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1. Introduction 

Colorectal polyps are relatively common in dogs, and most are neoplastic (Seiler, 

1979; Valerius et al., 1997). However, a recent report showed that Miniature Dachshunds 

(MDs) are commonly affected by inflammatory colorectal polyps (ICRPs) (Ohmi et al., 

2012). ICRPs in MDs were a recently recognized disease in Japan, and these animals 

commonly develop clinical signs such as hematochezia, tenesmus, and mucoid feces. 

ICRPs in MDs typically form multiple small polyps restricted to the descending colon 

and rectum, but they sometimes develop into a space-occupying large polyp. ICRPs 

commonly show excessive mucous secretion, mucous hyperplasia, and severe 

inflammatory infiltration (predominantly with neutrophils and macrophages), which is 

more severe in large polyps than in small polyps (Tamura et al., 2013). MDs with ICRPs 

respond relatively well to immunosuppressive therapy that includes prednisolone and/or 

cyclosporine (Ohmi et al., 2012). Therefore, ICRPs are proposed to be a novel form of 

canine inflammatory bowel disease (IBD) (Ohta et al., 2013). 

To date, several studies have investigated the pathogenesis of ICRPs in MDs. Ohta et 

al. (2013) reported upregulated expression of CD4+ T cell cytokine mRNAs, including 

IL-17, IFN-γ, and IL-10 at the polypoid lesion. Tamura et al. (2013) also reported 

upregulation of proinflammatory cytokine genes, including IL-1β, IL-6, IL-8/CXCL8, IL-

12p35, IL-12/23p40, IL-23p19, and TNF-α at polypoid lesion; further, this study showed 

that the macrophages in the colorectal mucosa were the major cellular source of IL-

8/CXCL8. Since IL-8/CXCL8 has been shown to induce neutrophil infiltration, the 

upregulation of IL-8/CXCL8 by macrophages in the polypoid lesion is considered to play 

an important role in the development of mucosal inflammation commonly observed in 

ICRPs in MDs. However, no previous study investigated the inflammation trigger. 



5 

 

In human and canine IBD, the etiology of intestinal inflammation has been described 

as multifactorial, and aberrant interactions between the mucosal immune system and 

luminal microflora are postulated to lead to the chronic intestinal inflammation 

(Cerquetella et al., 2010; German et al., 2003; Xavier and Podolsky, 2007). Since the large 

intestine has the highest density and diversity of bacteria (Hooda et al., 2012), the aberrant 

host-microbe interaction is speculated to play an important role in the pathogenesis of 

ICRPs in MDs. 

The restriction of ICRPs to the mucosal surface of the colorectal region in MDs is 

similar to that of ulcerative colitis, a major form of human IBD (Ohmi et al., 2012; Ordás 

et al., 2012). Although the mechanism of lesion restriction has not been clarified, it is 

assumed that the colorectal microflora contribute to the pathogenesis. When performing 

routine medical care, I noted that another characteristic of ICRPs in MDs is that the 

polypoid lesions frequently occur at the ventral floor of the colorectum; thus, I conducted 

a preliminary retrospective investigation of the frequency of ICRPs at the ventral floor 

and the dorsal roof of the colorectum. 

I reviewed the medical records of MDs presented to the Veterinary Medical Center of 

the University of Tokyo between April 2007 and March 2013. Fifty-one dogs were 

diagnosed during the period and 40 of them had documentation about the lesion angle. 

Consequently, I found that ICRPs were likely to develop at the ventral floor (85.0% of 

the MDs had polypoid lesions at the ventral floor and 47.5% at the dorsal roof). However, 

the lesion angle were determined via rectal examination (n = 23), endoscopy (n = 14), 

contrast radiography (n = 1), or macroscopic findings at surgery (n = 2); therefore, the 

data seemed to be too subjective to draw any conclusion. Therefore, I conducted a 

prospective study (Chapter 0) with a hypothesis that the ICRPs were more likely to 
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develop on the ventral floor than the dorsal roof of the colorectum. 
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2. Materials and methods 

MDs referred to the Veterinary Medical Center of the University of Tokyo between 

April 2013 and April 2014 because of clinical signs involving chronic hematochezia 

and/or tenesmus diagnosed as ICRPs by colonoscopy and histopathology were 

prospectively included. Dogs with neoplastic polyps were excluded. At colonoscopy, the 

dorsal angle was placed at the upper end of the image (Figure 1a). Two images were taken 

from each dog at different sites around the most severe lesion. Subsequently, images of 

each case at the region of the most severe lesions were stored with the scope angle retained 

(Figure 1b). Images were trimmed circularly around the centre of the lumen, divided to 

12 equal parts (angles i–xii; Figure 1c), and randomly rotated (Figure 1d). These rotated 

images were subsequently presented to four experienced veterinarians. They were 

specialized in internal medicine and in diagnostic imaging (radiology) at the Veterinary 

Medical Center of the University of Tokyo and were blinded to the rotated angle. The 

ICRP severity at each divided part of the rotated images were scored subjectively (score 

0, no polyp exists; 1, small polyps; 2, medium-sized polyps; and 3, large polyps). The 

mean prevalence and scores were then compared between the ventral floor (angle iv–ix) 

and dorsal roof (angle x–xii and i–iii) or right- (angle i–vi) and left-sided lateral wall 

(angle vii–xii) using the Mann–Whitney U test (JMP Pro version 10.0.2, SAS Institute 

Inc., Cary, NC, USA). Statistical significance was defined as P < 0.05. 
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3. Results 

In total 14 MDs were diagnosed endoscopically with colorectal polyps, however three 

of them were excluded based on the histopathological diagnosis of colorectal adenoma. 

Consequently, 11 MDs were included: seven male dogs (six neutered and one intact) and 

four neutered female dogs, median age 118 months (range, 48–151 months), and median 

body weight 5.15 kg (range, 4.30–6.80 kg). All dogs had diffuse small polyps and eight 

dogs had one to two large polyps as well. All polypoid lesions were localized to the 

colorectal region approximately 3–10 cm from the anus. As shown in Figures 2 and 3, 

both the prevalence and scores of ICRP reached the highest at angles iv–viii and v, 

respectively. The mean prevalence of polyps on the ventral floor was significantly higher 

than that of the dorsal angles (P < 0.0001; Table 1). Furthermore, the mean severity score 

of polyps on the ventral floor was significantly higher than that of the dorsal roof (P = 

0.0001; Table 1). Conversely, no significant difference was observed in the mean 

prevalence or score between right- and left-sided lateral walls (P = 0.3918 and 0.2106, 

respectively; Table 1). Furthermore, similar results were obtained when the scores 

evaluated by each observer from each image were compared between the ventral floor 

and the dorsal roof (Figure 4), although there was inter-observer variation in the overall 

score between two observers (Figure 5). 
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4. Discussion and general introduction for Chapter 1 and 2 

This Chapter revealed that ICRPs in MDs tend to develop larger at the ventral than at 

the dorsal region. Since this study only investigated macroscopic changes to the mucosal 

surface, the influence of anatomical factors including distance from regional lymph nodes 

or mesocolon, distribution of nerve, or blood supply were not determined. Therefore, 

further anatomical and histological investigations into the associations between these 

factors and the location of ICRPs might provide a novel insight into the development of 

mucosal inflammation within the colorectum. 

Another possibility responsible for the tendency observed here is the contribution of 

the aberrant interaction of mucosal immunity with fecal antigens, which has been 

described as a cause of chronic intestinal inflammation in human and canine IBD 

(Cerquetella et al., 2010; German et al., 2003; Xavier and Podolsky, 2007). This 

possibility is based on a hypothesis that the duration of contact between the feces and 

epithelium would be longer in the ventral floor than in the dorsal roof due to the intestinal 

gas (unlike in humans, the canine colorectum runs horizontally in the standing position). 

The fecal component (e.g., food components and metabolites), luminal microbiota, failure 

of the mucosal barrier function, and mechanical abrasion by the feces may contribute to 

the aberrant interaction. 

There were several limitations to this study. First, only a small number of cases were 

included; therefore, further follow-up study in a larger-scale is needed. Another limitation 

was that only a subjective evaluation of disease severity was performed. Endoscopic 

ultrasound would provide a more objective measurement of polypoid lesion size and 

localization (Hayashi et al., 2012). However, I believe that this limitation’s influence on 

the result would be small because the score difference resulted from differences between 
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divided angles of a single image, not from differences between individual cases or 

observers. Furthermore, there was no inter-observer variations in the difference between 

the angles (i.e., all four veterinarians scored the polyp size larger at the ventral floor than 

that at dorsal roof with each image). 

In conclusion, the result of this Chapter revealed that ICRPs in MDs develop more 

severely at the ventral floor of the colorectal mucosa than at the dorsal roof. This result 

suggests that several factors including the anatomical or histological ventrodorsal 

differences, contact between epithelium and feces, and fecal components and/or 

mechanical abrasion might be important in the pathogenesis of this disease. 

Given the findings that ICRPs in MDs commonly develop at the colorectum and are 

likely to occur at the ventral floor of this region, I speculated that the aberrant interaction 

between the mucosal immunity and fecal microbiota plays an important role in the 

pathogenesis of ICRPs in MDs. 

Innate immune mechanisms recognize microorganisms and are implicated in many 

inflammatory conditions (Drexler and Foxwell, 2010). Pattern recognition receptors 

(PRRs), which are the key regulators of the innate immune system in the gastrointestinal 

mucosa, induce various cellular responses, such as proinflammatory and 

immunomodulatory responses (Cario, 2010; Fukata and Arditi, 2013). PRRs are 

expressed in various cell types, including immune and epithelial cells; these receptors 

activate the intracellular signaling cascades, including nuclear factor-kappa B (NF-κB), 

in response to the recognition of pathogen-associated molecular patterns (PAMPs) and 

they induce genes involved in antimicrobial host defense, such as proinflammatory 

cytokines, type I IFNs, and antimicrobial peptides (Akira et al., 2004, 2006; Zhong et al., 

2013). To date, a number of studies have reported that dysregulated expression or 
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dysfunction has a genetic basis in various inflammatory disorders including IBD in 

humans (Cario, 2010; Corridoni et al., 2014). Similarly, associations between 

dysregulation or gene polymorphisms of canine PRRs and chronic enteropathy, including 

IBD, have been reported (Allenspach et al., 2010; Burgener et al., 2008; Kathrani et al., 

2010, 2011, 2014; McMahon et al., 2010; Okanishi et al., 2013a, b). Therefore, I 

investigated the association between ICRPs in MDs and two well-characterized PRR 

families, toll-like receptors (TLRs) and nucleotide-binding oligomerization domain 

(NOD)-like receptors, in Chapter 1. Firstly, in Chapter 1-1, I investigated the mRNA 

expression levels of PRRs in the polypoid lesions of ICRP-affected MDs. Secondly, I 

evaluated the reactivity of PRRs in ICRP-affected MDs by using peripheral blood-derived 

monocytes in Chapter 1-2. Thirdly, I explored the gene polymorphisms responsible for 

the development of ICRPs in MDs in Chapter 1-3. 

Subsequently, I investigated the alteration of the fecal microflora associated with 

ICRPs in MDs in Chapter 2. The gut microbiota have important roles in the nutritional, 

immunological, and physiologic processes of the host (Hooda et al., 2012; Hooper et al., 

2001; Mackie et al., 1999). The commensal microbiota protect the host from pathogens 

by forming an integral part of the mucosal barrier (Hooda et al., 2012). The mechanism 

of this protection includes competition for nutrients and mucosal adhesion sites, which 

physiologically restricts the environment available to invading pathogens (Kanauchi et 

al., 2005). In addition, gut microbiota have enzymes that digest complex carbohydrates 

from the diet and ferment endogenous products, including sloughed epithelial cells and 

mucus; this process results in the production of short chain fatty acids (SCFAs), such as 

acetic, propionic, and butyric acids (Sunvold et al., 1995a, b). SCFAs, particularly butyric 

acid, have been shown to inhibit colonic inflammation, carcinogenesis, and oxidative 
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stress, improve colonic defense barrier function, promote satiety, and function as a main 

energy substrate for colonocytes (Cook and Sellin, 1998; Hamer et al., 2008). Luminal 

dysbiosis has been reported in human and canine IBD patients, but a cause-effect 

relationship was not fully clarified (Deng and Swanson, 2014; Honneffer et al., 2014; 

Wang et al., 2014). Furthermore, decreased fecal SCFA concentrations and the efficacy 

of SCFA enemas were reported in human IBD (Cummings, 1997; Hamer et al., 2008; 

Huda-Faujan et al., 2010; Takaishi et al., 2008). Therefore, I characterized the 

composition of the fecal microbiota in ICRP-affected MDs by using high-throughput 16S 

rRNA gene sequencing with the Illumina MiSeq platform in Chapter 2-1. Subsequently, 

I analyzed the fecal SCFA concentrations in ICRP-affected MDs by using high 

performance liquid chromatography (HPLC) in Chapter 2-2. 
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Figure 1 

 

Data from the colonoscopic images obtained in the study of Chapter 0. (a) Before 

inserting the endoscope into the dog’s anus, the dorsal roof was placed at the upper end 

of the image. (b) Subsequently, the endoscope was inserted into the anus while scope 

angle was retained (i.e., with the upper side of the image corresponding to the dorsal 

aspect). Images of each case around the most severe lesion were stored. (c) Each image 

was circularly trimmed and divided into 12 equal angles. The angles were allocated as 

angles i–xii. (d) Subsequently, the trimmed images were randomly rotated and presented 

to four veterinarians blinded to the rotated angle. 
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Figure 2 

 

 

 

Mean prevalence of inflammatory colorectal polyps (ICRPs) in 11 dogs included in the 

present study at different angles of colorectal mucosa. The plots indicate the averaged 

data of each dog derived from two images and four observers. Each angle specified in the 

X-axis corresponds to that allocated in Figure 1c. The horizontal lines represent the 

median value of the angle. 
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Figure 3 

 

 

 

 

Mean severity scores of ICRPs in 11 dogs at different angles of colorectal mucosa. The 

plots indicate the averaged data of each dog derived from two images and four observers. 

Each angle specified in the X-axis corresponds to that allocated in Figure 1c. The 

horizontal lines represent the median value of the angle. 
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Figure 4 

 

 

 

Mean severity scores of ICRPs in 11 dogs evaluated by each observer (A, B, C, and D). 

The data represent the averaged value derived from 11 dogs and two images of each dog. 
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Figure 5 

 

 

Mean overall scores of each case based on the evaluation by different four veterinarians. 

The plots indicate the averaged data of each dog derived from two images and all 12 

divided angles. Inter-observer variation was identified (i.e., observer D tended to evaluate 

the score more severely than observer B). Data were statistically analysed using the 

Kruskal–Wallis test with Dunn’s post hoc test. The horizontal lines represent the median 

value in each observer. 
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Abstract 

Inflammatory colorectal polyp (ICRP) in Miniature Dachshund (MD) is thought to be 

a novel form of inflammatory bowel disease (IBD), but its etiology has not been 

investigated. Dysregulated innate immune conditions have been described to be 

implicated in the pathogenesis of both human and canine IBD. Therefore, the aim of the 

current study was to evaluate the messenger RNA (mRNA) expression profiles of pattern 

recognition receptors (PRRs) and cytokines in ICRPs. Polyp tissues were collected by 

colonoscopic biopsies from 24 MDs with ICRPs. Non-polypoid colonic mucosa was 

collected from all MDs with ICRPs and 21 clinically healthy beagles (as the controls). 

The expression levels of the mRNAs encoding toll-like receptors (TLRs) 1–10; 

nucleotide-binding oligomerization domain (NOD)-like receptors NOD1 and NOD2; and 

cytokines IL-1β, IL-6, IL-8/CXCL8, IL-10, TGF-β, and TNF-α were evaluated by 

quantitative real-time RT-PCR. Three of the 10 well-known candidate reference genes 

were selected as housekeeper genes based on analyses from the GeNorm, NormFinder, 

and BestKeeper programs. Levels of TLR1, TLR2, TLR4, TLR6, TLR7, TLR8, TLR9, 

TLR10, NOD2, and all cytokines were significantly upregulated in the polyps relative to 

those in the controls. There was significant decrease in the expression levels of TLR3 and 

NOD1 in the polyp tissues compared to the non-polypoid colonic mucosa obtained from 

MDs with ICRPs. All upregulated PRR mRNAs were positively correlated with all 

proinflammatory cytokine mRNAs. This study demonstrated the dysregulation of PRRs 

and cytokines in ICRPs of MDs, which may play an important role in the pathogenesis of 

this disease. 
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1. Introduction 

One of the etiologies of human and canine inflammatory bowel disease (IBD) is 

hypothesized to result from the inappropriate activation of mucosal immunity by various 

environmental factors such as intestinal microbiota (Wallace et al., 2014; Xavier and 

Podolsky, 2007). Innate immune mechanisms recognize microorganisms and are thought 

to be implicated in many inflammatory conditions (Drexler and Foxwell, 2010). Pattern 

recognition receptors (PRRs) are the key regulators of the innate immune system in 

gastrointestinal mucosa that induce proinflammatory and immunomodulatory responses 

in various cell types, including immune and epithelial cells (Akira and Takeda, 2004; 

Cario, 2010; Fukata et al., 2013). Toll-like receptors (TLRs) and nucleotide-binding 

oligomerization domain (NOD)-like receptors are the most characterized classes of PRRs, 

and many studies have revealed that the dysregulation of TLRs and/or NOD-like 

receptors can lead to inflammation (Becker and O'Neill, 2007; Franchi et al., 2008; 

Shibolet and Podolsky, 2007).  

In human IBD, many studies have reported the upregulation of TLR2 and TLR4 

messenger RNAs (mRNA) and proteins (Cario and Podolsky, 2000; Frolova et al., 2008; 

Szebeni et al., 2008). In a recent study, TLR5, TLR8, and TLR9 mRNA levels were also 

upregulated in ulcerative colitis patients and correlated with inflammatory activity (as 

determined by endoscopy, histology, and transcription levels of proinflammatory 

cytokines including IL-6 and TNF-α) (Sánchez-Muñoz et al., 2011). Another study also 

identified the hyperexpression of NOD2 in intestinal epithelial cells, macrophages, and 

mast cells in Crohn’s disease patients (Berrebi et al., 2003; Okumura et al., 2009).  

Several reports have shown similar results in veterinary medicine. TLR2, TLR4 and 

TLR9 mRNA levels were also upregulated in the duodenal mucosa, and TLR2 was 
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weakly correlated with histological activity in dogs with IBD (Burgener et al., 2008; 

McMahon et al., 2010). In German shepherds with chronic enteropathy, TLR4 mRNA 

expression was also upregulated, while TLR5 (expressed mainly in CD11+ dendric cells 

inducing anti-inflammatory cytokines) expression was downregulated (Allenspach et al., 

2010). More recently, NOD2 mRNA expression and nuclear factor-kappa B (NF-κB) 

activity were upregulated in dogs with lymphocytic–plasmacytic colitis (Okanishi et al., 

2013a). 

Based on the facts that inflammatory colorectal polyps (ICRPs) in Miniature 

Dachshunds (MDs) show idiopathic inflammation and clinical response to the 

immunosuppressive therapy, they are thought to represent a novel form of canine IBD 

(Ohta et al., 2013). As described in Chapter 0, ICRPs in MDs typically occur at the ventral 

floor of the colorectal mucosa. This finding suggest a possibility that the aberrant 

response of the host mucosal immunity to fecal antigens play an important role in the 

pathogenesis of ICRPs in MDs. A recent report showed an increase in proinflammatory 

cytokines in the colorectal mucosa of MDs with ICRPs (Tamura et al., 2013). However, 

to date, there are no reports on the status of PRRs in MDs with ICRPs. Therefore, I 

hypothesized that the dysregulation of PRRs exists in polypoid lesions in MDs with 

ICRPs, which could be correlated with the expression of proinflammatory cytokines. I 

conducted quantitative real-time PCR (qPCR) analyses to quantify the expression levels 

of PRRs and selected cytokines in polypoid lesions and non-polypoid colonic mucosa in 

MDs with ICRPs and in healthy dogs. It is essential to select the appropriate multiple 

reference gene for accurate quantification (Peters et al., 2007). Although Peters et al. 

(2007) have reported stable genes in the colon, duodenum, and duodenal endoscopic 

biopsies, previous studies have not investigated the appropriate combination of stable 
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reference genes in colonic mucosa. Thus, I also assessed combinations of the most stably 

expressed reference genes. 
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2. Materials and methods 

2.1. Animals 

Tissue samples were obtained from MDs referred to the Veterinary Medical Center of 

the University of Tokyo for investigation of chronic hematochezia and/or tenesmus and 

detected colorectal polyps endoscopically between July 2011 and October 2013. Dogs 

diagnosed histopathologically with ICRPs were included in this study, while dogs with 

colorectal adenoma or adenocarcinoma were excluded.  

As healthy controls, 21 beagles were used in this study. These dogs had no clinical 

signs of gastrointestinal disease and showed no abnormalities, as determined by blood 

test, fecal examination, and ultrasound. The use of dogs in this study was approved by the 

Animal Care Committee of the University of Tokyo (Approval No. P11-530). 

 

2.2. Sample collection 

Colonoscopy was performed in all dogs under sedation (butorphanol) or general 

anesthesia (premedication of butorphanol and midazolam, propofol and isoflurane) using 

a VQ-8143B flexible videoendoscope (Olympus Medical Systems Co., Tokyo, Japan). 

Mucosal specimens of polypoid lesions were collected from MDs with ICRPs. As 

controls, colonic mucosa without macroscopic polypoid lesions was collected at the 

descending colon of MDs with ICRPs and from healthy beagles. Multiple mucosal 

biopsies were taken by using the FB-54Q-1 biopsy forceps (Olympus Medical Systems 

Co.) or an electrosurgical snare (ICC 200, ERBE Co., Tubingen, Germany). One to two 

mucosal specimens collected from polypoid lesion or non-polypoid colonic mucosa were 

used for RNA extraction, and at least four mucosal specimens or a large polypoid tissue 

resected by polypectomy were submitted for histopathology. Samples for total RNA 
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extraction were immediately submerged in RNAlater (Qiagen Inc., Valencia, CA, USA) 

and stored at –80°C until use. Samples for histopathology were placed in 10% formalin, 

and hematoxylin and eosin-stained sections were prepared. 

 

2.3. Evaluation of candidate reference genes 

In total, 30 tissue samples were derived from ten polypoid samples, ten non-polypoid 

colonic mucosa samples from MDs with ICRPs, and ten colonic mucosa samples from 

healthy dogs. Total RNA was extracted with a commercially available kit (RNAspin Mini 

RNA Isolation Kit, GE Healthcare UK Ltd., Buckinghamshire, UK) according to the 

manufacturer’s manual. Genomic DNA was removed from the samples with a TURBO 

DNA-free Kit (Applied Biosystems, Foster City, CA, USA) and stored at –80°C until use. 

RNA was quantified using the DU 730 Life Science UV/Vis spectrophotometer 

(Beckman Coulter Inc., Brea, CA). The PrimeScript RT Reagent Kit (Takara Bio Inc., 

Shiga, Japan), containing both oligo (dT) and random hexamer primers, was used to 

synthesize complementary DNA (cDNA) from 100 ng of total RNA according to the 

manufacturer’s instructions. After reverse transcription, qPCR was performed using the 

SYBR Premix Ex Taq II (Takara Bio Inc.) and Thermal Cycler Dice Real Time System 

(Takara Bio Inc.). The qPCR assays were performed in triplicate using a 25-µl reaction 

volume/well. Ten well-known candidate reference genes were tested as follows: β-2 

microglobulin (B2M), CG14980-PB, glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), hydroxymethylbilane synthase (HMBS), hypoxanthine 

phosphoribosyltransferase 1 (HPRT1), ribosomal protein L13a (RPL13A), ribosomal 

protein L32 (RPL32), ribosomal protein S18 (RPS18), succinate dehydrogenase complex 

subunit A (SDHA), and TATA box binding protein (TBP) (Maccoux et al., 2007a; Peters 
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et al., 2007). Information on the primers used in my analyses is depicted in Table 2. Non-

RT and no-template controls were also used as negative controls. The amplification 

conditions were as follows: 95°C for 10 s, 40 cycles of PCR (95°C for 15 s and 60°C for 

30 s), and finally dissociation (95°C for 15 s, 60°C for 30 s, and 95°C for 15 s). The real-

time data was analyzed by the Thermal Cycler Dice Real Time System software version 

4.01A (Takara Bio Inc.). The amplification efficiency calculations derived from standard 

curves based on a 10-fold dilution series of representative cDNA samples were between 

90 and 105%. Ct values were determined as second derivative maximum cycles and 

assessed for stability of expression across samples using three different statistical 

algorithms, including GeNorm (Vandesompele et al., 2002), NormFinder (Andersen et al., 

2004), and BestKeeper (Pfaffl et al., 2004). The consensus from these programs was used 

to demonstrate the most stable reference genes. 

 

2.4. Quantification of PRR and cytokine mRNA expression by qPCR 

   Similarly, total RNA was extracted from all biopsy specimens (RNAspin Mini RNA 

Isolation Kit) and a cDNA sample was synthesized (PrimeScript RT Reagent Kit). 

Subsequently, qPCR was performed (SYBR Premix Ex Taq II) in a final reaction volume 

of 25 µl with the same amplification conditions. Information on the primers for PRRs and 

cytokines is depicted in Table 3. The primer sequences were obtained from previous 

studies (Maccoux et al., 2007b; Maeda et al., 2009; Mercier et al., 2012). HMBS, RPL32, 

and RPS18 were used as reference genes, which were determined to be the most stable 

genes by the GeNorm, NormFinder, and BestKeeper programs. As required for the ΔΔCt 

method, all primer sets exhibited >95% efficiency, which was determined by using a 10-

fold dilution series from representative cDNA samples. The nuclease-free water was used 
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as a negative control. A sample with a known Ct value (as a positive control) was included 

with all sample runs to control for run-to-run Ct variation. All samples were examined in 

duplicate, and the mean value of ΔCt was calculated. The relative expression of the target 

gene was reported as an n-fold difference relative to the expression of the reference gene 

by subtracting the reference Ct values from the target (ΔCt) Ct values. 

 

2.5. Statistical analysis 

   Statistical analyses were performed using commercially available software (StatMate 

III; ATMS Co., Ltd., Tokyo, Japan). Data were statistically analyzed using the Kruskal–

Wallis test with Dunn’s post hoc test to compare PRR and cytokine mRNA expression 

levels among polypoid lesions, non-polypoid colonic mucosa of diseased dogs, and non-

polypoid colonic mucosa of healthy dogs. The relationships of mRNA expression levels 

between all PRRs and proinflammatory cytokines were evaluated using the Spearman’s 

rank correlation coefficient. Statistical significance was defined as P < 0.05. 
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3. Results 

3.1. Animals 

   Twenty-four MDs were diagnosed with ICRPs; seven MDs had diffused multiple 

small polyps in the colorectal region, while other 17 MDs had both large and small polyps 

in that region. Histopathologically, severe neutrophil infiltration, moderate to severe 

infiltration with macrophages, lymphocyte, and/or plasma cells in lamina propria, fibrosis, 

edema, crypt expansion, and mucous hyperplasia were observed in polypoid lesion in all 

MDs. In addition, histopathology was also performed in non-polypoid colonic mucosa in 

14 of 24 MDs with ICRPs; five of them showed no abnormality while nine of them had 

mild lymphocytic–plasmacytic colitis based on World Small Animal Veterinary 

Association guidelines. The median age of dogs with ICRPs was 125.5 months (range, 

68–168 months) with ten females (three intact and seven neutered) and 14 males (two 

intact and 12 neutered). Control samples were obtained from 21 healthy beagles: 14 

females (seven intact and seven neutered) and seven males (one intact and six neutered), 

median age 53 months (range, 48–120 months). All control dogs showed no abnormality 

in histopathology. 

