 

model updates (solid lines). (c) PS (dashed lines), GS with model updates (dotted lines), 

and GS without model update (solid lines).  

(a)�

(b)�

(c)�
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Figure 7.4 Breeding schemes evaluated in the example 2. Numbers in parenthesis are 

population IDs. To build a prediction model, all phenotypic data that were evaluated 

before model building process (phenotypic data for the populations shown as red 

boxes) are used. Breeding scheme discarding seedling data (a) and using seedling data 

(b). 
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Figure 7.5 Comparison of genetic gains among two breeding schemes in cassava. 

Black lines represent the averaged genetic gain over the simulation replications. Gray 

lines show each simulation replication’s genetic gain. Solid lines show the scheme 

using seedling data. Dotted lines show the scheme discarding seedling data.  
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7-5. Discussion 

In the present study, I created a simple and flexible simulation platform, breeding scheme 

language. Users can define their target species and breeding schemes by the language. This 

language will be useful for breeders to evaluate breeding schemes and to choose a better (or the 

best) breeding scheme among a number of possible choices. The breeding scheme language can 

show a result figure in which users can compare various schemes. If users hope to analyze the 

data of breeding process in detail, they can see all results in each step of breeding process. 

The breeding scheme language needs more improvement for flexible input data. Users 

may have marker genotype data of their breeding populations. In this case, it is better to use a 

real marker data than to use a virtual data so that the situation could reflect a real situation of a 

breeding population, e.g., the patterns of LD and the genetic relationship among genotypes 

compositing the population. Availability of the function to use an actual data would be helpful 

to choose an optimal breeding scheme based on the information reflecting users’ target 

population. 

This breeding scheme language is based on R, and the way of input to simulations is 

similar to the R’s way. In this breeding scheme language, users are required to write functions 

in the correct order to represent their planned breeding scheme. By using this breeding scheme 

language, users can learn how to compose breeding simulation and how to write function in R. 

The breeding scheme language can be used not only to evaluate the planned breeding schemes, 

but also for education of simulation programming. Additionally, by conducting some simulation 

replications and looking the result of all replications, users can realize the fluctuation among the 

replications. However, there should be users who hope just to simulate breeding processes. For 

this type of users, an easier system may be more useful. For example, it is useful to develop a 

user interface that allows a user to compose their planed breeding scheme more easily than the 

present style.  

In this language, it takes long time to finish all simulations with replications. This problem 

is crucial when users try to a number of replications in each setting or when the size of breeding 

population is large. By improving the way of data handling inside the simulation system, this 

problem will be solved in some degree. The improvements mentioned above will make this 

breeding scheme language more useful and more easy-to-use. 
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Chapter 8 
 

Discussion 

 

 
This dissertation shows that GS is effective and feasible in plant breeding. By comparison of 

genetic gains of GS breeding with those of PS breeding or MAS breeding, it was suggested that 

GS breeding could attain higher gains than the others on the basis of the simulations and the 

field trial. In the field trial, it was shown that GS could be implemented with acceleration of 

selection cycles. These results would encourage plant breeders to apply GS to their breeding 

programs. 

At first, I demonstrated the high potential of GS on the basis of the simulation studies 

assuming three different types of plant species. In Chapters 3, 4, and 5, I conducted GS breeding 

simulations of an annual allogamous plant, an autogamous plant, and an allogamous plant with 

vegetative propagation, respectively. I performed these simulation studies under limitations and 

conditions imposed by reality in a breeding program of each plant species. In Chapter 3, the 

base population was in linkage equilibrium to reflect the situation of a species with a large 

effective population size. Although this situation was unsuited for GS because GS utilizes LD 

between QTL and markers, GS breeding could attain higher gain than PS breeding and MAS 

breeding. The success of GS in this breeding population was thought to be due to the LD that 

was formed through the selection cycles. In Chapter 5, I supposed that a target species was 

cassava, which is an allogamous species with the ability of vegetative propagation. The ability 

of vegetative propagation of cassava delivers the advantage that enables to estimate genotypic 

values of selection candidates precisely by repeated measurements of traits with clonally 

replicated genotypes. I assumed that we could update a prediction model by using CET and 

