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Abstract

We study minimal-doubling fermion actions on hyperdiamond and deformed-

hyperdiamond lattices, with emphasis on the real-space construction of them and

Lorentz covariance of excitations from fermion poles. We propose the improved spatial

construction of Creutz fermion action on a deformed hyperdiamond lattice, and discuss

conditions for a hyperdiamond-lattice action to produce Lorentz-covariant excitations

from poles of fermion propagators. It is pointed out that the non-nearest-site hoppings

are essential for the correct excitations. We also propose a class of minimal-doubling

actions defined on a deformed hypercubic lattice as a generalization of Creutz-type

actions. In addition we introduce a two-parameter class of Wilczek-type minimal-

doubling actions.
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§1. Introduction

Recently, Creutz1) and Boriçi2) have proposed a two-parameter class of fermion actions

called “Creutz fermion”, inspired by the relativistic condensed matter system, graphene.3)

This fermion is defined on the hyperdiamond lattice distorted by two parameters (B,C)

and includes the non-nearest hopping terms. What is notable about “Creutz fermion” is

that it has desirable properties for the lattice simulation such as locality, chiral symmetry

and the minimal number of fermion doubling. Among them, the minimal fermion doubling

is the most outstanding characteristic of this fermion. As is well-known, although there

exist only two (or three) light quarks in QCD, Nielsen-Ninomiya’s no-go theorem4)–6) states

that the lattice fermion with chiral symmetry and other common features inevitably yields

degrees of freedom of multiple number of two in a continuum limit. On the other hand,

the lattice fermions which bypass the no-go theorem such as domain-wall fermion7), 8) and

overlap fermion9), 10) demand an expensive numerical task. Therefore the chiral-symmetric

fermion including only the minimal number of doubling, such as Creutz fermion, will be

much faster and more useful in the simulation since the two fermion degrees of freedom can

be directly interpreted as the two light quarks in lattice QCD simulation.

However it was pointed out11) that Creutz action lacks sufficient discrete symmetry to

prohibit relevant and marginal operators to be generated through the loop corrections which

are serious obstacles for a good continuum limit in the lattice simulation.12), 13) In particular,

such a problem for the lattice action, which is equivalent to Boriçi action, has already inves-

tigated.14) In Ref. 15) the authors show that if the non-nearest hopping terms are dropped

with the parameters chosen to B = 1/
√
5, C = 1 in Creutz action, the requisite discrete

symmetry of cyclic group Z5 recovers, although the modified action yields an unphysical

excitation from the pole of propagator (or mutilated pole16)–18)). They also construct a sim-

ple fermion action on a hyperdiamond lattice including only the nearest-neighbor hoppings.

However, it is argued in 15) that although this fermion action has the sufficient discrete

symmetry of alternating group A5 ⊃ Z5, it yields more than minimal number of doublers.

In this paper we investigate fermion actions on hyperdiamond and deformed-hyperdiamond

lattices, with emphasis on the real-space construction of them and Lorentz-covariant exci-

tations from poles of propagators, then obtain a generalized class of Creutz-type minimal-

doubling actions on a deformed hypercubic lattice. Firstly we propose the spatial construc-

tion of Creutz fermion action on a deformed hyperdiamond lattice, which is an improved

version of that in 15). Secondly we study conditions for a hyperdiamond-lattice action to

produce Lorentz-covariant excitations from fermion poles. It is pointed out that the non-

nearest neighbor hoppings in terms of sites are essential for the correct excitations. Then
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we propose a class of minimal-doubling fermion actions defined on a deformed hypercubic

(rhombus) lattice as a generalization of Creutz-type actions, where the link variables are eas-

ily introduced. We also introduce a two-parameter class of Wilczek-type minimal-doubling

actions, which will be the simplest form of Creutz-type lattice action.

In Sec. 2 we briefly review the hyperdiamond lattice and Creutz fermion. In Sec. 3 we

discuss the spatial construction of Creutz action and investigate the conditions for the correct

fermionic excitations. In Sec. 4 we study examples of hyperdiamond-lattice fermions and

propose a related action “Appended Creutz action”. In Sec. 5 we generalize Creutz-type

and Wilczek-type actions to classes of actions on deformed hypercubic lattices. Section 6 is

devoted to a summary and discussion.

§2. Creutz fermion

We now consider the minimal-doubling action proposed by Creutz, which is called Creutz

action1), 2) and also Boriçi-Creutz action in 15). The action is related to the hyperdiamond

lattice, which is the higher dimensional generalization of graphene system. General dimen-

sional aspects of the hyperdiamond lattice and lattice fermions defined on them are discussed

in 19).

The four-dimensional hyperdiamond lattice is constructed with five bond vectors,

e
1 = 1

4
(
√
5,
√
5,
√
5, 1), e

2 = 1
4
(
√
5,−

√
5,−

√
5, 1),

e
3 = 1

4
(−

√
5,−

√
5,
√
5, 1), e

4 = 1
4
(−

√
5,
√
5,−

√
5, 1),

e
5 = (0, 0, 0,−1),

(2.1)

satisfying

e
µ · eν =

{

1 for µ = ν

cos θ = −1/4 for µ 6= ν
. (2.2)

The spatial translation symmetry of the hyperdiamond lattice is characterized by primitive

vectors dµ (µ = 1, 2, 3, 4) defined as

dµ = e
µ − e

5 for µ = 1, · · · , 4. (2.3)

Then an angle η between them is given by

cos η =
dµ · dν

|dµ| |dν |
=

1

2
. (2.4)

This is a common property for any dimensional hyperdiamond lattices.19)

An important property of the hyperdiamond lattice is its sublattice structure, such that

it consists of two kinds of sites. These sublattices are called L-node and R-node∗), whose

∗) In the case of the graphene system, these sublattice structure is often represented by A and B sites.
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positions are labeled by xL =
∑4