 

3.2. Reference gene selection 

   To determine the most appropriate set of reference genes, I evaluated ten candidate 

reference genes. The mRNAs were ranked in the order of expression stability by the 

GeNorm program; RPS18, RPL32, and HMBS were the three most stably expressed 

genes (Figure 6). Similarly, these three genes showed the lowest stability values and 

standard errors with the NormFinder program (Table 4) and the highest correlation 

coefficients with the BestKeeper program (Table 5). Therefore, I selected RPS18, RPL32, 
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and HMBS as reference genes for further analyses. 

 

3.3. Quantification of mRNA expression levels of PRRs and proinflammatory cytokines 

   Expression of the mRNAs of all PRRs and cytokines was observed in all tissue 

samples. Of the PRRs investigated in this study, the relative expression levels of TLR1, 

TLR2, TLR4, TLR6, TLR7, TLR8, TLR9, TLR10 and NOD2 in polypoid lesions were 

significantly higher than those in the non-polypoid colonic mucosa of MDs with ICPRs 

and control dogs (Figure 7). The mRNA expression levels of TLR3 and NOD1 were 

significantly lower in polypoid lesions than those in the non-polypoid colonic mucosa of 

MDs with ICRPs (Figure 7). The relative expression levels of all investigated cytokines 

in polypoid lesions were also significantly higher than those in the non-polypoid colonic 

mucosa of MDs with ICRPs and control dogs (Figure 8). Furthermore, the mRNA 

expression levels of TLR3, NOD1, and TNF-α in the non-polypoid colonic mucosas of 

MDs with ICRPs were also significantly higher than those of the control dogs (Figures 7 

and 8). 

 

3.4. Correlation of mRNA expression levels between PRRs and proinflammatory cytokines 

   As shown in Table 6, all proinflammatory cytokines showed a positive correlation 

with the mRNA expression levels of TLR1, TLR2, TLR4, TLR6, TLR7, TLR8, TLR9, 

TLR10, and NOD2, which were upregulated in polypoid lesions. The most relevant 

association was found between TLR4 and IL-8/CXCL8 mRNA levels (r = 0.8367, P < 

0.001). 
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4. Discussion 

   In this Chapter, I demonstrated the dysregulation of PRRs and cytokines in the 

polypoid lesions of MDs with ICRPs. Several PRR and all cytokine genes showed 

significant upregulation in polypoid lesions. These changes were partially consistent with 

human and canine IBD. 

   Proinflammatory cytokines play a key role in the modulation of the mucosal immune 

system, and disturbances in proinflammatory and immunomodulatory cytokines have 

been reported in human IBD (Rogler and Andus, 1998; Szkaradkiewicz et al., 2009). On 

the contrary, in canine IBD, the status and role of proinflammatory cytokines in the 

etiology of the disease are controversial, and a recent meta-analysis showed the lack of 

increase in proinflammatory cytokines associated with canine IBD (Jergens et al., 2009). 

Unlike in canine IBD, a significant upregulation of proinflammatory cytokines has been 

reported in ICRPs in MDs, which was consistent with the present study (Tamura et al., 

2013). Interestingly, recent studies also revealed the difference between canine IBD and 

ICRPs in MDs in terms of CD4+ T-cell cytokines, including IL-17A, IL-10, and IFNγ; 

these cytokines did not increase in the duodenal mucosa of dogs with IBD but increased 

in large polyps in MDs with ICRPs (Ohta et al., 2013; Schmitz et al., 2012). These results 

indicate that the pathogenesis of inflammation in ICRPs is more similar to that in human 

IBD rather than that in canine IBD. 

Several PRR genes were upregulated in mucosal specimens obtained from the polyps 

of MDs with ICRPs than those in the non-polypoid colonic mucosa of MDs with ICRPs 

and healthy dogs. TLR2 and TLR4 were the most characterized TLRs in human and 

canine IBD. TLR4 recognizes lipopolysaccharide (LPS) and induces various responses, 

including proinflammatory cytokines. Large amounts of luminal LPS are usually well-
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tolerated within a healthy intestine, and downregulation of TLR4 expression is 

responsible for LPS tolerance in the mouse model (Nomura et al., 2000). Thus, increased 

TLR4 expression in IBD patients is considered an important factor for the development 

of inflammation (Cario and Podolsky, 2000). On the other hand, TLR2 recognizes 

bacterial peptidoglycan and induces proinflammatory and immunomodulatory cytokines 

and Th2 immune response (Cantó et al., 2006; Dillon et al., 2004). TLR2 expression is 

also reported to be positively correlated with the induction of proinflammatory cytokines 

in human ulcerative colitis or the clinical disease severity score of canine IBD (McMahon 

et al., 2010; Sánchez-Muñoz et al., 2011). Similar to human IBD, TLR2 and TLR4 

expression levels were significantly upregulated in polypoid lesions obtained from MDs 

with ICRPs and may aggravate inflammation through excess recognition of luminal or 

fecal antigens. 

   TLR7, TLR8, and TLR9, the relatively well-characterized TLRs in human IBD, were 

also upregulated in ICRPs and correlated with proinflammatory cytokines, which is 

consistent with human IBD (Sánchez-Muñoz et al., 2011). TLR9 recognizes bacterial 

unmethylated CpG DNA motifs and is thought to play a significant role in the induction 

of IL-8/CXCL8 production in intestinal epithelial cells (Ghadimi et al., 2010). TLR7 and 

its homolog, TLR8, recognize single-stranded RNA and their expression levels were 

upregulated in response to innate immunity cytokines (Zarember and Godowski, 2002). 

Although the functional consequence of TLR7 and TLR8 upregulation in the gut is 

unclear, Steenholdt et al. (2009) has reported that IL-8/CXCL8 induction in primary 

colonic epithelial cells is stimulated by TLR8 ligand. IL-8/CXCL8 has been shown to 

induce neutrophil infiltration, and interestingly, the correlation of mRNA expression 

levels between TLR8 and IL-8/CXCL8 was the second-highest in this study (Table 6); 
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therefore, hyperexpression of these TLRs, especially TLR8, may play an important role 

in the accumulation of neutrophils in colorectal mucosa in MDs with ICRPs. 

   I also identified the upregulation of NOD2 level in polypoid lesions of ICRPs. NOD2 

recognizes peptides derived from bacterial peptidoglycan and induces proinflammatory 

cytokine production through NF-κB activation (Ogura et al., 2001b). However, it has been 

suggested that its primary role is to modulate TLR signaling through the induction of IFN 

regulatory factor 4 and mediate tolerance to bacterial products in the intestines (Hedl et 

al., 2007; Watanabe et al., 2008, 2004). Therefore, the presence of NOD2 upregulation in 

ICRPs suggests the failure of this tolerance mechanism; alternatively, it is simply 

consequence of inflammation. 

In the present study, levels of PRRs, including TLR1 and TLR6, were also 

upregulated in ICRPs. Unlike in MDs with ICRPs, the expression levels of TLR1 and 

TLR6 did not change in human IBD (Sánchez-Muñoz et al., 2011). TLR1 and TLR6 have 

been reported to alter the ligand specificity of TLR2, which also leads to the induction of 

proinflammatory signals (Abreu, 2010; Hajjar et al., 2001). Therefore, dysregulation of 

TLR1 and TLR6 in ICRPs could contribute to an abnormal innate immune response for 

TLR2. In addition, TLR1 and TLR6 polymorphisms have been reported to influence the 

disease extension of Crohn’s disease and ulcerative colitis, respectively (Pierik et al., 

2006). Thus, they might lead to the localization of ICRPs in the colorectal region.  

Interestingly, TLR10 expression level was upregulated in ICRPs. TLR10 has been 

reported to be expressed on regulatory T (Treg) cells and is implicated in the regulation 

of human Treg cells (Bell et al., 2007). Moreover, the expression levels of anti-

inflammatory cytokines, including IL-10 and TGF-β, were also upregulated in ICRPs, 

which was consistent with a previous study (Ohta et al., 2013); hence, I assume that the 
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induction of Treg cells could occur in ICRPs. On the contrary, mRNA expression of TLR5 

did not change in the present study. TLR5 recognizes bacterial flagellin and is mainly 

expressed in CD11c+ dendritic cells in lamina propria, which induce Treg cells and 

stimulate production of anti-inflammatory cytokines (Uematsu and Akira, 2009). Thus, 

further studies are needed to investigate the number, distribution, and function of Treg 

cells and CD11c+ dendritic cells in ICRPs. 

   In the present study, TLR3 and NOD1 mRNA expression in polypoid lesions was 

lower than that in non-polypoid colonic mucosa in diseased dogs. In contrast to these 

results, TLR3 and NOD1 mRNA levels have been previously shown to be stable or 

upregulated during intestinal inflammation (Cario and Podolsky, 2000; Hisamatsu et al., 

2003). The cause of this discrepancy is unknown. However, because the expression of 

both PRRs has been described in intestinal epithelial cells (Cario and Podolsky, 2000; 

Rubino et al., 2012), I speculate that this discrepancy might be due to severe inflammatory 

infiltration and a relative decrease in epithelial cells in biopsy specimens from polyps. In 

addition, their mRNA expression levels in non-polypoid colonic mucosa of MDs with 

ICRPs were also higher than that in healthy beagles. However, there were differences in 

the breed, age, and sex of experimental subjects, which should also be taken into account. 

Age-related increase of intestinal epithelial TLR3 expression has been reported in mouse 

and human (Pott et al., 2012), and mRNA expression level of TLR3 in healthy beagles 

correlated with aging (r = 0.6077, P = 0.007) while that of other PRRs including NOD1 

(r = 0.1718, P = 0.442) and all proinflammatory cytokines did not show any correlation 

in this study (Table 7). The MDs with ICRPs were older than the healthy control dogs in 

the present study; therefore, this may contribute to the difference in the result of TLR3 

between non-polypoid colonic mucosa of MDs with ICRPs and that of healthy beagles. 
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Furthermore, since the TNF-α mRNA expression level was also slightly higher in the non-

polypoid colonic mucosa of MDs with ICRPs than that in healthy dogs, a genetic or 

epigenetic disorder might exist in MDs with ICRPs. However, I also evaluated the mRNA 

expression levels of all PRRs and proinflammatory cytokines in non-polypoid colonic 

mucosa of five MDs with colorectal adenoma/adenocarcinoma, and the results were not 

significantly different from those of MDs with ICRPs and healthy beagles (data not 

shown). Thus, further investigations using age- and gender-matched dogs with various 

breeds are required. 

There were several limitations in the current study. First, using whole endoscopic 

biopsy specimens is not ideal because the composition of the samples should vary. 

Therefore, this would influence the expression levels of PRRs, to some extent. In humans, 

upregulation of PRRs was induced by the recognition of their ligands or stimulation with 

inflammatory cytokines (Zarember and Godowski, 2002). The upregulation of PRRs and 

proinflammatory cytokines may have been caused by two factors: (1) the upregulation of 

transcription in cells expressing each PRR and (2) infiltration of inflammatory cells. 

Therefore, further investigations treating specific cell types, which could be performed 

using laser microdissection (Funke, 2011), need to be conducted. Second, mRNA 

expression levels are not necessarily correlated with changes in protein production. Thus, 

if canine-specific antibodies are available, immunohistochemistry, immunofluorescence, 

and/or flow cytometry could be performed to determine the expressed cells and their 

localization in the polypoid lesions of ICRPs. Third, I used only mRNA expression levels 

of proinflammatory cytokines as an indicator of inflammation severity. The disease 

severity should also be classified by macroscopic or histopathological evaluation; 

however, because of the absence of objective criteria in these evaluations in ICRPs, they 
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could not be used in the analysis of the correlation between PRR expression levels and 

disease severity. Although a morphometric analysis may provide the number or 

composition of epithelial or inflammatory cell and might solve this problem, it could not 

be simply applied because the histological construction of ICRPs is commonly collapsed, 

especially in large polyps (i.e. a region remains the “intestinal epithelial construction” 

with inflammatory infiltration while another region shows disrupted construction with 

severe inflammatory infiltration, fibrosis and necrotized histopathology, and often does 

not involve epitheliums). Therefore, I consider it is not appropriate to count the numbers 

of each cells in the limited area of the biopsy specimens. If possible, the composition of 

each cell type in whole biopsy specimens would be counted using flow cytometry, but it 

was difficult in this study because fresh tissue samples were not available. 

   In conclusion, the expression of bacteria-responsive PRRs was dysregulated in the 

polypoid lesions of ICRPs, which support the potential implication of the innate immune 

system in the pathogenesis of this disease. Since the non-elevated expression of most 

PRRs and cytokines was observed in non-polypoid mucosa, it was implied that the 

upregulation of PRRs is not the cause but the consequence of inflammation and may 

aggravate the disease, as observed in human IBD (Szebeni et al., 2008). However, 

Burgener et al. (2008) proposed that PRR upregulation is a genetic predisposition because 

of the absence of significant changes in PRR expression after therapy, despite clinical 

improvement in canine IBD. Since the expression of some PRRs and TNF-α was also 

upregulated in non-polypoid colonic mucosa of MDs with ICRPs, further investigation 

into the genetic background of the MDs is required. 
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Table 2  

Primer sequences of candidate reference genes used in Chapter 1-1. 

Gene  Primer sequences (5'-3') 
Product 

length (bp) 

Genbank accession 

number 

B2M Forward 

Reverse 

ACGGAAAGGAGATGAAAGCA 

CCTGCTCATTGGGAGTGAA 
99 XM_535458 

CG14980 Forward 

Reverse 

GCAGGAAGGGATTCTCCAG 

GGGTCCAGTAAGAAATCTTCCATAA 
75 XM_536878 

GAPDH Forward 

Reverse 

CATTGCCCTCAATGACCACT 

TCCTTGGAGGCCATGTAGAC 
105 NM_001003142 

HMBS Forward 

Reverse 

TCACCATCGGAGCCATCT 

GTTCCCACCACGCTCTTCT 
112 XM_546491 

HPRT1 Forward 

Reverse 

CACTGGGAAAACAATGCAGA 

ACAAAGTCAGGTTTATAGCCAACA 
123 AY_283372 

RPL13A Forward 

Reverse 

GCCGGAAGGTTGTAGTCGT 

GGAGGAAGGCCAGGTAATTC 
87 AJ_388525 

RPL32 Forward 

Reverse 

TGGTTACAGGAGCAACAAGAAA 

CACATCAGCAGCACTTCA 
100 XM_848016 

RPS18 Forward 

Reverse 

TGCTCATGTGGTATTGAGGAA 

TCTTATACTGGCGTGGATTCTG 
116 XM_532106 

SDHA Forward 

Reverse 

GCCTTGGATCTCTTGATGGA 

TTCTTGGCTCTTATGCGATG 
92 XM_535807 

TBP Forward 

Reverse 

CTATTTCTTGGTGTGCATGAGG 

CCTCGGCATTCAGTCTTTTC 
96 XM_849432 

 

B2M, β-2 microglobulin; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; HMBS, 

hydroxymethylbilane synthase; HPRT1, hypoxanthine phosphoribosyltransferase 1; RPL13A, 

ribosomal protein L13a; RPL32, ribosomal protein L32; RPS18, ribosomal protein S18; SDHA, 

succinate dehydrogenase complex subunit A; TBP, TATA box binding protein. 
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Table 3 

Primer sequences of pattern recognition receptors (PRRs) and proinflammatory cytokines 

used in Chapter 1-1. 

Gene  Primer sequences (5'-3') 
Product 

length (bp) 

Genbank accession 

number 

TLR1 Forward 

Reverse 

GCCATCCTACCGTGAACCT 

GCACTCAACCCCAGAAACTC 
114 NM_001146143.1 

TLR2 Forward 

Reverse 

TCGAGAAGAGCCACAAAACC 

CGAAAATGGGAGAAGTCCAG 
90 NM_001005264.2 

TLR3 Forward 

Reverse 

GCAACACCCAGCTACACAGA 

ATGTGGAAGCCAGACAAAGG 
130 JF681167 

TLR4 Forward 

Reverse 

GTGCTTCATGGTTTCTCTGGT 

CCAGTCTTCATCCTGGCTTG 
146 NM_001002950.1 

TLR5 Forward 

Reverse 

TCGTGTTGACAGACGGTTATTT 

TCCGGTTGAGGGAAAAGTC 
143 EU551146.1 

TLR6 Forward 

Reverse 

TCAAGCATTTAGACCTCTCATTCA 

CCGTAACTTTGTAGCACTTAAACCT 
109 EU551147.1 

TLR7 Forward 

Reverse 

GCCCTTTTTCTGATGGTGATT 

CGCCGATACCCCTTTATTTT 
100 AB248956.1 

TLR8 Forward 

Reverse 

TCAGCTACAATGCACACTACTTCC 

ACGCTTCTCAGGTCTTGCTC 
138 JF681168 

TLR9 Forward 

Reverse 

ACTGGCTGTTCCTCAAGTCC 

AGTCATGGAGGTGGTGGATG 
104 NM_001002998.1 

TLR10 Forward 

Reverse 

TGCCAACAACACATCCTTG 

GCAAGCACCTGAAAACAGAA 
145 JF681169 

NOD1 Forward 

Reverse 

GTCACTCACATCCGCAACAC 

CCACGATCTCCGCATCTT 
84 JF681170 

NOD2 Forward 

Reverse 

GCACATCACCTTCCAGTGTTT 

GGCCCATGACAAATGAAGA 
98 JF681171 

IL-1β Forward 

Reverse 

ACCCGAACTCACCAGTGAAATG 

GGTTCAGGTCTTGGCAGCAG 
110 NM_001037971 

IL-6 Forward 

Reverse 

TCTGTGCACATGAGTACCAAGATCC 

TCCTGCGACTGCAAGATAGCC 
125 NM_001003301 

IL-8/ 

CXCL8 

Forward 

Reverse 

CTTCCAAGCTGGCTGTTGCTC 

TGGGCCACTGTCAATCACTCTC 
173 NM_001003200 

IL-10 Forward 

Reverse 

CAGGTGAAGAGCGCATTTAGT 

TCAAACTCACTCATGGCTTTGT 
65 XM_850467 

TGF-β Forward 

Reverse 

GGAGCAGCATGTGGAGCTGTA 

GCCTCACGACTCCAGTGACATC 
125 NM_001003309 

TNF-α Forward 

Reverse 

CCCAAGTGACAAGCCAGTAGCTC 

ACAACCCATCTGACGGCACTATC 
146 NM_001003244 

CXCL, chemokine C-X-C motif ligand; IL, interleukin; NOD, nucleotide-binding 

oligomerization domain; TGF, transforming growth factor; TLR, toll-like receptor; TNF, 

tumor necrosis factor. 
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Table 4 

NormFinder reference gene stability. 

Gene name Stability value Standard error 

RPL32 0.082 0.030 

HMBS 0.099 0.029 

RPS18 0.159 0.031 

CG14980 0.165 0.031 

RPL13A 0.220 0.036 

TBP 0.231 0.037 

B2M 0.316 0.046 

GAPDH 0.378 0.053 

HPRT1 0.436 0.060 

SDHA 0.620 0.083 
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Table 5 

BestKeeper reference gene stability. 

Gene name Coefficient of correlation Standard deviation Covariance (%) 

RPL32 0.994 1.089  5.62  

HMBS 0.993 1.120  4.42  

RPS18 0.992 1.079  5.70  

TBP 0.987 0.861  3.43  

CG14980 0.985 1.091  4.31  

RPL13A 0.984 1.213  5.86  

B2M 0.968 1.218  6.55  

GAPDH 0.943 1.075  4.56  

HPRT1 0.936 1.258  5.10  

SDHA 0.834 1.134  5.00  
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Table 6 

Correlations between the messenger RNA (mRNA) expression levels of PRRs and 

proinflammatory cytokines. 

Gene 

Transcript 

IL-1β  IL-6  IL-8/CXCL8  TNF-α 

r P value  r P value  r P value  r P value 

TLR1 0.7326 <0.001  0.6999 <0.001  0.7832 <0.001  0.6879 <0.001 

TLR2 0.7062 <0.001  0.7553 <0.001  0.7718 <0.001  0.6665 <0.001 

TLR3 –0.1008 0.416  –0.2360 0.057  –0.0914 0.461  –0.0616 0.619 

TLR4 0.8051 <0.001  0.7723 <0.001  0.8367 <0.001  0.6970 <0.001 

TLR5 0.2473 0.054  0.2835 0.032  0.2732 0.038  0.2161 0.081 

TLR6 0.6418 <0.001  0.6259 <0.001  0.7031 <0.001  0.6696 <0.001 

TLR7 0.6207 <0.001  0.6763 <0.001  0.6743 <0.001  0.5986 <0.001 

TLR8 0.7694 <0.001  0.7938 <0.001  0.8272 <0.001  0.7126 <0.001 

TLR9 0.4595 <0.001  0.5145 <0.001  0.5318 <0.001  0.5846 <0.001 

TLR10 0.4264 <0.001  0.5224 <0.001  0.5036 <0.001  0.4850 <0.001 

NOD1 –0.2789 0.035  –0.4041 0.001  –0.2723 0.038  –0.1151 0.353 

NOD2 0.6276 <0.001  0.6860 <0.001  0.6638 <0.001  0.5673 <0.001 
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Table 7  

Correlations between the mRNA expression levels of PRRs or proinflammatory cytokines 

and aging in healthy beagles. 

Gene Transcript 
Correlation with age 

r P value 

TLR1 –0.1442 0.519 

TLR2 –0.0441 0.844 

TLR3 0.6077 0.007 

TLR4 –0.0678 0.762 

TLR5 0.1014 0.650 

TLR6 –0.2087 0.351 

TLR7 0.1001 0.654 

TLR8 0.1534 0.493 

TLR9 –0.0263 0.906 

TLR10 0.0079 0.972 

NOD1 0.1718 0.442 

NOD2 0.0092 0.967 

IL-1β 0.0856 0.702 

IL-6 0.0520 0.816 

IL-8/CXCL8 –0.1271 0.570 

TNF-α 0.0803 0.719 
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Figure 6 

 

 

 

 

Average expression stability values and ranking of reference genes. The GeNorm 

program calculates the gene expression stability (M) of one gene based on the average 

pair-wise variation between all examined reference genes. The lowest M values 

characterize genes with the most stable expression levels. 
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Figure 7 
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Legend for Figure 7.  

Relative transcription levels of pattern recognition receptor messenger RNA (mRNAs) in 

polypoid lesions and non-polypoid colonic mucosa of Miniature Dachshunds (MDs) with 

inflammatory colorectal polyps (ICRPs) (n = 24) and healthy dogs (n = 21). The top and 

bottom of the box represent the 75th and 25th percentiles, respectively; the middle line 

represents the median; and the whiskers represent the 95th and 5th percentiles. Asterisks 

indicate statistical differences (*P < 0.05, **P < 0.01, and ***P < 0.001). NOD, 

nucleotide-binding oligomerization domain; TLR, toll-like receptor. 
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Figure 8 

 

Relative transcription levels of proinflammatory cytokine mRNAs in polypoid lesions and non-

polypoid colonic mucosa of MDs with ICRPs (n = 24) and healthy dogs (n = 21). The top and 

bottom of the box represent the 75th and 25th percentiles, respectively; the middle line represents 

the median; and the whiskers represent the 95th and 5th percentiles. Asterisks indicate statistical 

differences (*P < 0.05, **P < 0.01, and ***P < 0.001). CXCL, chemokine C-X-C motif ligand; 

IL, interleukin; TGF, transforming growth factor; TNF, tumor necrosis factor. 
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Chapter 1-2 

Functional analysis of pattern recognition receptors 

in Miniature Dachshunds with 

inflammatory colorectal polyps 
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Abstract 

Pattern recognition receptors (PRRs) play a key role in the distinction of pathogens 

from commensal bacteria and food antigens. Dysfunction resulting from genetic disorders 

of PRRs have been linked to human and canine IBD. Therefore, I analyzed the reactivity 

of PRRs in MDs with ICRPs. Twenty-six MDs with ICRPs and 16 control MDs were 

recruited. Peripheral blood-derived monocytes were obtained from each dog, and then 

stimulated with PRR ligands for 6 and 24 hr; subsequently, messenger RNA (mRNA) 

expression levels and protein secretion of IL-1β were quantified using quantitative real-

time PCR and ELISA, respectively. The levels of IL-1β mRNA and protein secretion after 

stimulation with a nucleotide-binding oligomerization domain 2 (NOD2) ligand were 

significantly greater in monocytes from ICRP-affected MDs than in those from control 

MDs. In addition, IL-1β protein secretion induced by toll-like receptor (TLR) 1/2, TLR2, 

and TLR2/6 stimulation was also significantly greater in ICRP-affected MDs. These 

results suggest that reactivity against NOD2, TLR1/2, TLR2, and TLR2/6 signals is 

enhanced in ICRP-affected MDs and may play a role in the pathogenesis of ICRPs in 

MDs. Additional studies of the genetic background of these PRRs should be performed. 
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1. Introduction 

The etiology of human inflammatory bowel disease (IBD) has been described as 

multifactorial and including the interplay of environment, gut microbiota, mucosal 

immune system, and genetic background, which also have roles in canine IBD (Cario, 

2010; Cerquetella et al., 2010; Xavier and Podolsky, 2007). Pattern recognition receptors 

(PRRs) distinguish pathogens from commensal bacteria and food antigens by recognizing 

pathogen-associated molecular patterns (PAMPs), induce cell signaling via activation of 

nuclear factor-kappa B (NF-κB), and subsequently increase the upregulation of immune 

response gene expression involving proinflammatory cytokines and co-stimulatory 

molecules (Abreu, 2010; Cario, 2010; Medzhitov et al., 1997). Therefore, the 

dysregulated expression or dysfunction of PRRs has been characterized as a cause of 

various inflammatory disorders, including IBD (Cario, 2010; Corridoni et al., 2014). 

I revealed the dysregulated expression of various PRRs in Miniature Dachshunds 

(MDs) with inflammatory colorectal polyps (ICRPs) in Chapter 1-1. However, the 

observed dysregulation was mostly restricted to the polypoid lesion, which indicates that 

the upregulation of PRRs is not the cause but the consequence of inflammation and may 

aggravate the disease. On the other hand, MDs are commonly affected by ICRPs, 

suggesting a genetic predisposition (Ohmi et al., 2012), but no report has investigated 

their genetic background. 

