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We investigate the parity-broken phase structure for staggered and naive fermions in the Gross-Neveu

model as a toy model of QCD. We consider a generalized staggered Gross-Neveu model including two

types of four-point interactions. We use generalized mass terms to split the doublers for both staggered and

naive fermions. The phase boundaries derived from the gap equations show that the mass splitting of tastes

results in an Aoki phase both in the staggered and naive cases. We also discuss the continuum limit of

these models and explore taking the chirally symmetric limit by fine-tuning a mass parameter and

two-coupling constants. This supports the idea that in lattice QCD we can derive one- or two-flavor

staggered fermions by tuning the mass parameter, which are likely to be less expensive than Wilson

fermions in QCD simulation.
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I. INTRODUCTION

Since the pioneering work in Ref. [1], the rich phase
structure in the lattice Wilson fermion has been extensively
studied [2–6]. As is well known [7], Wilson fermions
bypass the no-go theorem [8] and produce a single fermi-
onic degree of freedom by breaking the chiral symmetry
explicitly. This leads to an additive mass renormalization
and requires fine-tuning of a mass parameter for a chiral
limit. Furthermore at finite lattice spacing, there emerges a
parity-broken phase (Aoki phase) [1]. The full phase dia-
gram reflects the masses possessed by each of the original
doublers. As seen from this fact, the main reason for the
emergence of the parity-broken phase is that the Wilson
term gives a species(taste)-sensitive mass to produce a
mass splitting of species as well as breaking the chiral
symmetry. The understanding of the parity-broken phase
structure is not only useful for simulations with Wilson
fermions, but also gives practical information for the
application of overlap [9,10] and domain-wall [11,12]
fermions, both of which are built on the Wilson fermion
kernel. Indeed it is shown in [13] that the domain-wall
fermion also possesses a complicated parity-broken phase
diagram for a finite size of the extra dimension.

On the other hand, no parity-broken phase structure is
observed in staggered fermions [14–16] with their exact
chiral symmetry. However things could be changed if we
introduce a taste-sensitive mass term, which we refer to as
a taste splitting or flavored mass in this paper. Adams

recently established theoretical foundation of the index
theorem with staggered fermions [17] and presented a
new version of the overlap fermion constructed from the
staggered kernel [18,19]. He introduced a taste-splitting
mass term for the spectral flow to detect the index cor-
rectly. This mass term assigns positive and negative masses
to tastes depending on their flavor chiralities. After these
works the present authors [20] successfully defined
the index in the naive and minimally doubled fermions
[21–24] and presented new versions of overlap fermions by
implementing the flavored mass terms [25]. It is natural to
consider the phase diagram for these fermions with the
mass splitting of the tastes since it is also useful for the
practical application of their overlap versions as well as
themselves.
In this paper we study the parity-broken phase structure

for naive and staggered fermions with the flavored mass
terms. We use the two-dimensional lattice Gross-Neveu
models [3,26–30] as toy models of QCD. We develop the
generalized staggered Gross-Neveu model including two
types of four-point interactions to study the staggered
phase structure. We solve the gap equations for the large
N limit and obtain the phase boundaries in theM-g2 plane.
We show the Aoki phase exists both in staggered and naive
cases reflecting the mass splitting of tastes. In the naive
cases there are varieties of the phase diagram depending on
linear combinations of two types of the flavored masses.
This elucidation of the phase structure can contribute to the
practical application of these fermions and their overlap
versions. We also discuss the continuum limits of these
Gross-Neveu models. We show that we can take the chiral
continuum limit with the associated number of massless
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fermions by fine-tuning a mass parameter and two-
coupling constants. It indicates that, in Lattice QCD with
the staggered fermions with the Adams-type [18] or
Hoelbling-type [19] flavored masses, we can obtain the
two- or one-flavor massless fermions in the chiral and
continuum limit by tuning the mass parameter. They can
be less expensive than Wilson fermions in lattice QCD
simulations.

In Sec. II we study the parity-broken phase diagram by
using the naive Gross-Neveu model with the flavored mass.
In Sec. III we propose the generalized staggered Gross-
Neveu model and study the phase diagram. In Sec. IV we
investigate the continuum limit of these models and discuss
the first order phase boundaries in the phase diagram.
Section V is devoted to a summary and discussion.

II. NAIVE GROSS-NEVEU MODEL

In this section we investigate the phase diagram for
naive lattice fermions with flavored mass terms by using
the d ¼ 2 Gross-Neveu model, which has lots of common
features with QCD. Let us begin with the lattice Gross-
Neveu model with the flavored mass term, which is
given by

S¼1

2

X
n;�

�c n��ðc nþ��c n��Þ� g2

2N

X
n

½ð �c nc nÞ2

þð �c ni�5c nÞ2�þ
X
n;m

�c nðM�nmþðMfÞn;mÞc m; (1)

where � stands for � ¼ 1, 2, n ¼ ðn1; n2Þ are the
two-dimensional coordinates and c n stands for a
N-component Dirac fermion field ðc nÞjðj ¼ 1; 2; . . . ; NÞ.
We note the bilinear �c c means

P
N
j¼1

�c jc j. g
2 corre-

sponds to the ’t Hooft coupling. M is a usual mass assign-
ing the same mass to species while ðMfÞn;m is a flavored

mass assigning different masses to them. Here we define
the two-dimensional gamma matrices as �1 ¼ �1,
�2 ¼ �2 and �5 ¼ �3. We make all the quantities dimen-
sionless in this equation. Here we consider scalar and
pseudoscalar four-fermi interactions which are sufficient
to study the parity-phase structure. By introducing auxil-
iary bosonic fields �n, �n we remove the four-point inter-
actions as

S¼ 1

2

X
n;�

�c n��ðc nþ�� c n��Þþ
X
n;m

�c nðMfÞn;mc m

þ N

2g2
X
n

ðð�n�MÞ2þ�2
nÞþ

X
n

�c nð�nþ i�5�nÞc n:

(2)

By solving the equations of motion, we show the following
relation between these auxiliary fields and the bilinears of
the fermion fields

�n ¼ M� g2

N
�c c ; (3)

�n ¼ �g2

N
�c i�5c : (4)

These relations indicate how � and � stand for the scalar
and pseudoscalar mesons. After integrating the fermion
fields, the partition function and the effective action with
these auxiliary fields are given by

Z ¼
Z Y

n

ðd�nd�nÞe�NSeff ð�;�Þ; (5)

Seffð�n;�nÞ ¼ 1

2g2
X
n

ðð�n �MÞ2 þ �2
nÞ � Tr logDn;m;

(6)

with

Dn;m ¼ ð�n þ i�5�nÞ�n:m þ ��

2
ð�nþ�;m � �n��;mÞ

þ ðMfÞn;m: (7)

Here Tr stands for the trace both for the position and spinor
spaces. As is well known, the partition function in the
Gross-Neveu model is given by the saddle point of this
effective action in the large N limit. We denote as ~�n, ~�n

solutions satisfying the saddle-point conditions

�Seffð�n;�nÞ
��n

¼ �Seffð�n;�nÞ
��n

¼ 0: (8)

Then the partition function is given by

Z ¼ e�Seff ð~�; ~�Þ: (9)

By assuming the translational invariance we define the
position-independent solutions as �0 � ~�0 and �0 � ~�0

Then we can factorize a volume factor V ¼ P
n1 in the

effective action as

Seff ¼ V ~Seffð�0; �0Þ; (10)

~Seffð�0;�0Þ¼ 1

2g2
ðð�0�MÞ2þ�2

0Þ�
1

V
TrlogD: (11)

We can write Tr logD in a simple form by the Fourier
transformation to momentum space

TrlogD¼V
Z d2k

ð2�Þ2 log
�
det

�
�0þ i�5�0þMfðkÞ

þ i
X
�

�� sink�

��

¼V
Z d2k

ð2�Þ2 log½ð�0þMfðkÞÞ2þ�2
0þs2�; (12)
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with det being the determinant in the spinor space and
s2 ¼ P

�sin
2k�. MfðkÞ is the flavored mass represented

in momentum space. Now the saddle-point equations are
written as

�~Seff
��0

¼ð�0�MÞ
g2

�2
Z d2k

ð2�Þ2
�0þMfðkÞ

ð�0þMfðkÞÞ2þ�2
0þs2

¼0; (13)

�~Seff
��0

¼ �0

g2
� 2

Z d2k

ð2�Þ2
�0

ð�0 þMfðkÞÞ2 þ �2
0 þ s2

¼ 0:

(14)

In this section we consider two types of the flavored mass
for the naive fermion

Mð1Þ
f ðkÞ ¼ cosk1 cosk2; (15)

Mð2Þ
f ðkÞ ¼ 1

2ðcosk1 þ cosk2Þð1þ cosk1 cosk2Þ: (16)

Such mass terms were first introduced in the minimally
doubled fermion by using the point-splitting method [25].
Then these were introduced also for the naive fermion to
consider the index theorem and a new type of overlap
fermions [20]. Studying the phase diagram with these
flavored mass terms not only contributes to understanding
the overlap versions but also helps to understand the stag-
gered case in the next section. Here �0 and �0 are deter-
mined as �0ðM;g2Þ, �0ðM;g2Þ from the saddle-point
equations once the values of M and g2 are fixed.