µ=1 xµdµ and xR =
∑4

µ=1 xµdµ + e
5, but this node-index is

often omitted in the following discussion because only positions of unit cells are important

for a lattice action. This sublattice structure corresponds to chirality of fermions, and is

in common with the honeycomb lattice (d = 2) and the diamond lattice (d = 3). That

means, if poles of the Dirac operator are arranged to construct the hyperdiamond lattice

in momentum space, the number of doublers is only two. This is a strategy to obtain

the hyperdiamond-type minimal-doubling fermion, and actually done in Creutz’s original

paper.1)

Then let us show how four dimensional generalization of the graphene system is con-

sidered. To investigate the graphene system, we often use the tight-binding model on a

honeycomb lattice for π-electrons of carbon atoms. The Hamiltonian in momentum space is

given by

H(p) = K

(

0 z(p)

z∗(p) 0

)

(2.5)

where K is a hopping amplitude and an off-diagonal component is defined as z(p) = 1 +

eip1 +eip2 . This Hamiltonian is associated with a conventional anti-hermitian Dirac operator

in lattice field theory as H = σ3D, and we now use non-orthogonal coordinates defined by

primitive vectors, pµ = dµ · p.
To consider four-component Dirac spinor in four dimensions, a complex number z(p) ∈ C

is generalized to a quaternion z = c0 + i~c · ~σ ∈ H. In the original paper,1) the associated

Dirac operator is given by

D(p) = (sin p1 + sin p2 − sin p3 − sin p4)iγ1

+ (sin p1 − sin p2 − sin p3 + sin p4)iγ2

+ (sin p1 − sin p2 + sin p3 − sin p4)iγ3

+B(4C − cos p1 − cos p2 − cos p3 − cos p4)iγ4. (2.6)

Gamma matrices are defined as γi = τ1 ⊗ σi, γ4 = τ2 ⊗ 1 and γ5 = τ3 ⊗ 1 where τ ’s and σ’s

are both Pauli matrices acting on the sublattice and internal spinor structure, respectively.

Here, as the graphene system, we use non-orthogonal coordinates, pµ = aµ · p, where aµ are

primitive vectors of the lattice for Creutz action. However in Sec. 3 we will show they are

different from those defined in (2.3).

This Dirac operator possesses two poles at p = ±(p̃, p̃, p̃, p̃) with cos p̃ = C, if and only if

the lattice parameter C satisfying 1/2 < C < 1, to suppress extra poles such as (p̃, p̃, p̃, π−p̃).
Although these two poles induce physical Dirac fermions, in the case C = 1 they are reduced

to only one cut rather than a pole, and thus it turns out to be unphysical. To show this, we
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expand the Dirac operator (2.6) around the pole as pµ = p̃ + qµ,

D(p) = C(q1 + q2 − q3 − q4)iγ1

+ C(q1 − q2 − q3 + q4)iγ2

+ C(q1 − q2 + q3 − q4)iγ3

+BS(q1 + q2 + q3 + q4)iγ4 +O(q2) (2.7)

with S = sin p̃. This Dirac operator behaves as i~γ ·~k around pµ = 0 with S = 0 (C = 1), and

thus it has been shown that covariance of this fermion is broken. This unphysical fermion is

known as a mutilated fermion, often found in some attempts on nonhypercubic lattices.16)–18)

Since gamma matrices satisfy anti-commutation relations {γµ, γν} = 2δµν , coefficients of

gamma matrices are interpreted as those of a momentum represented by Euclidean coordi-

nates. Thus reciprocal vectors {bµ} giving momentum space basis are obtained by (2.7),

b
1 = (C,C, C,BS), b

2 = (C,−C,−C,BS),
b
3 = (−C,−C,C,BS), b

4 = (−C,C,−C,BS).
(2.8)

These vectors characterize the translation structure in momentum space, thus they can be

interpreted as “primitive vectors” of momentum space.

To consider a situation such that poles construct the exact hyperdiamond lattice, as

primitive vectors (2.4), it is imposed in Ref. 1) that an angle ξ between reciprocal vectors

satisfies cos ξ = 1/2. Here it is given by

cos ξ =
b
µ · bν

|bµ||bν | =
B2S2 − C2

B2S2 + 3C2
. (2.9)

With adjusting lengths of reciprocal vectors, Creutz chose two parameters, C = cos(π/5)

and B =
√
5 cot(π/5). On the other hand, the orthogonal condition b

µ ·bν = 0 gives BS = C

applied in Ref. 2).

We now remark an important property of reciprocal vectors to consider the lattice struc-

ture in real space. Because an arbitrary momentum is represented by p =
∑4

µ=1 (p · aµ) b
µ,

associated primitive vectors are determined by a relation aµ · bν = δνµ. We will discuss

real-spatial construction of Creutz fermion with this relation in Sec. 3.

§3. Hyperdiamond lattice fermion

As discussed in the previous section, Creutz fermion was directly constructed in mo-

mentum space. Then we should consider its lattice construction in real space to reproduce

Creutz’s Dirac operator (2.6). The translation structure in momentum space is given by the

expanded Dirac operator (2.7), and provides the associated real-spatial lattice structure.
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In this section we introduce a real-spatial construction of Creutz fermion on the deformed

hyperdiamond lattice. Then we show that the bond vectors of the lattice and the hopping

vectors of the fermion fields should be determined by the reciprocal vectors Eq. (2.8) con-

sistently. In this sense our construction is more reasonable than that in 15) although they

seem similar to each other. Based on this construction, we will give a parameter condition

for Creutz fermion to be defined on the exact hyperdiamond lattice in real space. We will

also discuss conditions for hyperdiamond-lattice fermions to yield only physical or Lorentz-

covariant excitations.