   To date, many studies of human and canine IBD have reported genetic predispositions, 

including genetic disorders of PRRs. Although a meta-analysis of genome-wide 

association studies revealed 163 risk-associated loci for human IBD (Jostins et al., 2012), 

the genetic backgrounds of PRRs are still of interest because they play crucial roles in the 

interaction between luminal antigens and host immunity. Genetic variations associated 

http://ejje.weblio.jp/content/multifactorial
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with human IBD have been reported in a variety of PRR genes including toll-like 

receptors (TLRs; e.g., TLR1, TLR2, TLR4, TLR5, TLR6, and TLR9) and nucleotide-

oligomerization domain (NOD)-like receptors including NOD2 (Cario, 2010; Cummings 

et al., 2010; Ogura et al., 2001a). Polymorphisms of TLR4, TLR5, and NOD2 are also 

associated with canine IBD (Kathrani et al., 2010, 2011, 2014).  

A defect in PRRs is considered to influence ligand recognition, mucosal immune 

tolerance, and commensal composition, leading to innate or adaptive immune hypo- or 

hyperreactivity (Cario, 2010). Many risk-associated genetic variations for human IBD in 

PRRs have been shown to confer functional disorder (Arbour et al., 2000; Gewirtz et al., 

2006; Tanabe et al., 2004); for example, a D299G mutation in human TLR4 gene results 

in conformational change and hyporesponsiveness to bacterial lipopolysaccharide (LPS), 

but is considered to induce a signaling disequilibrium of other TLRs leading to intestinal 

inflammation (Cario, 2010). Furthermore, an IBD risk-associated haplotype of canine 

TLR5 reportedly includes hyperresponsiveness to bacterial flagellin (Kathrani et al., 

2012). 

I hypothesized that functional disorder related to genetic background would also exist 

in MDs with ICRPs. Recently, Tamura et al. (2013) have suggested that macrophages in 

the colorectal area of ICRP-affected MDs play a key role in neutrophil recruitment via 

production of proinflammatory cytokines. Therefore, this study aimed to evaluate the 

reactivity of PRRs in ICRP-affected MDs using peripheral blood-derived monocytes to 

narrow the candidate PRR genes responsible for development of the condition. 
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2. Materials and methods 

2.1. Animals 

ICRP-affected MDs evaluated at the Veterinary Medical Center of the University of 

Tokyo between April 2012 and November 2013 were recruited for the study. The 

diagnosis of ICRP was determined based on the colonoscopic and histopathological 

findings as characterized in a previous study (Ohmi et al., 2012). As controls, MDs owned 

by veterinarians or veterinary technicians were also recruited. These control MDs were 

confirmed as having no inflammatory, infectious, or immune-mediated diseases with a 

health examination. All procedures were conducted according to the animal 

experimentation guidelines of the University of Tokyo, and informed consent was 

obtained from the owners of the MDs. 

 

2.2. Cell preparation and culture 

Approximately 10 ml of whole blood in ethylenediaminetetraacetic acid (EDTA) was 

collected from each dog. One milliliter was used for routine blood tests including 

complete blood count (CBC), and the remainder was used to obtain peripheral blood-

derived monocytes modifying the methods as described in previous studies (Bueno et al., 

2005; Goto-Koshino et al., 2011). Peripheral blood mononuclear cells (PBMCs) were 

obtained from the EDTA blood via Ficoll-Paque Plus (GE Healthcare Ltd., 

Buckinghamshire, UK) density gradient centrifugation. The PBMCs were resuspended in 

RPMI 1640 (Sigma–Aldrich, St. Louis, MO, USA) containing 10% fetal bovine serum 

(Biowest, Nuaillé, France) supplemented with penicillin and streptomycin (Sigma–

Aldrich). PBMCs were seeded into nine wells of a 12-well plate at a concentration of 1 × 

106 cells/well and nine wells of a 48-well plate at 2.5 × 105 cells/well and cultured at 37°C 

http://www.semi-marathon-nuaille.com/
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in 5% CO2 overnight. To obtain monocytes, I washed the cells twice with Hank’s balanced 

salt solution (Sigma–Aldrich) to remove non-adherent cells, and the adherent cells were 

then cultured for an additional 6 days and used for experiments.  

The viability and purity of peripheral blood-derived monocytes were preliminary 

assessed using four healthy laboratory beagles. The use of laboratory beagles was 

approved by the Animal Care Committee of the University of Tokyo (Approval No. P13-

774). Adherent cells were harvested by using a cell lifter (Corning, Lowell, MA, USA). 

Cell viability was assessed by trypan blue staining, and 92–97% of the cells were regarded 

as viable (100 cells counted per dog, in duplicate). The morphology of these cells was 

assessed by Wright–Giemsa staining; these cells presented variable cell size, <1.0 of N:C 

ratios, irregularly round-shaped nuclei with diffuse chromatins, vacuolated cytoplasms, 

and sometimes multinucleated. Non-specific esterase staining was performed using a 

commercially available kit (Muto pure chemicals, Tokyo, Japan) according to the 

manufacturer’s manual; 90–96% of the cells were positively stained (100 cells counted 

per dog, in duplicate). 

 

2.3. Stimulating cells with PAMPs 

The monocytes were washed twice with culture medium and cultured in 500 µl of 

culture medium for the 12-well plate and 200 µl for the 48-well plate with stimulation by 

the following PAMPs: peptidoglycan-like molecule (iE-DAP; NOD1 ligand, 10 µg/ml), 

muramyl dipeptide (MDP; NOD2 ligand, 10 µg/ml), synthetic bacterial lipoprotein 

(Pam3CSK4; TLR1/2 ligand, 500 ng/ml), peptidoglycan from Escherichia coli K12 

(PGN-EK; TLR2 ligand, 20 µg/ml), synthetic diacylated lipoprotein (FSL-1; TLR2/6 

ligand, 50 ng/ml), ultrapure LPS from E. coli K12 (LPS-EK Ultrapure; TLR4 ligand, 10 
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µg/ml), purified flagellin from Salmonella typhimurium (FLA-ST Ultrapure; TLR5 

ligand, 100 ng/ml), CpG oligonucleotide (ODN2006; TLR9 ligand, 5 µM) (all from 

Invivogen, San Diego, CA, USA), and culture medium only (negative control). The 

stimulation lasted 6 hr for monocytes in the 12-well plate and 24 hr for those in the 48-

well plate. Each cell-free supernatant of culture media was collected and stored at –80°C 

for further analysis. The cells in the 12-well plate were washed twice with Hank’s 

balanced salt solution, and subsequently lysed to extract their total RNA using a 

commercially available kit (RNAspin Mini RNA Isolation Kit, GE Healthcare Ltd.) 

according to the manufacturer’s instructions and stored at –80°C for further analysis. 

 

2.4. Quantification of PRR and cytokine messenger RNA (mRNA) expression with 

quantitative PCR 

Reverse transcription was performed using a PrimeScript RT Reagent Kit (Takara Bio 

Inc., Shiga, Japan) to synthesize complementary DNA from total RNA according to the 

manufacturer’s instructions. Subsequently, quantitative real-time PCR was performed 

using SYBR Premix Ex Taq II (Takara Bio Inc.) and a Thermal Cycler Dice Real Time 

System (Takara Bio Inc.). The amplification conditions were as follows: 95°C for 10 s, 

40 cycles of PCR (95°C for 15 s and 60°C for 30 s), and dissociation (95°C for 15 s, 60°C 

for 30 s, and 95°C for 15 s). Nuclease-free water and non-reverse transcription controls 

were used as negative controls. A sample with a known cycle threshold (Ct) value (as a 

positive control) was included with all sample runs to control for run-to-run Ct variation. 

The real-time data were analyzed using Thermal Cycler Dice Real Time System software 

version 4.01A (Takara Bio Inc.). Ct values were determined with second derivative 

maximum cycles. 
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The primers used in my analyses are detailed in Table 8. The primer sequences were 

obtained from previous studies (Maeda et al., 2009; Mercier et al., 2012; Peters et al., 

2007). The most stably expressed reference genes were preliminarily determined using 

50 ng total RNA derived from monocytes of seven ICRP-affected MDs and seven control 

MDs via assessment of ten candidate genes: β-2 microglobulin, CG14980-PB, 

glyceraldehyde-3-phosphate dehydrogenase, hydroxymethylbilane synthase, 

hypoxanthine phosphoribosyltransferase 1, ribosomal protein L13a, ribosomal protein 

L32, ribosomal protein S18, succinate dehydrogenase complex subunit A, and TATA box 

binding protein (Maccoux et al., 2007a; Peters et al., 2007). Hydroxymethylbilane 

synthase, succinate dehydrogenase complex subunit A, and TATA box binding protein 

were selected as the most stable reference genes in the current study using the GeNorm, 

NormFinder, and BestKeeper programs (data not shown) (Andersen et al., 2004; Pfaffl et 

al., 2004; Vandesompele et al., 2002). 

The amplification efficiency calculated based on standard curves from a 10-fold 

dilution series of representative complementary DNA samples was >95%, as required for 

the ΔΔCt method. All samples were examined in duplicate, and the mean ΔCt value was 

calculated. The relative expression of the target gene was calculated as an n-fold 

difference relative to the expression of the reference gene by subtracting the reference Ct 

values from the target (ΔCt) Ct values. 

 

2.5. Quantification of cytokine production by ELISA 

The concentrations of IL-1β protein in culture media stimulated with PAMPs for 24 

hr were determined using a commercially available ELISA kit (Canine IL-1β VetSetTM 

ELISA Development Kit, Kingfisher Biotech, St. Paul, MN, USA) according to the 
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manufacturer’s instructions. Each assay was performed in duplicate. 

 

2.6. Statistical analysis 

Statistical analyses were performed using a commercially available software package 

(JMP Pro version 10.0.2, SAS Institute, Cary, NC, USA). The Mann–Whitney U test was 

used to compare results between groups. Statistical significance was defined as P < 0.05. 
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3. Results 

3.1. Animals 

   Twenty-six MDs with ICRPs were included in the current study: their median age was 

125.5 months (range, 68–153 months), and the group included 16 males (four intact and 

12 neutered) and ten females (three intact and seven spayed). Eight of 26 ICRP-affected 

MDs had clinical histories of other inflammatory disease, most predominantly with 

chronic gastroenteritis (Table 9). EDTA blood was collected at initial diagnosis in 17 dogs 

and at clinical remission in nine dogs. Ten of 26 ICRP-affected MDs had received 

immunosuppressive therapy including prednisolone, cyclosporine, and/or leflunomide 

within 3 weeks prior to blood collection, while 16 ICRP-affected MDs had not. In 

addition, 16 control MDs—four males (one intact and three neutered) and 12 females 

(five intact and seven spayed)—were included, with a median age of 103 months (range, 

60–171 months). Thirteen control MDs were clinically healthy, while two had obsolete 

vertebral fracture resulted from a traffic accident, and one had mitral insufficiency. No 

control dogs had received any immunomodulatory therapy at the sample collection. The 

numbers of white blood cells and monocytes in the CBCs were not significantly different 

between the groups (white blood cells: 10,438 ± 4,836/µl vs. 10,719 ± 4,595/µl, P = 

0.698; monocytes: 640 ± 289/µl vs. 786 ± 487/µl, P = 0.521; data represent mean ± SD). 

 

3.2. Quantification of mRNA expression levels and protein production of PRRs and 

proinflammatory cytokines in unstimulated canine monocytes 

   As shown in Figures 9 and 10, no significant difference in the mRNA expression 

levels of any of the PRRs or proinflammatory cytokines investigated was observed 

between the groups. Subsequently, I selected IL-1β as an indicator of PRR reactivity, 
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since it showed relatively small inter-dog and inter-group variance (Figure 10). The 

protein secretion of IL-1β in the unstimulated monocytes was equivalent between the 

groups (Figure 10).  

 

3.3. Responses of canine monocytes to PAMPs 

   The IL-1β mRNA expression level in monocytes from ICRP-affected MDs was 

significantly higher than that from control MDs when stimulated with MDP (Figure 11). 

By contrast, no significant difference in the response of monocytes to stimulation with 

iE-DAP, Pam3CSK4, PGN-EK, FSL-1, LPS-EK, FLA-ST, or ODN2006 was observed 

between the MD groups (Figure 11). Furthermore, IL-1β protein production after 

stimulation with MDP, Pam3CSK4, PGN-EK, and FSL-1 in monocytes from ICRP-

affected MDs was greater than that in monocytes from control MDs (Figure 12). 

Conversely, no significant difference in monocyte response was observed between the 

MD groups after stimulation with iE-DAP, LPS-EK, FLA-ST, or ODN2006 (Figure 12).  

In addition, there was no significant difference in all mRNA expression and protein 

production levels investigated in this study between the ICRP-affected MDs which had 

received immunosuppressive therapy and those had not (data not shown). Furthermore, 

the IL-1β mRNA expression and protein production after stimulation with MDP in ICRP-

affected MDs without immunosuppression were also significantly greater than those in 

control MDs (Table 10), while no significant difference of IL-1β mRNA expression or 

protein production was observed between them when stimulated with other ligands 

including Pam3CSK4, PGN-EK, and FSL-1 (Table 10). Moreover, no difference was 

observed in IL-1β mRNA expression after stimulation with every ligand investigated 

between ICRP-affected MDs at initial diagnosis and those at clinical remission, whereas 
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greater IL-1β protein productions were observed in ICRP-affected MDs at initial 

diagnosis after stimulation with Pam3CSK4, PGN-EK, or FSL-1 compared with those at 

clinical remission (Table 11). 
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4. Discussion 

In this Chapter, I compared the PRR responses to specific PAMP stimulation in 

monocytes from ICRP-affected and control MDs. The study aimed to determine candidate 

PRRs responsible for disease development that might result from genetic predispositions 

in MDs. I found hyperreactivity of certain PRRs, including NOD2, TLR1/2, TLR2, and 

TLR2/6. Since it has been reported that the number of macrophage is increased in the 

polypoid lesion (Ohmi et al., 2012; Tamura et al., 2013), the hyperreactivity of these PRRs 

in monocytes would be involved in the pathogenesis of ICRPs in MDs. 

   MDP, a ligand of NOD2, induced mRNA upregulation and IL-1β protein production, 

and the inductions were greater in ICRP-affected MDs than in control MDs. These 

findings indicate a hyperreactivity of NOD2 in MDs with ICRPs. NOD2 recognizes 

peptides derived from bacterial peptidoglycan and induces proinflammatory cytokine 

production through NF-κB activation (Ogura et al., 2001b). Constitutive activation of NF-

κB and/or hyperresponsiveness to MDP stimulation, which is due to mutations of the 

NOD2 gene (Tanabe et al., 2004), are considered to associate with Blau syndrome in 

humans (Sfriso et al., 2012); this is partly consistent with the findings of the present study. 

I did not evaluate NF-κB activity in this study; however, baseline IL-1β mRNA expression 

and protein production levels were equivalent between the groups. Blau syndrome is 

characterized as a systemic granulomatous inflammation including uveitis, dermatitis, 

and symmetric arthritis. Interestingly, Miniature Dachshund also commonly develops a 

granulomatous disease including sterile panniculitis (Yamagishi et al., 2007); however, 

no ICRP-affected MDs included in this study did not have a history or complication of 

such disease (Table 9). Moreover, inflammation in Blau syndrome is thought to be 

independent of bacterial participation (Meylan et al., 2006). By contrast, NOD2 
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hyperreactivity seems to play a crucial role in the development of ICRP inflammation via 

response against fecal antigens, because the large intestine has the highest density of 

bacteria in the gut (Hooda et al., 2012). Therefore, the significance of functional disorders 

of NOD2 in ICRPs in MDs seems to differ from those of Blau syndrome in humans. 

Further analyses of the genetic background of the NOD2 gene in MDs with ICRPs are 

warranted. 

   Monocytes derived from ICRP-affected MDs also showed overproduction of IL-1β 

protein in response to stimulation with Pam3CSK4, PGN-EK, and FSL-1, the ligands of 

TLR1/2, TLR2, and TLR2/6, respectively. TLR2 recognizes bacterial peptidoglycan and 

induces proinflammatory and immunomodulatory cytokines via NF-κB activation, 

whereas TLR1 and TLR6 form dimers with TLR2 and alter TLR2 ligand specificity 

(Abreu, 2010; O'Neill and Bowie, 2007). The activation of NF-κB by these TLRs is 

induced through a myeloid differentiation factor 88-dependent pathway that is also 

involved in TLR4-, TLR5-, and TLR9-induced pathways (O'Neill and Bowie, 2007). 

Therefore, the overproduction of IL-1β observed in this study might be the result of 

functional disorders of TLRs, especially TLR2, but not from disorders in lower signaling 

pathways. Some polymorphisms of TLR1, TLR2, and TLR6 in humans have also been 

associated with an increased risk of IBD (Cario, 2010), although their effects on reactivity 

have not been well characterized. Therefore, further investigation of the genetic 

background of the TLRs contributing to the hyperreactivity and development of ICRPs 

in MDs is also needed. 

   Despite the increased production of IL-1β protein in response to TLR1/2, TLR2, and 

TLR2/6 stimulation, the mRNA expression level of IL-1β in ICRP-affected MDs and 

control MDs was not significantly different (Figure 11). I have two explanations for this 
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result. First, greater negative feedback on signaling pathway, such as the NF-κB pathways, 

may be induced by these TLRs because they usually elicit greater cellular responses 

compared with those elicited by NOD2 (Kullberg et al., 2008; Ruland, 2011; Watanabe 

et al., 2008), which is also consistent with the results of the current study (Figures 11 and 

12). I chose a 6-hr duration of stimulation because it resulted in the highest IL-1β mRNA 

expression in a preliminary study (data not shown). However, the 6-hr duration of 

stimulation may induce negative feedback and interfere with mRNA expression. 

Sequential evaluation of mRNA expression levels after shorter or longer stimulations may 

confirm the existence of the negative feedback interference; however, I did not extract 

mRNA from the monocytes stimulated for 24 hr. Furthermore, response against lower-

dose stimulation might also help determine whether the negative feedback interference 

occurs. These follow-up studies need to be performed in the future. Second, an 

inflammasome disorder may exist, because inflammasomes activate the conversion of IL-

1β from pro-IL-1β, which is synthesized from IL-1β mRNA (Meylan et al., 2006). 

However, I believe this explanation is unlikely because protein production with or without 

the stimulation of other PRRs was not significantly different between the groups. 

Although the hyperreactivity of NOD2, TLR1/2, TLR2, and TLR2/6 might 

reasonably lead to the overproduction of inflammatory cytokines in ICRP lesions, several 

contradictions remain. The primary role of NOD2 in the gastrointestinal tract appears to 

be the modulation of TLR signaling through the induction of interferon regulatory factor 

4 and the mediation of tolerance to bacterial antigens (Hedl et al., 2007; Watanabe et al., 

2008, 2004). A frameshift mutation of NOD2 gene, the most influential mutation for 

Crohn’s disease, leads to the hypo-reactivity to MDP (Hedl et al., 2007); the consequent 

deficiency of the induction of TLR tolerance is regarded as one of the important etiology 
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of Crohn’s disease (Strober et al., 2008). In addition, TLR2 stimulation leads to the 

induction of proinflammatory and immunomodulatory cytokines (Cantó et al., 2006; 

Dillon et al., 2004). Moreover, a recent study revealed that the responses to PRR 

stimulation differed in duodenal biopsy specimens and whole blood, which indicates that 

responses to bacterial stimuli differ by location (Schmitz et al., 2014). Because only 

monocytes derived from peripheral blood were used in the present study, I am uncertain 

whether the observed PRR hyperreactivity can be applied in the same manner to the 

colorectal mucosa. However, I speculate that a genetic disorder affecting the response of 

monocytes derived from peripheral blood interferes with the function of macrophages in 

the colorectal mucosa. Further analyses using colorectal tissue cultures or mucosal 

macrophages and evaluating both proinflammatory and immunomodulatory responses 

must be performed. In addition, interactions between NOD2 and TLRs, particularly as 

they relate to interferon regulatory factor 4 in both control and ICRP-affected MDs, are 

of interest. 

The protein production of IL-1β was decreased in both ICRP-affected and control 

MDs when stimulated with FLA-ST and ODN2006, the ligands of TLR5 and TLR9, 

respectively (see Figures 10 and 12). These TLRs in the gut have been described that they 

do not directly induce proinflammatory reactions like TLR2 and TLR4, but contribute to 

homeostasis via inducing the differentiation of anti-inflammatory responses and 

immunoglobulin A production (de Kivit et al., 2014; Uematsu and Akira, 2009). House 

et al. (2008) reported that these PAMPs hardly induce proinflammatory cytokine mRNA 

expression and protein production in canine PBMC-derived monocytes, which is 

consistent with the results of IL-1β mRNA expression in this study. The difference in the 

stimulating duration might explain the reduction of IL-1β protein production observed in 
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this study. House et al. (2008) stimulated cells for 4 hr, while 24-hr stimulation was 

performed in this study; I selected the duration to obtain detectable amount of IL-1β 

protein in a preliminary study (data not shown). The chronic or repetitive stimulation with 

PAMPs including ligands of TLR5 and TLR9 induces a TLR tolerance, which is 

characterized as the unresponsiveness of lower signaling pathways and reduced induction 

of proinflammatory cytokines by further TLR stimulations (Lee et al., 2006; Sun et al., 

2007). The induction of TLR tolerance and little proinflammatory induction might result 

in the reduction of IL-1β protein production. Further analyses whether other 

proinflammatory or anti-inflammatory cytokines show similar reduction via stimulation 

of TLR5 or TLR9 and the TLR tolerance induced by them would confirm these findings. 

This study evaluated only proinflammatory cytokine as an indicator of PRR reactivity. 

Since it has been reported that the alteration of anti-inflammatory response including IL-

10 is not consistent with that of proinflammatory cytokines in various diseases, such as 

canine chronic enteropathy (Schmitz et al., 2014), a possibility that dysregulation of anti-

inflammatory cytokine induction could not be excluded, which cannot be detected in this 

study design. In addition, Tamura et al. (2013) reported the marked up-regulation of IL-

8/CXCL8 in macrophage at polypoid lesion, which suggests the importance of IL-

8/CXCL8 overproduction from macrophage in the pathogenesis of ICRPs in MDs. 

Unfortunately, experiments could not be repeated because of the limited amount of 

monocytes obtained.  

The limited yields of monocytes resulted in another limitation of this study. The cell 

purity is crucial in this study design. I checked the morphology of adherent cells obtained 

from ICRP-affected and control MDs, and regarded them as the monocyte lineage. 

However, I did not perform immunocytochemistry, flow cytometry, or other staining on 
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the plate-adherent cells of ICRP-affected and control MDs because of the limited number 

of cells. In addition, the cell viability was not evaluated in ICRP-affected and control 

MDs in this study. However, the non-adherent cells were removed before and after cell 

stimulation at each assay, and thus, I consider that the most of dead cells were not 

remained in the experimental system. 

   My study had further limitations. Although the control group was composed of age-

matched MDs, their genetic backgrounds were not clarified; in other words, MDs enrolled 

in the control group in this study might develop ICRPs in future. However, the prevalence 

of ICRPs in MDs is approximately 1.1%, according to a previous retrospective study 

(Ohmi et al., 2012); therefore, I believe that this limitation does not affect the results of 

my study.  

Another limitation was that inflammatory status and treatment with anti-inflammatory 

agents including prednisolone, cyclosporine, and/or leflunomide at the time of sampling 

might affect the reactivity of monocytes. Although I cultured monocytes for 7 days to 

reduce their interference and confirmed that no significant differences in baseline PRR 

and proinflammatory cytokine mRNA expression and protein production levels occurred 

between the groups, some non-statistically significant differences in unstimulated cells 

might affected the results of stimulated monocytes. Thus, I further divided the ICRP-

affected MD group into two groups by disease status (whether the dogs were at initial 

diagnosis or at clinical remission) or immunosuppression status (whether dogs received 

immunosuppressive therapy or not). Consequently, the ICRP-affected MDs at initial 

diagnosis showed a greater reactivity of TLR1/2, TLR2, or TLR2/6 (Table 11). 

Furthermore, the reactivity of TLR1/2, TLR2 or TLR2/6 could not show significant 

difference when compared between ICRP-affected MDs without immunosuppression and 
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control MDs (Table 10), although the difference of immunosuppression status within 

ICRP-affected MDs did not result in any significant difference. Therefore, the 

hyperreactivity of TLR1/2, TLR2, and TLR2/6 should be interpreted with caution that the 

disease or immunosuppression status may interfere with the result; in other words, the 

hyperreactivity of NOD2 in ICRP-affected MDs might be true. Confirming this 

conclusion requires further investigations of repeatability using pre- and post-treatment 

specimens from MDs with ICRPs. 

   In conclusion, I demonstrated that the reactivity of NOD2, TLR1/2, TLR2, and 

TLR2/6 in MDs with ICRPs was greater than that in control MDs. The results indicate 

that the ICRP-affected dogs have PPRs with genetic backgrounds that predispose them to 

ICRP development. Further investigations of the corresponding genetic backgrounds and 

the significance of hyperreactivity on the development of ICRPs are warranted. 
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Table 8 

Primer sequences of pattern recognition receptors, proinflammatory cytokines, and reference 

genes used in Chapter 1-2. 

Gene Primer sequences (5'–3') 
Product 

length (bp) 

GenBank 

accession number 

NOD1 Forward GTCACTCACATCCGCAACAC 
84 JF681170 

Reverse CCACGATCTCCGCATCTT 

NOD2 Forward GCACATCACCTTCCAGTGTTT 
98 JF681171 

Reverse GGCCCATGACAAATGAAGA 

TLR1 Forward GCCATCCTACCGTGAACCT 
114 NM_001146143.1 

Reverse GCACTCAACCCCAGAAACTC 

TLR2 Forward TCGAGAAGAGCCACAAAACC 
90 NM_001005264.2 

Reverse CGAAAATGGGAGAAGTCCAG 

TLR4 Forward GTGCTTCATGGTTTCTCTGGT 
146 NM_001002950.1 

Reverse CCAGTCTTCATCCTGGCTTG 

TLR5 Forward TCGTGTTGACAGACGGTTATTT 
143 EU551146.1 

Reverse TCCGGTTGAGGGAAAAGTC 

TLR6 Forward TCAAGCATTTAGACCTCTCATTCA 
109 EU551147.1 

Reverse CCGTAACTTTGTAGCACTTAAACCT 

TLR9 Forward ACTGGCTGTTCCTCAAGTCC 
104 NM_001002998.1 

Reverse AGTCATGGAGGTGGTGGATG 

IL-1β Forward ACCCGAACTCACCAGTGAAATG 
110 NM_001037971 

Reverse GGTTCAGGTCTTGGCAGCAG 

IL-6 Forward TCTGTGCACATGAGTACCAAGATCC 
125 NM_001003301 

Reverse TCCTGCGACTGCAAGATAGCC 

TNF-α Forward CCCAAGTGACAAGCCAGTAGCTC 
146 NM_001003244 

Reverse ACAACCCATCTGACGGCACTATC 

HMBS Forward TCACCATCGGAGCCATCT 
112 XM_546491 

Reverse GTTCCCACCACGCTCTTCT 

SDHA Forward GCCTTGGATCTCTTGATGGA 
92 XM_535807 

Reverse TTCTTGGCTCTTATGCGATG 

TBP Forward CTATTTCTTGGTGTGCATGAGG 
96 XM_849432 

Reverse CCTCGGCATTCAGTCTTTTC 

HMBS, hydroxymethylbilane synthase; IL, interleukin; NOD, nucleotide-binding 

oligomerization domain; SDHA, succinate dehydrogenase complex subunit A; TBP, TATA 

box binding protein; TLR, toll-like receptor; TNF, tumor necrosis factor. 
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Table 9 

History in 26 dogs with inflammatory colorectal polyps (ICRPs). 