Let us look into the phase structure with respect to parity
symmetry. The order parameter of this symmetry is �0,
which can take zero or nonzero values depending on values
of M and g2. Parity symmetry is spontaneously broken for
the nonzero cases �0 � 0. The phase boundary is deter-
mined by imposing �0 ¼ 0 on Eqs. (13) and (14) after
the overall �0 being removed in Eq. (14). Then the con-
ditions for the phase boundary, so-called gap equations, are
given by

Mc

g2
¼ �2

Z d2k

ð2�Þ2
MfðkÞ

ð�0 þMfðkÞÞ2 þ s2
; (17)

1

g2
¼ 2

Z d2k

ð2�Þ2
1

ð�0 þMfðkÞÞ2 þ s2
; (18)

with Mc being the critical value of M. As we will check
later, this phase boundary is a second-order critical line.
Here we derive the parity-phase boundary Mcðg2Þ as a
function of the coupling g2 by getting rid of the chiral
condensate �0 from these equations. We will calculate the
parity-phase boundaries for three cases of the flavored

masses Mð1Þ
f , Mð2Þ

f and Mð1Þ
f þMð2Þ

f .

A. Mð1Þ
f

The lattice fermion action with this flavored mass as-
signs the positive mass m ¼ 1 to two species with the
momentum ð0; 0Þð�;�Þ and the negative mass m ¼ �1
to the other two species with ð0; �Þð�; 0Þ. Before calculat-
ingMcðg2Þ numerically, we can anticipate the phase struc-
ture from the symmetry of the gap equations. To see this we

replace k1 by �� k1 in (13) and (14) for Mð1Þ
f . Then the

equations are converted into

��0 þM

g2
¼ 2

Z d2k

ð2�Þ2
��0 þMð1Þ

f ðkÞ
ð��0 þMð1Þ

f ðkÞÞ2 þ �2
0 þ s2

;

(19)

�0

g2
¼ 2

Z d2k

ð2�Þ2
�0

ð��0 þMð1Þ
f ðkÞÞ2 þ �2

0 þ s2
: (20)

Thus, if ð�0; �0Þ are solutions for ðM;g2Þ, ð��0; �0Þ are
solutions for ð�M;g2Þ. It also means, if ðMc; g

2Þ is a
critical point, ð�Mc; g

2Þ too. We can anticipate the phase
diagram for this case is symmetric about M ¼ 0. Now we
derive the parity-phase boundary Mcðg2Þ numerically for

Mð1Þ
f ðkÞ ¼ cosk1 cosk2. The phase diagram for this case is

depicted in Fig. 1. A stands for the parity-symmetric phase
�0 ¼ 0 and B for Aoki phase �0 � 0. The result of the
phase diagram is depicted in Fig. 2. In the large coupling

FIG. 1 (color online). Aoki phase structure for the naive fer-

mion with the flavored mass Mð1Þ
f . The left and right cusps are

related to two species ð0; 0Þð�;�Þ with m ¼ 1 and the other two
ð0; �Þð�; 0Þ with m ¼ �1, respectively. A and B stands for
parity-symmetric and -broken phases.
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region there are two phase boundaries while there are four
phase boundaries in the weak coupling region. The left and
right cusps correspond to two species ð0; 0Þð�;�Þ with the
positive mass (m ¼ 1) and the other two ð0; �Þð�; 0Þ with
the negative mass (m ¼ �1), respectively. It reflects the

mass splitting of species given by the flavored mass Mð1Þ
f .

Here we note we obtain the same result for �Mð1Þ
f except

that the species ð0; 0Þð�;�Þ live at the right cusp and the
other two live at the left. It means the sign of the this
flavored mass is irrelevant for the spectrum of the Dirac
operator or the associated Aoki phase.

B. Mð2Þ
f

The lattice fermion action with this flavored mass as-
signs the positive mass (m ¼ 2) to one of four species with
the momentum (0, 0), zero mass to ð0; �Þð�; 0Þ and the
negative mass (m ¼ �2) to ð�;�Þ. To look at the symme-
try of the gap equations we replace k� by �� k� in (13)

and (14) for Mð2Þ
f . Then the equations are converted into

��0 þM

g2
¼ 2

Z d2k

ð2�Þ2
��0 þMð2Þ

f ðkÞ
ð��0 þMð2Þ

f ðkÞÞ2 þ �2
0 þ s2

;

(21)

�0

g2
¼2

Z d2k

ð2�Þ2
�0

ð��0þMð2Þ
f ðkÞÞ2þ�2

0þs2
: (22)

Thus, if ð�0; �0Þ are solutions for ðM;g2Þ, ð��0; �0Þ are
solutions for ð�M;g2Þ. It also means, if ðMc; g

2Þ is a
critical point, ð�Mc; g

2Þ too. We can anticipate the phase
diagram for this case is again symmetric about M ¼ 0.
Now we derive the parity-phase boundary Mcðg2Þ numeri-

cally for Mð2Þ
f ðkÞ ¼ ðcosk1 þ cosk2Þð1þ cosk1 cosk2Þ=2.

In the large coupling region there are two phase boundaries
while there are six phase boundaries in the weak coupling
region. The three cusps correspond to one of four species
(0, 0) withm ¼ 2, two of them ð0; �Þð�; 0Þwithm ¼ 0 and
the other one ð�;�Þ with m ¼ �2, respectively from the
left. It reflects the mass splitting of species given by the

flavored mass Mð2Þ
f .

C. Mð1Þ
f þMð2Þ

f

The fermion action with this flavored mass assigns
the positive mass m ¼ 3 to one of species with the
momentum (0, 0) and the negative mass m ¼ �1 to the
other three species with ð0; �Þð�; 0Þð�;�Þ. Here we cannot
find any relevant symmetry in the gap equations. Thus
we can anticipate the phase diagram for this case is
not symmetric. Now we calculate Mcðg2Þ numerically

for Mð1Þ
f þMð2Þ

f ðkÞ ¼ cosk1 cosk2 þ ðcosk1 þ cosk2Þð1þ
cosk1 cosk2Þ=2. The result of the phase diagram is depicted
in Fig. 3. It is obvious that it is not symmetric about
M ¼ 0. In the large coupling region there are two phase
boundaries while there are four phase boundaries in the
weak coupling region. The left and right cusps correspond
to one of species (0, 0) with m ¼ 3 and the other three
ð0; �Þð�; 0Þð�;�Þ with m ¼ �1, respectively. It reflects
the mass splitting of species given by the flavored mass

FIG. 3 (color online). Aoki phase structure for the naive fer-

mion with the flavored mass Mð1Þ
f þMð2Þ

f . The left and right

cusps correspond to (0, 0) with m ¼ 3 and ð0; �Þð�; 0Þð�;�Þ
with m ¼ �1, respectively.