3.1. Creutz fermion on hyperdiamond lattice

To obtain a four-component Dirac fermion on the four dimensional hyperdiamond lattice,

we consider two-component chiral spinors, left-handed φ and right-handed φ̄ located on L-

node, and right-handed χ and left-handed χ̄ located on R-node. Here we note that φ and

φ̄ are not hermite conjugate, but independent degrees of freedom. This configuration of the

lattice fermions will play an important role on the discussion in section 3.2.

Here we define “spinor vectors”, which appear as the coefficient vectors of the gamma

matrices in the action. The spinor vectors with parameters B and C are given by

s
1 = (1, 1, 1, B), s

2 = (1,−1,−1, B),

s
3 = (−1,−1, 1, B), s

4 = (−1, 1,−1, B),

s
5 = (0, 0, 0,−4BC).

(3.1)

The action is given by

SC =
1

2

∑

x

[

4
∑

µ=1

(

φ̄x−aµ
Σ · sµχx − χ̄x+aµ

Σ · sµφx

)

+φ̄xΣ · s5χx − χ̄xΣ · s5φx

+

4
∑

µ=1

(

χ̄x−aµ
Σ̄ · sµφx − φ̄x+aµ

Σ̄ · sµχx

)

+χ̄xΣ̄ · s5φx − φ̄xΣ̄ · s5χx

]

. (3.2)

where the hopping vectors aµ (or primitive vectors) will be determined to be consistent with

the reciprocal vectors in the momentum space afterward. Here the fourth components of

spinor matrices are twisted as Σ = (~σ,−1), Σ̄ = (~σ, 1). It is notable that hopping terms of

φx → χ̄x−aµ
and χx → φ̄x+aµ

in (3.2) represent non-nearest site interactions.

Thus we obtain Creutz’s Dirac operator (2.6) by considering Fourier transformation of

the lattice action (3.2) as

SC =

∫

d4p

(2π)4
ψ̄pD(p)ψp (3.3)

6



(a) �e3 e1e2 (b) �0 �00
Fig. 1. Two dimensional analogue of the lattice deformation: (a) the two dimensional regular

diamond (honeycomb) lattice and (b) the distorted lattice with e
3 direction specified (θ′′ >

θ > θ′).

with a Dirac spinor

ψp =

(

φp

χp

)

, ψ̄p =
(

φ̄p χ̄p

)

. (3.4)

In this construction the reciprocal vectors are obtained as (2.8). Since primitive and

reciprocal vectors satisfy aµ · bν = δνµ, the associated primitive vectors, or the hopping

vectors of the fermion fields, for Creutz fermion are given by

a1 =
1
4C

(1, 1, 1, C
BS

), a2 =
1
4C

(1,−1,−1, C
BS

),

a3 =
1
4C

(−1,−1, 1, C
BS

), a4 =
1
4C

(−1, 1,−1, C
BS

).
(3.5)

Since primitive vectors of the (distorted) hyperdiamond lattice are given by (2.3), bond

vectors {eµ} are obtained by introducing another free parameter f (f > 0),

e
µ = aµ + e

5 for µ = 1, 2, 3, 4,

e
5 = (0, 0, 0,−f). (3.6)

These vectors are identified with the bond vectors of the hyperdiamond lattice on which the

action is defined, while the spinor vectors {sµ} in the action (3.2) are just related to the

lattice structure indirectly.

For general values of the parameters, the hyperdiamond lattice is deformed such that it

is elongated in e
5 direction as shown in Fig. 1. As the case of the exact hyperdiamond lattice

(2.4), an angle between the primitive vectors (3.5) is given by

cos η =
C2 − B2S2

C2 + 3B2S2
. (3.7)

We note that it is related to (2.9) by exchanging C ↔ BS. Then if we choose deformation

parameters as f = 1/(
√
5C) and BS = C/

√
5, the angles become cos η = 1/2 and cos θ =

e
µ · eν/(|eµ||eν |) = −1/4, and thus Creutz fermion is defined on the exact hyperdiamond

lattice. We will call this condition “hyperdiamond condition”. In this case, the angle between

reciprocal vectors becomes cos ξ = −1/4. Furthermore, the Creutz and Boriçi’s conditions
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such that in momentum space poles are located on the exact hyperdiamond lattice and on

the orthogonal lattice imply the associated angles become

cos η =

{

−1/4 (Creutz)

0 (Boriçi)
. (3.8)

This means, in the sense of real and momentum spaces, the hyperdiamond condition and

the Creutz condition are dual, and the Boriçi condition is self-dual.

Here we remark discrete symmetry of Creutz fermion. With general parameters, this

distorted lattice and also the action on this have only S4 6⊃ Z5 symmetry which is not the

sufficient discrete symmetry for a good continuum limit.15) In the case of the hyperdiamond

condition, this distorted lattice becomes the regular S5 ⊃ Z5 symmetric hyperdiamond

lattice. However, even if the hyperdiamond lattice becomes exact, the non-nearest hopping

terms reduce the discrete symmetry of the action to S4. Thus the physical Creutz fermion

cannot have the requisite discrete symmetry to prohibit the redundant operators. It indicates

a general property that the minimal-doubling lattice fermion lacks the sufficient discrete

symmetry for a continuum limit on hyperdiamond lattices.

3.2. Conditions for physical hyperdiamond lattice fermions

We have seen that physical fermionic excitations are obtained from minimal-doubling

poles of Creutz’s Dirac operator, although the action lacks sufficient discrete symmetry. Here

we investigate conditions for a hyperdiamond-lattice action to produce Lorentz-covariant ex-

citations from poles of fermion propagators, which actually Creutz fermion satisfies. We then

argue “minimal-doubling” on the hyperdiamond lattice is incompatible with the sufficient

discrete symmetry of the action for a good continuum limit since the above conditions, which

we will call “physicality conditions”, cannot be satisfied without lowering the symmetry of

the action.