PYT data in addition to seedling data in the simulations, and showed that the prediction model 

utilizing seedling data showed higher performance than the model discarding seedling data. In 

both simulation studies, it is suggested that single-plant evaluation data, in which large 

environmental variation existed, was still useful to build a prediction model especially when the 
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evaluated plants (i.e., plants in a training population) are closely related (or identical) to 

selection candidates. In Chapter 4, I conducted GS simulations using marker genotype data of 

real cultivars in rice, which is an autogamous species. In this simulation study, I supposed that 

populations derived from crosses between two parental RILs were used as an initial population 

and a training population. I demonstrated that recurrent selection with GS could improve the 

population to have higher genotypic values than the highest genotypic value among all RILs. In 

this simulation study, I also showed the efficiency of the island-model GS, which was the novel 

strategy for GS breeding, which was proposed originally in this dissertation. The island-model 

GS requires moderately-differentiated subpopulations as initial subpopulations, and can utilize 

the genetic variation via selection conducted in each subpopulation. In autogamous crops, 

among-cultivar diversity is often large so that genetic difference among segregating families 

becomes large. Applying the island-model GS to such a breeding population can be efficient. 

Therefore, the island-model GS worked well in my simulation study assuming an autogamous 

crop. Through these simulation studies, the high potential of GS was suggested in plant 

breeding. At the same time, the importance of the selection of a suitable breeding scheme for 

each plant species is suggested. 

Through the simulation studies of this dissertation, I found that some factors affected the 

efficiency of GS breeding, whereas some factors had only a small influence on the eficiency. In 

Chapter 5, it is suggested that small rates of mis-labeling (i.e., 10% or less) had an insignificant 

effect on the genetic gain in GS breeding. This result means that there is not much point in 

increasing cost to prevent breeders from making mis-labeling when the rate of mis-labeling is 

small. Carefulness of each person will be enough for preventing mis-labeling under these levels. 

On the other hand, breeders should update a prediction model even though it is fairly costly. In 

Chapter 3, it is suggested that a prediction model should be updated because prediction accuracy 

declined rapidly if one prediction model was used continuously. The same case also happened 

in Chapter 5 when a prediction model was not updated. In Chapter 4, on another front, one 

prediction model could be used in GS of an autogamous species with gradual decline in the 

prediction accuracy. The difference might result from the difference of LD patterns between 

breeding populations assumed in these simulations. If an initial population has low levels of LD, 

a prediction model should be updated to catch up the rapid change of LD patterns in a breeding 

population. In Chapter 4, a population of inbred lines tends to have high and wide range of LD, 

resulting in slower change of the patterns of LD than the case of populations that have low 

levels of LD initially. These results suggest that it is essential to update a prediction model in 
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GS breeding at a suitable timing based on the LD pattern in a breeding population. Although 

updating a prediction model is fairly costly, it is necessary because prediction accuracy affects 

on the outcomes largely. LD patterns in a breeding population are also important, considering 

the suitable number of markers as well as the timing of model updating. Thus, it is important to 

estimate LD patterns on ahead of breeding. To find critical factors in GS breeding (or plant 

breeding with other selection methods), it is useful to conduct simulations under various 

situations and breeding schemes. When a breeding population that contributes to a supposed 

breeding program is already defined, it can be effective to verify performance of GS breeding 

by using simulations with reflecting the situation of the breeding populations (e.g., allele 

frequencies, LD, and other aspects of population structure). If a proper level of LD is considered 

in simulations, an efficient timing of model updating and a suitable number of markers will be 

revealed. Simulations using an actual marker data of a breeding population would be one of the 

most efficient way in the similar way in Chapter 4 to find an efficient breeding scheme. 

In Chapters 3, 4, and 5, the importance of maintenance of genetic variation in a breeding 

population was suggested if breeders hope long-term genetic improvement. There are a number 

of studies that discussed about the long-term selection in GS breeding. For example, Goddard 

(2009) and Jannink (2010) tried to keep rare allele in a breeding population by using a modified 

prediction model. Owing to the ability to keep genetic variation in a whole breeding population, 

the island-model GS worked well especially in later generations as suggested in Chapter 4. 

Chapter 3 suggested that occasional selection cycles without pollen control might be a clue for a 

long-term selection with the same levels of genetic gains in the earlier generations. And, low 

rate of mis-labeling affected less to the response to selection in Chapter 5 because mis-labeling 

resulted in weak genetic bottleneck at selection and maintained genetic variation at the high 

level. The maintenance of genetic diversity competes with rapid genetic improvement in a 

breeding population. It is, however, necessary to keep genetic variation in order to prevent the 

breeding population attained an incomplete genetic improvement and fixation, i.e., a local 

optimum. 