FIG. 2 (color online). Aoki phase structure for the naive fer-

mion with the flavored mass Mð2Þ
f . The three cusps correspond

to (0, 0) with m ¼ 2, ð0; �Þð�; 0Þ with m ¼ 0 and ð�;�Þ with
m ¼ �2, respectively from the left.
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Mð1Þ
f þMð2Þ

f . Now we can easily modify the phase diagram

by choosing the linear combination of Mð1Þ
f and Mð2Þ

f .

We expect these results are qualitatively similar to the
phase diagram of the d ¼ 4 fermion actions with the non-
Abelian gauge field like QCD except for the number of
species associated with each cusp. In the end of this section
we check the mass of the � meson becomes zero on the
critical line Mcðg2Þ. As is well known, the correlation
length gets infinitely large in the vicinity of the second
and higher phase boundaries, which leads to massless
dynamical degrees of freedom. In the case of lattice
QCD with chiral-symmetry-broken fermions like Wilson
fermion, the fine-tuning of the mass parameter to the
second order phase boundary leads to the chiral limit
with massless quarks and massless pions regarded as
Goldstone bosons due to the spontaneous chiral symmetry
breaking. Thus it is quite important to verify it. We can
show the mass of�n becomes zero on the phase boundaries
as

m2
�/

�
�2Seff

��n��m

���������M¼Mc

¼V
�2 ~Seff
�2�2

0

��������M¼Mc

¼V

�
1

g2
�2

Z d2k

ð2�Þ2
1

ð�0þMfðkÞÞ2þ�2
0þs2

�ð2�2
0Þ

�
Z d2k

ð2�Þ2
1

ðð�0þMfðkÞÞ2þ�2
0þs2Þ2

����������0¼0
¼0:

(23)

The zero mass of the pion means the phase boundary we
derived is the second-order critical line. We can also check
the order of the phase boundaries by depicting the potential
for �0 and �0 as we will discuss in Sec. IV.

III. STAGGERED GROSS-NEVEU MODEL

In this section we investigate the phase diagram for
staggered fermions with the Adams-type flavored mass
term by using the d ¼ 2 Gross-Neveu model. To study
the parity-broken phase structure we propose the general-
ized staggered Gross-Neveu model with the �5-type
4-point interaction, which is given by

S ¼ 1

2

X
n;�

�� ��nð�nþ� � �n��Þ þ
X
n

��nðMþMfÞ�n

� g2

2N

X
N

��X
A

��2NþA�2NþAÞ2

þ
�X

A

ið�1ÞA1þA2 ��2NþA�2NþA

�
2
�
; (24)

where we define two-dimensional coordinates as n ¼
2N þ A with the sublattice A ¼ ðA1; A2Þ (A1;2 ¼ 0; 1).
�n is a one-component fermionic field. ð�1ÞA1þA2 corre-
sponds to the natural definition of �5 for this fermion

which is expressed as �55 ¼ �5 � �5 in the spinor-taste
expression. �� ¼ ð�1Þn1þ���þn��1 corresponds to ��. As

the flavored mass term we choose the Adams-type one,
which is given by

Mf ¼ �5�55 � 1 � �5 þOðaÞ (25)

with the following chirality matrix �5

�5 ¼ �i�1�2

X
sym

C1C2; (26)

C� ¼ 1
2ðT� þ T��Þ (27)

where T� is the usual translation operator. (The chirality

matrix in general dimensions is defined as �5 �
�ðiÞd=2�1 � � ��d

P
symC1 � � �Cd.) This mass term assigns

the positive mass (m ¼ þ1) to one taste and the negative
mass (m ¼ �1) to the other depending on � eigenvalues
for �5�55 which we call the flavor chirality. With bosonic
auxiliary fields �N , �N , the action is rewritten as

S¼1

2

X
n;�

�� ��nð�nþ���n��Þþ
X
n

��nMf�n

þ N

2g2
X
N

ðð�N �MÞ2þ�2
N Þ

þ X
N ;A

��2NþAð�N þ ið�1ÞA1þA2�N Þ�2NþA; (28)

After integrating the fermion field, the partition function
and the effective action with these auxiliary fields are
given by

Z ¼
Z
ðD�ND�N Þe�NSeff ð�;�Þ; (29)

Seff ¼ 1

2g2
X
N

ð�2
N þ �2

N Þ � Tr logD; (30)

with

Dn;m¼ð�N þ ið�1ÞA1þA2�N Þ�n;m

þ��

2
ð�nþ�;m��n��;mÞþðMfÞn;m: (31)

The process from (8) to (11) in the case of the naive
fermion is common with this staggered case. We again
denote as �0 and �0 the position-independent solutions
of the saddle-point equations. In this case, however, it is
not straightforward to derive the Tr logD with the Dirac
operator (31) in the effective action Eq. (11). In order to
estimate this trace logarithm we first obtain the determi-
nant of the Dirac operator in the sublattice space, which
means the determinant in the spinor and taste spaces. Here
we express the sublattice structure as a multiplet field ~�N
composed of the four one-component fields as
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~�N ¼
�i

�ii

�iii

�iv

0
BBB@

1
CCCA (32)

where we mean i ¼ 2N , ii ¼ 2N þ ð1; 0Þ, iii ¼ 2N þ
ð0; 1Þ and iv ¼ 2N þ ð1; 1Þ. Now let us estimate the trace
term

Tr logD ¼ V
Z dk2

ð2�Þ2 log detððDðkÞÞab; (33)

where a, b stand for the index of the four sublattices
running from i to iv. Here det means the determinant
with respect to the sublattice. The Dirac operator is given
by

ðDðkÞÞab¼�0�abþ

þ
�

�
þ

0
BBBBB@

1
CCCCCAi�0þ i

þ
þ

�
�

0
BBBBB@

1
CCCCCAcos

k1
2
cos

k2
2
þ

0 isink12 isink22 0

isink12 0 0 �isink22

isink22 0 0 isink12

0 �isink22 isink12 0

0
BBBBBBB@

1
CCCCCCCA
: (34)

Then detD is given by

detðDðkÞÞab ¼ ð�2
0 þ �2

0 þ s2Þ2 � 2c21c
2
2ð�2

0 � �2
0 � s2Þ þ c41c

4
2

¼ ðð�0 þ c1c2Þ2 þ �2
0 þ s2Þðð�0 � c1c2Þ2 þ �2

0 þ s2Þ; (35)

where s� ¼ sink�=2, s
2 ¼ P

�s
2
�, c� ¼ cosk�=2. It is notable that this determinant is expressed by the product of the two

determinants of the naive fermions with the flavored mass �Mð1Þ
f ðk�=2Þ. Now we can explicitly write the saddle-point

conditions satisfied by �0 and �0 as

�0�M

g2
¼4

Z dk2

ð2�Þ2
�0ð�2

0þ�2
0þs2Þ�c21c

2
2�0

ðð�0þc1c2Þ2þ�2
0þs2Þðð�0�c1c2Þ2þ�2

0þs2Þ ; (36)

�0

g2
¼ 4

Z dk2

ð2�Þ2
�0ð�2

0 þ �2
0 þ s2Þ þ c21c

2
2�0

ðð�0 þ c1c2Þ2 þ �2
0 þ s2Þðð�0 � c1c2Þ2 þ �2

0 þ s2Þ : (37)

By multiplying�1 to the first equation, we see ð��0; �0Þ are solutions for ð�M;g2Þ if ð�0; �0Þ are solutions for ðM;g2Þ. It
also means, if ðMc; g

2Þ is a critical point, ð�Mc; g
2Þ too. The phase diagram will be symmetric about M ¼ 0. The parity-

phase boundary Mcðg2Þ in this case is derived by imposing �0 ¼ 0 in (36) and (37) after the overall �0 being removed in
the second one. Then the gap equations are given by

Mc

g2
¼ 4

Z dk2

ð2�Þ2
2c21c

2
2�0

ðð�0 þ c1c2Þ2 þ �2
0 þ s2Þðð�0 � c1c2Þ2 þ �2

0 þ s2Þ ; (38)

1

g2
¼ 4

Z dk2

ð2�Þ2
�2

0 þ s2 þ c21c
2
2

ðð�0 þ c1c2Þ2 þ �2
0 þ s2Þðð�0 � c1c2Þ2 þ �2

0 þ s2Þ : (39)

By removing �0 in these equations, we derive the phase
boundary Mcðg2Þ. The result is shown in Fig. 4.