Non-nearest neighbor hoppings. We have shown that Creutz action can be regarded as

being defined on the hyperdiamond lattice. From the viewpoint of this real-spatial interpre-

tation, the action (3.2) contains the non-nearest neighbor hoppings which sometimes lead

to breaking of locality. However in this case, non-nearest neighbor hoppings are actually

non-nearest interactions in the sense of sites, but nearest for unit cells. The hoppings based

on the vectors aµ in Eq. (3.5) stand for nearest neighbor hoppings between the unit cells,

not the sites. Thus the locality is not broken in the continuum limit of Creutz action as

seen in 20), 21). Here we denote the nearest (non-nearest) hoppings in the sense of sites

as “nearest-site (non-nearest-site) hoppings”. As follows, we will show the non-nearest-site

hoppings are required for Lorentz-covariant or physical excitations of fermions on hyperdia-

8



(a) (b) ()
Fig. 2. L → R hoppings to nearest unit cells:19) (a) forward (nearest neighbor site) hoppings,

(b) backward (non-nearest neighbor site) hoppings, and (c) the remaining nearest unit cell

hoppings which are not included by Creutz action. L-node and R-node are denoted by shaded

and open circles, respectively. Unit cells are encircled.

mond lattices although the nearest-site hoppings are enough for a correct form of a Euclidean

Dirac operator, namely anti-hermitian Dirac operator.

For nearest-site L → R hoppings on the hyperdiamond lattice, a forward hopping as

x → x + aµ is allowed but a backward hopping x → x − aµ is not as shown in Fig. 2, and

they are inverted in the case of R → L hoppings. Now let us consider a hyperdiamond-lattice

action only with nearest-site hoppings as discussed in 15). Although either of L → R or

R → L hopping corresponds to a non-hermitian operator as i(∂µ − 1) or i(1 − ∂†µ), we can

make the Euclidean Dirac operator anti-hermitian (namely a correct form) by including both

of L → R and R → L nearest-site hopping terms. However in this case, only either of eipµ

or e−ipµ appears in the coefficients of spinor matrices such as Σ and Σ̄ in the momentum

space. Since these coefficients are complex numbers, we should introduce two anti-hermitian

basis, iγ and γγ5, in order to expand this kind of the operator by gamma matrices. (Here

the chirality of the Dirac operator is not broken since both of iγ and γγ5 anticommute with

γ5.) Then this kind of the Dirac operator is given by

D(p) =
∑

µ

iγµFµ(p) +
∑

µ

γµγ5Gµ(p) (3.9)

where Fµ(p) and Gµ(p) are independent real functions in general. This type of Dirac operator

is actually proposed in 11), as the generally chiral symmetric operator. In this operator iγ-

terms and γγ5-terms are regarded as “vector” and “axial-vector” functions, respectively,

and thus Nielsen-Ninomiya’s no-go theorem cannot be applied to this kind of Dirac operator

because it is based on Poincaré-Hopf theorem for “either” of vector or axial-vector functions,

not for both of them. Therefore, there is no guarantee that the Dirac operator yields physical

poles of fermion propagator and the number of poles becomes even. Thus it indicates that

the index of the Dirac operator including both of iγ and γγ5-terms is ill-defined.

Actually the operator including both of iγ-terms and γγ5-terms yields unphysical fermion

doublers in general. (Even on hypercubic lattices, the difference operator including only ei-
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ther of forward or backward hoppings induces unphysical poles.22)) On the other hand, as

seen in Creutz action, we can expand the Dirac operator by only iγ-terms if we introduce

hoppings to non-nearest neighbor sites but nearest unit cells. Thus non-nearest-site interac-

tions are required for constructing a physical Dirac operator, which produces only physical

degrees of freedom on the hyperdiamond lattice.

Here let us note that hermiticity of the hyperdiamond-lattice Dirac operator without non-

nearest hoppings, which is one of the necessary conditions for Nielsen-Ninomiya’s theorem,

does not imply the operator can be expanded by only either of “vector” or “axial-vector”

functions, as is different from the hypercubic case. Thus we may be able to claim that it

is, in a sense, a counter example of Nielsen-Ninomiya’s theorem since the associated Dirac

operator includes both of iγ and γγ5 terms although all the conditions for the theorem are

satisfied.

As shown above, non-nearest neighbor interactions are necessary for a physical fermionic

mode on hyperdiamond lattices. However this kind of the non-nearest hopping terms lower

the discrete symmetry of the action.15) Therefore it seems impossible to construct a physical

fermion action with the sufficient discrete symmetry on the hyperdiamond lattice as far as

it is based on the initial setting of the field configuration as discussed in section 2, namely,

two kinds of chiral fermions on L-nodes and R-nodes, respectively. It also means that the

requisite discrete symmetry for a good continuum limit is incommensurate with physical

minimal-doubling actions on hyperdiamond lattices in this configuration of fermion fields.

This no-go property is first conjectured in 15), and we discuss it systematically as shown

above.

Twisting spinor structure. To obtain a physical mode, Dirac operator must be expanded

by either of iγ or γγ5-terms. The most important condition is including non-nearest-site hop-

pings, but we now show some subsidiary conditions are required for constructing a physical

hyperdiamond lattice fermion. To construct a physical Dirac operator, we should multiply

some spinor matrices depending on hopping directions. The naive choice is σ = (~σ, i) as

proposed in 15). On the other hand, in the case of Creutz action the fourth component of

spinor structure is twisted as Σ = (~σ,−1), and the same coefficients are applied to non-

nearest-site hoppings. Due to this twist, sin p is converted to cos p in the coefficient of the

corresponding gamma matrix, and thus Creutz’s Dirac operator becomes anti-hermitian by

twisting the spinor component.