Inflammatory disease Cases Non-inflammatory disease Cases 

Chronic enteritis 5 Lipomatosis 3 

Chronic rhinitis 2 Mammary grand tumor 3 

Pancreatitis 2 Corneal dystrophy 2 

Anal sacculitis 1 Cryptorchidism 2 

Dermatitis 1 Inguinal hernia 2 

Otitis externa 1 Alimentary Lymphoma 1 

  Diaphragmatic hernia 1 

  Intervertebral disk disease 1 

  Progressive retinal atrophy 1 

  Prostatic cyst 1 

  Prostatic hypertrophy 1 

  Renal Lymphoma 1 

  Sudden acquired retinal degeneration 1 
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Figure 9 

 

 

Relative transcription levels of pattern recognition receptor messenger RNAs (mRNAs) 

in non-stimulated monocytes in Miniature Dachshunds (MDs) with inflammatory 

colorectal polyps (ICRPs; n = 26) and control MDs (n = 16). Data are expressed relative 

to the geometric mean of three reference genes (Hydroxymethylbilane synthase, succinate 

dehydrogenase complex subunit A and TATA box binding protein). The horizontal lines 

represent the median value of that group. NOD, nucleotide-binding oligomerization 

domain; TLR, toll-like receptor. 
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Figure 10 

 

 

 

Relative transcription levels of proinflammatory cytokine mRNAs (A) and protein 

production of IL-1β (B) in non-stimulated monocytes in MDs with ICRPs (n = 26) and 

control MDs (n = 16). Data of mRNAs are expressed relative to the geometric mean of 

three reference genes. Samples below the limit of detection (5.9 pg/ml) have been 

assigned a value of zero. The horizontal lines represent the median value of that group. 
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Figure 11 

 

Relative transcription levels of IL-1β mRNAs in monocytes stimulated with pathogen-

associated molecular patterns (PAMPs) for 6 hr in ICRP-affected (n = 26) and control (n 

= 16) MDs. The horizontal lines represent the median value of that group. Data are 

expressed relative to the geometric mean of three reference genes. Asterisks indicate 

statistically significant differences (P < 0.05). iE-DAP, peptidoglycan-like molecule 

(NOD1 ligand); FLA-ST, flagellin (TLR5 ligand); MDP, muramyl dipeptide (NOD2 

ligand); FSL-1, synthetic diacylated lipoprotein (TLR2/6 ligand); LPS-EK, LPS (TLR4 

ligand); ODN2006, CpG oligonucleotide (TLR9 ligand); Pam3CSK4, synthetic bacterial 

lipoprotein (TLR1/2 ligand); PGN-EK, peptidoglycan (TLR2 ligand). 
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Figure 12 

 

 

Secretion of IL-1β protein from monocytes stimulated with PAMPs for 24 hr in ICRP-

affected (n = 26) and control (n = 16) MDs. Samples below the limit of detection (5.9 

pg/ml) have been assigned a value of zero. The horizontal lines represent the median 

value of that group. Asterisks indicate statistically significant differences (P < 0.05). 
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Chapter 1-3 

Polymorphisms of nucleotide-binding oligomerization 

domain 2 (NOD2) gene and their association with 

inflammatory colorectal polyps  

in Miniature Dachshunds 
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Abstract 

Pattern recognition receptors (PRRs) play an important role in the differentiation of 

pathogens from commensal bacteria and food antigens, and polymorphisms of various 

PRRs have been shown to be associated with human and canine inflammatory bowel 

disease. In Chapter 1-2, I revealed that the reactivity of nucleotide-binding 

oligomerization domain 2 (NOD2), toll-like receptor (TLR) 1/2, TLR2, and TLR2/6 are 

greater in inflammatory colorectal polyp (ICRP)-affected Miniature Dachshunds (MDs) 

than that in controls. Therefore, this Chapter was aimed to investigate single nucleotide 

polymorphisms (SNPs) of PRRs associated with ICRPs in MDs. Mutational analysis of 

canine NOD2, TLR1, TLR2, and TLR6 genes was performed with six ICRP-affected 

MDs, five control MDs, and five healthy beagles. The mutational analysis identified 13 

non-synonymous SNPs in NOD2, TLR1, TLR2, and TLR6 genes, of which six SNPs in 

NOD2 exon 3 were further analyzed in an association study using 63 ICRP-affected MDs, 

82 control MDs, and 237 control dogs of various breeds. Four of the SNPs (A1532G, 

T1573C, C1688G, and G1880A of the NOD2 gene) were in Hardy–Weinberg equilibrium 

and in complete linkage disequilibrium in MDs, and their minor allele frequencies were 

significantly lower in ICRP-affected MDs than in control MDs (0.016 vs. 0.140, P = 

0.0002). The calculated inheritance model was an additive model (odds ratio = 0.10, 95% 

confidence interval = 0.02–0.45, P = 0.0001), which indicates that the haplotype with 

minor alleles in these SNPs (A, T, C, and G in A1532G, T1573C, C1688G, and G1880A) 

possess a protective effect regarding the development of ICRPs. However, these SNPs 

were not specific for MDs, although the minor allele frequencies of these SNPs in control 

MDs were significantly lower than in other breed dogs. These results suggest that the 

identified four SNPs (A1532G, T1573C, C1688G, and G1880A in the NOD2 gene) may 
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play a role in the pathogenesis of ICRPs in MDs. Because the majority of MDs and other 

breed dogs do not have the protective alleles, their absence may not be a specific cause 

of ICRPs in MDs but rather contribute to the development of inflammation.  
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1. Introduction 

To date, a number of gene variations have been reported to be associated with human 

inflammatory bowel disease (IBD). A meta-analysis of genome-wide association studies 

revealed 163 risk-associated loci for human IBD (Jostins et al., 2012). Pattern recognition 

receptors (PRRs), such as toll-like receptors (TLRs) and nucleotide-binding 

oligomerization domain (NOD) receptors, are well-studied genes because they play a 

central role in the maintenance of mucosal immunity by distinguishing the pathogens 

from commensal bacteria and food antigens (Abreu, 2010; Cario, 2010; Magalhaes et al., 

2007). Dysfunction of PRRs resulting from genetic background is involved in the 

pathogenesis of IBD in humans, although the etiology of IBD is considered multifactorial 

(Cario, 2010; Xavier and Podolsky, 2007). Polymorphisms of NOD2 have been 

characterized to encompass the genetic susceptibility to the Crohn’s disease, a major form 

of human IBD (Hugot et al., 2001; Ogura et al., 2001a). In addition, polymorphisms of 

other PRRs including NOD1, TLR1, TLR2, TLR4, TLR5, TLR6, and TLR9 also have 

been reported to be associated with the development of human IBD (Cario, 2010; Lu et 

al., 2010). Furthermore, associations between polymorphisms of TLR4, TLR5, and 

NOD2 genes and IBD in German shepherd breed have also been reported (Kathrani et al., 

2010, 2014). 

Due to the breed specificity, inflammatory colorectal polyp (ICRP) in Miniature 

Dachshunds (MDs) is speculated to involve a genetic susceptibility, but there are no 

reports on the genetic background. In Chapter 1-2, I revealed that the reactivity of NOD2, 

TLR1/2, TLR2, and TLR2/6 is greater in ICRP-affected MDs than those in healthy MDs 

using peripheral blood-derived monocytes. Therefore, I hypothesized that genetic 

variations in the NOD2, TLR1, TLR2, and/or TLR6 are associated with the development 
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of ICRPs in MDs. For this purpose, I first performed molecular cloning of canine NOD2 

gene since its reference sequence (GenBank accession number: NM_001287039.1) was 

not supported by experimental evidence. Second, I performed a mutational analysis of 

these genes using six ICRP-affected MDs, five control MDs, and five healthy beagles to 

detect candidate single nucleotide polymorphisms (SNPs) responsible for ICRPs. Finally, 

the allele frequencies of the SNPs and their association with the development of ICRPs 

were analyzed using 63 ICRP-affected MDs, 82 control MDs, and 237 control other breed 

dogs. 
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2. Materials and methods 

2.1. Animals 

In total, 63 unrelated MDs with ICRPs were included. Sixty-one of them were 

diagnosed with ICRPs at the Veterinary Medical Center of the University of Tokyo 

(VMC-UT) based on the presence of solitary or multiple polyps restricted to the colorectal 

mucosa and histopathological findings (severe inflammatory infiltration predominantly 

by neutrophils, without neoplastic changes). The other two MDs were diagnosed at 

reference hospitals based on similar findings.  

In total, 324 unrelated control dogs were also included in the present study. Client-

owned 82 MDs were recruited as a non-ICRP control, and client-owned 237 dogs with 

other breeds were also recruited to examine the effect of breed differences; both groups 

were presented to the reference hospitals for the periodic health examination. The other 

five healthy dogs were laboratory-owned beagles at VMC-UT and used for molecular 

cloning of NOD2 gene and mutational analysis of PRR genes. All control dogs did not 

have inflammatory, infectious, or immune system-mediated diseases, and showed no 

clinical signs of gastrointestinal disorders. The use of control dogs was approved by the 

Animal Care Committee of the University of Tokyo (Approval No. P13-774).  

 

2.2. Molecular cloning of NOD2 gene 

   Total RNA of three healthy laboratory-owned beagles extracted from colonic mucosa 

in Chapter 1-1 was used. Genomic DNA was removed from the samples with a TURBO 

DNA-free Kit (Applied Biosystems, Foster City, CA, USA). Reverse-transcription was 

performed to synthesize complementary DNA (cDNA) using PrimeScript RT Reagent Kit 

(Takara Bio Inc., Shiga, Japan). Oligonucleotide primers were designed based on the 
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predicted messenger RNA (mRNA) sequence of canine NOD2 (NM_001287039.1), such 

that the primers overlapped with each fragment (Table 12). PCR was performed using 

AmpliTaq Gold 360 (Applied Biosystems) with the following conditions: 95°C for 10 

min, followed by 40 cycles of denaturation (95°C for 3 s), annealing (58–60°C for 30 s), 

and extension (72°C for 75–90 s), and then a final long extension (72°C for 7 min). The 

resulting PCR products were electrophoresed on a 1.5% agarose gel and purified from the 

gel by using a commercially available kit (Wizard SV Gel and PCR Clean-Up System; 

Promega Corp., Madison, WI, USA). Purified PCR products were subcloned into the 

pGEM-T easy vector (Promega Corp.) and transfected into competent cells (Competent 

high DH5α; TOYOBO, Tokyo, Japan). Plasmid DNA was extracted using a plasmid 

purification kit (Nucleospin Plasmid QuickPure; Takara Bio Inc.), and subsequently 

subjected to sequencing using ABI PRISM BigDye Terminator v3.1 Cycle Sequencing 

kit (Applied Biosystems) and two primers complementary to T7 and SP6 promoter sites 

of the vector. The reaction conditions were as follows: 96°C for 1 min, followed by 25 

cycles of denaturation (96°C for 10 s), annealing (50°C for 5 s), and extension (60°C for 

4 min). Following the sequencing reaction, DNA was purified by ethanol/ 

ethylenediaminetetraacetic acid (EDTA) precipitation and dried up (as recommended for 

ABI prism BigDye Terminator v3.1 Cycle Sequencing kit by Applied Biosystems). DNA 

was subsequently resuspended in Hi–Di Formamide (Applied Biosystems) and 

subsequently denatured by heating 95°C for 2 min followed by rapidly cooling on ice. 

Nucleotide sequences were analyzed on an ABI PRISM 3130xl Genetic Analyzer 

(Applied Biosystems). Five independent clones per dog were sequenced (for each 

fragment) to prevent errors in sequence analysis.  
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2.3. Mutational analysis of NOD2, TLR1, TLR2, and TLR6 exons 

   This analysis was performed using six ICRP-affected MDs (all diagnosed at VMC-

UT), five control MDs, and five laboratory-owned beagles to investigate the presence and 

frequency of non-synonymous SNPs in the coding region of the genes.  

   Genomic DNA was extracted from the EDTA-stabilized blood sample of each dog 

using a commercially available kit (QIAmp DNA Mini kit; Qiagen, Hilden, Germany). 

Primers for full-length canine NOD2, TLR1, TLR2, and TLR6 genes are shown in Table 

13. Primer sequences for canine NOD2 gene were designed based on the full sequences 

for canine chromosome 2 (NC_006584.3). Primer sequences for canine TLR1, TLR2, and 

TLR6 were described in previous studies (House et al., 2009; Kathrani et al., 2010). PCR 

was performed using AmpliTaq Gold 360 (Applied Biosystems) using the following 

conditions: 95°C for 10 min, followed by 40 cycles of denaturation (95°C for 3 s), 

annealing (55–65°C for 30 s), and extension (72°C for 40–180 s), and then a final long 

extension (72°C for 7 min). The PCR products were purified using Wizard SV Gel and 

PCR Clean-Up System (Promega), and directly sequenced using ABI PRISM BigDye 

Terminator v3.1 Cycle Sequencing kit (Applied Biosystems) and ABI PRISM 3130xl 

Genetic Analyzer (Applied Biosystems) with sequencing primers shown in Table 14. The 

conditions of sequencing reaction were as follows: 96°C for 1 min, followed by 25 cycles 

of denaturation (96°C for 10 s), annealing (54–60°C for 5 s), and extension (60°C for 4 

min). The analysis was performed in duplicate, and matched sequences were accepted. 

Sequence data from the NOD2, TLR1, TLR2, and TLR6 genes were compared to those 

in the database (NM_001287039.1, EU551145.1, EU487534.1, and NM_005618633.1, 

respectively) to identify the non-synonymous SNPs using CLC DNA Workbench version 

7.0.2 (CLC Bio, Hilden, Germany). 
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2.4. Genotyping of NOD2 SNPs and association study 

   The allele frequency and association between non-synonymous SNPs and disease 

status or breed were further analyzed. Six SNPs identified in exon 3 of canine NOD2 gene 

was evaluated in this analysis.  

  Genomic DNA was extracted using QIAmp DNA Mini kit (Qiagen) from EDTA blood 

obtained from further 32 MDs who were diagnosed with ICRPs at VMC-UT between 

August 2011 and October 2014, and two ICRP-affected MDs diagnosed at reference 

hospitals, and all 324 control dogs. In addition, paraffin sections of polypoid tissue 

obtained from another 23 ICRP-affected MDs diagnosed at VMC-UT between April 2008 

and July 2011 were included in the analysis, and the genomic DNA was extracted using 

QIAmp DNA Mini kit (Qiagen) according to the manufacturer’s protocol. 

   PCR was carried out on all samples using AmpliTaq Gold 360 (Applied Biosystems) 

with the primers designed for the genotyping analysis to cover all six SNPs (Forward: 5'-

TGTGCCACCTTCCTGTTGTC-3'; Reverse: 5'-GTACAGGCTCCGGATGAGCC-3'; 

1,364–2,163 bp of canine NOD2 coding sequences [NM_001287039.1]) under following 

conditions: 95°C for 10 min, followed by 40 cycles of denaturation (95°C for 3 s), 

annealing (65°C for 30 s), and extension (72°C for 60 s), and then a final long extension 

(72°C for 7 min). The PCR products were purified using Wizard SV Gel and PCR Clean-

Up System (Promega), and directly sequenced using ABI PRISM BigDye Terminator 

v3.1 Cycle Sequencing kit (Applied Biosystems) and ABI PRISM 3130xl Genetic 

Analyzer (Applied Biosystems) with same primers. The conditions of sequencing 

reaction were as follows: 96°C for 1 min, followed by 25 cycles of denaturation (96°C 

for 10 s), annealing (65°C for 5 s), and extension (65°C for 4 min). The genotype in all 
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six SNPs of NOD2 exon 3 were evaluated by both forward and reverse primers, and the 

analysis was carried out in duplicate. 

 

2.5. Statistical analysis 

   All raw sequence data of cDNA and genomic DNA were analyzed using Sequence 

Scanner Software version 2.0 (Applied Biosystems), and the nucleotide sequence, 

presence of SNPs, and their genotype were determined. Allele frequency, association and 

linkage disequilibrium for SNPs under study were statistically assessed using the 

Haploview software package version 4.2 

(http://www.broad.mit.edu/personal/jcbarret/haplo/). The calculation of the Hardy–

Weinberg equilibrium and additional genotype and haplotype associations for SNPs of 

NOD2 exon 3 were performed using the SNPSTATS software 

(http://bioinfo.iconcologia.net/index.php?module=Snpstats). Statistical significance of 

the differences was assumed at P < 0.05. In addition, the impact of all non-synonymous 

SNPs on the each protein function were assessed by using PROVEAN 

(http://provean.jcvi.org/index.php) and SIFT programs (http://sift.jcvi.org/) (Choi et al., 

2012; Kumar et al., 2009). The PROVEAN score <–2.500 and SIFT score <0.05 were 

considered deleterious. 

 

http://www.broad.mit.edu/personal/jcbarret/haplo/
http://bioinfo.iconcologia.net/index.php?module=Snpstats
http://provean.jcvi.org/index.php
http://sift.jcvi.org/
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3. Results 

3.1. Molecular cloning of canine NOD2 gene 

   By combining the sequences of four overlapping DNA fragments, a linear sequence 

corresponding to canine NOD2 was obtained. This sequence includes the entire open 

reading frame of 3,042 bp encoding 1,013 amino acid residues (NM_001287039.1). The 

homology of NOD2 cDNA sequences between dogs and humans (AF178930.1), pigs 

(NM_001105295.1), cattle (NM_001002889.1), or mice (NM_145857.2) were 85.6, 85.5, 

85.0, and 78.4%, respectively; those of deduced NOD2 amino acid sequences were 83.4, 

82.8, 82.5, and 75.9%, respectively (Figure 13). A transcript variant ideal for the predicted 

sequence (XM_005617571.1) was also identified, which contains a 106-bp deletion in 

the region of exon 2–3 (as a result, this variant has a 195-amino acid deletion at the N-

terminus). In addition, two other splicing variants were also detected with a deletion of 

exon 7 or exon 10 region (both were not reported previously).  

 

3.2. Mutational analysis of canine NOD2, TLR1, TLR2, and TLR6 genes 

   This analysis revealed eight non-synonymous SNPs in the NOD2 gene (Figure 13): 

C178T (not reported in the canine genome database), A1532G (GenBank accession 

number: rs8647661), T1573C (rs8647662), C1688G (rs8647663), G1690A (not reported 

in the canine genome database but described by House et al. [2009]), G1880A 

(rs8647665), G1990A (not reported previously), and G2564A (rs22792936), one non-

synonymous SNP in the TLR1 gene: G83T (rs23585044), two non-synonymous SNPs in 

the TLR2 gene: G599A (not reported previously) and G1117A (not reported previously), 

and two non-synonymous SNPs in the TLR6 gene: C1369T (not reported previously) and 

G1537A (not reported in the canine genome database but described by House et al. 
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[2009]; Table 15). To predict the functional effect of each SNP, the PROVEAN and SIFT 

programs were used. Both programs predicted the C1369T in TLR6 as deleterious; 

furthermore, the SIFT software also regarded four SNPs—C178T in NOD2 gene, G83T 

in TLR1 gene, and G599A and G1117A in TLR2 gene—as deleterious (Table 15). In 

addition, 18 synonymous SNPs in the PRR genes under study were also detected; they 

are depicted in Table 16 and excluded from further analyses. Other types of genetic 

variation including in-frame insertion, deletion, or replacement were not identified in this 

analysis. 

 

3.3. Genotyping of SNPs in NOD2 exon 3 and association study 

   A total of 63 MDs with ICRPs were included in this analysis; 61 were diagnosed with 

ICRPs at VMC-UT and two diagnosed with ICRPs at reference hospitals. Their median 

age was 114 months (range, 48–171 months) with 38 males and 25 females. The control 

MDs group consisted of 82 dogs; their median age was 84 months (7–214 months) with 

37 males and 45 females. Seventeen of 82 the control MDs were diagnosed with a non-

inflammatory disease; the most common diagnosis among them was intervertebral disk 

disease (Table 17). In addition, another control group with 237 dogs was also recruited; 

the median age of dogs in this control group was 60 months (6–182 months) with 127 

males, 109 females, and one hermaphroditism. They consisted of 40 breeds 

predominantly with Toy poodle (n = 40) and mixed breed dogs (n = 36) (Table 18). Forty-

four of the 237 control dogs of other breeds were diagnosed with a non-inflammatory 

disease (Table 19). 

   The minor allele frequencies of six non-synonymous SNPs in NOD2 exon 3 (A1532G, 

T1573C, C1688G, G1690A, G1880A, and G1990A) were determined. All six SNPs were 
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in the Hardy–Weinberg equilibrium in each of the three groups (P > 0.05). Significant 

association was observed in the minor allele frequency of SNPs including A1532G, 

T1573C, C1688G, and G1880A when I compared ICRP-affected MDs with control MDs 

(P = 0.0002) (Table 20). These four SNPs were in complete linkage disequilibrium among 

MDs; there was also evidence of linkage disequilibrium between these four SNPs and 

G1990A (LOD > 3) (Figure 14). To evaluate the significance of the genotype of the four 

SNPs (A1532G, T1573C, C1688G, and G1880A) on the disease status in MDs, five 

inheritance models (co-dominant, dominant, recessive, over-dominant, and additive) 

were applied to statistical analysis; the best inheritance model was assessed using the 

Akaike information criteria (AIC) and Bayesian information criteria (BIC); the model 

with the lowest values was assumed to be the most valid model. According these values, 

the additive model was determined as being the best fit, and I found that the minor allele 

of each SNP (A, T, C, and G at A1532G, T1573C, C1688G, and G1880A) has a protective 

effect regarding the development of ICRPs in MDs (odds ratio: 0.10 [95% confidence 

interval: 0.02–0.45], P = 0.0001) (Table 21). In addition, age and gender were not 

significantly associated with SNP outcomes based on univariate analysis. 

Furthermore, the minor allele frequencies of six SNPs in NOD2 exon 3 in control 

MDs were further compared with those in control dogs of other breeds; the minor allele 

frequencies of A1532G, T1573C, C1688G, and G1880A were significantly or relatively 

lower in control MDs than in control other breed dogs (P = 0.0017, 0.0017, 0.0689, and 

0.0017, respectively), while that of G1990A was significantly higher in control MDs than 

in control dogs of other breeds (P = 0.0013) (Table 22). The linkage disequilibrium of 

these SNPs in control dogs of other breeds was analyzed; there was evidence of linkage 

disequilibrium among A1532G, T1573C, C1688G, and G1880A, where the A1532G, 
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T1573C, and G1880A showed complete linkage disequilibrium (data not shown).
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4. Discussion 

   In this Chapter, I identified an association between four SNPs of the NOD2 gene 

including A1532G, T1573C, C1688G, and G1880A, which are in complete linkage 

disequilibrium in MDs, and the development of ICRPs in MDs. Genetic variations in 

NOD2 have been described to be an important factor in the etiology of several 

inflammatory diseases including Crohn’s disease and Blau syndrome in humans 

(Corridoni et al., 2014; Sfriso et al., 2012). Therefore, the observed SNPs in this study 

may have a significance in the pathogenesis of ICRPs in MDs. 

Interestingly, these SNPs associating with ICRPs were completely identical with 

those associated with IBD in German shepherd dogs (Kathrani et al., 2014). However, 

there was a critical difference: the inheritance model of these SNPs was over-dominant 

and increased heterozygous haplotype of these four SNPs in German shepherd dogs with 

IBD (Kathrani et al., 2014), while the additive model seems to be the best fit and the 

haplotype identical to the database shows a significant protective effect in this study. 

Although ICRPs in MDs are thought as a novel form of canine IBD based on the presence 

of idiopathic inflammation and clinical response to immunosuppressive therapy (Ohta et 

al., 2013), the histological findings and localization of the lesion are different; 

lymphocytic-plasmacytic enteritis in the small and/or large intestine is common in canine 

IBD (Allenspach et al., 2007; Craven et al., 2004; Jergens et al., 2010, 2003), while the 

severe infiltration of neutrophils and macrophages restricted to the colorectal region is 

characteristic of ICRPs in MDs (Ohmi et al., 2012; Tamura et al., 2013). Therefore, these 

differences indicate that the pathogenesis of mucosal inflammation is different between 

canine IBD and ICRPs in MDs, which may lead to the inconsistent results.  

The identified four SNPs that are associated with the development of ICRPs are 
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located in the NACHT region of the NOD2 gene or around it (Figure 13), which is more 

similar to Blau syndrome than Crohn’s disease in humans; the mutations conferring 

susceptibility to Blau syndrome occur in the NACHT region, while the most common 

mutation that confers susceptibility to Crohn’s disease is a frameshift mutation in the LRR 

region (Borzutzky et al., 2010; Sfriso et al., 2012; Zhong et al., 2013) (Figure 13). Blau 

syndrome is an autosomal dominantly inherited disorder, characterized by chronic 

inflammation including granulomatous dermatitis, symmetric arthritis, and recurrent 

uveitis (Sfriso et al., 2012). The causative SNPs of Blau syndrome lead to increased NF-

κB activation with or without ligand stimulation (Sfriso et al., 2012; Tanabe et al., 2004). 

Therefore, this gain-of-function mutation of the NOD2 gene and the resulting NF-κB 

activation are believed to play a key role in the etiology of Blau syndrome. Interestingly, 

this notion is consistent with the result of Chapter 1-2 in which the reactivity of peripheral 

monocytes to the NOD2 ligand was enhanced in ICRP-affected MDs compared to control 

MDs. However, unlike in Blau syndrome, the coded amino acid residues from the 

identified four SNPs in this study were not conserved residues (Figure 13), which may 

result in non-significant scores in the PROVEAN and SIFT programs (Table 15). 

Therefore, the functional impact of these SNPs may be small, but I hypothesize that the 

late onset of ICRPs in MDs might explain this situation. A recent study suggests that an 

elevated basal NF-κB activity may affect disease progression rather than disease onset 

because the patients with mutated NOD2 with low NF-κB activity tend to experience the 

complications at a later age (Okafuji et al., 2009). ICRPs in MDs typically develop at an 

old age (at least 4 years, median is about 9 years in the present and previous studies) 

(Ohmi et al., 2012; Tamura et al., 2013); whereas Blau syndrome is characterized by early 

onset, typically at ages before 3–4 years (by teenage at the latest) (Sfriso et al., 2012). 
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Therefore, the observed four SNPs associated with ICRPs in MDs might induce a weak 

predisposition. How these SNPs affect the basal NF-κB activity and the reactivity to the 

ligand stimulation remains unknown, which needs to be investigated in the future. 