Here again A stands for the parity-symmetric phase
(�0 ¼ 0) and B for Aoki phase (�0 � 0). In the large
coupling region there are two phase boundaries while there
are four phase boundaries in the weak coupling region. The
left cusp corresponds to one of two tastes with m ¼ 1, and
the right corresponds to the other taste withm ¼ �1. Thus
the phase diagram reflects the mass splitting of tastes given
by the Adams-type flavored mass. We also check the pion
mass becomes zero on the second-order phase boundary as

m2
� /

�
�2Seff

��n��m

���������M¼Mc

¼ V
�2 ~Seff
�2�2

0

��������M¼Mc

¼ 0: (40)

Now let us consider the parity-phase structure in the d ¼ 4
QCD with the staggered fermion with this flavored mass.
Considering the case of the Wilson fermion we can specu-
late it is qualitatively similar to our result for the d ¼ 2
Gross-Neveu model except the number of species associ-
ated with each cusp. In the four dimension, four tastes in
the staggered fermion with the Adams-type flavored mass
split into two with positive mass and the other two with
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negative mass depending on their flavor chiralities. Thus
each of the cusps in the phase diagram will correspond to
two tastes. If we consider another type of the flavored mass
term proposed in [19], the four tastes are split into one with
positive mass, two with zero mass and the other with
negative mass. If we can take the chiral and continuum
limit around the cusps, we obtain the two- or one-flavor
staggered fermions with tuning only the mass parameter,
which will be numerically faster than Wilson fermion.
Thus the question here is whether we can take the massless
continuum limit. We will discuss this point in the next
section with starting with the case of the naive fermion.

IV. CONTINUUM LIMIT

In this section we discuss the continuum limit of the
naive and staggered Gross-Neveu models with the flavored
masses discussed in Secs. II and III. This analysis gives us
important informations on the continuum limit of the
d ¼ 4 QCD with these fermions. As is well known, the
chiral symmetry is realized in the effective potential of
the Gross-Neveu model as the Oð2Þ rotational symmetry
about �0 and �0. The purpose here is to figure out the fine-
tuned values of the mass and couplings to recover this
symmetry for a ! 0. We note in order to take the chiral
and continuum limit in this model, we need to introduce
two independent couplings g2� and g2� [3] as we will see
later. The strategy is to expand the fermion determinant in
the effective potential with respect to the lattice spacing a
following the process in [3].

We first consider the case of the naive fermion with one

of the flavored masses Mð1Þ
f ¼ cosk1 cosk2. The effective

potential in this case with the lattice spacing being explicit
is given by

~S effð�0; �0Þ ¼ ð�0 �MÞ2
2g2�

þ �2
0

2g2�
� I; (41)

I ¼
Z �=a

��=a

d2k

ð2�Þ2 log

��
�0 þ 1

a
cosk1a cosk2a

�
2

þ �2
0 þ

X
�

sin2k�a

a2

�
: (42)

Now we divide the terms in the determinant I intoOð1=a2Þ
and Oð1=aÞ parts as

IðD0; D1Þ ¼
Z �=a

��=a

d2k

ð2�Þ2 log½D0 þD1�; (43)

D0 �
X
�

sin2k�a

a2
þ

�
�0 � �

a

�
2 þ �2

0

þ
�
�þ cosk1a cosk2a

a

�
2
: (44)

D1 � 2

�
�0 � �

a

��
�þ cosk1a cosk2a

a

�
; (45)

where we introduce a constant � since there is arbitrariness
about how to divide the terms into Oð1=a2Þ and Oð1=aÞ
parts. This is determined by which cusp you choose in
Fig. 1, or equivalently which species you want to make
massless in the continuum limit. Here we fix � ¼ �1
which is related to the left cusp or the continuum limit
with the massless species (0, 0) and ð�;�Þ. (With � ¼ 1
we can discuss the other cusp while we will discuss � ¼ 0
in the end of this section.) Here we use the shifted defini-
tion of �0 as �0 þ 1=a ! �0 for simplicity for a while.
Then the effective potential with this shift is given by

~Seffð�0; �0Þ ¼ ð�0 � ðMþ 1=aÞÞ2
2g2�

þ �2
0

2g2�
� IðD0; D1Þ:

(46)

D0 ¼
X
�

sin2k�a

a2
þ �2

0 þ �2
0 þ

��1þ cosk1a cosk2a

a

�
2
:

(47)

D1 ¼ 2�0

��1þ cosk1a cosk2a

a

�
: (48)

We expand I by D1=D0 or equivalently by the lattice
spacing a,

FIG. 4 (color online). Aoki phase structure for the staggered
fermion with the Adams-type flavored mass �5�55. The left and
right cusps correspond to one of two tastes with m ¼ 1 and the
other withm ¼ �1. A stands for a parity-symmetric phase and B
for Aoki phase.
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I ¼ I0 þ
X
n¼1

In; (49)

I0 ¼
Z �=a

��=a

d2k

ð2�Þ2 logD0; (50)

In¼�ð�1Þn
n

Z �=a

��=a

d2k

ð2�Þ2
Dn

1

Dn
0

ðn	1Þ;

¼�ð�1Þn
n

ð2�0Þnan�2�
Z �

��

d2	

ð2�Þ2

� ð�1þcos	1cos	2Þn�P
�sin

2	�þð�1þcos	1cos	2Þ2þa2ð�2
0þ�2

0Þ
�
n
;

(51)

where we introduce the dimensionless momentum 	� ¼
k�a. For a ! 0, only the I0, I1 and I2 remains nonzero.

I0ða ! 0Þ, I1ða ! 0Þ and I2ða ! 0Þ are given by

I0ða!0Þ¼ ~C0ð�2
0þ�2

0Þ�
1

2�
ð�2

0þ�2
0Þ

� log
a2ð�2

0þ�2
0Þ

e
ð ~C0¼0:367Þ; (52)

I1ða ! 0Þ ¼ 2�0

a
C1 ðC1 ¼ �0:446Þ; (53)

I2ða ! 0Þ ¼ �2�2
0C2 ðC2 ¼ 0:201Þ: (54)

From here we basically do not care about the OðaÞ correc-
tions. Here we show the explicit values of ~C0, C1 and C2

since they will be essential for the discussion later. The
details of the calculations are shown in Appendix A 1. Now
let us discuss the continuum limit of this theory. Including
all the nonzero contributions for a ! 0, the effective po-
tential is given by

~Seff ¼ �
�
Mþ 1=a

g2�
þ 2

a
C1

�
�0

þ
�

1

2g2�
� ~C0 þ 1

2�
loga2

�
�2

0

þ
�

1

2g2�
� ~C0 þ 2C2 þ 1

2�
loga2

�
�2

0

þ 1

2�
ð�2

0 þ �2
0Þ log

�2
0 þ �2

0

e
: (55)

This indicates we need two independent couplings g2�, g
2
�

to recover the Oð2Þ symmetry toward the continuum limit.
In addition, getting rid of the �0 linear term leads to the
massless limit. Then the natural fine-tuned parameters for
the chirally symmetric continuum limit without OðaÞ cor-
rections are given by

M ¼ � 2g2�
a

C1 � 1; (56)

g2� ¼ g2�
4C2g

2
� þ 1

; (57)

where Eq. (56) is obtained by imposing the coefficient of
�0 and Eq. (57) is given by imposing the coefficients of �2

0

and �2
0 coincide. To consider a renormalized theory with

the chiral symmetry we introduce the scale parameter
(� parameter) as

�a ¼ exp

�
� ~C0 � 2�C2 � �

2g2�

�
: (58)

With the natural fine-tuning (57), this definition of � leads
to the coupling renormalization including a given by

1

2g2�
¼ ~C0 � 2C2 þ 1

2�
log

�
1

�2a2

�
; (59)

1

2g2�
¼ ~C0 þ 1

2�
log

�
1

�2a2

�
: (60)

Here we need to keep� finite when we take the continuum
limit a ! 0. Then the renormalized effective potential with
the chiral symmetry in the continuum limit is given by