Although the spinor structure of Creutz action is apparently unnatural, it should be

determined in order to construct an anti-hermitian Dirac operator. It is expected that

a nontrivial spinor structure is related to an action based on a non-Bravais lattice which

possesses sublattice structure, e.g. staggered fermion.23)
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Lattice deformation. Besides the above prescriptions to obtain physical modes, we need

deformed “spinor vectors” by elongating in one specific direction. As discussed in Sec. 3.1,

these spinor vectors cannot be interpreted as bond vectors of the lattice. But we have shown

they are related as follows: spinor vectors {sµ} give the Dirac operator and also reciprocal

vectors {bµ} characterizing the translation symmetry in momentum space, then primitive

vectors {aµ} are derived from the condition aµ ·bν = δνµ. Thus two-parameter deformation of

spinor vectors leads to the distorted hyperdiamond lattice. Although we have also shown that

Creutz fermion can be constructed on the exact hyperdiamond lattice, the action yields a cut

on (p1, p2, p3) = (0, 0, 0), not a pole when we apply the regular hyperdiamond lattice bond

vectors with the condition C = 1 to spinor vectors. In this sense, the lattice deformation is

also necessary for physical poles although the discrete symmetry of the hyperdiamond lattice

is broken.

§4. Examples

According to the three conditions discussed in section 3.2, (i) Non-nearest-site hopping,

(ii) Spinor twist, and (iii) Distortion of the lattice, we can consider eight kinds of fermions.

In this section we try to complete the classification of lattice fermions based on the hyper-

diamond lattice in the aspects of the three features.

4.1. BBTW fermion and Dropped Creutz fermion

Firstly let us consider hyperdiamond-lattice actions with the sufficient discrete symmetry

for a good continuum limit. One of these fermion actions is proposed in 15), which we will

call BBTW action in this paper. It is constructed with exact hyperdiamond spinor vectors

and includes only nearest-site hoppings with untwisted spinor structure vectors σ = (~σ, i)

and σ̄ = (~σ,−i) as

SBBTW =
∑

x

[

4
∑

µ=1

(

φ̄x−aµ
σ · sµχx − χ̄x+aµ

σ̄ · sµφx

)

+ φ̄xσ · s5χx − χ̄xσ̄ · s5φx

]

, (4.1)

where spinor vectors s
µ are those in (3.1) with B = 1/

√
5, C = 1. The hopping vectors

aµ should be obtained from the reciprocal vectors in the momentum space as discussed in

Sec.3.1. Taking Fourier transformation of the action, we obtain the associated Dirac operator

represented as

D(p) = i

4
∑

µ

(sµ · γ) sin pµ −
(

4
∑

µ=1

s
µ cos pµ + s

5

)

· γγ5 (4.2)

The Dirac operator of BBTW action has at least seven spectral zeros at pµ = 0 and p1 =

−p2 = −p3 = p4 = cos−1(−2/3), etc. Denoting the poles as pµ = p̂µ, the operator is
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expanded around the pole with momentum pµ = p̂µ + qµ,

D(p) =

4
∑

µ=1

[

i (sµ · γ) qµ cos p̂µ − (sµ · γγ5) qµ sin p̂µ
]

+O(q2). (4.3)

For the pole at p̂µ = 0, the Dirac operator (4.3) becomes

D(p) = i (sµ · γ) qµ +O(q2). (4.4)

Thus this lattice action is reduced to the covariant Dirac form i (sµ · γ) pµ ≡ i 6k, in the low

energy region where we identify kµ as the Cartesian momentum. In the cases of other poles

p̂µ 6= 0, however, the Dirac operator includes not only iγ-terms but γγ5-terms as seen in

Eq.(4.3). As a result, one cannot obtain a covariant form of excitation from these poles, but

unphysical fermions.

Another lattice action with the sufficient discrete symmetry is obtained by modifying

Creutz fermion. To recover the sufficient discrete symmetry Z5 of Creutz action to prohibit

redundant operators, it was suggested in 15) that one drop non-nearest hopping terms and

choose B = 1/
√
5, C = 1. Then we obtain another type of Creutz action,

SdC =
∑

x

[

4
∑

µ=1

(

φ̄x−aµ
Σ · sµχx − χ̄x+aµ

Σ · sµφx

)

+ φ̄xΣ · s5χx − χ̄xΣ · s5φx

]

, (4.5)

and then we call this action Dropped Creutz action.

In this case, the Dirac operator is almost the same as (4.2) but the definition of iγ4 is

modified as γ5γ4, which is also anti-hermitian. As the case of BBTW fermion, both γ-terms

and γγ5-terms are included, and thus Nielsen-Ninomiya’s theorem cannot be applied to this

lattice action. Indeed the lattice fermion around pµ = 0 is not written as a covariant form,

i~γ · ~k + γ5γ4k4.

In BBTW action (4.1) any of the three conditions are not satisfied, while two of them (i)

Non-nearest-site hopping and (iii) Lattice deformation are not satisfied in Dropped Creutz

action (4.5). The point is that these actions do not satisfy (i), namely they contain none of

non-nearest-site hoppings necessary for Lorentz covariant excitations of fermions as discussed

in Sec. 3.2. As a consequence, although they preserve the discrete symmetry for a continuum

limit, they inevitably produce unphysical fermions as seen above. These results are consistent

with the argument discussed in Sec. 3.2 that the requisite discrete symmetry for a good

continuum limit is incompatible with physical minimal-doubling actions on hyperdiamond

lattices.
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4.2. Other fermions

We then consider the lattice action based on the hyperdiamond lattice with (i)non-nearest

hoppings and (iii)lattice deformation while the spinor structure is not twisted. We call this

Untwisted Creutz action. The associated Dirac operator is given by iγ4 → γ4 in Eq. (2.6) as

D(p) = (sin p1 + sin p2 − sin p3 − sin p4)iγ1

+ (sin p1 − sin p2 − sin p3 + sin p4)iγ2

+ (sin p1 − sin p2 + sin p3 − sin p4)iγ3

+B(4C − cos p1 − cos p2 − cos p3 − cos p4)γ4. (4.6)

Thus we obtain minimal-doubling fermions for 1/2 < C < 1 as Creutz action. However,

since γ4 is not anti-hermitian, covariance of them is broken as i~γ · ~k + γ4k4. As the case of

Creutz action discussed in section 2, Untwisted Creutz action with the exact hyperdiamond

spinor vectors is given by the condition C = 1. Then the same unphysical fermion i~γ · ~k is

obtained at p = 0 as Creutz fermion with C = 1.