Furthermore, the presence of transcript variants of NOD2 (Leung et al., 2007), which was 

also identified in this study, should be taken into account. One of the variants has been 

reported to be preferentially expressed in the human colon, and to downregulate the 

NOD2-induced NF-κB activity (Rosenstiel et al., 2006). I described that the mRNA 

expression of NOD2 is upregulated in the polypoid lesion of ICRP-affected MDs; 

however, their expression pattern of transcript variants was not investigated. Although 

their role in the pathogenesis of Blau syndrome or Crohn’s disease has not been studied, 

that of full-length NOD2 and its transcript variant observed in this study, and the effects 

of SNPs need to be analyzed further. 

   Unfortunately, the majority of the control MDs had the ICRP risk-associated 

haplotype (G, C, G, and A at A1532G, T1573C, C1688G, and G1880A) of the NOD2 

gene homozygously. This result shows that these SNPs do not induce ICRPs in MDs 

independently without any other factors. It was not surprising because the chronic 

intestinal inflammation is considered a multifactorial disease (Cerquetella et al., 2010; 

German et al., 2003); these SNPs may be only a genetic factor predisposing MDs to 

ICRPs. Furthermore, most of control dogs other than MDs also have the risk-associated 

haplotype in the present study. The minor allele frequencies of these SNPs in dogs with 

various breeds was lower in this study compared with those reported in a previous study 

(Kathrani et al., 2014). However, this phenotype can be modified by the breed disposition 

because dog breeds have developed into close breeding populations representing isolated 

genetic pools. As shown in Table 23, inter-breed variation of the minor allele frequency 
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was observed in this study. The minor allele frequencies of these four SNPs appears to be 

relatively low in MDs but not the lowest. Associations between these four SNPs 

predisposing ICRPs in MDs and other various inflammatory or immune-mediated disease 

are a subject of an upcoming project. 

   Although the minor allele frequencies of SNPs in NOD2 exon 3 do not seem to differ 

between ICRP-affected MDs and control MDs in the mutational analysis, they are 

significantly different in the subsequent association analysis; this contradiction may be 

due to the limited number of dogs included in the analysis and suggests that the 

significance of other SNPs in NOD2 and other TLRs identified in this mutational analysis 

for ICRPs in MDs cannot be ruled out. Moreover, the absence of breed-specific SNPs 

responsible for ICRPs indicates that there might be another genetic variation specific for 

MDs because of the breed-specificity of the disease (Ohmi et al., 2012). Genome-wide 

association studies in MDs with ICRPs may help to identify additional genetic 

background associated with the development of ICRPs. 

   Another possible limitation was that the age of control groups was younger than that 

of ICRP-affected MDs. Since ICRPs in MDs commonly develop at middle and advanced 

age, the younger control dogs may develop inflammatory disorders in the future. However, 

I believe that this limitation does not affect the results of association between SNPs and 

the disease phenotype because there was a significant difference when the minor allele 

frequencies of four SNPs in NOD2 exon 3 (A1532G, T1573C, C1688G, and G1880A) 

were compared between ICRP-affected MDs (n = 32) and control MDs (n = 29) older 

than 114 months, a median age of the ICRP-affected MDs in this study (0.000 vs. 0.121, 

P = 0.0042, respectively). 

   In summary, I first cloned the canine NOD2 gene and detected three transcript variants. 
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Second, a mutational analysis was performed and revealed 13 non-synonymous SNPs in 

canine NOD2, TLR1, TLR2, and TLR6 genes. Finally, an association analysis was 

performed and revealed that four SNPs (A1532G, T1573C, C1688G, and G1880A in 

NOD2 gene) are associated with the development of ICRPs in MDs. These four SNPs 

predispose MDs to ICRPs, but are not sufficient for the development of the disease. 

Further functional analyses of these SNPs should confirm their role and significance in 

the pathogenesis of ICRPs, which might increase our understanding of inflammatory 

disorders such as Blau syndrome in humans.  
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Table 12 

Sequences of primers used for molecular cloning of canine nucleotide-binding oligomerization 

domain 2 (NOD2) gene. 

 Primer sequence (5'–3') 
Primer 

position 

Annealing 

(°C) 

Extension 

(sec) 

Fragment 1 Forward TCTCCTCCCCAGGTTATGAA –20 60 75 

 Reverse CCAGCACAGTGTCTGCATCT 808   

Fragment 2 Forward GGAGATCCGAACAGAAATGG 690 60 90 

 Reverse CTTGGCATGCACCAGGAAG 1686   

Fragment 3 Forward TGTGCTGCTACGTGTTCTCC 1598 60 90 

 Reverse GCATGCTCGATGAGCTTACA 2435   

Fragment 4 Forward CTGGACCACAACTCTGTTGG 2308 58 90 

  Reverse ACTGAGATAAATGCTGGCCC 3069     

Primer positions were represented by the numbers within the coding region of NOD2 gene 

(GenBank accession number: NM_001287039.1). 
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Table 13 

PCR primers used in mutational analysis of NOD2, toll-like receptor (TLR) 1, TLR2, and TLR6. 

  Primer sequence (5'–3') 
Primer 

position 

Annealing 

(°C) 

Extension 

(sec) 

NOD2      

 exon 1 Forward GTAGATCCATGGCCTCTTCAG 64,667,386 60 60 

 Reverse CCCAAGACAGAAGTGCCTTAC 64,666,745   

 exon 2 Forward ATCGGTAGAAACCTTCCCAC 64,659,352 60 45 

 Reverse TCCCTATAGCCTTTCTTCCC 64,659,107   

 exon 3 Forward ACCATCCTACCTCATTGGCC 64,656,695 65 130 

 Reverse CACTGCCCTGCGACACTCAC 64,654,822   

 exon 4 Forward CAGATGCTGGCACATAGGGC 64,650,615 63 45 

 Reverse CATGACCTGGAGAGTGGCTG 64,650,357   

 exon 5 Forward ACTGACTGCTGTGCTCTGTC 64,650,253 65 40 

 Reverse CTGCGCAGAAGACAGCTTCC 64,650,073   

 exon 6 Forward TCACTGACTTGGTCTCCTGC 64,647,857 65 40 

 Reverse TGCCCCAGAATCCAACCTAC 64,647,722   

 exon 7 Forward ACTGACCCAATTTGTTGGCC 64,645,919 65 40 

 Reverse CCAAACAGACCCAGAAGCTT 64,645,787   

 exon 8 Forward ATCTCTGAGGACCCTCTGTG 64,645,094 65 40 

 Reverse TGTGAATCCCCCCAACTCAC 64,644,937   

 exon 9 Forward GGTGCAAGCAGGTACATTCT 64,643,513 56 45 

 Reverse CCTGCTTATAGGCTCCTTAC 64,643,316   

 exon 10 Forward CTTGAAGGCTCACCTGTCCA 64,639,879 65 40 

 Reverse AGAGAGGTAAAGAGGCCTGC 64,639,730   

 exon 11 Forward TGGCTCAGTGCTCATCGAAA 64,638,283 65 40 

 Reverse ACTGAGATAAATGCTGGCCC 64,638,139   

TLR1 Forward GATCTTTACCCGAATTGCGA 73,542,185 56 180 

 Reverse GGTGAACTGGAGAGCCTGAA 73,544,787   

TLR2 Forward GGACAATGTCACGTGTTTTG 51,462,879 55 180 

 Reverse CGAATCTAGGATTTTATTGCTGT 51,465,245   

TLR6 Forward CAACAACCCTTTGGGGAATA 73,520,672 55 180 

  Reverse TCTGCGTTATTGTTTTCAGCA 73,523,089     

Primer positions of NOD2, TLR1, TLR2, and TLR6 were represented by the numbers within the 

chromosome 2 (NC_006584.3), chromosome 3 (NC_006585.3), chromosome 15 (NC_006597.3), and 

chromosome 3 (NC_006585.3), respectively. 
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Table 14 

Sequence primers used in mutational analysis of NOD2, TLR1, TLR2, and TLR6. 

  Primer sequence (5'–3') 
Primer 

position 

Annealing 

(°C) 

NOD2     

 exon 1 Forward GTAGATCCATGGCCTCTTCAG 64,667,386 60 

 Internal Forward TGAAATGTGCACACAGGAGG 64,667,228 60 

 Internal Reverse TAGTCTTCCCAGGAGAGGAC 64,667,094 60 

 Reverse CCCAAGACAGAAGTGCCTTAC 64,666,745 60 

 exon 2 Forward ATCGGTAGAAACCTTCCCAC 64,659,352 60 

 Reverse TCCCTATAGCCTTTCTTCCC 64,659,107 60 

 exon 3 5' region Forward ACCATCCTACCTCATTGGCC 64,656,695 60 

 5' region Reverse CAAAGCCATCGAAGGTTAAG 64,656,160 60 

 Central region Forward CTCTTTGAACACTGCTGTTG 64,656,259 60 

 Central region Reverse GCACGTTGTGGGCAGAAGCC 64,655,360 60 

 3' region Forward TGTGCTGCTACGTGTTCTCC 64,655,625 60 

 3' region Reverse CACTGCCCTGCGACACTCAC 64,654,822 60 

 exon 4 Forward CAGATGCTGGCACATAGGGC 64,650,615 60 

 Reverse CATGACCTGGAGAGTGGCTG 64,650,357 60 

 exon 5 Forward ACTGACTGCTGTGCTCTGTC 64,650,253 60 

 Reverse CTGCGCAGAAGACAGCTTCC 64,650,073 60 

 exon 6 Forward TCACTGACTTGGTCTCCTGC 64,647,857 60 

 Reverse TGCCCCAGAATCCAACCTAC 64,647,722 60 

 exon 7 Forward ACTGACCCAATTTGTTGGCC 64,645,919 60 

 Reverse CCAAACAGACCCAGAAGCTT 64,645,787 60 

 exon 8 Forward ATCTCTGAGGACCCTCTGTG 64,645,094 60 

 Reverse TGTGAATCCCCCCAACTCAC 64,644,937 60 

 exon 9 Forward GGTGCAAGCAGGTACATTCT 64,643,513 54 

 Reverse CCTGCTTATAGGCTCCTTAC 64,643,316 54 

 exon 10 Forward CCTTGAAGCTCACCTGTCCA 64,639,879 60 

 Reverse AGAGAGGTAAAGAGGCCTGC 64,639,730 60 

 exon 11 Forward TGGCTCAGTGCTCATCGAAA 64,638,283 60 

 Reverse ACTGAGATAAATGCTGGCCC 64,638,139 60 

TLR1 Forward GATCTTTACCCGAATTGCGA 73,542,185 60 

 Internal Forward ATGCATTCAATTTGCCACAA 73,543,192 60 

 Internal Reverse AATTTGAGATGGGCAAACCA 73,543,304 60 

 Reverse GGTGAACTGGAGAGCCTGAA 73,544,787 60 

TLR2 Forward GGACAATGTCACGTGTTTTG 51,462,879 60 

 Internal Forward CATTTGGACACTTTCCAC 51,463,582 60 

 Internal Reverse ATGTCAAAATCACCGAGCCC 51,463,776 60 

 Reverse GAATCTAGGATTTTATTGCTGT 51,465,245 60 

TLR6 Forward CAACAACCCTTTGGGGAATA 73,520,672 60 

 Internal Forward TGCACTTGGGTTGGGAGTAT 73,521,975 60 

 Internal Reverse CACCTTGACCTTGGGAGGTA 73,522,067 60 

  Reverse TCTGCGTTATTGTTTTCAGCA 73,523,089 60 

Primer positions of NOD2, TLR1, TLR2, and TLR6 were represented by the numbers within the 

chromosome 2 (NC_006584.3), chromosome 3 (NC_006585.3), chromosome 15 (NC_006597.3), and 

chromosome 3 (NC_006585.3), respectively. 



96 

 

  

 

T
a
b

le
 1

5

D
is

tr
ib

u
ti

o
n
 o

f 
n
o
n
-s

y
n
o
n
y
m

o
u
s 

si
n
g
le

 n
u
cl

eo
ti

d
e 

p
o
ly

m
o
rp

h
is

m
s 

(S
N

P
s)

 i
n
 p

a
tt

er
n
 r

ec
o
g
n
it

io
n
 r

ec
ep

to
r 

g
en

es
 i

n
v
es

ti
g
a
te

d
 i

n
 t

h
is

st
u
d
y
.

G
ro

u
p

IC
R

P
-a

ff
ec

te
d
 M

D
C

o
n
tr

o
l 

M
D

L
a
b
o
ra

to
ry

 B
ea

g
le

P
R

O
-

V
E

A
N

*
S

IF
T

*
*

C
a
se

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

S
N

P
R

es
u
lt

a
n
t 

a
m

in
o
 a

ci
d

N
O

D
2

C
1
7
8
T

R
6
0
C

–
/–

–
/–

–
/–

–
/–

–
/–

+
/–

–
/–

–
/–

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
1
.7

8
9

0
.0

4

A
1
5
3
2
G

H
5
1
1
R

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

+
/–

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

–
/–

–
/–

+
/+

–
0
.1

8
5

0
.2

0

T
1
5
7
3
C

W
5
2
5
R

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

+
/–

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

–
/–

–
/–

+
/+

4
.7

1
3

1
.0

0

C
1
6
8
8
G

T
5
6
3
S

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

+
/–

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

–
/–

–
/–

+
/+

0
.7

0
3

0
.8

5

G
1
6
9
0
A

V
5
6
4
M

+
/–

–
/–

–
/–

+
/–

–
/–

–
/–

+
/–

+
/+

–
/–

–
/–

+
/+

–
/–

–
/–

–
/–

–
/–

–
/–

–
0
.0

9
4

0
.3

0

G
1
8
8
0
A

R
6
2
7
H

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

+
/–

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

–
/–

–
/–

+
/+

0
.2

3
8

0
.1

4

G
1
9
9
0
A

A
6
6
4
T

–
/–

–
/–

–
/–

–
/–

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
1
.1

6
4

0
.4

1

G
2
5
6
4
A

R
8
5
5
H

–
/–

+
/+

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

+
/+

–
/–

–
/–

–
/–

–
/–

–
/–

+
/–

1
.3

5
4

1
.0

0

T
L

R
1

G
8
3
T

S
2
8
I

+
/–

+
/+

–
/–

–
/–

+
/–

+
/+

+
/–

+
/+

–
/–

+
/–

+
/+

+
/–

+
/–

+
/+

+
/+

–
/–

–
2
.2

5
0

0
.0

4

T
L

R
2

G
5
9
9
A

S
2
0
0
N

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

1
.1

7
8

0
.0

0

G
1
1
1
7
A

V
3
7
3
M

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

1
.7

8
4

0
.0

1

T
L

R
6

C
1
3
6
9
T

L
4
5
7
F

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

+
/–

–
/–

+
/+

+
/–

–
/–

–
3
.8

4
9

0
.0

0

G
1
5
3
7
A

D
5
1
3
N

–
/–

+
/–

–
/–

–
/–

–
/–

+
/+

–
/–

+
/–

–
/–

–
/–

+
/–

+
/–

+
/–

+
/+

+
/–

–
/–

–
1
.9

7
6

0
.0

8

N
u
cl

eo
ti

d
es

 i
d
en

ti
ca

l 
to

 t
h
e 

d
a
ta

b
a
se

 (
N

O
D

2
; 
N

M
_
0
0
1
2
8
7
0
3
9
.1

, T
L

R
1
; 

E
U

5
5
1
1
4
5
.1

, 
T

L
R

2
; 

E
U

4
8
7
5
3
4
.1

, 
a
n
d
 T

L
R

6
; 

N
M

_
0
0
5
6
1
8
6
3
3
.1

, r
es

p
ec

ti
v
el

y
) 

w
er

e 

re
p
re

se
n
te

d
 a

s 
–
.

*
S

co
re

 o
f 

<
 –

2
.5

0
0
 w

a
s 

co
n
si

d
er

ed
 d

el
et

er
io

u
s.

*
*
S

co
re

 o
f 

<
 0

.0
5
 w

a
s 

co
n
si

d
er

ed
 d

el
et

er
io

u
s.

IC
R

P
, 

in
fl

a
m

m
a
to

ry
 c

o
lo

re
ct

a
l 

p
o
ly

p
; 

M
D

, 
m

in
ia

tu
re

 d
a
ch

sh
u
n
d
.



97 

 

 

 

 

T
a

b
le

 1
6

D
is

tr
ib

u
ti

o
n
 o

f 
sy

n
o

n
y
m

o
u

s 
S

N
P

s 
in

 p
at

te
rn

 r
ec

o
g

n
it

io
n
 r

ec
ep

to
r 

g
en

es
 i

n
v
es

ti
g

at
ed

 i
n
 t

h
is

 s
tu

d
y.

G
ro

u
p

IC
R

P
-a

ff
ec

te
d

 M
D

C
o

n
tr

o
l 
M

D
L

ab
o

ra
to

ry
 B

ea
g

le

C
as

e
1

2
3

4
5

6
7

8
9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

S
N

P

N
O

D
2

A
1

8
6

9
G

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

+
/–

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

–
/–

–
/–

+
/+

C
1

9
9

2
T

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

+
/–

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

–
/–

–
/–

+
/+

C
2

1
2

1
T

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

+
/–

+
/+

+
/+

+
/+

+
/+

+
/–

+
/+

–
/–

–
/–

+
/+

C
2

1
3

0
T

+
/–

+
/–

+
/+

+
/–

+
/–

+
/+

–
/–

–
/–

+
/+

+
/+

–
/–

+
/–

+
/–

–
/–

–
/–

+
/+

C
2

2
3

5
T

–
/–

–
/–

–
/–

–
/–

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

C
2

2
5

6
T

+
/–

+
/–

+
/+

–
/–

+
/–

+
/–

–
/–

–
/–

+
/–

+
/+

–
/–

–
/–

–
/–

–
/–

–
/–

+
/+

C
2

4
2

7
T

–
/–

–
/–

–
/–

–
/–

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

G
2

5
1

1
A

–
/–

–
/–

–
/–

–
/–

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

T
2

5
4

4
G

+
/–

+
/+

+
/+

–
/–

–
/–

–
/–

–
/–

–
/–

+
/–

+
/+

–
/–

–
/–

+
/–

–
/–

–
/–

+
/+

T
2

5
7

4
C

+
/+

+
/+

+
/+

+
/+

–
/–

–
/–

+
/–

+
/+

–
/–

+
/+

+
/+

–
/–

–
/–

–
/–

–
/–

+
/+

C
2

5
9

5
T

–
/–

+
/+

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

+
/+

–
/–

–
/–

–
/–

–
/–

–
/–

+
/–

C
2

7
1

8
T

–
/–

–
/–

–
/–

+
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

–
/–

+
/–

+
/–

+
/–

+
/–

+
/–

T
L

R
1

T
1

6
6

2
C

–
/–

+
/–

+
/+

–
/–

+
/–

+
/+

+
/+

+
/+

–
/–

+
/–

+
/+

–
/–

+
/–

+
/+

+
/–

+
/–

C
1

7
7

3
T

–
/–

+
/–

+
/+

–
/–

+
/–

+
/+

+
/+

+
/+

–
/–

+
/–

+
/+

–
/–

+
/–

+
/+

+
/–

+
/–

T
L

R
2

T
1

3
7

1
C

–
/–

+
/–

+
/–

–
/–

+
/–

–
/–

+
/+

+
/–

–
/–

+
/–

–
/–

–
/–

+
/–

–
/–

+
/–

–
/–

A
2

1
3

0
G

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

+
/+

T
L

R
6

G
5

0
7

A
–

/–
–

/–
+

/+
–

/–
–

/–
+

/–
–

/–
–

/–
–

/–
–

/–
+

/–
–

/–
–

/–
+

/–
–

/–
+

/–

A
6

3
3

C
–

/–
+

/–
+

/+
–

/–
+

/–
+

/+
+

/+
+

/+
–

/–
+

/–
+

/+
–

/–
+

/–
+

/+
+

/–
+

/–

N
u

cl
eo

ti
d

es
 i

d
en

ti
ca

l 
to

 t
h
e 

d
at

ab
as

e 
(N

O
D

2
; 

N
M

_
0

0
1

2
8

7
0

3
9

.1
, 
T

L
R

1
; 

E
U

5
5

1
1

4
5

.1
, 
T

L
R

2
; 

E
U

4
8

7
5

3
4

.1
, 
an

d
 T

L
R

6
; 

N
M

_
0

0
5

6
1

8
6

3
3

.1
, 
re

sp
ec

ti
v
el

y
) 

w
er

e 
re

p
re

se
n
te

d
 a

s 
–

.



98 

 

Table 17 

Disease phenotype of control MDs. 

Diagnosis   Case 

Neurological Intervertebral disk disease 5 

 Idiopathic epilepsy 1 

Gastrointestinal Cholelithiasis 2 

Neoplasia Complex mammary adenoma 1 

Cardiovascular Mitral valve regurgitation 3 

 Dilated cardiomyopathy 2 

Respiratory Diaphragmatic hernia 1 

Urogenital Chronic renal failure 1 

 Prostatic hypertrophy 1 

Healthy*   65 

*Dogs without any diagnosis or clinical signs were regarded as healthy. 
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Table 18 

Breed distribution of other control breed dogs. 

Breed Case 

Toy poodle 40 

Mixed breed 36 

Chihuahua 22 

Shiba inu 15 

Shetland Sheepdog 13 

Yorkshire terrier 12 

Golden Retriever 10 

Miniature Schnauzer 10 

Labrador Retriever 8 

Shih Tzu 8 

Beagle 6 

French bulldog 6 

Pug 5 

Papillon 4 

Border Collie 3 

English Cocker Spaniel 3 

Miniature Pinscher 3 

Pomeranian 3 

Pembroke Welsh Corgi 3 

American Cocker Spaniel 2 

German shepherd 2 

Italian Greyhound 2 

Jack Russell Terrier 2 

Norwich Terrier 2 

Pekinese 2 

Cairn Terrier 1 

Cavalier King Charles Spaniel 1 

Chinese Crested Dog 1 

Dalmatian 1 

Great Pyrenees 1 

Irish Setter 1 

Irish Soft Coated Wheaten Terrier 1 

Japanese Chin 1 

Kai Ken 1 

Maltese 1 

Miniature poodle 1 

Samoyed 1 

Weimaraner 1 

West Highland White Terrier 1 

Wire-haired Fox Terrier 1 
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Table 19 

Disease phenotype of other control breed dogs. 

Diagnosis   Case 

Neurological Intervertebral disk disease 2 

 Hydrocephalus 1 

 Idiopathic vestibular dysfunction 1 

Musculoskeletal Medial patellar luxation 3 

 Hip dysplasia 1 

 Inguinal hernia 1 

 Perineal hernia 1 

 Radioulnar fracture 1 

Gastrointestinal Cholelithiasis 1 

Neoplasia Cutaneous histiocytoma 1 

 Laryngeal tumor 1 

 Lipomatosis 1 

 Mammary gland tumor 1 

 Meibomian gland adenoma 1 

 Sebaceous adenoma 1 

Cardiovascular Mitral valve regurgitation 5 

Respiratory Laryngeal paralysis 1 

Urogenital Urolithiasis 6 

 Cryptorchidism 4 

 Chronic renal failure 1 

 Hermaphroditism 1 

 Prostatic hypertrophy 1 

Ophthalmological Dermoid 1 

 Keratoconjunctivitis sicca 1 

Other Diabetes mellitus 1 

 Hyperlipidemia 2 

 Seborrhea 1 

 Splenic Mass 1 

Healthy*   193 

*Dogs without any diagnosis or clinical signs were regarded as healthy. 
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Table 20  

Association of six SNPs in NOD2 exon 3 with ICRPs in MDs. 

SNP 
Associated 

allele 

Minor allele frequency 
P-value 

Control MD ICRP-affected MD 

A1532G G 0.140 0.016 0.0002  

T1573C C 0.140 0.016 0.0002  

C1688G G 0.140 0.016 0.0002  

G1690A A 0.110 0.135 0.5144  

G1880A A 0.140 0.016 0.0002  

G1990A G 0.037 0.008 0.1151  
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Table 21 

Association between four SNPs in NOD2 exon 3 and ICRPs in MDs. 
NOD2 A1532G SNP association with ICRPs 

Model Genotype Control MD ICRP-affected MD OR (95% CI) P-value AIC BIC 

Codominant G/G 60 (73.2%) 61 (96.8%) 1.00 0.0004  187.7  199.6  

 A/G 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.46)    

 A/A 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Dominant G/G 6 (73.2%) 61 (96.8%) 1.00 0.0001  185.9  194.8  

 A/G-A/A 22 (26.8%) 2 (3.2%) 0.10 (0.02–0.43)    

Recessive G/G-A/G 81 (98.8%) 63 (100%) 1.00 0.23  199.8  208.7  

 A/A 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Overdominant G/G-A/A 61 (74.4%) 61 (96.8%) 1.00 0.0002  187.3  196.2  

 A/G 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.47)    

Log-additive -         0.10 (0.02–0.45) 0.0001  185.7  194.6  

          

NOD2 T1573C association with ICRPs 

Model Genotype Control MD ICRP-affected MD OR (95% CI) P-value AIC BIC 

Codominant C/C 60 (73.2%) 61 (96.8%) 1.00 0.0004  187.7  199.6  

 C/T 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.46)    

 T/T 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Dominant C/C 6 (73.2%) 61 (96.8%) 1.00 0.0001  185.9  194.8  

 C/T-T/T 22 (26.8%) 2 (3.2%) 0.10 (0.02–0.43)    

Recessive C/C-C/T 81 (98.8%) 63 (100%) 1.00 0.23  199.8  208.7  

 T/T 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Overdominant C/C-T/T 61 (74.4%) 61 (96.8%) 1.00 0.0002  187.3  196.2  

 C/T 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.47)    

Log-additive -         0.10 (0.02–0.45) 0.0001  185.7  194.6  

          

NOD2 C1688G SNP association with ICRPs 

Model Genotype Control MD ICRP-affected MD OR (95% CI) P-value AIC BIC 

Codominant G/G 60 (73.2%) 61 (96.8%) 1.00 0.0004  187.7  199.6  

 C/G 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.46)    

 C/C 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Dominant G/G 6 (73.2%) 61 (96.8%) 1.00 0.0001  185.9  194.8  

 C/G-C/C 22 (26.8%) 2 (3.2%) 0.10 (0.02–0.43)    

Recessive G/G-C/G 81 (98.8%) 63 (100%) 1.00 0.23  199.8  208.7  

 C/C 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Overdominant G/G-C/C 61 (74.4%) 61 (96.8%) 1.00 0.0002  187.3  196.2  

 C/G 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.47)    

Log-additive -         0.10 (0.02–0.45) 0.0001  185.7  194.6  

          

NOD2 G1880A SNP association with ICRPs 

Model Genotype Control MD ICRP-affected MD OR (95% CI) P-value AIC BIC 

Codominant A/A 60 (73.2%) 61 (96.8%) 1.00 0.0004  187.7  199.6  

 A/G 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.46)    

 G/G 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Dominant A/A 6 (73.2%) 61 (96.8%) 1.00 0.0001  185.9  194.8  

 A/G-G/G 22 (26.8%) 2 (3.2%) 0.10 (0.02–0.43)    

Recessive A/A-A/G 81 (98.8%) 63 (100%) 1.00 0.23  199.8  208.7  

 G/G 1 (1.2%) 0 (0%) 0.00 (0.00–NA)    

Overdominant A/A-G/G 61 (74.4%) 61 (96.8%) 1.00 0.0002  187.3  196.2  

 A/G 21 (25.6%) 2 (3.2%) 0.10 (0.02–0.47)    

Log-additive -         0.10 (0.02–0.45) 0.0001  185.7  194.6  

OR, odds ratio; CI, confidence interval; AIC, Akaike information criteria; BIC, Bayesian information criteria. 
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Table 22 

Association of six SNPs in NOD2 exon 3 with canine breeds. 