In Chapter 6, the field trial of GS breeding was conducted in common buckwheat. This 

field trial was conducted according to the breeding scheme that was conducted in the 

simulations of Chapter 3. The field trial showed that GS was effective for genetic improvement 

of a real common buckwheat population. It was also showed that GS breeding in the empirical 

field trial worked as expected in the simulations. In the simulation study, I simulated only 

additive effects for QTL, which may be unrealistic in a real-world breeding. All simulation 
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studies and the field trial in this dissertation aimed to improve the genetic potential of a 

breeding population as a whole (i.e., the mean or top values of a breeding population). Thus, the 

difference of the existence of non-additive effects (i.e., dominance and epistatic effects) in the 

field trial might not influence largely on the outcomes of GS breeding. If the efficiency of GS 

were evaluated in the development of F1 varieties, dominance effect would have a large impact 

on the outcome. In addition to the mode of inheritance of target traits, there is another 

discordance between the simulations and the field trial. Common buckwheat is a heteromorphic, 

self-incompatible species that has heterostylous flowers. Thus, in common buckwheat, mating 

can occur only between pin-type flowers and thrum-type flowers. This mating system was 

different from those assumed in simulation studies, i.e., random mating and single-round robin 

in an allogamous plant species and an autogamous species, respectively. Because the genetic 

improvement of a target trait was confirmed in the field trial of GS breeding as expected in the 

simulations, this restriction of mating in common buckwheat seems to have little influence on 

the outcome of GS breeding. Despite the discordance, the field trial pointed out almost the same 

factors as pointed out by the suggestions in Chapter 3 (e.g., importance of model updating in a 

breeding population with low levels of LD, the effect of selection for trait expressed after 

pollination, and the effect of offseason nursery in GS), suggesting that simulation studies are 

useful and reasonable to evaluate the performance of breeding strategies on ahead of actual 

breeding programs. By comparing the results of a field trial with the result of simulations, we 

may be able to find factors that cause discrepancy from the results expected in the simulations. 

These factors have potentials to permit more precise simulations, and to improve the gains in 

actual GS breeding closer to the expected gains in simulations. 

All the simulations and field trials in this dissertation showed the difficulty of choosing an 

efficient breeding scheme and the importance of simulation studies prior to actual trials. In 

Chapters 3, 4, and 5, I conducted breeding simulations according to each appropriate population 

and schemes to the plant species, and searched the suitable breeding schemes. Chapter 6 

verified that simulations could evaluate an actual efficiency of plant breeding, suggesting that a 

simulation study is useful for future GS breeding programs. Sun et al. (2011) suggests that 

breeding simulation can play an important role to decide a breeding scheme. However, most of 

breeders would not be so familiar to conducting simulations. In Chapter 7, I developed a simple 

and flexible breeding scheme language to script and simulate breeding schemes. The breeding 

scheme language might be useful for breeders to decide a breeding scheme. In the future, the 

systems to connect plant breeders working in the field and researchers are required to 
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implement plant breeding smoothly and effectively. This breeding scheme language, which was 

offered in this dissertation, would be one of the clues of such kind of systems. 

To meet the high demand of food and biofuel crop production mentioned in Chapter 1, GS 

is one of promising methods. In this dissertation, I evaluated the efficiency of GS on the basis of 

simulations and a field trial, and concluded that GS was effective for genetic improvement in 

plant breeding. However, the studies in this dissertation focused on only narrow range of issues 

of GS breeding. I feel certain that there are at least three remaining issues of GS breeding: 

statistical methods, the relationship between a training population and a breeding population, 

and the existence of GxE. First, through all the studies, I conducted GS within the framework of 

mass selection and mainly used ridge regression (G-BLUP) as a statistical model for prediction. 

As I mentioned above, if target of breeding is the development of F1 varieties, dominance effect 

would have a large impact on the outcome. As for epistatic effects, Huang et al. (2012) showed 

that epistasis was important as a principal factor that determined variation for quantitative traits. 