The remaining lattice fermions are BBTW fermion and Dropped Creutz fermion with

the lattice deformation. Since they include only nearest neighbor hoppings, both of iγ-terms

and γγ5-terms arise in the action, and thus Nielsen-Ninomiya’s no-go theorem cannot be

applied to them as discussed before. All these fermions implies the necessity of the three

conditions for physical fermions on the hyperdiamond lattice.

4.3. Appended Creutz fermion

In this section we propose a new lattice action, which also possesses physical minimal-

doubling fermions as the case of the original Creutz action. It is pointed out in section 3.2

that Creutz action includes non-nearest-site hopping terms but nearest unit cell hoppings.

However, as shown in Fig. 2, all of nearest unit cell hoppings are not included by Creutz

action, and we now consider a new lattice action including all of them,

SaC = SC +
1

2

∑

x

∑

µ<ν

[

φ̄x−aµ+aν
Σ · (sµ − s

ν)χx − χ̄x+aµ−aν
Σ · (sµ − s

ν)φx

−φ̄x+aµ−aν
Σ̄ · (sµ − s

ν)χx + χ̄x−aµ+aν
Σ̄ · (sµ − s

ν)φx

]

. (4.7)

We will call this new action Appended Creutz action. Here the hopping vectors aµ are

obtained from the reciprocal vectors in the momentum space, which differ slightly from

those of the original Creutz action.

The additive contribution to the Dirac operator is given by

D′(p) = 2(sin p13 + sin p14 + sin p23 + sin p24)iγ1

13



Actions (i) Non-nearest hopping (ii) Spinor twist (iii) Lattice deformation Poles

Creutz © © © physical minimal-doubling p 6= 0

Appended Creutz © © © physical minimal-doubling p 6= 0

© © × unphysical p = 0

Untwisted Creutz © × © unphysical minimal-doubling p 6= 0

© × × unphysical p = 0

× © © unphysicals p 6= 0

Dropped Creutz × © × unphysical p = 0

× × © unphysicals p 6= 0

BBTW × × × unphysicals p 6= 0 and physical p = 0

Table I. List of lattice fermions based on the hyperdiamond lattice. The lattice actions including

only physical modes are Creutz and Appended Creutz action, which are the minimal-doubling

action. BBTW action has a physical and some unphysical poles. The others do not possess

any physical poles. The fermions with the sufficient discrete symmetry are BBTW fermion and

Dropped Creutz fermion.

+ 2(sin p12 + sin p13 − sin p24 − sin p34)iγ2

+ 2(sin p12 + sin p14 − sin p23 + sin p34)iγ3 (4.8)

where we define p12 = p1−p2, etc. The coefficient of iγ4 is constantly zero and the total Dirac

operator is obtained as the sum of (2.6) and (4.8). Thus it gives the same minimal-doubling

poles at p = ±(p̃, p̃, p̃, p̃) with cos p̃ = C and the minimal-doubling condition 1/2 < C < 1

as the case of Creutz action. Because the Dirac operator (4.8) is written by only iγ-terms,

the physical minimal-doubling fermions are obtained from (4.7).

This action satisfies all of three conditions discussed in section 3.2, the non-nearest-site

hoppings, the spinor twist and the lattice deformation. As a result, it lacks the sufficient

discrete symmetry to suppress the redundant operators generated by the loop corrections.12)

Actually although this Dirac operator (4.8) includes only γ1, γ2 and γ3 terms, fermionic

excitations from the pole of this operator are the same as those of the original one (2.7) up

to a factor. After all, Appended Creutz action is quite similar to the original Creutz action,

and thus it suggests stability of the minimal-doubling poles to some kinds of perturbations.

At last, we have investigated all of lattice fermions in the context of the three features

as listed in Table I. Furthermore, we have proposed a new lattice action, called Appended

Creutz action, which gives the physical minimal-doubling fermions. After all, the lattice

actions giving only physical fermions are the original Creutz action and Appended Creutz

action. Other actions have some problems such as including both of iγ and γγ5 or breaking

14



covariance.

While we have discussed free lattice fermions, we now remark effects of gauge interac-

tion. As discussed in preceding studies, since one of the spacetime direction is specified in

lattice actions we have considered, we have to renormalize the light of speed to resolve the

anisotropy generated by interactions. Thus it is expected that the Lorentz covariance is

just modified, but not broken through gauge interactions and quantum corrections because

physical fermions discussed here actually satisfy all of the conditions for Nielsen-Ninomiya’s

theorem. On the other hand, it is slightly meaningless to consider quantum corrections for

the lattice actions including unphysical fermionic modes.

We then comment on chiral charge of the lattice fermions. As the case of Creutz fermion,

the physical minimal-doubling fermions we have discussed possess the sublattice structure

of the hyperdiamond lattice, and thus their total chiral charge becomes zero. However the

index of the Dirac operator, which is interpreted as that of the real vector field in the context

of Poincaré-Hopf theorem, is ill-defined if both of iγ and γγ5 are included.