SNP 
Associated 

allele 

Minor allele frequency 

P-value 
Control other 

breeds 
Control MD 

A1532G G 0.259 0.140 0.0017  

T1573C C 0.259 0.140 0.0017  

C1688G G 0.205 0.140 0.0689  

G1690A G 0.162 0.110 0.1023  

G1880A A 0.259 0.140 0.0017  

G1990A A 0.004 0.037 0.0013  
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Table 23 

Minor allele frequencies of SNPs in NOD2 exon 3 in control dogs of predominant breeds. 

Breed Case 
SNP 

A1532G T1573C C1688G G1690A G1880A G1990A 

Miniature Dachshund 82 0.140  0.140  0.140  0.110  0.140  0.037  

Toy poodle 40 0.213  0.213  0.213  0.100  0.213  0.000  

Mixed breed 36 0.319  0.319  0.208  0.208  0.319  0.000  

Chihuahua 22 0.114  0.114  0.091  0.227  0.114  0.045  

Shiba inu 15 0.467  0.467  0.000  0.167  0.467  0.000  

Shetland Sheepdog 13 0.000  0.000  0.000  0.462  0.000  0.000  

Yorkshire terrier 12 0.167  0.167  0.167  0.208  0.167  0.000  

Golden Retriever 10 0.100  0.100  0.100  0.000  0.100  0.000  

Miniature Schnauzer 10 0.050  0.050  0.050  0.000  0.050  0.000  
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Figure 13 
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Legend for Figure 13. 

Comparison of the deduced amino acid sequence of canine nucleotide-binding 

oligomerization domain 2 (NOD2) with those of human (GenBank accession number: 

AAG33677.1), pig (NP_001098765.1), cattle (NP_001002889.1), and mouse 

(NP_665856.2) homologs. Asterisks and colons indicate identical and conserved amino 

acids, respectively. Each structural domain of NOD2 protein is boxed with a solid line 

(data obtained from http://www.uniprot.org/uniprot/Q9HC29). Daggers indicate the site 

of single nucleotide polymorphisms (SNPs) in the present study (R60C, H511R, W525R, 

T563S, V564M, R627H, A664T, and R855H; see Table 15). Black arrows represent the 

site of SNPs associated with Crohn’s disease in humans (T245M, R702W, G908R, and 

L1007fsinsC). White arrows represent the site of SNPs associated with Blau syndrome in 

humans (R334W/R334Q, D382E, E383K/E383G, G464W, L469F, W490L, C495Y, 

H496L, E498_L500delinsV, M513R/M513T, R587C, T605N, and N670K). CARD, 

caspase recruitment domain; NACHT, neuronal apoptosis inhibitor proteins (NAIPs), 

class II transactivator (CIITA), incompatibility locus protein from Podospora anserine 

(HET-E), and telomerase-associated protein (TP-1); LRR, leucine-rich repeat. 
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Figure 14 

 

 

 

Linkage disequilibrium of single nucleotide polymorphisms SNPs in NOD2 gene exon 3 

in Miniature Dachshunds. A1532G, T1573C, C1688G, and G1880A showed complete 

linkage disequilibrium. There was also evidence of linkage disequilibrium between these 

four SNPs and G1990A. LOD, logarithm of odds. 
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Chapter 2 

Analyses on the fecal microbiota in Miniature 

Dachshunds with inflammatory colorectal polyps  
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Chapter 2-1 

Fecal dysbiosis in Miniature Dachshunds with 

inflammatory colorectal polyps 
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Abstract 

The gastrointestinal microbiota plays an important role in the etiology of various 

gastrointestinal disorders including inflammatory bowel disease (IBD). Inflammatory 

colorectal polyp (ICRP) in Miniature Dachshunds (MDs) is thought to be a novel form of 

canine IBD, but the involvement of gut microbiota in the pathogenesis of ICRP is 

unknown. The objective of this Chapter was to compare the fecal microbiota in ICRP-

affected MDs with that of healthy MDs. High-throughput sequencing of amplicons 

derived from the V3–V4 region of the 16S rRNA gene was applied to characterize fecal 

microbiota of six ICRP-affected MDs and 12 healthy MDs using the Illumina MiSeq 

system. In addition, paired samples were obtained from five MDs with ICRPs during 

clinical remission. Principal coordinates analysis of unweighted UniFrac distances 

revealed that fecal microbiota of ICRP-affected MDs was significantly altered compared 

with that of healthy MDs (ANOSIM; R = 0.302, P = 0.003). Proportions of 

Fusobacteriaceae, Helicobacteraceae, Porphyromonadaceae, and Turicibacteraceae were 

significantly more abundant in ICRP-affected MDs, while those of Lachnospiraceae were 

significantly less abundant in ICRP-affected MDs compared with healthy MDs. 

Furthermore, the microbiota of ICRP-affected MDs tended to change in composition to 

be similar to that of healthy MDs when clinical remission was achieved. These results 

suggest that the microbiota play a role in the development of ICRPs and have a potential 

as a therapeutic target though further investigations are needed. 
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1. Introduction 

The pathogenesis of human and canine IBD is multifactorial, and consists of aberrant 

interactions between luminal antigens and mucosal immunity, which lead to the 

development of intestinal inflammation (Cerquetella et al., 2010; Wallace et al., 2014; 

Xavier and Podolsky, 2007). Gut microbiota play a crucial role in the maintenance of 

gastrointestinal health in humans, as well as in dogs (Hooda et al., 2012; Hooper et al., 

2001; Wallace et al., 2014). Gut microbiota are a component of the mucosal barrier that 

defends against pathogen invasion, induce mucosal immune responses, support digestion, 

and provide nutritional support including short chain fatty acids (SCFAs) for enterocytes 

(Hooda et al., 2012; Kanauchi et al., 2005; Suchodolski, 2011). To date, many molecular 

studies have revealed the dysbiosis in the gastrointestinal tract in human IBD, 

predominantly with the decrease of Clostridiales including Faecalibacterium prausnitzii 

and Clostridium clusters XIVa and IV, and the increase of Proteobacteria (Frank et al., 

2007; Packey and Sartor, 2009; Sokol et al., 2008). Similarly, the dysbiosis and the 

proportional changes of these bacterial groups have also been described in canine IBD 

patients (Deng and Swanson, 2014; Honneffer et al., 2014).  

Since the large intestine has the highest density and diversity of bacteria (Hooda et al., 

2012), it is thought that the luminal microbiota play an important role in the pathogenesis 

of inflammatory colorectal polyps (ICRPs). However, no studies have investigated the 

composition of microbiota in Miniature Dachshunds (MDs) with ICRPs, although several 

have revealed disturbed mucosal immune condition at the sites of polypoid lesions, such 

as the expression of proinflammatory cytokines (Tamura et al., 2013), CD4+ T cell 

cytokines (Ohta et al., 2013), and pattern recognition receptors as described in Chapter 1-

1. Therefore, the study of Chapter 2-1 was performed to test the hypothesis that the fecal 
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dysbiosis is associated with the disease status of ICRPs in MDs. 
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2. Materials and methods 

2.1. Animals and sample collection 

All procedures were conducted according to the animal experimentation guidelines 

of the Animal Care Committee of the University of Tokyo, and written informed consent 

was obtained from the owners of each dog. 

MDs that were referred to the Veterinary Medical Center of the University of Tokyo 

for investigation of chronic hematochezia and/or tenesmus and diagnosed as ICRPs 

between July 2011 and November 2012 were included in this study (active-ICRP group). 

The diagnosis of ICRP were determined based on the colonoscopic and histopathological 

findings as characterized in a previous study (Ohmi et al., 2012). MDs that had received 

antibiotic treatment within 4 weeks of the clinical examination were excluded from this 

study. As healthy controls, 12 MDs were also recruited (healthy group), which had no 

clinical signs of gastrointestinal disease, and showed no abnormalities as determined by 

fecal examination and rectal palpation. All ICRP-affected and healthy MDs enrolled were 

privately owned in diverse environments. None of the control MDs received antibiotic 

treatment within the 3 months leading up to the study. Naturally passed feces were 

collected from each dog and frozen within a few hours of defecation at –80°C where they 

were stored until further analysis. In addition, paired samples were obtained from five 

MDs with ICRPs during clinical remission based on clinical responses (i.e., resolution of 

hematochezia and tenesmus) and endoscopic evaluation (controlled-ICRP group). The 

time between fecal sample collections ranged from 44 to 494 days. Detailed descriptions 

of all samples taken from dogs enrolled in the present study are listed in Table 24. 
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2.2. DNA extraction 

Fecal samples (20 mg) were suspended in 450-µl extraction buffer (100 mM Tris/HCl, 

40 mM ethylenediaminetetraacetic acid [EDTA], pH 9.0), and 50-µl 10% SDS. Glass 

beads (300 mg, 0.1 mm diameter) and 500-µl buffer-saturated phenol were added to the 

suspension, and the mixture was vortexed vigorously for 30 s using a FastPrep FP 100A 

(MP Biomedicals, LLC, Santa Ana, CA, USA) at a power level of five. After 

centrifugation at 14,000 × g for 5 min, 400-µl of the supernatant was extracted using 

phenol/chloroform, and 250-µl of supernatant was precipitated with propan-2-ol. Purified 

DNA was washed with 300-µl 70% ethanol, and then suspended in 200-µl Tris/EDTA 

buffer (pH 8.0). 

 

2.3. 16S rRNA gene sequencing 

The V3–V4 region of the bacterial 16S rRNA gene was amplified using TaKaRa Ex 

Taq HS (Takara Bio Inc., Shiga, Japan) using the following primer sequences: Tru357F 

(Forward, 5ʹ-CGCTCTTCCGATCTCTGTACGGRAGGCAGCAG-3ʹ) and Tru806R 

(Reverse, 5ʹ-CGCTCTTCCGATCTGACGGACTACHVGGGTWTCTAAT-3ʹ) under the 

following cycling conditions: 94°C for 3 min, 25 cycles of PCR (94°C for 30 s, 50°C for 

1 min, and 72°C for 1 min), and a final elongation step of 72°C for 10 min. Subsequently, 

dual barcoded amplicons were generated using TaKaRa Ex Taq HS (Takara Bio Inc.) with 

fusion barcoded primers depicted in Table 25 under the amplification conditions as 

follows: 94°C for 3 min, 15 cycles of PCR (94°C for 30 s, 50°C for 1 min, and 72°C for 

1 min), and a final elongation step of 72°C for 10 min. The amplicons were pooled at 

equimolar concentrations and sequenced with an Illumina MiSeq platform using MiSeq 

Reagent Kit v2 (Illumina, Inc., San Diego, CA, USA). 
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Raw 250-bp paired-end sequence reads were combined using the script fastq-join (ea-

utils-1.1.2-301.x86_64.rtp: https://code.google.com/p/ea-utils/downloads/list) with the 

default settings. Further data processing included filtering and denoising by clustering 

similar sequences with less than 3% dissimilarity using USEARCH v5.2.32 

(http://drive5.com/usearch/) (Edgar, 2010), and de novo chimera detection and removal 

in UCHIME (http://drive5.com/usearch/manual/uchime_algo.html) (Edgar et al., 2011). 

16S rRNA operational taxonomic units (OTUs) were selected from the combined reads 

using a de-novo OTU picking protocol clustered at 97% identity through the Quantitative 

Insights Into Microbial Ecology (QIIME) pipeline software version 1.6.0 

(http://qiime.org) (Caporaso et al., 2012), with USEARCH against the Greengenes 

database (http://greengenes.secondgenome.com/downloads/database/12_10; Oct. 2012 

release). The representative sequences for each OTU were compared with those in the 

Greengenes database for taxonomy assignment. To account for unequal sequencing depth 

across samples, subsequent analyses were performed on a randomly selected subset of 

56,270 sequences per sample. 

 

2.4. Statistical analysis 

To estimate the bacterial diversity in each sample, three indices—number of OTUs, 

Shannon index, and Chao1—were calculated, and rarefraction curves were depicted using 

QIIME (Chao, 1987; Shannon, 1948). Differences in microbial communities among 

samples were investigated using a phylogeny-based unweighted UniFrac distance matrix, 

which was calculated using the Greengenes reference tree. Principal coordinates analysis 

(PCoA) was performed using QIIME. Differences in microbiota composition between 

groups were tested using the one-way analysis of similarity (ANOSIM) function in the 
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statistical software package PRIMER 6 (PRIMER-E Ltd., Luton, UK).  

Differences in age, gender, bacterial diversity indices, and the proportions of bacterial 

taxa between the groups were determined using Kruskal–Wallis test with Dunn’s post hoc 

test or Chi-squared test where appropriate (JMP Pro version 10.0.2, SAS Institute, Cary, 

NC, USA). Only bacterial taxa that were present in at least 50% of dogs (either active-

ICRP, controlled-ICRP, or healthy) were included in the analysis. A value of P < 0.05 was 

considered statistically significant. 
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3. Results 

3.1. Animals 

Six ICRP-affected MDs were included in the present study. The median age of dogs 

with ICRPs at initial diagnosis was 117.5 months (range, 68–144 months) and consisted 

of two intact females and four neutered males. Their median body weight was 6.35 kg 

(range, 4.80–7.40 kg). Three out of six MDs with ICRPs had received corticosteroid 

and/or cyclosporine treatment prior to initial diagnosis, while the other three dogs had not 

received any medication. In addition, with the exception of one ICRP-affected MD who 

received probiotics (MitoMax SUPER; Imagilin technology LLC, MD, USA) and was 

withdrawn 2 weeks prior to the initial sample collection (Active-ICRP 3 in Table 24), no 

dogs had received any probiotics during the 4 weeks leading up to the clinical 

examination. 

The median age of control dogs was 84 months (range, 60–168 months) with six 

females (one intact and five neutered) and six males (four intact and two neutered). Their 

median body weight was 6.80 kg (range, 3.90–7.50 kg). No significant difference in age 

gender, or body weight was observed (Table 26). 

 

3.2. Sequence analysis 

A total of 2,165,353 sequence reads (mean ± SD, 94,146 ± 19,498 reads/sample) were 

analyzed across all fecal samples. Sequences were classified into ten bacterial phyla 

across all samples. The major bacterial phyla were Firmicutes (70.6% of all sequences), 

Bacteroidetes (14.2%), Fusobacteria (10.0%), Proteobacteria (2.6%), and Actinobacteria 

(2.0%). The phyla Deferribacteres, Spirochaetes, Tenericutes, TM7, and Verrucomicrobia 

each accounted for <0.1% of all obtained sequencing tags (Figure 15). 
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3.3. Comparison of fecal microbiota between controls and ICRP-affected MDs 

Rarefraction curves of each group indicated a relatively good depth of coverage, with 

an initial steep increase of identified OTUs per read for each sample, and subsequent 

leveling of the curve by approximately 40,000 reads (Figure 16). The Chao1 scores of 

MDs with active-ICRPs were significantly higher than the scores of healthy MDs, while 

other bacterial indices showed no significant differences between the groups (Table 26).  

PCoA plots (Figure 17) revealed a significant difference between active-ICRP and 

healthy dogs (ANOSIM; global R = 0.166, P = 0.031; active-ICRP vs. healthy, R = 0.302, 

P = 0.003). In contrast, no significant difference was observed between active-ICRP and 

controlled-ICRP (ANOSIM; R = 0.059, P = 0.340), or controlled-ICRP and healthy dogs 

(ANOSIM; R = 0.067, P = 0.331).  

The relative proportions of the predominant bacterial taxa at the phylum level are 

shown in Table 27, and those at the class, order, family, or genus level are shown in Tables 

28–31, respectively. The proportion of Firmicutes was significantly decreased in MDs 

with active-ICRPs compared with that in MDs with controlled-ICRPs and healthy 

controls (P = 0.0413 and 0.0100, respectively; Figure 15 and Table 27). In contrast, levels 

of bacteria of the phyla Actinobacteria and Fusobacteria were significantly increased in 

MDs with active ICRPs compared with healthy controls (P = 0.0465 and 0.0028, 

respectively; Figure 15 and Table 27). 

Within the phylum Actinobacteria, the major difference was observed in the family 

Bifidobacteriaceae (genus Bifidobacterium), which were present at higher levels in the 

group with active ICRP (P = 0.056), although there was no difference in taxa at the family 

level. Within Firmicutes; Lachnospiraceae, belonging to the class Clostridiales, was the 
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most predominant family and was significantly decreased in MDs with active-ICRPs 

compared with healthy MDs (P = 0.0406; Table 30). Within the phylum Fusobacteria, all 

taxa belonged to Fusobacteriaceae and were significantly increased in MDs that had 

active-ICRPs compared with healthy MDs (P = 0.0028; Table 30). 
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4. Discussion 

In this Chapter, I evaluated differences between the fecal microbiome of ICRP-

affected MDs and healthy MDs, and found that there are significant alterations in 

microbiota composition in the diseased group. These results suggest that the 

gastrointestinal microbiota is involved in the pathogenesis of ICRPs in MDs. Alterations 

in some bacterial taxa were consistent with those observed in human and/or canine IBD. 

The proportion of Firmicutes, mainly Lachnospiraceae family, was significantly 

decreased in MDs with active-ICRPs. Lachnospiraceae is one of the most abundant 

autochthonous bacterial families in human, mouse, and canine colonic mucosa (Hooda et 

al., 2012; Nava and Stappenbeck, 2011). This family is a member of Clostridium clusters 

IV or XIVa which is an important SCFA producer, and decreased level of Lachnospiraceae 

has been reported in human and canine IBD (Collins et al., 1994; Packey and Sartor, 2009; 

Suchodolski et al., 2012a, 2010). SCFAs have anti-inflammatory properties in vitro and 

in vivo (Cook and Sellin, 1998; Furusawa et al., 2013; Hamer et al., 2008; Tedelind et al., 

2007). Recently, Furusawa et al. revealed that SCFAs, especially butyrate, induce the 

differentiation of colonic regulatory T cells through enhanced histone H3 acetylation in 

the promoter and conserved non-coding sequence region of the FOXP3 gene (Furusawa 

et al., 2013). Since the reduction of SCFA-producing bacteria and insufficiency of SCFAs 

have been implicated in the pathogenesis of human IBD (Frank et al., 2007; Huda-fanjan 

et al., 2010; Takaishi et al., 2008), the reduction of SCFAs might be involved in the 

development of ICRPs. Further analyses of the association between luminal SCFA 

concentrations or disease status of ICRPs and the reduction of Lachnospiraceae are 

warranted. 

The proportion of Fusobacteria, mainly Fusobacteriaceae family, was significantly 
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increased in MDs with active-ICRPs. A similar increase of Fusobacteria has been reported 

in dogs with acute hemorrhagic diarrhea, whereas no increase was observed in dogs with 

non-hemorrhagic diarrhea (Suchodolski et al., 2012b). Since MDs with ICRPs commonly 

present chronic hematochezia, this increase might be due to the contamination of the feces 

with blood. Comparison of the Fusobacteria composition between patients with and 

without hematochezia in various gastrointestinal disorders may confirm the theory. 

However, it is difficult to determine how the increased level of Fusobacteriaceae may 

interfere with mucosal inflammation, since the Fusobacteriaceae had consist of 

heterogeneous species with different pathogenicities (Allen-Vercoe et al., 2011). 

Interestingly, Fusobacterium nucleatum and other Fusobacterium species have been 

associated with IBD and the development of colorectal cancer in humans (Allen-Vercoe 

et al., 2011; Tahara et al., 2014). ICRPs in MDs occasionally show neoplastic progression 

(Igarashi et al., 2013); therefore, it is possible that the presence of Fusobacteriaceae might 

play a role in tumorigenesis. Further investigations are needed to determine which species 

are associated with the development of ICRPs in MDs.  

Several contradicting changes were observed in the present study. The significant 

increase in the phylum Actinobacteria, predominantly of Bifidobacterium, was observed 

in MDs with active-ICRPs. Since Bifidobacterium can lower intestinal pH by increasing 

fermentation products and by modulating the intestinal immune system (Jiang and 

Savaiano, 1997; Tanabe et al., 2008), it is commonly prescribed as a probiotic in both 

human and veterinary medicine (Chrzastowska et al., 2009; Vieira et al., 2013). 

Furthermore, one bacterial diversity index (i.e., Chao1) was significantly increased in 

MDs with active-ICRPs compared with that in healthy controls. The reason for this was 

unclear, because bacterial diversity is commonly decreased in some gastrointestinal 
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disorders including human and canine IBD (Suchodolski et al., 2012b; Walker et al., 

2011). Several limitations of the present study, including dietary differences, the use of 

medication prior to sampling, or the small number of dogs used might explain these 

contradictions. Dietary fiber is beneficial for gastrointestinal health and affects the 

gastrointestinal microbiota (Galvez et al., 2005; Hooda et al., 2012; Viladomiu et al., 

2013). As shown in Table 24, most dogs were fed a general diet, but two ICRP-affected 

MDs (ICRP-4 and ICRP-6) were fed with a commercial high-fiber diet (Hill’s 

prescription diet w/d and r/d, Hill’s Pet Nutrition, Inc., Kansas, USA). However, several 

studies have reported that supplementation with dietary fiber generally induced a 

significant increase in Firmicutes and significant decreases in Actinobacteria and 

Fusobacteria, whereas it did not significantly affect to bacterial diversity indices 

(Middelbos et al., 2010; Panasevich et al., 2014); which is not consistent with the findings 

of the present study. In addition, each dog remained on the high-fiber diet until clinical 

remission was confirmed. Therefore, it is unlikely that the dietary fiber content affected 

the present results. On the other hand, three out of six MDs with active-ICRPs received 

prednisolone and/or cyclosporine. Although there were significant difference in the 

proportions of some minor bacterial taxa including Desulfovibrionaceae and 

Peptococcaceae between MDs with active-ICRPs received immunosuppressive agents 

and those without immunosuppression (see Table 32), the bacterial composition was not 

significantly different (ANOSIM: R = 0.000, P = 0.600). In addition, each dog received 

similar immunomodulatory therapy throughout the study period (Table 24). Furthermore, 

prednisolone administration have been reported to have no direct effect on fecal 

microbiota (Igarashi et al., 2014). Thus, previous use of prednisolone does not seem to 

have affected the present result. The fact that one ICRP-affected MD ceased taking 
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probiotics 2 weeks before recruitment might have affected the results. Garcia-Mazcorro 

et al. reported that oral administration of multi-species symbiotic did show the increase 

of probiotic bacteria in the feces, whereas did not alter the composition of major bacterial 

phyla or bacterial diversity (Garcia-Mazcorro et al., 2011). The fecal content of 

Bifidobacterium in the MD that had received a probiotic, only accounted for 0.07% in the 

present study (ICRP-3 in Tables 24 and 32). Therefore, I do not believe that would have 

interfered with the present results. As large inter-individual and intra-individual temporal 

variations in fecal microbiota have been reported (Garcia-Mazcorro et al., 2012), a larger 

sample size of dogs should be investigated to determine whether the observed increase of 

Bifidobacterium and bacterial diversity are consistent and of clinical significance. 

Interestingly, the bacterial composition in the feces from MDs with controlled-ICRPs 

was intermediate between that from MDs with active-ICRPs and that from healthy MDs. 

Although the cause and effect relationship between microbiota and mucosal inflammation 

is not well clarified in human and canine IBD, nor in the present study, these results 

suggest that the microbiota may be important in the management of ICRPs in MDs. To 

date, immunosuppressive therapy, endoscopic polypectomy, argon plasma coagulation, 

and/or surgical excision by the rectal pull-through technique have been performed to treat 

ICRPs in MDs (Ohmi et al., 2012; Tsukamoto et al., 2012). However, the clinical efficacy 

of antibiotics, pre- or probiotics, and food therapy has not been investigated in this disease. 

Further investigations evaluating their effects on the microbiota and clinical outcome 

would determine the usefulness of this therapy and help to establish appropriate 

therapeutic protocols for the treatment of ICRPs in MDs. A possible limitation for this 

finding was the lack of clinical scoring system, which would provide more information 

of the association between specific bacterial taxa and disease status. 
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In conclusion, I have shown that the composition of the fecal microbiota in MDs with 

active-ICRPs was significantly different from that in healthy MDs. Furthermore, my 

study also revealed that the microbiota of ICRP-affected MDs tended to change in 

composition to be similar to that of healthy MDs when clinical remission was achieved 

with immunosuppressive therapy. These results suggest that the microbiota play a key 

role in the development of ICRPs and may have a potential use as a therapeutic target. 

Since limited number of ICRP-affected MDs were included, the findings observed in this 

Chapter are preliminary; thus further follow-up study should be performed. Further 

studies preparing a gnotobiotic mouse as an ICRP model, and the evaluation of fecal 

SCFA concentrations might confirm the association of microbiota in the pathogenesis of 

ICRPs in MDs. 
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Table 26 

Characteristics and bacterial diversity indices of dogs enrolled in Chapter 2-1. 

  Active-ICRP Controlled-ICRP Healthy P-value* 

Sex 

male 4 4 6 0.301 

female 2 1 6  

Age (months) 117.5 (68–144) 115 (70–148) 84 (60–168) 0.638 

Body weight (kg) 6.35 (4.80–7.40) 5.95 (4.75–6.70) 6.80 (3.90–7.50) 0.606 

Bacterial diversity indices 

OTU 2119 (1431–2726) 2026 (1711–2138) 1597 (1330–2430) 0.0610  

Shannon Index 6.88 (5.33–7.65) 6.68 (6.04–7.07) 6.00 (4.89–7.58) 0.349  

Chao1 3133a (2162–3951) 2929a,b (2529–3274) 2385b (2036–3901) 0.0312  

Age, body weight, and bacterial diversity indices are represented by the median value (range). 

Medians not sharing a common superscript are significantly different (Dunn’s multiple 

comparison, P < 0.05). 

*Kruskal–Wallis test or Chi–square test. Statistically significant values (P < 0.05) are highlighted 

in bold. 

ICRP, inflammatory colorectal polyp; OTU, operational taxonomic unit. 
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Table 27 

Relative proportions of the predominant bacterial phyla. 

  Medians % (min.–max. %) of sequences*  

  Active-ICRP Controlled-ICRP Healthy P-value** 

Actinobacteria 4.50a (0.08–20.42) 0.06a,b (0.04–0.25) 0.07b (0.01–1.76) 0.041  

Bacteroidetes 15.52 (5.34–36.45) 6.40 (0.37–38.90) 8.50 (0.63–38.05) 0.441  

Firmicutes 43.26a (27.68–60.32) 89.20b (28.48–98.85) 82.68b (57.72–98.58) 0.007  

Fusobacteria 25.59a (14.68–33.74) 3.67a,b (0.27–27.77) 0.97b (0.13–13.24) 0.004  

Proteobacteria 3.83 (0.74–14.63) 1.87(0.23–3.76) 0.61 (0.13–6.06) 0.053  

Tenericutes 0.00 (0.00–0.74) 0.00 (0.00–0.02) 0.00 (0.00–0.02) 0.067  

TM7 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.410  

Taxa identified in at least 50% of dogs (either ICRP-affected or healthy) were included in analysis. 