~Seff ¼ 1

2�
ð�2

0 þ �2
0Þ log

�2
0 þ �2

0

e�2
: (61)

We note the fine-tuned point ðMðg2�Þ; g2�ðg2�ÞÞ in (56) and
(57) specifies the line along which the continuum limit
should be taken. At the minimum of this potential �0 has a
nonzero value, which corresponds to the spontaneous chi-
ral symmetry breaking.
Let us look at these fine-tuned parameters in terms of the

phase diagram. By this we can verify our fine-tuning yields
the chiral-symmetric continuum theory. We first consider
the nonzero value of g2� as g2� ¼ 0:6 to reveal properties
of the phase diagram. By hiding the lattice parameter with
a ¼ 1 the fine-tuned point ðMð0:6Þ; g2�ð0:6ÞÞ is given by

Mðg2� ¼ 0:6Þ ¼ �0:464; (62)

g2�ðg2� ¼ 0:6Þ ¼ 0:404: (63)

Now we consider the M-g2� phase diagram with g2� ¼ 0:6.
According to the case of the Wilson Gross-Neveu model
[6], the phase boundary has a self-crossing point and the
fine-tuned point is located slightly inside and below the
self-crossing point in the parity-symmetric phase. Besides
the phase boundary naively derived from the gap equations
no longer describes the true one near the self-crossing
point, and we need study the effective potential to find
the true critical lines including the first-order ones. Here we
will show these situations are common with our cases. The
gap equations for the two couplings are given by
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Mc ¼ �0

�
1� g2�

g2�

�
� 2g2�

Z d2k

ð2�Þ2
Mð1Þ

f ðkÞ
ð�0 þMð1Þ

f ðkÞÞ2 þ s2
;

(64)

1

g2�
¼ 2

Z d2k

ð2�Þ2
1

ð�0 þMð1Þ
f ðkÞÞ2 þ s2

: (65)

Here we come back to the unshifted definition of �0. In
Figs. 5 and 6 we depict theMcðg2�Þ phase boundary derived
from the gap Eqs. (64) and (65) for g2� ¼ 0:6. The latter is
an expanded one near the self-crossing point with the true
phase boundaries. In the both figures a cross point stands
for the fine-tuned point without OðaÞ corrections (62) and
(63). It is located slightly to the right and below the s
elf-crossing point near the second-order phase boundary.
We note this region is the parity-unbroken phase. The
qualitative properties of this phase diagram remain toward
g2� ! 0 where the whole structure moves down to g2� ¼ 0
with the first-order boundaries disappearing. Here the fine-
tuned point (56) and (57) gets close to the endpoint of the
second-order phase boundary at ðM;g2�Þ ! ð�1; 0Þ, which
corresponds to two species ð0; 0Þð�;�Þ. Thus the contin-
uum limit along this fine-tuned point yields the theory with
chiral symmetry and two massless fermions, which leads to
massless pions as Goldstone bosons.

Now we discuss the first order phase transition.
Although it is not essential for our purpose because in
the limit g2� ! 0 the first-order phase boundary disappears
and the entire phase boundary becomes of second order, we
can reveal other aspects of our fermions by investigating it.
As shown in [6] there are two kinds of the first-order phase
boundaries in the case of Wilson fermion. One is the
parity-phase boundary, across which �0 at the minimum
of the effective potential changes from zero to nonzero.
The other is related to�0, across which the sign of�0 at the

minimum of the potential changes discontinuously. Now
we will show both of them exist also in our case. We
numerically calculate the effective potential in Eq. (42)
and search the minimum of the potential. In Fig. 6 we
depict the appearance of the first-order phase boundaries.
Here we note the true parity-phase boundary of second
order as a blue solid line coincides with the naively derived
phase boundary as a blue dotted line at the both sides of the
self-crossing. Then the second-order one coming from the
left converts to the first order at some point, which is
spilled out from the naively derived boundary. It ends at
the point encountering the naively derived one again. The
first-order phase boundary for �0 starts from this point,
going down straight, and ends at g2� ¼ 0. In Fig. 7 we
depict the order parameter �0 as a function of M for some
fixed values of g2� around which the order changes in
Fig. 6. Here we verify the order of the transition changes
from the second to the first about the point. In Fig. 8 we
depict the �0 potential for several values ofM crossing the
�0 phase boundary. (Here we can take �0 ¼ 0 since it is
the parity-symmetric phase.) The value of �0 at the mini-
mum changes from �0 >�1 to �0 <�1 in a form of the

FIG. 6 (color online). An expanded version of Fig. 5. A blue
dotted curve is the naively derived phase boundary. The true
phase boundaries are composed of the three parts. The fine-tuned
point as a cross point is located slightly to the right and below the
self-crossing point.

FIG. 5 (color online). The naively derived phase boundary

Mðg2�Þ for the naive fermion with Mð1Þ
f with g2� ¼ 0:6. The

fine-tuned point ð�0:464; 0:404Þ as a cross point is located
near the self-crossing point.

FIG. 7 (color online). The order parameter �0 as a function of
M for g2� ¼ 0:41, 0.42, 0.43 where the order of transition
changes from first to second in Fig. 6.
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first-order phase transition. Indeed the potential describing
these first-order transitions is also obtained by taking
account of OðaÞ corrections. The contribution from the

correction �~Seff is given by

�~Seff ¼ � 8

3
C3�

3
0 þ 2�0ð�2

0 þ �2
0Þ

�
�
~C1 þ 1

4�
log

�2
0 þ �2

0

e

�
; (66)

with C3 ¼ �0:0923 and ~C1 ¼ �0:0741. We can qualita-
tively reproduce the above results from the effective po-
tential with these corrections. We can obtain the same but
reversed phase structure for the right cusp by choosing
� ¼ 1=a in (44) and (45). We also note the sign of �0

continuously changes at M ¼ 0. It is related with the
discrete chiral symmetry (�0 ! ��0) of the effective
action (42) for M ¼ 0 up to a irrelevant sign. This sym-
metry indicates interesting possibility of another contin-
uum limit corresponding to the case of � ¼ 0 in (44) and
(45). We will discuss details on this topic in the end of this
section.

In Figs. 9 and 10 we depict the corresponding figures for

the flavored mass Mð1Þ
f þMð2Þ

f . We take g2� ¼ 1:2 to make

the structure enhanced, where the fine-tuned point for the
left cusp is given by ðM;g2�Þ ¼ ð�2:205; 0:720Þ. The re-
sults are qualitatively the same as the previous case. In this
case the continuum limit along with the fine-tuned point
leads to the single-flavor theory with one of the species
at (0, 0).

We apply the same approach to the staggered Gross-
Neveu model with the Adams-type flavored mass in
Eq. (25). As seen in Eq. (35), the determinant in the
logarithm in the effective action is given by the product
of two determinants of the naive fermions with the mass
�Mf ¼ � cosðk1=2Þ cosðk2=2Þ. Thus we only have to add

the contributions from the two sectors. Here we take the
constant � as � ¼ �1=a and redefine �0 þ 1=a ! �0 for

a while. With this choice we can discuss the left cusp
related to the taste with the positive flavor chirality. Then
the effective potential with the �0 shift is given by

~S effð�0; �0Þ ¼ ð�0 � ðMþ 1=aÞÞ2
2g2�

þ �2
0

2g2�
� Iþ � I�;

(67)

I� ¼
Z �=a

��=a

d2k

ð2�Þ2 log½D�
0 þD�

1 �; (68)

D�
0 ¼ X

�

sin2
k�a

2

a2
þ �2

0 þ �2
0 þ

��1� cosk1a2 cosk2a2
a

�
2
:

(69)

D�
1 ¼ 2�0

��1� cosk1a2 cosk2a2
a

�
: (70)

We expand I with respect to D1=D0 as

FIG. 8 (color online). The �0 potential for several values of M
crossing the �0 boundary in Fig. 6. The value of �0 at the
minimum changes from �0 >�1 to �0 <�1 in a form of the
first-order transition.