§5. A novel construction of minimal-doubling fermion

As discussed in Sec. 3.1, we can construct Creutz fermion on the distorted hyperdiamond

lattice. However in this real-space construction, the interactions based on the vectors aµ

(primitive vectors) stand for hoppings from one unit cell to another unit cell, not between

hyperdiamond-lattice sites. In addition there is no nontrivial hopping between two sites

in the same unit cell except for on-site terms. As seen from these reasons, the real-space

construction of Creutz fermion on the hyperdiamond lattice is somewhat misleading although

it gives intuitive understanding of the discrete symmetry of the action, and it is much more

natural that the two sites in one unit cell is identified as a single site as seen in Fig. 3. Based

on this argument, in this section we explicitly show alternative and more reasonable spatial

construction of Creutz-type minimal-doubling action on a deformed hypercubic rhombus

lattice, which is, in a sense, a generalized version of Creutz action.

Comparing it with another well-known minimal-doubling fermion on hypercubic lattice,

called Wilczek fermion,24) both of them include additive terms proportional to γ4. However

the location of poles of Creutz’s Dirac operator is adjustable while that of Wilczek fermion

is not. In this section we also consider a modification of Wilczek action, and construct an

orthogonal lattice action with adjustable poles.
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(a) (b)
Fig. 3. (a) Translation symmetry of the honeycomb lattice. Unit cells consisting of L-node and R-

node are encircled. (b) A deformed square (rhombus-like) lattice with the translation symmetry

equivalent to that of the honeycomb lattice.

5.1. Creutz-type lattice action

We especially remark the translation symmetry of the real-spatial lattice on which the

action is defined, and show a novel minimal-doubling fermion including Creutz fermion

can be constructed on a deformed hypercubic (rhombus) lattice only with nearest neighbor

hoppings.

As shown in Fig. 3, we can consider rhombus-like lattice which possesses the translation

symmetry equivalent to that of the hyperdiamond lattice. Its spatial primitive vectors aµ

will be found later, but we anyway introduce a lattice action defined on the rhombus-like

lattice,

S =
1

2

∑

x

[

4
∑

µ=1

(

ψ̄xΓ · sµψx+aµ
− ψ̄x+aµ

Γ̄ · sµψx

)

+ 2i t ψ̄xγ4ψx

]

(5.1)

with Γ = (~γ,−iγ4) and Γ̄ = (~γ, iγ4). Here t stands for a free parameter to be fixed for

minimal number of doublers. This expression is similar to what is presented in 25), but in

this paper we explicitly show alternative spatial construction. There are five spinor vectors

in the previous lattice action (3.2), but in this action only four vectors and an on-site

parameter instead of fifth vector. This on-site term is a Wilson-like term with one specific

direction.24), 26)

If we apply (3.1) to spinor vectors {sµ}, this lattice action is reduced to Creutz action.

To show this, we investigate its momentum space structure of the action (5.1). Taking its

Fourier transformation, the associated Dirac operator is obtained as

D(p) = i
4
∑

µ=1

ζµ(p)γµ (5.2)

16



where the coefficients of gamma matrices are

ζµ(p) =

{

∑4
ν=1 (s

ν)µ sin pν (µ = 1, 2, 3)

t−∑4
ν=1 (s

ν)µ cos pν (µ = 4)
, (5.3)

and (sν)µ represents µ-th components of sν . In order that this Dirac operator has minimal-

doubling poles at p = ±(p̃, p̃, p̃, p̃) with p̃ > 0, spinor vectors should satisfy

4
∑

ν=1

(sν)µ =

{

0 (µ = 1, 2, 3)

t/C̃ (µ = 4)
, C̃ = cos p̃. (5.4)

It is easy to show that (3.1) actually satisfy this condition, and to relate this Dirac operator

(5.2) to Creutz’s Dirac operator (2.6) we choose C̃ = C and t = 4BC.

To study fermionic excitations around poles, we expand the coefficients of gamma ma-

trices around poles with pµ = p̃+ qµ,

ζµ(p) =

{

C̃
∑4

ν=1 (s
ν)µ qν +O(q2) (µ = 1, 2, 3)

S̃
∑4

ν=1 (s
ν)µ qν +O(q2) (µ = 4)

(5.5)

with S̃ = sin p̃. Thus reciprocal vectors are given by

(bν)µ =

{

C̃ (sν)µ (µ = 1, 2, 3)

S̃ (sν)µ (µ = 4)
. (5.6)

At this stage, we obtain primitive (hopping) vectors {aµ} of the lattice by the condition

aµ · bν = δνµ. In general, the lattice becomes non-orthogonal, deformed hypercubic lattice as

shown in Fig. 3.

An advantage of this action is of course that we can easily introduce gauge fields by link

variables on bonds of the rhombus-like lattice. The fermionic part of the lattice action with

gauge fields and a mass-term is given by

S =
1

2

∑

x,µ

[

ψ̄xΓ · sµUx,µψx+aµ
− ψ̄x+aµ

Γ̄ · sµU †
x,µψx

]

+
∑

x

[

Mψ̄xψx + itψ̄xγ4ψx

]

. (5.7)

Note that link variables are also represented in non-orthogonal coordinates. Then we can

introduce the action of gauge fields as the plaquette action on the deformed hypercubic

lattice.

5.2. Orthogonal lattice action

We have discussed much simpler and generalized expression of Creutz-type minimal-

doubling lattice fermion. Then we claim minimal-doubling poles are due to the modification
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of the lattice action by introducing on-site term which is proportional to γ4. In this sense,

its minimal-doubling mechanism is similar to Wilczek action. However in the case of Creutz

action, the location of poles is adjustable while that of Wilczek action is not. We then

construct an orthogonal lattice action whose poles are adjustable. It will be the simplest

form of Creutz-type lattice action, and useful for us to understand its structure.