*Medians not sharing a common superscript are significantly different (Dunn’s multiple 

comparison, P < 0.05). 

**Kruskal–Wallis test. Statistically significant values (P < 0.05) are highlighted in bold. 
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Table 28 

Relative proportions of the predominant bacterial classes. 

  Medians % (min.–max. %) of sequences* 

  Active-ICRP Controlled-ICRP Healthy P-value** 

Actinobacteria 4.50a (0.08–20.42) 0.06a,b (0.03–0.25) 0.07b (0.01–1.75) 0.041  

Bacilli 2.40 (0.50–33.69) 7.78 (0.96–83.05) 1.49 (0.37–72.91) 0.291  

Bacteroidia 15.52 (5.34–36.45) 6.40 (0.37–38.90) 8.50 (0.63–38.05) 0.441  

Betaproteobacteria 0.72 (0.03–5.47) 0.23 (0.01–1.83) 0.06 (0.01–1.19) 0.107  

Clostridia 33.01 (25.33–54.12) 27.31 (5.32–77.43) 65.90 (23.12–88.96) 0.055  

Deltaproteobacteria 0.00 (0.00–0.07) 0.01 (0.00–0.34) 0.00 (0.00–0.01) 0.093  

Epsilonproteobacteria 0.61a (0.17–8.93) 0.17a,b (0.02–1.30) 0.02b (0.00–0.78) 0.004  

Erysipelotrichi 0.36 (0.20–0.93) 1.51 (0.03–3.70) 0.45 (0.05–5.99) 0.751  

Fusobacteria 25.59a (14.68–33.74) 3.67a,b (0.27–27.77) 0.97b (0.13–13.24) 0.004  

Gammaproteobacteria 1.38 (0.05–7.23) 0.29 (0.04–2.20) 0.21 (0.04–4.56) 0.616  

Mollicutes 0.00 (0.00–0.74) 0.00 (0.00–0.02) 0.00 (0.00–0.02) 0.067  

Nitriliruptoria 0.00 (0.00–0.02) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.189  

TM7-3 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.410  

Taxa identified in at least 50% of dogs (either ICRP-affected or healthy) were included in analysis. 

*Medians not sharing a common superscript are significantly different (Dunn’s multiple 

comparison, P < 0.05). 

**Kruskal–Wallis test. Statistically significant values (P < 0.05) are highlighted in bold. 
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Table 29 

Relative proportions of the predominant bacterial orders. 

  Medians % (min.–max. %) of sequences* 

  Active-ICRP Controlled-ICRP Healthy P-value** 

Actinomycetales 0.04 (0.00–1.54) 0.01 (0.00–0.13) 0.02 (0.00–0.10) 0.792  

Aeromonadales 0.00 (0.00–0.62) 0.01 (0.00–0.24) 0.00 (0.00–3.96) 0.501  

Anaeroplasmatales 0.00 (0.00–0.74) 0.00 (0.00–0.02) 0.00 (0.00–0.02) 0.067  

Bacillales 0.00 (0.00–1.74) 0.00 (0.00–0.01) 0.00 (0.00–0.05) 0.736  

Bacteroidales 15.52 (5.34–36.45) 6.40 (0.37–38.90) 8.50 (0.63–38.05) 0.441  

Bifidobacteriales 3.74 (0.04–20.41) 0.06 (0.03–0.15) 0.03 (0.00–1.72) 0.056  

Burkholderiales 0.69 (0.02–5.40) 0.22 (0.01–1.79) 0.06 (0.01–1.03) 0.159  

Campylobacterales 0.61a (0.17–8.93) 0.17a,b (0.02–1.30) 0.02b (0.00–0.78) 0.004  

Clostridiales 32.30 (23.80–53.59) 26.82 (5.20–76.12) 65.22 (22.72–88.78) 0.055  

Coriobacteriales 0.07 (0.00–1.04) 0.00 (0.00–0.02) 0.00 (0.00–0.55) 0.309  

Desulfovibrionales 0.00 (0.00–0.07) 0.01 (0.00–0.34) 0.00 (0.00–0.01) 0.093  

Enterobacteriales 0.92 (0.04–6.48) 0.14 (0.01–2.19) 0.13 (0.03–4.53) 0.377  

Erysipelotrichales 0.36 (0.20–0.93) 1.51 (0.03–3.70) 0.45 (0.05–5.99) 0.751  

Euzebyales 0.00 (0.00–0.02) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.189  

Fusobacteriales 25.59a (14.68–33.74) 3.67a,b (0.27–27.77) 0.97b (0.13–13.24) 0.004  

Gemellales 0.01 (0.00–0.13) 0.00 (0.00–0.08) 0.00 (0.00–0.02) 0.818  

Lactobacillales 1.15 (0.35–33.43) 7.71 (0.17–69.80) 0.90 (0.36–72.90) 0.714  

Pasteurellales 0.07 (0.00–0.74) 0.00 (0.00–0.15) 0.00 (0.00–0.01) 0.762  

Pseudomonadales 0.00 (0.00–0.01) 0.00 (0.00–0.00) 0.00 (0.00–0.02) 0.415  

Turicibacterales 0.14a (0.05–6.89) 0.06a (0.05–23.92) 0.02b (0.00–1.09) 0.002  

Taxa identified in at least 50% of dogs (either ICRP-affected or healthy) were included in analysis. 

*Medians not sharing a common superscript are significantly different (Dunn’s multiple 

comparison, P < 0.05). 

**Kruskal–Wallis test. Statistically significant values (P < 0.05) are highlighted in bold. 
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Table 30 

Relative proportions of the predominant bacterial families. 

  Medians % (min.–max. %) of sequences* 

  Active-ICRP Controlled-ICRP Healthy P-value** 

Actinomycetaceae 0.02 (0.00–1.51) 0.00 (0.00–0.01) 0.01 (0.00–0.05) 0.272  

Alcaligenaceae 0.67 (0.02–5.29) 0.22 (0.01–1.76) 0.06 (0.01–1.02) 0.159  

Anaeroplasmataceae 0.00 (0.00–0.74) 0.00 (0.00–0.02) 0.00 (0.00–0.02) 0.067  

Bacteroidaceae 11.52 (5.19–36.17) 1.87 (0.28–38.57) 8.34 (0.26–37.98) 0.296  

Bifidobacteriaceae 3.74 (0.04–20.39) 0.06 (0.03–0.15) 0.03 (0.00–1.72) 0.056  

Campylobacteraceae 0.00 (0.00–0.18) 0.00 (0.00–0.26) 0.00 (0.00–0.12) 0.278  

Clostridiaceae 10.97 (0.90–19.78) 10.86 (0.72–28.87) 5.05 (0.33–54.87) 0.761  

Coprobacillaceae 0.28 (0.12–0.42) 0.12 (0.02–3.67) 0.31 (0.02–2.84) 0.518  

Coriobacteriaceae 0.07 (0.00–1.04) 0.00 (0.00–0.02) 0.00 (0.00–0.55) 0.309  

Corynebacteriaceae 0.00 (0.00–0.06) 0.01 (0.00–0.11) 0.00 (0.00–0.04) 0.573  

Desulfovibrionaceae 0.00 (0.00–0.07) 0.01 (0.00–0.34) 0.00 (0.00–0.01) 0.093  

Enterobacteriaceae 0.92 (0.04–6.48) 0.14 (0.01–2.19) 0.13 (0.03–4.53) 0.377  

Enterococcaceae 0.04 (0.01–1.90) 0.31 (0.03–0.60) 0.05 (0.01–10.21) 0.342  

Erysipelotrichaceae 0.05 (0.02–0.65) 0.05 (0.01–2.06) 0.06 (0.01–3.15) 0.983 

Eubacteriaceae 0.23 (0.08–2.01) 0.19 (0.08–3.15) 1.44 (0.05–7.35) 0.064 

Euzebyaceae 0.00 (0.00–0.02) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.189  

Fusobacteriaceae 25.59a (14.68–33.72) 3.67a,b (0.27–27.77) 0.97b (0.13–13.24) 0.004  

Gemellaceae 0.01 (0.00–0.13) 0.00 (0.00–0.08) 0.00 (0.00–0.02) 0.818  

Helicobacteraceae 0.61a (0.05–8.93) 0.17a,b (0.02–1.30) 0.01b (0.00–0.77) 0.008  

Lachnospiraceae 8.14a (5.71–32.33) 11.87a,b (1.20–41.05) 31.36b (6.58–81.10) 0.029  

Lactobacillaceae 0.13 (0.07–28.82) 0.21 (0.08–59.32) 0.08 (0.02–38.72) 0.211  

Microbacteriaceae 0.00 (0.00–0.01) 0.00 (0.00–0.00) 0.00 (0.00–0.03) 0.446  

Paraprevotellaceae 0.00 (0.00–1.74) 0.00 (0.00–0.32) 0.00 (0.00–0.21) 0.205 

Pasteurellaceae 0.07 (0.00–0.74) 0.00 (0.00–0.15) 0.00 (0.00–0.01) 0.762  

Peptococcaceae 0.01 (0.00–0.24) 0.00 (0.00–0.29) 0.00 (0.00–2.93) 0.997  

Peptostreptococcaceae 2.24 (0.31–4.35) 0.49 (0.09–12.28) 0.36 (0.04–5.68) 0.152  

Porphyromonadaceae 0.07a (0.02–0.17) 0.02a,b (0.00–0.15) 0.00b (0.00–0.41) 0.022  

Prevotellaceae 0.77 (0.03–10.06) 2.78 (0.04–4.44) 0.04 (0.01–14.41) 0.126 

Ruminococcaceae 4.71 (2.76–18.62) 7.98 (0.94–13.40) 8.12 (0.97–36.41) 0.520 

Staphylococcaceae 0.00 (0.00–1.74) 0.00 (0.00–0.01) 0.00 (0.00–0.04) 0.802  

Streptococcaceae 0.76 (0.10–2.31) 7.01 (0.05–30.29) 0.41 (0.22–72.81) 0.533  

Succinivibrionaceae 0.00 (0.00–0.62) 0.01 (0.00–0.24) 0.00 (0.00–3.96) 0.501  

S24-7 0.00 (0.00–0.01) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.119  

Turicibacteraceae 0.14a (0.05–6.89) 0.06a (0.05–23.92) 0.02b (0.00–1.09) 0.002  

Veillonellaceae 0.79 (0.01–1.74) 0.69 (0.07–2.81) 0.29 (0.00–0.99) 0.097  

Taxa identified in at least 50% of dogs (either ICRP-affected or healthy) were included in analysis. 

*Medians not sharing a common superscript are significantly different (Dunn’s multiple comparison, 

P < 0.05). 

**Kruskal–Wallis test. Statistically significant values (P < 0.05) are highlighted in bold. 
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Table 31 

Relative proportions of the predominant bacterial genera. 

  Medians % (min.–max. %) of sequences* 

  Active ICRP Controlled ICRP Healthy P-value** 

Actinomyces 0.01 (0.00–1.46) 0.00 (0.00–0.00) 0.01 (0.00–0.04) 0.191  

Allobaculum 0.02 (0.00–0.65) 0.05 (0.01–2.05) 0.05 (0.00–3.06) 0.714  

Anaerobiospirillum 0.00 (0.00–0.62) 0.00 (0.00–0.24) 0.00 (0.00–3.92) 0.465  

Anaeroplasma 0.00 (0.00–0.74) 0.00 (0.00–0.02) 0.00 (0.00–0.02) 0.067  

Anaerotruncus 0.00a,b (0.00–0.02) 0.00a (0.00–0.01) 0.00b (0.00–0.00) 0.028  

Bacteroides 11.42 (5.18–36.17) 1.85 (0.28–38.47) 8.30 (0.25–37.92) 0.296  

Bifidobacterium 3.74 (0.04–20.39) 0.06 (0.03–0.15) 0.03 (0.00–1.69) 0.056  

Bilophila 0.00 (0.00–0.07) 0.00 (0.00–0.34) 0.00 (0.00–0.00) 0.216  

Blautia 4.42 (2.86–16.97) 7.71 (0.53–17.87) 15.15 (0.94–59.80) 0.115  

Bulleidia 0.00 (0.00–0.04) 0.00 (0.00–0.02) 0.00 (0.00–0.04) 0.451  

Campylobacter 0.00 (0.00–0.18) 0.00 (0.00–0.26) 0.00 (0.00–0.12) 0.278  

Catenibacterium 0.09 (0.00–0.24) 0.06 (0.00–3.61) 0.01 (0.00–2.66) 0.956  

Clostridium 7.15 (0.87–19.52) 10.80 (0.70–28.80) 5.02 (0.29–54.27) 0.914  

Collinsella 0.01 (0.00–0.97) 0.00 (0.00–0.02) 0.00 (0.00–0.55) 0.363  

Coprococcus 0.00 (0.00–0.01) 0.00 (0.00–0.01) 0.00 (0.00–0.90) 0.109  

Corynebacterium 0.00 (0.00–0.06) 0.01 (0.00–0.11) 0.00 (0.00–0.04) 0.573  

Dorea 0.04 (0.01–1.54) 0.07 (0.01–0.38) 0.13 (0.02–5.40) 0.232  

Enterococcus 0.03 (0.01–1.70) 0.23 (0.02–0.59) 0.04 (0.01–9.19) 0.310  

Escherichia 0.65 (0.03–5.64) 0.11 (0.01–1.91) 0.10 (0.03–3.54) 0.409  

Eubacterium 0.23 (0.08–2.01) 0.19 (0.08–3.15) 1.44 (0.05–7.35) 0.064  

Euzebya 0.00 (0.00–0.02) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.189  

Faecalibacterium 0.02 (0.01–2.51) 0.06 (0.01–2.61) 0.01 (0.00–1.85) 0.181  

Fusobacterium 0.04 (0.00–27.22) 0.02 (0.01–0.03) 0.01 (0.01–0.07) 0.225  

Gemella 0.01 (0.00–0.13) 0.00 (0.00–0.08) 0.00 (0.00–0.02) 0.720  

Helicobacter 0.60a (0.05–8.87) 0.17a,b (0.02–1.29) 0.01b (0.00–0.77) 0.008  

J2-29 5.17 (0.08–10.93) 1.56 (0.03–11.26) 0.09 (0.02–5.26) 0.108  

Lactobacillus 0.04 (0.02–1.02) 0.08 (0.03–25.14) 0.05 (0.00–13.43) 0.380  

Lactococcus 0.00 (0.00–0.11) 0.00 (0.00–1.83) 0.00 (0.00–0.02) 0.478  

Leucobacter 0.00 (0.00–0.01) 0.00 (0.00–0.00) 0.00 (0.00–0.03) 0.443  

Megamonas 0.31 (0.01–0.79) 0.05 (0.01–1.60) 0.09 (0.00–0.72) 0.578  

Megasphaera 0.00 (0.00–0.06) 0.00 (0.00–0.05) 0.00 (0.00–0.05) 0.167  

Oscillospira 0.03 (0.00–0.33) 0.09 (0.00–0.64) 0.01 (0.00–0.33) 0.306  

Parabacteroides 0.02 (0.00–0.16) 0.02 (0.00–0.14) 0.00 (0.00–0.41) 0.268  

Pasteurella 0.00 (0.00–0.71) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.760  

Pediococcus 0.00 (0.00–0.03) 0.00 (0.00–0.86) 0.00 (0.00–0.02) 0.313  

Peptococcus 0.01 (0.00–0.24) 0.00 (0.00–0.29) 0.00 (0.00–2.93) 0.997  

Peptostreptococcus 0.51 (0.01–3.13) 0.01 (0.01–2.04) 0.01 (0.00–0.07) 0.115  

Phascolarctobacterium 0.01 (0.00–1.14) 0.04 (0.00–1.16) 0.04 (0.00–0.34) 0.899  

Porphyromonas 0.01 (0.00–0.16) 0.00 (0.00–0.06) 0.00 (0.00–0.03) 0.289  

Prevotella 0.77 (0.03–10.06) 2.78 (0.04–4.44) 0.04 (0.01–14.41) 0.126  

Proteus 0.00a,b (0.00–0.10) 0.00a (0.00–0.00) 0.00b (0.00–0.01) 0.007  

Roseburia 0.02 (0.00–0.43) 0.00 (0.00–0.17) 0.00 (0.00–0.08) 0.078  

Ruminococcus 4.03 (1.72–18.25) 4.45 (0.83–12.57) 8.03 (0.50–36.37) 0.499  
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Table 31 

Cont. 

  Medians % (min.–max. %) of sequences* 

  Active ICRP Controlled ICRP Healthy P-value** 

Sarcina 0.00 (0.00–0.33) 0.00 (0.00–0.01) 0.00 (0.00–0.00) 0.104  

Slackia 0.00 (0.00–0.07) 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.126  

Staphylococcus 0.00 (0.00–0.05) 0.00 (0.00–0.00) 0.00 (0.00–0.01) 0.182  

Streptococcus 0.76 (0.10–2.05) 5.41 (0.04–28.44) 0.39 (0.18–70.19) 0.533  

Sutterella 0.67 (0.02–5.29) 0.22 (0.01–1.76) 0.05 (0.01–1.02) 0.159  

Turicibacter 0.14a (0.05–6.89) 0.06a (0.05–23.92) 0.02b (0.00–1.09) 0.002  

Veillonella 0.00 (0.00–0.67) 0.01 (0.00–0.63) 0.00 (0.00–0.33) 0.313  

Taxa identified in at least 50% of dogs (either ICRP-affected or healthy) were included in analysis. 

*Medians not sharing a common superscript are significantly different (Dunn’s multiple 

comparison, P < 0.05). 

**Kruskal–Wallis test. Statistically significant values (P < 0.05) are highlighted in bold. 
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Table 32 

Percent of sequences of active-ICRP samples with or without immunosuppressive therapy. 

  Without immunosuppression  With immunosuppression 
P-value* 

  ICRP-1 ICRP-3** ICRP-4***  ICRP-2 ICRP-5 ICRP-6*** 

Actinomycetaceae 1.51  0.01  0.00   0.08  0.03  0.00  0.827  

Alcaligenaceae 0.73  0.02  0.44   0.69  0.64  5.29  0.275 

Anaeroplasmataceae 0.74  0.00  0.00   0.00  0.00  0.47  0.827  

Bacteroidaceae 12.33  36.17  10.71   5.19  18.52  5.61  0.275  

Bifidobacteriaceae 0.04  0.07  20.39   14.02  0.05  7.42  0.827  

Campylobacteraceae 0.00  0.18  0.00   0.02  0.00  0.00  0.513  

Clostridiaceae 6.81  12.36  15.69   9.57  0.90  19.78  0.827  

Coprobacillaceae 0.28  0.12  0.33   0.28  0.42  0.22  0.827  

Coriobacteriaceae 0.12  0.00  1.04   0.89  0.00  0.02  0.513  

Corynebacteriaceae 0.00  0.00  0.01   0.06  0.02  0.00  0.127  

Desulfovibrionaceae 0.00  0.00  0.00   0.07  0.07  0.00  0.046  

Enterobacteriaceae 1.90  6.48  0.04   1.47  0.37  0.20  0.513  

Enterococcaceae 0.01  0.05  0.03   1.90  0.02  0.06  0.275  

Erysipelotrichaceae 0.65  0.08  0.03   0.07  0.03  0.02  0.275  

Eubacteriaceae 0.29  0.16  2.01   0.18  0.08  0.37  0.513  

Euzebyaceae 0.00  0.00  0.00   0.02  0.00  0.00  0.121  

Fusobacteriaceae 33.72  27.65  14.86   14.68  23.52  30.66  0.513  

Gemellaceae 0.13  0.00  0.00   0.01  0.09  0.00  0.817  

Helicobacteraceae 0.75  0.05  0.17   0.46  0.77  8.93  0.127  

Lachnospiraceae 13.63  6.17  9.54   5.71  32.33  6.75  0.827 

Lactobacillaceae 0.07  0.14  0.13   28.82  0.08  0.73  0.275  

Microbacteriaceae 0.00  0.00  0.00   0.00  0.01  0.00  0.246  

Paraprevotellaceae 1.74  0.00  0.00   0.00  0.00  0.00  0.817  

Pasteurellaceae 0.00  0.72  0.00   0.74  0.14  0.00  0.658  

Peptococcaceae 0.00  0.00  0.00   0.11  0.02  0.24  0.049  

Peptostreptococcaceae 1.47  0.31  4.35   3.36  1.58  2.89  0.513  

Porphyromonadaceae 0.17  0.17  0.02   0.09  0.03  0.05  0.513  

Prevotellaceae 10.06  0.03  1.49   0.05  0.04  2.59  0.827  

Ruminococcaceae 6.87  5.17  4.25   2.95  18.62  2.76  0.513  

Staphylococcaceae 0.00  0.00  0.00   0.00  0.01  1.74  0.246  

Streptococcaceae 1.30  1.78  0.21   2.31  0.23  0.10  0.827  

Succinivibrionaceae 0.62  0.00  0.00   0.00  0.00  0.00  0.658  

S24-7 0.00  0.00  0.00   0.00  0.01  0.01  0.246  

Turicibacteraceae 0.25  0.08  6.89   0.19  0.05  0.10  0.275  

Veillonellaceae 1.74  0.71  0.86   1.66  0.01  0.57  0.275  

Taxa identified in at least 50% of dogs (either ICRP-affected or healthy) were included in analysis. 

*Mann–Whitney U test between dogs with and without immunosuppression. Statistically significant 

values (P < 0.05) are highlighted in bold. 

**Dog ceased taking probiotics 2 weeks before recruitment. 

***Dogs fed with high-fiber diets. 
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Figure 15 

 

 

 

Distributions of major bacterial groups at the phylum level. The bars “Others” includes 

the minor phyla Deferribacteres, Spirochaetes, Tenericutes, TM7, and Verrucomicrobia. 

ICRP, inflammatory colorectal polyp. 
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Figure 16 

 

 

 

Rarefraction analysis of V3–V4 16S rRNA gene sequences obtained from fecal samples. 

Lines represent the mean of each group, while error bars represent standard deviation. 

This analysis was performed using a randomly selected subset of 56,270 sequences per 

sample.  
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Figure 17 

 

 

 

Principal coordinates analysis (PCoA) generated using the unweighted UniFrac distance 

metric of 16S rRNA genes. Samples of dogs with active-ICRP were separated from those 

of healthy dogs (ANOSIM; R = 0.302, P = 0.003). By contrast, samples of dogs with 

controlled-ICRP were not separated from the other group. 
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Chapter 2-2 

Decreased concentrations of fecal short chain fatty 

acids in Miniature Dachshunds with inflammatory 

colorectal polyps 
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Abstract 

Short chain fatty acids (SCFAs) play an important role in the maintenance of colonic 

homeostasis, and their reduction has been reported in various gastrointestinal disorders 

including inflammatory bowel disease (IBD) in humans. This study was performed based 

on the hypothesis that a reduced SCFA concentration is associated with the development 

of inflammatory colorectal polyps (ICRPs). A total of 19 ICRP-affected and 25 control 

Miniature Dachshunds (MDs) were recruited for the study. Fecal concentrations of 

SCFAs including acetic, propionic, butyric, isobutyric, lactic, valeric, and isovaleric acids 

were measured using high performance liquid chromatography. Fecal concentrations of 

total SCFAs, and acetic and propionic acids were significantly decreased in ICRP-affected 

compared to control MDs. These results indicate that SCFAs are a factor in the 

pathogenesis of ICRPs in MDs. Further investigations are needed to determine if 

promoting SCFAs using prebiotics or SCFA enemas would be therapeutically beneficial. 
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1. Introduction 

Gut microbiota are part of the mucosal barrier that defends against pathogen invasion, 

induces mucosal immune responses, supports digestion, and provides nutritional support, 

including short chain fatty acids (SCFAs) for enterocytes (Suchodolski, 2011). SCFAs are 

produced by the fermentation of carbohydrates, peptides, and glycoprotein precursors 

(Cummings et al., 2001; Garcia et al., 2008). SCFAs, predominantly composed of acetate, 

propionate, and butyrate, play an essential role in maintaining colonic homeostasis. 

Butyrate is the most effective SCFA in inhibiting colonic inflammation, carcinogenesis, 

and oxidative stress; improving the colonic defense barrier; promoting satiety; and 

providing a primary energy substrate for colonocytes (Hamer et al., 2008). The anti-

inflammatory mechanism of SCFAs involves the suppression of nuclear factor-kappa B 

reporter activity, inflammation-related gene expression, and cytokine release (Hamer et 

al., 2008). A recent study revealed that SCFAs, particularly butyrate, induce the 

differentiation of colonic regulatory T (Treg) cells via upregulation of histone acetylation 

in the promoter and enhancer region of the FOXP3 gene (Furusawa et al., 2013). Several 

studies have reported decreased SCFAs in human inflammatory bowel disease (IBD) 

(Huda-Faujan et al., 2010; Takaishi et al., 2008; Vernia et al., 1988). 

In Chapter 2-1, I performed a 16S rRNA gene sequencing analysis of fecal microbiota 

in Miniature Dachshunds (MDs) with inflammatory colorectal polyps (ICRPs), and 

revealed a reduction in the composition of SCFA-producing bacterial groups including 

Lachnospiraceae. However, it has been reported that alteration in the microbiota 

composition does not directly correlate with functional microbiota change (Turnbaugh et 

al., 2009). The primary objective of this study was to compare the SCFA concentrations 

in the feces of ICRP-affected and control MDs. A recent report showed that the oral 
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administration of metronidazole, which is often prescribed for ICRP-affected MDs, 

promotes SCFA-producing bacterial groups including Bifidobacterium and 

Lactobacillales (Igarashi et al., 2014). I also compared the SCFA concentrations between 

untreated ICRP-affected MDs and those that received metronidazole. 
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2. Materials and methods 

2.1. Animals and sample collection 

MDs that were referred to the Veterinary Medical Center of the University of Tokyo 

for investigation of chronic hematochezia and/or tenesmus and diagnosed with ICRPs 

between October 2012 and October 2014 were included in this study. The diagnosis of 

ICRP was confirmed by colonoscopic and histopathological findings as described 

previously (Ohmi et al., 2012). Dogs that received antibiotics other than metronidazole 2 

weeks before sampling were excluded. Data comparing metronidazole treated and 

untreated ICRP-affected MDs were analyzed separately (see below). As controls, MDs 

presented to the reference hospital for routine examinations and with no clinical signs of 

gastrointestinal disease or abnormalities as determined by fecal examination and rectal 

palpation were recruited. Control MDs had not received any antibiotics within 1 year 

prior to the study. Detailed descriptions of all samples collected from ICRP-affected and 

control MDs are listed in Tables 33 and 34, respectively. Naturally passed feces were 

collected from each dog into sterile plastic tubes, and frozen at –20°C within an hour of 

defecation until further analysis. 