FIG. 9 (color online). The naively derived phase boundary

Mcðg2�Þ in the case of the naive fermion with Mð1Þ
f þMð2Þ

f for

g2� ¼ 1:2. The fine-tuned point ð�2:205; 0:720Þ as a cross point
is located near the self-crossing point.

FIG. 10 (color online). An expanded version of Fig. 9. A blue
dotted curve is the naively derived phase boundary. The true
phase boundaries are composed of the three parts. The fine-tuned
point is located slightly to the right and below the self-crossing
point.
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I� ¼ I�0 þ X
n¼1

I�n ; (71)

I�0 ¼
Z �=a

��=a

d2k

ð2�Þ2 logD�
0 ; (72)

I�n ¼ �ð�1Þn
n

Z �=a

��=a

d2k

ð2�Þ2
ðD�

1 Þn
ðD�

0 Þn
ðn 	 1Þ; (73)

For the continuum limit a ! 0, only the I�0 , I�1 and I�2
remains nonzero as in the previous case.

Iþ0 þI�0 ¼ ~C0ð�2
0þ�2

0Þ�
1

�
ð�2

0þ�2
0Þ

� log
4a2ð�2

0þ�2
0Þ

e
ð ~C0¼1:177Þ; (74)

Iþ1 þ I�1 ¼ 2�0

a
C1 ðC1 ¼ �0:896Þ; (75)

Iþ2 þ I�2 ¼ �2�2
0C2 ðC2 ¼ 0:404Þ: (76)

Details of calculations are shown in Appendix A 2. The
effective potential and the fine-tuned point without OðaÞ
corrections ðMðg2�Þ; g2�ðg2�ÞÞ are given by the equations
similar to Eqs. (55)–(61) as following. The effective po-
tential for a ! 0 in this case is given by

~Seff ¼ �
�
Mþ 1=a

g2�
þ 2

a
C1

�
�0

þ
�

1

2g2�
� ~C0 þ 1

�
log4a2

�
�2

0

þ
�

1

2g2�
� ~C0 þ 2C2 þ 1

�
log4a2

�
�2

0

þ 1

�
ð�2

0 þ �2
0Þ log

�2
0 þ �2

0

e
: (77)

Then the tuned point for the chiral limit without OðaÞ
corrections is

M ¼ � 2g2�
a

C1 � 1; (78)

g2� ¼ g2�
4C2g

2
� þ 1

; (79)

We again introduce the scale parameter (�-parameter) as

2a� ¼ exp

�
�

2
~C0 � �C2 � �

4g2�

�
: (80)

where we note the lattice spacing a always appears with a
factor 2, which is specific to the staggered fermions. The
coupling renormalization for the chiral and continuum
limit is given by

1

2g2�
¼ ~C0 � 2C2 þ 1

�
log

�
1

4�2a2

�
; (81)

1

2g2�
¼ ~C0 þ 1

�
log

�
1

4�2a2

�
; (82)

where we keep � finite when taking the continuum limit
a ! 0. Finally the renormalized effective potential in the
chiral and continuum limit is given by

~S eff ¼ 1

�
ð�2

0 þ �2
0Þ log

�2
0 þ �2

0

e�2
: (83)

In this case we take g2� ¼ 0:4 as an example, then the fine-
tuned point is given by

Mðg2� ¼ 0:4Þ ¼ �0:286; (84)

g2�ðg2� ¼ 0:4Þ ¼ 0:243: (85)

The gap equations in this case are given by

Mc¼�0

�
1�g2�

g2�

�
þ8g2��0

Z dk2

ð2�Þ2

� c21c
2
2

ðð�0þc1c2Þ2þ�2
0þs2Þðð�0�c1c2Þ2þ�2

0þs2Þ ;
(86)

1

g2�
¼4

Z dk2

ð2�Þ2

� �2
0þs2þc21c

2
2

ðð�0þc1c2Þ2þ�2
0þs2Þðð�0�c1c2Þ2þ�2

0þs2Þ :
(87)

Here we come back to the unshifted definition of �0.
In Figs. 11 and 12 we depict the phase boundary
Mðg2�Þ naively derived from the above gap equations
for g2� ¼ 0:4. The latter is an expanded one near the

FIG. 11 (color online). The naively derived phase boundary
Mcðg2�Þ for the staggered fermion with the Adams-type mass
with g2� ¼ 0:4. The fine-tuned point ð�0:286; 0:243Þ as a cross
point is located near the self-crossing point.
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self-crossing point with the true phase boundaries also
depicted. The fine-tuned point (84) and (85) is located
slightly to the right and below the self-crossing point
near the true second-order phase boundary in the parity-
symmetric phase. Toward the weak-coupling limit
g2� ! 0 the phase structure moves down to g2� ¼ 0, where
the fine-tuned point gets close to ðM;g2�Þ ! ð�1; 0Þ from
the parity-symmetric phase. It means our fine-tuned point
leads to the continuum theory with the chiral symmetry and
one massless fermion corresponding to the taste with posi-
tive flavor chirality. The situation about the first order
phase boundary is the same as the naive case. In Fig. 12
we depict the true phase boundaries for this case. In Fig. 13
we depict the order parameter �0 as a function of M. Here
the order of the transition changes from the second to the
first around the order-changing point. In Fig. 14 we depict
the �0 potential for several values of M crossing the �0

phase boundary. The value of �0 at the minimum changes
from �0 >�1 to �0 <�1 in a form of the first-order
phase transition.

We have shown that the chirally-symmetric continuum
limit can be taken by fine-tuning a mass parameter and
two-coupling constants both for the naive and staggered

cases. It indicates we obtain the two-flavor or one-flavor
massless fermions in the chiral limit by tuning only a mass
parameter when we introduce the Adams-type [18] or
Hoelbling-type [19] flavored masses to the d ¼ 4 QCD
with staggered fermions. We speculate the process to take
the chiral and continuum limit could be almost the same as
the case for Wilson fermion while the numerical cost will
be less for the staggered fermions. The less numerical
expense in the staggered fermion could make the QCD
simulations with these fermions faster than Wilson fer-
mion. We need further investigation to answer this
question.
Now we comment on the case that we take � ¼ 0 in (44)

and (45), which corresponds to neither of the cusps but
reflects the symmetries of the effective potential. At this
point the coupling is not going to zero, and thus it is unclear
how it is related to the continuum Gross-Neveu model.
However it does seem to be possible to restore chiral
symmetry there and have a divergent correlation length.
As such it seems related to a quite special continuum limit.
Since the M ¼ 0 effective potentials for the naive with

Mð1Þ
f and the staggered fermions with the Adams-type mass

possess the Z2 discrete chiral symmetry (�0 ! ��0) up to
a irrelevant sign, the renormalization in the linear �0 term
is prohibited. Actually we have checked C1 in the effective
potentials as (55) is zero for both cases with � ¼ 0. This is
because the continuum chiral symmetry is broken while
the discrete one is unbroken by these flavored masses.
Thus, if we start with M ¼ 0, it appears we need not
fine-tune the mass parameter for the massless continuum
limit with the chiral symmetry. It indicates a strange pos-
sibility that the chirally symmetric continuum limit of the
d ¼ 4 QCD with these fermions is taken without fine-
tuning due to this symmetry. This strange situation can
occur for any flavored mass with the discrete chiral sym-
metry up to a trivial sign such as Mf ¼ P

� cosk�.

However the question is whether the continuum limit

FIG. 12 (color online). The expanded version of Fig. 11.
A blue dotted curve is the naively derived phase boundary.
The true phase boundaries are composed of the three parts.
The fine-tuned point is located slightly to the right and below
the self-crossing point.

FIG. 13 (color online). The order parameter �0 as a function of
M for g2� ¼ 0:25, 0.26, 0.27, 0.28 where the order of transition
changes from first to second in Fig. 12.