We now construct a lattice action on an orthogonal lattice,

S =
1

2

∑

x,µ

[

ψ̄xγµψx+aµ
− ψ̄x+aµ

γµψx

]

+
i

2
r
∑

x

[

2(3 + t)ψ̄xγ4ψx −
4
∑

µ=1

(

ψ̄xγ4ψx+aµ
+ ψ̄x+aµ

γ4ψx

)

]

,

(5.8)

where t and r are free positive parameters to be fixed for minimal number of doublers. The

explicit expression of primitive vectors will be shown later. The associated Dirac operator

is given by

D(p) = i

4
∑

µ=1

γµ sin pµ + irγ4

[

3
∑

j=1

(1− cos pj) + (t− cos p4)

]

. (5.9)

To obtain poles of this Dirac operator, we take coefficients of γ’s to be zero. In the cases of

j = 1, 2, 3, we obtain

sin pj = 0, π (j = 1, 2, 3). (5.10)

The coefficient of γ4 reads

sin p4 + r

[

3
∑

j=1

(1− cos pj) + (t− cos p4)

]

=
√
1 + r2 sin(p4 − α) + r(t+ 2Nπ) (5.11)

with Nπ = #{pj = π, j = 1, 2, 3}, cosα = 1/
√
1 + r2, sinα = r/

√
1 + r2. Thus the

condition such that this Dirac operator induces only minimal-doubling two poles is given by

∣

∣

∣

∣

r√
1 + r2

∣

∣

∣

∣

t < 1,

∣

∣

∣

∣

r√
1 + r2

∣

∣

∣

∣

(t+ 2) > 1, (5.12)

and then minimal-doubling poles become p = (0, 0, 0, p(±)+α) with sin p(±) = −rt/
√
1 + r2,

cos p(±) = ±
√

(1 + r2(1− t2))/(1 + r2).

To obtain translation symmetry of the lattice action, we expand the Dirac operator

around a pole with momentum (q1, q2, q3, q4 + p(+) + α) as

D(p) = i

3
∑

j=1

γjqj + i
√

1 + r2(1− t2)γ4q4 +O(q2). (5.13)
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Therefore reciprocal vectors for this lattice action are represented by

(bν)µ =

{

δνµ (µ = 1, 2, 3)

δνµ
√

1 + r2(1− t2) (µ = 4)
, (5.14)

and by the condition aµ · bν = δνµ, primitive vectors are obtained,

(aν)µ =

{

δνµ (µ = 1, 2, 3)

δνµ/
√

1 + r2(1− t2) (µ = 4)
. (5.15)

It indicates the lattice action is constructed on orthogonal lattice with one direction specified.

We now remark although both this Wilczek-type action and Boriçi action are defined on an

orthogonal lattice, they are not equivalent.

As the case of Creutz action, minimal-doubling poles induce two Dirac fermions. Al-

though the Dirac operator (5.9) has parity symmetry, the action lacks sufficient discrete

symmetry to remove redundant operators generated by loop corrections. Besides, when the

fourth component of the reciprocal vector is zero, covariance of the associated fermion is

broken and it becomes unphysical.

§6. Summary

In this paper we investigate minimal-doubling fermion actions on deformed-hyperdiamond

lattices, with emphasis on the real-space construction of them and the correct excitations

from poles of propagators, then generalize them to an action on a rhombus lattice.

In Sec. 3.1 we propose the spatial construction of Creutz fermion action on a deformed

hyperdiamond lattice, where the hopping vectors (or the primitive vectors) are consistently

determined by the reciprocal vectors in the momentum space. It means that the spatial

lattice structure, on which fermions live, depends not only on the spinor vector sµ but also

on the form of the action itself. Based on this construction we give a condition for the action

to be defined on the exact hyperdiamond lattice in the real space while a condition for the

poles of propagators to be located on the hyperdiamond-lattice sites is proposed in 1).

In Sec. 3.2 we investigate the conditions for a hyperdiamond-lattice action to produce

physical or Lorentz-covariant excitations from poles of fermion propagators, which actually

Creutz fermion satisfies. Then it is pointed out that the non-nearest-site (but nearest-unit-

cell) hoppings are essential for the correct excitations from the poles of doublers: If the

action on the hyperdiamond lattice does not contain any non-nearest-site hopping, it shall

yield fermions with unphysical excitations since the associated Dirac operator inevitably

includes both of iγ- and γγ5-terms while Nielsen-Ninomiya’s no-go theorem assumes either

of vector or axial-vector functions. This fact implies that the requisite discrete symmetry of
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the action for a good continuum limit is incompatible with “minimal-doubling” with correct

excitations on hyperdiamond lattices as firstly discussed in 15). All the fermion actions we

have discussed in Sec. 4 back up this incompatibility. In the section we also study a related

minimal-doubling fermion called “Appended Creutz fermion”, which contains all the nearest

neighbor interactions in terms of unit cells.

As discussed in Sec. 5, we can construct Creutz-type minimal-doubling actions more

naturally on a deformed hypercubic lattice, instead of a hyperdiamond lattice. We propose

a class of minimal-doubling fermion actions defined on a rhombus lattice. In a sense, this class

of the actions is a generalization of Creutz-type actions since it reduces to the original Creutz

action by choosing the parameters appropriately. Based on this alternative and reasonable

spatial construction of minimal-doubling actions, the link variables are easily introduced.

In the section we also introduce a two-parameter class of Wilczek-type minimal-doubling

actions, which is the most simple form of Creutz-type action.

As a future work we will search for a general and unified form of minimal-doubling actions,

which can reduce to all the known minimal-doubling actions including Wilczek fermion and

Creutz fermion. This kind of the actions, if exists, will reveal more on the incompatibility

between “minimal-doubling” and the requisite discrete symmetry for a good continuum limit.
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