 

2.2. Sample Preparation 

Fecal pH was measured by inserting the glass electrode of an H-7 HP pH meter 

(Horiba Seisakusho Co. Ltd., Tokyo, Japan) directly into the feces. The fecal moisture 

content was determined by overnight oven-drying of each sample at 103°C, and mean 

data were calculated from three different sites in each sample. 

Approximately 0.3 g of feces were diluted at a ratio 1:4 to 1:10 (w/v) in distilled water, 

vortexed for 1 min, centrifuged at 2,000 × g for 5 min, and the supernatant filtered using 
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a 0.45 µm syringe filter. The ammonia concentration of the supernatant was measured 

using an automated chemistry analyzer (FUJI DRI-CHEM 7000, Fujifilm Medical Co., 

Tokyo, Japan). The SCFA concentration of the supernatant was measured using high 

performance liquid chromatography (HPLC) (Miwa et al., 1985, 1987). A mixture of 100 

µl of the supernatant and 200 µl of crotonic acid (0.5 mM), an internal standard, was pre-

labelled with 2-nitrophenylhydrazide using a Short- and Long-Chain Fatty Acid Analysis 

Kit (YMC Co. Ltd., Kyoto, Japan). The SCFA derivatives were extracted with n-hexane 

and diethyl ether, followed by evaporation to dryness. The residue was reconstituted with 

methanol, filtered through a 0.2 µm syringe filter, and 10 µl injected into the HPLC 

system with a YMC-Pack FA column (250 × 6.0 mm; YMC Co. Ltd.).  

 

2.3. HPLC analysis 

The HPLC system (JASCO, Tokyo, Japan) consisted of two pumps (PU-980), a 

column oven (CO-965), an autosampler (AS-950), a UV-VIS detector (UV-970), and an 

integrator (LCSS-905) and was used under the following conditions. The column oven 

temperature was 50°C, the mobile phase consisted of acetonitrile-methanol-water 

(30:16:54 v/v, pH 4–5 adjusted by 0.01 N HCl), the flow rate was 1.2 ml/min, and the 

absorbance of eluates was simultaneously monitored at a wavelength of 230 nm.   

To construct calibration curves for each SCFA, eight calibration standards, including 

acetic, propionic, butyric, isobutyric, lactic, valeric, isovaleric, and crotonic acids, were 

prepared at six concentration levels ranging from 0.1 mM to 5.0 mM (0.1, 0.2, 0.5, 1.0, 

2.0, and 5.0). The typical chromatogram of standard solutions and a fecal sample from a 

control dog are shown in supplementary Figure 18. The correlation coefficient of the 

calibration curves ranged from 0.9922 to 0.9984 (Table 35). Recovery tests were 
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performed by adding known amounts (10 µmol) of each SCFA to 10 ml of calibration 

standard solution (1.0 mM); the recovery ranged from 95.9% to 118.0% (Table 35). All 

SCFA concentration analyses were performed in duplicate. 

 

2.4. Statistical analysis 

Statistical analyses were performed using commercially available software (JMP Pro 

version 11.0.0, SAS Institute, Cary, NC, USA). The normality of data was checked using 

the Shapiro-Wilk test. Gender differences were tested using the Chi-squared test. 

Differences in age, body weight, and fecal parameters between ICRP-affected MDs with 

and without metronidazole administration, and control MDs were determined using 

ANOVA and Tukey’s test or the Kruskal–Wallis test with Dunn’s post-hoc test where 

appropriate.  
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3. Results 

3.1. Animals 

Of the 25 ICRP-affected MDs evaluated, eight had been treated with metronidazole 

within 2 weeks before recruitment (Met-ICRP group) and 11 were untreated (nonMet-

ICRP group). The remaining six ICRP-affected MDs were excluded from the current 

study because they had received other antibiotics including ampicillin, amoxicillin, 

tylosin, orbifloxacin, or enrofloxacin. As controls, 25 MDs were further included (Control 

group). None of the dogs had undergone abdominal surgery in the year prior to the study. 

Baseline characteristics, including gender, median age, body weight, and body condition 

score were not significantly different between the groups (Table 36). 

 

3.2. Fecal characteristics 

The fecal dry matter content and pH were significantly lower in the nonMet-ICRP 

compared with the control group (P = 0.0042 and 0.0217, respectively; Table 36). In 

addition, the Met-ICRP group had a relatively lower fecal dry matter content (P = 0.0937; 

Table 36). No significant difference was observed in the fecal ammonia concentration 

between the groups (Table 36).  

 

3.3. Fecal SCFA concentrations 

Slight concentrations of isobutyric, valeric, and isovaleric acids were detected in only 

one to two dogs, and there were no significant differences between the groups. The total 

SCFA concentration in the nonMet-ICRP group was significantly lower than in the 

Control group (P = 0.0291; Table 36). In particular, significantly lower acetic and 

propionic acids concentrations were observed in the nonMet-ICRP group compared with 
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controls (P = 0.0406 and 0.0357, respectively; Table 36). No significant difference was 

observed in the concentrations of butyric and lactic acids between the groups. The Met-

ICRP group showed a relatively lower propionic acid concentration compared with the 

Control group (P = 0.0504; Table 36), while no other parameters showed significant 

difference compared with other two groups. 
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4. Discussion 

This Chapter revealed decreased fecal SCFA concentrations (predominantly acetic 

and propionic acids) in ICRP-affected MDs. The fecal butyrate concentration did not 

differ significantly between the groups, although the median values in ICRP-affected 

MDs were lower than in controls (Table 36). In contrast, butyric and propionic acids are 

likely to decrease in human IBD patients (Huda-Faujan et al., 2010; Takaishi et al., 2008). 

The differences in the pattern of reduced SCFAs between humans and MDs may be due 

to species or disease pathogenesis (including dysbiosis) differences.   

Although the anti-inflammatory effect of butyrate had been described as the most 

effective (Hamer et al., 2008), propionate and acetate have also been reported to show 

anti-inflammatory activity with the rank order of potency butyrate > propionate > acetate 

(Tedelind et al., 2007). Therefore, the decrease of propionic and acetic acids in MDs with 

ICRPs may contribute to the development of inflammation. 

The major products of SCFAs are acetic, propionic, and butyric acids, which are 

commonly found in proportions of approximately 60:20:20 (acetic: propionic: butyric) in 

humans (Garcia et al., 2008; Wong et al., 2006). In contrast, the butyrate concentration in 

healthy dogs is lower (approximately 10% of the total of acetic, propionic, and butyric 

acids) (Hang et al., 2013; Patra, 2011; Strompfová et al., 2014; Yogo et al., 2011), which 

is consistent with the present study. A low fecal butyrate ratio seems to be characteristic 

for dogs, which might result in the absence of a statistically significant difference in the 

fecal butyrate concentration.   

The fecal dry matter content was also significantly lower in the nonMet-ICRP than in 

the Control group, which may have resulted from excessive mucus secretion commonly 

observed in MDs with ICRPs (Ohmi et al., 2012; Tamura et al., 2013). This might lead to 
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the dilution of fecal SCFAs. Since I did not investigate the proportion of bacteria in each 

fecal sample, in this study, I cannot conclude the exact cause of the SCFA reduction. The 

nonMet-ICRP group showed a higher fecal pH than the Control group, which may due to 

the decreased SCFAs. A lower pH reduces the growth and activity of potential pathogens 

(Hooda et al., 2012). The composition of microbiota in the nonMet-ICRP group would 

therefore be altered compared with the Control group. 

The median fecal concentrations of total SCFAs, particularly acetic and lactic acids, 

in the Met-ICRP group were relatively higher than in the nonMet-ICRP group but lower 

than controls; however, these values were not statistically significant. A recent report 

revealed that metronidazole administration to healthy dogs increases the fecal bacterial 

composition of Bifidobacterium and Lactobacillales (Igarashi et al., 2014), which have 

been described to predominantly produce acetic and/or lactic acid (Lidbeck and Nord, 

1993; Strompfová et al., 2014). In addition, metronidazole administration reduced 

Bacteroidetes, Clostridiaceae, Lachnospiraceae, Ruminococcaceae, and Veillonellaceae 

(Igarashi et al., 2014), which are major contributors to the production of propionic and 

butyric acids in humans (Reichardt et al., 2014). This might explain the relatively 

equivalent concentrations of propionic and butyric acids between the Met-ICRP and 

nonMet-ICRP groups. Further studies comparing the fecal SCFA concentrations and 

bacterial populations pre- and post- metronidazole treatment in healthy and diseased dogs 

would confirm the findings and the prebiotic effect. 

Commensal microbe-derived SCFAs, particularly butyric and propionic acids, can 

induce differentiation of colonic Treg cells (Furusawa et al., 2013) which have a central 

role in suppression of the inflammatory response. Since the total fecal SCFAs and 

propionic acid concentrations in ICRP-affected MDs were decreased in the present study, 
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I suspect that the colorectal Treg cells in ICRP-affected MDs are reduced. However, one 

report showed an elevated mRNA expression of IL-10 in the polypoid lesion of ICRP-

affected MDs (Ohta et al., 2013), which is a well-known anti-inflammatory cytokine 

produced by mononuclear cells, including Treg cells (Saraiva and O'Garra, 2010). Further 

studies investigating the cellular source of IL-10 in ICRPs and the distribution of Treg 

cells in polypoid lesions are warranted. In addition, the association between colonic 

SCFAs and induction of Treg cells in dogs needs to be investigated. 

Enemas with SCFAs have been described as a treatment for ulcerative colitis patients, 

a major form of human IBD (Cummings, 1997; Hamer et al., 2008). Because of species 

differences, which may result in a different SCFA colonic molar ratio, regimens may need 

to be modified to identify the most effective enema composition for dogs. This method 

might be a novel therapeutic option for ICRPs in MDs since the lesions are commonly 

restricted to the colorectal mucosa (Ohmi et al., 2012).  

SCFAs have been described as having anti-carcinogenic effects (Hamer et al., 2008). 

Since ICRPs in MDs occasionally develop into colorectal neoplasia (Igarashi et al., 2013), 

further investigations regarding the association between SCFA concentrations and 

colorectal neoplasia in dogs might help to explain ICRP tumorigenesis. 

The heterogeneously- diseased and control dogs used in this study may have been a 

possible imitation. Several dogs in each group had received probiotics and 

immunosuppressive drugs, predominantly prednisolone (Tables 33 and 34). A recent 

report described that the oral administration of prednisolone did not directly affect the 

microbiota (Igarashi et al., 2014). There were no significant differences in SCFA 

concentrations between ICRP-affected MDs that had received immunosuppressive 

treatment and those that were untreated (Figure 19). Only five ICRP-affected MDs and 



151 

 

no control MDs had received probiotics in the present study. Therefore, drug 

administration was not considered a factor in the SCFA levels I observed. Dietary content, 

particularly dietary fiber (Panasevich et al., 2013; Patra, 2011), may have affected the 

results, however, information regarding diet was not available for several dogs. Only four 

ICRP-affected MDs had received a high-fiber diet (Hill’s prescription diet w/d, Hill’s Pet 

Nutrition, Inc., Kansas, USA; Royal Canin GI Fiber Response, Royal Canin, Aimargues, 

France) at recruitment. The body weights of nonMet-ICRP and Met-ICRP were likely to 

be lower than Control group dogs (Table 36). Obesity has been reported to be associated 

with altered microbiota and increased fecal SCFA concentrations (Ley et al., 2006; 

Turnbaugh et al., 2006); this might confound the results of the present study. However, 

the body condition scores were not different between diseased and control dogs. Since 

only a limited number of cases were recruited, further studies using larger sample sizes 

should be performed in the future. 

In conclusion, this study revealed a significant decrease in fecal SCFA concentrations, 

predominantly propionic and acetic acids, in ICRP-affected MDs. These results indicate 

that SCFAs are a factor in the pathogenesis of ICRPs in MDs. The usefulness of SCFAs 

as a disease monitoring marker and its significance as a therapeutic target should be 

further investigated. 
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Table 35  

Correlation coefficient of calibration plots and recovery of short chain fatty acids 

(SCFAs). 

SCFA r2 Recovery (%) 

Lactic acid 0.9922 107.5 

Acetic acid 0.9974 106.9 

Propionic acid 0.9984 112.8 

Crotonic acid 0.9961 118.0 

Isobutyric acid 0.9945 112.7 

Butyric acid 0.9976 102.3 

Isovaleric acid 0.9963 95.9 

Valeric acid 0.9975 97.7 
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Table 36  

Summary statistics for case signalment parameters and evaluated markers. 

  nonMet-ICRP (n = 11) Met-ICRP (n = 8) Control (n = 25) P-value* 

Sex male (neutered) 5 (4) 5 (3) 17 (8) 0.6110 

female (spayed) 6 (4) 3 (3) 8 (5)  

Age (months) 119 (48–159) 105 (68–148) 103 (24–197) 0.9429 

Body weight (kg) 5.15 (3.85–7.50) 4.78 (3.20–5.80) 6.10 (3.90–7.75) 0.0708 

Body condition score** 3 (3–4) 3 (2–3) 3 (2–4) 0.0878 

Fecal parameters     

 Dry matter (%) 20.32a (9.24–38.37) 22.88a,b (8.39–38.11) 33.22b (15.84–46.18) 0.0033 

 pH 6.80a (5.90–8.65) 6.78a,b (5.70–8.05) 6.40b (5.50–7.40) 0.0193 

 NH3*** 16.02 (4.68–46.10) 13.31 (6.12–49.03) 17.10 (5.97–32.73) 0.8663 

 Total SCFAs*** 19.49a (0.00–101.52) 59.25a,b (7.56–228.56) 81.19b (20.59–125.53) 0.0167 

 Acetic acid*** 13.62a (0.00–60.23) 27.48a,b (7.38–101.52) 46.57b (6.68–77.42) 0.0362 

 Propionic acid*** 0.00a (0.00–30.10) 0.12a,b (0.00–27.04) 16.83b (0.00–35.57) 0.0113 

 Butyric acid*** 0.60 (0.00–10.86) 0.63 (0.00–15.07) 3.17 (0.00–12.66) 0.1697 

 Isobutyric acid*** 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.29) 0.3420 

 Lactic acid*** 0.00 (0.00–20.84) 3.46 (0.00–197.75) 10.07 (0.00–51.86) 0.0967 

Valeric acid*** 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.02) 0.2298 

Isovaleric acid*** 0.00 (0.00–0.00) 0.00 (0.00–0.00) 0.00 (0.00–0.16) 0.3420 

*ANOVA, Kruskal–Wallis, or chi-square test. Statistically significant values (P < 0.05) are highlighted in bold. 

**Represented in 5-point scale (Baldwin et al., 2010). 

***Data are shown in µmol/g wet feces. 

Data other than sex are presented as the median (range). 

Medians not sharing a common superscript are significantly different (P < 0.05 based on a Tukey’s test or Dunn's 

multiple comparison). 

 



156 

 

Figure 18 

 

Chromatogram patterns of a mixture of standard solutions (5.0 mM each) of eight short 

chain fatty acids (SCFAs) (a), and a control dog fecal sample (b). L, lactic acid; A, acetic 

acid; P, propionic acid; C, crotonic acid; iB, isobutyric acid; B, butyric acid; iV, isovaleric 

acid; V, valeric acid. 
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Figure 19 

 

Fecal concentrations of total and major SCFAs in inflammatory colorectal polyp (ICRP)-

affected dogs treated with and without immunosuppressive drugs. The horizontal lines 

represent the median value of that group. No statistically significant difference was 

observed in any SCFA. 
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Conclusion 
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   Inflammatory colorectal polyps (ICRPs) in Miniature Dachshunds (MDs) have 

recently been recognized as a disease, known only in Japan, and they are assumed to 

involve a genetic predisposition. Based on the presence of idiopathic inflammation and 

the clinical response to immunosuppressive treatment, ICRPs are thought to be a novel 

form of breed-specific IBD in dogs (Ohta et al., 2013); however, few studies have 

investigated their pathogenesis. As shown in Chapter 0, ICRPs in MDs show a tendency 

to develop at the ventral angle of the colorectal mucosa. This led me to propose two 

factors that may contribute to pathogenesis: (1) anatomical factors, such as distance from 

regional lymph nodes or the mesocolon, and distribution of nerves or blood supply, and 

(2) aberrant interactions or mechanical abrasion between the colorectal mucosa and fecal 

antigens. Since the development of ICRPs in MDs is restricted to the colorectum (Ohmi 

et al., 2012), I focused on the factors associated with the mucosal-microbiota interaction 

in this thesis. 

The interaction between mucosal innate immunity and gut microbiota plays a central 

role in the maintenance of mucosal immunological homeostasis (Wallace et al., 2014; 

Xavier and Podolsky, 2007). The aberrant recognition of commensal microbiota by 

dysregulation and/or dysfunction of pattern recognition receptors (PRRs) leads to an 

excessive mucosal immune response (Cario, 2010). In addition, dysbiosis, including a 

decrease in beneficial bacteria and an increase in pathogenic bacteria, and reduced 

luminal short chain fatty acid (SCFA) content also contribute to the development of 

mucosal inflammation (Wallace et al., 2014; Wong et al., 2006). For this thesis, a series 

of studies was performed to characterize the mucosal immune condition, genetic 

background, and microbiota in ICRPs in MDs. 

In Chapter 1-1, the messenger RNA (mRNA) expression levels of PRRs in polypoid 
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lesions were investigated and the mRNA expression of several PRRs was found to be 

upregulated (toll-like receptor 1 [TLR1], TLR2, TLR4, TLR6, TLR7, TLR8, TLR9, 

TLR10, and nucleotide-binding oligomerization domain 2 [NOD2]); in contrast, the 

mRNA expression of TLR3 and NOD1 was downregulated. The mRNA expression of all 

upregulated PRRs also showed a positive correlation with the expression of each 

proinflammatory cytokine. However, most dysregulation of PRR mRNA expression was 

restricted to the polypoid lesions. These data indicated that the upregulation of PRRs is 

not the cause but is the consequence of inflammation and may aggravate the disease, as 

indicated in human inflammatory bowel disease (IBD) (Szebeni et al., 2008). 

Next, functional analysis of PRRs was performed. Chapter 1-2 details the evaluation 

of reactivity to pathogen-associated molecular pattern (PAMP) stimulation using 

peripheral blood-derived monocytes. Reactive IL-1β induction was enhanced in ICRP-

affected MDs when stimulated with muramyl dipeptide (MDP), synthetic bacterial 

lipoprotein (Pam3CSK4), peptidoglycan from Escherichia coli K12 (PGN-EK), and 

synthetic diacylated lipoprotein (FSL-1) (ligands for NOD2, TLR1/2, TLR2, and TLR2/6, 

respectively). The difference in reactivity to MDP stimulation remained significant when 

several limiting factors, including disease condition (samples collected at initial diagnosis 

or at clinical remission) or drug administration (i.e., immunosuppressive agents), were 

taken into account. Although the reactivity of peripheral monocytes should differ from 

that of mucosal macrophages in the colorectum (Schmitz et al., 2014), the above-

mentioned results indicate that hyperreactivity might contribute to the development of 

inflammation. Furthermore, these data suggested a genetic contribution, particularly of 

the NOD2 gene. 

Based on the results reported in Chapter 1-2, I explored mutations and single 
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nucleotide polymorphisms (SNPs) in the canine NOD2, TLR1, TLR2, and TLR6 genes 

in Chapter 1-3. First, molecular cloning of the canine NOD2 gene was performed, and 

three novel transcript variants were detected. Second, a mutational analysis was 

performed using genomic DNA, and a total of 13 non-synonymous SNPs were detected 

in the canine NOD2, TLR1, TLR2, and TLR6 genes. Third, an association study was 

performed on the six SNPs detected in exon 3 of the canine NOD2 gene, which revealed 

that four of the SNPs (A1532G, T1573C, C1688G, and G1880A) were in complete 

linkage disequilibrium and were associated with the development of ICRPs in MDs. 

These four SNPs were considered to predispose MDs to ICRPs. Given the results reported 

in Chapter 1-2, it appears that these SNPs are localized at the NACHT domain and may 

be associated with NOD2 hyperreactivity, as characterized in Blau syndrome in humans 

(Sfriso et al., 2012). Further investigations evaluating the relationship between these 

SNPs and their functional effect should be performed by transfecting each haplotype in 

vitro and/or assessing the reactivity in healthy dogs harboring each haplotype to confirm 

this theory; these studies may improve our understanding of how dysfunction of NOD2 

contributes to the development of inflammatory disorders, including ICRPs in MDs, as 

well as Blau syndrome in humans. However, these SNPs could not be defined as markers 

for the development of the disease because the majority of control dogs also harbored 

risk-associated haplotype. This finding supports the hypothesis that the etiology of ICRPs 

in MDs is multifactorial, as has been shown in human and canine IBD (Cerquetella et al., 

2010; Wallace et al., 2014). Thus, it appears that the risk-associated haplotype of these 

SNPs gives rise to a predisposition to develop ICRPs in MDs, but is not a specific cause. 

In Chapter 2-1, I reported an analysis of the composition of the fecal microbiota in 

ICRP-affected MDs using high-throughput 16S rRNA gene sequencing and revealed that 
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dogs with ICRPs showed fecal dysbiosis, predominantly with an increase in Fusobacteria 

and a decrease in Lachnospiraceae. Furthermore, my study also revealed that the 

composition of the microbiota of ICRP-affected MDs tended to shift, becoming more 

similar to that of healthy MDs, when clinical remission was achieved with 

immunosuppressive therapy. Although the cause-effect relationship could not be 

determined by this study, these results indicate that the microbiota are involved in the 

pathogenesis of ICRPs in MDs. The group Fusobacteria contains heterologous bacterial 

species, including Fusobacterium nucleatum and other Fusobacterium species that are 

considered pathogenic, with proinflammatory, invasive, and tumorigenic potential and 

are present in the colorectum in humans (Allen-Vercoe et al., 2011; Tahara et al., 2014). 

Since MDs with ICRPs occasionally develop neoplasia (Igarashi et al., 2013), an increase 

in Fusobacteria might play a part in tumorigenesis as well as in the development of 

mucosal inflammation. Further studies to analyze microbial proportions at the species 

level are warranted. 

Furthermore, the decrease in Lachnospiraceae reported in Chapter 2-1 indicated a 

reduction in fecal SCFA concentrations. Therefore, I further investigated the fecal SCFA 

concentrations by high performance liquid chromatography (HPLC) in Chapter 2-2. The 

total fecal SCFAs was decreased in ICRP-affected MDs; the major contributors to the 

decrease were acetic and propionic acids. This result indicates that the reduced SCFA 

content may contribute to the development of inflammation in this disease. 

This series of studies characterized the aberrant condition of host innate immunity 

and the fecal microbiota in ICRPs in MDs. The findings reported in this thesis, including 

dysregulation of PRR expression, hyperreactivity of PRRs, genetic factors, fecal 

dysbiosis, and reduced fecal SCFA concentrations, may be associated with the 
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development of mucosal inflammation. However, the data remain insufficient to fully 

determine the etiology and establish appropriate therapeutic protocols for ICRPs in MDs. 

Although the studies reported here revealed a genetic background predisposing MDs 

to ICRPs, the underlying reason that ICRPs commonly develop in MDs remains unknown. 

Genome-wide association studies would aid in identifying additional mutations critical 

for the development of ICRPs in MDs, and may also explain why ICRPs in MDs are 

observed only in Japan. Moreover, it remains unclear how NOD2 hyperreactivity affects 

the pathogenesis of ICRPs in MDs, and Blau syndrome in humans (Sfriso et al., 2012). 

Furthermore, this thesis did not evaluate other mucosal immunity factors, including the 

mucosal barrier, luminal antimicrobial peptides, and immunoglobulin A composition, or 

adaptive immunity in ICRPs in MDs. The reduced fecal SCFAs indicates a reduction in 

mucosal regulatory T (Treg) cells, which may contribute to the progression of 

inflammation; this factor needs to be further investigated in future. 

The lack of a disease severity score was a major limitation to all investigations 

performed as part of this thesis. Ohta et al. (2013) and Tamura et al. (2013) reported that 

upregulation of inflammatory cytokines was more severe in large polyps than in small 

polyps. Similar to the CIBDAI scoring system for canine IBD (Jergens et al., 2003), 

construction of a clinical severity score, including clinical signs, biochemical markers 

(e.g. C-reactive protein), and subjective macroscopic findings, similar to that presented 

in Chapter 0 (0, no polyps present; 1, small polyps; 2, medium-sized polyps; and 3, large 

polyps), may be useful for the management of ICRPs in MDs. Furthermore, several of 

the objective markers used to evaluate canine IBD, such as S100A12 and calprotectin, 

might be useful for monitoring and prognostic prediction for ICRPs in MDs (Collins, 

2013). 
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To date, ICRPs in MDs have been treated with immunosuppressive therapy, 

endoscopic polypectomy, argon plasma coagulation, and/or surgical resection (Ohmi et 

al., 2012; Tsukamoto et al., 2012). The efficacy of dietary intervention, antibiotics, and 

pre/probiotics has not been investigated. The alteration of the microbiota and the reduced 

fecal SCFA concentrations observed in this thesis indicate that these methods may have 

therapeutic efficacy. Many studies have described the effect of probiotics in dogs, as 

promoting the growth of beneficial bacteria, including Bifidobacterium and 

Lactobacillales, and increasing fecal SCFA concentrations (Garcia-Mazcorro et al., 2011; 

Strompfová et al., 2014). Interestingly, a recent report compared the effect of combination 

therapy using prednisone and metronidazole with probiotics (VSL#3) alone on canine 

IBD patients; dogs treated with probiotics showed a greater improvement in 

histopathology and the fecal proportion of beneficial bacteria (Faecalibacterium) (Rossi 

et al., 2014). Similarly, supplementation with prebiotics, such as dietary fiber, in healthy 

dogs has also been shown to induce an increase in beneficial bacteria and to promote 

higher fecal SCFA concentrations (Middelbos et al., 2010; Panasevich et al., 2013, 2014; 

Patra, 2011; Sunvold et al., 1995a, b), although data on their efficacy in dogs suffering 

from gastrointestinal disorders are limited. Furthermore, SCFA enemas, which harbor a 

limitation to prolonged use (with regard to compliance) in the treatment of human IBD 

(Cummings, 1997; Hamer et al., 2008), may also show promise as a novel treatment 

protocol for ICRPs in MDs as well as chronic colitis in dogs. The effect of probiotics, 

prebiotics, and/or SCFA supplementation on mucosal immunity, gut microbiota, and/or 

tumorigenesis of ICRPs is of great interest. 

Unlike IBD in dogs, ICRPs in MDs could be considered a homologous disorder; it 

typically occurs in MDs, shows relatively consistent macroscopic and histopathological 



165 

 

findings, and mostly develops in the colorectum. Thus, it shows promise to become a 

novel animal model for spontaneous inflammatory disorders. As described above, the 

etiology of ICRPs in MDs is expected to be multifactorial, similar to IBD in humans and 

in dogs. This thesis investigated only mucosal innate immunity and the microflora; the 

contributions of adaptive immunity, the mucosal barrier system, environmental factors, 

and interactions among these factors remain unclear. Unraveling the pathogenesis of 

ICRPs in MDs could provide new insights into various idiopathic inflammatory disorders, 

such as Blau syndrome or IBD in humans. 
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