FIG. 14 (color online). The �0 potential for several values of
M crossing the �0 boundary in Fig. 12. The value of �0 at the
minimum changes from �0 >�1 to �0 <�1 in a form of the
first-order transition.
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stands for physically relevant theories. Indeed it is unlikely
since the line M ¼ 0 is located at the same distance from
the two cusps thus the continuum limit along it would have
no physical fermions, although there might exist some
relevant theory without fermions like the Ising theory. On

the other hand, in the naive fermion withMð2Þ
f or the d ¼ 4

staggered fermion with the mass proposed by Hoelbling in
[19], the M ¼ 0 line has a cusp in the weak coupling
region. The effective actions in these cases also have the
discrete chiral symmetry and the same situation occurs.
Thus, the continuum limit without fine-tuning in them may
lead to the relevant theories with the parity symmetry being
broken since the continuum limit is taken from the Aoki
phase in these cases. This kind of the parity or CP broken
theory with massless fermions would belong to the same
universality class as minimally doubled fermions [23,24]
or the two-flavor QCDwith the sign of mass being different
between the two flavors [31]. Further study on this topic is
devoted to the future work.

V. SUMMARYAND DISCUSSION

In this paper we investigate the parity-broken phase
structure for naive and staggered fermions with the fla-
vored mass by using the two-dimensional lattice Gross-
Neveu models. We have shown the Aoki phase exists both
in staggered and naive cases reflecting the mass splitting in
species.

In Sec. II we study the phase structure for the naive
Gross-Neveu model with the flavored masses. We consider
the two types of flavored mass terms for two-dimensional
naive fermions, which cause two different kinds of mass
splitting in species. We also consider a linear combination
of these terms. We solve the gap equations for the large N
limit and obtain the second-order phase boundaries in the
M-g2 plane. The parity-broken phase diagram has some
common properties with the Wilson case, and reflects the
mass splitting. We can make varieties of phase structures
depending on arbitrary linear combinations of the two
types of the masses. In Sec. III we consider the generalized
staggered Gross-Neveu model including two types of four-
point interactions. We take the same process as in the case
of the naive fermion to obtain the phase diagram for the
staggered fermion with the Adams-type flavored mass. We
show the Aoki phase exists also in this case reflecting the
mass splitting of tastes. This elucidation can contribute to
the practical application of these fermions and their over-
lap versions. In Sec. IV we discuss the continuum limit of
these Gross-Neveu models around the cusps in the phase
digram. We show that the chirally symmetric continuum
limit with the number of massless species associated with
each of the cusps can be taken by fine-tuning a mass
parameter and two-coupling constants in both cases.
From this we speculate the chiral limit can be taken by
fine-tuning only a mass parameter in d ¼ 4 lattice QCD
with staggered fermions with the Adams-type [18] or

Hoelbling-type [19] masses. It indicates we can obtain
the one- or two-flavor massless fermions in the continuum
from the staggered setup and regard massless pions as
Goldstone bosons due to the spontaneous chiral symmetry
breaking as in the case with Wilson fermion. These ap-
proaches avoid the use of the rooting approximation to
reduce the number of tastes. We also study the first order
phase boundaries peculiar to the two-coupling cases of the
lattice Gross-Neveu models. We show there exist two kinds
of the first order phase boundaries with respect to parity
and chiral symmetry breaking as in the case of Wilson
fermion.
We comment on the possible advances of the one-flavor

or two-flavor staggered fermions without rooting discussed
in this paper compared to Wilson fermion. Taking account
of less numerical expense in the staggered fermion, it will
be numerically better than Wilson fermion in the lattice
QCD simulations. We can estimate how good it is easily by
calculating simple examples. Future works will be devoted
to this study.
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APPENDIX A: DERIVATION OF THE
EFFECTIVE POTENTIALS

In this appendix we evaluate the integrals which are
required for the effective potentials for the cases with the
naive and staggered fermions.

1. Naive fermion

We have to evaluate the integrals of (50) and (51) to
obtain the effective potential of the model with the naive
fermion. Let us first study the following integral,

I0 ¼
Z �=a

��=a

d2k

ð2�Þ2 log

�
s2

a2
þ �2

0 þ �2
0 þ

��1þMf

a

�
2
�
;

(A1)

where we denote s2 ¼ P
�sin

2ðk�aÞ andMf ¼ cosðk1aÞ�
cosðk2aÞ. If we omit a constant term which is not involving
�0 and �0, it can be rewritten in an integral representation
as
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I0 ’
Z �2

0
þ�2

0

0
d
F0ð
Þ; (A2)

F0ð
Þ ¼
Z �=a

��=a

d2k

ð2�Þ2
1

s2=a2 þ ð�1þMfÞ2=a2 þ 

:

(A3)

We pick up the divergent part in the limit of a ! 0,

F0ð
Þ !a!0Z 3�=ð2aÞ

��=ð2aÞ
d2k

ð2�Þ2

�
�

1P
� k2� þ 


þ 1P
�ðk� � �Þ2 þ 


�
þ c0; (A4)

c0¼
Z 3�=2

��=2

d2	

ð2�Þ2
�

1

s2þð�1þMfÞ2

� 1P
�	

2
�

� 1P
�ð	���Þ2

�
ð¼0:0421Þ: (A5)

Here we shift the Brillouin zone to treat the divergent part,
which originates from two massless modes around
k ¼ ð0; 0Þ and ð�;�Þ. We then find the following expres-
sion by comparing the first term with the corresponding
integral in the continuum theory,

Z 3�=ð2aÞ

��=ð2aÞ
d2k

ð2�Þ2
�

1P
� k2� þ 


þ 1P
�ðk� � �Þ2 þ 


�

¼ 1

2�
log

1

a2

þ c00 ðc00 ¼ 0:325Þ: (A6)

Therefore the integral is given by

F0ð
Þ ¼ 1

2�
log

1

a2

þ ~C0 ð ~C0 ¼ 0:367Þ; (A7)

where ~C0 ¼ c0 þ c00 is the constant used in (52). By sub-

stituting this into (A2), we obtain the expression in (52)

I0ða!0Þ¼ ~Cð�2
0þ�2

0Þ

� 1

2�
ð�2

0þ�2
0Þlog

a2ð�2
0þ�2

0Þ
e

: (A8)

Next we show the integral expressions of (53) and (54).
They are given by

C1¼
Z �

��

d2	

ð2�Þ2
�1þMf

s2þð�1þMfÞ2
ð¼�0:446Þ; (A9)

C2¼
Z �

��

d2	

ð2�Þ2
� �1þMf

s2þð�1þMfÞ2
�
2 ð¼0:201Þ: (A10)

These integrals are sufficient to consider the continuum
limit of the model, but not to discuss the first-order phase
transition. The OðaÞ corrections come from the following
integrals:

I3ða!0Þ¼8

3
�3

0aC3;

C3¼
Z �

��

d2	

ð2�Þ2
� �1þMf

s2þð�1þMfÞ2
�
3 ð¼�0:0923Þ;

(A11)

�I1¼I1�2�0

a
C1

¼2�0

Z �=a

��=a

d2k

ð2�Þ2
� ð�1þMfÞ=a
s2=a2þð�1þMfÞ2=a2þ�2

0þ�2
0

� ð�1þMfÞ=a
s2=a2þð�1þMfÞ2=a2

�

¼�2�0a
Z �2

0
þ�2

0

0
d
F1ð
Þ; (A12)

F1ð
Þ ¼ 1

a

Z �=a

��=a

d2k

ð2�Þ2
ð�1þMfÞ=a

ðs2=a2 þ ð�1þMfÞ2=a2 þ 
Þ2 :
(A13)

We can evaluate the second one in a similar way by
splitting into a divergent part and a finite constant,

F1ð
Þ !a!0�1

2

Z 3�=ð2aÞ

��=ð2aÞ
d2k

ð2�Þ2

�
0
B@

P
�k

2
�

ðP�k
2
�þ
Þ2þ

P
�ðk���Þ2

ðP�ðk���Þ2þ
Þ2

1
CAþc1

(A14)

c1¼
Z 3�=2

��=2

d2	

ð2�Þ2
� ð�1þMfÞ
ðs2þð�1þMfÞ2Þ2

þ 1

2
P
�
	2
�

þ 1

2
P
�
ð	���Þ2

�
ð¼0:00912Þ: (A15)

The divergent part is given by

Z 3�=ð2aÞ

��=ð2aÞ
d2k

ð2�Þ2

0
B@

P
�
k2�

ðP
�
k2� þ 
Þ2 þ

P
�
ðk� � �Þ2

ðP
�
ðk� � �Þ2 þ 
Þ2

1
CA

¼ 1

2�
log

1

a2

þ c01 ðc01 ¼ 0:166Þ: (A16)

Thus we obtain

F1ð
Þ ¼ � 1

4�
log

1

a2

þ ~C1

�
~C1 ¼ c1 � c01

2
¼ �0:0741

�
:

(A17)
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By substituting this expression into (A12), we obtain

�I1 ¼ �2�0a

�
~C1ð�2

0 þ �2
0Þ

þ 1

4�
ð�2

0 þ �2
0Þ log

a2ð�2
0 þ �2

0Þ
e

�
: (A18)

These integrals contribute to the OðaÞ corrections to the
effective potential (66).