Thus, we should consider about the impact of non-additive effects and choose a statistical 

method that can take into account of non-additive effects. RKHS is effective to catch 

non-additive gene effects (Gianola et al., 2006). Denis and Bouvet (2013) showed the efficiency 

of a prediction model taking into account of dominance effect. In breeding expecting heterosis, 

these methods might work better than the methods assuming only additive effects. A prediction 

model taking into account of non-additive effects would be effective even in breeding expecting 

the improvement of a population as a whole (i.e., breeding strategies that were used in this 

dissertation). A model that can predict both additive and non-additive effects can be used for the 

selection based only on additive effects and may work efficiently to improve additive genetic 

variation in a breeding population. In the future, it might be necessary to develop the prediction 

model that can separate additive effects from all estimated effects, and to use that model in GS 

breeding even when we intend to improve only additive genetic variation in a breeding 

population. In addition to the mode of inheritance of target traits, there is another factor that 

might affect the choice of a statistical method. In the studies of this dissertation, the maximum 

number of markers was 50,000 (in Chapter 6). The recent development of genome technologies 

enables us to genotype millions of markers in a population. In some situations, in which we can 

use numerous markers, it might be better to choose LASSO or Bayesian methods with variable 

selection to prevent the entry of unnecessary markers for prediction. In Chapter 6, because 

G-BLUP showed the best accuracy among six statistical methods in cross-validation (data not 

shown), it was chosen as a method for the GS breeding. The other statistical method, however, 
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may be better than G-BLUP in longer-term selection. It would be meaningful to simulate 

long-term selection with various statistical methods to choose a suitable statistical method ahead 

of an actual breeding. Second, in all the studies in the dissertation, the training population was 

composed of a breeding population or ancestral population of a breeding population. And, my 

studies underscore the importance of updating a prediction model to catch the change of the 

genetic structure in a breeding population. In the real-world plant breeding, however, historical 

data exist and may be used as a training population that is not closely related to a breeding 

population. In this situation, the gain of GS is thought to be much lower than those expected in 

my studies, because the reliability of prediction depends on the distance between a training 

population and a selected population (Rincent et al. 2012). The long-term outcomes in this 

situation should be evaluated via simulations on ahead of real-world breeding. Third, my studies 

did not take into account of genotype × environment (GxE) interaction. Most GS methods treat 

GxE interaction as an error. Recently, the rapid climate change has become a problem. Chen et 

al. (2011) reported that many organisms are moving to other place with climate change. Iizumi 

et al. (2013) predicted the loss of food production because of the climate change in the world. If 

the present GS methods continue to be used in the rapidly changing environment, it cannot 

catch the environmental change and promote selection to the wrong direction. To fit GS 

breeding to such situation, it is necessary to take into account of response to environment. 

Heslot et al. (2014) proposed to involve crop modeling in GS model. They suggested the 

possibility to predict the performance of candidates according to future weather situations by 

using their model. To develop the strategies of GS breeding, it is required to use the model for 

the future performance. 

In this dissertation, I conducted the simulations and the field trial. The result of the field 

trial was coincided with that of the simulations, suggested that the simulation study was 

appropriate to verify the potential of GS breeding. The success of GS breeding with mass 

selection in common buckwheat might encourage breeders to try GS breeding in other 

allogamous species including trees and other perennial species, in which it takes a long time to 

evaluate the potential of GS. I analyzed mainly the genetic improvement based on phenotypic 

values in the breeding population to compare the results of the simulations and the field trial. 

Further analysis of marker genotype data might help us to investigate a system of selection and 

a heritable structure in a target trait or a target species. The difference of allele frequency and 

the range under intense selection might produce a little difference of genetic gain and prediction 

accuracy in a short time, but might produce a large difference in long-term selection. By 
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conducting this analysis, the discrepancy that was not found in this study may be detected. GS 

compensates a limitation of MAS (i.e., the inefficiency for improvement of a trait controlled by 

a number of QTL) by using whole-genome markers, while MAS has an advantage to select 

several QTL with large effects. The effectiveness of using both information of whole-genome 

markers and markers that were detected in QTL analysis has been suggested (e.g., Rutkoski et 

al., 2012). When several genes that explain a large part of trait variation are known, it might be 

necessary to consider these genes in GS breeding. I believe strongly in the value of the collateral 

implementation of simulations and an actual breeding in the future. The efficiency of simulation 

study, which was suggested in this dissertation, means that simulation study can contribute to 

more detailed and targeted breeding planning. In this study, I conducted the simulations and the 

field trial separately, and compared the results of them after both studies have been completed. 

In the future, it might be possible to simulate breeding process at each step of GS breeding. By 

simulating breeding process on the basis of the current situation of a breeding population, we 

might be able to choose a suitable selection strategy and select parental genotypes contributing 

to the next generation with consideration of the expected situation on the basis of the current 

situation. Through this dissertation, the challenges for the future have been suggested. The 

studies provide a useful knowledge to improve GS breeding technologies for the current and 

future breeding. 
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