2. Staggered fermion

We evaluate the integrals required for the effective po-
tentials with the staggered fermion. Explicit forms of the
finite constants in (75) and (76) are simply given by

C1 ¼
Z �

��

d2	

ð2�Þ2
� �1þMf

s2 þ ð�1þMfÞ
þ �1�Mf

s2 þ ð�1�MfÞ
�

ð¼ �0:896Þ; (A19)

C2¼
Z �

��

d2	

ð2�Þ2
�� �1þMf

s2þð�1þMfÞ
�
2

þ
� �1�Mf

s2þð�1�MfÞ
�
2
�

ð¼0:404Þ; (A20)

where we use similar symbols as the naive fermion case,
s2 ¼ P

�sin
2ðk�a=2Þ, Mf ¼ cosðk1a=2Þ cosðk2a=2Þ.

The integral (74) is slightly complicated, but can be
evaluated in a similar manner. Omitting a constant term
independent on �0 and �0, it can be written as

Iþ0 ¼
Z �=a

��=a

d2k

ð2�Þ2 log

�
s2

a2
þ �2

0 þ �2
0 þ

��1þMf

a

�
2
�

’
Z �2

0
þ�2

0

0
d
Fð
Þ; (A21)

Fð
Þ ¼
Z �=a

��=a

d2k

ð2�Þ2
1

s2=a2 þ ð�1þMfÞ2=a2 þ 

:

(A22)

We can split this integral into a divergent part and a finite
constant in the limit of a ! 0,

Fð
Þ !a!0
Z �=a

��=a

d2k

ð2�Þ2
1P

�
k2�=4þ 


þ cþ0 ;

cþ0 ¼
Z �

��

d2	

ð2�Þ2
�

1

s2 þ ð�1þMfÞ2
� 1P

�
	2
�=4

�

ð¼ 0:0440Þ: (A23)

The divergent part is given by

Z �=a

��=a

d2k

ð2�Þ2
1P

�
k2�=4þ 


¼ 1

�
log

1

4a2

þ Cþ0

0 ðCþ0
0 ¼ 0:798Þ: (A24)

Thus we obtain

Fð
Þ ¼ 1

�
log

1

4a2

þ ~Cþ

0

ð ~Cþ
0 ¼ Cþ

0 þ Cþ0
0 ¼ 0:842Þ:

(A25)

The corresponding integral becomes

Iþ0 ða ! 0Þ ¼ ~Cþ
0 ð�2

0 þ �2
0Þ

� 1

�
ð�2

0 þ �2
0Þ log

4a2ð�2
0 þ �2

0Þ
e

: (A26)

The other integral is written as

I�0 ’ C�
0 ð�2

0 þ �2
0Þ þOðaÞ; (A27)

C�
0 ¼

Z �

��

d2	

ð2�Þ2
1

s2þð1þMfÞ2
ð¼0:333Þ (A28)

where we again omit a constant independent on �0 and �0.
As a result we obtain the expression of (74),

Iþ0 þ I�0 ¼ ~C0ð�2
0 þ �2

0Þ �
1

�
ð�2

0 þ �2
0Þ log

4a2ð�2
0 þ �2

0Þ
e

ð ~C0 ¼ ~Cþ
0 þ C�

0 ¼ 1:177Þ: (A29)
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Phys. Rev. D 78, 074504 (2008).

[24] P. F. Bedaque, M. I. Buchoff, B. C. Tiburzi, and A. Walker-
Loud, Phys. Lett. B 662, 449 (2008); Phys. Rev. D 78,
017502 (2008); S. Capitani, J. Weber, and H. Wittig, Phys.
Lett. B 681, 105 (2009); T. Kimura and T. Misumi, Prog.
Theor. Phys. 124, 415 (2010); 123, 63 (2010); S. Capitani,
M. Creutz, J. Weber, and H. Wittig, J. High Energy Phys.
09 (2010) 027; M. Creutz and T. Misumi, Phys. Rev. D 82,
074502 (2010); T. Misumi, M. Creutz, and T. Kimura,
Proc. Sci., LATTICE2010 (2010) 260.

[25] M. Creutz, Proc. Sci., LATTICE2010 (2010) 078.
[26] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235

(1974).
[27] T. Eguchi and R. Nakayama, Phys. Lett. 126B, 89 (1983).
[28] B. Leder, Ph.D. thesis, [arXiv:0707.1939].
[29] T. Korzec, Ph.D. thesis, http://edoc.hu-berlin.de/docviews/

abstract.php?id=28045.
[30] B. Leder, J. High Energy Phys. 04 (2008) 044.
[31] M. Creutz, Phys. Rev. Lett. 92, 201601 (2004); 92, 162003

(2004).

MICHAEL CREUTZ, TARO KIMURA, AND TATSUHIRO MISUMI PHYSICAL REVIEW D 83, 094506 (2011)

094506-16

http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1103/PhysRevD.25.2649
http://dx.doi.org/10.1016/S0370-2693(98)00355-4
http://dx.doi.org/10.1016/0370-2693(92)91112-M
http://dx.doi.org/10.1016/0550-3213(95)00031-M
http://dx.doi.org/10.1103/PhysRevD.61.094501
http://dx.doi.org/10.1103/PhysRevD.11.395
http://dx.doi.org/10.1103/PhysRevD.16.3031
http://dx.doi.org/10.1016/0550-3213(81)90200-5
http://dx.doi.org/10.1016/0550-3213(81)90200-5
http://dx.doi.org/10.1103/PhysRevLett.104.141602
http://arXiv.org/abs/1008.2833
http://dx.doi.org/10.1016/j.physletb.2010.12.062
http://dx.doi.org/10.1007/JHEP12(2010)041
http://dx.doi.org/10.1007/JHEP12(2010)041
http://dx.doi.org/10.1016/0370-2693(81)90133-7
http://dx.doi.org/10.1103/PhysRevLett.59.2397
http://dx.doi.org/10.1088/1126-6708/2008/04/017
http://dx.doi.org/10.1103/PhysRevD.78.074504
http://dx.doi.org/10.1016/j.physletb.2008.03.034
http://dx.doi.org/10.1103/PhysRevD.78.017502
http://dx.doi.org/10.1103/PhysRevD.78.017502
http://dx.doi.org/10.1016/j.physletb.2009.09.050
http://dx.doi.org/10.1016/j.physletb.2009.09.050
http://dx.doi.org/10.1143/PTP.124.415
http://dx.doi.org/10.1143/PTP.124.415
http://dx.doi.org/10.1143/PTP.123.63
http://dx.doi.org/10.1007/JHEP09(2010)027
http://dx.doi.org/10.1007/JHEP09(2010)027
http://dx.doi.org/10.1103/PhysRevD.82.074502
http://dx.doi.org/10.1103/PhysRevD.82.074502
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1103/PhysRevD.10.3235
http://dx.doi.org/10.1016/0370-2693(83)90024-2
http://arXiv.org/abs/0707.1939
http://edoc.hu-berlin.de/docviews/abstract.php?id=28045
http://edoc.hu-berlin.de/docviews/abstract.php?id=28045
http://dx.doi.org/10.1088/1126-6708/2008/04/044
http://dx.doi.org/10.1103/PhysRevLett.92.201601
http://dx.doi.org/10.1103/PhysRevLett.92.162003
http://dx.doi.org/10.1103/PhysRevLett.92.162003

